max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
netmiko/example7.py
Tes3awy/Ntemiko-Examples
3
8000
# Must run example4.py first # Read an Excel sheet and save running config of devices using pandas import pandas as pd from netmiko import ConnectHandler # Read Excel file of .xlsx format data = pd.read_excel(io="Example4-Device-Details.xlsx", sheet_name=0) # Convert data to data frame df = pd.DataFrame(data=data) # Conevrt data frame from MGMT IP Address to a list device_ip_list = df.iloc[:, 1].tolist() # Define devices variable devices = [] for ip in device_ip_list: devices.append( { "device_type": "cisco_ios", # must be the same for all devices "ip": ip, "username": "developer", # must be the same for all devices "password": "<PASSWORD>", # must be the same for all devices "port": 22, # must be the same for all devices # If port for all devices is not 22 you will get an error "fast_cli": False, } ) for device in devices: # Create a connection instance with ConnectHandler(**device) as net_connect: # hostname of the current device hostname = net_connect.send_command( command_string="show version", use_textfsm=True )[0]["hostname"] run_cfg: str = net_connect.send_command(command_string="show running-config") # Create .txt for each running configuration of each device with open(file=f"{hostname}_ex7-run-cfg.txt", mode="w") as outfile: outfile.write(run_cfg.lstrip()) print("Done")
# Must run example4.py first # Read an Excel sheet and save running config of devices using pandas import pandas as pd from netmiko import ConnectHandler # Read Excel file of .xlsx format data = pd.read_excel(io="Example4-Device-Details.xlsx", sheet_name=0) # Convert data to data frame df = pd.DataFrame(data=data) # Conevrt data frame from MGMT IP Address to a list device_ip_list = df.iloc[:, 1].tolist() # Define devices variable devices = [] for ip in device_ip_list: devices.append( { "device_type": "cisco_ios", # must be the same for all devices "ip": ip, "username": "developer", # must be the same for all devices "password": "<PASSWORD>", # must be the same for all devices "port": 22, # must be the same for all devices # If port for all devices is not 22 you will get an error "fast_cli": False, } ) for device in devices: # Create a connection instance with ConnectHandler(**device) as net_connect: # hostname of the current device hostname = net_connect.send_command( command_string="show version", use_textfsm=True )[0]["hostname"] run_cfg: str = net_connect.send_command(command_string="show running-config") # Create .txt for each running configuration of each device with open(file=f"{hostname}_ex7-run-cfg.txt", mode="w") as outfile: outfile.write(run_cfg.lstrip()) print("Done")
en
0.777782
# Must run example4.py first # Read an Excel sheet and save running config of devices using pandas # Read Excel file of .xlsx format # Convert data to data frame # Conevrt data frame from MGMT IP Address to a list # Define devices variable # must be the same for all devices # must be the same for all devices # must be the same for all devices # must be the same for all devices # If port for all devices is not 22 you will get an error # Create a connection instance # hostname of the current device # Create .txt for each running configuration of each device
2.649545
3
inference-engine/tests/ie_test_utils/functional_test_utils/layer_tests_summary/utils/constants.py
plaidml/openvino
0
8001
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 VERIFIED_OP_REFERENCES = [ 'Abs-1', 'Acos-1', 'Add-1', 'Asin-1', 'Asinh-3', 'Assign-6', 'AvgPool-1', 'BatchNormInference-5', 'BatchToSpace-2', 'BinaryConvolution-1', 'Broadcast-1', 'Broadcast-3', 'Bucketize-3', 'Ceiling-1', 'CTCGreedyDecoder-1', 'CTCGreedyDecoderSeqLen-6', 'Concat-1', 'Convert-1', 'ConvertLike-1', 'Convolution-1', 'Constant-1', 'Cos-1', 'Cosh-1', 'DeformableConvolution-1', 'DeformablePSROIPooling-1', 'DepthToSpace-1', 'DetectionOutput-1', 'Divide-1', 'ExperimentalDetectronDetectionOutput-6', 'ExperimentalDetectronGenerateProposalsSingleImage-6', 'ExperimentalDetectronPriorGridGenerator-6', 'ExperimentalDetectronROIFeatureExtractor-6', 'ExperimentalDetectronTopKROIs-6', 'FakeQuantize-1', 'Floor-1' 'FloorMod-1' 'GRUSequence-5', 'Gather-1', 'GatherElements-6', 'GatherND-5', 'Gelu-7', 'GRN-1', 'GroupConvolution-1', 'GroupConvolutionBackpropData-1', 'GRUSequence-5', 'HSigmoid-5', 'HSwish-4', 'HardSigmoid-1', 'Interpolate-4', 'LRN-1', 'LSTMCell-4', 'LSTMSequence-5', 'LogSoftmax-5', 'Loop-5', 'MVN-6', 'Maximum-1', 'MaxPool-1', 'Mish-4', 'Multiply-1', 'Negative-1', 'NonMaxSuppression-4', 'NonMaxSuppression-5', 'NonZero-3', 'NormalizeL2-1', 'PriorBox-1', 'PriorBoxClustered-1', 'Proposal-1', 'Proposal-4', 'PSROIPooling-1', 'RNNSequence-5', 'ROIAlign-3', 'ROIPooling-2', 'Range-1', 'Range-4', 'ReadValue-6', 'ReduceL1-4', 'ReduceL2-4', 'ReduceLogicalAnd-1', 'ReduceLogicalOr-1', 'ReduceMax-1', 'ReduceMean-1', 'ReduceMin-1', 'ReduceProd-1', 'ReduceSum-1', 'RegionYOLO-1', 'Relu-1', 'ReorgYOLO-2', 'Result-1' 'Round-5', 'SpaceToDepth-1', 'ScatterNDUpdate-4', 'Select-1', 'ShapeOf-1', 'ShapeOf-3', 'ShuffleChannels-1', 'Sigmoid-1', 'Sign-1', 'Sin-1', 'Sinh-1' 'SoftPlus-4', 'Softmax-1', 'Split-1', 'Squeeze-1', 'StridedSlice-1', 'Subtract-1', 'Swish-4', 'Tile-1', 'TopK-1', 'TopK-3', 'Transpose-1', 'Unsqueeze-1', 'VariadicSplit-1', ]
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 VERIFIED_OP_REFERENCES = [ 'Abs-1', 'Acos-1', 'Add-1', 'Asin-1', 'Asinh-3', 'Assign-6', 'AvgPool-1', 'BatchNormInference-5', 'BatchToSpace-2', 'BinaryConvolution-1', 'Broadcast-1', 'Broadcast-3', 'Bucketize-3', 'Ceiling-1', 'CTCGreedyDecoder-1', 'CTCGreedyDecoderSeqLen-6', 'Concat-1', 'Convert-1', 'ConvertLike-1', 'Convolution-1', 'Constant-1', 'Cos-1', 'Cosh-1', 'DeformableConvolution-1', 'DeformablePSROIPooling-1', 'DepthToSpace-1', 'DetectionOutput-1', 'Divide-1', 'ExperimentalDetectronDetectionOutput-6', 'ExperimentalDetectronGenerateProposalsSingleImage-6', 'ExperimentalDetectronPriorGridGenerator-6', 'ExperimentalDetectronROIFeatureExtractor-6', 'ExperimentalDetectronTopKROIs-6', 'FakeQuantize-1', 'Floor-1' 'FloorMod-1' 'GRUSequence-5', 'Gather-1', 'GatherElements-6', 'GatherND-5', 'Gelu-7', 'GRN-1', 'GroupConvolution-1', 'GroupConvolutionBackpropData-1', 'GRUSequence-5', 'HSigmoid-5', 'HSwish-4', 'HardSigmoid-1', 'Interpolate-4', 'LRN-1', 'LSTMCell-4', 'LSTMSequence-5', 'LogSoftmax-5', 'Loop-5', 'MVN-6', 'Maximum-1', 'MaxPool-1', 'Mish-4', 'Multiply-1', 'Negative-1', 'NonMaxSuppression-4', 'NonMaxSuppression-5', 'NonZero-3', 'NormalizeL2-1', 'PriorBox-1', 'PriorBoxClustered-1', 'Proposal-1', 'Proposal-4', 'PSROIPooling-1', 'RNNSequence-5', 'ROIAlign-3', 'ROIPooling-2', 'Range-1', 'Range-4', 'ReadValue-6', 'ReduceL1-4', 'ReduceL2-4', 'ReduceLogicalAnd-1', 'ReduceLogicalOr-1', 'ReduceMax-1', 'ReduceMean-1', 'ReduceMin-1', 'ReduceProd-1', 'ReduceSum-1', 'RegionYOLO-1', 'Relu-1', 'ReorgYOLO-2', 'Result-1' 'Round-5', 'SpaceToDepth-1', 'ScatterNDUpdate-4', 'Select-1', 'ShapeOf-1', 'ShapeOf-3', 'ShuffleChannels-1', 'Sigmoid-1', 'Sign-1', 'Sin-1', 'Sinh-1' 'SoftPlus-4', 'Softmax-1', 'Split-1', 'Squeeze-1', 'StridedSlice-1', 'Subtract-1', 'Swish-4', 'Tile-1', 'TopK-1', 'TopK-3', 'Transpose-1', 'Unsqueeze-1', 'VariadicSplit-1', ]
en
0.269678
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0
1.222661
1
ghub/githubutils.py
mahanthathreyee/ghub
0
8002
"""Utilities for interacting with GitHub""" import os import json import webbrowser import stat import sys from git import Repo from .context import Context event_dict = { "added_to_project": ( lambda event: "{} added the issue to a project.".format(event["actor"]["login"]) ), "assigned": ( lambda event: "{} assigned the issue to {}.".format( event["actor"]["login"], event["assignee"]["login"] ) ), "closed": (lambda event: "{} closed this issue.".format(event["actor"]["login"])), "converted_note_to_issue": ( lambda event: "{} created this issue from a note.".format( event["actor"]["login"] ) ), "demilestoned": (lambda event: "The issue was removed from a milestone."), "head_ref_deleted": (lambda event: "The pull request's branch was deleted."), "head_ref_restored": (lambda event: "The pull request's branch was restored."), "labelled": ( lambda event: "{} added {} label to the issue.".format( event["actor"]["login"], event["label"] ) ), "locked": ( lambda event: "The issue was locked by {}.".format(event["actor"]["login"]) ), "mentioned": ( lambda event: "{} was mentioned in the issue's body.".format( event["actor"]["login"] ) ), "marked_as_duplicate": ( lambda event: "The issue was marked duplicate by {}.".format( event["actor"]["login"] ) ), "merged": ( lambda event: "The issue was merged by {}.".format(event["actor"]["login"]) ), "milestoned": (lambda event: "The issue was added to a milestone."), "moved_columns_in_project": ( lambda event: "The issue was moved between columns in a project board." ), "referenced": (lambda event: "The issue was referenced from a commit message."), "renamed": (lambda event: "The title of the issue was changed."), "reopened": ( lambda event: "The issue was reopened by {}".format(event["actor"]["login"]) ), "review_dismissed": ( lambda event: "{} dismissed a review from the pull request.".format( event["actor"]["login"] ) ), "review_requested": ( lambda event: "{} requested review from the subject on this pull request.".format( event["actor"]["login"] ) ), "review_request_removed": ( lambda event: "{} removed the review request for the subject on this pull request.".format( event["actor"]["login"] ) ), "subscribed": ( lambda event: "{} subscribed to receive notifications for the issue.".format( event["actor"]["login"] ) ), "transferred": (lambda event: "The issue was transferred to another repository."), "unassigned": ( lambda event: "{} was unassigned from the issue.".format( event["actor"]["login"] ) ), "unlabeled": (lambda event: "A label was removed from the issue."), "unlocked": ( lambda event: "The issue was unlocked by {}".format(event["actor"]["login"]) ), "unmarked_as_duplicate": (lambda event: "The was unmarked as dublicate."), "user_blocked": (lambda event: "A user was blocked from the organization."), } def authorize(ghub, reauthorize=False, fromenv=False): """Authorize a user for GHub Keyword arguments: ghub -- the ghub object that needs authorization reauthorize -- performs authorization again (default False) """ if fromenv: oauth_data = json.loads(os.environ["GHUB_CRED"]) ghub.oauth_data = oauth_data ghub.github.token = oauth_data return True if not os.path.isfile(ghub.data_path / ghub.auth_filename) or reauthorize: authorization_base_url = "https://github.com/login/oauth/authorize" token_url = "https://github.com/login/oauth/access_token" authorization_url, _ = ghub.github.authorization_url(authorization_base_url) webbrowser.open(authorization_url) print("Please visit this site and grant access: {}".format(authorization_url)) redirect_response = input( "Please enter the URL you were redirected to after granting access: " ) try: response = ghub.github.fetch_token( token_url, client_secret=ghub.client_secret, authorization_response=redirect_response, ) except Exception as e: print(e) print( "Network Error. Make sure you have a working internet connection and try again." ) sys.exit(1) if not os.path.isdir(ghub.data_path): os.makedirs(ghub.data_path) data_file = open(ghub.data_path / ghub.auth_filename, "w+") json.dump(response, data_file) data_file.close() os.chmod(ghub.data_path / ghub.auth_filename, stat.S_IRUSR | stat.S_IWUSR) ghub.oauth_data = response return True else: data_file = open(ghub.data_path / ghub.auth_filename, "r") oauth_data = json.loads(data_file.read()) data_file.close() ghub.oauth_data = oauth_data ghub.github.token = oauth_data return True def get_user(ghub, user): url = ghub.api_url + ghub.endpoints["users"] + user response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "user" ghub.context.location = user ghub.context.cache = response.json() return True return False def get_org(ghub, org): url = ghub.api_url + ghub.endpoints["orgs"] + org response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "org" ghub.context.location = org ghub.context.cache = response.json() return True return False def get_user_tabs(ghub, tab=""): tabs = ["repos", "stars", "followers", "following", "notifications"] if tab not in tabs: print("{} is not a valid user tab".format(tab)) return if ghub.context.context == "root": if tab == "": ghub.context.set_context_to_root() elif tab == "repos": response = ghub.github.get(ghub.api_url + ghub.endpoints["user"] + "/repos") if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + "repos" ghub.context.context = "repos" else: print("Error getting data - " + response.status_code) elif tab == "stars": response = ghub.github.get( ghub.api_url + ghub.endpoints["user"] + "/starred" ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + "stars" ghub.context.context = "stars" else: print("Error getting data - " + response.status_code) elif tab == "followers" or tab == "following": response = ghub.github.get( ghub.api_url + ghub.endpoints["user"] + "/" + tab ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) elif tab == "notifications": response = ghub.github.get(ghub.api_url + ghub.endpoints["notifications"]) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) elif ghub.context.context == "user" or ghub.context.context == "org": if tab == "": ghub.context.set_context_to_root() elif tab == "repos": if ghub.context.context == "user": url = ( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/repos" ) else: url = ( ghub.api_url + ghub.endpoints["orgs"] + ghub.context.location + "/repos" ) response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ( ghub.context.prev_context.location + "/" + "repos" ) ghub.context.context = "repos" else: print("Error getting data - " + response.status_code) elif tab == "stars": response = ghub.github.get( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/starred" ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ( ghub.context.prev_context.location + "/" + "star" ) ghub.context.context = "stars" else: print("Error getting data - " + response.status_code) elif tab == "followers" or tab == "following": response = ghub.github.get( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/" + tab ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.context.prev_context.location + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) else: pass def get_latest_commit(ghub, repo, branch="master"): api_url = "https://api.github.com/repos/{}/branches/{}".format(repo, branch) response = ghub.github.get(api_url) if response.status_code == 200: response = response.json() return response["commit"]["commit"] else: return False def get_tree(ghub, repo=None, branch="master", tree_url=None): if tree_url == None: latest_commit = get_latest_commit(ghub, repo, branch) if latest_commit == False: return False response = ghub.github.get(latest_commit["tree"]["url"]) if response.status_code == 200: response = response.json() return response return False else: response = ghub.github.get(tree_url) if response.status_code == 200: response = response.json() return response def get_blob(ghub, blob_url): response = ghub.github.get(blob_url) if response.status_code == 200: return response.json() return False def clone_repo(ghub, dir, repo_name=None): print("Preparing to clone...") if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) if dir[0] == "~": dir = os.path.expanduser("~") + dir[1:] dir = dir + "/" + repo_name.split("/")[1] try: Repo.clone_from("https://github.com/" + repo_name, dir) print("{} cloned to {}".format(repo_name, dir)) return True except Exception as e: print(e) return False def star_repo(ghub, repo_name=None): print("Starring repo...") if repo_name == None: repo_name = ghub.context.location star_url = ghub.api_url + ghub.endpoints["user"] + "/" + "starred/" + repo_name response = ghub.github.get(star_url) if response.status_code == 204: print("Repo is already starred.") elif response.status_code == 404: resp = ghub.github.put(star_url) if resp.status_code == 204: print("{} starred".format(repo_name)) else: print("Error starring repo") def unstar_repo(ghub, repo_name=None): print("Unstarring repo...") if repo_name == None: repo_name = ghub.context.location star_url = ghub.api_url + ghub.endpoints["user"] + "/" + "starred/" + repo_name response = ghub.github.get(star_url) if response.status_code == 204: resp = ghub.github.delete(star_url) if resp.status_code == 204: print("{} unstarred".format(repo_name)) else: print("Error unstarring repo") elif response.status_code == 404: print("Repo is not starred.") def watch_repo(ghub, repo_name=None): print("Subscribing to repo...") if repo_name == None: repo_name = ghub.context.location watch_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/subscription" response = ghub.github.get(watch_url) if response.status_code == 200: print("You are already watching this repo.") elif response.status_code == 404: resp = ghub.github.put(watch_url) if resp.status_code == 200: print("Watching {}".format(repo_name)) else: print("Error subscribing to repo") def unwatch_repo(ghub, repo_name=None): print("Unsubscribing repo...") if repo_name == None: repo_name = ghub.context.location watch_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/subscription" response = ghub.github.get(watch_url) if response.status_code == 200: resp = ghub.github.delete(watch_url) if resp.status_code == 204: print("{} unsubscribed".format(repo_name)) else: print("Error unsubscribing to repo") elif response.status_code == 404: print("You are not watching this repo.") def fork_repo(ghub, repo_name=None): print("Forking Repo...") if repo_name == None: repo_name = ghub.context.location.split("/") repo_name = "/".join(repo_name[:2]) true_repo_name = repo_name.split("/")[1] forked_url = ( ghub.api_url + ghub.endpoints["repos"] + ghub.get_user_username() + "/" + true_repo_name ) response = ghub.github.get(forked_url) if response.status_code == 200: print("Cannot fork. Repo Already Exists.") return False print("Repo is being forked. Please wait for it to complete.", end="") response = ghub.github.post( ghub.api_url + ghub.endpoints["repos"] + repo_name + "/forks" ) if response.status_code == 202: print( "\nForking complete. Forked repo to {}".format( ghub.get_user_username() + "/" + true_repo_name ) ) return True else: print("Error while trying fork.") return False def get_prs(ghub, repo_name=None): if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) pr_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/pulls" response = ghub.github.get(pr_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "pull_requests" ghub.context.location = repo_name + "/pull_requests" ghub.context.cache = response.json() return True return False def get_pr(ghub, pr_no): if not pr_no.isdigit(): print("Invalid PR number") return False repo_name = "/".join(ghub.context.location.split("/")[:2]) pr_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/pulls/" + pr_no response = ghub.github.get(pr_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "pull_request" ghub.context.location = repo_name + "/pull_requests/" + pr_no ghub.context.cache = response.json() return True elif response.status_code == 404: print("No PR found with PR number {}".format(pr_no)) return False def get_pr_info(ghub, info_type="comments"): info_url = ghub.context.cache["_links"][info_type]["href"] response = ghub.github.get(info_url) return response.json(), response.status_code def get_issues(ghub, repo_name=None): if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) issue_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/issues" response = ghub.github.get(issue_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "issues" ghub.context.location = repo_name + "/issues" ghub.context.cache = response.json() return True return False def get_issue(ghub, issue_no): if not issue_no.isdigit(): print("Invalid issue number") return False repo_name = "/".join(ghub.context.location.split("/")[:2]) issue_url = ( ghub.api_url + ghub.endpoints["repos"] + repo_name + "/issues/" + issue_no ) response = ghub.github.get(issue_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "issue" ghub.context.location = repo_name + "/issues/" + issue_no ghub.context.cache = response.json() return True elif response.status_code == 404: print("No issue found with issue number {}".format(issue_no)) return False def get_issue_info(ghub, info_type="comments"): info_url = ghub.context.cache["{}_url".format(info_type)] response = ghub.github.get(info_url) return response.json(), response.status_code
"""Utilities for interacting with GitHub""" import os import json import webbrowser import stat import sys from git import Repo from .context import Context event_dict = { "added_to_project": ( lambda event: "{} added the issue to a project.".format(event["actor"]["login"]) ), "assigned": ( lambda event: "{} assigned the issue to {}.".format( event["actor"]["login"], event["assignee"]["login"] ) ), "closed": (lambda event: "{} closed this issue.".format(event["actor"]["login"])), "converted_note_to_issue": ( lambda event: "{} created this issue from a note.".format( event["actor"]["login"] ) ), "demilestoned": (lambda event: "The issue was removed from a milestone."), "head_ref_deleted": (lambda event: "The pull request's branch was deleted."), "head_ref_restored": (lambda event: "The pull request's branch was restored."), "labelled": ( lambda event: "{} added {} label to the issue.".format( event["actor"]["login"], event["label"] ) ), "locked": ( lambda event: "The issue was locked by {}.".format(event["actor"]["login"]) ), "mentioned": ( lambda event: "{} was mentioned in the issue's body.".format( event["actor"]["login"] ) ), "marked_as_duplicate": ( lambda event: "The issue was marked duplicate by {}.".format( event["actor"]["login"] ) ), "merged": ( lambda event: "The issue was merged by {}.".format(event["actor"]["login"]) ), "milestoned": (lambda event: "The issue was added to a milestone."), "moved_columns_in_project": ( lambda event: "The issue was moved between columns in a project board." ), "referenced": (lambda event: "The issue was referenced from a commit message."), "renamed": (lambda event: "The title of the issue was changed."), "reopened": ( lambda event: "The issue was reopened by {}".format(event["actor"]["login"]) ), "review_dismissed": ( lambda event: "{} dismissed a review from the pull request.".format( event["actor"]["login"] ) ), "review_requested": ( lambda event: "{} requested review from the subject on this pull request.".format( event["actor"]["login"] ) ), "review_request_removed": ( lambda event: "{} removed the review request for the subject on this pull request.".format( event["actor"]["login"] ) ), "subscribed": ( lambda event: "{} subscribed to receive notifications for the issue.".format( event["actor"]["login"] ) ), "transferred": (lambda event: "The issue was transferred to another repository."), "unassigned": ( lambda event: "{} was unassigned from the issue.".format( event["actor"]["login"] ) ), "unlabeled": (lambda event: "A label was removed from the issue."), "unlocked": ( lambda event: "The issue was unlocked by {}".format(event["actor"]["login"]) ), "unmarked_as_duplicate": (lambda event: "The was unmarked as dublicate."), "user_blocked": (lambda event: "A user was blocked from the organization."), } def authorize(ghub, reauthorize=False, fromenv=False): """Authorize a user for GHub Keyword arguments: ghub -- the ghub object that needs authorization reauthorize -- performs authorization again (default False) """ if fromenv: oauth_data = json.loads(os.environ["GHUB_CRED"]) ghub.oauth_data = oauth_data ghub.github.token = oauth_data return True if not os.path.isfile(ghub.data_path / ghub.auth_filename) or reauthorize: authorization_base_url = "https://github.com/login/oauth/authorize" token_url = "https://github.com/login/oauth/access_token" authorization_url, _ = ghub.github.authorization_url(authorization_base_url) webbrowser.open(authorization_url) print("Please visit this site and grant access: {}".format(authorization_url)) redirect_response = input( "Please enter the URL you were redirected to after granting access: " ) try: response = ghub.github.fetch_token( token_url, client_secret=ghub.client_secret, authorization_response=redirect_response, ) except Exception as e: print(e) print( "Network Error. Make sure you have a working internet connection and try again." ) sys.exit(1) if not os.path.isdir(ghub.data_path): os.makedirs(ghub.data_path) data_file = open(ghub.data_path / ghub.auth_filename, "w+") json.dump(response, data_file) data_file.close() os.chmod(ghub.data_path / ghub.auth_filename, stat.S_IRUSR | stat.S_IWUSR) ghub.oauth_data = response return True else: data_file = open(ghub.data_path / ghub.auth_filename, "r") oauth_data = json.loads(data_file.read()) data_file.close() ghub.oauth_data = oauth_data ghub.github.token = oauth_data return True def get_user(ghub, user): url = ghub.api_url + ghub.endpoints["users"] + user response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "user" ghub.context.location = user ghub.context.cache = response.json() return True return False def get_org(ghub, org): url = ghub.api_url + ghub.endpoints["orgs"] + org response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "org" ghub.context.location = org ghub.context.cache = response.json() return True return False def get_user_tabs(ghub, tab=""): tabs = ["repos", "stars", "followers", "following", "notifications"] if tab not in tabs: print("{} is not a valid user tab".format(tab)) return if ghub.context.context == "root": if tab == "": ghub.context.set_context_to_root() elif tab == "repos": response = ghub.github.get(ghub.api_url + ghub.endpoints["user"] + "/repos") if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + "repos" ghub.context.context = "repos" else: print("Error getting data - " + response.status_code) elif tab == "stars": response = ghub.github.get( ghub.api_url + ghub.endpoints["user"] + "/starred" ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + "stars" ghub.context.context = "stars" else: print("Error getting data - " + response.status_code) elif tab == "followers" or tab == "following": response = ghub.github.get( ghub.api_url + ghub.endpoints["user"] + "/" + tab ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) elif tab == "notifications": response = ghub.github.get(ghub.api_url + ghub.endpoints["notifications"]) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.user["login"] + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) elif ghub.context.context == "user" or ghub.context.context == "org": if tab == "": ghub.context.set_context_to_root() elif tab == "repos": if ghub.context.context == "user": url = ( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/repos" ) else: url = ( ghub.api_url + ghub.endpoints["orgs"] + ghub.context.location + "/repos" ) response = ghub.github.get(url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ( ghub.context.prev_context.location + "/" + "repos" ) ghub.context.context = "repos" else: print("Error getting data - " + response.status_code) elif tab == "stars": response = ghub.github.get( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/starred" ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ( ghub.context.prev_context.location + "/" + "star" ) ghub.context.context = "stars" else: print("Error getting data - " + response.status_code) elif tab == "followers" or tab == "following": response = ghub.github.get( ghub.api_url + ghub.endpoints["users"] + ghub.context.location + "/" + tab ) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.cache = response.json() ghub.context.location = ghub.context.prev_context.location + "/" + tab ghub.context.context = tab else: print("Error getting data - " + response.status_code) else: pass def get_latest_commit(ghub, repo, branch="master"): api_url = "https://api.github.com/repos/{}/branches/{}".format(repo, branch) response = ghub.github.get(api_url) if response.status_code == 200: response = response.json() return response["commit"]["commit"] else: return False def get_tree(ghub, repo=None, branch="master", tree_url=None): if tree_url == None: latest_commit = get_latest_commit(ghub, repo, branch) if latest_commit == False: return False response = ghub.github.get(latest_commit["tree"]["url"]) if response.status_code == 200: response = response.json() return response return False else: response = ghub.github.get(tree_url) if response.status_code == 200: response = response.json() return response def get_blob(ghub, blob_url): response = ghub.github.get(blob_url) if response.status_code == 200: return response.json() return False def clone_repo(ghub, dir, repo_name=None): print("Preparing to clone...") if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) if dir[0] == "~": dir = os.path.expanduser("~") + dir[1:] dir = dir + "/" + repo_name.split("/")[1] try: Repo.clone_from("https://github.com/" + repo_name, dir) print("{} cloned to {}".format(repo_name, dir)) return True except Exception as e: print(e) return False def star_repo(ghub, repo_name=None): print("Starring repo...") if repo_name == None: repo_name = ghub.context.location star_url = ghub.api_url + ghub.endpoints["user"] + "/" + "starred/" + repo_name response = ghub.github.get(star_url) if response.status_code == 204: print("Repo is already starred.") elif response.status_code == 404: resp = ghub.github.put(star_url) if resp.status_code == 204: print("{} starred".format(repo_name)) else: print("Error starring repo") def unstar_repo(ghub, repo_name=None): print("Unstarring repo...") if repo_name == None: repo_name = ghub.context.location star_url = ghub.api_url + ghub.endpoints["user"] + "/" + "starred/" + repo_name response = ghub.github.get(star_url) if response.status_code == 204: resp = ghub.github.delete(star_url) if resp.status_code == 204: print("{} unstarred".format(repo_name)) else: print("Error unstarring repo") elif response.status_code == 404: print("Repo is not starred.") def watch_repo(ghub, repo_name=None): print("Subscribing to repo...") if repo_name == None: repo_name = ghub.context.location watch_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/subscription" response = ghub.github.get(watch_url) if response.status_code == 200: print("You are already watching this repo.") elif response.status_code == 404: resp = ghub.github.put(watch_url) if resp.status_code == 200: print("Watching {}".format(repo_name)) else: print("Error subscribing to repo") def unwatch_repo(ghub, repo_name=None): print("Unsubscribing repo...") if repo_name == None: repo_name = ghub.context.location watch_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/subscription" response = ghub.github.get(watch_url) if response.status_code == 200: resp = ghub.github.delete(watch_url) if resp.status_code == 204: print("{} unsubscribed".format(repo_name)) else: print("Error unsubscribing to repo") elif response.status_code == 404: print("You are not watching this repo.") def fork_repo(ghub, repo_name=None): print("Forking Repo...") if repo_name == None: repo_name = ghub.context.location.split("/") repo_name = "/".join(repo_name[:2]) true_repo_name = repo_name.split("/")[1] forked_url = ( ghub.api_url + ghub.endpoints["repos"] + ghub.get_user_username() + "/" + true_repo_name ) response = ghub.github.get(forked_url) if response.status_code == 200: print("Cannot fork. Repo Already Exists.") return False print("Repo is being forked. Please wait for it to complete.", end="") response = ghub.github.post( ghub.api_url + ghub.endpoints["repos"] + repo_name + "/forks" ) if response.status_code == 202: print( "\nForking complete. Forked repo to {}".format( ghub.get_user_username() + "/" + true_repo_name ) ) return True else: print("Error while trying fork.") return False def get_prs(ghub, repo_name=None): if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) pr_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/pulls" response = ghub.github.get(pr_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "pull_requests" ghub.context.location = repo_name + "/pull_requests" ghub.context.cache = response.json() return True return False def get_pr(ghub, pr_no): if not pr_no.isdigit(): print("Invalid PR number") return False repo_name = "/".join(ghub.context.location.split("/")[:2]) pr_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/pulls/" + pr_no response = ghub.github.get(pr_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "pull_request" ghub.context.location = repo_name + "/pull_requests/" + pr_no ghub.context.cache = response.json() return True elif response.status_code == 404: print("No PR found with PR number {}".format(pr_no)) return False def get_pr_info(ghub, info_type="comments"): info_url = ghub.context.cache["_links"][info_type]["href"] response = ghub.github.get(info_url) return response.json(), response.status_code def get_issues(ghub, repo_name=None): if repo_name == None: repo_name = "/".join(ghub.context.location.split("/")[:2]) issue_url = ghub.api_url + ghub.endpoints["repos"] + repo_name + "/issues" response = ghub.github.get(issue_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "issues" ghub.context.location = repo_name + "/issues" ghub.context.cache = response.json() return True return False def get_issue(ghub, issue_no): if not issue_no.isdigit(): print("Invalid issue number") return False repo_name = "/".join(ghub.context.location.split("/")[:2]) issue_url = ( ghub.api_url + ghub.endpoints["repos"] + repo_name + "/issues/" + issue_no ) response = ghub.github.get(issue_url) if response.status_code == 200: ghub.context = Context(prev_context=ghub.context) ghub.context.context = "issue" ghub.context.location = repo_name + "/issues/" + issue_no ghub.context.cache = response.json() return True elif response.status_code == 404: print("No issue found with issue number {}".format(issue_no)) return False def get_issue_info(ghub, info_type="comments"): info_url = ghub.context.cache["{}_url".format(info_type)] response = ghub.github.get(info_url) return response.json(), response.status_code
en
0.695324
Utilities for interacting with GitHub Authorize a user for GHub Keyword arguments: ghub -- the ghub object that needs authorization reauthorize -- performs authorization again (default False)
2.633576
3
equipments/migrations/0001_initial.py
fagrimacs/fagrimacs_production
0
8003
# Generated by Django 3.0.7 on 2020-09-18 05:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import multiselectfield.db.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Equipment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[(None, 'Please select'), ('tractor', 'Tractor'), ('implement', 'Implement'), ('other_equipment', 'Other Equipment')], max_length=100, verbose_name='What Equipment you want to Add?')), ], ), migrations.CreateModel( name='ImplementCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('image', models.ImageField(upload_to='implements_category')), ], options={ 'verbose_name_plural': 'Implement Categories', }, ), migrations.CreateModel( name='Phone', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone', models.CharField(max_length=18)), ], ), migrations.CreateModel( name='TractorCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('image', models.ImageField(upload_to='tractor_category')), ], options={ 'verbose_name_plural': 'Tractor Categories', }, ), migrations.CreateModel( name='Tractor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('drive_type', models.CharField(choices=[(None, 'Please Select'), ('two wheel drive', 'Two wheel Drive'), ('four wheel drive', 'Four wheel Drive')], max_length=100, verbose_name='What Drive Type')), ('name', models.CharField(help_text='eg. <NAME> 6190R', max_length=200, verbose_name='Name/Models of Tractor')), ('mode_of_transmission', models.CharField(choices=[(None, 'Please Select'), ('gear', 'Gear'), ('manual', 'Manual'), ('hydrostatic', 'Hydrostatic'), ('turbochanged', 'Turbocharged')], max_length=100, verbose_name='Mode of Transmission')), ('engine_hp', models.PositiveIntegerField(verbose_name='Engine Horse Power (eg. 75hp)')), ('drawbar_hp', models.PositiveIntegerField(verbose_name='Drawbar Horse Power (eg. 65hp)')), ('pto_hp', models.PositiveIntegerField(verbose_name='PTO Horse Power (eg. 85hp)')), ('hydraulic_capacity', models.CharField(help_text='Use a SI units of gpm or psi', max_length=100, verbose_name='Hydaulic capacity (gallon per minutes(gpm) or psi-pound per square inchies)')), ('type_of_hitching', models.CharField(choices=[(None, 'Please Select'), ('two point hitches', 'Two-point hitches'), ('three point hitches', 'Three-point hitches')], max_length=100, verbose_name='What is Hitching type?')), ('cab', models.BooleanField(default=False, verbose_name='Does have a cab?')), ('rollover_protection', models.BooleanField(default=False, verbose_name='Does have the rollover protection?')), ('fuel_consumption', models.PositiveIntegerField(verbose_name='Fuel consumption (gallon per hour on operation)')), ('attachment_mode', models.CharField(choices=[(None, 'Please select'), ('frontend loader', 'frontend loader'), ('backhoe', 'Backhoe'), ('both', 'Both')], max_length=100, verbose_name='What mode of attachment?')), ('operator', models.BooleanField(default=False, verbose_name='Do you have an operator(s)?')), ('file', models.FileField(help_text='Upload quality picture of real tractor you have, only 5 picture.', upload_to='tractors_photos/', verbose_name='Upload the Tractor pictures')), ('other_informations', models.TextField(blank=True, verbose_name='Describe your Tractor')), ('price_hour', models.PositiveIntegerField(verbose_name='Specify the price per Hour in TShs.')), ('price_hectare', models.PositiveIntegerField(verbose_name='Specify the price per Hectare')), ('farm_services', multiselectfield.db.fields.MultiSelectField(choices=[('soil cultivations', 'Soil cultivations'), ('planting', 'Planting'), ('haversting/post-haversting', 'Haversting/Post-Haversting'), ('fertilizing & pest-control', 'Fertilizing & Pest-control'), ('drainage & irrigation', 'Drainage & Irrigation'), ('loading', 'Loading'), ('hay making', 'Hay making'), ('miscellaneous', 'Miscellaneous')], max_length=135, verbose_name='What are farming service(s) do you offer?')), ('agree_terms', models.BooleanField(default=False, verbose_name='Do your Accept our Terms and Conditions?')), ('status', models.CharField(choices=[('pending', 'Pending'), ('approved', 'Approved')], default='pending', max_length=100)), ('tractor_type', models.ForeignKey(on_delete=models.SET('others'), to='equipments.TractorCategory', verbose_name='What type of Tractor?')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='ImplementSubCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='equipments.ImplementCategory')), ], options={ 'verbose_name_plural': 'Implement Subcategories', }, ), migrations.CreateModel( name='Implement', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=100, verbose_name='Name/Models of Implement')), ('width', models.PositiveIntegerField(help_text='SI UNITS in metre', verbose_name='Width of the Implement')), ('weight', models.PositiveIntegerField(help_text='SI UNITS in KG', verbose_name='Weight of the Implement')), ('operation_mode', models.CharField(choices=[(None, 'Please Select'), ('tractor drive', 'Tractor drive'), ('self-propelled', 'Self-propelled')], max_length=100, verbose_name='What is mode of operation?')), ('pto', models.PositiveIntegerField(verbose_name='What is Horse Power required for Operation?')), ('hydraulic_capacity', models.CharField(max_length=100, verbose_name='What is Hydaulic capacity required to lift?')), ('operator', models.BooleanField(verbose_name='Do you have an operator(s)?')), ('file', models.FileField(help_text='Upload quality picture of real implement you have, only 5 pictures.', upload_to='implements_photos/', verbose_name='Upload the Implement pictures')), ('other_informations', models.TextField(blank=True, verbose_name='Describe your Implement')), ('price_hour', models.PositiveIntegerField(verbose_name='Specify the price per Hour')), ('price_hectare', models.PositiveIntegerField(verbose_name='Specify the price per Hectare')), ('agree_terms', models.BooleanField(default=False, verbose_name='Do your Accept our Terms and Conditions?')), ('status', models.CharField(choices=[('pending', 'Pending'), ('approved', 'Approved')], default='pending', max_length=100)), ('category', models.ForeignKey(on_delete=models.SET('others'), to='equipments.ImplementCategory', verbose_name='What category of your Implement')), ('subcategory', models.ForeignKey(on_delete=models.SET('others'), to='equipments.ImplementSubCategory', verbose_name='What is subcategory of your Implement')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
# Generated by Django 3.0.7 on 2020-09-18 05:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import multiselectfield.db.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Equipment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[(None, 'Please select'), ('tractor', 'Tractor'), ('implement', 'Implement'), ('other_equipment', 'Other Equipment')], max_length=100, verbose_name='What Equipment you want to Add?')), ], ), migrations.CreateModel( name='ImplementCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('image', models.ImageField(upload_to='implements_category')), ], options={ 'verbose_name_plural': 'Implement Categories', }, ), migrations.CreateModel( name='Phone', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone', models.CharField(max_length=18)), ], ), migrations.CreateModel( name='TractorCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('image', models.ImageField(upload_to='tractor_category')), ], options={ 'verbose_name_plural': 'Tractor Categories', }, ), migrations.CreateModel( name='Tractor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('drive_type', models.CharField(choices=[(None, 'Please Select'), ('two wheel drive', 'Two wheel Drive'), ('four wheel drive', 'Four wheel Drive')], max_length=100, verbose_name='What Drive Type')), ('name', models.CharField(help_text='eg. <NAME> 6190R', max_length=200, verbose_name='Name/Models of Tractor')), ('mode_of_transmission', models.CharField(choices=[(None, 'Please Select'), ('gear', 'Gear'), ('manual', 'Manual'), ('hydrostatic', 'Hydrostatic'), ('turbochanged', 'Turbocharged')], max_length=100, verbose_name='Mode of Transmission')), ('engine_hp', models.PositiveIntegerField(verbose_name='Engine Horse Power (eg. 75hp)')), ('drawbar_hp', models.PositiveIntegerField(verbose_name='Drawbar Horse Power (eg. 65hp)')), ('pto_hp', models.PositiveIntegerField(verbose_name='PTO Horse Power (eg. 85hp)')), ('hydraulic_capacity', models.CharField(help_text='Use a SI units of gpm or psi', max_length=100, verbose_name='Hydaulic capacity (gallon per minutes(gpm) or psi-pound per square inchies)')), ('type_of_hitching', models.CharField(choices=[(None, 'Please Select'), ('two point hitches', 'Two-point hitches'), ('three point hitches', 'Three-point hitches')], max_length=100, verbose_name='What is Hitching type?')), ('cab', models.BooleanField(default=False, verbose_name='Does have a cab?')), ('rollover_protection', models.BooleanField(default=False, verbose_name='Does have the rollover protection?')), ('fuel_consumption', models.PositiveIntegerField(verbose_name='Fuel consumption (gallon per hour on operation)')), ('attachment_mode', models.CharField(choices=[(None, 'Please select'), ('frontend loader', 'frontend loader'), ('backhoe', 'Backhoe'), ('both', 'Both')], max_length=100, verbose_name='What mode of attachment?')), ('operator', models.BooleanField(default=False, verbose_name='Do you have an operator(s)?')), ('file', models.FileField(help_text='Upload quality picture of real tractor you have, only 5 picture.', upload_to='tractors_photos/', verbose_name='Upload the Tractor pictures')), ('other_informations', models.TextField(blank=True, verbose_name='Describe your Tractor')), ('price_hour', models.PositiveIntegerField(verbose_name='Specify the price per Hour in TShs.')), ('price_hectare', models.PositiveIntegerField(verbose_name='Specify the price per Hectare')), ('farm_services', multiselectfield.db.fields.MultiSelectField(choices=[('soil cultivations', 'Soil cultivations'), ('planting', 'Planting'), ('haversting/post-haversting', 'Haversting/Post-Haversting'), ('fertilizing & pest-control', 'Fertilizing & Pest-control'), ('drainage & irrigation', 'Drainage & Irrigation'), ('loading', 'Loading'), ('hay making', 'Hay making'), ('miscellaneous', 'Miscellaneous')], max_length=135, verbose_name='What are farming service(s) do you offer?')), ('agree_terms', models.BooleanField(default=False, verbose_name='Do your Accept our Terms and Conditions?')), ('status', models.CharField(choices=[('pending', 'Pending'), ('approved', 'Approved')], default='pending', max_length=100)), ('tractor_type', models.ForeignKey(on_delete=models.SET('others'), to='equipments.TractorCategory', verbose_name='What type of Tractor?')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='ImplementSubCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='equipments.ImplementCategory')), ], options={ 'verbose_name_plural': 'Implement Subcategories', }, ), migrations.CreateModel( name='Implement', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=100, verbose_name='Name/Models of Implement')), ('width', models.PositiveIntegerField(help_text='SI UNITS in metre', verbose_name='Width of the Implement')), ('weight', models.PositiveIntegerField(help_text='SI UNITS in KG', verbose_name='Weight of the Implement')), ('operation_mode', models.CharField(choices=[(None, 'Please Select'), ('tractor drive', 'Tractor drive'), ('self-propelled', 'Self-propelled')], max_length=100, verbose_name='What is mode of operation?')), ('pto', models.PositiveIntegerField(verbose_name='What is Horse Power required for Operation?')), ('hydraulic_capacity', models.CharField(max_length=100, verbose_name='What is Hydaulic capacity required to lift?')), ('operator', models.BooleanField(verbose_name='Do you have an operator(s)?')), ('file', models.FileField(help_text='Upload quality picture of real implement you have, only 5 pictures.', upload_to='implements_photos/', verbose_name='Upload the Implement pictures')), ('other_informations', models.TextField(blank=True, verbose_name='Describe your Implement')), ('price_hour', models.PositiveIntegerField(verbose_name='Specify the price per Hour')), ('price_hectare', models.PositiveIntegerField(verbose_name='Specify the price per Hectare')), ('agree_terms', models.BooleanField(default=False, verbose_name='Do your Accept our Terms and Conditions?')), ('status', models.CharField(choices=[('pending', 'Pending'), ('approved', 'Approved')], default='pending', max_length=100)), ('category', models.ForeignKey(on_delete=models.SET('others'), to='equipments.ImplementCategory', verbose_name='What category of your Implement')), ('subcategory', models.ForeignKey(on_delete=models.SET('others'), to='equipments.ImplementSubCategory', verbose_name='What is subcategory of your Implement')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
en
0.795899
# Generated by Django 3.0.7 on 2020-09-18 05:52
1.751481
2
dcos_installer/test_cli.py
nkhanal0/dcos
3
8004
import pytest import gen from dcos_installer import cli def test_default_arg_parser(): parser = cli.get_argument_parser().parse_args([]) assert parser.verbose is False assert parser.port == 9000 assert parser.action == 'genconf' def test_set_arg_parser(): argument_parser = cli.get_argument_parser() def parse_args(arg_list): return argument_parser.parse_args(arg_list) parser = parse_args(['-v', '-p 12345']) assert parser.verbose is True assert parser.port == 12345 parser = parse_args(['--web']) assert parser.action == 'web' parser = parse_args(['--genconf']) assert parser.action == 'genconf' parser = parse_args(['--preflight']) assert parser.action == 'preflight' parser = parse_args(['--postflight']) assert parser.action == 'postflight' parser = parse_args(['--deploy']) assert parser.action == 'deploy' parser = parse_args(['--validate-config']) assert parser.action == 'validate-config' parser = parse_args(['--hash-password', 'foo']) assert parser.password == '<PASSWORD>' assert parser.action == 'hash-password' parser = parse_args(['--hash-password']) assert parser.password is None assert parser.action == 'hash-password' parser = parse_args(['--set-superuser-password', 'foo']) assert parser.password == '<PASSWORD>' assert parser.action == 'set-superuser-password' parser = parse_args(['--set-superuser-password']) assert parser.password is None assert parser.action == 'set-superuser-password' parser = parse_args(['--generate-node-upgrade-script', 'fake']) assert parser.installed_cluster_version == 'fake' assert parser.action == 'generate-node-upgrade-script' # Can't do two at once with pytest.raises(SystemExit): parse_args(['--validate', '--hash-password', 'foo']) def test_stringify_config(): stringify = gen.stringify_configuration # Basic cases pass right through assert dict() == stringify(dict()) assert {"foo": "bar"} == stringify({"foo": "bar"}) assert {"a": "b", "c": "d"} == stringify({"a": "b", "c": "d"}) # booleans are converted to lower case true / false assert {"a": "true"} == stringify({"a": True}) assert {"a": "false"} == stringify({"a": False}) assert {"a": "b", "c": "false"} == stringify({"a": "b", "c": False}) # integers are made into strings assert {"a": "1"} == stringify({"a": 1}) assert {"a": "4123"} == stringify({"a": 4123}) assert {"a": "b", "c": "9999"} == stringify({"a": "b", "c": 9999}) # Dict and list are converted to JSON assert {"a": '["b"]'} == stringify({"a": ['b']}) assert {"a": '["b\\"a"]'} == stringify({"a": ['b"a']}) assert {"a": '[1]'} == stringify({"a": [1]}) assert {"a": '[1, 2, 3, 4]'} == stringify({"a": [1, 2, 3, 4]}) assert {"a": '[true, false]'} == stringify({"a": [True, False]}) assert {"a": '{"b": "c"}'} == stringify({"a": {"b": "c"}}) assert {"a": '{"b": 1}'} == stringify({"a": {"b": 1}}) assert {"a": '{"b": true}'} == stringify({"a": {"b": True}}) assert {"a": '{"b": null}'} == stringify({"a": {"b": None}}) # Random types produce an error. with pytest.raises(Exception): stringify({"a": set()}) # All the handled types at once assert { "a": "b", "c": "true", "d": "1", "e": "[1]", "f": '{"g": "h"}' } == stringify({"a": "b", "c": True, "d": 1, "e": [1], "f": {"g": "h"}})
import pytest import gen from dcos_installer import cli def test_default_arg_parser(): parser = cli.get_argument_parser().parse_args([]) assert parser.verbose is False assert parser.port == 9000 assert parser.action == 'genconf' def test_set_arg_parser(): argument_parser = cli.get_argument_parser() def parse_args(arg_list): return argument_parser.parse_args(arg_list) parser = parse_args(['-v', '-p 12345']) assert parser.verbose is True assert parser.port == 12345 parser = parse_args(['--web']) assert parser.action == 'web' parser = parse_args(['--genconf']) assert parser.action == 'genconf' parser = parse_args(['--preflight']) assert parser.action == 'preflight' parser = parse_args(['--postflight']) assert parser.action == 'postflight' parser = parse_args(['--deploy']) assert parser.action == 'deploy' parser = parse_args(['--validate-config']) assert parser.action == 'validate-config' parser = parse_args(['--hash-password', 'foo']) assert parser.password == '<PASSWORD>' assert parser.action == 'hash-password' parser = parse_args(['--hash-password']) assert parser.password is None assert parser.action == 'hash-password' parser = parse_args(['--set-superuser-password', 'foo']) assert parser.password == '<PASSWORD>' assert parser.action == 'set-superuser-password' parser = parse_args(['--set-superuser-password']) assert parser.password is None assert parser.action == 'set-superuser-password' parser = parse_args(['--generate-node-upgrade-script', 'fake']) assert parser.installed_cluster_version == 'fake' assert parser.action == 'generate-node-upgrade-script' # Can't do two at once with pytest.raises(SystemExit): parse_args(['--validate', '--hash-password', 'foo']) def test_stringify_config(): stringify = gen.stringify_configuration # Basic cases pass right through assert dict() == stringify(dict()) assert {"foo": "bar"} == stringify({"foo": "bar"}) assert {"a": "b", "c": "d"} == stringify({"a": "b", "c": "d"}) # booleans are converted to lower case true / false assert {"a": "true"} == stringify({"a": True}) assert {"a": "false"} == stringify({"a": False}) assert {"a": "b", "c": "false"} == stringify({"a": "b", "c": False}) # integers are made into strings assert {"a": "1"} == stringify({"a": 1}) assert {"a": "4123"} == stringify({"a": 4123}) assert {"a": "b", "c": "9999"} == stringify({"a": "b", "c": 9999}) # Dict and list are converted to JSON assert {"a": '["b"]'} == stringify({"a": ['b']}) assert {"a": '["b\\"a"]'} == stringify({"a": ['b"a']}) assert {"a": '[1]'} == stringify({"a": [1]}) assert {"a": '[1, 2, 3, 4]'} == stringify({"a": [1, 2, 3, 4]}) assert {"a": '[true, false]'} == stringify({"a": [True, False]}) assert {"a": '{"b": "c"}'} == stringify({"a": {"b": "c"}}) assert {"a": '{"b": 1}'} == stringify({"a": {"b": 1}}) assert {"a": '{"b": true}'} == stringify({"a": {"b": True}}) assert {"a": '{"b": null}'} == stringify({"a": {"b": None}}) # Random types produce an error. with pytest.raises(Exception): stringify({"a": set()}) # All the handled types at once assert { "a": "b", "c": "true", "d": "1", "e": "[1]", "f": '{"g": "h"}' } == stringify({"a": "b", "c": True, "d": 1, "e": [1], "f": {"g": "h"}})
en
0.880411
# Can't do two at once # Basic cases pass right through # booleans are converted to lower case true / false # integers are made into strings # Dict and list are converted to JSON # Random types produce an error. # All the handled types at once
2.440561
2
gralog-fx/src/main/java/gralog/gralogfx/piping/scripts/Gralog.py
gralog/gralog
12
8005
#!/usr/bin/env python3 import sys from random import randint import os try: import networkx as nx except: print("gPrint#-1#" + "netwrokx not installed for " + sys.executable) sys.stdout.flush() try: import igraph as ig except: print("gPrint#-1#" + "igraph not installed for " + sys.executable) import xml.etree.cElementTree as ET import math # debugging = False class Vertex: def __init__(self, graph, vid): self.sourced = False self.id = int(vid) self.graph = graph self.properties = dict() self.properties["id"] = None self.properties["label"] = None self.properties["color"] = None self.properties["strokeColor"] = None self.properties["shape"] = None self.properties["coordinates"] = None self.incomingEdges = [] self.outgoingEdges = [] self.incidentEdges = [] self.wasSourced = False def sourceProperties(self, stringFromGralog): self.sourced = True strings = stringFromGralog.split("#") for string in strings: propVal = string.split("=") valueType = "" try: prop = propVal[0] valueType = propVal[1] except: pass try: valueType = valueType.split("|") val = valueType[0] typ = valueType[1] castedValue = self.graph.castValueToType(val, typ) self.properties[prop] = castedValue except: pass def getId(self): return self.id def getLabel(self): if not self.wasSourced: self.source() return self.properties["label"] def setLabel(self, label): label = str(label) self.properties["label"] = label self.graph.setVertexLabel(self.id, label) def setCoordinates(self, coordinates): co = self.properties["coordinates"] x = coordinates[0] y = coordinates[1] if co == None: co = (None, None) if x == None: x = co[0] if y == None: y = co[1] newCoordinates = (x, y) self.properties["coordinates"] = newCoordinates self.graph.setVertexCoordinates(self.id, newCoordinates) def setFillColor(self, colorHex=-1, colorRGB=-1): self.setColor(colorHex, colorRGB) def getFillColor(self): return self.getColor() def getColor(self): if not self.wasSourced: self.source() return self.properties["color"] def setColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["fillColor"] = colorHex elif colorRGB != -1: self.properties["fillColor"] = colorRGB else: return self.graph.setVertexFillColor(self.id, colorHex, colorRGB) def setStrokeColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["strokeColor"] = colorHex elif colorRGB != -1: self.properties["strokeColor"] = colorRGB else: return self.graph.setVertexStrokeColor(self.id, colorHex, colorRGB) def getStrokeColor(self): if not self.sourced: self.source() return self.properties["strokeColor"] def setRadius(self, radius): self.properties["radius"] = radius self.properties["width"] = radius self.properties["height"] = radius self.graph.setVertexRadius(self.id, radius) def setWidth(self, width): self.properties["width"] = width self.graph.setVertexWidth(self.getId(), width) def setHeight(self, height): self.properties["height"] = height self.graph.setVertexHeight(self.getId(), height) def setShape(self, shape): self.properties["shape"] = shape self.graph.setVertexShape(self.id, shape) def setProperty(self, otherProperty, value): self.properties[otherProperty] = value self.graph.setVertexProperty(self.id, otherProperty, value) def getProperty(self, otherProperty): if not self.sourced: self.source() return self.properties[otherProperty] def get(self, prop): if not self.sourced: self.source() return self.properties[prop] def getNeighbours(self): return self.graph.getNeighbours(self.id) def getOutgoingNeighbours(self): return self.graph.getOutgoingNeighbours(self.id) def getIncomingNeighbours(self): return self.graph.getIncomingNeighbours(self.id) def getOutgoingEdges(self): return self.graph.getOutgoingEdges(self.id) def getIncomingEdges(self): return self.graph.getIncomingEdges(self.id) def getIncidentEdges(self): return self.graph.getIncidentEdges(self.id) def delete(self): return self.graph.deleteVertex(self) def connect(self, v1, edgeId=-1): return self.graph.addEdge(self, v1, edgeId) def getAllEdgesBetween(self, vertex2): return self.graph.getAllEdgesBetween((self.id, vertex2)) def source(self): return self.graph.getVertex(self) def __str__(self): return str(self.getId()) # what if i want to get a vertex? should i also get all its neighbours? how about incident edges? This is all v aufw\"andig and leads to the paradigm by which we just store the grpah in python??? class Edge: # private methods def __init__(self, graph, eid): self.sourced = False self.id = int(eid) #if -2, then imported without id like in TGF self.graph = graph self.properties = dict() self.properties["id"] = None self.properties["label"] = None self.properties["color"] = None self.properties["weight"] = None self.properties["contour"] = None self.properties["source"] = None self.properties["target"] = None self.wasSourced = False def sourceProperties(self, stringFromGralog): self.sourced = True strings = stringFromGralog.split("#") for string in strings: propVal = string.split("=") try: prop = propVal[0] valueType = propVal[1] valueType = valueType.split("|") val = valueType[0] typ = valueType[1] self.properties[prop] = self.graph.castValueToType(val, typ) except: pass def setTarget(self, target): # don't use!! self.properties["target"] = target def setSource(self, source): self.properties["source"] = source # public methods def getId(self): return self.id def setLabel(self, label): label = str(label) self.properties["label"] = label self.graph.setEdgeLabel(self.id, label) def getLabel(self): if not self.sourced: self.source() return self.properties["label"] def setColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["color"] = colorHex elif colorRGB != -1: self.properties["color"] = colorRGB else: return self.graph.setEdgeColor(self.id, colorHex, colorRGB) def getColor(self): if not self.sourced: self.source() return self.properties["color"] def setWeight(self, weight): self.properties["weight"] = float(weight) self.graph.setEdgeWeight(self.id, weight) def getWeight(self): if not self.sourced: self.source() return self.properties["weight"] def setThickness(self, thickness): self.properties["thickness"] = float(thickness) self.graph.setEdgeThickness(self.id, thickness) def getThickness(self): if not self.sourced: self.source() return self.properties["thickness"] def setContour(self, contour): self.properties["contour"] = contour self.graph.setEdgeContour(self.id, contour) def getContour(self): if not self.sourced: self.source() return self.properties["contour"] def getSource(self): if not self.sourced: self.source() return self.properties["source"] def getTarget(self): if not self.sourced: self.source() return self.properties["target"] def setProperty(self, otherProperty, value): self.properties[otherProperty] = value self.graph.setEdgeProperty(self, otherProperty, value) def getProperty(self, otherProperty): if not self.sourced: self.source() return self.properties[otherProperty] def get(self, prop): self.source() return self.properties[prop] def delete(self): return self.graph.deleteEdge(self.id) def source(self): return self.graph.getEdge(self) def getAdjacentEdges(self): return self.graph.getAdjacentEdges(self.id) def __str__(self): v = self.getId() v_str = str(v) source = self.getSource().getId() target = self.getTarget().getId() return "({:},{:})".format(source, target) def rgbFormatter(colorRGB): r = colorRGB[0] g = colorRGB[1] b = colorRGB[2] s = "rgb" s += "(" + str(r).rstrip() + "," + \ str(g).rstrip() + "," + str(b).rstrip() + ")" return s.rstrip() def hexFormatter(colorHex): s = "hex" if colorHex[0] == "#": colorHex = colorHex[1:] s += "("+str(colorHex).rstrip() + ")" return s.rstrip() def vertexId(vertex): if isinstance(vertex, Vertex): return vertex.getId() return vertex def edgeId(edge): if isinstance(edge, Edge): return edge.getId() return edge def extractIdFromProperties(stringFromGralog): strings = stringFromGralog.split(",") for string in strings: propVal = string.split("=") if propVal[0] == "id": return propVal[1] return None def edgeSplitter(edge): if type(edge) == tuple and len(edge) == 2: # edge as defined by start, end nodes return str(vertexId(edge[0])).rstrip()+","+str(vertexId(edge[1])).rstrip() if type(edge) == int: # edge is given by id return str(edge).rstrip() return str(edge.getId()).rstrip()#edge has type Edge class Graph: def __init__(self, format="Undirected Graph"): # perform analysis of graph self.id_to_vertex = dict() self.id_to_edge = dict() self.lastIndex = -1 self.id = -1 self.variablesToTrack = dict() if format == None or format.lower() == "none": # we want a new graph print("useCurrentGraph") sys.stdout.flush() self.lastIndex = -1 self.id = sys.stdin.readline() self.getGraph("gtgf") else: print(format) sys.stdout.flush() self.id = sys.stdin.readline() # helper functions def castValueToType(self, val, typ): if typ == "float": return float(val) if typ == "int": return int(val) if typ == "bool": return bool(val) if typ == "string": return str(val) if typ == "vertex": return self.getVertexOrNew(val) return val def getVertexOrNew(self, currId): v = currId if (isinstance(currId, str)): currId = int(currId) if (isinstance(currId, int)): if currId in self.id_to_vertex: v=self.id_to_vertex[currId] else: v=Vertex(self, currId) self.id_to_vertex[currId] = v return v def getEdgeOrNew(self, currId): if type(currId) == tuple: e = self.getEdgeIdByEndpoints(currId) return e e = currId if not (isinstance(currId, Edge)): try: e = self.id_to_edge[int(currId)] except: e = Edge(self, currId) else: gPrint("Error (getEdgeOrNew()): the argument \ is neither an edge id nor a pair of vertices.") return e def termToEdge(self, term): endpoints = term.split(",") eid = int(endpoints[0]) e = self.id_to_edge[eid] e.sourceProperties(endpoints[0]) sourceId = int(endpoints[1]) source = self.getVertexOrNew(sourceId) targetId = int(endpoints[2]) target = self.getVertexOrNew(targetId) e.setSource(source) e.setTarget(target) return e def representsInt(s): try: int(s) return True except ValueError: return False def edgifyTGFCommand(self, line): line = line.strip() endpoints = line.split(" ") v1String = endpoints[0] v1 = self.getVertexOrNew(int(v1String)) v2String = endpoints[1] v2 = self.getVertexOrNew(int(v2String)) e = self.getEdgeOrNew(-2) e.setSource(v1) e.setTarget(v2) def vertexifyTGFCommand(self, line): line = line.strip() vString = line[0] v = self.getVertexOrNew(int(vString)) self.vertices[v.getId()] = v def edgifyGTGFCommand(self, line): line = line.strip() endpoints = line.split(" ") v1String = endpoints[0] v1 = self.getVertexOrNew(int(v1String)) v2String = endpoints[1] v2 = self.getVertexOrNew(int(v2String)) eid = int(endpoints[2]) e = self.getEdgeOrNew(eid) e.setSource(v1) e.setTarget(v2) self.id_to_edge[eid] = e def vertexifyGTGFCommand(self, line): self.vertexifyTGFCommand(line) def getEdgeIdByEndpoints(self, endpoints): line = "getEdgeIdByEndpoints#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(endpoints) print(line.rstrip()) sys.stdout.flush() edgeId = sys.stdin.readline().rstrip() return edgeId def getVertex(self, vertex): line = "getVertex#"+str(self.id).rstrip() + "#" line = line + str(vertex).rstrip() print (line.rstrip()) sys.stdout.flush() vertexTuple = sys.stdin.readline().rstrip() vertex.sourceProperties(vertexTuple) return vertex def getEdge(self, edge): line = "getEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print (line.rstrip()) sys.stdout.flush() edgeTuple = sys.stdin.readline().rstrip() edge.sourceProperties(edgeTuple) return edge # end helper functions # Graph Manipulating Functions def addVertex(self, vertexId=-1, pos=(None, None)): # return: Vertex object with id line = "addVertex#" + str(self.id).rstrip() x = -1 y = -1 vertexIdSwap = False if type(vertexId) == tuple and pos == (None, None): x = vertexId[0] y = vertexId[1] vertexId = -1 else: x = pos[0] y = pos[1] if vertexId != -1: line += "#"+str(vertexId).rstrip() if x != None and y != None: line += "#" + str(x).rstrip() + "#" + str(y).rstrip() print(line) sys.stdout.flush() vid = sys.stdin.readline() v = Vertex(self, vid) self.id_to_vertex[v.getId()] = v return v def deleteVertex(self, v): edges = self.getIncidentEdges(v) for e in edges: del self.id_to_edge[e.getId()] v = vertexId(v) del self.id_to_vertex[v] print("deleteVertex#" + str(self.id).rstrip() + "#" + str(v)) sys.stdout.flush() def addEdge(self, sourceVertex, targetVertex, edgeId = -1): # return: Edge object with id only sourceVertex = vertexId(sourceVertex) targetVertex = vertexId(targetVertex) idSubString = "" if not edgeId == -1: idSubString = "#"+str(edgeId) line = "addEdge#"+str(self.id).rstrip() + "#" + str(sourceVertex).rstrip() + \ "#" + str(targetVertex).rstrip() + idSubString.rstrip() print(line.rstrip()) sys.stdout.flush() eid = sys.stdin.readline() if eid != "\n": # it's possible that the edge cannot be added (e.g., a new selfloop) e = Edge(self, eid) self.id_to_edge[e.getId()] = e return e return None def existsEdge(self, edge): line = "existsEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() thereExistsAnEdge = sys.stdin.readline().rstrip() return thereExistsAnEdge.lower() == "true" def existsVertex(self, vertex): line = "existsVertex#"+str(self.id).rstrip() + "#" line = line + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() thereExistsAVertex = sys.stdin.readline().rstrip() return thereExistsAVertex.lower() == "true" def deleteEdge(self, edge): del self.id_to_edge[edge.getId()] line = "deleteEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() def getAllEdgesBetween(self, vertexPair): line = "getAllEdgesBetween#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(vertexPair) print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges # creates a random Erdos-Reny graph with n id_to_vertex and edge probability p def generateRandomGraph(self, vertexCount, p): if not isinstance(vertexCount, int): gPrint("Cannot generate a random graph, wrong parameter: \ vertex number must be an int.") if vertexCount < 0: gPrint("Cannot generate a random graph, wrong parameter: \ vertex number cannot be less than 0.") if not isinstance(p, float) or p < 0 or p > 1.0: gPrint("Cannot generate a random graph, wrong parameter: \ probability of an edge must be a float in [0,1].") if vertexCount == 0: return vertices = [] coordinates = dict() for id in range(vertexCount): coordinates[id] = (10*math.cos(2*id*math.pi/vertexCount), 10*math.sin(2*id*math.pi/vertexCount)) nxgraph = nx.fast_gnp_random_graph(vertexCount, p) d = dict() id = 0 for nxV in nxgraph.nodes(): d[id] = nxV id += 1 nxEdges = nxgraph.edges() id = 0 for x in range(vertexCount): vertices.append(self.addVertex(id, coordinates[id])) id += 1 for x in vertices: for y in vertices: if x.getId() < y.getId(): if (d[x.getId()], d[y.getId()]) in nxEdges: x.connect(y) # end manilupative functions # setter functions # begin: best for private use! def setVertexFillColor(self, vertex, colorHex=-1, colorRGB=-1): vertex = vertexId(vertex) line = "setVertexFillColor#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" if not (colorHex == -1): line = line + hexFormatter(str(colorHex)) elif not (colorRGB == -1): try: line = line + rgbFormatter(colorRGB) except: self.sendErrorToGralog("the rgb color: " + str(colorRGB).rstrip() + " is not properly formatted!") else: self.sendErrorToGralog("neither Hex nor RGB color specified!") print(line.rstrip()) sys.stdout.flush() def setVertexStrokeColor(self, vertex, colorHex=-1, colorRGB=-1): vertex = vertexId(vertex) # print("colorhex: " + str(colorHex)) line = "setVertexStrokeColor#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" if not (colorHex == -1): line = line + hexFormatter(str(colorHex)) elif not (colorRGB == -1) and len(colorRGB) == 3: line = line + rgbFormatter(colorRGB) print(line.rstrip()) sys.stdout.flush() def setVertexCoordinates(self, vertex, coordinates): line = "setVertexCoordinates#" + str(self.id).rstrip()+"#" + str(vertexId(vertex)).rstrip() x = -1 y = -1 x = coordinates[0] y = coordinates[1] if x == None: x = "empty" if y == None: y = "empty" line += "#" + str(x).rstrip() + "#" + str(y).rstrip() print(line) sys.stdout.flush() def setEdgeContour(self, edge, contour): line = line = "setEdgeContour#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + str(contour).rstrip() print(line) sys.stdout.flush() def setEdgeColor(self, edge, colorHex=-1, colorRGB=-1): line = "setEdgeColor#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" if not (colorHex == -1): line = line + hexFormatter(colorHex) elif not (colorRGB == -1) and len(colorRGB) == 3: line = line + rgbFormatter(colorRGB) print(line.rstrip()) sys.stdout.flush() def setVertexRadius(self, vertex, newRadius): self.setVertexDimension(vertex, newRadius, "radius") def setVertexHeight(self, vertex, newHeight): self.setVertexDimension(vertex, newHeight, "height") def setVertexWidth(self, vertex, newWidth): self.setVertexDimension(vertex, newWidth, "width") def setVertexDimension(self, vertex, newDimension, dimension): vertex = vertexId(vertex) line = "setVertexDimension#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(newDimension).rstrip()+"#" + dimension.rstrip() print(line.rstrip()) sys.stdout.flush() def setVertexShape(self, vertex, shape): vertex = vertexId(vertex) line = "setVertexShape#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(shape).rstrip() print(line.rstrip()) sys.stdout.flush() def setEdgeWeight(self, edge, weight): self.setEdgeProperty(edge, "weight", weight) def setEdgeThickness(self, edge, thickness): self.setEdgeProperty(edge, "thickness", thickness) def setEdgeProperty(self, edge, propertyName, value): line = "setEdgeProperty#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + propertyName.rstrip().lower() + "#" + str(value).rstrip().lower() print(line.rstrip()) sys.stdout.flush() def setVertexProperty(self, vertex, propertyName, value): line = "setVertexProperty#"+str(self.id).rstrip() + "#" line = line + str(vertexId(vertex)).rstrip() line = line + "#" + propertyName.rstrip().lower() + "#" + str(value).rstrip().lower() print(line.rstrip()) sys.stdout.flush() def setEdgeLabel(self, edge, label): line = "setEdgeLabel#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + label print(line.rstrip()) sys.stdout.flush() def setVertexLabel(self, vertex, label): vertex = vertexId(vertex) line = "setVertexLabel#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + label print(line.rstrip()) sys.stdout.flush() # end: best for private use! def setGraph(self, graphFormat, graphString = "hello_world"): graphFormat = graphFormat.lower() line = "setGraph#"+str(self.id).rstrip() + "#" + graphFormat.rstrip()+"#" if graphFormat == "gtgf" or graphFormat == "tgf": line += "$$\n" line += graphString if graphFormat == "gtgf" or graphFormat == "tgf": line += "$\n" print(line) sys.stdout.flush() # TODO: implement this # end setter functions # getter functions def toIgraph(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_ig = ig.Graph.Read_GraphML("tmp.graphml") os.remove("tmp.graphml") return g_ig def toNx(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_nx = nx.read_graphml("tmp.graphml") os.remove("tmp.graphml") return g_nx def toElementTree(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_ET = ET.parse("tmp.graphml") os.remove("tmp.graphml") return g_ET def toXml(self): return self.getGraph("xml") def getGraph(self, graphFormat): # warning!! importing as pure TGF will mean edge id's will # be lost. This will result in errors on the Gralog side. line = "getGraph#"+str(self.id).rstrip() + "#" + graphFormat.rstrip() print(line.rstrip()) i = 0 sys.stdout.flush() line = sys.stdin.readline() graphString = "" if graphFormat.lower() == "tgf" or graphFormat.lower() == "gtgf": tgf = graphFormat.lower() == "tgf" multiline = False first = False if line[0] == line[1] == '$': multiline = True if tgf: first = True line = sys.stdin.readline() hashtagSeen = False if not multiline: return graphString while line[0] != '$': # gPrint("line: " + line +" and line[0]: " + line[0] + " and line[0]!='$': " + str(line[0] != '$')) graphString += line if line[0] == '#': hashtagSeen = True else: if not first: if hashtagSeen: if tgf: self.edgifyTGFCommand(line) else: self.edgifyGTGFCommand(line) else: if tgf: self.vertexifyTGFCommand(line) else: self.vertexifyGTGFCommand(line) line = sys.stdin.readline() i += 1 first = False return graphString if graphFormat.lower() == "xml": return line def getAllVertices(self): # return: list of Vertex objects with id line = "getAllVertices#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vertexIdStringList = (sys.stdin.readline()).split("#") vertexList = [] for vertexIdString in vertexIdStringList: if representsInt(vertexIdString): v = self.getVertexOrNew(vertexIdString) vertexList.append(v) return vertexList def getVertices(self): return(self.getAllVertices()) def getAllEdges(self): # return: list of fully sourced Edge objects with fully sourced endpoint Vertices line = "getAllEdges#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] if len(endpointList) == 1 and endpointList[-1] == "\n": endpointList = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getEdges(self): return(self.getAllEdges()) # start: best for private use! def getNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getNeighbours#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() neighbourIdStringList = (sys.stdin.readline()).split("#") neighboursList = [] for neighbourIdString in neighbourIdStringList: if representsInt(neighbourIdString): v = self.getVertexOrNew(neighbourIdString) neighboursList.append(v) return neighboursList def getOutgoingNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getOutgoingNeighbours#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() outgoingNeighbourIdStringList = (sys.stdin.readline()).split("#") outgoingNeighboursList = [] for outgoingNeighbourIdString in outgoingNeighbourIdStringList: if representsInt(outgoingNeighbourIdString): v = self.getVertexOrNew(outgoingNeighbourIdString) outgoingNeighboursList.append(v) return outgoingNeighboursList def getIncomingNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getIncomingNeighbours#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() incomingNeighbourIdStringList = (sys.stdin.readline()).split("#") incomingNeighboursList = [] for incomingNeighbourIdString in incomingNeighbourIdStringList: if representsInt(incomingNeighbourIdString): v = self.getVertexOrNew(incomingNeighbourIdString) incomingNeighboursList.append(v) return incomingNeighboursList def getIncidentEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getIncidentEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getAdjacentEdges(self, edge): # return: list of Edge objects with id's only line = "getAdjacentEdges#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getOutgoingEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getOutgoingEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getIncomingEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getIncomingEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getEdgeWeight(self, edge): return self.getEdgeProperty(edge, "weight") def getEdgeLabel(self, edge): return self.getEdgeProperty(edge, "label") def getEdgeProperty(self, edge, prop): # internally: fill edge property dictionary # return: String representing queried property line = "getEdgeProperty#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + prop.rstrip().lower() print(line.rstrip()) sys.stdout.flush() edgeTuple = sys.stdin.readline().rstrip() edge.sourceProperties(edgeTuple) return edge.getProperty(prop) def getVertexProperty(self, vertex, prop): # internally: fill edge property dictionary # return: String representing queried property vid = vertexId(vertex) line = "getVertexProperty#"+str(self.id).rstrip() + "#" line = line + vid line = line + "#" + prop.rstrip().lower() print(line.rstrip()) sys.stdout.flush() vertexTuple = sys.stdin.readline().rstrip() vertex.sourceProperties(vertexTuple) return vertex.getProperty(prop) # end: best use privately! def requestVertex(self): line = "requestVertex#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() vertex = self.getVertexOrNew(vid) return vertex def requestRandomVertex(self): line = "requestRandomVertex#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() vertex = self.getVertexOrNew(vid) return vertex def requestEdge(self): line = "requestEdge#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() edge = self.getEdgeOrNew(vid) return edge def requestRandomEdge(self): line = "requestRandomEdge#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() eid = sys.stdin.readline().rstrip() edge = self.getEdgeOrNew(eid) return edge def requestInteger(self): line = "requestInteger#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() i = sys.stdin.readline().rstrip() return int(i) def requestFloat(self): line = "requestFloat#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() d = sys.stdin.readline().rstrip() return float(d) def requestString(self): line = "requestString#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() st = sys.stdin.readline().rstrip() return str(st) # runtime changer functions def pauseUntilSpacePressed(self, *args): line = "pauseUntilSpacePressed" rank = None try: rank = int(args[0]) except: pass if len(args) > 0 and rank != None: rank = int(args[0]) args = args[1:] argString = "" if rank != None: argString += "#"+str(rank).rstrip() for key in sorted(self.variablesToTrack.keys()): term = "#("+str(key).rstrip()+"=" + \ str(self.variablesToTrack[key]).rstrip()+")" argString = argString + term.rstrip() for x in args: if len(x) != 2: argString = "#(syntax=pauseUntilSpacePressed((key, val)))" break if (type(x) == list): for each in x: term = "#("+"arrayyyy"+str(each[0])+"="+str(each[1])+")" argString = argString + term else: term = "#("+str(x[0])+"="+str(x[1])+")" argString = argString + term.rstrip() line = line + argString print(line) sys.stdout.flush() toSkip = sys.stdin.readline() def track(self, name, var): # ideally, something like this: self.variablesToTrack[name] = var # if this is a pointer, it will work # if it is an int or str, or some other non-reference type, it will not def unTrack(self, name): del self.variablesToTrack[name] def sendMessage(self, toSend): print(toSend) sys.stdout.flush() def message(self, message): print("message#"+str(self.id).rstrip() + "#"+str(message).rstrip()) sys.stdout.flush() def sendErrorToGralog(self, toSend): print("error#"+str(self.id).rstrip() + "#"+str(toSend).rstrip()) sys.stdout.flush() exit() def mistakeLine(self): print("wubbadubdub 3 men in a tub") sys.stdout.flush() sys.stdin.readline() def pause(self, *args): self.pauseUntilSpacePressed(*args) # end runtime changer functions def __str__(self): vertices = [str(v) for v in self.id_to_vertex] vertices.sort() edges = [str(e) for e in self.getEdges()] edges.sort() return "VERTICES: " + " ".join(vertices) + "\nEDGES: " + " ".join(edges) def gPrint(message): if not message: # empty: print nothing except the new line (hacked with \t; <space> doesn't work) print("gPrint#-1#" + "\t") sys.stdout.flush() else: message = str(message) lines = message.split('\n') for line in lines: print("gPrint#-1#" + line) sys.stdout.flush() def representsInt(s): try: int(s) return True except ValueError: return False
#!/usr/bin/env python3 import sys from random import randint import os try: import networkx as nx except: print("gPrint#-1#" + "netwrokx not installed for " + sys.executable) sys.stdout.flush() try: import igraph as ig except: print("gPrint#-1#" + "igraph not installed for " + sys.executable) import xml.etree.cElementTree as ET import math # debugging = False class Vertex: def __init__(self, graph, vid): self.sourced = False self.id = int(vid) self.graph = graph self.properties = dict() self.properties["id"] = None self.properties["label"] = None self.properties["color"] = None self.properties["strokeColor"] = None self.properties["shape"] = None self.properties["coordinates"] = None self.incomingEdges = [] self.outgoingEdges = [] self.incidentEdges = [] self.wasSourced = False def sourceProperties(self, stringFromGralog): self.sourced = True strings = stringFromGralog.split("#") for string in strings: propVal = string.split("=") valueType = "" try: prop = propVal[0] valueType = propVal[1] except: pass try: valueType = valueType.split("|") val = valueType[0] typ = valueType[1] castedValue = self.graph.castValueToType(val, typ) self.properties[prop] = castedValue except: pass def getId(self): return self.id def getLabel(self): if not self.wasSourced: self.source() return self.properties["label"] def setLabel(self, label): label = str(label) self.properties["label"] = label self.graph.setVertexLabel(self.id, label) def setCoordinates(self, coordinates): co = self.properties["coordinates"] x = coordinates[0] y = coordinates[1] if co == None: co = (None, None) if x == None: x = co[0] if y == None: y = co[1] newCoordinates = (x, y) self.properties["coordinates"] = newCoordinates self.graph.setVertexCoordinates(self.id, newCoordinates) def setFillColor(self, colorHex=-1, colorRGB=-1): self.setColor(colorHex, colorRGB) def getFillColor(self): return self.getColor() def getColor(self): if not self.wasSourced: self.source() return self.properties["color"] def setColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["fillColor"] = colorHex elif colorRGB != -1: self.properties["fillColor"] = colorRGB else: return self.graph.setVertexFillColor(self.id, colorHex, colorRGB) def setStrokeColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["strokeColor"] = colorHex elif colorRGB != -1: self.properties["strokeColor"] = colorRGB else: return self.graph.setVertexStrokeColor(self.id, colorHex, colorRGB) def getStrokeColor(self): if not self.sourced: self.source() return self.properties["strokeColor"] def setRadius(self, radius): self.properties["radius"] = radius self.properties["width"] = radius self.properties["height"] = radius self.graph.setVertexRadius(self.id, radius) def setWidth(self, width): self.properties["width"] = width self.graph.setVertexWidth(self.getId(), width) def setHeight(self, height): self.properties["height"] = height self.graph.setVertexHeight(self.getId(), height) def setShape(self, shape): self.properties["shape"] = shape self.graph.setVertexShape(self.id, shape) def setProperty(self, otherProperty, value): self.properties[otherProperty] = value self.graph.setVertexProperty(self.id, otherProperty, value) def getProperty(self, otherProperty): if not self.sourced: self.source() return self.properties[otherProperty] def get(self, prop): if not self.sourced: self.source() return self.properties[prop] def getNeighbours(self): return self.graph.getNeighbours(self.id) def getOutgoingNeighbours(self): return self.graph.getOutgoingNeighbours(self.id) def getIncomingNeighbours(self): return self.graph.getIncomingNeighbours(self.id) def getOutgoingEdges(self): return self.graph.getOutgoingEdges(self.id) def getIncomingEdges(self): return self.graph.getIncomingEdges(self.id) def getIncidentEdges(self): return self.graph.getIncidentEdges(self.id) def delete(self): return self.graph.deleteVertex(self) def connect(self, v1, edgeId=-1): return self.graph.addEdge(self, v1, edgeId) def getAllEdgesBetween(self, vertex2): return self.graph.getAllEdgesBetween((self.id, vertex2)) def source(self): return self.graph.getVertex(self) def __str__(self): return str(self.getId()) # what if i want to get a vertex? should i also get all its neighbours? how about incident edges? This is all v aufw\"andig and leads to the paradigm by which we just store the grpah in python??? class Edge: # private methods def __init__(self, graph, eid): self.sourced = False self.id = int(eid) #if -2, then imported without id like in TGF self.graph = graph self.properties = dict() self.properties["id"] = None self.properties["label"] = None self.properties["color"] = None self.properties["weight"] = None self.properties["contour"] = None self.properties["source"] = None self.properties["target"] = None self.wasSourced = False def sourceProperties(self, stringFromGralog): self.sourced = True strings = stringFromGralog.split("#") for string in strings: propVal = string.split("=") try: prop = propVal[0] valueType = propVal[1] valueType = valueType.split("|") val = valueType[0] typ = valueType[1] self.properties[prop] = self.graph.castValueToType(val, typ) except: pass def setTarget(self, target): # don't use!! self.properties["target"] = target def setSource(self, source): self.properties["source"] = source # public methods def getId(self): return self.id def setLabel(self, label): label = str(label) self.properties["label"] = label self.graph.setEdgeLabel(self.id, label) def getLabel(self): if not self.sourced: self.source() return self.properties["label"] def setColor(self, colorHex=-1, colorRGB=-1): if colorHex != -1: self.properties["color"] = colorHex elif colorRGB != -1: self.properties["color"] = colorRGB else: return self.graph.setEdgeColor(self.id, colorHex, colorRGB) def getColor(self): if not self.sourced: self.source() return self.properties["color"] def setWeight(self, weight): self.properties["weight"] = float(weight) self.graph.setEdgeWeight(self.id, weight) def getWeight(self): if not self.sourced: self.source() return self.properties["weight"] def setThickness(self, thickness): self.properties["thickness"] = float(thickness) self.graph.setEdgeThickness(self.id, thickness) def getThickness(self): if not self.sourced: self.source() return self.properties["thickness"] def setContour(self, contour): self.properties["contour"] = contour self.graph.setEdgeContour(self.id, contour) def getContour(self): if not self.sourced: self.source() return self.properties["contour"] def getSource(self): if not self.sourced: self.source() return self.properties["source"] def getTarget(self): if not self.sourced: self.source() return self.properties["target"] def setProperty(self, otherProperty, value): self.properties[otherProperty] = value self.graph.setEdgeProperty(self, otherProperty, value) def getProperty(self, otherProperty): if not self.sourced: self.source() return self.properties[otherProperty] def get(self, prop): self.source() return self.properties[prop] def delete(self): return self.graph.deleteEdge(self.id) def source(self): return self.graph.getEdge(self) def getAdjacentEdges(self): return self.graph.getAdjacentEdges(self.id) def __str__(self): v = self.getId() v_str = str(v) source = self.getSource().getId() target = self.getTarget().getId() return "({:},{:})".format(source, target) def rgbFormatter(colorRGB): r = colorRGB[0] g = colorRGB[1] b = colorRGB[2] s = "rgb" s += "(" + str(r).rstrip() + "," + \ str(g).rstrip() + "," + str(b).rstrip() + ")" return s.rstrip() def hexFormatter(colorHex): s = "hex" if colorHex[0] == "#": colorHex = colorHex[1:] s += "("+str(colorHex).rstrip() + ")" return s.rstrip() def vertexId(vertex): if isinstance(vertex, Vertex): return vertex.getId() return vertex def edgeId(edge): if isinstance(edge, Edge): return edge.getId() return edge def extractIdFromProperties(stringFromGralog): strings = stringFromGralog.split(",") for string in strings: propVal = string.split("=") if propVal[0] == "id": return propVal[1] return None def edgeSplitter(edge): if type(edge) == tuple and len(edge) == 2: # edge as defined by start, end nodes return str(vertexId(edge[0])).rstrip()+","+str(vertexId(edge[1])).rstrip() if type(edge) == int: # edge is given by id return str(edge).rstrip() return str(edge.getId()).rstrip()#edge has type Edge class Graph: def __init__(self, format="Undirected Graph"): # perform analysis of graph self.id_to_vertex = dict() self.id_to_edge = dict() self.lastIndex = -1 self.id = -1 self.variablesToTrack = dict() if format == None or format.lower() == "none": # we want a new graph print("useCurrentGraph") sys.stdout.flush() self.lastIndex = -1 self.id = sys.stdin.readline() self.getGraph("gtgf") else: print(format) sys.stdout.flush() self.id = sys.stdin.readline() # helper functions def castValueToType(self, val, typ): if typ == "float": return float(val) if typ == "int": return int(val) if typ == "bool": return bool(val) if typ == "string": return str(val) if typ == "vertex": return self.getVertexOrNew(val) return val def getVertexOrNew(self, currId): v = currId if (isinstance(currId, str)): currId = int(currId) if (isinstance(currId, int)): if currId in self.id_to_vertex: v=self.id_to_vertex[currId] else: v=Vertex(self, currId) self.id_to_vertex[currId] = v return v def getEdgeOrNew(self, currId): if type(currId) == tuple: e = self.getEdgeIdByEndpoints(currId) return e e = currId if not (isinstance(currId, Edge)): try: e = self.id_to_edge[int(currId)] except: e = Edge(self, currId) else: gPrint("Error (getEdgeOrNew()): the argument \ is neither an edge id nor a pair of vertices.") return e def termToEdge(self, term): endpoints = term.split(",") eid = int(endpoints[0]) e = self.id_to_edge[eid] e.sourceProperties(endpoints[0]) sourceId = int(endpoints[1]) source = self.getVertexOrNew(sourceId) targetId = int(endpoints[2]) target = self.getVertexOrNew(targetId) e.setSource(source) e.setTarget(target) return e def representsInt(s): try: int(s) return True except ValueError: return False def edgifyTGFCommand(self, line): line = line.strip() endpoints = line.split(" ") v1String = endpoints[0] v1 = self.getVertexOrNew(int(v1String)) v2String = endpoints[1] v2 = self.getVertexOrNew(int(v2String)) e = self.getEdgeOrNew(-2) e.setSource(v1) e.setTarget(v2) def vertexifyTGFCommand(self, line): line = line.strip() vString = line[0] v = self.getVertexOrNew(int(vString)) self.vertices[v.getId()] = v def edgifyGTGFCommand(self, line): line = line.strip() endpoints = line.split(" ") v1String = endpoints[0] v1 = self.getVertexOrNew(int(v1String)) v2String = endpoints[1] v2 = self.getVertexOrNew(int(v2String)) eid = int(endpoints[2]) e = self.getEdgeOrNew(eid) e.setSource(v1) e.setTarget(v2) self.id_to_edge[eid] = e def vertexifyGTGFCommand(self, line): self.vertexifyTGFCommand(line) def getEdgeIdByEndpoints(self, endpoints): line = "getEdgeIdByEndpoints#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(endpoints) print(line.rstrip()) sys.stdout.flush() edgeId = sys.stdin.readline().rstrip() return edgeId def getVertex(self, vertex): line = "getVertex#"+str(self.id).rstrip() + "#" line = line + str(vertex).rstrip() print (line.rstrip()) sys.stdout.flush() vertexTuple = sys.stdin.readline().rstrip() vertex.sourceProperties(vertexTuple) return vertex def getEdge(self, edge): line = "getEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print (line.rstrip()) sys.stdout.flush() edgeTuple = sys.stdin.readline().rstrip() edge.sourceProperties(edgeTuple) return edge # end helper functions # Graph Manipulating Functions def addVertex(self, vertexId=-1, pos=(None, None)): # return: Vertex object with id line = "addVertex#" + str(self.id).rstrip() x = -1 y = -1 vertexIdSwap = False if type(vertexId) == tuple and pos == (None, None): x = vertexId[0] y = vertexId[1] vertexId = -1 else: x = pos[0] y = pos[1] if vertexId != -1: line += "#"+str(vertexId).rstrip() if x != None and y != None: line += "#" + str(x).rstrip() + "#" + str(y).rstrip() print(line) sys.stdout.flush() vid = sys.stdin.readline() v = Vertex(self, vid) self.id_to_vertex[v.getId()] = v return v def deleteVertex(self, v): edges = self.getIncidentEdges(v) for e in edges: del self.id_to_edge[e.getId()] v = vertexId(v) del self.id_to_vertex[v] print("deleteVertex#" + str(self.id).rstrip() + "#" + str(v)) sys.stdout.flush() def addEdge(self, sourceVertex, targetVertex, edgeId = -1): # return: Edge object with id only sourceVertex = vertexId(sourceVertex) targetVertex = vertexId(targetVertex) idSubString = "" if not edgeId == -1: idSubString = "#"+str(edgeId) line = "addEdge#"+str(self.id).rstrip() + "#" + str(sourceVertex).rstrip() + \ "#" + str(targetVertex).rstrip() + idSubString.rstrip() print(line.rstrip()) sys.stdout.flush() eid = sys.stdin.readline() if eid != "\n": # it's possible that the edge cannot be added (e.g., a new selfloop) e = Edge(self, eid) self.id_to_edge[e.getId()] = e return e return None def existsEdge(self, edge): line = "existsEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() thereExistsAnEdge = sys.stdin.readline().rstrip() return thereExistsAnEdge.lower() == "true" def existsVertex(self, vertex): line = "existsVertex#"+str(self.id).rstrip() + "#" line = line + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() thereExistsAVertex = sys.stdin.readline().rstrip() return thereExistsAVertex.lower() == "true" def deleteEdge(self, edge): del self.id_to_edge[edge.getId()] line = "deleteEdge#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() def getAllEdgesBetween(self, vertexPair): line = "getAllEdgesBetween#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(vertexPair) print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges # creates a random Erdos-Reny graph with n id_to_vertex and edge probability p def generateRandomGraph(self, vertexCount, p): if not isinstance(vertexCount, int): gPrint("Cannot generate a random graph, wrong parameter: \ vertex number must be an int.") if vertexCount < 0: gPrint("Cannot generate a random graph, wrong parameter: \ vertex number cannot be less than 0.") if not isinstance(p, float) or p < 0 or p > 1.0: gPrint("Cannot generate a random graph, wrong parameter: \ probability of an edge must be a float in [0,1].") if vertexCount == 0: return vertices = [] coordinates = dict() for id in range(vertexCount): coordinates[id] = (10*math.cos(2*id*math.pi/vertexCount), 10*math.sin(2*id*math.pi/vertexCount)) nxgraph = nx.fast_gnp_random_graph(vertexCount, p) d = dict() id = 0 for nxV in nxgraph.nodes(): d[id] = nxV id += 1 nxEdges = nxgraph.edges() id = 0 for x in range(vertexCount): vertices.append(self.addVertex(id, coordinates[id])) id += 1 for x in vertices: for y in vertices: if x.getId() < y.getId(): if (d[x.getId()], d[y.getId()]) in nxEdges: x.connect(y) # end manilupative functions # setter functions # begin: best for private use! def setVertexFillColor(self, vertex, colorHex=-1, colorRGB=-1): vertex = vertexId(vertex) line = "setVertexFillColor#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" if not (colorHex == -1): line = line + hexFormatter(str(colorHex)) elif not (colorRGB == -1): try: line = line + rgbFormatter(colorRGB) except: self.sendErrorToGralog("the rgb color: " + str(colorRGB).rstrip() + " is not properly formatted!") else: self.sendErrorToGralog("neither Hex nor RGB color specified!") print(line.rstrip()) sys.stdout.flush() def setVertexStrokeColor(self, vertex, colorHex=-1, colorRGB=-1): vertex = vertexId(vertex) # print("colorhex: " + str(colorHex)) line = "setVertexStrokeColor#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" if not (colorHex == -1): line = line + hexFormatter(str(colorHex)) elif not (colorRGB == -1) and len(colorRGB) == 3: line = line + rgbFormatter(colorRGB) print(line.rstrip()) sys.stdout.flush() def setVertexCoordinates(self, vertex, coordinates): line = "setVertexCoordinates#" + str(self.id).rstrip()+"#" + str(vertexId(vertex)).rstrip() x = -1 y = -1 x = coordinates[0] y = coordinates[1] if x == None: x = "empty" if y == None: y = "empty" line += "#" + str(x).rstrip() + "#" + str(y).rstrip() print(line) sys.stdout.flush() def setEdgeContour(self, edge, contour): line = line = "setEdgeContour#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + str(contour).rstrip() print(line) sys.stdout.flush() def setEdgeColor(self, edge, colorHex=-1, colorRGB=-1): line = "setEdgeColor#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" if not (colorHex == -1): line = line + hexFormatter(colorHex) elif not (colorRGB == -1) and len(colorRGB) == 3: line = line + rgbFormatter(colorRGB) print(line.rstrip()) sys.stdout.flush() def setVertexRadius(self, vertex, newRadius): self.setVertexDimension(vertex, newRadius, "radius") def setVertexHeight(self, vertex, newHeight): self.setVertexDimension(vertex, newHeight, "height") def setVertexWidth(self, vertex, newWidth): self.setVertexDimension(vertex, newWidth, "width") def setVertexDimension(self, vertex, newDimension, dimension): vertex = vertexId(vertex) line = "setVertexDimension#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(newDimension).rstrip()+"#" + dimension.rstrip() print(line.rstrip()) sys.stdout.flush() def setVertexShape(self, vertex, shape): vertex = vertexId(vertex) line = "setVertexShape#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(shape).rstrip() print(line.rstrip()) sys.stdout.flush() def setEdgeWeight(self, edge, weight): self.setEdgeProperty(edge, "weight", weight) def setEdgeThickness(self, edge, thickness): self.setEdgeProperty(edge, "thickness", thickness) def setEdgeProperty(self, edge, propertyName, value): line = "setEdgeProperty#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + propertyName.rstrip().lower() + "#" + str(value).rstrip().lower() print(line.rstrip()) sys.stdout.flush() def setVertexProperty(self, vertex, propertyName, value): line = "setVertexProperty#"+str(self.id).rstrip() + "#" line = line + str(vertexId(vertex)).rstrip() line = line + "#" + propertyName.rstrip().lower() + "#" + str(value).rstrip().lower() print(line.rstrip()) sys.stdout.flush() def setEdgeLabel(self, edge, label): line = "setEdgeLabel#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + label print(line.rstrip()) sys.stdout.flush() def setVertexLabel(self, vertex, label): vertex = vertexId(vertex) line = "setVertexLabel#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + label print(line.rstrip()) sys.stdout.flush() # end: best for private use! def setGraph(self, graphFormat, graphString = "hello_world"): graphFormat = graphFormat.lower() line = "setGraph#"+str(self.id).rstrip() + "#" + graphFormat.rstrip()+"#" if graphFormat == "gtgf" or graphFormat == "tgf": line += "$$\n" line += graphString if graphFormat == "gtgf" or graphFormat == "tgf": line += "$\n" print(line) sys.stdout.flush() # TODO: implement this # end setter functions # getter functions def toIgraph(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_ig = ig.Graph.Read_GraphML("tmp.graphml") os.remove("tmp.graphml") return g_ig def toNx(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_nx = nx.read_graphml("tmp.graphml") os.remove("tmp.graphml") return g_nx def toElementTree(self): grlgML_file = open("tmp.graphml", "w") grlgML_file.write(self.toXml()) grlgML_file.close() g_ET = ET.parse("tmp.graphml") os.remove("tmp.graphml") return g_ET def toXml(self): return self.getGraph("xml") def getGraph(self, graphFormat): # warning!! importing as pure TGF will mean edge id's will # be lost. This will result in errors on the Gralog side. line = "getGraph#"+str(self.id).rstrip() + "#" + graphFormat.rstrip() print(line.rstrip()) i = 0 sys.stdout.flush() line = sys.stdin.readline() graphString = "" if graphFormat.lower() == "tgf" or graphFormat.lower() == "gtgf": tgf = graphFormat.lower() == "tgf" multiline = False first = False if line[0] == line[1] == '$': multiline = True if tgf: first = True line = sys.stdin.readline() hashtagSeen = False if not multiline: return graphString while line[0] != '$': # gPrint("line: " + line +" and line[0]: " + line[0] + " and line[0]!='$': " + str(line[0] != '$')) graphString += line if line[0] == '#': hashtagSeen = True else: if not first: if hashtagSeen: if tgf: self.edgifyTGFCommand(line) else: self.edgifyGTGFCommand(line) else: if tgf: self.vertexifyTGFCommand(line) else: self.vertexifyGTGFCommand(line) line = sys.stdin.readline() i += 1 first = False return graphString if graphFormat.lower() == "xml": return line def getAllVertices(self): # return: list of Vertex objects with id line = "getAllVertices#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vertexIdStringList = (sys.stdin.readline()).split("#") vertexList = [] for vertexIdString in vertexIdStringList: if representsInt(vertexIdString): v = self.getVertexOrNew(vertexIdString) vertexList.append(v) return vertexList def getVertices(self): return(self.getAllVertices()) def getAllEdges(self): # return: list of fully sourced Edge objects with fully sourced endpoint Vertices line = "getAllEdges#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] if len(endpointList) == 1 and endpointList[-1] == "\n": endpointList = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getEdges(self): return(self.getAllEdges()) # start: best for private use! def getNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getNeighbours#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() neighbourIdStringList = (sys.stdin.readline()).split("#") neighboursList = [] for neighbourIdString in neighbourIdStringList: if representsInt(neighbourIdString): v = self.getVertexOrNew(neighbourIdString) neighboursList.append(v) return neighboursList def getOutgoingNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getOutgoingNeighbours#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() outgoingNeighbourIdStringList = (sys.stdin.readline()).split("#") outgoingNeighboursList = [] for outgoingNeighbourIdString in outgoingNeighbourIdStringList: if representsInt(outgoingNeighbourIdString): v = self.getVertexOrNew(outgoingNeighbourIdString) outgoingNeighboursList.append(v) return outgoingNeighboursList def getIncomingNeighbours(self, vertex): # return: list of Vertex objects with id vertex = vertexId(vertex) line = "getIncomingNeighbours#"+str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() incomingNeighbourIdStringList = (sys.stdin.readline()).split("#") incomingNeighboursList = [] for incomingNeighbourIdString in incomingNeighbourIdStringList: if representsInt(incomingNeighbourIdString): v = self.getVertexOrNew(incomingNeighbourIdString) incomingNeighboursList.append(v) return incomingNeighboursList def getIncidentEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getIncidentEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getAdjacentEdges(self, edge): # return: list of Edge objects with id's only line = "getAdjacentEdges#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getOutgoingEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getOutgoingEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getIncomingEdges(self, vertex): # return: list of Edge objects with id's only vertex = vertexId(vertex) line = "getIncomingEdges#" + str(self.id).rstrip() + "#" + str(vertex).rstrip() print(line.rstrip()) sys.stdout.flush() endpointList = sys.stdin.readline() endpointList = endpointList.split("#") edges = [] for i in range(len(endpointList)): term = endpointList[i].rstrip() term = term[1:-1] e = self.termToEdge(term) if e != None: edges.append(e) return edges def getEdgeWeight(self, edge): return self.getEdgeProperty(edge, "weight") def getEdgeLabel(self, edge): return self.getEdgeProperty(edge, "label") def getEdgeProperty(self, edge, prop): # internally: fill edge property dictionary # return: String representing queried property line = "getEdgeProperty#"+str(self.id).rstrip() + "#" line = line + edgeSplitter(edge) line = line + "#" + prop.rstrip().lower() print(line.rstrip()) sys.stdout.flush() edgeTuple = sys.stdin.readline().rstrip() edge.sourceProperties(edgeTuple) return edge.getProperty(prop) def getVertexProperty(self, vertex, prop): # internally: fill edge property dictionary # return: String representing queried property vid = vertexId(vertex) line = "getVertexProperty#"+str(self.id).rstrip() + "#" line = line + vid line = line + "#" + prop.rstrip().lower() print(line.rstrip()) sys.stdout.flush() vertexTuple = sys.stdin.readline().rstrip() vertex.sourceProperties(vertexTuple) return vertex.getProperty(prop) # end: best use privately! def requestVertex(self): line = "requestVertex#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() vertex = self.getVertexOrNew(vid) return vertex def requestRandomVertex(self): line = "requestRandomVertex#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() vertex = self.getVertexOrNew(vid) return vertex def requestEdge(self): line = "requestEdge#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() vid = sys.stdin.readline().rstrip() edge = self.getEdgeOrNew(vid) return edge def requestRandomEdge(self): line = "requestRandomEdge#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() eid = sys.stdin.readline().rstrip() edge = self.getEdgeOrNew(eid) return edge def requestInteger(self): line = "requestInteger#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() i = sys.stdin.readline().rstrip() return int(i) def requestFloat(self): line = "requestFloat#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() d = sys.stdin.readline().rstrip() return float(d) def requestString(self): line = "requestString#"+str(self.id).rstrip() print(line.rstrip()) sys.stdout.flush() st = sys.stdin.readline().rstrip() return str(st) # runtime changer functions def pauseUntilSpacePressed(self, *args): line = "pauseUntilSpacePressed" rank = None try: rank = int(args[0]) except: pass if len(args) > 0 and rank != None: rank = int(args[0]) args = args[1:] argString = "" if rank != None: argString += "#"+str(rank).rstrip() for key in sorted(self.variablesToTrack.keys()): term = "#("+str(key).rstrip()+"=" + \ str(self.variablesToTrack[key]).rstrip()+")" argString = argString + term.rstrip() for x in args: if len(x) != 2: argString = "#(syntax=pauseUntilSpacePressed((key, val)))" break if (type(x) == list): for each in x: term = "#("+"arrayyyy"+str(each[0])+"="+str(each[1])+")" argString = argString + term else: term = "#("+str(x[0])+"="+str(x[1])+")" argString = argString + term.rstrip() line = line + argString print(line) sys.stdout.flush() toSkip = sys.stdin.readline() def track(self, name, var): # ideally, something like this: self.variablesToTrack[name] = var # if this is a pointer, it will work # if it is an int or str, or some other non-reference type, it will not def unTrack(self, name): del self.variablesToTrack[name] def sendMessage(self, toSend): print(toSend) sys.stdout.flush() def message(self, message): print("message#"+str(self.id).rstrip() + "#"+str(message).rstrip()) sys.stdout.flush() def sendErrorToGralog(self, toSend): print("error#"+str(self.id).rstrip() + "#"+str(toSend).rstrip()) sys.stdout.flush() exit() def mistakeLine(self): print("wubbadubdub 3 men in a tub") sys.stdout.flush() sys.stdin.readline() def pause(self, *args): self.pauseUntilSpacePressed(*args) # end runtime changer functions def __str__(self): vertices = [str(v) for v in self.id_to_vertex] vertices.sort() edges = [str(e) for e in self.getEdges()] edges.sort() return "VERTICES: " + " ".join(vertices) + "\nEDGES: " + " ".join(edges) def gPrint(message): if not message: # empty: print nothing except the new line (hacked with \t; <space> doesn't work) print("gPrint#-1#" + "\t") sys.stdout.flush() else: message = str(message) lines = message.split('\n') for line in lines: print("gPrint#-1#" + line) sys.stdout.flush() def representsInt(s): try: int(s) return True except ValueError: return False
en
0.239242
#!/usr/bin/env python3 #-1#" + "netwrokx not installed for " + sys.executable) #-1#" + "igraph not installed for " + sys.executable) # debugging = False # what if i want to get a vertex? should i also get all its neighbours? how about incident edges? This is all v aufw\"andig and leads to the paradigm by which we just store the grpah in python??? # private methods #if -2, then imported without id like in TGF # don't use!! # public methods # edge as defined by start, end nodes # edge is given by id #edge has type Edge # perform analysis of graph # we want a new graph # helper functions #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" # end helper functions # Graph Manipulating Functions # return: Vertex object with id #" + str(self.id).rstrip() #" + str(self.id).rstrip() + "#" + str(v)) # return: Edge object with id only #"+str(self.id).rstrip() + "#" + str(sourceVertex).rstrip() + \ # it's possible that the edge cannot be added (e.g., a new selfloop) #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" # creates a random Erdos-Reny graph with n id_to_vertex and edge probability p # end manilupative functions # setter functions # begin: best for private use! #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" # print("colorhex: " + str(colorHex)) #"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" #" + str(self.id).rstrip()+"#" + str(vertexId(vertex)).rstrip() #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(newDimension).rstrip()+"#" + dimension.rstrip() #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + str(shape).rstrip() #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #"+str(self.id).rstrip() + "#" #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() + "#" + label # end: best for private use! #"+str(self.id).rstrip() + "#" + graphFormat.rstrip()+"#" # TODO: implement this # end setter functions # getter functions # warning!! importing as pure TGF will mean edge id's will # be lost. This will result in errors on the Gralog side. #"+str(self.id).rstrip() + "#" + graphFormat.rstrip() # gPrint("line: " + line +" and line[0]: " + line[0] + " and line[0]!='$': " + str(line[0] != '$')) # return: list of Vertex objects with id #"+str(self.id).rstrip() # return: list of fully sourced Edge objects with fully sourced endpoint Vertices #"+str(self.id).rstrip() # start: best for private use! # return: list of Vertex objects with id #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() # return: list of Vertex objects with id #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() # return: list of Vertex objects with id #"+str(self.id).rstrip() + "#" + str(vertex).rstrip() # return: list of Edge objects with id's only #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() # return: list of Edge objects with id's only #"+str(self.id).rstrip() + "#" # return: list of Edge objects with id's only #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() # return: list of Edge objects with id's only #" + str(self.id).rstrip() + "#" + str(vertex).rstrip() # internally: fill edge property dictionary # return: String representing queried property #"+str(self.id).rstrip() + "#" # internally: fill edge property dictionary # return: String representing queried property #"+str(self.id).rstrip() + "#" # end: best use privately! #"+str(self.id).rstrip() #"+str(self.id).rstrip() #"+str(self.id).rstrip() #"+str(self.id).rstrip() #"+str(self.id).rstrip() #"+str(self.id).rstrip() #"+str(self.id).rstrip() # runtime changer functions # ideally, something like this: # if this is a pointer, it will work # if it is an int or str, or some other non-reference type, it will not #"+str(self.id).rstrip() + "#"+str(message).rstrip()) #"+str(self.id).rstrip() + "#"+str(toSend).rstrip()) # end runtime changer functions # empty: print nothing except the new line (hacked with \t; <space> doesn't work) #-1#" + "\t") #-1#" + line)
2.135334
2
influxdb/tests/server_tests/base.py
ocworld/influxdb-python
2
8006
<gh_stars>1-10 # -*- coding: utf-8 -*- """Define the base module for server test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys from influxdb.tests import using_pypy from influxdb.tests.server_tests.influxdb_instance import InfluxDbInstance from influxdb.client import InfluxDBClient if not using_pypy: from influxdb.dataframe_client import DataFrameClient def _setup_influxdb_server(inst): inst.influxd_inst = InfluxDbInstance( inst.influxdb_template_conf, udp_enabled=getattr(inst, 'influxdb_udp_enabled', False), ) inst.cli = InfluxDBClient('localhost', inst.influxd_inst.http_port, 'root', '', database='db') if not using_pypy: inst.cliDF = DataFrameClient('localhost', inst.influxd_inst.http_port, 'root', '', database='db') def _teardown_influxdb_server(inst): remove_tree = sys.exc_info() == (None, None, None) inst.influxd_inst.close(remove_tree=remove_tree) class SingleTestCaseWithServerMixin(object): """Define the single testcase with server mixin. A mixin for unittest.TestCase to start an influxdb server instance in a temporary directory **for each test function/case** """ # 'influxdb_template_conf' attribute must be set # on the TestCase class or instance. @classmethod def setUp(cls): """Set up an instance of the SingleTestCaseWithServerMixin.""" _setup_influxdb_server(cls) @classmethod def tearDown(cls): """Tear down an instance of the SingleTestCaseWithServerMixin.""" _teardown_influxdb_server(cls) class ManyTestCasesWithServerMixin(object): """Define the many testcase with server mixin. Same as the SingleTestCaseWithServerMixin but this module creates a single instance for the whole class. Also pre-creates a fresh database: 'db'. """ # 'influxdb_template_conf' attribute must be set on the class itself ! @classmethod def setUpClass(cls): """Set up an instance of the ManyTestCasesWithServerMixin.""" _setup_influxdb_server(cls) def setUp(self): """Set up an instance of the ManyTestCasesWithServerMixin.""" self.cli.create_database('db') @classmethod def tearDownClass(cls): """Deconstruct an instance of ManyTestCasesWithServerMixin.""" _teardown_influxdb_server(cls) def tearDown(self): """Deconstruct an instance of ManyTestCasesWithServerMixin.""" self.cli.drop_database('db')
# -*- coding: utf-8 -*- """Define the base module for server test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys from influxdb.tests import using_pypy from influxdb.tests.server_tests.influxdb_instance import InfluxDbInstance from influxdb.client import InfluxDBClient if not using_pypy: from influxdb.dataframe_client import DataFrameClient def _setup_influxdb_server(inst): inst.influxd_inst = InfluxDbInstance( inst.influxdb_template_conf, udp_enabled=getattr(inst, 'influxdb_udp_enabled', False), ) inst.cli = InfluxDBClient('localhost', inst.influxd_inst.http_port, 'root', '', database='db') if not using_pypy: inst.cliDF = DataFrameClient('localhost', inst.influxd_inst.http_port, 'root', '', database='db') def _teardown_influxdb_server(inst): remove_tree = sys.exc_info() == (None, None, None) inst.influxd_inst.close(remove_tree=remove_tree) class SingleTestCaseWithServerMixin(object): """Define the single testcase with server mixin. A mixin for unittest.TestCase to start an influxdb server instance in a temporary directory **for each test function/case** """ # 'influxdb_template_conf' attribute must be set # on the TestCase class or instance. @classmethod def setUp(cls): """Set up an instance of the SingleTestCaseWithServerMixin.""" _setup_influxdb_server(cls) @classmethod def tearDown(cls): """Tear down an instance of the SingleTestCaseWithServerMixin.""" _teardown_influxdb_server(cls) class ManyTestCasesWithServerMixin(object): """Define the many testcase with server mixin. Same as the SingleTestCaseWithServerMixin but this module creates a single instance for the whole class. Also pre-creates a fresh database: 'db'. """ # 'influxdb_template_conf' attribute must be set on the class itself ! @classmethod def setUpClass(cls): """Set up an instance of the ManyTestCasesWithServerMixin.""" _setup_influxdb_server(cls) def setUp(self): """Set up an instance of the ManyTestCasesWithServerMixin.""" self.cli.create_database('db') @classmethod def tearDownClass(cls): """Deconstruct an instance of ManyTestCasesWithServerMixin.""" _teardown_influxdb_server(cls) def tearDown(self): """Deconstruct an instance of ManyTestCasesWithServerMixin.""" self.cli.drop_database('db')
en
0.620886
# -*- coding: utf-8 -*- Define the base module for server test. Define the single testcase with server mixin. A mixin for unittest.TestCase to start an influxdb server instance in a temporary directory **for each test function/case** # 'influxdb_template_conf' attribute must be set # on the TestCase class or instance. Set up an instance of the SingleTestCaseWithServerMixin. Tear down an instance of the SingleTestCaseWithServerMixin. Define the many testcase with server mixin. Same as the SingleTestCaseWithServerMixin but this module creates a single instance for the whole class. Also pre-creates a fresh database: 'db'. # 'influxdb_template_conf' attribute must be set on the class itself ! Set up an instance of the ManyTestCasesWithServerMixin. Set up an instance of the ManyTestCasesWithServerMixin. Deconstruct an instance of ManyTestCasesWithServerMixin. Deconstruct an instance of ManyTestCasesWithServerMixin.
2.071552
2
genemail/testing.py
cadithealth/genemail
5
8007
<reponame>cadithealth/genemail<filename>genemail/testing.py # -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # file: $Id$ # auth: <NAME> <<EMAIL>> # date: 2013/10/21 # copy: (C) Copyright 2013 Cadit Health Inc., All Rights Reserved. #------------------------------------------------------------------------------ # todo: this could be smarter... for example, it could: # - detect when references resolve to the same content, but # by different Content-IDs # - detect when multipart sections could collapse to the same # semantic structure from __future__ import absolute_import import unittest, email from .util import smtpHeaderFormat #------------------------------------------------------------------------------ def canonicalHeaders(message, ignore=None): ''' Returns a canonical string representation of the `message` headers, with the following changes made: * The MIME boundary specified in the "Content-Type" header, if specified, removed. * Any headers listed in `ignore` are removed. :Parameters: ignore : list(str), optional, default: ['Content-Transfer-Encoding'] List of headers that should not be included in the canonical form. ''' if ignore is None: ignore = ['Content-Transfer-Encoding'] ignore = [key.lower() for key in ignore] hdrs = {key.lower(): '; '.join(sorted(message.get_all(key))) for key in message.keys() if key.lower() not in ignore} hdrs['content-type'] = '; '.join(['='.join(filter(None, pair)) for pair in message.get_params() if pair[0].lower() != 'boundary']) return '\n'.join([ smtpHeaderFormat(key) + ': ' + hdrs[key] for key in sorted(hdrs.keys())]) + '\n' #------------------------------------------------------------------------------ def canonicalStructure(message): ret = message.get_content_type() + '\n' if not message.is_multipart(): return ret msgs = message.get_payload() for idx, msg in enumerate(msgs): last = idx + 1 >= len(msgs) indent = '\n|-- ' if not last else '\n ' ret += '|-- ' if not last else '`-- ' ret += indent.join(canonicalStructure(msg)[:-1].split('\n')) + '\n' return ret #------------------------------------------------------------------------------ def makemsg(msg, submsg): if msg is None: return submsg return msg + ' (' + submsg + ')' #------------------------------------------------------------------------------ class EmailTestMixin(object): mime_cmp_factories = { 'text/html' : lambda self, ct: self.try_assertXmlEqual, 'text/xml' : lambda self, ct: self.try_assertXmlEqual, 'text/*' : lambda self, ct: self.assertMultiLineEqual, '*/*' : lambda self, ct: self.assertEqual, } #---------------------------------------------------------------------------- def registerMimeComparator(self, mimetype, comparator): def factory(self, ct): return comparator self.mime_cmp_factories = dict(EmailTestMixin.mime_cmp_factories) self.mime_cmp_factories[mimetype] = factory #---------------------------------------------------------------------------- def _parseEmail(self, eml): return email.message_from_string(eml) #---------------------------------------------------------------------------- def assertEmailHeadersEqual(self, eml1, eml2, msg=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailHeadersEqual(eml1, eml2, msg=msg) #---------------------------------------------------------------------------- def assertNotEmailHeadersEqual(self, eml1, eml2, msg=None): try: self.assertEmailHeadersEqual(eml1, eml2, msg=msg) self.fail(msg or 'email headers %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailStructureEqual(self, eml1, eml2, msg=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailStructureEqual(eml1, eml2, msg=msg) #---------------------------------------------------------------------------- def assertNotEmailStructureEqual(self, eml1, eml2, msg=None): try: self.assertEmailStructureEqual(eml1, eml2, msg=msg) self.fail(msg or 'email structure %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailContentEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailContentEqual(eml1, eml2, msg=msg, mcf=mime_cmp_factories) #---------------------------------------------------------------------------- def assertNotEmailContentEqual(self, eml1, eml2, msg=None): try: self.assertEmailContentEqual(eml1, eml2, msg=msg) self.fail(msg or 'email content %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailHeadersEqual(eml1, eml2, msg=msg) self._assertEmailStructureEqual(eml1, eml2, msg=msg) self._assertEmailContentEqual(eml1, eml2, msg=msg, mcf=mime_cmp_factories) #---------------------------------------------------------------------------- def assertNotEmailEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): try: self.assertEmailEqual(eml1, eml2, msg=msg, mime_cmp_factories=mime_cmp_factories) self.fail(msg or 'email %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def _assertEmailHeadersEqual(self, msg1, msg2, msg=None): hdr1 = 'EMAIL HEADERS:\n' + canonicalHeaders(msg1) hdr2 = 'EMAIL HEADERS:\n' + canonicalHeaders(msg2) self.assertMultiLineEqual(hdr1, hdr2, msg=msg) #---------------------------------------------------------------------------- def _assertEmailStructureEqual(self, msg1, msg2, msg=None): str1 = 'EMAIL STRUCTURE:\n' + canonicalStructure(msg1) str2 = 'EMAIL STRUCTURE:\n' + canonicalStructure(msg2) self.assertMultiLineEqual(str1, str2, msg=msg) #---------------------------------------------------------------------------- def _assertEmailContentEqual(self, msg1, msg2, msg=None, mcf=None, context=None): if context is None: context = 'component root' self.assertEqual( msg1.is_multipart(), msg2.is_multipart(), msg=makemsg(msg, context + ' is not multipart similar')) self.assertEqual( msg1.get_content_type(), msg2.get_content_type(), msg=makemsg(msg, context + ' has content-type mismatch')) if context == 'component root': context = 'component ' + msg1.get_content_type() if not msg1.is_multipart(): return self._assertEmailPayloadEqual( msg1, msg2, msg=msg, mcf=mcf, context=context) msgs1 = msg1.get_payload() msgs2 = msg2.get_payload() self.assertEqual( len(msgs1), len(msgs2), msg=makemsg(msg, context + ' has sub-message count mismatch')) for idx, submsg in enumerate(msgs1): sctxt = context + '[' + str(idx) + '] > ' + submsg.get_content_type() self._assertEmailContentEqual( submsg, msgs2[idx], msg=msg, mcf=mcf, context=sctxt) #---------------------------------------------------------------------------- def _assertEmailPayloadEqual(self, msg1, msg2, msg=None, mcf=None, context='message'): # paranoia... self.assertFalse(msg1.is_multipart() or msg2.is_multipart()) self.assertEqual(msg1.get_content_type(), msg2.get_content_type()) # /paranoia... dat1 = msg1.get_payload(decode=True) dat2 = msg2.get_payload(decode=True) def getcmp(msg, mcf): ret = mcf.get(msg.get_content_type()) if ret is None: ret = mcf.get(msg.get_content_maintype() + '/*') if ret is None: ret = mcf.get('*/*') return ret pcmp = None if mcf is not None: pcmp = getcmp(msg1, mcf) if pcmp is None: pcmp = getcmp(msg1, self.mime_cmp_factories) self.assertIsNotNone( pcmp, 'no comparator for mime-type "%s"' % (msg1.get_content_type(),)) pcmp = pcmp(self, msg1.get_content_type()) try: pcmp(dat1, dat2) except AssertionError as err: raise AssertionError( makemsg(msg, context + ' has different payload') + '; ' + err.message) #---------------------------------------------------------------------------- def try_assertXmlEqual(self, dat1, dat2, msg=None): if hasattr(self, 'assertXmlEqual'): return self.assertXmlEqual(dat1, dat2) return self.assertMultiLineEqual(dat1, dat2) #------------------------------------------------------------------------------ # end of $Id$ #------------------------------------------------------------------------------
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # file: $Id$ # auth: <NAME> <<EMAIL>> # date: 2013/10/21 # copy: (C) Copyright 2013 Cadit Health Inc., All Rights Reserved. #------------------------------------------------------------------------------ # todo: this could be smarter... for example, it could: # - detect when references resolve to the same content, but # by different Content-IDs # - detect when multipart sections could collapse to the same # semantic structure from __future__ import absolute_import import unittest, email from .util import smtpHeaderFormat #------------------------------------------------------------------------------ def canonicalHeaders(message, ignore=None): ''' Returns a canonical string representation of the `message` headers, with the following changes made: * The MIME boundary specified in the "Content-Type" header, if specified, removed. * Any headers listed in `ignore` are removed. :Parameters: ignore : list(str), optional, default: ['Content-Transfer-Encoding'] List of headers that should not be included in the canonical form. ''' if ignore is None: ignore = ['Content-Transfer-Encoding'] ignore = [key.lower() for key in ignore] hdrs = {key.lower(): '; '.join(sorted(message.get_all(key))) for key in message.keys() if key.lower() not in ignore} hdrs['content-type'] = '; '.join(['='.join(filter(None, pair)) for pair in message.get_params() if pair[0].lower() != 'boundary']) return '\n'.join([ smtpHeaderFormat(key) + ': ' + hdrs[key] for key in sorted(hdrs.keys())]) + '\n' #------------------------------------------------------------------------------ def canonicalStructure(message): ret = message.get_content_type() + '\n' if not message.is_multipart(): return ret msgs = message.get_payload() for idx, msg in enumerate(msgs): last = idx + 1 >= len(msgs) indent = '\n|-- ' if not last else '\n ' ret += '|-- ' if not last else '`-- ' ret += indent.join(canonicalStructure(msg)[:-1].split('\n')) + '\n' return ret #------------------------------------------------------------------------------ def makemsg(msg, submsg): if msg is None: return submsg return msg + ' (' + submsg + ')' #------------------------------------------------------------------------------ class EmailTestMixin(object): mime_cmp_factories = { 'text/html' : lambda self, ct: self.try_assertXmlEqual, 'text/xml' : lambda self, ct: self.try_assertXmlEqual, 'text/*' : lambda self, ct: self.assertMultiLineEqual, '*/*' : lambda self, ct: self.assertEqual, } #---------------------------------------------------------------------------- def registerMimeComparator(self, mimetype, comparator): def factory(self, ct): return comparator self.mime_cmp_factories = dict(EmailTestMixin.mime_cmp_factories) self.mime_cmp_factories[mimetype] = factory #---------------------------------------------------------------------------- def _parseEmail(self, eml): return email.message_from_string(eml) #---------------------------------------------------------------------------- def assertEmailHeadersEqual(self, eml1, eml2, msg=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailHeadersEqual(eml1, eml2, msg=msg) #---------------------------------------------------------------------------- def assertNotEmailHeadersEqual(self, eml1, eml2, msg=None): try: self.assertEmailHeadersEqual(eml1, eml2, msg=msg) self.fail(msg or 'email headers %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailStructureEqual(self, eml1, eml2, msg=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailStructureEqual(eml1, eml2, msg=msg) #---------------------------------------------------------------------------- def assertNotEmailStructureEqual(self, eml1, eml2, msg=None): try: self.assertEmailStructureEqual(eml1, eml2, msg=msg) self.fail(msg or 'email structure %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailContentEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailContentEqual(eml1, eml2, msg=msg, mcf=mime_cmp_factories) #---------------------------------------------------------------------------- def assertNotEmailContentEqual(self, eml1, eml2, msg=None): try: self.assertEmailContentEqual(eml1, eml2, msg=msg) self.fail(msg or 'email content %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def assertEmailEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): eml1 = self._parseEmail(eml1) eml2 = self._parseEmail(eml2) self._assertEmailHeadersEqual(eml1, eml2, msg=msg) self._assertEmailStructureEqual(eml1, eml2, msg=msg) self._assertEmailContentEqual(eml1, eml2, msg=msg, mcf=mime_cmp_factories) #---------------------------------------------------------------------------- def assertNotEmailEqual(self, eml1, eml2, msg=None, mime_cmp_factories=None): try: self.assertEmailEqual(eml1, eml2, msg=msg, mime_cmp_factories=mime_cmp_factories) self.fail(msg or 'email %r == %r' % (eml1, eml2)) except AssertionError: pass #---------------------------------------------------------------------------- def _assertEmailHeadersEqual(self, msg1, msg2, msg=None): hdr1 = 'EMAIL HEADERS:\n' + canonicalHeaders(msg1) hdr2 = 'EMAIL HEADERS:\n' + canonicalHeaders(msg2) self.assertMultiLineEqual(hdr1, hdr2, msg=msg) #---------------------------------------------------------------------------- def _assertEmailStructureEqual(self, msg1, msg2, msg=None): str1 = 'EMAIL STRUCTURE:\n' + canonicalStructure(msg1) str2 = 'EMAIL STRUCTURE:\n' + canonicalStructure(msg2) self.assertMultiLineEqual(str1, str2, msg=msg) #---------------------------------------------------------------------------- def _assertEmailContentEqual(self, msg1, msg2, msg=None, mcf=None, context=None): if context is None: context = 'component root' self.assertEqual( msg1.is_multipart(), msg2.is_multipart(), msg=makemsg(msg, context + ' is not multipart similar')) self.assertEqual( msg1.get_content_type(), msg2.get_content_type(), msg=makemsg(msg, context + ' has content-type mismatch')) if context == 'component root': context = 'component ' + msg1.get_content_type() if not msg1.is_multipart(): return self._assertEmailPayloadEqual( msg1, msg2, msg=msg, mcf=mcf, context=context) msgs1 = msg1.get_payload() msgs2 = msg2.get_payload() self.assertEqual( len(msgs1), len(msgs2), msg=makemsg(msg, context + ' has sub-message count mismatch')) for idx, submsg in enumerate(msgs1): sctxt = context + '[' + str(idx) + '] > ' + submsg.get_content_type() self._assertEmailContentEqual( submsg, msgs2[idx], msg=msg, mcf=mcf, context=sctxt) #---------------------------------------------------------------------------- def _assertEmailPayloadEqual(self, msg1, msg2, msg=None, mcf=None, context='message'): # paranoia... self.assertFalse(msg1.is_multipart() or msg2.is_multipart()) self.assertEqual(msg1.get_content_type(), msg2.get_content_type()) # /paranoia... dat1 = msg1.get_payload(decode=True) dat2 = msg2.get_payload(decode=True) def getcmp(msg, mcf): ret = mcf.get(msg.get_content_type()) if ret is None: ret = mcf.get(msg.get_content_maintype() + '/*') if ret is None: ret = mcf.get('*/*') return ret pcmp = None if mcf is not None: pcmp = getcmp(msg1, mcf) if pcmp is None: pcmp = getcmp(msg1, self.mime_cmp_factories) self.assertIsNotNone( pcmp, 'no comparator for mime-type "%s"' % (msg1.get_content_type(),)) pcmp = pcmp(self, msg1.get_content_type()) try: pcmp(dat1, dat2) except AssertionError as err: raise AssertionError( makemsg(msg, context + ' has different payload') + '; ' + err.message) #---------------------------------------------------------------------------- def try_assertXmlEqual(self, dat1, dat2, msg=None): if hasattr(self, 'assertXmlEqual'): return self.assertXmlEqual(dat1, dat2) return self.assertMultiLineEqual(dat1, dat2) #------------------------------------------------------------------------------ # end of $Id$ #------------------------------------------------------------------------------
en
0.159517
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # file: $Id$ # auth: <NAME> <<EMAIL>> # date: 2013/10/21 # copy: (C) Copyright 2013 Cadit Health Inc., All Rights Reserved. #------------------------------------------------------------------------------ # todo: this could be smarter... for example, it could: # - detect when references resolve to the same content, but # by different Content-IDs # - detect when multipart sections could collapse to the same # semantic structure #------------------------------------------------------------------------------ Returns a canonical string representation of the `message` headers, with the following changes made: * The MIME boundary specified in the "Content-Type" header, if specified, removed. * Any headers listed in `ignore` are removed. :Parameters: ignore : list(str), optional, default: ['Content-Transfer-Encoding'] List of headers that should not be included in the canonical form. #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- #---------------------------------------------------------------------------- # paranoia... # /paranoia... #---------------------------------------------------------------------------- #------------------------------------------------------------------------------ # end of $Id$ #------------------------------------------------------------------------------
2.013546
2
telemetry/telemetry/testing/internal/fake_gpu_info.py
tingshao/catapult
2,151
8008
<reponame>tingshao/catapult<filename>telemetry/telemetry/testing/internal/fake_gpu_info.py # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This dictionary of GPU information was captured from a run of # Telemetry on a Linux workstation with NVIDIA GPU. It helps test # telemetry.internal.platform's GPUInfo class, and specifically the # attributes it expects to find in the dictionary; if the code changes # in an incompatible way, tests using this fake GPU info will begin # failing, indicating this fake data must be updated. # # To regenerate it, import pdb in # telemetry/internal/platform/gpu_info.py and add a call to # pdb.set_trace() in GPUInfo.FromDict before the return statement. # Print the attrs dictionary in the debugger and copy/paste the result # on the right-hand side of this assignment. Then run: # # pyformat [this file name] | sed -e "s/'/'/g" # # and put the output into this file. FAKE_GPU_INFO = { 'feature_status': { 'flash_stage3d': 'enabled', 'gpu_compositing': 'enabled', 'video_decode': 'unavailable_software', 'flash_3d': 'enabled', 'webgl': 'enabled', 'video_encode': 'enabled', 'multiple_raster_threads': 'enabled_on', '2d_canvas': 'unavailable_software', 'rasterization': 'disabled_software', 'flash_stage3d_baseline': 'enabled' }, 'aux_attributes': { 'optimus': False, 'sandboxed': True, 'basic_info_state': 1, 'adapter_luid': 0.0, 'driver_version': '331.79', 'direct_rendering': True, 'amd_switchable': False, 'context_info_state': 1, 'process_crash_count': 0, 'pixel_shader_version': '4.40', 'gl_ws_version': '1.4', 'can_lose_context': False, 'driver_vendor': 'NVIDIA', 'max_msaa_samples': '64', 'software_rendering': False, 'gl_version': '4.4.0 NVIDIA 331.79', 'gl_ws_vendor': 'NVIDIA Corporation', 'vertex_shader_version': '4.40', 'initialization_time': 1.284043, 'gl_reset_notification_strategy': 33362, 'gl_ws_extensions': 'GLX_EXT_visual_info GLX_EXT_visual_rating GLX_SGIX_fbconfig ' 'GLX_SGIX_pbuffer GLX_SGI_video_sync GLX_SGI_swap_control ' 'GLX_EXT_swap_control GLX_EXT_swap_control_tear ' 'GLX_EXT_texture_from_pixmap GLX_EXT_buffer_age ' 'GLX_ARB_create_context GLX_ARB_create_context_profile ' 'GLX_EXT_create_context_es_profile ' 'GLX_EXT_create_context_es2_profile ' 'GLX_ARB_create_context_robustness GLX_ARB_multisample ' 'GLX_NV_float_buffer GLX_ARB_fbconfig_float GLX_NV_swap_group' ' GLX_EXT_framebuffer_sRGB GLX_NV_multisample_coverage ' 'GLX_NV_copy_image GLX_NV_video_capture ', 'gl_renderer': 'Quadro 600/PCIe/SSE2', 'driver_date': '', 'gl_vendor': 'NVIDIA Corporation', 'gl_extensions': 'GL_AMD_multi_draw_indirect GL_ARB_arrays_of_arrays ' 'GL_ARB_base_instance GL_ARB_blend_func_extended ' 'GL_ARB_buffer_storage GL_ARB_clear_buffer_object ' 'GL_ARB_clear_texture GL_ARB_color_buffer_float ' 'GL_ARB_compatibility GL_ARB_compressed_texture_pixel_storage' ' GL_ARB_conservative_depth GL_ARB_compute_shader ' 'GL_ARB_compute_variable_group_size GL_ARB_copy_buffer ' 'GL_ARB_copy_image GL_ARB_debug_output ' 'GL_ARB_depth_buffer_float GL_ARB_depth_clamp ' 'GL_ARB_depth_texture GL_ARB_draw_buffers ' 'GL_ARB_draw_buffers_blend GL_ARB_draw_indirect ' 'GL_ARB_draw_elements_base_vertex GL_ARB_draw_instanced ' 'GL_ARB_enhanced_layouts GL_ARB_ES2_compatibility ' 'GL_ARB_ES3_compatibility GL_ARB_explicit_attrib_location ' 'GL_ARB_explicit_uniform_location ' 'GL_ARB_fragment_coord_conventions ' 'GL_ARB_fragment_layer_viewport GL_ARB_fragment_program ' 'GL_ARB_fragment_program_shadow GL_ARB_fragment_shader ' 'GL_ARB_framebuffer_no_attachments GL_ARB_framebuffer_object ' 'GL_ARB_framebuffer_sRGB GL_ARB_geometry_shader4 ' 'GL_ARB_get_program_binary GL_ARB_gpu_shader5 ' 'GL_ARB_gpu_shader_fp64 GL_ARB_half_float_pixel ' 'GL_ARB_half_float_vertex GL_ARB_imaging ' 'GL_ARB_indirect_parameters GL_ARB_instanced_arrays ' 'GL_ARB_internalformat_query GL_ARB_internalformat_query2 ' 'GL_ARB_invalidate_subdata GL_ARB_map_buffer_alignment ' 'GL_ARB_map_buffer_range GL_ARB_multi_bind ' 'GL_ARB_multi_draw_indirect GL_ARB_multisample ' 'GL_ARB_multitexture GL_ARB_occlusion_query ' 'GL_ARB_occlusion_query2 GL_ARB_pixel_buffer_object ' 'GL_ARB_point_parameters GL_ARB_point_sprite ' 'GL_ARB_program_interface_query GL_ARB_provoking_vertex ' 'GL_ARB_robust_buffer_access_behavior GL_ARB_robustness ' 'GL_ARB_sample_shading GL_ARB_sampler_objects ' 'GL_ARB_seamless_cube_map GL_ARB_separate_shader_objects ' 'GL_ARB_shader_atomic_counters GL_ARB_shader_bit_encoding ' 'GL_ARB_shader_draw_parameters GL_ARB_shader_group_vote ' 'GL_ARB_shader_image_load_store GL_ARB_shader_image_size ' 'GL_ARB_shader_objects GL_ARB_shader_precision ' 'GL_ARB_query_buffer_object ' 'GL_ARB_shader_storage_buffer_object GL_ARB_shader_subroutine' ' GL_ARB_shader_texture_lod GL_ARB_shading_language_100 ' 'GL_ARB_shading_language_420pack ' 'GL_ARB_shading_language_include ' 'GL_ARB_shading_language_packing GL_ARB_shadow ' 'GL_ARB_stencil_texturing GL_ARB_sync ' 'GL_ARB_tessellation_shader GL_ARB_texture_border_clamp ' 'GL_ARB_texture_buffer_object ' 'GL_ARB_texture_buffer_object_rgb32 ' 'GL_ARB_texture_buffer_range GL_ARB_texture_compression ' 'GL_ARB_texture_compression_bptc ' 'GL_ARB_texture_compression_rgtc GL_ARB_texture_cube_map ' 'GL_ARB_texture_cube_map_array GL_ARB_texture_env_add ' 'GL_ARB_texture_env_combine GL_ARB_texture_env_crossbar ' 'GL_ARB_texture_env_dot3 GL_ARB_texture_float ' 'GL_ARB_texture_gather GL_ARB_texture_mirror_clamp_to_edge ' 'GL_ARB_texture_mirrored_repeat GL_ARB_texture_multisample ' 'GL_ARB_texture_non_power_of_two GL_ARB_texture_query_levels ' 'GL_ARB_texture_query_lod GL_ARB_texture_rectangle ' 'GL_ARB_texture_rg GL_ARB_texture_rgb10_a2ui ' 'GL_ARB_texture_stencil8 GL_ARB_texture_storage ' 'GL_ARB_texture_storage_multisample GL_ARB_texture_swizzle ' 'GL_ARB_texture_view GL_ARB_timer_query ' 'GL_ARB_transform_feedback2 GL_ARB_transform_feedback3 ' 'GL_ARB_transform_feedback_instanced GL_ARB_transpose_matrix ' 'GL_ARB_uniform_buffer_object GL_ARB_vertex_array_bgra ' 'GL_ARB_vertex_array_object GL_ARB_vertex_attrib_64bit ' 'GL_ARB_vertex_attrib_binding GL_ARB_vertex_buffer_object ' 'GL_ARB_vertex_program GL_ARB_vertex_shader ' 'GL_ARB_vertex_type_10f_11f_11f_rev ' 'GL_ARB_vertex_type_2_10_10_10_rev GL_ARB_viewport_array ' 'GL_ARB_window_pos GL_ATI_draw_buffers GL_ATI_texture_float ' 'GL_ATI_texture_mirror_once GL_S3_s3tc GL_EXT_texture_env_add' ' GL_EXT_abgr GL_EXT_bgra GL_EXT_bindable_uniform ' 'GL_EXT_blend_color GL_EXT_blend_equation_separate ' 'GL_EXT_blend_func_separate GL_EXT_blend_minmax ' 'GL_EXT_blend_subtract GL_EXT_compiled_vertex_array ' 'GL_EXT_Cg_shader GL_EXT_depth_bounds_test ' 'GL_EXT_direct_state_access GL_EXT_draw_buffers2 ' 'GL_EXT_draw_instanced GL_EXT_draw_range_elements ' 'GL_EXT_fog_coord GL_EXT_framebuffer_blit ' 'GL_EXT_framebuffer_multisample ' 'GL_EXTX_framebuffer_mixed_formats ' 'GL_EXT_framebuffer_multisample_blit_scaled ' 'GL_EXT_framebuffer_object GL_EXT_framebuffer_sRGB ' 'GL_EXT_geometry_shader4 GL_EXT_gpu_program_parameters ' 'GL_EXT_gpu_shader4 GL_EXT_multi_draw_arrays ' 'GL_EXT_packed_depth_stencil GL_EXT_packed_float ' 'GL_EXT_packed_pixels GL_EXT_pixel_buffer_object ' 'GL_EXT_point_parameters GL_EXT_provoking_vertex ' 'GL_EXT_rescale_normal GL_EXT_secondary_color ' 'GL_EXT_separate_shader_objects ' 'GL_EXT_separate_specular_color ' 'GL_EXT_shader_image_load_store GL_EXT_shadow_funcs ' 'GL_EXT_stencil_two_side GL_EXT_stencil_wrap GL_EXT_texture3D' ' GL_EXT_texture_array GL_EXT_texture_buffer_object ' 'GL_EXT_texture_compression_dxt1 ' 'GL_EXT_texture_compression_latc ' 'GL_EXT_texture_compression_rgtc ' 'GL_EXT_texture_compression_s3tc GL_EXT_texture_cube_map ' 'GL_EXT_texture_edge_clamp GL_EXT_texture_env_combine ' 'GL_EXT_texture_env_dot3 GL_EXT_texture_filter_anisotropic ' 'GL_EXT_texture_integer GL_EXT_texture_lod ' 'GL_EXT_texture_lod_bias GL_EXT_texture_mirror_clamp ' 'GL_EXT_texture_object GL_EXT_texture_shared_exponent ' 'GL_EXT_texture_sRGB GL_EXT_texture_sRGB_decode ' 'GL_EXT_texture_storage GL_EXT_texture_swizzle ' 'GL_EXT_timer_query GL_EXT_transform_feedback2 ' 'GL_EXT_vertex_array GL_EXT_vertex_array_bgra ' 'GL_EXT_vertex_attrib_64bit GL_EXT_x11_sync_object ' 'GL_EXT_import_sync_object GL_IBM_rasterpos_clip ' 'GL_IBM_texture_mirrored_repeat GL_KHR_debug ' 'GL_KTX_buffer_region GL_NV_bindless_multi_draw_indirect ' 'GL_NV_blend_equation_advanced GL_NV_blend_square ' 'GL_NV_compute_program5 GL_NV_conditional_render ' 'GL_NV_copy_depth_to_color GL_NV_copy_image ' 'GL_NV_depth_buffer_float GL_NV_depth_clamp ' 'GL_NV_draw_texture GL_NV_ES1_1_compatibility ' 'GL_NV_explicit_multisample GL_NV_fence GL_NV_float_buffer ' 'GL_NV_fog_distance GL_NV_fragment_program ' 'GL_NV_fragment_program_option GL_NV_fragment_program2 ' 'GL_NV_framebuffer_multisample_coverage ' 'GL_NV_geometry_shader4 GL_NV_gpu_program4 ' 'GL_NV_gpu_program4_1 GL_NV_gpu_program5 ' 'GL_NV_gpu_program5_mem_extended GL_NV_gpu_program_fp64 ' 'GL_NV_gpu_shader5 GL_NV_half_float GL_NV_light_max_exponent ' 'GL_NV_multisample_coverage GL_NV_multisample_filter_hint ' 'GL_NV_occlusion_query GL_NV_packed_depth_stencil ' 'GL_NV_parameter_buffer_object GL_NV_parameter_buffer_object2' ' GL_NV_path_rendering GL_NV_pixel_data_range ' 'GL_NV_point_sprite GL_NV_primitive_restart ' 'GL_NV_register_combiners GL_NV_register_combiners2 ' 'GL_NV_shader_atomic_counters GL_NV_shader_atomic_float ' 'GL_NV_shader_buffer_load GL_NV_shader_storage_buffer_object ' 'GL_ARB_sparse_texture GL_NV_texgen_reflection ' 'GL_NV_texture_barrier GL_NV_texture_compression_vtc ' 'GL_NV_texture_env_combine4 GL_NV_texture_expand_normal ' 'GL_NV_texture_multisample GL_NV_texture_rectangle ' 'GL_NV_texture_shader GL_NV_texture_shader2 ' 'GL_NV_texture_shader3 GL_NV_transform_feedback ' 'GL_NV_transform_feedback2 GL_NV_vdpau_interop ' 'GL_NV_vertex_array_range GL_NV_vertex_array_range2 ' 'GL_NV_vertex_attrib_integer_64bit ' 'GL_NV_vertex_buffer_unified_memory GL_NV_vertex_program ' 'GL_NV_vertex_program1_1 GL_NV_vertex_program2 ' 'GL_NV_vertex_program2_option GL_NV_vertex_program3 ' 'GL_NVX_conditional_render GL_NVX_gpu_memory_info ' 'GL_SGIS_generate_mipmap GL_SGIS_texture_lod ' 'GL_SGIX_depth_texture GL_SGIX_shadow GL_SUN_slice_accum ' }, 'devices': [ { 'device_string': '', 'vendor_id': 4318.0, 'device_id': 3576.0, 'vendor_string': '' }], 'driver_bug_workarounds': ['clear_uniforms_before_first_program_use', 'disable_gl_path_rendering', 'init_gl_position_in_vertex_shader', 'init_vertex_attributes', 'remove_pow_with_constant_exponent', 'scalarize_vec_and_mat_constructor_args', 'use_current_program_after_successful_link', 'use_virtualized_gl_contexts'] }
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This dictionary of GPU information was captured from a run of # Telemetry on a Linux workstation with NVIDIA GPU. It helps test # telemetry.internal.platform's GPUInfo class, and specifically the # attributes it expects to find in the dictionary; if the code changes # in an incompatible way, tests using this fake GPU info will begin # failing, indicating this fake data must be updated. # # To regenerate it, import pdb in # telemetry/internal/platform/gpu_info.py and add a call to # pdb.set_trace() in GPUInfo.FromDict before the return statement. # Print the attrs dictionary in the debugger and copy/paste the result # on the right-hand side of this assignment. Then run: # # pyformat [this file name] | sed -e "s/'/'/g" # # and put the output into this file. FAKE_GPU_INFO = { 'feature_status': { 'flash_stage3d': 'enabled', 'gpu_compositing': 'enabled', 'video_decode': 'unavailable_software', 'flash_3d': 'enabled', 'webgl': 'enabled', 'video_encode': 'enabled', 'multiple_raster_threads': 'enabled_on', '2d_canvas': 'unavailable_software', 'rasterization': 'disabled_software', 'flash_stage3d_baseline': 'enabled' }, 'aux_attributes': { 'optimus': False, 'sandboxed': True, 'basic_info_state': 1, 'adapter_luid': 0.0, 'driver_version': '331.79', 'direct_rendering': True, 'amd_switchable': False, 'context_info_state': 1, 'process_crash_count': 0, 'pixel_shader_version': '4.40', 'gl_ws_version': '1.4', 'can_lose_context': False, 'driver_vendor': 'NVIDIA', 'max_msaa_samples': '64', 'software_rendering': False, 'gl_version': '4.4.0 NVIDIA 331.79', 'gl_ws_vendor': 'NVIDIA Corporation', 'vertex_shader_version': '4.40', 'initialization_time': 1.284043, 'gl_reset_notification_strategy': 33362, 'gl_ws_extensions': 'GLX_EXT_visual_info GLX_EXT_visual_rating GLX_SGIX_fbconfig ' 'GLX_SGIX_pbuffer GLX_SGI_video_sync GLX_SGI_swap_control ' 'GLX_EXT_swap_control GLX_EXT_swap_control_tear ' 'GLX_EXT_texture_from_pixmap GLX_EXT_buffer_age ' 'GLX_ARB_create_context GLX_ARB_create_context_profile ' 'GLX_EXT_create_context_es_profile ' 'GLX_EXT_create_context_es2_profile ' 'GLX_ARB_create_context_robustness GLX_ARB_multisample ' 'GLX_NV_float_buffer GLX_ARB_fbconfig_float GLX_NV_swap_group' ' GLX_EXT_framebuffer_sRGB GLX_NV_multisample_coverage ' 'GLX_NV_copy_image GLX_NV_video_capture ', 'gl_renderer': 'Quadro 600/PCIe/SSE2', 'driver_date': '', 'gl_vendor': 'NVIDIA Corporation', 'gl_extensions': 'GL_AMD_multi_draw_indirect GL_ARB_arrays_of_arrays ' 'GL_ARB_base_instance GL_ARB_blend_func_extended ' 'GL_ARB_buffer_storage GL_ARB_clear_buffer_object ' 'GL_ARB_clear_texture GL_ARB_color_buffer_float ' 'GL_ARB_compatibility GL_ARB_compressed_texture_pixel_storage' ' GL_ARB_conservative_depth GL_ARB_compute_shader ' 'GL_ARB_compute_variable_group_size GL_ARB_copy_buffer ' 'GL_ARB_copy_image GL_ARB_debug_output ' 'GL_ARB_depth_buffer_float GL_ARB_depth_clamp ' 'GL_ARB_depth_texture GL_ARB_draw_buffers ' 'GL_ARB_draw_buffers_blend GL_ARB_draw_indirect ' 'GL_ARB_draw_elements_base_vertex GL_ARB_draw_instanced ' 'GL_ARB_enhanced_layouts GL_ARB_ES2_compatibility ' 'GL_ARB_ES3_compatibility GL_ARB_explicit_attrib_location ' 'GL_ARB_explicit_uniform_location ' 'GL_ARB_fragment_coord_conventions ' 'GL_ARB_fragment_layer_viewport GL_ARB_fragment_program ' 'GL_ARB_fragment_program_shadow GL_ARB_fragment_shader ' 'GL_ARB_framebuffer_no_attachments GL_ARB_framebuffer_object ' 'GL_ARB_framebuffer_sRGB GL_ARB_geometry_shader4 ' 'GL_ARB_get_program_binary GL_ARB_gpu_shader5 ' 'GL_ARB_gpu_shader_fp64 GL_ARB_half_float_pixel ' 'GL_ARB_half_float_vertex GL_ARB_imaging ' 'GL_ARB_indirect_parameters GL_ARB_instanced_arrays ' 'GL_ARB_internalformat_query GL_ARB_internalformat_query2 ' 'GL_ARB_invalidate_subdata GL_ARB_map_buffer_alignment ' 'GL_ARB_map_buffer_range GL_ARB_multi_bind ' 'GL_ARB_multi_draw_indirect GL_ARB_multisample ' 'GL_ARB_multitexture GL_ARB_occlusion_query ' 'GL_ARB_occlusion_query2 GL_ARB_pixel_buffer_object ' 'GL_ARB_point_parameters GL_ARB_point_sprite ' 'GL_ARB_program_interface_query GL_ARB_provoking_vertex ' 'GL_ARB_robust_buffer_access_behavior GL_ARB_robustness ' 'GL_ARB_sample_shading GL_ARB_sampler_objects ' 'GL_ARB_seamless_cube_map GL_ARB_separate_shader_objects ' 'GL_ARB_shader_atomic_counters GL_ARB_shader_bit_encoding ' 'GL_ARB_shader_draw_parameters GL_ARB_shader_group_vote ' 'GL_ARB_shader_image_load_store GL_ARB_shader_image_size ' 'GL_ARB_shader_objects GL_ARB_shader_precision ' 'GL_ARB_query_buffer_object ' 'GL_ARB_shader_storage_buffer_object GL_ARB_shader_subroutine' ' GL_ARB_shader_texture_lod GL_ARB_shading_language_100 ' 'GL_ARB_shading_language_420pack ' 'GL_ARB_shading_language_include ' 'GL_ARB_shading_language_packing GL_ARB_shadow ' 'GL_ARB_stencil_texturing GL_ARB_sync ' 'GL_ARB_tessellation_shader GL_ARB_texture_border_clamp ' 'GL_ARB_texture_buffer_object ' 'GL_ARB_texture_buffer_object_rgb32 ' 'GL_ARB_texture_buffer_range GL_ARB_texture_compression ' 'GL_ARB_texture_compression_bptc ' 'GL_ARB_texture_compression_rgtc GL_ARB_texture_cube_map ' 'GL_ARB_texture_cube_map_array GL_ARB_texture_env_add ' 'GL_ARB_texture_env_combine GL_ARB_texture_env_crossbar ' 'GL_ARB_texture_env_dot3 GL_ARB_texture_float ' 'GL_ARB_texture_gather GL_ARB_texture_mirror_clamp_to_edge ' 'GL_ARB_texture_mirrored_repeat GL_ARB_texture_multisample ' 'GL_ARB_texture_non_power_of_two GL_ARB_texture_query_levels ' 'GL_ARB_texture_query_lod GL_ARB_texture_rectangle ' 'GL_ARB_texture_rg GL_ARB_texture_rgb10_a2ui ' 'GL_ARB_texture_stencil8 GL_ARB_texture_storage ' 'GL_ARB_texture_storage_multisample GL_ARB_texture_swizzle ' 'GL_ARB_texture_view GL_ARB_timer_query ' 'GL_ARB_transform_feedback2 GL_ARB_transform_feedback3 ' 'GL_ARB_transform_feedback_instanced GL_ARB_transpose_matrix ' 'GL_ARB_uniform_buffer_object GL_ARB_vertex_array_bgra ' 'GL_ARB_vertex_array_object GL_ARB_vertex_attrib_64bit ' 'GL_ARB_vertex_attrib_binding GL_ARB_vertex_buffer_object ' 'GL_ARB_vertex_program GL_ARB_vertex_shader ' 'GL_ARB_vertex_type_10f_11f_11f_rev ' 'GL_ARB_vertex_type_2_10_10_10_rev GL_ARB_viewport_array ' 'GL_ARB_window_pos GL_ATI_draw_buffers GL_ATI_texture_float ' 'GL_ATI_texture_mirror_once GL_S3_s3tc GL_EXT_texture_env_add' ' GL_EXT_abgr GL_EXT_bgra GL_EXT_bindable_uniform ' 'GL_EXT_blend_color GL_EXT_blend_equation_separate ' 'GL_EXT_blend_func_separate GL_EXT_blend_minmax ' 'GL_EXT_blend_subtract GL_EXT_compiled_vertex_array ' 'GL_EXT_Cg_shader GL_EXT_depth_bounds_test ' 'GL_EXT_direct_state_access GL_EXT_draw_buffers2 ' 'GL_EXT_draw_instanced GL_EXT_draw_range_elements ' 'GL_EXT_fog_coord GL_EXT_framebuffer_blit ' 'GL_EXT_framebuffer_multisample ' 'GL_EXTX_framebuffer_mixed_formats ' 'GL_EXT_framebuffer_multisample_blit_scaled ' 'GL_EXT_framebuffer_object GL_EXT_framebuffer_sRGB ' 'GL_EXT_geometry_shader4 GL_EXT_gpu_program_parameters ' 'GL_EXT_gpu_shader4 GL_EXT_multi_draw_arrays ' 'GL_EXT_packed_depth_stencil GL_EXT_packed_float ' 'GL_EXT_packed_pixels GL_EXT_pixel_buffer_object ' 'GL_EXT_point_parameters GL_EXT_provoking_vertex ' 'GL_EXT_rescale_normal GL_EXT_secondary_color ' 'GL_EXT_separate_shader_objects ' 'GL_EXT_separate_specular_color ' 'GL_EXT_shader_image_load_store GL_EXT_shadow_funcs ' 'GL_EXT_stencil_two_side GL_EXT_stencil_wrap GL_EXT_texture3D' ' GL_EXT_texture_array GL_EXT_texture_buffer_object ' 'GL_EXT_texture_compression_dxt1 ' 'GL_EXT_texture_compression_latc ' 'GL_EXT_texture_compression_rgtc ' 'GL_EXT_texture_compression_s3tc GL_EXT_texture_cube_map ' 'GL_EXT_texture_edge_clamp GL_EXT_texture_env_combine ' 'GL_EXT_texture_env_dot3 GL_EXT_texture_filter_anisotropic ' 'GL_EXT_texture_integer GL_EXT_texture_lod ' 'GL_EXT_texture_lod_bias GL_EXT_texture_mirror_clamp ' 'GL_EXT_texture_object GL_EXT_texture_shared_exponent ' 'GL_EXT_texture_sRGB GL_EXT_texture_sRGB_decode ' 'GL_EXT_texture_storage GL_EXT_texture_swizzle ' 'GL_EXT_timer_query GL_EXT_transform_feedback2 ' 'GL_EXT_vertex_array GL_EXT_vertex_array_bgra ' 'GL_EXT_vertex_attrib_64bit GL_EXT_x11_sync_object ' 'GL_EXT_import_sync_object GL_IBM_rasterpos_clip ' 'GL_IBM_texture_mirrored_repeat GL_KHR_debug ' 'GL_KTX_buffer_region GL_NV_bindless_multi_draw_indirect ' 'GL_NV_blend_equation_advanced GL_NV_blend_square ' 'GL_NV_compute_program5 GL_NV_conditional_render ' 'GL_NV_copy_depth_to_color GL_NV_copy_image ' 'GL_NV_depth_buffer_float GL_NV_depth_clamp ' 'GL_NV_draw_texture GL_NV_ES1_1_compatibility ' 'GL_NV_explicit_multisample GL_NV_fence GL_NV_float_buffer ' 'GL_NV_fog_distance GL_NV_fragment_program ' 'GL_NV_fragment_program_option GL_NV_fragment_program2 ' 'GL_NV_framebuffer_multisample_coverage ' 'GL_NV_geometry_shader4 GL_NV_gpu_program4 ' 'GL_NV_gpu_program4_1 GL_NV_gpu_program5 ' 'GL_NV_gpu_program5_mem_extended GL_NV_gpu_program_fp64 ' 'GL_NV_gpu_shader5 GL_NV_half_float GL_NV_light_max_exponent ' 'GL_NV_multisample_coverage GL_NV_multisample_filter_hint ' 'GL_NV_occlusion_query GL_NV_packed_depth_stencil ' 'GL_NV_parameter_buffer_object GL_NV_parameter_buffer_object2' ' GL_NV_path_rendering GL_NV_pixel_data_range ' 'GL_NV_point_sprite GL_NV_primitive_restart ' 'GL_NV_register_combiners GL_NV_register_combiners2 ' 'GL_NV_shader_atomic_counters GL_NV_shader_atomic_float ' 'GL_NV_shader_buffer_load GL_NV_shader_storage_buffer_object ' 'GL_ARB_sparse_texture GL_NV_texgen_reflection ' 'GL_NV_texture_barrier GL_NV_texture_compression_vtc ' 'GL_NV_texture_env_combine4 GL_NV_texture_expand_normal ' 'GL_NV_texture_multisample GL_NV_texture_rectangle ' 'GL_NV_texture_shader GL_NV_texture_shader2 ' 'GL_NV_texture_shader3 GL_NV_transform_feedback ' 'GL_NV_transform_feedback2 GL_NV_vdpau_interop ' 'GL_NV_vertex_array_range GL_NV_vertex_array_range2 ' 'GL_NV_vertex_attrib_integer_64bit ' 'GL_NV_vertex_buffer_unified_memory GL_NV_vertex_program ' 'GL_NV_vertex_program1_1 GL_NV_vertex_program2 ' 'GL_NV_vertex_program2_option GL_NV_vertex_program3 ' 'GL_NVX_conditional_render GL_NVX_gpu_memory_info ' 'GL_SGIS_generate_mipmap GL_SGIS_texture_lod ' 'GL_SGIX_depth_texture GL_SGIX_shadow GL_SUN_slice_accum ' }, 'devices': [ { 'device_string': '', 'vendor_id': 4318.0, 'device_id': 3576.0, 'vendor_string': '' }], 'driver_bug_workarounds': ['clear_uniforms_before_first_program_use', 'disable_gl_path_rendering', 'init_gl_position_in_vertex_shader', 'init_vertex_attributes', 'remove_pow_with_constant_exponent', 'scalarize_vec_and_mat_constructor_args', 'use_current_program_after_successful_link', 'use_virtualized_gl_contexts'] }
en
0.809252
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This dictionary of GPU information was captured from a run of # Telemetry on a Linux workstation with NVIDIA GPU. It helps test # telemetry.internal.platform's GPUInfo class, and specifically the # attributes it expects to find in the dictionary; if the code changes # in an incompatible way, tests using this fake GPU info will begin # failing, indicating this fake data must be updated. # # To regenerate it, import pdb in # telemetry/internal/platform/gpu_info.py and add a call to # pdb.set_trace() in GPUInfo.FromDict before the return statement. # Print the attrs dictionary in the debugger and copy/paste the result # on the right-hand side of this assignment. Then run: # # pyformat [this file name] | sed -e "s/'/'/g" # # and put the output into this file.
1.883435
2
vm_setup/pmevo/measurement-server/PITE/register_file.py
qcjiang/pmevo-artifact
6
8009
<filename>vm_setup/pmevo/measurement-server/PITE/register_file.py #! /usr/bin/env python3 # vim: et:ts=4:sw=4:fenc=utf-8 from abc import ABC, abstractmethod from collections import defaultdict import re class RegisterFile(ABC): registers = NotImplemented def __init__(self): # for each register kind an index pointing to the next register to use self.reset_indices() def reset_indices(self): self.next_indices = defaultdict(lambda:0) def get_memory_base(self): return self.registers["MEM"][0]["64"] def get_div_register(self): return self.registers["DIV"][0]["64"] def get_clobber_list(self): res = [] for k, v in self.registers.items(): for regset in v: reg = regset["repr"] if reg is not None: res.append(reg) return res class X86_64_RegisterFile(RegisterFile): registers = { "G": # general purpose registers [ # {"64": "rax", "32": "eax", "repr": "rax"}, # {"64": "rcx", "32": "ecx", "repr": "rcx"}, # {"64": "rdx", "32": "edx", "repr": "rdx"}, {"64": "rbx", "32": "ebx", "repr": "rbx"}, # used by gcc # {"64": "rsp", "32": "esp", "repr": "rsp"}, # used by gcc # {"64": "rbp", "32": "ebp", "repr": "rbp"}, # used by gcc {"64": "rsi", "32": "esi", "repr": "rsi"}, # used for string instructions {"64": "rdi", "32": "edi", "repr": "rdi"}, # used for string instructions {"64": "r8", "32": "r8d", "repr": "r8"}, {"64": "r9", "32": "r9d", "repr": "r9"}, {"64": "r10", "32": "r10d", "repr": "r10"}, {"64": "r11", "32": "r11d", "repr": "r11"}, {"64": "r12", "32": "r12d", "repr": "r12"}, # {"64": "r13", "32": "r13d", "repr": "r13"}, # used as divisor register # {"64": "r14", "32": "r14d", "repr": "r14"}, # used as memory register # {"64": "r15", "32": "r15d", "repr": "r15"}, # used by program frame ], "V": # vector registers [ {"256": "ymm0", "128": "xmm0", "repr": "ymm0"}, {"256": "ymm1", "128": "xmm1", "repr": "ymm1"}, {"256": "ymm2", "128": "xmm2", "repr": "ymm2"}, {"256": "ymm3", "128": "xmm3", "repr": "ymm3"}, {"256": "ymm4", "128": "xmm4", "repr": "ymm4"}, {"256": "ymm5", "128": "xmm5", "repr": "ymm5"}, {"256": "ymm6", "128": "xmm6", "repr": "ymm6"}, {"256": "ymm7", "128": "xmm7", "repr": "ymm7"}, {"256": "ymm8", "128": "xmm8", "repr": "ymm8"}, {"256": "ymm9", "128": "xmm9", "repr": "ymm9"}, {"256": "ymm10", "128": "xmm10", "repr": "ymm10"}, {"256": "ymm11", "128": "xmm11", "repr": "ymm11"}, {"256": "ymm12", "128": "xmm12", "repr": "ymm12"}, {"256": "ymm13", "128": "xmm13", "repr": "ymm13"}, {"256": "ymm14", "128": "xmm14", "repr": "ymm14"}, {"256": "ymm15", "128": "xmm15", "repr": "ymm15"}, ], "DIV": # register for non-zero divisor [ {"64": "r13", "32": "r13d", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], "MEM": # base register for memory operands [ {"64": "r14", "32": "r14d", "repr": None} # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], } def __init__(self): super().__init__() class AArch64_RegisterFile(RegisterFile): registers = { "G": # general puprose registers [ # {"64": "x0", "32": "w0", "repr": "x0"}, # used for frame # {"64": "x1", "32": "w1", "repr": "x1"}, # used for frame {"64": "x2", "32": "w2", "repr": "x2"}, {"64": "x3", "32": "w3", "repr": "x3"}, {"64": "x4", "32": "w4", "repr": "x4"}, {"64": "x5", "32": "w5", "repr": "x5"}, {"64": "x6", "32": "w6", "repr": "x6"}, {"64": "x7", "32": "w7", "repr": "x7"}, {"64": "x8", "32": "w8", "repr": "x8"}, {"64": "x9", "32": "w9", "repr": "x9"}, {"64": "x10", "32": "w10", "repr": "x10"}, {"64": "x11", "32": "w11", "repr": "x11"}, {"64": "x12", "32": "w12", "repr": "x12"}, {"64": "x13", "32": "w13", "repr": "x13"}, {"64": "x14", "32": "w14", "repr": "x14"}, {"64": "x15", "32": "w15", "repr": "x15"}, {"64": "x16", "32": "w16", "repr": "x16"}, {"64": "x17", "32": "w17", "repr": "x17"}, {"64": "x18", "32": "w18", "repr": "x18"}, {"64": "x19", "32": "w19", "repr": "x19"}, {"64": "x20", "32": "w20", "repr": "x20"}, {"64": "x21", "32": "w21", "repr": "x21"}, {"64": "x22", "32": "w22", "repr": "x22"}, {"64": "x23", "32": "w23", "repr": "x23"}, {"64": "x24", "32": "w24", "repr": "x24"}, {"64": "x25", "32": "w25", "repr": "x25"}, {"64": "x26", "32": "w26", "repr": "x26"}, {"64": "x27", "32": "w27", "repr": "x27"}, # {"64": "x28", "32": "w28", "repr": "x28"}, # used for memory # {"64": "x29", "32": "w29", "repr": "x29"}, # used for divisor # {"64": "x30", "32": "w30", "repr": "x30"}, # link register # {"64": "x31", "32": "w31", "repr": "x31"}, # zero/sp register ], "F": # vector/floating point registers [ {"VEC": "v0", "128": "q0", "64": "d0", "32": "s0", "16": "h0", "8": "b0", "repr": "v0"}, {"VEC": "v1", "128": "q1", "64": "d1", "32": "s1", "16": "h1", "8": "b1", "repr": "v1"}, {"VEC": "v2", "128": "q2", "64": "d2", "32": "s2", "16": "h2", "8": "b2", "repr": "v2"}, {"VEC": "v3", "128": "q3", "64": "d3", "32": "s3", "16": "h3", "8": "b3", "repr": "v3"}, {"VEC": "v4", "128": "q4", "64": "d4", "32": "s4", "16": "h4", "8": "b4", "repr": "v4"}, {"VEC": "v5", "128": "q5", "64": "d5", "32": "s5", "16": "h5", "8": "b5", "repr": "v5"}, {"VEC": "v6", "128": "q6", "64": "d6", "32": "s6", "16": "h6", "8": "b6", "repr": "v6"}, {"VEC": "v7", "128": "q7", "64": "d7", "32": "s7", "16": "h7", "8": "b7", "repr": "v7"}, {"VEC": "v8", "128": "q8", "64": "d8", "32": "s8", "16": "h8", "8": "b8", "repr": "v8"}, {"VEC": "v9", "128": "q9", "64": "d9", "32": "s9", "16": "h9", "8": "b9", "repr": "v9"}, {"VEC": "v10", "128": "q10", "64": "d10", "32": "s10", "16": "h10", "8": "b10", "repr": "v10"}, {"VEC": "v11", "128": "q11", "64": "d11", "32": "s11", "16": "h11", "8": "b11", "repr": "v11"}, {"VEC": "v12", "128": "q12", "64": "d12", "32": "s12", "16": "h12", "8": "b12", "repr": "v12"}, {"VEC": "v13", "128": "q13", "64": "d13", "32": "s13", "16": "h13", "8": "b13", "repr": "v13"}, {"VEC": "v14", "128": "q14", "64": "d14", "32": "s14", "16": "h14", "8": "b14", "repr": "v14"}, {"VEC": "v15", "128": "q15", "64": "d15", "32": "s15", "16": "h15", "8": "b15", "repr": "v15"}, {"VEC": "v16", "128": "q16", "64": "d16", "32": "s16", "16": "h16", "8": "b16", "repr": "v16"}, {"VEC": "v17", "128": "q17", "64": "d17", "32": "s17", "16": "h17", "8": "b17", "repr": "v17"}, {"VEC": "v18", "128": "q18", "64": "d18", "32": "s18", "16": "h18", "8": "b18", "repr": "v18"}, {"VEC": "v19", "128": "q19", "64": "d19", "32": "s19", "16": "h19", "8": "b19", "repr": "v19"}, {"VEC": "v20", "128": "q20", "64": "d20", "32": "s20", "16": "h20", "8": "b20", "repr": "v20"}, {"VEC": "v21", "128": "q21", "64": "d21", "32": "s21", "16": "h21", "8": "b21", "repr": "v21"}, {"VEC": "v22", "128": "q22", "64": "d22", "32": "s22", "16": "h22", "8": "b22", "repr": "v22"}, {"VEC": "v23", "128": "q23", "64": "d23", "32": "s23", "16": "h23", "8": "b23", "repr": "v23"}, {"VEC": "v24", "128": "q24", "64": "d24", "32": "s24", "16": "h24", "8": "b24", "repr": "v24"}, {"VEC": "v25", "128": "q25", "64": "d25", "32": "s25", "16": "h25", "8": "b25", "repr": "v25"}, {"VEC": "v26", "128": "q26", "64": "d26", "32": "s26", "16": "h26", "8": "b26", "repr": "v26"}, {"VEC": "v27", "128": "q27", "64": "d27", "32": "s27", "16": "h27", "8": "b27", "repr": "v27"}, {"VEC": "v28", "128": "q28", "64": "d28", "32": "s28", "16": "h28", "8": "b28", "repr": "v28"}, {"VEC": "v29", "128": "q29", "64": "d29", "32": "s29", "16": "h29", "8": "b29", "repr": "v29"}, {"VEC": "v30", "128": "q30", "64": "d30", "32": "s30", "16": "h30", "8": "b30", "repr": "v30"}, {"VEC": "v31", "128": "q31", "64": "d31", "32": "s31", "16": "h31", "8": "b31", "repr": "v31"}, ], "DIV": # register for non-zero divisor [ {"64": "x29", "32": "w29", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], "MEM": # base register for memory operands [ {"64": "x28", "32": "w28", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], } def __init__(self): super().__init__()
<filename>vm_setup/pmevo/measurement-server/PITE/register_file.py #! /usr/bin/env python3 # vim: et:ts=4:sw=4:fenc=utf-8 from abc import ABC, abstractmethod from collections import defaultdict import re class RegisterFile(ABC): registers = NotImplemented def __init__(self): # for each register kind an index pointing to the next register to use self.reset_indices() def reset_indices(self): self.next_indices = defaultdict(lambda:0) def get_memory_base(self): return self.registers["MEM"][0]["64"] def get_div_register(self): return self.registers["DIV"][0]["64"] def get_clobber_list(self): res = [] for k, v in self.registers.items(): for regset in v: reg = regset["repr"] if reg is not None: res.append(reg) return res class X86_64_RegisterFile(RegisterFile): registers = { "G": # general purpose registers [ # {"64": "rax", "32": "eax", "repr": "rax"}, # {"64": "rcx", "32": "ecx", "repr": "rcx"}, # {"64": "rdx", "32": "edx", "repr": "rdx"}, {"64": "rbx", "32": "ebx", "repr": "rbx"}, # used by gcc # {"64": "rsp", "32": "esp", "repr": "rsp"}, # used by gcc # {"64": "rbp", "32": "ebp", "repr": "rbp"}, # used by gcc {"64": "rsi", "32": "esi", "repr": "rsi"}, # used for string instructions {"64": "rdi", "32": "edi", "repr": "rdi"}, # used for string instructions {"64": "r8", "32": "r8d", "repr": "r8"}, {"64": "r9", "32": "r9d", "repr": "r9"}, {"64": "r10", "32": "r10d", "repr": "r10"}, {"64": "r11", "32": "r11d", "repr": "r11"}, {"64": "r12", "32": "r12d", "repr": "r12"}, # {"64": "r13", "32": "r13d", "repr": "r13"}, # used as divisor register # {"64": "r14", "32": "r14d", "repr": "r14"}, # used as memory register # {"64": "r15", "32": "r15d", "repr": "r15"}, # used by program frame ], "V": # vector registers [ {"256": "ymm0", "128": "xmm0", "repr": "ymm0"}, {"256": "ymm1", "128": "xmm1", "repr": "ymm1"}, {"256": "ymm2", "128": "xmm2", "repr": "ymm2"}, {"256": "ymm3", "128": "xmm3", "repr": "ymm3"}, {"256": "ymm4", "128": "xmm4", "repr": "ymm4"}, {"256": "ymm5", "128": "xmm5", "repr": "ymm5"}, {"256": "ymm6", "128": "xmm6", "repr": "ymm6"}, {"256": "ymm7", "128": "xmm7", "repr": "ymm7"}, {"256": "ymm8", "128": "xmm8", "repr": "ymm8"}, {"256": "ymm9", "128": "xmm9", "repr": "ymm9"}, {"256": "ymm10", "128": "xmm10", "repr": "ymm10"}, {"256": "ymm11", "128": "xmm11", "repr": "ymm11"}, {"256": "ymm12", "128": "xmm12", "repr": "ymm12"}, {"256": "ymm13", "128": "xmm13", "repr": "ymm13"}, {"256": "ymm14", "128": "xmm14", "repr": "ymm14"}, {"256": "ymm15", "128": "xmm15", "repr": "ymm15"}, ], "DIV": # register for non-zero divisor [ {"64": "r13", "32": "r13d", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], "MEM": # base register for memory operands [ {"64": "r14", "32": "r14d", "repr": None} # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], } def __init__(self): super().__init__() class AArch64_RegisterFile(RegisterFile): registers = { "G": # general puprose registers [ # {"64": "x0", "32": "w0", "repr": "x0"}, # used for frame # {"64": "x1", "32": "w1", "repr": "x1"}, # used for frame {"64": "x2", "32": "w2", "repr": "x2"}, {"64": "x3", "32": "w3", "repr": "x3"}, {"64": "x4", "32": "w4", "repr": "x4"}, {"64": "x5", "32": "w5", "repr": "x5"}, {"64": "x6", "32": "w6", "repr": "x6"}, {"64": "x7", "32": "w7", "repr": "x7"}, {"64": "x8", "32": "w8", "repr": "x8"}, {"64": "x9", "32": "w9", "repr": "x9"}, {"64": "x10", "32": "w10", "repr": "x10"}, {"64": "x11", "32": "w11", "repr": "x11"}, {"64": "x12", "32": "w12", "repr": "x12"}, {"64": "x13", "32": "w13", "repr": "x13"}, {"64": "x14", "32": "w14", "repr": "x14"}, {"64": "x15", "32": "w15", "repr": "x15"}, {"64": "x16", "32": "w16", "repr": "x16"}, {"64": "x17", "32": "w17", "repr": "x17"}, {"64": "x18", "32": "w18", "repr": "x18"}, {"64": "x19", "32": "w19", "repr": "x19"}, {"64": "x20", "32": "w20", "repr": "x20"}, {"64": "x21", "32": "w21", "repr": "x21"}, {"64": "x22", "32": "w22", "repr": "x22"}, {"64": "x23", "32": "w23", "repr": "x23"}, {"64": "x24", "32": "w24", "repr": "x24"}, {"64": "x25", "32": "w25", "repr": "x25"}, {"64": "x26", "32": "w26", "repr": "x26"}, {"64": "x27", "32": "w27", "repr": "x27"}, # {"64": "x28", "32": "w28", "repr": "x28"}, # used for memory # {"64": "x29", "32": "w29", "repr": "x29"}, # used for divisor # {"64": "x30", "32": "w30", "repr": "x30"}, # link register # {"64": "x31", "32": "w31", "repr": "x31"}, # zero/sp register ], "F": # vector/floating point registers [ {"VEC": "v0", "128": "q0", "64": "d0", "32": "s0", "16": "h0", "8": "b0", "repr": "v0"}, {"VEC": "v1", "128": "q1", "64": "d1", "32": "s1", "16": "h1", "8": "b1", "repr": "v1"}, {"VEC": "v2", "128": "q2", "64": "d2", "32": "s2", "16": "h2", "8": "b2", "repr": "v2"}, {"VEC": "v3", "128": "q3", "64": "d3", "32": "s3", "16": "h3", "8": "b3", "repr": "v3"}, {"VEC": "v4", "128": "q4", "64": "d4", "32": "s4", "16": "h4", "8": "b4", "repr": "v4"}, {"VEC": "v5", "128": "q5", "64": "d5", "32": "s5", "16": "h5", "8": "b5", "repr": "v5"}, {"VEC": "v6", "128": "q6", "64": "d6", "32": "s6", "16": "h6", "8": "b6", "repr": "v6"}, {"VEC": "v7", "128": "q7", "64": "d7", "32": "s7", "16": "h7", "8": "b7", "repr": "v7"}, {"VEC": "v8", "128": "q8", "64": "d8", "32": "s8", "16": "h8", "8": "b8", "repr": "v8"}, {"VEC": "v9", "128": "q9", "64": "d9", "32": "s9", "16": "h9", "8": "b9", "repr": "v9"}, {"VEC": "v10", "128": "q10", "64": "d10", "32": "s10", "16": "h10", "8": "b10", "repr": "v10"}, {"VEC": "v11", "128": "q11", "64": "d11", "32": "s11", "16": "h11", "8": "b11", "repr": "v11"}, {"VEC": "v12", "128": "q12", "64": "d12", "32": "s12", "16": "h12", "8": "b12", "repr": "v12"}, {"VEC": "v13", "128": "q13", "64": "d13", "32": "s13", "16": "h13", "8": "b13", "repr": "v13"}, {"VEC": "v14", "128": "q14", "64": "d14", "32": "s14", "16": "h14", "8": "b14", "repr": "v14"}, {"VEC": "v15", "128": "q15", "64": "d15", "32": "s15", "16": "h15", "8": "b15", "repr": "v15"}, {"VEC": "v16", "128": "q16", "64": "d16", "32": "s16", "16": "h16", "8": "b16", "repr": "v16"}, {"VEC": "v17", "128": "q17", "64": "d17", "32": "s17", "16": "h17", "8": "b17", "repr": "v17"}, {"VEC": "v18", "128": "q18", "64": "d18", "32": "s18", "16": "h18", "8": "b18", "repr": "v18"}, {"VEC": "v19", "128": "q19", "64": "d19", "32": "s19", "16": "h19", "8": "b19", "repr": "v19"}, {"VEC": "v20", "128": "q20", "64": "d20", "32": "s20", "16": "h20", "8": "b20", "repr": "v20"}, {"VEC": "v21", "128": "q21", "64": "d21", "32": "s21", "16": "h21", "8": "b21", "repr": "v21"}, {"VEC": "v22", "128": "q22", "64": "d22", "32": "s22", "16": "h22", "8": "b22", "repr": "v22"}, {"VEC": "v23", "128": "q23", "64": "d23", "32": "s23", "16": "h23", "8": "b23", "repr": "v23"}, {"VEC": "v24", "128": "q24", "64": "d24", "32": "s24", "16": "h24", "8": "b24", "repr": "v24"}, {"VEC": "v25", "128": "q25", "64": "d25", "32": "s25", "16": "h25", "8": "b25", "repr": "v25"}, {"VEC": "v26", "128": "q26", "64": "d26", "32": "s26", "16": "h26", "8": "b26", "repr": "v26"}, {"VEC": "v27", "128": "q27", "64": "d27", "32": "s27", "16": "h27", "8": "b27", "repr": "v27"}, {"VEC": "v28", "128": "q28", "64": "d28", "32": "s28", "16": "h28", "8": "b28", "repr": "v28"}, {"VEC": "v29", "128": "q29", "64": "d29", "32": "s29", "16": "h29", "8": "b29", "repr": "v29"}, {"VEC": "v30", "128": "q30", "64": "d30", "32": "s30", "16": "h30", "8": "b30", "repr": "v30"}, {"VEC": "v31", "128": "q31", "64": "d31", "32": "s31", "16": "h31", "8": "b31", "repr": "v31"}, ], "DIV": # register for non-zero divisor [ {"64": "x29", "32": "w29", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], "MEM": # base register for memory operands [ {"64": "x28", "32": "w28", "repr": None}, # no need to represent this in the clobber list as it is # hardwired to a this register anyway ], } def __init__(self): super().__init__()
en
0.790764
#! /usr/bin/env python3 # vim: et:ts=4:sw=4:fenc=utf-8 # for each register kind an index pointing to the next register to use # general purpose registers # {"64": "rax", "32": "eax", "repr": "rax"}, # {"64": "rcx", "32": "ecx", "repr": "rcx"}, # {"64": "rdx", "32": "edx", "repr": "rdx"}, # used by gcc # {"64": "rsp", "32": "esp", "repr": "rsp"}, # used by gcc # {"64": "rbp", "32": "ebp", "repr": "rbp"}, # used by gcc # used for string instructions # used for string instructions # {"64": "r13", "32": "r13d", "repr": "r13"}, # used as divisor register # {"64": "r14", "32": "r14d", "repr": "r14"}, # used as memory register # {"64": "r15", "32": "r15d", "repr": "r15"}, # used by program frame # vector registers # register for non-zero divisor # no need to represent this in the clobber list as it is # hardwired to a this register anyway # base register for memory operands # no need to represent this in the clobber list as it is # hardwired to a this register anyway # general puprose registers # {"64": "x0", "32": "w0", "repr": "x0"}, # used for frame # {"64": "x1", "32": "w1", "repr": "x1"}, # used for frame # {"64": "x28", "32": "w28", "repr": "x28"}, # used for memory # {"64": "x29", "32": "w29", "repr": "x29"}, # used for divisor # {"64": "x30", "32": "w30", "repr": "x30"}, # link register # {"64": "x31", "32": "w31", "repr": "x31"}, # zero/sp register # vector/floating point registers # register for non-zero divisor # no need to represent this in the clobber list as it is # hardwired to a this register anyway # base register for memory operands # no need to represent this in the clobber list as it is # hardwired to a this register anyway
2.347323
2
src/training_utils/training.py
JoseLuisRojasAranda/tfmodels
1
8010
<filename>src/training_utils/training.py import os from os import path import json import shutil import tensorflow as tf import numpy as np # Importa cosas de Keras API from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.models import Sequential from tensorflow.keras.utils import plot_model # Importa callbacks del modelo from training_utils.callbacks import TrainingCheckPoints from tensorflow.keras.callbacks import CSVLogger, TensorBoard # Importa cosas para graficar el entrenameinto from training_utils.training_graphs import graph_confusion_matrix from training_utils.training_graphs import graph_model_metrics # Function that continues the training of a model # Args: # path_to_model: path were to find the model and setup # dataset: tuple of tensorflow dataset of (train, test) def continue_training(path_to_model, dataset): if not path.exists(path_to_model): print("[ERROR] El path a la carpeta del modelo no existe") return # carga el setup del modelo setup = None with open(path_to_model+"setup.json", "r") as data: setup = json.load(data) # carga el estado de entrenamiento state = None with open(path_to_model+"checkpoints/"+"training_state.json", "r") as data: state = json.load(data) print("[INFO] Continuando entrenameinto de modelo.") # carga el modelo model_name = "model_checkpoint_{}.h5".format(state["epoch"]-1) model = tf.keras.models.load_model(path_to_model+"checkpoints/"+model_name) # vuelve a compilar el modelo opt = Adam(lr=state["learning_rate"]) model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], initial_epoch=state["epoch"], path=setup["path"], continue_train=True, classes=setup["classes"]) # Method that starts the model training # Args: # setup: Dictionary with the model setup # model: the keras.Model architecture to train # dataset: tuple of tensorflow dataset of (train, test) def train_model(setup, model, dataset): # Asegura que el path sea el correcto if not path.exists(setup["path"]): os.makedirs(setup["path"]) else: # Borra las carpetas si ya existen if path.exists(setup["path"]+"checkpoints"): shutil.rmtree(setup["path"]+"checkpoints") if path.exists(setup["path"]+"logs"): shutil.rmtree(setup["path"]+"logs") # crea carpeta donde se van a guardar los checkpoints if not path.exists(setup["path"]+"checkpoints"): os.mkdir(setup["path"] + "checkpoints") # Escribe el setup del entrenamiento with open(setup["path"]+"setup.json", "w") as writer: json.dump(setup, writer, indent=4) print("[INFO] Entrenando modelo.") # Dibuja la arquitectura del modelo plot_model(model, to_file=setup["path"]+"model_architecture.png", show_shapes=True, show_layer_names=True, expand_nested=False) # Crea optimizador, por defecto Adam opt = Adam(lr=setup["learning_rate"]) #opt = RMSprop(lr=setup["learning_rate"]) # Compila el modelo model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], path=setup["path"], classes=setup["classes"]) # Metodo, que entrena un modelo ya compilado, implementa callbacks de # tensorboard, log a un archivo CSV y creacion de checkpoints cuando ocurre # mejoras en el loss, tambien grafica y crea matriz de confusion # Args: # compiled_model: keras.Model ya compilado # dataset: tuple of tensorflow dataset of (train, test) # opt: keras.Optimizer used in training # epochs: The number of epochs to train # initial_epoch: Epoch to start training, 0 for normal training # continue_train: if the model is continuing training # classes: array of classes that the model predict def fit_model(compiled_model=None, # El modelo debe de estar complicado dataset=None, opt=None, epochs=None, initial_epoch=0, path=None, continue_train=False, classes=None): # obtiene el dataset train, test = dataset # Callbacks durante entrenamiento relative = 0 if initial_epoch >= 1: relative = initial_epoch callbacks = [ #TrainingCheckPoints(path+"checkpoints/", relative_epoch=relative), CSVLogger(path+"training_log.csv", append=continue_train), TensorBoard(log_dir=path+"logs") ] # Entrena el modelo history = compiled_model.fit(train, initial_epoch=initial_epoch, epochs=epochs, callbacks=callbacks, validation_data=test) # Guarda el modelo print("[INFO] Serializing model.") compiled_model.save(path + "model.h5") # Crea grafica del entrenamiento graph_model_metrics(csv_path=path+"training_log.csv", img_path=path+"metrics_graph.png") # Crea confusion matrix if test != None: print("[INFO] Creando matriz de confusion") graph_confusion_matrix(model=compiled_model, test_dataset=test, classes=classes, path=path+"confusion_matrix.png") def load_model(path): model = tf.keras.models.load_model(path + "model.h5") with open(path + "setup.json", "r") as data: setup = json.load(data) return model, setup["classes"]
<filename>src/training_utils/training.py import os from os import path import json import shutil import tensorflow as tf import numpy as np # Importa cosas de Keras API from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.models import Sequential from tensorflow.keras.utils import plot_model # Importa callbacks del modelo from training_utils.callbacks import TrainingCheckPoints from tensorflow.keras.callbacks import CSVLogger, TensorBoard # Importa cosas para graficar el entrenameinto from training_utils.training_graphs import graph_confusion_matrix from training_utils.training_graphs import graph_model_metrics # Function that continues the training of a model # Args: # path_to_model: path were to find the model and setup # dataset: tuple of tensorflow dataset of (train, test) def continue_training(path_to_model, dataset): if not path.exists(path_to_model): print("[ERROR] El path a la carpeta del modelo no existe") return # carga el setup del modelo setup = None with open(path_to_model+"setup.json", "r") as data: setup = json.load(data) # carga el estado de entrenamiento state = None with open(path_to_model+"checkpoints/"+"training_state.json", "r") as data: state = json.load(data) print("[INFO] Continuando entrenameinto de modelo.") # carga el modelo model_name = "model_checkpoint_{}.h5".format(state["epoch"]-1) model = tf.keras.models.load_model(path_to_model+"checkpoints/"+model_name) # vuelve a compilar el modelo opt = Adam(lr=state["learning_rate"]) model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], initial_epoch=state["epoch"], path=setup["path"], continue_train=True, classes=setup["classes"]) # Method that starts the model training # Args: # setup: Dictionary with the model setup # model: the keras.Model architecture to train # dataset: tuple of tensorflow dataset of (train, test) def train_model(setup, model, dataset): # Asegura que el path sea el correcto if not path.exists(setup["path"]): os.makedirs(setup["path"]) else: # Borra las carpetas si ya existen if path.exists(setup["path"]+"checkpoints"): shutil.rmtree(setup["path"]+"checkpoints") if path.exists(setup["path"]+"logs"): shutil.rmtree(setup["path"]+"logs") # crea carpeta donde se van a guardar los checkpoints if not path.exists(setup["path"]+"checkpoints"): os.mkdir(setup["path"] + "checkpoints") # Escribe el setup del entrenamiento with open(setup["path"]+"setup.json", "w") as writer: json.dump(setup, writer, indent=4) print("[INFO] Entrenando modelo.") # Dibuja la arquitectura del modelo plot_model(model, to_file=setup["path"]+"model_architecture.png", show_shapes=True, show_layer_names=True, expand_nested=False) # Crea optimizador, por defecto Adam opt = Adam(lr=setup["learning_rate"]) #opt = RMSprop(lr=setup["learning_rate"]) # Compila el modelo model.compile(loss=setup["loss"], optimizer=opt, metrics=setup["metrics"]) fit_model(compiled_model=model, dataset=dataset, opt=opt, epochs=setup["epochs"], path=setup["path"], classes=setup["classes"]) # Metodo, que entrena un modelo ya compilado, implementa callbacks de # tensorboard, log a un archivo CSV y creacion de checkpoints cuando ocurre # mejoras en el loss, tambien grafica y crea matriz de confusion # Args: # compiled_model: keras.Model ya compilado # dataset: tuple of tensorflow dataset of (train, test) # opt: keras.Optimizer used in training # epochs: The number of epochs to train # initial_epoch: Epoch to start training, 0 for normal training # continue_train: if the model is continuing training # classes: array of classes that the model predict def fit_model(compiled_model=None, # El modelo debe de estar complicado dataset=None, opt=None, epochs=None, initial_epoch=0, path=None, continue_train=False, classes=None): # obtiene el dataset train, test = dataset # Callbacks durante entrenamiento relative = 0 if initial_epoch >= 1: relative = initial_epoch callbacks = [ #TrainingCheckPoints(path+"checkpoints/", relative_epoch=relative), CSVLogger(path+"training_log.csv", append=continue_train), TensorBoard(log_dir=path+"logs") ] # Entrena el modelo history = compiled_model.fit(train, initial_epoch=initial_epoch, epochs=epochs, callbacks=callbacks, validation_data=test) # Guarda el modelo print("[INFO] Serializing model.") compiled_model.save(path + "model.h5") # Crea grafica del entrenamiento graph_model_metrics(csv_path=path+"training_log.csv", img_path=path+"metrics_graph.png") # Crea confusion matrix if test != None: print("[INFO] Creando matriz de confusion") graph_confusion_matrix(model=compiled_model, test_dataset=test, classes=classes, path=path+"confusion_matrix.png") def load_model(path): model = tf.keras.models.load_model(path + "model.h5") with open(path + "setup.json", "r") as data: setup = json.load(data) return model, setup["classes"]
es
0.357063
# Importa cosas de Keras API # Importa callbacks del modelo # Importa cosas para graficar el entrenameinto # Function that continues the training of a model # Args: # path_to_model: path were to find the model and setup # dataset: tuple of tensorflow dataset of (train, test) # carga el setup del modelo # carga el estado de entrenamiento # carga el modelo # vuelve a compilar el modelo # Method that starts the model training # Args: # setup: Dictionary with the model setup # model: the keras.Model architecture to train # dataset: tuple of tensorflow dataset of (train, test) # Asegura que el path sea el correcto # Borra las carpetas si ya existen # crea carpeta donde se van a guardar los checkpoints # Escribe el setup del entrenamiento # Dibuja la arquitectura del modelo # Crea optimizador, por defecto Adam #opt = RMSprop(lr=setup["learning_rate"]) # Compila el modelo # Metodo, que entrena un modelo ya compilado, implementa callbacks de # tensorboard, log a un archivo CSV y creacion de checkpoints cuando ocurre # mejoras en el loss, tambien grafica y crea matriz de confusion # Args: # compiled_model: keras.Model ya compilado # dataset: tuple of tensorflow dataset of (train, test) # opt: keras.Optimizer used in training # epochs: The number of epochs to train # initial_epoch: Epoch to start training, 0 for normal training # continue_train: if the model is continuing training # classes: array of classes that the model predict # El modelo debe de estar complicado # obtiene el dataset # Callbacks durante entrenamiento #TrainingCheckPoints(path+"checkpoints/", relative_epoch=relative), # Entrena el modelo # Guarda el modelo # Crea grafica del entrenamiento # Crea confusion matrix
2.756907
3
setup.py
truggles/pudl
0
8011
<gh_stars>0 #!/usr/bin/env python """Setup script to make PUDL directly installable with pip.""" import os from pathlib import Path from setuptools import find_packages, setup install_requires = [ 'coloredlogs', 'datapackage>=1.9.0', 'dbfread', 'goodtables', 'matplotlib', 'networkx>=2.2', 'numpy', 'pandas>=0.24', 'pyarrow>=0.14.0', 'pyyaml', 'scikit-learn>=0.20', 'scipy', 'sqlalchemy>=1.3.0', 'tableschema', 'tableschema-sql>=1.1.0', 'timezonefinder', 'xlsxwriter', ] # We are installing the PUDL module to build the docs, but the C libraries # required to build snappy aren't available on RTD, so we need to exclude it # from the installed dependencies here, and mock it for import in docs/conf.py # using the autodoc_mock_imports parameter: if not os.getenv('READTHEDOCS'): install_requires.append('python-snappy') doc_requires = [ 'doc8', 'sphinx', 'sphinx_rtd_theme', ] test_requires = [ 'bandit', 'coverage', 'doc8', 'flake8', 'flake8-docstrings', 'flake8-builtins', 'pep8-naming', 'pre-commit', 'pydocstyle', 'pytest', 'pytest-cov', 'nbval', ] readme_path = Path(__file__).parent / "README.rst" long_description = readme_path.read_text() setup( name='catalystcoop.pudl', description='An open data processing pipeline for public US utility data.', long_description=long_description, long_description_content_type='text/x-rst', use_scm_version=True, author='Catalyst Cooperative', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>yst.coop', url="https://catalyst.coop/pudl", project_urls={ "Source": "https://github.com/catalyst-cooperative/pudl", "Documentation": "https://catalystcoop-pudl.readthedocs.io", "Issue Tracker": "https://github.com/catalyst-cooperative/pudl/issues", }, license='MIT', keywords=[ 'electricity', 'energy', 'data', 'analysis', 'mcoe', 'climate change', 'finance', 'eia 923', 'eia 860', 'ferc', 'form 1', 'epa ampd', 'epa cems', 'coal', 'natural gas', ], python_requires='>=3.7, <3.8.0a0', setup_requires=['setuptools_scm'], install_requires=install_requires, extras_require={ "doc": doc_requires, "test": test_requires, }, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering', ], packages=find_packages('src'), package_dir={'': 'src'}, # package_data is data that is deployed within the python package on the # user's system. setuptools will get whatever is listed in MANIFEST.in include_package_data=True, # This defines the interfaces to the command line scripts we're including: entry_points={ 'console_scripts': [ 'pudl_data = pudl.workspace.datastore_cli:main', 'pudl_setup = pudl.workspace.setup_cli:main', 'pudl_etl = pudl.cli:main', 'datapkg_to_sqlite = pudl.convert.datapkg_to_sqlite:main', 'ferc1_to_sqlite = pudl.convert.ferc1_to_sqlite:main', 'epacems_to_parquet = pudl.convert.epacems_to_parquet:main', ] }, )
#!/usr/bin/env python """Setup script to make PUDL directly installable with pip.""" import os from pathlib import Path from setuptools import find_packages, setup install_requires = [ 'coloredlogs', 'datapackage>=1.9.0', 'dbfread', 'goodtables', 'matplotlib', 'networkx>=2.2', 'numpy', 'pandas>=0.24', 'pyarrow>=0.14.0', 'pyyaml', 'scikit-learn>=0.20', 'scipy', 'sqlalchemy>=1.3.0', 'tableschema', 'tableschema-sql>=1.1.0', 'timezonefinder', 'xlsxwriter', ] # We are installing the PUDL module to build the docs, but the C libraries # required to build snappy aren't available on RTD, so we need to exclude it # from the installed dependencies here, and mock it for import in docs/conf.py # using the autodoc_mock_imports parameter: if not os.getenv('READTHEDOCS'): install_requires.append('python-snappy') doc_requires = [ 'doc8', 'sphinx', 'sphinx_rtd_theme', ] test_requires = [ 'bandit', 'coverage', 'doc8', 'flake8', 'flake8-docstrings', 'flake8-builtins', 'pep8-naming', 'pre-commit', 'pydocstyle', 'pytest', 'pytest-cov', 'nbval', ] readme_path = Path(__file__).parent / "README.rst" long_description = readme_path.read_text() setup( name='catalystcoop.pudl', description='An open data processing pipeline for public US utility data.', long_description=long_description, long_description_content_type='text/x-rst', use_scm_version=True, author='Catalyst Cooperative', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>yst.coop', url="https://catalyst.coop/pudl", project_urls={ "Source": "https://github.com/catalyst-cooperative/pudl", "Documentation": "https://catalystcoop-pudl.readthedocs.io", "Issue Tracker": "https://github.com/catalyst-cooperative/pudl/issues", }, license='MIT', keywords=[ 'electricity', 'energy', 'data', 'analysis', 'mcoe', 'climate change', 'finance', 'eia 923', 'eia 860', 'ferc', 'form 1', 'epa ampd', 'epa cems', 'coal', 'natural gas', ], python_requires='>=3.7, <3.8.0a0', setup_requires=['setuptools_scm'], install_requires=install_requires, extras_require={ "doc": doc_requires, "test": test_requires, }, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering', ], packages=find_packages('src'), package_dir={'': 'src'}, # package_data is data that is deployed within the python package on the # user's system. setuptools will get whatever is listed in MANIFEST.in include_package_data=True, # This defines the interfaces to the command line scripts we're including: entry_points={ 'console_scripts': [ 'pudl_data = pudl.workspace.datastore_cli:main', 'pudl_setup = pudl.workspace.setup_cli:main', 'pudl_etl = pudl.cli:main', 'datapkg_to_sqlite = pudl.convert.datapkg_to_sqlite:main', 'ferc1_to_sqlite = pudl.convert.ferc1_to_sqlite:main', 'epacems_to_parquet = pudl.convert.epacems_to_parquet:main', ] }, )
en
0.861123
#!/usr/bin/env python Setup script to make PUDL directly installable with pip. # We are installing the PUDL module to build the docs, but the C libraries # required to build snappy aren't available on RTD, so we need to exclude it # from the installed dependencies here, and mock it for import in docs/conf.py # using the autodoc_mock_imports parameter: # package_data is data that is deployed within the python package on the # user's system. setuptools will get whatever is listed in MANIFEST.in # This defines the interfaces to the command line scripts we're including:
1.658067
2
src/vulnix/nvd.py
dermetfan/vulnix
217
8012
<filename>src/vulnix/nvd.py from BTrees import OOBTree from datetime import datetime, date, timedelta from persistent import Persistent from .vulnerability import Vulnerability import fcntl import glob import gzip import json import logging import os import os.path as p import requests import transaction import ZODB import ZODB.FileStorage DEFAULT_MIRROR = 'https://nvd.nist.gov/feeds/json/cve/1.1/' DEFAULT_CACHE_DIR = '~/.cache/vulnix' _log = logging.getLogger(__name__) class NVD(object): """Access to the National Vulnerability Database. https://nvd.nist.gov/ """ def __init__(self, mirror=DEFAULT_MIRROR, cache_dir=DEFAULT_CACHE_DIR): self.mirror = mirror.rstrip('/') + '/' self.cache_dir = p.expanduser(cache_dir) current = date.today().year self.available_archives = [y for y in range(current-5, current+1)] def lock(self): self._lock = open(p.join(self.cache_dir, 'lock'), 'a') try: fcntl.lockf(self._lock, fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: _log.info('Waiting for NVD lock...') fcntl.lockf(self._lock, fcntl.LOCK_EX) def __enter__(self): """Keeps database connection open while in this context.""" _log.debug('Opening database in %s', self.cache_dir) os.makedirs(self.cache_dir, exist_ok=True) self.lock() self._db = ZODB.DB(ZODB.FileStorage.FileStorage( p.join(self.cache_dir, 'Data.fs'))) self._connection = self._db.open() self._root = self._connection.root() try: self._root.setdefault('advisory', OOBTree.OOBTree()) self._root.setdefault('by_product', OOBTree.OOBTree()) self._root.setdefault('meta', Meta()) # may trigger exceptions if the database is inconsistent list(self._root['by_product'].keys()) if 'archives' in self._root: _log.warn('Pre-1.9.0 database found - rebuilding') self.reinit() except (TypeError, EOFError): _log.warn('Incompatible objects found in database - rebuilding DB') self.reinit() return self def __exit__(self, exc_type=None, exc_value=None, exc_tb=None): if exc_type is None: if self.meta.should_pack(): _log.debug('Packing database') self._db.pack() transaction.commit() else: transaction.abort() self._connection.close() self._db.close() self._lock = None def reinit(self): """Remove old DB and rebuild it from scratch.""" self._root = None transaction.abort() self._connection.close() self._db = None for f in glob.glob(p.join(self.cache_dir, "Data.fs*")): os.unlink(f) self._db = ZODB.DB(ZODB.FileStorage.FileStorage( p.join(self.cache_dir, 'Data.fs'))) self._connection = self._db.open() self._root = self._connection.root() self._root['advisory'] = OOBTree.OOBTree() self._root['by_product'] = OOBTree.OOBTree() self._root['meta'] = Meta() @property def meta(self): return self._root['meta'] def relevant_archives(self): """Returns list of NVD archives to check. If there was an update within the last two hours, nothing is done. If the last update was recent enough to be covered by the 'modified' feed, only that is checked. Else, all feeds are checked. """ last_update = self.meta.last_update if last_update > datetime.now() - timedelta(hours=2): return [] # the "modified" feed is sufficient if used frequently enough if last_update > datetime.now() - timedelta(days=7): return ['modified'] return self.available_archives def update(self): """Download archives (if changed) and add CVEs to database.""" changed = [] for a in self.relevant_archives(): arch = Archive(a) changed.append(arch.download(self.mirror, self.meta)) self.add(arch) if any(changed): self.meta.last_update = datetime.now() self.reindex() def add(self, archive): advisories = self._root['advisory'] for (cve_id, adv) in archive.items(): advisories[cve_id] = adv def reindex(self): """Regenerate product index.""" _log.info('Reindexing database') del self._root['by_product'] bp = OOBTree.OOBTree() for vuln in self._root['advisory'].values(): if vuln.nodes: for prod in (n.product for n in vuln.nodes): bp.setdefault(prod, []) bp[prod].append(vuln) self._root['by_product'] = bp transaction.commit() def by_id(self, cve_id): """Returns vuln or raises KeyError.""" return self._root['advisory'][cve_id] def by_product(self, product): """Returns list of matching vulns or empty list.""" try: return self._root['by_product'][product] except KeyError: return [] def affected(self, pname, version): """Returns list of matching vulnerabilities.""" res = set() for vuln in self.by_product(pname): if vuln.match(pname, version): res.add(vuln) return res class Archive: """Single JSON data structure from NIST NVD.""" def __init__(self, name): """Creates JSON feed object. `name` consists of a year or "modified". """ self.name = name self.download_uri = 'nvdcve-1.1-{}.json.gz'.format(name) self.advisories = {} def download(self, mirror, meta): """Fetches compressed JSON data from NIST. Nothing is done if we have already seen the same version of the feed before. Returns True if anything has been loaded successfully. """ url = mirror + self.download_uri _log.info('Loading %s', url) r = requests.get(url, headers=meta.headers_for(url)) r.raise_for_status() if r.status_code == 200: _log.debug('Loading JSON feed "%s"', self.name) self.parse(gzip.decompress(r.content)) meta.update_headers_for(url, r.headers) return True else: _log.debug('Skipping JSON feed "%s" (%s)', self.name, r.reason) return False def parse(self, nvd_json): added = 0 raw = json.loads(nvd_json) for item in raw['CVE_Items']: try: vuln = Vulnerability.parse(item) self.advisories[vuln.cve_id] = vuln added += 1 except ValueError: _log.debug('Failed to parse NVD item: %s', item) _log.debug("Added %s vulnerabilities", added) def items(self): return self.advisories.items() class Meta(Persistent): """Metadate for database maintenance control""" pack_counter = 0 last_update = datetime(1970, 1, 1) etag = None def should_pack(self): self.pack_counter += 1 if self.pack_counter > 25: self.pack_counter = 0 return True return False def headers_for(self, url): """Returns dict of additional request headers.""" if self.etag and url in self.etag: return {'If-None-Match': self.etag[url]} return {} def update_headers_for(self, url, resp_headers): """Updates self from HTTP response headers.""" if 'ETag' in resp_headers: if self.etag is None: self.etag = OOBTree.OOBTree() self.etag[url] = resp_headers['ETag']
<filename>src/vulnix/nvd.py from BTrees import OOBTree from datetime import datetime, date, timedelta from persistent import Persistent from .vulnerability import Vulnerability import fcntl import glob import gzip import json import logging import os import os.path as p import requests import transaction import ZODB import ZODB.FileStorage DEFAULT_MIRROR = 'https://nvd.nist.gov/feeds/json/cve/1.1/' DEFAULT_CACHE_DIR = '~/.cache/vulnix' _log = logging.getLogger(__name__) class NVD(object): """Access to the National Vulnerability Database. https://nvd.nist.gov/ """ def __init__(self, mirror=DEFAULT_MIRROR, cache_dir=DEFAULT_CACHE_DIR): self.mirror = mirror.rstrip('/') + '/' self.cache_dir = p.expanduser(cache_dir) current = date.today().year self.available_archives = [y for y in range(current-5, current+1)] def lock(self): self._lock = open(p.join(self.cache_dir, 'lock'), 'a') try: fcntl.lockf(self._lock, fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: _log.info('Waiting for NVD lock...') fcntl.lockf(self._lock, fcntl.LOCK_EX) def __enter__(self): """Keeps database connection open while in this context.""" _log.debug('Opening database in %s', self.cache_dir) os.makedirs(self.cache_dir, exist_ok=True) self.lock() self._db = ZODB.DB(ZODB.FileStorage.FileStorage( p.join(self.cache_dir, 'Data.fs'))) self._connection = self._db.open() self._root = self._connection.root() try: self._root.setdefault('advisory', OOBTree.OOBTree()) self._root.setdefault('by_product', OOBTree.OOBTree()) self._root.setdefault('meta', Meta()) # may trigger exceptions if the database is inconsistent list(self._root['by_product'].keys()) if 'archives' in self._root: _log.warn('Pre-1.9.0 database found - rebuilding') self.reinit() except (TypeError, EOFError): _log.warn('Incompatible objects found in database - rebuilding DB') self.reinit() return self def __exit__(self, exc_type=None, exc_value=None, exc_tb=None): if exc_type is None: if self.meta.should_pack(): _log.debug('Packing database') self._db.pack() transaction.commit() else: transaction.abort() self._connection.close() self._db.close() self._lock = None def reinit(self): """Remove old DB and rebuild it from scratch.""" self._root = None transaction.abort() self._connection.close() self._db = None for f in glob.glob(p.join(self.cache_dir, "Data.fs*")): os.unlink(f) self._db = ZODB.DB(ZODB.FileStorage.FileStorage( p.join(self.cache_dir, 'Data.fs'))) self._connection = self._db.open() self._root = self._connection.root() self._root['advisory'] = OOBTree.OOBTree() self._root['by_product'] = OOBTree.OOBTree() self._root['meta'] = Meta() @property def meta(self): return self._root['meta'] def relevant_archives(self): """Returns list of NVD archives to check. If there was an update within the last two hours, nothing is done. If the last update was recent enough to be covered by the 'modified' feed, only that is checked. Else, all feeds are checked. """ last_update = self.meta.last_update if last_update > datetime.now() - timedelta(hours=2): return [] # the "modified" feed is sufficient if used frequently enough if last_update > datetime.now() - timedelta(days=7): return ['modified'] return self.available_archives def update(self): """Download archives (if changed) and add CVEs to database.""" changed = [] for a in self.relevant_archives(): arch = Archive(a) changed.append(arch.download(self.mirror, self.meta)) self.add(arch) if any(changed): self.meta.last_update = datetime.now() self.reindex() def add(self, archive): advisories = self._root['advisory'] for (cve_id, adv) in archive.items(): advisories[cve_id] = adv def reindex(self): """Regenerate product index.""" _log.info('Reindexing database') del self._root['by_product'] bp = OOBTree.OOBTree() for vuln in self._root['advisory'].values(): if vuln.nodes: for prod in (n.product for n in vuln.nodes): bp.setdefault(prod, []) bp[prod].append(vuln) self._root['by_product'] = bp transaction.commit() def by_id(self, cve_id): """Returns vuln or raises KeyError.""" return self._root['advisory'][cve_id] def by_product(self, product): """Returns list of matching vulns or empty list.""" try: return self._root['by_product'][product] except KeyError: return [] def affected(self, pname, version): """Returns list of matching vulnerabilities.""" res = set() for vuln in self.by_product(pname): if vuln.match(pname, version): res.add(vuln) return res class Archive: """Single JSON data structure from NIST NVD.""" def __init__(self, name): """Creates JSON feed object. `name` consists of a year or "modified". """ self.name = name self.download_uri = 'nvdcve-1.1-{}.json.gz'.format(name) self.advisories = {} def download(self, mirror, meta): """Fetches compressed JSON data from NIST. Nothing is done if we have already seen the same version of the feed before. Returns True if anything has been loaded successfully. """ url = mirror + self.download_uri _log.info('Loading %s', url) r = requests.get(url, headers=meta.headers_for(url)) r.raise_for_status() if r.status_code == 200: _log.debug('Loading JSON feed "%s"', self.name) self.parse(gzip.decompress(r.content)) meta.update_headers_for(url, r.headers) return True else: _log.debug('Skipping JSON feed "%s" (%s)', self.name, r.reason) return False def parse(self, nvd_json): added = 0 raw = json.loads(nvd_json) for item in raw['CVE_Items']: try: vuln = Vulnerability.parse(item) self.advisories[vuln.cve_id] = vuln added += 1 except ValueError: _log.debug('Failed to parse NVD item: %s', item) _log.debug("Added %s vulnerabilities", added) def items(self): return self.advisories.items() class Meta(Persistent): """Metadate for database maintenance control""" pack_counter = 0 last_update = datetime(1970, 1, 1) etag = None def should_pack(self): self.pack_counter += 1 if self.pack_counter > 25: self.pack_counter = 0 return True return False def headers_for(self, url): """Returns dict of additional request headers.""" if self.etag and url in self.etag: return {'If-None-Match': self.etag[url]} return {} def update_headers_for(self, url, resp_headers): """Updates self from HTTP response headers.""" if 'ETag' in resp_headers: if self.etag is None: self.etag = OOBTree.OOBTree() self.etag[url] = resp_headers['ETag']
en
0.878714
Access to the National Vulnerability Database. https://nvd.nist.gov/ Keeps database connection open while in this context. # may trigger exceptions if the database is inconsistent Remove old DB and rebuild it from scratch. Returns list of NVD archives to check. If there was an update within the last two hours, nothing is done. If the last update was recent enough to be covered by the 'modified' feed, only that is checked. Else, all feeds are checked. # the "modified" feed is sufficient if used frequently enough Download archives (if changed) and add CVEs to database. Regenerate product index. Returns vuln or raises KeyError. Returns list of matching vulns or empty list. Returns list of matching vulnerabilities. Single JSON data structure from NIST NVD. Creates JSON feed object. `name` consists of a year or "modified". Fetches compressed JSON data from NIST. Nothing is done if we have already seen the same version of the feed before. Returns True if anything has been loaded successfully. Metadate for database maintenance control Returns dict of additional request headers. Updates self from HTTP response headers.
2.230697
2
ScapyDoS-main/simp.py
Zusyaku/Termux-And-Lali-Linux-V2
2
8013
from scapy.all import * src = input("Source IP: ") target = input("Target IP: ") i=1 while True: for srcport in range(1, 65535): ip = IP(src=src, dst=target) tcp = TCP(sport=srcport, dport=80) pkt = ip / tcp send(pkt, inter= .0001) print("Packet Sent ", i) i=i+1
from scapy.all import * src = input("Source IP: ") target = input("Target IP: ") i=1 while True: for srcport in range(1, 65535): ip = IP(src=src, dst=target) tcp = TCP(sport=srcport, dport=80) pkt = ip / tcp send(pkt, inter= .0001) print("Packet Sent ", i) i=i+1
none
1
2.934474
3
test/test_basic_functions.py
azagajewski/ColiCoords
18
8014
import hashlib import unittest from colicoords.cell import Cell, CellList from colicoords.preprocess import data_to_cells from test import testcase from test.test_functions import load_testdata class DataTest(testcase.ArrayTestCase): def setUp(self): self.data = load_testdata('ds1') def test_data_slicing(self): sl1 = self.data[2:5, :, :] self.assertEqual(sl1.shape, (3, 512, 512)) sl2 = self.data[:, 20:40, 100:200] self.assertEqual(sl2.shape, (10, 20, 100)) def test_data_copy(self): m0 = self.data.binary_img.mean() data_copy = self.data.copy() self.assertEqual(m0, self.data.binary_img.mean()) data_copy.data_dict['binary'] += 20 self.assertEqual(m0, self.data.binary_img.mean()) self.assertEqual(data_copy.binary_img.mean(), m0 + 20) def _test_cell_list(self): #todo check order print(hashlib.md5(self.data).hexdigest()) cell_list = data_to_cells(self.data, initial_crop=2, cell_frac=0.5, rotate='binary') print(hashlib.md5(self.data).hexdigest()) cell_list = data_to_cells(self.data, initial_crop=2, cell_frac=0.5, rotate='binary') print(hashlib.md5(self.data).hexdigest()) d = self.data.copy() print(d == self.data) cl = CellList(cell_list) self.assertEqual(len(cl), 48) c5 = cl[5] self.assertIsInstance(c5, Cell) del cl[5] self.assertEqual(len(cl), 47) self.assertTrue(cl[3] in cl) cl.append(c5) self.assertTrue(c5 in cl) vol = cl.volume self.assertEqual(len(vol), 48) class CellListTest(testcase.ArrayTestCase): def setUp(self): data = load_testdata('ds1') self.cell_list = data_to_cells(data) def test_slicing(self): sliced = self.cell_list[:5] self.assertIsInstance(sliced, CellList) if __name__ == '__main__': unittest.main()
import hashlib import unittest from colicoords.cell import Cell, CellList from colicoords.preprocess import data_to_cells from test import testcase from test.test_functions import load_testdata class DataTest(testcase.ArrayTestCase): def setUp(self): self.data = load_testdata('ds1') def test_data_slicing(self): sl1 = self.data[2:5, :, :] self.assertEqual(sl1.shape, (3, 512, 512)) sl2 = self.data[:, 20:40, 100:200] self.assertEqual(sl2.shape, (10, 20, 100)) def test_data_copy(self): m0 = self.data.binary_img.mean() data_copy = self.data.copy() self.assertEqual(m0, self.data.binary_img.mean()) data_copy.data_dict['binary'] += 20 self.assertEqual(m0, self.data.binary_img.mean()) self.assertEqual(data_copy.binary_img.mean(), m0 + 20) def _test_cell_list(self): #todo check order print(hashlib.md5(self.data).hexdigest()) cell_list = data_to_cells(self.data, initial_crop=2, cell_frac=0.5, rotate='binary') print(hashlib.md5(self.data).hexdigest()) cell_list = data_to_cells(self.data, initial_crop=2, cell_frac=0.5, rotate='binary') print(hashlib.md5(self.data).hexdigest()) d = self.data.copy() print(d == self.data) cl = CellList(cell_list) self.assertEqual(len(cl), 48) c5 = cl[5] self.assertIsInstance(c5, Cell) del cl[5] self.assertEqual(len(cl), 47) self.assertTrue(cl[3] in cl) cl.append(c5) self.assertTrue(c5 in cl) vol = cl.volume self.assertEqual(len(vol), 48) class CellListTest(testcase.ArrayTestCase): def setUp(self): data = load_testdata('ds1') self.cell_list = data_to_cells(data) def test_slicing(self): sliced = self.cell_list[:5] self.assertIsInstance(sliced, CellList) if __name__ == '__main__': unittest.main()
en
0.379612
#todo check order
2.557771
3
data_importer_ftp.py
supsi-dacd-isaac/oasi-ozone-forecaster
0
8015
# --------------------------------------------------------------------------- # # Importing section # --------------------------------------------------------------------------- # import os import sys import argparse import logging import json from classes.alerts import SlackClient from influxdb import InfluxDBClient from classes.data_manager import DataManager # --------------------------------------------------------------------------- # # Functions # -----------------------------------------------------------------------------# def slack_msg(): slack_client = SlackClient(logger, cfg) if bool(dm.files_not_correctly_handled): str_err = '' for k in dm.files_not_correctly_handled: str_err = '%sFailed handling of file %s; Exception: %s\n' % (str_err, k, dm.files_not_correctly_handled[k]) slack_client.send_alert_message('OZONE FORECASTER - RAW FILES ALARM:\n%s' % str_err, '#ff0000') else: slack_client.send_alert_message('OZONE FORECASTER - RAW FILES PROPERLY HANDLED', '#00ff00') # --------------------------------------------------------------------------- # # Main # --------------------------------------------------------------------------- # if __name__ == "__main__": # --------------------------------------------------------------------------- # # Configuration file # --------------------------------------------------------------------------- # arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-c", help="configuration file") arg_parser.add_argument("-l", help="log file (optional, if empty log redirected on stdout)") args = arg_parser.parse_args() config_file = args.c if os.path.isfile(config_file) is False: print('\nATTENTION! Unable to open configuration file %s\n' % config_file) sys.exit(1) cfg = json.loads(open(args.c).read()) conns_cfg = json.loads(open(cfg['connectionsFile']).read()) cfg.update(conns_cfg) # --------------------------------------------------------------------------- # # Set logging object # --------------------------------------------------------------------------- # if not args.l: log_file = None else: log_file = args.l logger = logging.getLogger() logging.basicConfig(format='%(asctime)-15s::%(levelname)s::%(funcName)s::%(message)s', level=logging.INFO, filename=log_file) # --------------------------------------------------------------------------- # # Starting program # --------------------------------------------------------------------------- # logger.info("Starting program") # --------------------------------------------------------------------------- # # InfluxDB connection # --------------------------------------------------------------------------- # logger.info('Connection to InfluxDb server on socket [%s:%s]' % (cfg['influxDB']['host'], cfg['influxDB']['port'])) try: influx_client = InfluxDBClient(host=cfg['influxDB']['host'], port=cfg['influxDB']['port'], password=cfg['influxDB']['password'], username=cfg['influxDB']['user'], database=cfg['influxDB']['database'], ssl=cfg['influxDB']['ssl']) except Exception as e: logger.error('EXCEPTION: %s' % str(e)) sys.exit(3) logger.info('Connection successful') dm = DataManager(influx_client, cfg, logger) # Download files from the FTP server if cfg['ftp']['enabled'] is True: logger.info('Download data from FTP server') dm.open_ftp_connection() dm.download_remote_files() # Insert data into InfluxDB if cfg['influxDB']['dataImporting'] is True: logger.info('Importing in InfluxDB of raw data related to files in %s' % cfg['ftp']['localFolders']['tmp']) dm.insert_data() # Delete files correctly handled on the FTP server and close the FTP connection if cfg['ftp']['enabled'] is True: if cfg['ftp']['deleteRemoteFile'] is True: logger.info('Delete handled files from FTP server') dm.delete_remote_files() dm.close_ftp_connection() # Slack alert if cfg['alerts']['slack']['enabled'] is True: slack_msg() logger.info("Ending program")
# --------------------------------------------------------------------------- # # Importing section # --------------------------------------------------------------------------- # import os import sys import argparse import logging import json from classes.alerts import SlackClient from influxdb import InfluxDBClient from classes.data_manager import DataManager # --------------------------------------------------------------------------- # # Functions # -----------------------------------------------------------------------------# def slack_msg(): slack_client = SlackClient(logger, cfg) if bool(dm.files_not_correctly_handled): str_err = '' for k in dm.files_not_correctly_handled: str_err = '%sFailed handling of file %s; Exception: %s\n' % (str_err, k, dm.files_not_correctly_handled[k]) slack_client.send_alert_message('OZONE FORECASTER - RAW FILES ALARM:\n%s' % str_err, '#ff0000') else: slack_client.send_alert_message('OZONE FORECASTER - RAW FILES PROPERLY HANDLED', '#00ff00') # --------------------------------------------------------------------------- # # Main # --------------------------------------------------------------------------- # if __name__ == "__main__": # --------------------------------------------------------------------------- # # Configuration file # --------------------------------------------------------------------------- # arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-c", help="configuration file") arg_parser.add_argument("-l", help="log file (optional, if empty log redirected on stdout)") args = arg_parser.parse_args() config_file = args.c if os.path.isfile(config_file) is False: print('\nATTENTION! Unable to open configuration file %s\n' % config_file) sys.exit(1) cfg = json.loads(open(args.c).read()) conns_cfg = json.loads(open(cfg['connectionsFile']).read()) cfg.update(conns_cfg) # --------------------------------------------------------------------------- # # Set logging object # --------------------------------------------------------------------------- # if not args.l: log_file = None else: log_file = args.l logger = logging.getLogger() logging.basicConfig(format='%(asctime)-15s::%(levelname)s::%(funcName)s::%(message)s', level=logging.INFO, filename=log_file) # --------------------------------------------------------------------------- # # Starting program # --------------------------------------------------------------------------- # logger.info("Starting program") # --------------------------------------------------------------------------- # # InfluxDB connection # --------------------------------------------------------------------------- # logger.info('Connection to InfluxDb server on socket [%s:%s]' % (cfg['influxDB']['host'], cfg['influxDB']['port'])) try: influx_client = InfluxDBClient(host=cfg['influxDB']['host'], port=cfg['influxDB']['port'], password=cfg['influxDB']['password'], username=cfg['influxDB']['user'], database=cfg['influxDB']['database'], ssl=cfg['influxDB']['ssl']) except Exception as e: logger.error('EXCEPTION: %s' % str(e)) sys.exit(3) logger.info('Connection successful') dm = DataManager(influx_client, cfg, logger) # Download files from the FTP server if cfg['ftp']['enabled'] is True: logger.info('Download data from FTP server') dm.open_ftp_connection() dm.download_remote_files() # Insert data into InfluxDB if cfg['influxDB']['dataImporting'] is True: logger.info('Importing in InfluxDB of raw data related to files in %s' % cfg['ftp']['localFolders']['tmp']) dm.insert_data() # Delete files correctly handled on the FTP server and close the FTP connection if cfg['ftp']['enabled'] is True: if cfg['ftp']['deleteRemoteFile'] is True: logger.info('Delete handled files from FTP server') dm.delete_remote_files() dm.close_ftp_connection() # Slack alert if cfg['alerts']['slack']['enabled'] is True: slack_msg() logger.info("Ending program")
en
0.204884
# --------------------------------------------------------------------------- # # Importing section # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Functions # -----------------------------------------------------------------------------# # --------------------------------------------------------------------------- # # Main # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Configuration file # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Set logging object # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Starting program # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # InfluxDB connection # --------------------------------------------------------------------------- # # Download files from the FTP server # Insert data into InfluxDB # Delete files correctly handled on the FTP server and close the FTP connection # Slack alert
2.07851
2
autoindent_code_JASS_war3map_j.py
gil9red/SimplePyScripts
117
8016
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import re DEBUG = False def merge_str_literal(text: str) -> str: def _on_match(m: re.Match): return m.group().replace('"+"', '') return re.sub(r'".+?"(\+".+?")+ ', _on_match, text) lines = """ function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction """.strip().splitlines() stack = [] items = [] for line in lines: if line.startswith('globals'): stack.append('globals') elif line.startswith('endglobals'): stack.pop(-1) stack.append('endglobals') elif line.startswith('function'): stack.append('function') elif line.startswith('endfunction'): stack.pop(-1) stack.append('endfunction') elif line.startswith('loop'): stack.append('loop') elif line.startswith('endloop'): stack.pop(-1) stack.append('endloop') elif line.startswith('if'): stack.append('if') elif line.startswith('elseif'): stack.pop(-1) stack.append('elseif') elif line.startswith('else'): stack.pop(-1) stack.append('else') elif line.startswith('endif'): stack.pop(-1) stack.append('endif') else: stack.append(line[:8] + '...') indent = len(stack) - 1 line = merge_str_literal(line) items.append(' ' * indent + line) DEBUG and print(f'{indent}. {line!r}', stack) # Add empty line after endglobals and endfunction if line.startswith('endglobals') or line.startswith('endfunction'): items.append('') if stack[-1] not in ['globals', 'function', 'loop', 'if', 'elseif', 'else']: stack.pop(-1) new_text = '\n'.join(items).strip() print(new_text) """ function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction """
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import re DEBUG = False def merge_str_literal(text: str) -> str: def _on_match(m: re.Match): return m.group().replace('"+"', '') return re.sub(r'".+?"(\+".+?")+ ', _on_match, text) lines = """ function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction """.strip().splitlines() stack = [] items = [] for line in lines: if line.startswith('globals'): stack.append('globals') elif line.startswith('endglobals'): stack.pop(-1) stack.append('endglobals') elif line.startswith('function'): stack.append('function') elif line.startswith('endfunction'): stack.pop(-1) stack.append('endfunction') elif line.startswith('loop'): stack.append('loop') elif line.startswith('endloop'): stack.pop(-1) stack.append('endloop') elif line.startswith('if'): stack.append('if') elif line.startswith('elseif'): stack.pop(-1) stack.append('elseif') elif line.startswith('else'): stack.pop(-1) stack.append('else') elif line.startswith('endif'): stack.pop(-1) stack.append('endif') else: stack.append(line[:8] + '...') indent = len(stack) - 1 line = merge_str_literal(line) items.append(' ' * indent + line) DEBUG and print(f'{indent}. {line!r}', stack) # Add empty line after endglobals and endfunction if line.startswith('endglobals') or line.startswith('endfunction'): items.append('') if stack[-1] not in ['globals', 'function', 'loop', 'if', 'elseif', 'else']: stack.pop(-1) new_text = '\n'.join(items).strip() print(new_text) """ function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction """
en
0.31289
#!/usr/bin/env python3 # -*- coding: utf-8 -*- function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction # Add empty line after endglobals and endfunction function II1I1_II takes real II1I1__I returns nothing local real II1I1_1I local real st=TimerGetElapsed(II1I___I) if st<=0 then set II1I___I=CreateTimer() call TimerStart(II1I___I,1000000,false,null) endif if(II1I1__I>0)then loop set II1I1_1I=II1I1__I-TimerGetElapsed(II1I___I)+st exitwhen II1I1_1I<=0 if(II1I1_1I>bj_POLLED_WAIT_SKIP_THRESHOLD)then call TriggerSleepAction(0.1*II1I1_1I) else call TriggerSleepAction(bj_POLLED_WAIT_INTERVAL) endif endloop endif endfunction
2.414252
2
python/addNewData.py
TruX-DTF/fixminer_source
5
8017
from common.commons import * DATA_PATH = os.environ["DATA_PATH"] def core(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] pattern[root+'/'+size+'/'+cluster]= members[0] pattern from pairs import shapePairs matches = shapePairs() # 'FFmpeg','curl','nginx','openssl','redis','tmux','vlc'] matches = matches[matches.file.apply(lambda x: x in list(pattern.values()) or not ( x.startswith('linux_') or x.startswith('FFmpeg_') or x.startswith('curl_') or x.startswith('nginx_') or x.startswith('openssl_') or x.startswith('redis_') or x.startswith('tmux_') or x.startswith('vlc_')))] from pairs import createPairs createPairs(matches) # # # elif job == 'importShapesPairs': from pairs import importShape importShape() def checkWrongMembers(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) sizeDict = {} for s in [(i,os.path.getsize(join(clusterPath, root, size, cluster,i))) for i in members]: sizeDict[s[1]] = s[0] sizeDict if len(sizeDict) > 1: print(join(clusterPath, root, size, cluster)) print(sizeDict.values()) def cluster(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] pattern[root+'/'+size+'/'+cluster]= members[0] pattern pairsPath = join(DATA_PATH, 'pairs') from abstractPatch import loadPairMulti for root in roots: matches =loadPairMulti(root,'','shapes') matches sizes = matches['sizes'].unique().tolist() for s in sizes: match = matches[matches['sizes'] == s] match clusterCore(pattern,clusterPath, 'shapes', match, pairsPath, root, s, '') def clusterCore(pattern,clusterPath, level, match, pairsPath, root, s,action ,token=''): col_combi = match.tuples.values.tolist() import networkx g = networkx.Graph(col_combi) cluster = [] for subgraph in networkx.connected_component_subgraphs(g): logging.info('Cluster size %d',len(subgraph.nodes())) cluster.append(subgraph.nodes()) cluster pathMapping = dict() if level == 'actions': indexFile = join(pairsPath, root, s,action+'.index') elif level == 'shapes': indexFile = join(pairsPath, root, s + '.index') else: indexFile =join(pairsPath, root, s,action,token+'.index') df = pd.read_csv(indexFile, header=None, usecols=[0, 1], index_col=[0]) pathMapping = df.to_dict() workList = [] exportCLusters ={} if not os.path.exists(join(clusterPath, root, s)): print() existingClusters = 0 else: existingClusters = len(listdir(join(clusterPath, root, s))) for clus in cluster: members = [pathMapping[1][int(i)] for i in clus] members potentialClusters = [(key, value) for key, value in pattern.items() if key.startswith(root + '/' + s)] potentialClusters foundExisting = False for pc,pcMember in potentialClusters: if pcMember in members: pc foundExisting = True exportCLusters[pc.split('/')[-1]] = members if not foundExisting: exportCLusters[existingClusters] = members existingClusters= existingClusters+1 exportCLusters for k,v in exportCLusters.items(): for f in v: t = f, root, level, clusterPath, s, action, token, k workList.append(t) # for idx, clus in enumerate(cluster): # logging.info('exporting cluster %s %s %s %d', root,s,action,idx) # for f in clus: # dumpFile = pathMapping[1][int(f)] # # t = dumpFile,root,level,clusterPath,s,action,token,idx # workList.append(t) from abstractPatch import dumpFilesCore parallelRun(dumpFilesCore,workList) # for wl in workList: # dumpFilesCore(wl)
from common.commons import * DATA_PATH = os.environ["DATA_PATH"] def core(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] pattern[root+'/'+size+'/'+cluster]= members[0] pattern from pairs import shapePairs matches = shapePairs() # 'FFmpeg','curl','nginx','openssl','redis','tmux','vlc'] matches = matches[matches.file.apply(lambda x: x in list(pattern.values()) or not ( x.startswith('linux_') or x.startswith('FFmpeg_') or x.startswith('curl_') or x.startswith('nginx_') or x.startswith('openssl_') or x.startswith('redis_') or x.startswith('tmux_') or x.startswith('vlc_')))] from pairs import createPairs createPairs(matches) # # # elif job == 'importShapesPairs': from pairs import importShape importShape() def checkWrongMembers(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) sizeDict = {} for s in [(i,os.path.getsize(join(clusterPath, root, size, cluster,i))) for i in members]: sizeDict[s[1]] = s[0] sizeDict if len(sizeDict) > 1: print(join(clusterPath, root, size, cluster)) print(sizeDict.values()) def cluster(): clusterPath = join(DATA_PATH, 'shapes') roots = listdir(clusterPath) roots = [i for i in roots if not (i.startswith('.') or i.endswith('.pickle'))] pattern = {} for root in roots: root sizes = listdir(join(clusterPath, root)) for size in sizes: # actions = listdir(join(clusterPath,root,size)) # for action in actions: clusters = listdir(join(clusterPath, root, size)) for cluster in clusters: members = listdir(join(clusterPath, root, size, cluster)) # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] pattern[root+'/'+size+'/'+cluster]= members[0] pattern pairsPath = join(DATA_PATH, 'pairs') from abstractPatch import loadPairMulti for root in roots: matches =loadPairMulti(root,'','shapes') matches sizes = matches['sizes'].unique().tolist() for s in sizes: match = matches[matches['sizes'] == s] match clusterCore(pattern,clusterPath, 'shapes', match, pairsPath, root, s, '') def clusterCore(pattern,clusterPath, level, match, pairsPath, root, s,action ,token=''): col_combi = match.tuples.values.tolist() import networkx g = networkx.Graph(col_combi) cluster = [] for subgraph in networkx.connected_component_subgraphs(g): logging.info('Cluster size %d',len(subgraph.nodes())) cluster.append(subgraph.nodes()) cluster pathMapping = dict() if level == 'actions': indexFile = join(pairsPath, root, s,action+'.index') elif level == 'shapes': indexFile = join(pairsPath, root, s + '.index') else: indexFile =join(pairsPath, root, s,action,token+'.index') df = pd.read_csv(indexFile, header=None, usecols=[0, 1], index_col=[0]) pathMapping = df.to_dict() workList = [] exportCLusters ={} if not os.path.exists(join(clusterPath, root, s)): print() existingClusters = 0 else: existingClusters = len(listdir(join(clusterPath, root, s))) for clus in cluster: members = [pathMapping[1][int(i)] for i in clus] members potentialClusters = [(key, value) for key, value in pattern.items() if key.startswith(root + '/' + s)] potentialClusters foundExisting = False for pc,pcMember in potentialClusters: if pcMember in members: pc foundExisting = True exportCLusters[pc.split('/')[-1]] = members if not foundExisting: exportCLusters[existingClusters] = members existingClusters= existingClusters+1 exportCLusters for k,v in exportCLusters.items(): for f in v: t = f, root, level, clusterPath, s, action, token, k workList.append(t) # for idx, clus in enumerate(cluster): # logging.info('exporting cluster %s %s %s %d', root,s,action,idx) # for f in clus: # dumpFile = pathMapping[1][int(f)] # # t = dumpFile,root,level,clusterPath,s,action,token,idx # workList.append(t) from abstractPatch import dumpFilesCore parallelRun(dumpFilesCore,workList) # for wl in workList: # dumpFilesCore(wl)
en
0.474212
# actions = listdir(join(clusterPath,root,size)) # for action in actions: # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] # 'FFmpeg','curl','nginx','openssl','redis','tmux','vlc'] # # # elif job == 'importShapesPairs': # actions = listdir(join(clusterPath,root,size)) # for action in actions: # actions = listdir(join(clusterPath,root,size)) # for action in actions: # pattern[root+'/'+size+'/'+cluster]= root +'/' +size +'/'+ members[0] # for idx, clus in enumerate(cluster): # logging.info('exporting cluster %s %s %s %d', root,s,action,idx) # for f in clus: # dumpFile = pathMapping[1][int(f)] # # t = dumpFile,root,level,clusterPath,s,action,token,idx # workList.append(t) # for wl in workList: # dumpFilesCore(wl)
2.115445
2
app.py
aosjehdgus/transliteration
0
8018
# -*- coding: utf-8 -*- import os import sys import tensorflow as tf import numpy as np import data_utils from translate import Transliteration from flask import Flask, request, jsonify transliteration = Transliteration() app = Flask(__name__) # Flask 객체 선언, 파라미터로 어플리케이션 패키지의 이름을 넣어 준다. app.config['JSON_AS_ASCII'] = False # 한글 데이터 전송을 위해서 설정해 준다. @app.route("/transliterate", methods=['GET']) def transliterate(): input = request.args.get('input') output = transliteration.run(input) learned = transliteration.is_learned(input) print(input, learned) return jsonify(output) if __name__ == "__main__": app.run(debug = True, host='0.0.0.0', port=80, use_reloader=False)
# -*- coding: utf-8 -*- import os import sys import tensorflow as tf import numpy as np import data_utils from translate import Transliteration from flask import Flask, request, jsonify transliteration = Transliteration() app = Flask(__name__) # Flask 객체 선언, 파라미터로 어플리케이션 패키지의 이름을 넣어 준다. app.config['JSON_AS_ASCII'] = False # 한글 데이터 전송을 위해서 설정해 준다. @app.route("/transliterate", methods=['GET']) def transliterate(): input = request.args.get('input') output = transliteration.run(input) learned = transliteration.is_learned(input) print(input, learned) return jsonify(output) if __name__ == "__main__": app.run(debug = True, host='0.0.0.0', port=80, use_reloader=False)
ko
1.000029
# -*- coding: utf-8 -*- # Flask 객체 선언, 파라미터로 어플리케이션 패키지의 이름을 넣어 준다. # 한글 데이터 전송을 위해서 설정해 준다.
2.951135
3
pyano2/apps.py
mental689/pyano
1
8019
from django.apps import AppConfig class Pyano2Config(AppConfig): name = 'pyano2'
from django.apps import AppConfig class Pyano2Config(AppConfig): name = 'pyano2'
none
1
1.257219
1
cime/scripts/lib/CIME/XML/env_build.py
cbeall123/E3SM
1
8020
<reponame>cbeall123/E3SM """ Interface to the env_build.xml file. This class inherits from EnvBase """ from CIME.XML.standard_module_setup import * from CIME.XML.env_base import EnvBase logger = logging.getLogger(__name__) class EnvBuild(EnvBase): # pylint: disable=unused-argument def __init__(self, case_root=None, infile="env_build.xml",components=None): """ initialize an object interface to file env_build.xml in the case directory """ schema = os.path.join(get_cime_root(), "config", "xml_schemas", "env_entry_id.xsd") EnvBase.__init__(self, case_root, infile, schema=schema)
""" Interface to the env_build.xml file. This class inherits from EnvBase """ from CIME.XML.standard_module_setup import * from CIME.XML.env_base import EnvBase logger = logging.getLogger(__name__) class EnvBuild(EnvBase): # pylint: disable=unused-argument def __init__(self, case_root=None, infile="env_build.xml",components=None): """ initialize an object interface to file env_build.xml in the case directory """ schema = os.path.join(get_cime_root(), "config", "xml_schemas", "env_entry_id.xsd") EnvBase.__init__(self, case_root, infile, schema=schema)
en
0.641463
Interface to the env_build.xml file. This class inherits from EnvBase # pylint: disable=unused-argument initialize an object interface to file env_build.xml in the case directory
2.144277
2
services/ops/LogStatisticsAgent/logstatisticsagent/agent.py
gnmerritt/volttron
1
8021
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2019, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import datetime import logging import os import sys import statistics from volttron.platform.vip.agent import Agent, RPC, Core from volttron.platform.agent import utils from volttron.platform.agent.utils import get_aware_utc_now utils.setup_logging() _log = logging.getLogger(__name__) __version__ = '1.0' def log_statistics(config_path, **kwargs): """Load the LogStatisticsAgent agent configuration and returns and instance of the agent created using that configuration. :param config_path: Path to a configuration file. :type config_path: str :returns: LogStatisticsAgent agent instance :rtype: LogStatisticsAgent agent """ config = utils.load_config(config_path) return LogStatisticsAgent(config, **kwargs) class LogStatisticsAgent(Agent): """ LogStatisticsAgent reads volttron.log file size every hour, compute the size delta from previous hour and publish the difference with timestamp. It also publishes standard deviation every 24 hours. :param config: Configuration dict :type config: dict Example configuration: .. code-block:: python { "file_path" : "/home/volttron/volttron.log", "analysis_interval_sec" : 60, "publish_topic" : "platform/log_statistics", "historian_topic" : "analysis/log_statistics" } """ def __init__(self, config, **kwargs): super(LogStatisticsAgent, self).__init__(**kwargs) self.analysis_interval_sec = config["analysis_interval_sec"] self.file_path = config["file_path"] self.publish_topic = config["publish_topic"] self.historian_topic = config["historian_topic"] self.size_delta_list = [] self.file_start_size = None self.prev_file_size = None self._scheduled_event = None @Core.receiver('onstart') def starting(self, sender, **kwargs): _log.info("Starting " + self.__class__.__name__ + " agent") self.publish_analysis() def publish_analysis(self): """ Publishes file's size increment in previous time interval (60 minutes) with timestamp. Also publishes standard deviation of file's hourly size differences every 24 hour. """ if self._scheduled_event is not None: self._scheduled_event.cancel() if self.prev_file_size is None: self.prev_file_size = self.get_file_size() _log.debug("init_file_size = {}".format(self.prev_file_size)) else: # read file size curr_file_size = self.get_file_size() # calculate size delta size_delta = curr_file_size - self.prev_file_size self.prev_file_size = curr_file_size self.size_delta_list.append(size_delta) headers = {'Date': datetime.datetime.utcnow().isoformat() + 'Z'} publish_message = {'timestamp': datetime.datetime.utcnow().isoformat() + 'Z', 'log_size_delta': size_delta} historian_message = [{"log_size_delta ": size_delta}, {"log_size_delta ": {'units': 'bytes', 'tz': 'UTC', 'type': 'float'}}] if len(self.size_delta_list) == 24: standard_deviation = statistics.stdev(self.size_delta_list) publish_message['log_std_dev'] = standard_deviation historian_message[0]['log_std_dev'] = standard_deviation historian_message[1]['log_std_dev'] = {'units': 'bytes', 'tz': 'UTC', 'type': 'float'} _log.debug('publishing message {} with header {} on historian topic {}' .format(historian_message, headers, self.historian_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.historian_topic, headers = headers, message=historian_message) self.size_delta_list = [] _log.debug('publishing message {} on topic {}'.format(publish_message, self.publish_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.publish_topic, message=publish_message) _log.debug('Scheduling next periodic call') now = get_aware_utc_now() next_update_time = now + datetime.timedelta( seconds=self.analysis_interval_sec) self._scheduled_event = self.core.schedule( next_update_time, self.publish_analysis) def get_file_size(self): try: return os.path.getsize(self.file_path) except OSError as e: _log.error(e) def main(argv=sys.argv): """Main method called by the platform.""" utils.vip_main(log_statistics, identity='platform.logstatisticsagent') if __name__ == '__main__': # Entry point for script try: sys.exit(main()) except KeyboardInterrupt: pass
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2019, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import datetime import logging import os import sys import statistics from volttron.platform.vip.agent import Agent, RPC, Core from volttron.platform.agent import utils from volttron.platform.agent.utils import get_aware_utc_now utils.setup_logging() _log = logging.getLogger(__name__) __version__ = '1.0' def log_statistics(config_path, **kwargs): """Load the LogStatisticsAgent agent configuration and returns and instance of the agent created using that configuration. :param config_path: Path to a configuration file. :type config_path: str :returns: LogStatisticsAgent agent instance :rtype: LogStatisticsAgent agent """ config = utils.load_config(config_path) return LogStatisticsAgent(config, **kwargs) class LogStatisticsAgent(Agent): """ LogStatisticsAgent reads volttron.log file size every hour, compute the size delta from previous hour and publish the difference with timestamp. It also publishes standard deviation every 24 hours. :param config: Configuration dict :type config: dict Example configuration: .. code-block:: python { "file_path" : "/home/volttron/volttron.log", "analysis_interval_sec" : 60, "publish_topic" : "platform/log_statistics", "historian_topic" : "analysis/log_statistics" } """ def __init__(self, config, **kwargs): super(LogStatisticsAgent, self).__init__(**kwargs) self.analysis_interval_sec = config["analysis_interval_sec"] self.file_path = config["file_path"] self.publish_topic = config["publish_topic"] self.historian_topic = config["historian_topic"] self.size_delta_list = [] self.file_start_size = None self.prev_file_size = None self._scheduled_event = None @Core.receiver('onstart') def starting(self, sender, **kwargs): _log.info("Starting " + self.__class__.__name__ + " agent") self.publish_analysis() def publish_analysis(self): """ Publishes file's size increment in previous time interval (60 minutes) with timestamp. Also publishes standard deviation of file's hourly size differences every 24 hour. """ if self._scheduled_event is not None: self._scheduled_event.cancel() if self.prev_file_size is None: self.prev_file_size = self.get_file_size() _log.debug("init_file_size = {}".format(self.prev_file_size)) else: # read file size curr_file_size = self.get_file_size() # calculate size delta size_delta = curr_file_size - self.prev_file_size self.prev_file_size = curr_file_size self.size_delta_list.append(size_delta) headers = {'Date': datetime.datetime.utcnow().isoformat() + 'Z'} publish_message = {'timestamp': datetime.datetime.utcnow().isoformat() + 'Z', 'log_size_delta': size_delta} historian_message = [{"log_size_delta ": size_delta}, {"log_size_delta ": {'units': 'bytes', 'tz': 'UTC', 'type': 'float'}}] if len(self.size_delta_list) == 24: standard_deviation = statistics.stdev(self.size_delta_list) publish_message['log_std_dev'] = standard_deviation historian_message[0]['log_std_dev'] = standard_deviation historian_message[1]['log_std_dev'] = {'units': 'bytes', 'tz': 'UTC', 'type': 'float'} _log.debug('publishing message {} with header {} on historian topic {}' .format(historian_message, headers, self.historian_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.historian_topic, headers = headers, message=historian_message) self.size_delta_list = [] _log.debug('publishing message {} on topic {}'.format(publish_message, self.publish_topic)) self.vip.pubsub.publish(peer="pubsub", topic=self.publish_topic, message=publish_message) _log.debug('Scheduling next periodic call') now = get_aware_utc_now() next_update_time = now + datetime.timedelta( seconds=self.analysis_interval_sec) self._scheduled_event = self.core.schedule( next_update_time, self.publish_analysis) def get_file_size(self): try: return os.path.getsize(self.file_path) except OSError as e: _log.error(e) def main(argv=sys.argv): """Main method called by the platform.""" utils.vip_main(log_statistics, identity='platform.logstatisticsagent') if __name__ == '__main__': # Entry point for script try: sys.exit(main()) except KeyboardInterrupt: pass
en
0.817641
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2019, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} Load the LogStatisticsAgent agent configuration and returns and instance of the agent created using that configuration. :param config_path: Path to a configuration file. :type config_path: str :returns: LogStatisticsAgent agent instance :rtype: LogStatisticsAgent agent LogStatisticsAgent reads volttron.log file size every hour, compute the size delta from previous hour and publish the difference with timestamp. It also publishes standard deviation every 24 hours. :param config: Configuration dict :type config: dict Example configuration: .. code-block:: python { "file_path" : "/home/volttron/volttron.log", "analysis_interval_sec" : 60, "publish_topic" : "platform/log_statistics", "historian_topic" : "analysis/log_statistics" } Publishes file's size increment in previous time interval (60 minutes) with timestamp. Also publishes standard deviation of file's hourly size differences every 24 hour. # read file size # calculate size delta Main method called by the platform. # Entry point for script
1.190412
1
apps/inventory/serializers.py
sseits-skku/its-backend
0
8022
from rest_framework.serializers import ModelSerializer from .models import Place, Status, OSType, Stock, ComputerStock class PlaceSerializer(ModelSerializer): class Meta: model = Place fields = '__all__' class StatusSerializer(ModelSerializer): class Meta: model = Status fields = '__all__' class OSTypeSerializer(ModelSerializer): class Meta: model = OSType fields = '__all__' class StockSerializer(ModelSerializer): class Meta: model = Stock fields = '__all__' class ComputerStockSerializer(ModelSerializer): class Meta: model = ComputerStock fields = '__all__'
from rest_framework.serializers import ModelSerializer from .models import Place, Status, OSType, Stock, ComputerStock class PlaceSerializer(ModelSerializer): class Meta: model = Place fields = '__all__' class StatusSerializer(ModelSerializer): class Meta: model = Status fields = '__all__' class OSTypeSerializer(ModelSerializer): class Meta: model = OSType fields = '__all__' class StockSerializer(ModelSerializer): class Meta: model = Stock fields = '__all__' class ComputerStockSerializer(ModelSerializer): class Meta: model = ComputerStock fields = '__all__'
none
1
2.090784
2
fmpy/cswrapper/__init__.py
CSchulzeTLK/FMPy
225
8023
<reponame>CSchulzeTLK/FMPy def add_cswrapper(filename, outfilename=None): from fmpy import read_model_description, extract, sharedLibraryExtension, platform, __version__ from lxml import etree import os from shutil import copyfile, rmtree if outfilename is None: outfilename = filename model_description = read_model_description(filename) if model_description.fmiVersion != '2.0': raise Exception("%s is not an FMI 2.0 FMU." % filename) if model_description.modelExchange is None: raise Exception("%s does not support Model Exchange." % filename) unzipdir = extract(filename) xml = os.path.join(unzipdir, 'modelDescription.xml') tree = etree.parse(xml) root = tree.getroot() # update description generation_tool = root.attrib.get('generationTool', 'Unknown') + " with FMPy %s Co-Simulation wrapper" % __version__ root.attrib['generationTool'] = generation_tool # remove any existing <CoSimulation> element for e in root.findall('CoSimulation'): root.remove(e) for i, child in enumerate(root): if child.tag == 'ModelExchange': break model_identifier = '%s_%s_%s' % (model_description.modelExchange.modelIdentifier, model_description.numberOfContinuousStates, model_description.numberOfEventIndicators) e = etree.Element("CoSimulation") e.attrib['modelIdentifier'] = model_identifier root.insert(i + 1, e) tree.write(xml, pretty_print=True, encoding='utf-8') shared_library = os.path.join(os.path.dirname(__file__), 'cswrapper' + sharedLibraryExtension) license_file = os.path.join(os.path.dirname(__file__), 'license.txt') licenses_dir = os.path.join(unzipdir, 'documentation', 'licenses') if not os.path.isdir(licenses_dir): os.mkdir(licenses_dir) copyfile(src=shared_library, dst=os.path.join(unzipdir, 'binaries', platform, model_identifier + sharedLibraryExtension)) copyfile(license_file, os.path.join(unzipdir, 'documentation', 'licenses', 'fmpy-cswrapper.txt')) create_zip_archive(outfilename, unzipdir) rmtree(unzipdir, ignore_errors=True) def create_zip_archive(filename, source_dir): import zipfile import os with zipfile.ZipFile(filename, 'w', zipfile.ZIP_DEFLATED) as zf: base_path = os.path.normpath(source_dir) for dirpath, dirnames, filenames in os.walk(source_dir): for name in sorted(dirnames): path = os.path.normpath(os.path.join(dirpath, name)) zf.write(path, os.path.relpath(path, base_path)) for name in filenames: path = os.path.normpath(os.path.join(dirpath, name)) if os.path.isfile(path): zf.write(path, os.path.relpath(path, base_path))
def add_cswrapper(filename, outfilename=None): from fmpy import read_model_description, extract, sharedLibraryExtension, platform, __version__ from lxml import etree import os from shutil import copyfile, rmtree if outfilename is None: outfilename = filename model_description = read_model_description(filename) if model_description.fmiVersion != '2.0': raise Exception("%s is not an FMI 2.0 FMU." % filename) if model_description.modelExchange is None: raise Exception("%s does not support Model Exchange." % filename) unzipdir = extract(filename) xml = os.path.join(unzipdir, 'modelDescription.xml') tree = etree.parse(xml) root = tree.getroot() # update description generation_tool = root.attrib.get('generationTool', 'Unknown') + " with FMPy %s Co-Simulation wrapper" % __version__ root.attrib['generationTool'] = generation_tool # remove any existing <CoSimulation> element for e in root.findall('CoSimulation'): root.remove(e) for i, child in enumerate(root): if child.tag == 'ModelExchange': break model_identifier = '%s_%s_%s' % (model_description.modelExchange.modelIdentifier, model_description.numberOfContinuousStates, model_description.numberOfEventIndicators) e = etree.Element("CoSimulation") e.attrib['modelIdentifier'] = model_identifier root.insert(i + 1, e) tree.write(xml, pretty_print=True, encoding='utf-8') shared_library = os.path.join(os.path.dirname(__file__), 'cswrapper' + sharedLibraryExtension) license_file = os.path.join(os.path.dirname(__file__), 'license.txt') licenses_dir = os.path.join(unzipdir, 'documentation', 'licenses') if not os.path.isdir(licenses_dir): os.mkdir(licenses_dir) copyfile(src=shared_library, dst=os.path.join(unzipdir, 'binaries', platform, model_identifier + sharedLibraryExtension)) copyfile(license_file, os.path.join(unzipdir, 'documentation', 'licenses', 'fmpy-cswrapper.txt')) create_zip_archive(outfilename, unzipdir) rmtree(unzipdir, ignore_errors=True) def create_zip_archive(filename, source_dir): import zipfile import os with zipfile.ZipFile(filename, 'w', zipfile.ZIP_DEFLATED) as zf: base_path = os.path.normpath(source_dir) for dirpath, dirnames, filenames in os.walk(source_dir): for name in sorted(dirnames): path = os.path.normpath(os.path.join(dirpath, name)) zf.write(path, os.path.relpath(path, base_path)) for name in filenames: path = os.path.normpath(os.path.join(dirpath, name)) if os.path.isfile(path): zf.write(path, os.path.relpath(path, base_path))
en
0.192361
# update description # remove any existing <CoSimulation> element
2.13795
2
test/dict_parameter_test.py
shouldsee/luigi
14,755
8024
<gh_stars>1000+ # -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from helpers import unittest, in_parse import luigi import luigi.interface import json import collections class DictParameterTask(luigi.Task): param = luigi.DictParameter() class DictParameterTest(unittest.TestCase): _dict = collections.OrderedDict([('username', 'me'), ('password', '<PASSWORD>')]) def test_parse(self): d = luigi.DictParameter().parse(json.dumps(DictParameterTest._dict)) self.assertEqual(d, DictParameterTest._dict) def test_serialize(self): d = luigi.DictParameter().serialize(DictParameterTest._dict) self.assertEqual(d, '{"username": "me", "password": "<PASSWORD>"}') def test_parse_and_serialize(self): inputs = ['{"username": "me", "password": "<PASSWORD>"}', '{"password": "<PASSWORD>", "username": "me"}'] for json_input in inputs: _dict = luigi.DictParameter().parse(json_input) self.assertEqual(json_input, luigi.DictParameter().serialize(_dict)) def test_parse_interface(self): in_parse(["DictParameterTask", "--param", '{"username": "me", "password": "<PASSWORD>"}'], lambda task: self.assertEqual(task.param, DictParameterTest._dict)) def test_serialize_task(self): t = DictParameterTask(DictParameterTest._dict) self.assertEqual(str(t), 'DictParameterTask(param={"username": "me", "password": "<PASSWORD>"})') def test_parse_invalid_input(self): self.assertRaises(ValueError, lambda: luigi.DictParameter().parse('{"invalid"}')) def test_hash_normalize(self): self.assertRaises(TypeError, lambda: hash(luigi.DictParameter().parse('{"a": {"b": []}}'))) a = luigi.DictParameter().normalize({"a": [{"b": []}]}) b = luigi.DictParameter().normalize({"a": [{"b": []}]}) self.assertEqual(hash(a), hash(b))
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from helpers import unittest, in_parse import luigi import luigi.interface import json import collections class DictParameterTask(luigi.Task): param = luigi.DictParameter() class DictParameterTest(unittest.TestCase): _dict = collections.OrderedDict([('username', 'me'), ('password', '<PASSWORD>')]) def test_parse(self): d = luigi.DictParameter().parse(json.dumps(DictParameterTest._dict)) self.assertEqual(d, DictParameterTest._dict) def test_serialize(self): d = luigi.DictParameter().serialize(DictParameterTest._dict) self.assertEqual(d, '{"username": "me", "password": "<PASSWORD>"}') def test_parse_and_serialize(self): inputs = ['{"username": "me", "password": "<PASSWORD>"}', '{"password": "<PASSWORD>", "username": "me"}'] for json_input in inputs: _dict = luigi.DictParameter().parse(json_input) self.assertEqual(json_input, luigi.DictParameter().serialize(_dict)) def test_parse_interface(self): in_parse(["DictParameterTask", "--param", '{"username": "me", "password": "<PASSWORD>"}'], lambda task: self.assertEqual(task.param, DictParameterTest._dict)) def test_serialize_task(self): t = DictParameterTask(DictParameterTest._dict) self.assertEqual(str(t), 'DictParameterTask(param={"username": "me", "password": "<PASSWORD>"})') def test_parse_invalid_input(self): self.assertRaises(ValueError, lambda: luigi.DictParameter().parse('{"invalid"}')) def test_hash_normalize(self): self.assertRaises(TypeError, lambda: hash(luigi.DictParameter().parse('{"a": {"b": []}}'))) a = luigi.DictParameter().normalize({"a": [{"b": []}]}) b = luigi.DictParameter().normalize({"a": [{"b": []}]}) self.assertEqual(hash(a), hash(b))
en
0.840663
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #
2.415882
2
echoscope/source/mysql_source.py
treeyh/echoscope
1
8025
# -*- coding: UTF-8 -*- import logging from typing import List from echoscope.config import config from echoscope.util import mysql_util, str_util, log_util from echoscope.model import ds_model, config_model from echoscope.source import source class MysqlSource(source.Source): def __init__(self): self.excludesDb = ['information_schema', 'performance_schema', 'mysql', 'sys', 'test'] def export_model(self, conf: config_model.DataSourceConfig) -> ds_model.DataSourceModel: mysqlUtil = mysql_util.get_mysql_util( host=conf.host, port=conf.port, user=conf.user, passwd=<PASSWORD>, db=conf.db, charset=conf.charset) ver = self.get_db_version(mysqlUtil) if ver == '': logging.error(' mysql conn fail. ') return dsm = ds_model.DataSourceModel( name='%s:%d' % (conf.host, conf.port), dbType=config.DsMysql, version=ver) dsm.dbs = self.get_export_dbs(mysqlUtil, conf.includes, conf.excludes) dsm = self.fill_table_fields(mysqlUtil, dsm) return dsm def get_db_version(self, conn: mysql_util.MysqlUtil) -> str: """获取mysql版本 Args: conn (mysql_util.MysqlUtil): [description] Returns: str: [description] """ sql = 'select version() as ver from dual' cols = ['ver'] ver = conn.find_one(sql, (), cols) return '' if ver == None else str_util.format_bytes_to_str(ver.get('ver', '')) def get_export_dbs(self, conn: mysql_util.MysqlUtil, includes: List[str] = [], excludes: List[str] = []) -> List[ds_model.DbModel]: """获取需要导出结构的数据库列表 Args: conn (mysql_util.MysqlUtil): 数据库连接 includes (List[str], optional): 需要包含的数据库列表. Defaults to []. excludes (List[str], optional): 需要排除的数据库列表. Defaults to []. Returns: List[ds_model.DbModel]: 需要导出的数据库列表 """ sql = 'select SCHEMA_NAME AS db_name, DEFAULT_CHARACTER_SET_NAME as charset, DEFAULT_COLLATION_NAME as collation_name from `information_schema`.SCHEMATA ' cols = ['db_name', 'charset', 'collation_name'] data = conn.find_all(sql, (), cols) dbs = [] for d in data: db_name = str_util.format_bytes_to_str(d['db_name']) if db_name in self.excludesDb or db_name in excludes: # 需要过滤 continue if len(includes) > 0 and db_name not in includes: # 不包含在include中 continue charset = str_util.format_bytes_to_str(d['charset']) collation_name = str_util.format_bytes_to_str(d['collation_name']) dbModel = ds_model.DbModel( name=db_name, charset=charset, collation_name=collation_name) dbs.append(dbModel) return dbs def fill_table_fields(self, conn: mysql_util.MysqlUtil, dsModel: ds_model.DataSourceModel) -> ds_model.DataSourceModel: """获取数据库中的表信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dsModel (ds_model.DataSourceModel): 数据源,包含数据库列表 Returns: ds_model.DataSourceModel: 数据源 """ sql = ''' select TABLE_NAME, `ENGINE`, TABLE_COLLATION, TABLE_COMMENT from information_schema.`TABLES` where TABLE_SCHEMA = %s and TABLE_TYPE = 'BASE TABLE' ''' cols = ['TABLE_NAME', 'ENGINE', 'TABLE_COLLATION', 'TABLE_COMMENT'] for db in dsModel.dbs: data = conn.find_all(sql, (db.name, ), cols) tables: ds_model.TableModel = [] for d in data: tableName = str_util.format_bytes_to_str(d['TABLE_NAME']) comment = str_util.format_bytes_to_str(d['TABLE_COMMENT']) collation_name = str_util.format_bytes_to_str(d['TABLE_COLLATION']) engine = str_util.format_bytes_to_str(d['ENGINE']) table = ds_model.TableModel( name=tableName, comment=comment, collation_name=collation_name, engine=engine) logging.info('load table:%s fields.' % tableName) table.fields = self.get_fields(conn, db.name, tableName) table.create_script = self.get_create_script(conn, db.name, tableName) tables.append(table) db.tables = tables return dsModel def get_create_script(self, conn: mysql_util.MysqlUtil, dbName: str, tableName: str) -> str: """获取表的创建脚本 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名称 tableName (str): 表名称 Returns: str: 创建脚本 """ sql = ''' SHOW CREATE TABLE `%s`.`%s` ''' % (dbName, tableName) cols = ['Table', 'Create Table'] data = conn.find_one(sql, (), cols) return '' if data == None else str_util.format_bytes_to_str(data.get('Create Table', '')) def get_fields(self, conn: mysql_util.MysqlUtil, dbName: str, tableName: str) -> List[ds_model.FieldModel]: """获取数据表中列信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名 tableName (str): 表名 Returns: List[ds_model.FieldModel]: 列列表 """ sql = ''' select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE, CHARACTER_SET_NAME, COLLATION_NAME, COLUMN_TYPE, COLUMN_KEY, EXTRA, COLUMN_COMMENT from information_schema.`columns` where TABLE_SCHEMA = %s and TABLE_NAME = %s ORDER BY TABLE_SCHEMA DESC, TABLE_NAME DESC, ORDINAL_POSITION ASC ''' cols = ['TABLE_SCHEMA', 'TABLE_NAME', 'COLUMN_NAME', 'ORDINAL_POSITION', 'COLUMN_DEFAULT', 'IS_NULLABLE', 'DATA_TYPE', 'CHARACTER_MAXIMUM_LENGTH', 'NUMERIC_PRECISION', 'NUMERIC_SCALE', 'CHARACTER_SET_NAME', 'COLLATION_NAME', 'COLUMN_TYPE', 'COLUMN_KEY', 'EXTRA', 'COLUMN_COMMENT'] data = conn.find_all(sql, (dbName, tableName, ), cols) fields = [] for d in data: fname = str_util.format_bytes_to_str(d['COLUMN_NAME']) ftype = str_util.format_bytes_to_str(d['DATA_TYPE']) column_type = str_utils.format_bytes_to_str(d['COLUMN_TYPE']) length = str_util.format_bytes_to_str( d['CHARACTER_MAXIMUM_LENGTH']) if d['CHARACTER_MAXIMUM_LENGTH'] != None else str_util.format_bytes_to_str(d['NUMERIC_PRECISION']) scale = str_util.format_bytes_to_str(d['NUMERIC_SCALE']) # on update CURRENT_TIMESTAMP default = str_util.format_bytes_to_str(d['COLUMN_DEFAULT']) ext = str_util.format_bytes_to_str(d['EXTRA']) if default == 'CURRENT_TIMESTAMP': if 'on update CURRENT_TIMESTAMP' in ext: default = 'update_time' else: default = 'create_time' nullFlag = str_util.format_bytes_to_str(d['IS_NULLABLE']) comment = str_util.format_bytes_to_str(d['COLUMN_COMMENT']) charset = str_util.format_bytes_to_str(d['CHARACTER_SET_NAME']) collation_name = str_util.format_bytes_to_str(d['COLLATION_NAME']) indexFlag = 0 column_key = str_util.format_bytes_to_str(d['COLUMN_KEY']) if column_key == 'PRI': indexFlag = 1 elif column_key == 'UNI': indexFlag = 3 elif column_key == 'MUL': indexFlag = 2 indexName = '' autoInc = False if 'auto_increment' in ext: autoInc = True field = ds_model.FieldModel(name=fname, ftype=ftype, length=length, scale=scale, default=default, nullFlag=nullFlag, comment=comment, charset=charset, collation_name=collation_name, indexFlag=indexFlag, indexName=indexName, autoInc=autoInc) fields.append(field) return fields
# -*- coding: UTF-8 -*- import logging from typing import List from echoscope.config import config from echoscope.util import mysql_util, str_util, log_util from echoscope.model import ds_model, config_model from echoscope.source import source class MysqlSource(source.Source): def __init__(self): self.excludesDb = ['information_schema', 'performance_schema', 'mysql', 'sys', 'test'] def export_model(self, conf: config_model.DataSourceConfig) -> ds_model.DataSourceModel: mysqlUtil = mysql_util.get_mysql_util( host=conf.host, port=conf.port, user=conf.user, passwd=<PASSWORD>, db=conf.db, charset=conf.charset) ver = self.get_db_version(mysqlUtil) if ver == '': logging.error(' mysql conn fail. ') return dsm = ds_model.DataSourceModel( name='%s:%d' % (conf.host, conf.port), dbType=config.DsMysql, version=ver) dsm.dbs = self.get_export_dbs(mysqlUtil, conf.includes, conf.excludes) dsm = self.fill_table_fields(mysqlUtil, dsm) return dsm def get_db_version(self, conn: mysql_util.MysqlUtil) -> str: """获取mysql版本 Args: conn (mysql_util.MysqlUtil): [description] Returns: str: [description] """ sql = 'select version() as ver from dual' cols = ['ver'] ver = conn.find_one(sql, (), cols) return '' if ver == None else str_util.format_bytes_to_str(ver.get('ver', '')) def get_export_dbs(self, conn: mysql_util.MysqlUtil, includes: List[str] = [], excludes: List[str] = []) -> List[ds_model.DbModel]: """获取需要导出结构的数据库列表 Args: conn (mysql_util.MysqlUtil): 数据库连接 includes (List[str], optional): 需要包含的数据库列表. Defaults to []. excludes (List[str], optional): 需要排除的数据库列表. Defaults to []. Returns: List[ds_model.DbModel]: 需要导出的数据库列表 """ sql = 'select SCHEMA_NAME AS db_name, DEFAULT_CHARACTER_SET_NAME as charset, DEFAULT_COLLATION_NAME as collation_name from `information_schema`.SCHEMATA ' cols = ['db_name', 'charset', 'collation_name'] data = conn.find_all(sql, (), cols) dbs = [] for d in data: db_name = str_util.format_bytes_to_str(d['db_name']) if db_name in self.excludesDb or db_name in excludes: # 需要过滤 continue if len(includes) > 0 and db_name not in includes: # 不包含在include中 continue charset = str_util.format_bytes_to_str(d['charset']) collation_name = str_util.format_bytes_to_str(d['collation_name']) dbModel = ds_model.DbModel( name=db_name, charset=charset, collation_name=collation_name) dbs.append(dbModel) return dbs def fill_table_fields(self, conn: mysql_util.MysqlUtil, dsModel: ds_model.DataSourceModel) -> ds_model.DataSourceModel: """获取数据库中的表信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dsModel (ds_model.DataSourceModel): 数据源,包含数据库列表 Returns: ds_model.DataSourceModel: 数据源 """ sql = ''' select TABLE_NAME, `ENGINE`, TABLE_COLLATION, TABLE_COMMENT from information_schema.`TABLES` where TABLE_SCHEMA = %s and TABLE_TYPE = 'BASE TABLE' ''' cols = ['TABLE_NAME', 'ENGINE', 'TABLE_COLLATION', 'TABLE_COMMENT'] for db in dsModel.dbs: data = conn.find_all(sql, (db.name, ), cols) tables: ds_model.TableModel = [] for d in data: tableName = str_util.format_bytes_to_str(d['TABLE_NAME']) comment = str_util.format_bytes_to_str(d['TABLE_COMMENT']) collation_name = str_util.format_bytes_to_str(d['TABLE_COLLATION']) engine = str_util.format_bytes_to_str(d['ENGINE']) table = ds_model.TableModel( name=tableName, comment=comment, collation_name=collation_name, engine=engine) logging.info('load table:%s fields.' % tableName) table.fields = self.get_fields(conn, db.name, tableName) table.create_script = self.get_create_script(conn, db.name, tableName) tables.append(table) db.tables = tables return dsModel def get_create_script(self, conn: mysql_util.MysqlUtil, dbName: str, tableName: str) -> str: """获取表的创建脚本 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名称 tableName (str): 表名称 Returns: str: 创建脚本 """ sql = ''' SHOW CREATE TABLE `%s`.`%s` ''' % (dbName, tableName) cols = ['Table', 'Create Table'] data = conn.find_one(sql, (), cols) return '' if data == None else str_util.format_bytes_to_str(data.get('Create Table', '')) def get_fields(self, conn: mysql_util.MysqlUtil, dbName: str, tableName: str) -> List[ds_model.FieldModel]: """获取数据表中列信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名 tableName (str): 表名 Returns: List[ds_model.FieldModel]: 列列表 """ sql = ''' select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE, CHARACTER_SET_NAME, COLLATION_NAME, COLUMN_TYPE, COLUMN_KEY, EXTRA, COLUMN_COMMENT from information_schema.`columns` where TABLE_SCHEMA = %s and TABLE_NAME = %s ORDER BY TABLE_SCHEMA DESC, TABLE_NAME DESC, ORDINAL_POSITION ASC ''' cols = ['TABLE_SCHEMA', 'TABLE_NAME', 'COLUMN_NAME', 'ORDINAL_POSITION', 'COLUMN_DEFAULT', 'IS_NULLABLE', 'DATA_TYPE', 'CHARACTER_MAXIMUM_LENGTH', 'NUMERIC_PRECISION', 'NUMERIC_SCALE', 'CHARACTER_SET_NAME', 'COLLATION_NAME', 'COLUMN_TYPE', 'COLUMN_KEY', 'EXTRA', 'COLUMN_COMMENT'] data = conn.find_all(sql, (dbName, tableName, ), cols) fields = [] for d in data: fname = str_util.format_bytes_to_str(d['COLUMN_NAME']) ftype = str_util.format_bytes_to_str(d['DATA_TYPE']) column_type = str_utils.format_bytes_to_str(d['COLUMN_TYPE']) length = str_util.format_bytes_to_str( d['CHARACTER_MAXIMUM_LENGTH']) if d['CHARACTER_MAXIMUM_LENGTH'] != None else str_util.format_bytes_to_str(d['NUMERIC_PRECISION']) scale = str_util.format_bytes_to_str(d['NUMERIC_SCALE']) # on update CURRENT_TIMESTAMP default = str_util.format_bytes_to_str(d['COLUMN_DEFAULT']) ext = str_util.format_bytes_to_str(d['EXTRA']) if default == 'CURRENT_TIMESTAMP': if 'on update CURRENT_TIMESTAMP' in ext: default = 'update_time' else: default = 'create_time' nullFlag = str_util.format_bytes_to_str(d['IS_NULLABLE']) comment = str_util.format_bytes_to_str(d['COLUMN_COMMENT']) charset = str_util.format_bytes_to_str(d['CHARACTER_SET_NAME']) collation_name = str_util.format_bytes_to_str(d['COLLATION_NAME']) indexFlag = 0 column_key = str_util.format_bytes_to_str(d['COLUMN_KEY']) if column_key == 'PRI': indexFlag = 1 elif column_key == 'UNI': indexFlag = 3 elif column_key == 'MUL': indexFlag = 2 indexName = '' autoInc = False if 'auto_increment' in ext: autoInc = True field = ds_model.FieldModel(name=fname, ftype=ftype, length=length, scale=scale, default=default, nullFlag=nullFlag, comment=comment, charset=charset, collation_name=collation_name, indexFlag=indexFlag, indexName=indexName, autoInc=autoInc) fields.append(field) return fields
zh
0.331683
# -*- coding: UTF-8 -*- 获取mysql版本 Args: conn (mysql_util.MysqlUtil): [description] Returns: str: [description] 获取需要导出结构的数据库列表 Args: conn (mysql_util.MysqlUtil): 数据库连接 includes (List[str], optional): 需要包含的数据库列表. Defaults to []. excludes (List[str], optional): 需要排除的数据库列表. Defaults to []. Returns: List[ds_model.DbModel]: 需要导出的数据库列表 # 需要过滤 # 不包含在include中 获取数据库中的表信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dsModel (ds_model.DataSourceModel): 数据源,包含数据库列表 Returns: ds_model.DataSourceModel: 数据源 select TABLE_NAME, `ENGINE`, TABLE_COLLATION, TABLE_COMMENT from information_schema.`TABLES` where TABLE_SCHEMA = %s and TABLE_TYPE = 'BASE TABLE' 获取表的创建脚本 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名称 tableName (str): 表名称 Returns: str: 创建脚本 SHOW CREATE TABLE `%s`.`%s` 获取数据表中列信息 Args: conn (mysql_util.MysqlUtil): 数据库连接 dbName (str): 数据库名 tableName (str): 表名 Returns: List[ds_model.FieldModel]: 列列表 select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE, CHARACTER_SET_NAME, COLLATION_NAME, COLUMN_TYPE, COLUMN_KEY, EXTRA, COLUMN_COMMENT from information_schema.`columns` where TABLE_SCHEMA = %s and TABLE_NAME = %s ORDER BY TABLE_SCHEMA DESC, TABLE_NAME DESC, ORDINAL_POSITION ASC # on update CURRENT_TIMESTAMP
2.173562
2
lib/XChemPANDDA.py
graeme-winter/XChemExplorer
2
8026
# last edited: 10/08/2017, 10:25 import os, sys, glob, subprocess from datetime import datetime from PyQt4 import QtGui, QtCore import math #from XChemUtils import mtztools import XChemDB import XChemRefine import XChemUtils import XChemLog import XChemToolTips import csv try: import gemmi import pandas except ImportError: pass #def get_names_of_current_clusters(xce_logfile,panddas_directory): # Logfile=XChemLog.updateLog(xce_logfile) # Logfile.insert('parsing {0!s}/cluster_analysis'.format(panddas_directory)) # os.chdir('{0!s}/cluster_analysis'.format(panddas_directory)) # cluster_dict={} # for out_dir in sorted(glob.glob('*')): # if os.path.isdir(out_dir): # cluster_dict[out_dir]=[] # found_first_pdb=False # for folder in glob.glob(os.path.join(out_dir,'pdbs','*')): # xtal=folder[folder.rfind('/')+1:] # if not found_first_pdb: # if os.path.isfile(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb') ): # cluster_dict[out_dir].append(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb')) # found_first_pdb=True # cluster_dict[out_dir].append(xtal) # return cluster_dict class export_and_refine_ligand_bound_models(QtCore.QThread): def __init__(self,PanDDA_directory,datasource,project_directory,xce_logfile,which_models): QtCore.QThread.__init__(self) self.PanDDA_directory = PanDDA_directory self.datasource = datasource self.db = XChemDB.data_source(self.datasource) self.Logfile = XChemLog.updateLog(xce_logfile) self.xce_logfile = xce_logfile self.project_directory = project_directory self.which_models=which_models self.external_software=XChemUtils.external_software(xce_logfile).check() # self.initial_model_directory=initial_model_directory # self.db.create_missing_columns() # self.db_list=self.db.get_empty_db_dict() # self.external_software=XChemUtils.external_software(xce_logfile).check() # self.xce_logfile=xce_logfile # self.already_exported_models=[] def run(self): self.Logfile.warning(XChemToolTips.pandda_export_ligand_bound_models_only_disclaimer()) # find all folders with *-pandda-model.pdb modelsDict = self.find_modeled_structures_and_timestamps() # if only NEW models shall be exported, check timestamps if not self.which_models.startswith('all'): modelsDict = self.find_new_models(modelsDict) # find pandda_inspect_events.csv and read in as pandas dataframe inspect_csv = None if os.path.isfile(os.path.join(self.PanDDA_directory,'analyses','pandda_inspect_events.csv')): inspect_csv = pandas.read_csv(os.path.join(self.PanDDA_directory,'analyses','pandda_inspect_events.csv')) progress = 0 try: progress_step = float(1/len(modelsDict)) except TypeError: self.Logfile.error('DID NOT FIND ANY MODELS TO EXPORT') return None for xtal in sorted(modelsDict): os.chdir(os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) pandda_model = os.path.join('modelled_structures',xtal + '-pandda-model.pdb') pdb = gemmi.read_structure(pandda_model) # find out ligand event map relationship ligandDict = XChemUtils.pdbtools_gemmi(pandda_model).center_of_mass_ligand_dict('LIG') if ligandDict == {}: self.Logfile.error(xtal + ': cannot find ligand of type LIG; skipping...') continue self.show_ligands_in_model(xtal,ligandDict) emapLigandDict = self.find_ligands_matching_event_map(inspect_csv,xtal,ligandDict) self.Logfile.warning('emapLigandDict' + str(emapLigandDict)) # convert event map to SF self.event_map_to_sf(pdb.resolution,emapLigandDict) # move existing event maps in project directory to old folder self.move_old_event_to_backup_folder(xtal) # copy event MTZ to project directory self.copy_event_mtz_to_project_directory(xtal) # copy pandda-model to project directory self.copy_pandda_model_to_project_directory(xtal) # make map from MTZ and cut around ligand self.make_and_cut_map(xtal,emapLigandDict) # update database self.update_database(xtal,modelsDict) # refine models self.refine_exported_model(xtal) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) def update_database(self,xtal,modelsDict): db_dict = {} timestamp_file = modelsDict[xtal] db_dict['DatePanDDAModelCreated'] = timestamp_file db_dict['RefinementOutcome'] = '3 - In Refinement' self.Logfile.insert('updating database for '+xtal+' setting time model was created to '+db_dict['DatePanDDAModelCreated']) self.db.update_data_source(xtal,db_dict) def make_and_cut_map(self,xtal,emapLigandDict): self.Logfile.insert('changing directory to ' + os.path.join(self.project_directory,xtal)) os.chdir(os.path.join(self.project_directory,xtal)) XChemUtils.pdbtools_gemmi(xtal + '-pandda-model.pdb').save_ligands_to_pdb('LIG') for ligID in emapLigandDict: m = emapLigandDict[ligID] emtz = m.replace('.ccp4','_' + ligID + '.mtz') emap = m.replace('.ccp4','_' + ligID + '.ccp4') XChemUtils.maptools().calculate_map(emtz,'FWT','PHWT') XChemUtils.maptools().cut_map_around_ligand(emap,ligID+'.pdb','7') if os.path.isfile(emap.replace('.ccp4','_mapmask.ccp4')): os.system('/bin/mv %s %s_%s_event.ccp4' %(emap.replace('.ccp4','_mapmask.ccp4'),xtal,ligID)) os.system('ln -s %s_%s_event.ccp4 %s_%s_event_cut.ccp4' %(xtal,ligID,xtal,ligID)) def copy_pandda_model_to_project_directory(self,xtal): os.chdir(os.path.join(self.project_directory,xtal)) model = os.path.join(self.PanDDA_directory,'processed_datasets',xtal,'modelled_structures',xtal+'-pandda-model.pdb') self.Logfile.insert('copying %s to project directory' %model) os.system('/bin/cp %s .' %model) def copy_event_mtz_to_project_directory(self,xtal): self.Logfile.insert('changing directory to ' + os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) os.chdir(os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) for emap in glob.glob('*-BDC_*.mtz'): self.Logfile.insert('copying %s to %s...' %(emap,os.path.join(self.project_directory,xtal))) os.system('/bin/cp %s %s' %(emap,os.path.join(self.project_directory,xtal))) def move_old_event_to_backup_folder(self,xtal): self.Logfile.insert('changing directory to ' + os.path.join(self.project_directory,xtal)) os.chdir(os.path.join(self.project_directory,xtal)) if not os.path.isdir('event_map_backup'): os.mkdir('event_map_backup') self.Logfile.insert('moving existing event maps to event_map_backup') for emap in glob.glob('*-BDC_*.ccp4'): os.system('/bin/mv %s event_map_backup/%s' %(emap,emap+'.'+str(datetime.now()).replace(' ','_').replace(':','-'))) def show_ligands_in_model(self,xtal,ligandDict): self.Logfile.insert(xtal + ': found the following ligands...') for lig in ligandDict: self.Logfile.insert(lig + ' -> coordinates ' + str(ligandDict[lig])) def find_modeled_structures_and_timestamps(self): self.Logfile.insert('finding out modelled structures in ' + self.PanDDA_directory) modelsDict={} for model in sorted(glob.glob(os.path.join(self.PanDDA_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb'))): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) modelsDict[sample]=timestamp return modelsDict def find_new_models(self,modelsDict): samples_to_export = {} self.Logfile.hint('XCE will never export/ refine models that are "5-deposition ready" or "6-deposited"') self.Logfile.hint('Please change the RefinementOutcome flag in the Refinement table if you wish to re-export them') self.Logfile.insert('checking timestamps of models in database...') for xtal in modelsDict: timestamp_file = modelsDict[xtal] db_query=self.db.execute_statement("select DatePanDDAModelCreated from mainTable where CrystalName is '"+xtal+"' and (RefinementOutcome like '3%' or RefinementOutcome like '4%')") try: timestamp_db=str(db_query[0][0]) except IndexError: self.Logfile.warning('%s: database query gave no results for DatePanDDAModelCreated; skipping...' %xtal) self.Logfile.warning('%s: this might be a brand new model; will continue with export!' %xtal) samples_to_export[xtal]=timestamp_file timestamp_db = "2100-01-01 00:00:00" # some time in the future... try: difference=(datetime.strptime(timestamp_file,'%Y-%m-%d %H:%M:%S') - datetime.strptime(timestamp_db,'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+xtal+' -> was already refined, but newer PanDDA model available') samples_to_export[xtal]=timestamp_file else: self.Logfile.insert('%s: model has not changed since it was created on %s' %(xtal,timestamp_db)) except (ValueError, IndexError), e: self.Logfile.error(str(e)) return samples_to_export def event_map_to_sf(self,resolution,emapLigandDict): for lig in emapLigandDict: emap = emapLigandDict[lig] emtz = emap.replace('.ccp4','.mtz') emtz_ligand = emap.replace('.ccp4','_' + lig + '.mtz') self.Logfile.insert('trying to convert %s to SF -> %s' %(emap,emtz_ligand)) self.Logfile.insert('>>> ' + emtz) XChemUtils.maptools_gemmi(emap).map_to_sf(resolution) if os.path.isfile(emtz): os.system('/bin/mv %s %s' %(emtz,emtz_ligand)) self.Logfile.insert('success; %s exists' %emtz_ligand) else: self.Logfile.warning('something went wrong; %s could not be created...' %emtz_ligand) def find_ligands_matching_event_map(self,inspect_csv,xtal,ligandDict): emapLigandDict = {} for index, row in inspect_csv.iterrows(): if row['dtag'] == xtal: for emap in glob.glob('*-BDC_*.ccp4'): self.Logfile.insert('checking if event and ligand are within 7A of each other') x = float(row['x']) y = float(row['y']) z = float(row['z']) matching_ligand = self.calculate_distance_to_ligands(ligandDict,x,y,z) if matching_ligand is not None: emapLigandDict[matching_ligand] = emap self.Logfile.insert('found matching ligand (%s) for %s' %(matching_ligand,emap)) break else: self.Logfile.warning('current ligand not close to event...') if emapLigandDict == {}: self.Logfile.error('could not find ligands within 7A of PanDDA events') return emapLigandDict def calculate_distance_to_ligands(self,ligandDict,x,y,z): matching_ligand = None p_event = gemmi.Position(x, y, z) for ligand in ligandDict: c = ligandDict[ligand] p_ligand = gemmi.Position(c[0], c[1], c[2]) self.Logfile.insert('coordinates ligand: ' + str(c[0])+' '+ str(c[1])+' '+str(c[2])) self.Logfile.insert('coordinates event: ' + str(x)+' '+ str(y)+' '+str(z)) distance = p_event.dist(p_ligand) self.Logfile.insert('distance between ligand and event: %s A' %str(distance)) if distance < 7: matching_ligand = ligand break return matching_ligand def refine_exported_model(self,xtal): RefmacParams={ 'HKLIN': '', 'HKLOUT': '', 'XYZIN': '', 'XYZOUT': '', 'LIBIN': '', 'LIBOUT': '', 'TLSIN': '', 'TLSOUT': '', 'TLSADD': '', 'NCYCLES': '10', 'MATRIX_WEIGHT': 'AUTO', 'BREF': ' bref ISOT\n', 'TLS': '', 'NCS': '', 'TWIN': '', 'WATER': '', 'LIGOCC': '', 'SANITY': '' } if 'nocheck' in self.which_models: RefmacParams['SANITY'] = 'off' self.Logfile.insert('trying to refine ' + xtal + '...') self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) if os.path.isfile(os.path.join(self.project_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.project_directory,xtal,xtal+'-pandda-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.project_directory,xtal) if not os.path.isdir(os.path.join(self.project_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.project_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) else: os.mkdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) os.system('/bin/cp %s in.pdb' %os.path.join(self.project_directory,xtal,xtal+'-pandda-model.pdb')) Refine=XChemRefine.Refine(self.project_directory,xtal,compoundID,self.datasource) Refine.RunBuster(str(Serial),RefmacParams,self.external_software,self.xce_logfile,None) else: self.Logfile.error('%s: cannot find %s-pandda-model.pdb; cannot start refinement...' %(xtal,xtal)) else: self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.project_directory, xtal))) class refine_bound_state_with_buster(QtCore.QThread): def __init__(self,panddas_directory,datasource,initial_model_directory,xce_logfile,which_models): QtCore.QThread.__init__(self) self.panddas_directory=panddas_directory self.datasource=datasource self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(self.datasource) self.db.create_missing_columns() self.db_list=self.db.get_empty_db_dict() self.external_software=XChemUtils.external_software(xce_logfile).check() self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.which_models=which_models self.already_exported_models=[] def run(self): samples_to_export=self.export_models() self.refine_exported_models(samples_to_export) def refine_exported_models(self,samples_to_export): self.Logfile.insert('will try to refine the following crystals:') for xtal in sorted(samples_to_export): self.Logfile.insert(xtal) for xtal in sorted(samples_to_export): self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) # compoundID=str(item[1]) if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'-pandda-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.initial_model_directory,xtal) ####################################################### if not os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) else: os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.system('/bin/cp %s in.pdb' %os.path.join(self.initial_model_directory,xtal,xtal+'-pandda-model.pdb')) Refine=XChemRefine.Refine(self.initial_model_directory,xtal,compoundID,self.datasource) Refine.RunBuster(str(Serial),self.external_software,self.xce_logfile,None) else: self.Logfile.error('%s: cannot find %s-pandda-model.pdb; cannot start refinement...' %(xtal,xtal)) elif xtal in samples_to_export and not os.path.isfile( os.path.join(self.initial_model_directory, xtal, xtal + '.free.mtz')): self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.initial_model_directory, xtal))) else: self.Logfile.insert('%s: nothing to refine' % (xtal)) def export_models(self): self.Logfile.insert('finding out which PanDDA models need to be exported') # first find which samples are in interesting datasets and have a model # and determine the timestamp fileModelsDict={} queryModels='' for model in glob.glob(os.path.join(self.panddas_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb')): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) queryModels+="'"+sample+"'," fileModelsDict[sample]=timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined dbModelsDict={} if queryModels != '': dbEntries=self.db.execute_statement("select CrystalName,DatePanDDAModelCreated from mainTable where CrystalName in ("+queryModels[:-1]+") and (RefinementOutcome like '3%' or RefinementOutcome like '4%' or RefinementOutcome like '5%')") for item in dbEntries: xtal=str(item[0]) timestamp=str(item[1]) dbModelsDict[xtal]=timestamp self.Logfile.insert('PanDDA model for '+xtal+' is in database and was created on '+str(timestamp)) # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB samples_to_export={} self.Logfile.insert('checking which PanDDA models were newly created or updated') if self.which_models=='all': self.Logfile.insert('Note: you chose to export ALL available PanDDA!') for sample in fileModelsDict: if self.which_models=='all': self.Logfile.insert('exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] else: if sample in dbModelsDict: try: difference=(datetime.strptime(fileModelsDict[sample],'%Y-%m-%d %H:%M:%S') - datetime.strptime(dbModelsDict[sample],'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+sample+' -> was already refined, but newer PanDDA model available') samples_to_export[sample]=fileModelsDict[sample] except ValueError: # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) advice = ( 'The pandda model of '+xtal+' was changed, but it was already refined! ' 'This is most likely because this was done with an older version of XCE. ' 'If you really want to export and refine this model, you need to open the database ' 'with DBbroweser (sqlitebrowser.org); then change the RefinementOutcome field ' 'of the respective sample to "2 - PANDDA model", save the database and repeat the export prodedure.' ) self.Logfile.insert(advice) else: self.Logfile.insert('exporting '+sample+' -> first time to be exported and refined') samples_to_export[sample]=fileModelsDict[sample] # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' if samples_to_export != {}: select_dir_string='' select_dir_string_new_pannda=' ' for sample in samples_to_export: self.Logfile.insert('changing directory to ' + os.path.join(self.initial_model_directory,sample)) os.chdir(os.path.join(self.initial_model_directory,sample)) self.Logfile.insert(sample + ': copying ' + os.path.join(self.panddas_directory,'processed_datasets',sample,'modelled_structures',sample+'-pandda-model.pdb')) os.system('/bin/cp %s .' %os.path.join(self.panddas_directory,'processed_datasets',sample,'modelled_structures',sample+'-pandda-model.pdb')) db_dict= {'RefinementOutcome': '2 - PANDDA model', 'DatePanDDAModelCreated': samples_to_export[sample]} for old_event_map in glob.glob('*-BDC_*.ccp4'): if not os.path.isdir('old_event_maps'): os.mkdir('old_event_maps') self.Logfile.warning(sample + ': moving ' + old_event_map + ' to old_event_maps folder') os.system('/bin/mv %s old_event_maps' %old_event_map) for event_map in glob.glob(os.path.join(self.panddas_directory,'processed_datasets',sample,'*-BDC_*.ccp4')): self.Logfile.insert(sample + ': copying ' + event_map) os.system('/bin/cp %s .' %event_map) select_dir_string+="select_dir={0!s} ".format(sample) select_dir_string_new_pannda+='{0!s} '.format(sample) self.Logfile.insert('updating database for '+sample+' setting time model was created to '+db_dict['DatePanDDAModelCreated']+' and RefinementOutcome to '+db_dict['RefinementOutcome']) self.db.update_data_source(sample,db_dict) return samples_to_export class run_pandda_export(QtCore.QThread): def __init__(self,panddas_directory,datasource,initial_model_directory,xce_logfile,update_datasource_only,which_models,pandda_params): QtCore.QThread.__init__(self) self.panddas_directory=panddas_directory self.datasource=datasource self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(self.datasource) self.db.create_missing_columns() self.db_list=self.db.get_empty_db_dict() self.external_software=XChemUtils.external_software(xce_logfile).check() self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.update_datasource_only=update_datasource_only self.which_models=which_models self.already_exported_models=[] self.pandda_analyse_data_table = pandda_params['pandda_table'] self.RefmacParams={ 'HKLIN': '', 'HKLOUT': '', 'XYZIN': '', 'XYZOUT': '', 'LIBIN': '', 'LIBOUT': '', 'TLSIN': '', 'TLSOUT': '', 'TLSADD': '', 'NCYCLES': '10', 'MATRIX_WEIGHT': 'AUTO', 'BREF': ' bref ISOT\n', 'TLS': '', 'NCS': '', 'TWIN': '' } def run(self): # v1.3.8.2 - removed option to update database only # if not self.update_datasource_only: samples_to_export=self.export_models() self.import_samples_into_datasouce(samples_to_export) # if not self.update_datasource_only: self.refine_exported_models(samples_to_export) def refine_exported_models(self,samples_to_export): self.Logfile.insert('will try to refine the following crystals:') for xtal in samples_to_export: self.Logfile.insert(xtal) # sample_list=self.db.execute_statement("select CrystalName,CompoundCode from mainTable where RefinementOutcome='2 - PANDDA model';") # for item in sample_list: # xtal=str(item[0]) for xtal in sorted(samples_to_export): self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) # compoundID=str(item[1]) if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'-ensemble-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.initial_model_directory,xtal) ####################################################### if not os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) try: os.system('/bin/rm *-ensemble-model.pdb *restraints*') except: self.Logfile.error("Restraint files didn't exist to remove. Will try to continue") else: os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) Refine=XChemRefine.panddaRefine(self.initial_model_directory,xtal,compoundID,self.datasource) os.symlink(os.path.join(self.initial_model_directory,xtal,xtal+'-ensemble-model.pdb'),xtal+'-ensemble-model.pdb') Refine.RunQuickRefine(Serial,self.RefmacParams,self.external_software,self.xce_logfile,'pandda_refmac',None) # elif xtal in os.path.join(self.panddas_directory,'processed_datasets',xtal,'modelled_structures', # '{}-pandda-model.pdb'.format(xtal)): # self.Logfile.insert('{}: cannot start refinement because {}'.format(xtal,xtal) + # ' does not have a modelled structure. Check whether you expect this dataset to ' + # ' have a modelled structure, compare pandda.inspect and datasource,' # ' then tell XCHEMBB ') else: self.Logfile.error('%s: cannot find %s-ensemble-model.pdb; cannot start refinement...' %(xtal,xtal)) self.Logfile.error('Please check terminal window for any PanDDA related tracebacks') elif xtal in samples_to_export and not os.path.isfile( os.path.join(self.initial_model_directory, xtal, xtal + '.free.mtz')): self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.initial_model_directory, xtal))) else: self.Logfile.insert('%s: nothing to refine' % (xtal)) def import_samples_into_datasouce(self,samples_to_export): # first make a note of all the datasets which were used in pandda directory os.chdir(os.path.join(self.panddas_directory,'processed_datasets')) for xtal in glob.glob('*'): self.db.execute_statement("update mainTable set DimplePANDDAwasRun = 'True',DimplePANDDAreject = 'False',DimplePANDDApath='{0!s}' where CrystalName is '{1!s}'".format(self.panddas_directory, xtal)) # do the same as before, but look for rejected datasets try: os.chdir(os.path.join(self.panddas_directory,'rejected_datasets')) for xtal in glob.glob('*'): self.db.execute_statement("update mainTable set DimplePANDDAwasRun = 'True',DimplePANDDAreject = 'True',DimplePANDDApath='{0!s}',DimplePANDDAhit = 'False' where CrystalName is '{1!s}'".format(self.panddas_directory, xtal)) except OSError: pass site_list = [] pandda_hit_list=[] with open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_sites.csv'),'rb') as csv_import: csv_dict = csv.DictReader(csv_import) self.Logfile.insert('reding pandda_inspect_sites.csv') for i,line in enumerate(csv_dict): self.Logfile.insert(str(line).replace('\n','').replace('\r','')) site_index=line['site_idx'] name=line['Name'].replace("'","") comment=line['Comment'] site_list.append([site_index,name,comment]) self.Logfile.insert('add to site_list_:' + str([site_index,name,comment])) progress_step=1 for i,line in enumerate(open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv'))): n_lines=i if n_lines != 0: progress_step=100/float(n_lines) else: progress_step=0 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('reading '+os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv')) with open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv'),'rb') as csv_import: csv_dict = csv.DictReader(csv_import) for i,line in enumerate(csv_dict): db_dict={} sampleID=line['dtag'] if sampleID not in samples_to_export: self.Logfile.warning('%s: not to be exported; will not add to panddaTable...' %sampleID) continue if sampleID not in pandda_hit_list: pandda_hit_list.append(sampleID) site_index=str(line['site_idx']).replace('.0','') event_index=str(line['event_idx']).replace('.0','') self.Logfile.insert(str(line)) self.Logfile.insert('reading {0!s} -> site {1!s} -> event {2!s}'.format(sampleID, site_index, event_index)) for entry in site_list: if entry[0]==site_index: site_name=entry[1] site_comment=entry[2] break # check if EVENT map exists in project directory event_map='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*ccp4')): filename=file[file.rfind('/')+1:] if filename.startswith(sampleID+'-event_'+event_index) and filename.endswith('map.native.ccp4'): event_map=file self.Logfile.insert('found respective event maps in {0!s}: {1!s}'.format(self.initial_model_directory, event_map)) break # initial pandda model and mtz file pandda_model='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*pdb')): filename=file[file.rfind('/')+1:] if filename.endswith('-ensemble-model.pdb'): pandda_model=file if sampleID not in self.already_exported_models: self.already_exported_models.append(sampleID) break inital_mtz='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*mtz')): filename=file[file.rfind('/')+1:] if filename.endswith('pandda-input.mtz'): inital_mtz=file break db_dict['CrystalName'] = sampleID db_dict['PANDDApath'] = self.panddas_directory db_dict['PANDDA_site_index'] = site_index db_dict['PANDDA_site_name'] = site_name db_dict['PANDDA_site_comment'] = site_comment db_dict['PANDDA_site_event_index'] = event_index db_dict['PANDDA_site_event_comment'] = line['Comment'].replace("'","") db_dict['PANDDA_site_confidence'] = line['Ligand Confidence'] db_dict['PANDDA_site_InspectConfidence'] = line['Ligand Confidence'] db_dict['PANDDA_site_ligand_placed'] = line['Ligand Placed'] db_dict['PANDDA_site_viewed'] = line['Viewed'] db_dict['PANDDA_site_interesting'] = line['Interesting'] db_dict['PANDDA_site_z_peak'] = line['z_peak'] db_dict['PANDDA_site_x'] = line['x'] db_dict['PANDDA_site_y'] = line['y'] db_dict['PANDDA_site_z'] = line['z'] db_dict['PANDDA_site_ligand_id'] = '' db_dict['PANDDA_site_event_map'] = event_map db_dict['PANDDA_site_initial_model'] = pandda_model db_dict['PANDDA_site_initial_mtz'] = inital_mtz db_dict['PANDDA_site_spider_plot'] = '' # find apo structures which were used # XXX missing XXX self.db.update_insert_site_event_panddaTable(sampleID,db_dict) # this is necessary, otherwise RefinementOutcome will be reset for samples that are actually already in refinement self.db.execute_statement("update panddaTable set RefinementOutcome = '2 - PANDDA model' where CrystalName is '{0!s}' and RefinementOutcome is null".format(sampleID)) self.db.execute_statement("update mainTable set RefinementOutcome = '2 - PANDDA model' where CrystalName is '{0!s}' and (RefinementOutcome is null or RefinementOutcome is '1 - Analysis Pending')".format(sampleID)) self.db.execute_statement("update mainTable set DimplePANDDAhit = 'True' where CrystalName is '{0!s}'".format(sampleID)) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('done reading pandda_inspect_sites.csv') # finally find all samples which do not have a pandda hit os.chdir(os.path.join(self.panddas_directory,'processed_datasets')) self.Logfile.insert('check which datasets are not interesting') # DimplePANDDAhit # for xtal in glob.glob('*'): # if xtal not in pandda_hit_list: # self.Logfile.insert(xtal+': not in interesting_datasets; updating database...') # self.db.execute_statement("update mainTable set DimplePANDDAhit = 'False' where CrystalName is '{0!s}'".format(xtal)) def export_models(self): self.Logfile.insert('finding out which PanDDA models need to be exported') # first find which samples are in interesting datasets and have a model # and determine the timestamp fileModelsDict={} queryModels='' for model in glob.glob(os.path.join(self.panddas_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb')): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) queryModels+="'"+sample+"'," fileModelsDict[sample]=timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined dbModelsDict={} if queryModels != '': dbEntries=self.db.execute_statement("select CrystalName,DatePanDDAModelCreated from mainTable where CrystalName in ("+queryModels[:-1]+") and (RefinementOutcome like '3%' or RefinementOutcome like '4%' or RefinementOutcome like '5%')") for item in dbEntries: xtal=str(item[0]) timestamp=str(item[1]) dbModelsDict[xtal]=timestamp self.Logfile.insert('PanDDA model for '+xtal+' is in database and was created on '+str(timestamp)) # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB samples_to_export={} self.Logfile.insert('checking which PanDDA models were newly created or updated') if self.which_models=='all': self.Logfile.insert('Note: you chose to export ALL available PanDDA!') for sample in fileModelsDict: if self.which_models=='all': self.Logfile.insert('exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] elif self.which_models == 'selected': for i in range(0, self.pandda_analyse_data_table.rowCount()): if str(self.pandda_analyse_data_table.item(i, 0).text()) == sample: if self.pandda_analyse_data_table.cellWidget(i, 1).isChecked(): self.Logfile.insert('Dataset selected by user -> exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] break else: if sample in dbModelsDict: try: difference=(datetime.strptime(fileModelsDict[sample],'%Y-%m-%d %H:%M:%S') - datetime.strptime(dbModelsDict[sample],'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+sample+' -> was already refined, but newer PanDDA model available') samples_to_export[sample]=fileModelsDict[sample] except ValueError: # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) advice = ( 'The pandda model of '+xtal+' was changed, but it was already refined! ' 'This is most likely because this was done with an older version of XCE. ' 'If you really want to export and refine this model, you need to open the database ' 'with DBbroweser (sqlitebrowser.org); then change the RefinementOutcome field ' 'of the respective sample to "2 - PANDDA model", save the database and repeat the export prodedure.' ) self.Logfile.insert(advice) else: self.Logfile.insert('exporting '+sample+' -> first time to be exported and refined') samples_to_export[sample]=fileModelsDict[sample] # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' if samples_to_export != {}: select_dir_string='' select_dir_string_new_pannda=' ' for sample in samples_to_export: db_dict= {'RefinementOutcome': '2 - PANDDA model', 'DatePanDDAModelCreated': samples_to_export[sample]} select_dir_string+="select_dir={0!s} ".format(sample) select_dir_string_new_pannda+='{0!s} '.format(sample) self.Logfile.insert('updating database for '+sample+' setting time model was created to '+db_dict['DatePanDDAModelCreated']+' and RefinementOutcome to '+db_dict['RefinementOutcome']) self.db.update_data_source(sample,db_dict) if os.path.isdir(os.path.join(self.panddas_directory,'rejected_datasets')): Cmds = ( 'pandda.export' ' pandda_dir=%s' %self.panddas_directory+ ' export_dir={0!s}'.format(self.initial_model_directory)+ ' {0!s}'.format(select_dir_string)+ ' export_ligands=False' ' generate_occupancy_groupings=True\n' ) else: Cmds = ( 'source /dls/science/groups/i04-1/software/pandda-update/ccp4/ccp4-7.0/bin/ccp4.setup-sh\n' # 'source '+os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh')+'\n' 'pandda.export' ' pandda_dir=%s' %self.panddas_directory+ ' export_dir={0!s}'.format(self.initial_model_directory)+ ' {0!s}'.format(select_dir_string_new_pannda)+ ' generate_restraints=True\n' ) self.Logfile.insert('running pandda.export with the following settings:\n'+Cmds) os.system(Cmds) return samples_to_export class run_pandda_analyse(QtCore.QThread): def __init__(self,pandda_params,xce_logfile,datasource): QtCore.QThread.__init__(self) self.data_directory=pandda_params['data_dir'] self.panddas_directory=pandda_params['out_dir'] self.submit_mode=pandda_params['submit_mode'] self.pandda_analyse_data_table = pandda_params['pandda_table'] self.nproc=pandda_params['nproc'] self.min_build_datasets=pandda_params['min_build_datasets'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.sort_event=pandda_params['sort_event'] self.number_of_datasets=pandda_params['N_datasets'] self.max_new_datasets=pandda_params['max_new_datasets'] self.grid_spacing=pandda_params['grid_spacing'] self.reference_dir=pandda_params['reference_dir'] self.filter_pdb=os.path.join(self.reference_dir,pandda_params['filter_pdb']) self.wilson_scaling = pandda_params['perform_diffraction_data_scaling'] self.Logfile=XChemLog.updateLog(xce_logfile) self.datasource=datasource self.db=XChemDB.data_source(datasource) self.appendix=pandda_params['appendix'] self.write_mean_maps=pandda_params['write_mean_map'] self.calc_map_by = pandda_params['average_map'] self.select_ground_state_model='' projectDir = self.data_directory.replace('/*', '') self.make_ligand_links='$CCP4/bin/ccp4-python %s %s %s\n' %(os.path.join(os.getenv('XChemExplorer_DIR'), 'helpers', 'make_ligand_links_after_pandda.py') ,projectDir,self.panddas_directory) self.use_remote = pandda_params['use_remote'] self.remote_string = pandda_params['remote_string'] if self.appendix != '': self.panddas_directory=os.path.join(self.reference_dir,'pandda_'+self.appendix) if os.path.isdir(self.panddas_directory): os.system('/bin/rm -fr %s' %self.panddas_directory) os.mkdir(self.panddas_directory) if self.data_directory.startswith('/dls'): self.select_ground_state_model = 'module load ccp4\n' self.select_ground_state_model +='$CCP4/bin/ccp4-python %s %s\n' %(os.path.join(os.getenv('XChemExplorer_DIR'),'helpers','select_ground_state_dataset.py'),self.panddas_directory) self.make_ligand_links='' def run(self): # print self.reference_dir # print self.filter_pdb # how to run pandda.analyse on large datasets # # 1) Run the normal pandda command, with the new setting, e.g. # pandda.analyse data_dirs=... max_new_datasets=500 # This will do the analysis on the first 500 datasets and build the statistical maps - just as normal. # # 2) Run pandda with the same command: # pandda.analyse data_dirs=... max_new_datasets=500 # This will add 500 new datasets, and process them using the existing statistical maps # (this will be quicker than the original analysis). It will then merge the results of the two analyses. # # 3) Repeat 2) until you don't add any "new" datasets. Then you can build the models as normal. number_of_cyles=int(self.number_of_datasets)/int(self.max_new_datasets) if int(self.number_of_datasets) % int(self.max_new_datasets) != 0: # modulo gives remainder after integer division number_of_cyles+=1 self.Logfile.insert('will run %s rounds of pandda.analyse' %str(number_of_cyles)) if os.path.isfile(os.path.join(self.panddas_directory,'pandda.running')): self.Logfile.insert('it looks as if a pandda.analyse job is currently running in: '+self.panddas_directory) msg = ( 'there are three possibilities:\n' '1.) choose another PANDDA directory\n' '2.) - check if the job is really running either on the cluster (qstat) or on your local machine\n' ' - if so, be patient and wait until the job has finished\n' '3.) same as 2., but instead of waiting, kill the job and remove at least the pandda.running file\n' ' (or all the contents in the directory if you want to start from scratch)\n' ) self.Logfile.insert(msg) return None else: # if os.getenv('SHELL') == '/bin/tcsh' or os.getenv('SHELL') == '/bin/csh': # source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-csh\n') # elif os.getenv('SHELL') == '/bin/bash' or self.use_remote: # source_file='export XChemExplorer_DIR="'+os.getenv('XChemExplorer_DIR')+'"\n' # source_file+='source %s\n' %os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh\n') # else: # source_file='' # v1.2.1 - pandda.setup files should be obsolete now that pandda is part of ccp4 # 08/10/2020 - pandda v0.2.12 installation at DLS is obsolete # source_file='source /dls/science/groups/i04-1/software/pandda_0.2.12/ccp4/ccp4-7.0/bin/ccp4.setup-sh\n' source_file = '' source_file += 'export XChemExplorer_DIR="' + os.getenv('XChemExplorer_DIR') + '"\n' if os.path.isfile(self.filter_pdb + '.pdb'): print('filter pdb located') filter_pdb=' filter.pdb='+self.filter_pdb+'.pdb' print('will use ' + filter_pdb + 'as a filter for pandda.analyse') else: if self.use_remote: stat_command = self.remote_string.replace("qsub'", str('stat ' + self.filter_pdb + "'")) output = subprocess.Popen(stat_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = output.communicate() print out if 'cannot stat' in out: filter_pdb = '' else: filter_pdb = ' filter.pdb=' + self.filter_pdb + '.pdb' else: filter_pdb='' os.chdir(self.panddas_directory) # note: copied latest pandda.setup-sh from XCE2 installation (08/08/2017) dls = '' if self.data_directory.startswith('/dls'): dls = ( source_file + '\n' 'module load pymol/1.8.2.0\n' '\n' 'module load ccp4/7.0.072\n' '\n' ) Cmds = ( '#!'+os.getenv('SHELL')+'\n' + '\n' + dls + 'cd ' + self.panddas_directory + '\n' + '\n' ) ignore = [] char = [] zmap = [] for i in range(0, self.pandda_analyse_data_table.rowCount()): ignore_all_checkbox = self.pandda_analyse_data_table.cellWidget(i, 7) ignore_characterisation_checkbox = self.pandda_analyse_data_table.cellWidget(i, 8) ignore_zmap_checkbox = self.pandda_analyse_data_table.cellWidget(i, 9) if ignore_all_checkbox.isChecked(): ignore.append(str(self.pandda_analyse_data_table.item(i, 0).text())) if ignore_characterisation_checkbox.isChecked(): char.append(str(self.pandda_analyse_data_table.item(i, 0).text())) if ignore_zmap_checkbox.isChecked(): zmap.append(str(self.pandda_analyse_data_table.item(i, 0).text())) print ignore def append_to_ignore_string(datasets_list, append_string): if len(datasets_list)==0: append_string = '' for i in range(0, len(datasets_list)): if i < len(datasets_list)-1: append_string += str(datasets_list[i] + ',') else: append_string += str(datasets_list[i] +'"') print(append_string) return append_string ignore_string = 'ignore_datasets="' ignore_string = append_to_ignore_string(ignore, ignore_string) char_string = 'exclude_from_characterisation="' char_string = append_to_ignore_string(char, char_string) zmap_string = 'exclude_from_z_map_analysis="' zmap_string = append_to_ignore_string(zmap, zmap_string) for i in range(number_of_cyles): Cmds += ( 'pandda.analyse '+ ' data_dirs="'+self.data_directory.replace('/*','')+'/*"'+ ' out_dir="'+self.panddas_directory+'"' ' min_build_datasets='+self.min_build_datasets+ ' max_new_datasets='+self.max_new_datasets+ ' grid_spacing='+self.grid_spacing+ ' cpus='+self.nproc+ ' events.order_by='+self.sort_event+ filter_pdb+ ' pdb_style='+self.pdb_style+ ' mtz_style='+self.mtz_style+ ' lig_style=/compound/*.cif'+ ' apply_b_factor_scaling='+self.wilson_scaling+ ' write_average_map='+self.write_mean_maps + ' average_map=' + self.calc_map_by + ' ' + ignore_string +' '+ char_string +' '+ zmap_string +' '+ '\n' ) Cmds += self.select_ground_state_model Cmds += self.make_ligand_links Cmds += '\n' data_dir_string = self.data_directory.replace('/*', '') Cmds += str( 'find ' + data_dir_string + '/*/compound -name "*.cif" | while read line; do echo ${line//"' + data_dir_string + '"/"' + self.panddas_directory + '/processed_datasets/"}| while read line2; do cp $line ${line2//compound/ligand_files} > /dev/null 2>&1; ' 'done; done;') Cmds += '\n' Cmds += str( 'find ' + data_dir_string + '/*/compound -name "*.pdb" | while read line; do echo ${line//"' + data_dir_string + '"/"' + self.panddas_directory + '/processed_datasets/"}| while read line2; do cp $line ${line2//compound/ligand_files} > /dev/null 2>&1; ' 'done; done;') self.Logfile.insert('running pandda.analyse with the following command:\n'+Cmds) f = open('pandda.sh','w') f.write(Cmds) f.close() # #>>> for testing # self.submit_mode='local machine' self.Logfile.insert('trying to run pandda.analyse on ' + str(self.submit_mode)) if self.submit_mode=='local machine': self.Logfile.insert('running PANDDA on local machine') os.system('chmod +x pandda.sh') os.system('./pandda.sh &') elif self.use_remote: # handles remote submission of pandda.analyse jobs submission_string = self.remote_string.replace("qsub'", str('cd ' + self.panddas_directory + '; ' + "qsub -P labxchem -q medium.q -N pandda 5 -l exclusive,m_mem_free=100G pandda.sh'")) os.system(submission_string) self.Logfile.insert(str('running PANDDA remotely, using: ' + submission_string)) else: self.Logfile.insert('running PANDDA on cluster, using qsub...') os.system('qsub -P labxchem -q medium.q -N pandda -l exclusive,m_mem_free=100G pandda.sh') self.emit(QtCore.SIGNAL('datasource_menu_reload_samples')) class giant_cluster_datasets(QtCore.QThread): def __init__(self,initial_model_directory,pandda_params,xce_logfile,datasource,): QtCore.QThread.__init__(self) self.panddas_directory=pandda_params['out_dir'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.Logfile=XChemLog.updateLog(xce_logfile) self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(datasource) def run(self): self.emit(QtCore.SIGNAL('update_progress_bar'), 0) if self.pdb_style.replace(' ','') == '': self.Logfile.insert('PDB style is not set in pandda.analyse!') self.Logfile.insert('cannot start pandda.analyse') self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'PDB style is not set in pandda.analyse!') return None if self.mtz_style.replace(' ','') == '': self.Logfile.insert('MTZ style is not set in pandda.analyse!') self.Logfile.insert('cannot start pandda.analyse') self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'MTZ style is not set in pandda.analyse!') return None # 1.) prepare output directory os.chdir(self.panddas_directory) if os.path.isdir('cluster_analysis'): self.Logfile.insert('removing old cluster_analysis directory in {0!s}'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'removing old cluster_analysis directory in {0!s}'.format(self.panddas_directory)) os.system('/bin/rm -fr cluster_analysis 2> /dev/null') self.Logfile.insert('creating cluster_analysis directory in {0!s}'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'creating cluster_analysis directory in {0!s}'.format(self.panddas_directory)) os.mkdir('cluster_analysis') self.emit(QtCore.SIGNAL('update_progress_bar'), 10) # 2.) go through project directory and make sure that all pdb files really exist # broken links derail the giant.cluster_mtzs_and_pdbs script self.Logfile.insert('cleaning up broken links of {0!s} and {1!s} in {2!s}'.format(self.pdb_style, self.mtz_style, self.initial_model_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'cleaning up broken links of {0!s} and {1!s} in {2!s}'.format(self.pdb_style, self.mtz_style, self.initial_model_directory)) os.chdir(self.initial_model_directory) for xtal in glob.glob('*'): if not os.path.isfile(os.path.join(xtal,self.pdb_style)): self.Logfile.insert('missing {0!s} and {1!s} for {2!s}'.format(self.pdb_style, self.mtz_style, xtal)) os.system('/bin/rm {0!s}/{1!s} 2> /dev/null'.format(xtal, self.pdb_style)) os.system('/bin/rm {0!s}/{1!s} 2> /dev/null'.format(xtal, self.mtz_style)) self.emit(QtCore.SIGNAL('update_progress_bar'), 20) # 3.) giant.cluster_mtzs_and_pdbs self.Logfile.insert("running giant.cluster_mtzs_and_pdbs {0!s}/*/{1!s} pdb_regex='{2!s}/(.*)/{3!s}' out_dir='{4!s}/cluster_analysis'".format(self.initial_model_directory, self.pdb_style, self.initial_model_directory, self.pdb_style, self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'running giant.cluster_mtzs_and_pdbs') if os.getenv('SHELL') == '/bin/tcsh' or os.getenv('SHELL') == '/bin/csh': source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-csh') elif os.getenv('SHELL') == '/bin/bash': source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh') else: source_file='' Cmds = ( '#!'+os.getenv('SHELL')+'\n' 'unset PYTHONPATH\n' 'source '+source_file+'\n' "giant.datasets.cluster %s/*/%s pdb_regex='%s/(.*)/%s' out_dir='%s/cluster_analysis'" %(self.initial_model_directory,self.pdb_style,self.initial_model_directory,self.pdb_style,self.panddas_directory) ) # os.system("giant.cluster_mtzs_and_pdbs %s/*/%s pdb_regex='%s/(.*)/%s' out_dir='%s/cluster_analysis'" %(self.initial_model_directory,self.pdb_style,self.initial_model_directory,self.pdb_style,self.panddas_directory)) os.system(Cmds) self.emit(QtCore.SIGNAL('update_progress_bar'), 80) # 4.) analyse output self.Logfile.insert('parsing {0!s}/cluster_analysis'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'parsing {0!s}/cluster_analysis'.format(self.panddas_directory)) os.chdir('{0!s}/cluster_analysis'.format(self.panddas_directory)) cluster_dict={} for out_dir in sorted(glob.glob('*')): if os.path.isdir(out_dir): cluster_dict[out_dir]=[] for folder in glob.glob(os.path.join(out_dir,'pdbs','*')): xtal=folder[folder.rfind('/')+1:] cluster_dict[out_dir].append(xtal) self.emit(QtCore.SIGNAL('update_progress_bar'), 90) # 5.) update datasource self.Logfile.insert('updating datasource with results from giant.cluster_mtzs_and_pdbs') if cluster_dict != {}: for key in cluster_dict: for xtal in cluster_dict[key]: db_dict= {'CrystalFormName': key} self.db.update_data_source(xtal,db_dict) # 6.) finish self.emit(QtCore.SIGNAL('update_progress_bar'), 100) self.Logfile.insert('finished giant.cluster_mtzs_and_pdbs') self.emit(QtCore.SIGNAL('datasource_menu_reload_samples')) class check_if_pandda_can_run: # reasons why pandda cannot be run # - there is currently a job running in the pandda directory # - min datasets available is too low # - required input paramters are not complete # - map amplitude and phase labels don't exist def __init__(self,pandda_params,xce_logfile,datasource): self.data_directory=pandda_params['data_dir'] self.panddas_directory=pandda_params['out_dir'] self.min_build_datasets=pandda_params['min_build_datasets'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.input_dir_structure=pandda_params['pandda_dir_structure'] self.problem_found=False self.error_code=-1 self.Logfile=XChemLog.updateLog(xce_logfile) self.db=XChemDB.data_source(datasource) def number_of_available_datasets(self): counter=0 for file in glob.glob(os.path.join(self.input_dir_structure,self.pdb_style)): if os.path.isfile(file): counter+=1 self.Logfile.insert('pandda.analyse: found {0!s} useable datasets'.format(counter)) return counter def get_first_dataset_in_project_directory(self): first_dataset='' for file in glob.glob(os.path.join(self.input_dir_structure,self.pdb_style)): if os.path.isfile(file): first_dataset=file break return first_dataset def compare_number_of_atoms_in_reference_vs_all_datasets(self,refData,dataset_list): mismatched_datasets=[] pdbtools=XChemUtils.pdbtools(refData) refPDB=refData[refData.rfind('/')+1:] refPDBlist=pdbtools.get_init_pdb_as_list() n_atom_ref=len(refPDBlist) for n_datasets,dataset in enumerate(dataset_list): if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)): n_atom=len(pdbtools.get_pdb_as_list(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style))) if n_atom_ref == n_atom: self.Logfile.insert('{0!s}: atoms in PDB file ({1!s}): {2!s}; atoms in Reference file: {3!s} ===> OK'.format(dataset, self.pdb_style, str(n_atom), str(n_atom_ref))) if n_atom_ref != n_atom: self.Logfile.insert('{0!s}: atoms in PDB file ({1!s}): {2!s}; atoms in Reference file: {3!s} ===> ERROR'.format(dataset, self.pdb_style, str(n_atom), str(n_atom_ref))) mismatched_datasets.append(dataset) return n_datasets,mismatched_datasets def get_datasets_which_fit_to_reference_file(self,ref,reference_directory,cluster_dict,allowed_unitcell_difference_percent): refStructure=XChemUtils.pdbtools(os.path.join(reference_directory,ref+'.pdb')) symmRef=refStructure.get_spg_number_from_pdb() ucVolRef=refStructure.calc_unitcell_volume_from_pdb() cluster_dict[ref]=[] cluster_dict[ref].append(os.path.join(reference_directory,ref+'.pdb')) for dataset in glob.glob(os.path.join(self.data_directory,self.pdb_style)): datasetStructure=XChemUtils.pdbtools(dataset) symmDataset=datasetStructure.get_spg_number_from_pdb() ucVolDataset=datasetStructure.calc_unitcell_volume_from_pdb() if symmDataset == symmRef: try: difference=math.fabs(1-(float(ucVolRef)/float(ucVolDataset)))*100 if difference < allowed_unitcell_difference_percent: sampleID=dataset.replace('/'+self.pdb_style,'')[dataset.replace('/'+self.pdb_style,'').rfind('/')+1:] cluster_dict[ref].append(sampleID) except ZeroDivisionError: continue return cluster_dict def remove_dimple_files(self,dataset_list): for n_datasets,dataset in enumerate(dataset_list): db_dict={} if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)): os.system('/bin/rm '+os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)) self.Logfile.insert('{0!s}: removing {1!s}'.format(dataset, self.pdb_style)) db_dict['DimplePathToPDB']='' db_dict['DimpleRcryst']='' db_dict['DimpleRfree']='' db_dict['DimpleResolutionHigh']='' db_dict['DimpleStatus']='pending' if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.mtz_style)): os.system('/bin/rm '+os.path.join(self.data_directory.replace('*',''),dataset,self.mtz_style)) self.Logfile.insert('{0!s}: removing {1!s}'.format(dataset, self.mtz_style)) db_dict['DimplePathToMTZ']='' if db_dict != {}: self.db.update_data_source(dataset,db_dict) def analyse_pdb_style(self): pdb_found=False for file in glob.glob(os.path.join(self.data_directory,self.pdb_style)): if os.path.isfile(file): pdb_found=True break if not pdb_found: self.error_code=1 message=self.warning_messages() return message def analyse_mtz_style(self): mtz_found=False for file in glob.glob(os.path.join(self.data_directory,self.mtz_style)): if os.path.isfile(file): mtz_found=True break if not mtz_found: self.error_code=2 message=self.warning_messages() return message def analyse_min_build_dataset(self): counter=0 for file in glob.glob(os.path.join(self.data_directory,self.mtz_style)): if os.path.isfile(file): counter+=1 if counter <= self.min_build_datasets: self.error_code=3 message=self.warning_messages() return message def warning_messages(self): message='' if self.error_code==1: message='PDB file does not exist' if self.error_code==2: message='MTZ file does not exist' if self.error_code==3: message='Not enough datasets available' return message class convert_all_event_maps_in_database(QtCore.QThread): def __init__(self,initial_model_directory,xce_logfile,datasource): QtCore.QThread.__init__(self) self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.initial_model_directory=initial_model_directory self.datasource=datasource self.db=XChemDB.data_source(datasource) def run(self): sqlite = ( 'select' ' CrystalName,' ' PANDDA_site_event_map,' ' PANDDA_site_ligand_resname,' ' PANDDA_site_ligand_chain,' ' PANDDA_site_ligand_sequence_number,' ' PANDDA_site_ligand_altLoc ' 'from panddaTable ' 'where PANDDA_site_event_map not like "event%"' ) print sqlite query=self.db.execute_statement(sqlite) print query progress_step=1 if len(query) != 0: progress_step=100/float(len(query)) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) for item in query: print item xtalID=str(item[0]) event_map=str(item[1]) resname=str(item[2]) chainID=str(item[3]) resseq=str(item[4]) altLoc=str(item[5]) if os.path.isfile(os.path.join(self.initial_model_directory,xtalID,'refine.pdb')): os.chdir(os.path.join(self.initial_model_directory,xtalID)) self.Logfile.insert('extracting ligand ({0!s},{1!s},{2!s},{3!s}) from refine.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc))) XChemUtils.pdbtools(os.path.join(self.initial_model_directory,xtalID,'refine.pdb')).save_specific_ligands_to_pdb(resname,chainID,resseq,altLoc) if os.path.isfile('ligand_{0!s}_{1!s}_{2!s}_{3!s}.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc))): ligand_pdb='ligand_{0!s}_{1!s}_{2!s}_{3!s}.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc)) print os.path.join(self.initial_model_directory,xtalID,ligand_pdb) else: self.Logfile.insert('could not extract ligand; trying next...') continue else: self.Logfile.insert('directory: '+os.path.join(self.initial_model_directory,xtalID)+' -> cannot find refine.pdb; trying next') continue if os.path.isfile(os.path.join(self.initial_model_directory,xtalID,'refine.mtz')): resolution=XChemUtils.mtztools(os.path.join(self.initial_model_directory,xtalID,'refine.mtz')).get_high_resolution_from_mtz() else: self.Logfile.insert('directory: '+os.path.join(self.initial_model_directory,xtalID)+' -> cannot find refine.mtz; trying next') continue self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'eventMap -> SF for '+event_map) convert_event_map_to_SF(self.initial_model_directory,xtalID,event_map,ligand_pdb,self.xce_logfile,self.datasource,resolution).run() progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) class convert_event_map_to_SF: def __init__(self,project_directory,xtalID,event_map,ligand_pdb,xce_logfile,db_file,resolution): self.Logfile=XChemLog.updateLog(xce_logfile) self.event_map=event_map if not os.path.isfile(self.event_map): self.Logfile.insert('cannot find Event map: '+self.event_map) self.Logfile.insert('cannot convert event_map to structure factors!') return None self.project_directory=project_directory self.xtalID=xtalID self.event_map=event_map self.ligand_pdb=ligand_pdb self.event=event_map[event_map.rfind('/')+1:].replace('.map','').replace('.ccp4','') self.db=XChemDB.data_source(db_file) self.resolution=resolution def run(self): os.chdir(os.path.join(self.project_directory,self.xtalID)) # remove exisiting mtz file if os.path.isfile(self.event+'.mtz'): self.Logfile.insert('removing existing '+self.event+'.mtz') os.system('/bin/rm '+self.event+'.mtz') # event maps generated with pandda v0.2 or higher have the same symmetry as the crystal # but phenix.map_to_structure_facors only accepts maps in spg P1 # therefore map is first expanded to full unit cell and spg of map then set tp p1 # other conversion option like cinvfft give for whatever reason uninterpretable maps self.convert_map_to_p1() # run phenix.map_to_structure_factors self.run_phenix_map_to_structure_factors() self.remove_and_rename_column_labels() # check if output files exist if not os.path.isfile('{0!s}.mtz'.format(self.event)): self.Logfile.insert('cannot find {0!s}.mtz'.format(self.event)) else: self.Logfile.insert('conversion successful, {0!s}.mtz exists'.format(self.event)) # update datasource with event_map_mtz information self.update_database() def calculate_electron_density_map(self,mtzin): missing_columns=False column_dict=XChemUtils.mtztools(mtzin).get_all_columns_as_dict() if 'FWT' in column_dict['F'] and 'PHWT' in column_dict['PHS']: labin=' labin F1=FWT PHI=PHWT\n' elif '2FOFCWT' in column_dict['F'] and 'PH2FOFCWT' in column_dict['PHS']: labin=' labin F1=2FOFCWT PHI=PH2FOFCWT\n' else: missing_columns=True if not missing_columns: os.chdir(os.path.join(self.project_directory,self.xtalID)) cmd = ( 'fft hklin '+mtzin+' mapout 2fofc.map << EOF\n' +labin+ 'EOF\n' ) self.Logfile.insert('calculating 2fofc map from '+mtzin) os.system(cmd) else: self.Logfile.insert('cannot calculate 2fofc.map; missing map coefficients') def prepare_conversion_script(self): os.chdir(os.path.join(self.project_directory, self.xtalID)) # see also: # http://www.phaser.cimr.cam.ac.uk/index.php/Using_Electron_Density_as_a_Model if os.getcwd().startswith('/dls'): phenix_module='module_load_phenix\n' else: phenix_module='' cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' +phenix_module+ '\n' 'pdbset XYZIN %s XYZOUT mask_ligand.pdb << eof\n' %self.ligand_pdb+ ' SPACEGROUP {0!s}\n'.format(self.space_group)+ ' CELL {0!s}\n'.format((' '.join(self.unit_cell)))+ ' END\n' 'eof\n' '\n' 'ncsmask XYZIN mask_ligand.pdb MSKOUT mask_ligand.msk << eof\n' ' GRID %s\n' %(' '.join(self.gridElectronDensityMap))+ ' RADIUS 10\n' ' PEAK 1\n' 'eof\n' '\n' 'mapmask MAPIN %s MAPOUT onecell_event_map.map << eof\n' %self.event_map+ ' XYZLIM CELL\n' 'eof\n' '\n' 'maprot MAPIN onecell_event_map.map MSKIN mask_ligand.msk WRKOUT masked_event_map.map << eof\n' ' MODE FROM\n' ' SYMMETRY WORK %s\n' %self.space_group_numberElectronDensityMap+ ' AVERAGE\n' ' ROTATE EULER 0 0 0\n' ' TRANSLATE 0 0 0\n' 'eof\n' '\n' 'mapmask MAPIN masked_event_map.map MAPOUT masked_event_map_fullcell.map << eof\n' ' XYZLIM CELL\n' ' PAD 0.0\n' 'eof\n' '\n' 'sfall HKLOUT %s.mtz MAPIN masked_event_map_fullcell.map << eof\n' %self.event+ ' LABOUT FC=FC_event PHIC=PHIC_event\n' ' MODE SFCALC MAPIN\n' ' RESOLUTION %s\n' %self.resolution+ ' END\n' ) self.Logfile.insert('preparing script for conversion of Event map to SF') f = open('eventMap2sf.sh','w') f.write(cmd) f.close() os.system('chmod +x eventMap2sf.sh') def run_conversion_script(self): self.Logfile.insert('running conversion script...') os.system('./eventMap2sf.sh') def convert_map_to_p1(self): self.Logfile.insert('running mapmask -> converting map to p1...') cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'mapmask mapin %s mapout %s_p1.map << eof\n' %(self.event_map,self.event) + 'xyzlin cell\n' 'symmetry p1\n' ) self.Logfile.insert('mapmask command:\n%s' %cmd) os.system(cmd) def run_phenix_map_to_structure_factors(self): if float(self.resolution) < 1.21: # program complains if resolution is 1.2 or higher self.resolution='1.21' self.Logfile.insert('running phenix.map_to_structure_factors {0!s}_p1.map d_min={1!s} output_file_name={2!s}_tmp.mtz'.format(self.event, self.resolution, self.event)) os.system('phenix.map_to_structure_factors {0!s}_p1.map d_min={1!s} output_file_name={2!s}_tmp.mtz'.format(self.event, self.resolution, self.event)) def run_cinvfft(self,mtzin): # mtzin is usually refine.mtz self.Logfile.insert('running cinvfft -mapin {0!s} -mtzin {1!s} -mtzout {2!s}_tmp.mtz -colout event'.format(self.event_map, mtzin, self.event)) os.system('cinvfft -mapin {0!s} -mtzin {1!s} -mtzout {2!s}_tmp.mtz -colout event'.format(self.event_map, mtzin, self.event)) def remove_and_rename_column_labels(self): cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'cad hklin1 %s_tmp.mtz hklout %s.mtz << eof\n' %(self.event,self.event)+ ' labin file_number 1 E1=F-obs E2=PHIF\n' ' labout file_number 1 E1=F_ampl E2=PHIF\n' 'eof\n' '\n' ) self.Logfile.insert('running CAD: new column labels F_ampl,PHIF') os.system(cmd) def remove_and_rename_column_labels_after_cinvfft(self): cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'cad hklin1 %s_tmp.mtz hklout %s.mtz << eof\n' %(self.event,self.event)+ ' labin file_number 1 E1=event.F_phi.F E2=event.F_phi.phi\n' ' labout file_number 1 E1=F_ampl E2=PHIF\n' 'eof\n' '\n' ) self.Logfile.insert('running CAD: renaming event.F_phi.F -> F_ampl and event.F_phi.phi -> PHIF') os.system(cmd) def update_database(self): sqlite = ( "update panddaTable set " " PANDDA_site_event_map_mtz = '%s' " %os.path.join(self.project_directory,self.xtalID,self.event+'.mtz')+ " where PANDDA_site_event_map is '{0!s}' ".format(self.event_map) ) self.db.execute_statement(sqlite) self.Logfile.insert('updating data source: '+sqlite) def clean_output_directory(self): os.system('/bin/rm mask_targetcell.pdb') os.system('/bin/rm mask_targetcell.msk') os.system('/bin/rm onecell.map') os.system('/bin/rm masked_targetcell.map') os.system('/bin/rm masked_fullcell.map') os.system('/bin/rm eventMap2sf.sh') os.system('/bin/rm '+self.ligand_pdb) class run_pandda_inspect_at_home(QtCore.QThread): def __init__(self,panddaDir,xce_logfile): QtCore.QThread.__init__(self) self.panddaDir=panddaDir self.Logfile=XChemLog.updateLog(xce_logfile) def run(self): os.chdir(os.path.join(self.panddaDir,'processed_datasets')) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob('*'))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('parsing '+self.panddaDir) for xtal in sorted(glob.glob('*')): for files in glob.glob(xtal+'/ligand_files/*'): if os.path.islink(files): self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'replacing symlink for {0!s} with real file'.format(files)) self.Logfile.insert('replacing symlink for {0!s} with real file'.format(files)) os.system('cp --remove-destination {0!s} {1!s}/ligand_files'.format(os.path.realpath(files), xtal)) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) XChemToolTips.run_pandda_inspect_at_home(self.panddaDir) class convert_apo_structures_to_mmcif(QtCore.QThread): def __init__(self,panddaDir,xce_logfile): QtCore.QThread.__init__(self) self.panddaDir=panddaDir self.Logfile=XChemLog.updateLog(xce_logfile) def sf_convert_environment(self): pdb_extract_init = '' if os.path.isdir('/dls'): pdb_extract_init = 'source /dls/science/groups/i04-1/software/pdb-extract-prod/setup.sh\n' pdb_extract_init += '/dls/science/groups/i04-1/software/pdb-extract-prod/bin/sf_convert' else: pdb_extract_init = 'source ' + os.path.join(os.getenv('XChemExplorer_DIR'), 'pdb_extract/pdb-extract-prod/setup.sh') + '\n' pdb_extract_init += +os.path.join(os.getenv('XChemExplorer_DIR'), 'pdb_extract/pdb-extract-prod/bin/sf_convert') return pdb_extract_init def run(self): self.Logfile.insert('converting apo structures in pandda directory to mmcif files') self.Logfile.insert('chanfing to '+self.panddaDir) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob(os.path.join(self.panddaDir,'processed_datasets','*')))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) pdb_extract_init = self.sf_convert_environment() self.Logfile.insert('parsing '+self.panddaDir) for dirs in glob.glob(os.path.join(self.panddaDir,'processed_datasets','*')): xtal = dirs[dirs.rfind('/')+1:] self.Logfile.insert('%s: converting %s to mmcif' %(xtal,xtal+'-pandda-input.mtz')) if os.path.isfile(os.path.join(dirs,xtal+'-pandda-input.mtz')): if os.path.isfile(os.path.join(dirs,xtal+'_sf.mmcif')): self.Logfile.insert('%s: %s_sf.mmcif exists; skipping...' %(xtal,xtal)) else: os.chdir(dirs) Cmd = (pdb_extract_init + ' -o mmcif' ' -sf %s' % xtal+'-pandda-input.mtz' + ' -out {0!s}_sf.mmcif > {1!s}.sf_mmcif.log'.format(xtal, xtal)) self.Logfile.insert('running command: '+Cmd) os.system(Cmd) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) class check_number_of_modelled_ligands(QtCore.QThread): def __init__(self,project_directory,xce_logfile,db_file): QtCore.QThread.__init__(self) self.Logfile=XChemLog.updateLog(xce_logfile) self.project_directory=project_directory self.db=XChemDB.data_source(db_file) self.errorDict={} def update_errorDict(self,xtal,message): if xtal not in self.errorDict: self.errorDict[xtal]=[] self.errorDict[xtal].append(message) def insert_new_row_in_panddaTable(self,xtal,ligand,site,dbDict): resname= site[0] chain= site[1] seqnum= site[2] altLoc= site[3] x_site= site[5][0] y_site= site[5][1] z_site= site[5][2] resnameSimilarSite= ligand[0] chainSimilarSite= ligand[1] seqnumSimilarSite= ligand[2] siteList=[] for entry in dbDict[xtal]: siteList.append(str(entry[0])) if entry[4] == resnameSimilarSite and entry[5] == chainSimilarSite and entry[6] == seqnumSimilarSite: eventMap= str(entry[7]) eventMap_mtz= str(entry[8]) initialPDB= str(entry[9]) initialMTZ= str(entry[10]) event_id= str(entry[12]) PanDDApath= str(entry[13]) db_dict={ 'PANDDA_site_index': str(int(max(siteList))+1), 'PANDDApath': PanDDApath, 'PANDDA_site_ligand_id': resname+'-'+chain+'-'+seqnum, 'PANDDA_site_ligand_resname': resname, 'PANDDA_site_ligand_chain': chain, 'PANDDA_site_ligand_sequence_number': seqnum, 'PANDDA_site_ligand_altLoc': 'D', 'PANDDA_site_event_index': event_id, 'PANDDA_site_event_map': eventMap, 'PANDDA_site_event_map_mtz': eventMap_mtz, 'PANDDA_site_initial_model': initialPDB, 'PANDDA_site_initial_mtz': initialMTZ, 'PANDDA_site_ligand_placed': 'True', 'PANDDA_site_x': x_site, 'PANDDA_site_y': y_site, 'PANDDA_site_z': z_site } print xtal,db_dict def run(self): self.Logfile.insert('reading modelled ligands from panddaTable') dbDict={} sqlite = ( "select " " CrystalName," " PANDDA_site_index," " PANDDA_site_x," " PANDDA_site_y," " PANDDA_site_z," " PANDDA_site_ligand_resname," " PANDDA_site_ligand_chain," " PANDDA_site_ligand_sequence_number," " PANDDA_site_event_map," " PANDDA_site_event_map_mtz," " PANDDA_site_initial_model," " PANDDA_site_initial_mtz," " RefinementOutcome," " PANDDA_site_event_index," " PANDDApath " "from panddaTable " ) dbEntries=self.db.execute_statement(sqlite) for item in dbEntries: xtal= str(item[0]) site= str(item[1]) x= str(item[2]) y= str(item[3]) z= str(item[4]) resname= str(item[5]) chain= str(item[6]) seqnum= str(item[7]) eventMap= str(item[8]) eventMap_mtz= str(item[9]) initialPDB= str(item[10]) initialMTZ= str(item[11]) outcome= str(item[12]) event= str(item[13]) PanDDApath= str(item[14]) if xtal not in dbDict: dbDict[xtal]=[] dbDict[xtal].append([site,x,y,z,resname,chain,seqnum,eventMap,eventMap_mtz,initialPDB,initialMTZ,outcome,event,PanDDApath]) os.chdir(self.project_directory) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob('*'))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) for xtal in sorted(glob.glob('*')): if os.path.isfile(os.path.join(xtal,'refine.pdb')): ligands=XChemUtils.pdbtools(os.path.join(xtal,'refine.pdb')).ligand_details_as_list() self.Logfile.insert('{0!s}: found file refine.pdb'.format(xtal)) if ligands: if os.path.isdir(os.path.join(xtal,'xceTmp')): os.system('/bin/rm -fr {0!s}'.format(os.path.join(xtal,'xceTmp'))) os.mkdir(os.path.join(xtal,'xceTmp')) else: self.Logfile.warning('{0!s}: cannot find ligand molecule in refine.pdb; skipping...'.format(xtal)) continue made_sym_copies=False ligands_not_in_panddaTable=[] for n,item in enumerate(ligands): resnameLIG= item[0] chainLIG= item[1] seqnumLIG= item[2] altLocLIG= item[3] occupancyLig= item[4] if altLocLIG.replace(' ','') == '': self.Logfile.insert(xtal+': found a ligand not modelled with pandda.inspect -> {0!s} {1!s} {2!s}'.format(resnameLIG, chainLIG, seqnumLIG)) residue_xyz = XChemUtils.pdbtools(os.path.join(xtal,'refine.pdb')).get_center_of_gravity_of_residue_ish(item[1],item[2]) ligands[n].append(residue_xyz) foundLigand=False if xtal in dbDict: for entry in dbDict[xtal]: resnameTable=entry[4] chainTable=entry[5] seqnumTable=entry[6] self.Logfile.insert('panddaTable: {0!s} {1!s} {2!s} {3!s}'.format(xtal, resnameTable, chainTable, seqnumTable)) if resnameLIG == resnameTable and chainLIG == chainTable and seqnumLIG == seqnumTable: self.Logfile.insert('{0!s}: found ligand in database -> {1!s} {2!s} {3!s}'.format(xtal, resnameTable, chainTable, seqnumTable)) foundLigand=True if not foundLigand: self.Logfile.error('{0!s}: did NOT find ligand in database -> {1!s} {2!s} {3!s}'.format(xtal, resnameLIG, chainLIG, seqnumLIG)) ligands_not_in_panddaTable.append([resnameLIG,chainLIG,seqnumLIG,altLocLIG,occupancyLig,residue_xyz]) else: self.Logfile.warning('ligand in PDB file, but dataset not listed in panddaTable: {0!s} -> {1!s} {2!s} {3!s}'.format(xtal, item[0], item[1], item[2])) for entry in ligands_not_in_panddaTable: self.Logfile.error('{0!s}: refine.pdb contains a ligand that is not assigned in the panddaTable: {1!s} {2!s} {3!s} {4!s}'.format(xtal, entry[0], entry[1], entry[2], entry[3])) for site in ligands_not_in_panddaTable: for files in glob.glob(os.path.join(self.project_directory,xtal,'xceTmp','ligand_*_*.pdb')): mol_xyz = XChemUtils.pdbtools(files).get_center_of_gravity_of_molecule_ish() # now need to check if there is a unassigned entry in panddaTable that is close for entry in dbDict[xtal]: distance = XChemUtils.misc().calculate_distance_between_coordinates(mol_xyz[0], mol_xyz[1],mol_xyz[2],entry[1],entry[2], entry[3]) self.Logfile.insert('{0!s}: {1!s} {2!s} {3!s} <---> {4!s} {5!s} {6!s}'.format(xtal, mol_xyz[0], mol_xyz[1], mol_xyz[2], entry[1], entry[2], entry[3])) self.Logfile.insert('{0!s}: symm equivalent molecule: {1!s}'.format(xtal, files)) self.Logfile.insert('{0!s}: distance: {1!s}'.format(xtal, str(distance))) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) if self.errorDict != {}: self.update_errorDict('General','The aforementioned PDB files were automatically changed by XCE!\nPlease check and refine them!!!') self.emit(QtCore.SIGNAL('show_error_dict'), self.errorDict) class find_event_map_for_ligand(QtCore.QThread): def __init__(self,project_directory,xce_logfile,external_software): QtCore.QThread.__init__(self) self.Logfile=XChemLog.updateLog(xce_logfile) self.project_directory=project_directory self.external_software=external_software try: import gemmi self.Logfile.insert('found gemmi library in ccp4-python') except ImportError: self.external_software['gemmi'] = False self.Logfile.warning('cannot import gemmi; will use phenix.map_to_structure_factors instead') def run(self): self.Logfile.insert('======== checking ligand CC in event maps ========') for dirs in sorted(glob.glob(os.path.join(self.project_directory,'*'))): xtal = dirs[dirs.rfind('/')+1:] if os.path.isfile(os.path.join(dirs,'refine.pdb')) and \ os.path.isfile(os.path.join(dirs,'refine.mtz')): self.Logfile.insert('%s: found refine.pdb' %xtal) os.chdir(dirs) try: p = gemmi.read_structure('refine.pdb') except: self.Logfile.error('gemmi library not available') self.external_software['gemmi'] = False reso = XChemUtils.mtztools('refine.mtz').get_dmin() ligList = XChemUtils.pdbtools('refine.pdb').save_residues_with_resname(dirs,'LIG') self.Logfile.insert('%s: found %s ligands of type LIG in refine.pdb' %(xtal,str(len(ligList)))) for maps in glob.glob(os.path.join(dirs,'*event*.native.ccp4')): if self.external_software['gemmi']: self.convert_map_to_sf_with_gemmi(maps,p) else: self.expand_map_to_p1(maps) self.convert_map_to_sf(maps.replace('.ccp4','.P1.ccp4'),reso) summary = '' for lig in sorted(ligList): if self.external_software['gemmi']: for mtz in sorted(glob.glob(os.path.join(dirs,'*event*.native.mtz'))): self.get_lig_cc(mtz,lig) cc = self.check_lig_cc(mtz.replace('.mtz', '_CC.log')) summary += '%s: %s LIG CC = %s (%s)\n' %(xtal,lig,cc,mtz[mtz.rfind('/')+1:]) else: for mtz in sorted(glob.glob(os.path.join(dirs,'*event*.native*P1.mtz'))): self.get_lig_cc(mtz,lig) cc = self.check_lig_cc(mtz.replace('.mtz', '_CC.log')) summary += '%s: %s LIG CC = %s (%s)\n' %(xtal,lig,cc,mtz[mtz.rfind('/')+1:]) self.Logfile.insert('\nsummary of CC analysis:\n======================:\n'+summary) def expand_map_to_p1(self,emap): self.Logfile.insert('expanding map to P1: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.P1.ccp4')): self.Logfile.warning('P1 map exists; skipping...') return cmd = ( 'mapmask MAPIN %s MAPOUT %s << eof\n' %(emap,emap.replace('.ccp4','.P1.ccp4'))+ ' XYZLIM CELL\n' ' PAD 0.0\n' ' SYMMETRY 1\n' 'eof\n' ) os.system(cmd) def convert_map_to_sf(self,emap,reso): self.Logfile.insert('converting ccp4 map to mtz with phenix.map_to_structure_factors: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.mtz')): self.Logfile.warning('mtz file of event map exists; skipping...') return cmd = ( 'module load phenix\n' 'phenix.map_to_structure_factors %s d_min=%s\n' %(emap,reso)+ '/bin/mv map_to_structure_factors.mtz %s' %emap.replace('.ccp4', '.mtz') ) os.system(cmd) def get_lig_cc(self,mtz,lig): self.Logfile.insert('calculating CC for %s in %s' %(lig,mtz)) if os.path.isfile(mtz.replace('.mtz', '_CC.log')): self.Logfile.warning('logfile of CC analysis exists; skipping...') return cmd = ( 'module load phenix\n' 'phenix.get_cc_mtz_pdb %s %s > %s' % (mtz, lig, mtz.replace('.mtz', '_CC.log')) ) os.system(cmd) def check_lig_cc(self,log): cc = 'n/a' if os.path.isfile(log): for line in open(log): if line.startswith('local'): cc = line.split()[len(line.split()) - 1] else: self.Logfile.error('logfile does not exist: %s' %log) return cc def convert_map_to_sf_with_gemmi(self,emap,p): self.Logfile.insert('converting ccp4 map to mtz with gemmi map2sf: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.mtz')): self.Logfile.warning('mtz file of event map exists; skipping...') return cmd = 'gemmi map2sf %s %s FWT PHWT --dmin=%s' %(emap,emap.replace('.ccp4','.mtz'),p.resolution) self.Logfile.insert('converting map with command:\n' + cmd) os.system(cmd)
# last edited: 10/08/2017, 10:25 import os, sys, glob, subprocess from datetime import datetime from PyQt4 import QtGui, QtCore import math #from XChemUtils import mtztools import XChemDB import XChemRefine import XChemUtils import XChemLog import XChemToolTips import csv try: import gemmi import pandas except ImportError: pass #def get_names_of_current_clusters(xce_logfile,panddas_directory): # Logfile=XChemLog.updateLog(xce_logfile) # Logfile.insert('parsing {0!s}/cluster_analysis'.format(panddas_directory)) # os.chdir('{0!s}/cluster_analysis'.format(panddas_directory)) # cluster_dict={} # for out_dir in sorted(glob.glob('*')): # if os.path.isdir(out_dir): # cluster_dict[out_dir]=[] # found_first_pdb=False # for folder in glob.glob(os.path.join(out_dir,'pdbs','*')): # xtal=folder[folder.rfind('/')+1:] # if not found_first_pdb: # if os.path.isfile(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb') ): # cluster_dict[out_dir].append(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb')) # found_first_pdb=True # cluster_dict[out_dir].append(xtal) # return cluster_dict class export_and_refine_ligand_bound_models(QtCore.QThread): def __init__(self,PanDDA_directory,datasource,project_directory,xce_logfile,which_models): QtCore.QThread.__init__(self) self.PanDDA_directory = PanDDA_directory self.datasource = datasource self.db = XChemDB.data_source(self.datasource) self.Logfile = XChemLog.updateLog(xce_logfile) self.xce_logfile = xce_logfile self.project_directory = project_directory self.which_models=which_models self.external_software=XChemUtils.external_software(xce_logfile).check() # self.initial_model_directory=initial_model_directory # self.db.create_missing_columns() # self.db_list=self.db.get_empty_db_dict() # self.external_software=XChemUtils.external_software(xce_logfile).check() # self.xce_logfile=xce_logfile # self.already_exported_models=[] def run(self): self.Logfile.warning(XChemToolTips.pandda_export_ligand_bound_models_only_disclaimer()) # find all folders with *-pandda-model.pdb modelsDict = self.find_modeled_structures_and_timestamps() # if only NEW models shall be exported, check timestamps if not self.which_models.startswith('all'): modelsDict = self.find_new_models(modelsDict) # find pandda_inspect_events.csv and read in as pandas dataframe inspect_csv = None if os.path.isfile(os.path.join(self.PanDDA_directory,'analyses','pandda_inspect_events.csv')): inspect_csv = pandas.read_csv(os.path.join(self.PanDDA_directory,'analyses','pandda_inspect_events.csv')) progress = 0 try: progress_step = float(1/len(modelsDict)) except TypeError: self.Logfile.error('DID NOT FIND ANY MODELS TO EXPORT') return None for xtal in sorted(modelsDict): os.chdir(os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) pandda_model = os.path.join('modelled_structures',xtal + '-pandda-model.pdb') pdb = gemmi.read_structure(pandda_model) # find out ligand event map relationship ligandDict = XChemUtils.pdbtools_gemmi(pandda_model).center_of_mass_ligand_dict('LIG') if ligandDict == {}: self.Logfile.error(xtal + ': cannot find ligand of type LIG; skipping...') continue self.show_ligands_in_model(xtal,ligandDict) emapLigandDict = self.find_ligands_matching_event_map(inspect_csv,xtal,ligandDict) self.Logfile.warning('emapLigandDict' + str(emapLigandDict)) # convert event map to SF self.event_map_to_sf(pdb.resolution,emapLigandDict) # move existing event maps in project directory to old folder self.move_old_event_to_backup_folder(xtal) # copy event MTZ to project directory self.copy_event_mtz_to_project_directory(xtal) # copy pandda-model to project directory self.copy_pandda_model_to_project_directory(xtal) # make map from MTZ and cut around ligand self.make_and_cut_map(xtal,emapLigandDict) # update database self.update_database(xtal,modelsDict) # refine models self.refine_exported_model(xtal) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) def update_database(self,xtal,modelsDict): db_dict = {} timestamp_file = modelsDict[xtal] db_dict['DatePanDDAModelCreated'] = timestamp_file db_dict['RefinementOutcome'] = '3 - In Refinement' self.Logfile.insert('updating database for '+xtal+' setting time model was created to '+db_dict['DatePanDDAModelCreated']) self.db.update_data_source(xtal,db_dict) def make_and_cut_map(self,xtal,emapLigandDict): self.Logfile.insert('changing directory to ' + os.path.join(self.project_directory,xtal)) os.chdir(os.path.join(self.project_directory,xtal)) XChemUtils.pdbtools_gemmi(xtal + '-pandda-model.pdb').save_ligands_to_pdb('LIG') for ligID in emapLigandDict: m = emapLigandDict[ligID] emtz = m.replace('.ccp4','_' + ligID + '.mtz') emap = m.replace('.ccp4','_' + ligID + '.ccp4') XChemUtils.maptools().calculate_map(emtz,'FWT','PHWT') XChemUtils.maptools().cut_map_around_ligand(emap,ligID+'.pdb','7') if os.path.isfile(emap.replace('.ccp4','_mapmask.ccp4')): os.system('/bin/mv %s %s_%s_event.ccp4' %(emap.replace('.ccp4','_mapmask.ccp4'),xtal,ligID)) os.system('ln -s %s_%s_event.ccp4 %s_%s_event_cut.ccp4' %(xtal,ligID,xtal,ligID)) def copy_pandda_model_to_project_directory(self,xtal): os.chdir(os.path.join(self.project_directory,xtal)) model = os.path.join(self.PanDDA_directory,'processed_datasets',xtal,'modelled_structures',xtal+'-pandda-model.pdb') self.Logfile.insert('copying %s to project directory' %model) os.system('/bin/cp %s .' %model) def copy_event_mtz_to_project_directory(self,xtal): self.Logfile.insert('changing directory to ' + os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) os.chdir(os.path.join(self.PanDDA_directory,'processed_datasets',xtal)) for emap in glob.glob('*-BDC_*.mtz'): self.Logfile.insert('copying %s to %s...' %(emap,os.path.join(self.project_directory,xtal))) os.system('/bin/cp %s %s' %(emap,os.path.join(self.project_directory,xtal))) def move_old_event_to_backup_folder(self,xtal): self.Logfile.insert('changing directory to ' + os.path.join(self.project_directory,xtal)) os.chdir(os.path.join(self.project_directory,xtal)) if not os.path.isdir('event_map_backup'): os.mkdir('event_map_backup') self.Logfile.insert('moving existing event maps to event_map_backup') for emap in glob.glob('*-BDC_*.ccp4'): os.system('/bin/mv %s event_map_backup/%s' %(emap,emap+'.'+str(datetime.now()).replace(' ','_').replace(':','-'))) def show_ligands_in_model(self,xtal,ligandDict): self.Logfile.insert(xtal + ': found the following ligands...') for lig in ligandDict: self.Logfile.insert(lig + ' -> coordinates ' + str(ligandDict[lig])) def find_modeled_structures_and_timestamps(self): self.Logfile.insert('finding out modelled structures in ' + self.PanDDA_directory) modelsDict={} for model in sorted(glob.glob(os.path.join(self.PanDDA_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb'))): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) modelsDict[sample]=timestamp return modelsDict def find_new_models(self,modelsDict): samples_to_export = {} self.Logfile.hint('XCE will never export/ refine models that are "5-deposition ready" or "6-deposited"') self.Logfile.hint('Please change the RefinementOutcome flag in the Refinement table if you wish to re-export them') self.Logfile.insert('checking timestamps of models in database...') for xtal in modelsDict: timestamp_file = modelsDict[xtal] db_query=self.db.execute_statement("select DatePanDDAModelCreated from mainTable where CrystalName is '"+xtal+"' and (RefinementOutcome like '3%' or RefinementOutcome like '4%')") try: timestamp_db=str(db_query[0][0]) except IndexError: self.Logfile.warning('%s: database query gave no results for DatePanDDAModelCreated; skipping...' %xtal) self.Logfile.warning('%s: this might be a brand new model; will continue with export!' %xtal) samples_to_export[xtal]=timestamp_file timestamp_db = "2100-01-01 00:00:00" # some time in the future... try: difference=(datetime.strptime(timestamp_file,'%Y-%m-%d %H:%M:%S') - datetime.strptime(timestamp_db,'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+xtal+' -> was already refined, but newer PanDDA model available') samples_to_export[xtal]=timestamp_file else: self.Logfile.insert('%s: model has not changed since it was created on %s' %(xtal,timestamp_db)) except (ValueError, IndexError), e: self.Logfile.error(str(e)) return samples_to_export def event_map_to_sf(self,resolution,emapLigandDict): for lig in emapLigandDict: emap = emapLigandDict[lig] emtz = emap.replace('.ccp4','.mtz') emtz_ligand = emap.replace('.ccp4','_' + lig + '.mtz') self.Logfile.insert('trying to convert %s to SF -> %s' %(emap,emtz_ligand)) self.Logfile.insert('>>> ' + emtz) XChemUtils.maptools_gemmi(emap).map_to_sf(resolution) if os.path.isfile(emtz): os.system('/bin/mv %s %s' %(emtz,emtz_ligand)) self.Logfile.insert('success; %s exists' %emtz_ligand) else: self.Logfile.warning('something went wrong; %s could not be created...' %emtz_ligand) def find_ligands_matching_event_map(self,inspect_csv,xtal,ligandDict): emapLigandDict = {} for index, row in inspect_csv.iterrows(): if row['dtag'] == xtal: for emap in glob.glob('*-BDC_*.ccp4'): self.Logfile.insert('checking if event and ligand are within 7A of each other') x = float(row['x']) y = float(row['y']) z = float(row['z']) matching_ligand = self.calculate_distance_to_ligands(ligandDict,x,y,z) if matching_ligand is not None: emapLigandDict[matching_ligand] = emap self.Logfile.insert('found matching ligand (%s) for %s' %(matching_ligand,emap)) break else: self.Logfile.warning('current ligand not close to event...') if emapLigandDict == {}: self.Logfile.error('could not find ligands within 7A of PanDDA events') return emapLigandDict def calculate_distance_to_ligands(self,ligandDict,x,y,z): matching_ligand = None p_event = gemmi.Position(x, y, z) for ligand in ligandDict: c = ligandDict[ligand] p_ligand = gemmi.Position(c[0], c[1], c[2]) self.Logfile.insert('coordinates ligand: ' + str(c[0])+' '+ str(c[1])+' '+str(c[2])) self.Logfile.insert('coordinates event: ' + str(x)+' '+ str(y)+' '+str(z)) distance = p_event.dist(p_ligand) self.Logfile.insert('distance between ligand and event: %s A' %str(distance)) if distance < 7: matching_ligand = ligand break return matching_ligand def refine_exported_model(self,xtal): RefmacParams={ 'HKLIN': '', 'HKLOUT': '', 'XYZIN': '', 'XYZOUT': '', 'LIBIN': '', 'LIBOUT': '', 'TLSIN': '', 'TLSOUT': '', 'TLSADD': '', 'NCYCLES': '10', 'MATRIX_WEIGHT': 'AUTO', 'BREF': ' bref ISOT\n', 'TLS': '', 'NCS': '', 'TWIN': '', 'WATER': '', 'LIGOCC': '', 'SANITY': '' } if 'nocheck' in self.which_models: RefmacParams['SANITY'] = 'off' self.Logfile.insert('trying to refine ' + xtal + '...') self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) if os.path.isfile(os.path.join(self.project_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.project_directory,xtal,xtal+'-pandda-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.project_directory,xtal) if not os.path.isdir(os.path.join(self.project_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.project_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) else: os.mkdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.project_directory,xtal,'cootOut','Refine_'+str(Serial))) os.system('/bin/cp %s in.pdb' %os.path.join(self.project_directory,xtal,xtal+'-pandda-model.pdb')) Refine=XChemRefine.Refine(self.project_directory,xtal,compoundID,self.datasource) Refine.RunBuster(str(Serial),RefmacParams,self.external_software,self.xce_logfile,None) else: self.Logfile.error('%s: cannot find %s-pandda-model.pdb; cannot start refinement...' %(xtal,xtal)) else: self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.project_directory, xtal))) class refine_bound_state_with_buster(QtCore.QThread): def __init__(self,panddas_directory,datasource,initial_model_directory,xce_logfile,which_models): QtCore.QThread.__init__(self) self.panddas_directory=panddas_directory self.datasource=datasource self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(self.datasource) self.db.create_missing_columns() self.db_list=self.db.get_empty_db_dict() self.external_software=XChemUtils.external_software(xce_logfile).check() self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.which_models=which_models self.already_exported_models=[] def run(self): samples_to_export=self.export_models() self.refine_exported_models(samples_to_export) def refine_exported_models(self,samples_to_export): self.Logfile.insert('will try to refine the following crystals:') for xtal in sorted(samples_to_export): self.Logfile.insert(xtal) for xtal in sorted(samples_to_export): self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) # compoundID=str(item[1]) if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'-pandda-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.initial_model_directory,xtal) ####################################################### if not os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) else: os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.system('/bin/cp %s in.pdb' %os.path.join(self.initial_model_directory,xtal,xtal+'-pandda-model.pdb')) Refine=XChemRefine.Refine(self.initial_model_directory,xtal,compoundID,self.datasource) Refine.RunBuster(str(Serial),self.external_software,self.xce_logfile,None) else: self.Logfile.error('%s: cannot find %s-pandda-model.pdb; cannot start refinement...' %(xtal,xtal)) elif xtal in samples_to_export and not os.path.isfile( os.path.join(self.initial_model_directory, xtal, xtal + '.free.mtz')): self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.initial_model_directory, xtal))) else: self.Logfile.insert('%s: nothing to refine' % (xtal)) def export_models(self): self.Logfile.insert('finding out which PanDDA models need to be exported') # first find which samples are in interesting datasets and have a model # and determine the timestamp fileModelsDict={} queryModels='' for model in glob.glob(os.path.join(self.panddas_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb')): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) queryModels+="'"+sample+"'," fileModelsDict[sample]=timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined dbModelsDict={} if queryModels != '': dbEntries=self.db.execute_statement("select CrystalName,DatePanDDAModelCreated from mainTable where CrystalName in ("+queryModels[:-1]+") and (RefinementOutcome like '3%' or RefinementOutcome like '4%' or RefinementOutcome like '5%')") for item in dbEntries: xtal=str(item[0]) timestamp=str(item[1]) dbModelsDict[xtal]=timestamp self.Logfile.insert('PanDDA model for '+xtal+' is in database and was created on '+str(timestamp)) # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB samples_to_export={} self.Logfile.insert('checking which PanDDA models were newly created or updated') if self.which_models=='all': self.Logfile.insert('Note: you chose to export ALL available PanDDA!') for sample in fileModelsDict: if self.which_models=='all': self.Logfile.insert('exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] else: if sample in dbModelsDict: try: difference=(datetime.strptime(fileModelsDict[sample],'%Y-%m-%d %H:%M:%S') - datetime.strptime(dbModelsDict[sample],'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+sample+' -> was already refined, but newer PanDDA model available') samples_to_export[sample]=fileModelsDict[sample] except ValueError: # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) advice = ( 'The pandda model of '+xtal+' was changed, but it was already refined! ' 'This is most likely because this was done with an older version of XCE. ' 'If you really want to export and refine this model, you need to open the database ' 'with DBbroweser (sqlitebrowser.org); then change the RefinementOutcome field ' 'of the respective sample to "2 - PANDDA model", save the database and repeat the export prodedure.' ) self.Logfile.insert(advice) else: self.Logfile.insert('exporting '+sample+' -> first time to be exported and refined') samples_to_export[sample]=fileModelsDict[sample] # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' if samples_to_export != {}: select_dir_string='' select_dir_string_new_pannda=' ' for sample in samples_to_export: self.Logfile.insert('changing directory to ' + os.path.join(self.initial_model_directory,sample)) os.chdir(os.path.join(self.initial_model_directory,sample)) self.Logfile.insert(sample + ': copying ' + os.path.join(self.panddas_directory,'processed_datasets',sample,'modelled_structures',sample+'-pandda-model.pdb')) os.system('/bin/cp %s .' %os.path.join(self.panddas_directory,'processed_datasets',sample,'modelled_structures',sample+'-pandda-model.pdb')) db_dict= {'RefinementOutcome': '2 - PANDDA model', 'DatePanDDAModelCreated': samples_to_export[sample]} for old_event_map in glob.glob('*-BDC_*.ccp4'): if not os.path.isdir('old_event_maps'): os.mkdir('old_event_maps') self.Logfile.warning(sample + ': moving ' + old_event_map + ' to old_event_maps folder') os.system('/bin/mv %s old_event_maps' %old_event_map) for event_map in glob.glob(os.path.join(self.panddas_directory,'processed_datasets',sample,'*-BDC_*.ccp4')): self.Logfile.insert(sample + ': copying ' + event_map) os.system('/bin/cp %s .' %event_map) select_dir_string+="select_dir={0!s} ".format(sample) select_dir_string_new_pannda+='{0!s} '.format(sample) self.Logfile.insert('updating database for '+sample+' setting time model was created to '+db_dict['DatePanDDAModelCreated']+' and RefinementOutcome to '+db_dict['RefinementOutcome']) self.db.update_data_source(sample,db_dict) return samples_to_export class run_pandda_export(QtCore.QThread): def __init__(self,panddas_directory,datasource,initial_model_directory,xce_logfile,update_datasource_only,which_models,pandda_params): QtCore.QThread.__init__(self) self.panddas_directory=panddas_directory self.datasource=datasource self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(self.datasource) self.db.create_missing_columns() self.db_list=self.db.get_empty_db_dict() self.external_software=XChemUtils.external_software(xce_logfile).check() self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.update_datasource_only=update_datasource_only self.which_models=which_models self.already_exported_models=[] self.pandda_analyse_data_table = pandda_params['pandda_table'] self.RefmacParams={ 'HKLIN': '', 'HKLOUT': '', 'XYZIN': '', 'XYZOUT': '', 'LIBIN': '', 'LIBOUT': '', 'TLSIN': '', 'TLSOUT': '', 'TLSADD': '', 'NCYCLES': '10', 'MATRIX_WEIGHT': 'AUTO', 'BREF': ' bref ISOT\n', 'TLS': '', 'NCS': '', 'TWIN': '' } def run(self): # v1.3.8.2 - removed option to update database only # if not self.update_datasource_only: samples_to_export=self.export_models() self.import_samples_into_datasouce(samples_to_export) # if not self.update_datasource_only: self.refine_exported_models(samples_to_export) def refine_exported_models(self,samples_to_export): self.Logfile.insert('will try to refine the following crystals:') for xtal in samples_to_export: self.Logfile.insert(xtal) # sample_list=self.db.execute_statement("select CrystalName,CompoundCode from mainTable where RefinementOutcome='2 - PANDDA model';") # for item in sample_list: # xtal=str(item[0]) for xtal in sorted(samples_to_export): self.Logfile.insert('%s: getting compound code from database' %xtal) query=self.db.execute_statement("select CompoundCode from mainTable where CrystalName='%s';" %xtal) compoundID=str(query[0][0]) self.Logfile.insert('%s: compounds code = %s' %(xtal,compoundID)) # compoundID=str(item[1]) if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'.free.mtz')): if os.path.isfile(os.path.join(self.initial_model_directory,xtal,xtal+'-ensemble-model.pdb')): self.Logfile.insert('running inital refinement on PANDDA model of '+xtal) Serial=XChemRefine.GetSerial(self.initial_model_directory,xtal) ####################################################### if not os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut')): os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut')) # create folder for new refinement cycle if os.path.isdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))): os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) try: os.system('/bin/rm *-ensemble-model.pdb *restraints*') except: self.Logfile.error("Restraint files didn't exist to remove. Will try to continue") else: os.mkdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) os.chdir(os.path.join(self.initial_model_directory,xtal,'cootOut','Refine_'+str(Serial))) Refine=XChemRefine.panddaRefine(self.initial_model_directory,xtal,compoundID,self.datasource) os.symlink(os.path.join(self.initial_model_directory,xtal,xtal+'-ensemble-model.pdb'),xtal+'-ensemble-model.pdb') Refine.RunQuickRefine(Serial,self.RefmacParams,self.external_software,self.xce_logfile,'pandda_refmac',None) # elif xtal in os.path.join(self.panddas_directory,'processed_datasets',xtal,'modelled_structures', # '{}-pandda-model.pdb'.format(xtal)): # self.Logfile.insert('{}: cannot start refinement because {}'.format(xtal,xtal) + # ' does not have a modelled structure. Check whether you expect this dataset to ' + # ' have a modelled structure, compare pandda.inspect and datasource,' # ' then tell XCHEMBB ') else: self.Logfile.error('%s: cannot find %s-ensemble-model.pdb; cannot start refinement...' %(xtal,xtal)) self.Logfile.error('Please check terminal window for any PanDDA related tracebacks') elif xtal in samples_to_export and not os.path.isfile( os.path.join(self.initial_model_directory, xtal, xtal + '.free.mtz')): self.Logfile.error('%s: cannot start refinement because %s.free.mtz is missing in %s' % ( xtal, xtal, os.path.join(self.initial_model_directory, xtal))) else: self.Logfile.insert('%s: nothing to refine' % (xtal)) def import_samples_into_datasouce(self,samples_to_export): # first make a note of all the datasets which were used in pandda directory os.chdir(os.path.join(self.panddas_directory,'processed_datasets')) for xtal in glob.glob('*'): self.db.execute_statement("update mainTable set DimplePANDDAwasRun = 'True',DimplePANDDAreject = 'False',DimplePANDDApath='{0!s}' where CrystalName is '{1!s}'".format(self.panddas_directory, xtal)) # do the same as before, but look for rejected datasets try: os.chdir(os.path.join(self.panddas_directory,'rejected_datasets')) for xtal in glob.glob('*'): self.db.execute_statement("update mainTable set DimplePANDDAwasRun = 'True',DimplePANDDAreject = 'True',DimplePANDDApath='{0!s}',DimplePANDDAhit = 'False' where CrystalName is '{1!s}'".format(self.panddas_directory, xtal)) except OSError: pass site_list = [] pandda_hit_list=[] with open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_sites.csv'),'rb') as csv_import: csv_dict = csv.DictReader(csv_import) self.Logfile.insert('reding pandda_inspect_sites.csv') for i,line in enumerate(csv_dict): self.Logfile.insert(str(line).replace('\n','').replace('\r','')) site_index=line['site_idx'] name=line['Name'].replace("'","") comment=line['Comment'] site_list.append([site_index,name,comment]) self.Logfile.insert('add to site_list_:' + str([site_index,name,comment])) progress_step=1 for i,line in enumerate(open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv'))): n_lines=i if n_lines != 0: progress_step=100/float(n_lines) else: progress_step=0 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('reading '+os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv')) with open(os.path.join(self.panddas_directory,'analyses','pandda_inspect_events.csv'),'rb') as csv_import: csv_dict = csv.DictReader(csv_import) for i,line in enumerate(csv_dict): db_dict={} sampleID=line['dtag'] if sampleID not in samples_to_export: self.Logfile.warning('%s: not to be exported; will not add to panddaTable...' %sampleID) continue if sampleID not in pandda_hit_list: pandda_hit_list.append(sampleID) site_index=str(line['site_idx']).replace('.0','') event_index=str(line['event_idx']).replace('.0','') self.Logfile.insert(str(line)) self.Logfile.insert('reading {0!s} -> site {1!s} -> event {2!s}'.format(sampleID, site_index, event_index)) for entry in site_list: if entry[0]==site_index: site_name=entry[1] site_comment=entry[2] break # check if EVENT map exists in project directory event_map='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*ccp4')): filename=file[file.rfind('/')+1:] if filename.startswith(sampleID+'-event_'+event_index) and filename.endswith('map.native.ccp4'): event_map=file self.Logfile.insert('found respective event maps in {0!s}: {1!s}'.format(self.initial_model_directory, event_map)) break # initial pandda model and mtz file pandda_model='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*pdb')): filename=file[file.rfind('/')+1:] if filename.endswith('-ensemble-model.pdb'): pandda_model=file if sampleID not in self.already_exported_models: self.already_exported_models.append(sampleID) break inital_mtz='' for file in glob.glob(os.path.join(self.initial_model_directory,sampleID,'*mtz')): filename=file[file.rfind('/')+1:] if filename.endswith('pandda-input.mtz'): inital_mtz=file break db_dict['CrystalName'] = sampleID db_dict['PANDDApath'] = self.panddas_directory db_dict['PANDDA_site_index'] = site_index db_dict['PANDDA_site_name'] = site_name db_dict['PANDDA_site_comment'] = site_comment db_dict['PANDDA_site_event_index'] = event_index db_dict['PANDDA_site_event_comment'] = line['Comment'].replace("'","") db_dict['PANDDA_site_confidence'] = line['Ligand Confidence'] db_dict['PANDDA_site_InspectConfidence'] = line['Ligand Confidence'] db_dict['PANDDA_site_ligand_placed'] = line['Ligand Placed'] db_dict['PANDDA_site_viewed'] = line['Viewed'] db_dict['PANDDA_site_interesting'] = line['Interesting'] db_dict['PANDDA_site_z_peak'] = line['z_peak'] db_dict['PANDDA_site_x'] = line['x'] db_dict['PANDDA_site_y'] = line['y'] db_dict['PANDDA_site_z'] = line['z'] db_dict['PANDDA_site_ligand_id'] = '' db_dict['PANDDA_site_event_map'] = event_map db_dict['PANDDA_site_initial_model'] = pandda_model db_dict['PANDDA_site_initial_mtz'] = inital_mtz db_dict['PANDDA_site_spider_plot'] = '' # find apo structures which were used # XXX missing XXX self.db.update_insert_site_event_panddaTable(sampleID,db_dict) # this is necessary, otherwise RefinementOutcome will be reset for samples that are actually already in refinement self.db.execute_statement("update panddaTable set RefinementOutcome = '2 - PANDDA model' where CrystalName is '{0!s}' and RefinementOutcome is null".format(sampleID)) self.db.execute_statement("update mainTable set RefinementOutcome = '2 - PANDDA model' where CrystalName is '{0!s}' and (RefinementOutcome is null or RefinementOutcome is '1 - Analysis Pending')".format(sampleID)) self.db.execute_statement("update mainTable set DimplePANDDAhit = 'True' where CrystalName is '{0!s}'".format(sampleID)) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('done reading pandda_inspect_sites.csv') # finally find all samples which do not have a pandda hit os.chdir(os.path.join(self.panddas_directory,'processed_datasets')) self.Logfile.insert('check which datasets are not interesting') # DimplePANDDAhit # for xtal in glob.glob('*'): # if xtal not in pandda_hit_list: # self.Logfile.insert(xtal+': not in interesting_datasets; updating database...') # self.db.execute_statement("update mainTable set DimplePANDDAhit = 'False' where CrystalName is '{0!s}'".format(xtal)) def export_models(self): self.Logfile.insert('finding out which PanDDA models need to be exported') # first find which samples are in interesting datasets and have a model # and determine the timestamp fileModelsDict={} queryModels='' for model in glob.glob(os.path.join(self.panddas_directory,'processed_datasets','*','modelled_structures','*-pandda-model.pdb')): sample=model[model.rfind('/')+1:].replace('-pandda-model.pdb','') timestamp=datetime.fromtimestamp(os.path.getmtime(model)).strftime('%Y-%m-%d %H:%M:%S') self.Logfile.insert(sample+'-pandda-model.pdb was created on '+str(timestamp)) queryModels+="'"+sample+"'," fileModelsDict[sample]=timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined dbModelsDict={} if queryModels != '': dbEntries=self.db.execute_statement("select CrystalName,DatePanDDAModelCreated from mainTable where CrystalName in ("+queryModels[:-1]+") and (RefinementOutcome like '3%' or RefinementOutcome like '4%' or RefinementOutcome like '5%')") for item in dbEntries: xtal=str(item[0]) timestamp=str(item[1]) dbModelsDict[xtal]=timestamp self.Logfile.insert('PanDDA model for '+xtal+' is in database and was created on '+str(timestamp)) # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB samples_to_export={} self.Logfile.insert('checking which PanDDA models were newly created or updated') if self.which_models=='all': self.Logfile.insert('Note: you chose to export ALL available PanDDA!') for sample in fileModelsDict: if self.which_models=='all': self.Logfile.insert('exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] elif self.which_models == 'selected': for i in range(0, self.pandda_analyse_data_table.rowCount()): if str(self.pandda_analyse_data_table.item(i, 0).text()) == sample: if self.pandda_analyse_data_table.cellWidget(i, 1).isChecked(): self.Logfile.insert('Dataset selected by user -> exporting '+sample) samples_to_export[sample]=fileModelsDict[sample] break else: if sample in dbModelsDict: try: difference=(datetime.strptime(fileModelsDict[sample],'%Y-%m-%d %H:%M:%S') - datetime.strptime(dbModelsDict[sample],'%Y-%m-%d %H:%M:%S') ) if difference.seconds != 0: self.Logfile.insert('exporting '+sample+' -> was already refined, but newer PanDDA model available') samples_to_export[sample]=fileModelsDict[sample] except ValueError: # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) advice = ( 'The pandda model of '+xtal+' was changed, but it was already refined! ' 'This is most likely because this was done with an older version of XCE. ' 'If you really want to export and refine this model, you need to open the database ' 'with DBbroweser (sqlitebrowser.org); then change the RefinementOutcome field ' 'of the respective sample to "2 - PANDDA model", save the database and repeat the export prodedure.' ) self.Logfile.insert(advice) else: self.Logfile.insert('exporting '+sample+' -> first time to be exported and refined') samples_to_export[sample]=fileModelsDict[sample] # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' if samples_to_export != {}: select_dir_string='' select_dir_string_new_pannda=' ' for sample in samples_to_export: db_dict= {'RefinementOutcome': '2 - PANDDA model', 'DatePanDDAModelCreated': samples_to_export[sample]} select_dir_string+="select_dir={0!s} ".format(sample) select_dir_string_new_pannda+='{0!s} '.format(sample) self.Logfile.insert('updating database for '+sample+' setting time model was created to '+db_dict['DatePanDDAModelCreated']+' and RefinementOutcome to '+db_dict['RefinementOutcome']) self.db.update_data_source(sample,db_dict) if os.path.isdir(os.path.join(self.panddas_directory,'rejected_datasets')): Cmds = ( 'pandda.export' ' pandda_dir=%s' %self.panddas_directory+ ' export_dir={0!s}'.format(self.initial_model_directory)+ ' {0!s}'.format(select_dir_string)+ ' export_ligands=False' ' generate_occupancy_groupings=True\n' ) else: Cmds = ( 'source /dls/science/groups/i04-1/software/pandda-update/ccp4/ccp4-7.0/bin/ccp4.setup-sh\n' # 'source '+os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh')+'\n' 'pandda.export' ' pandda_dir=%s' %self.panddas_directory+ ' export_dir={0!s}'.format(self.initial_model_directory)+ ' {0!s}'.format(select_dir_string_new_pannda)+ ' generate_restraints=True\n' ) self.Logfile.insert('running pandda.export with the following settings:\n'+Cmds) os.system(Cmds) return samples_to_export class run_pandda_analyse(QtCore.QThread): def __init__(self,pandda_params,xce_logfile,datasource): QtCore.QThread.__init__(self) self.data_directory=pandda_params['data_dir'] self.panddas_directory=pandda_params['out_dir'] self.submit_mode=pandda_params['submit_mode'] self.pandda_analyse_data_table = pandda_params['pandda_table'] self.nproc=pandda_params['nproc'] self.min_build_datasets=pandda_params['min_build_datasets'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.sort_event=pandda_params['sort_event'] self.number_of_datasets=pandda_params['N_datasets'] self.max_new_datasets=pandda_params['max_new_datasets'] self.grid_spacing=pandda_params['grid_spacing'] self.reference_dir=pandda_params['reference_dir'] self.filter_pdb=os.path.join(self.reference_dir,pandda_params['filter_pdb']) self.wilson_scaling = pandda_params['perform_diffraction_data_scaling'] self.Logfile=XChemLog.updateLog(xce_logfile) self.datasource=datasource self.db=XChemDB.data_source(datasource) self.appendix=pandda_params['appendix'] self.write_mean_maps=pandda_params['write_mean_map'] self.calc_map_by = pandda_params['average_map'] self.select_ground_state_model='' projectDir = self.data_directory.replace('/*', '') self.make_ligand_links='$CCP4/bin/ccp4-python %s %s %s\n' %(os.path.join(os.getenv('XChemExplorer_DIR'), 'helpers', 'make_ligand_links_after_pandda.py') ,projectDir,self.panddas_directory) self.use_remote = pandda_params['use_remote'] self.remote_string = pandda_params['remote_string'] if self.appendix != '': self.panddas_directory=os.path.join(self.reference_dir,'pandda_'+self.appendix) if os.path.isdir(self.panddas_directory): os.system('/bin/rm -fr %s' %self.panddas_directory) os.mkdir(self.panddas_directory) if self.data_directory.startswith('/dls'): self.select_ground_state_model = 'module load ccp4\n' self.select_ground_state_model +='$CCP4/bin/ccp4-python %s %s\n' %(os.path.join(os.getenv('XChemExplorer_DIR'),'helpers','select_ground_state_dataset.py'),self.panddas_directory) self.make_ligand_links='' def run(self): # print self.reference_dir # print self.filter_pdb # how to run pandda.analyse on large datasets # # 1) Run the normal pandda command, with the new setting, e.g. # pandda.analyse data_dirs=... max_new_datasets=500 # This will do the analysis on the first 500 datasets and build the statistical maps - just as normal. # # 2) Run pandda with the same command: # pandda.analyse data_dirs=... max_new_datasets=500 # This will add 500 new datasets, and process them using the existing statistical maps # (this will be quicker than the original analysis). It will then merge the results of the two analyses. # # 3) Repeat 2) until you don't add any "new" datasets. Then you can build the models as normal. number_of_cyles=int(self.number_of_datasets)/int(self.max_new_datasets) if int(self.number_of_datasets) % int(self.max_new_datasets) != 0: # modulo gives remainder after integer division number_of_cyles+=1 self.Logfile.insert('will run %s rounds of pandda.analyse' %str(number_of_cyles)) if os.path.isfile(os.path.join(self.panddas_directory,'pandda.running')): self.Logfile.insert('it looks as if a pandda.analyse job is currently running in: '+self.panddas_directory) msg = ( 'there are three possibilities:\n' '1.) choose another PANDDA directory\n' '2.) - check if the job is really running either on the cluster (qstat) or on your local machine\n' ' - if so, be patient and wait until the job has finished\n' '3.) same as 2., but instead of waiting, kill the job and remove at least the pandda.running file\n' ' (or all the contents in the directory if you want to start from scratch)\n' ) self.Logfile.insert(msg) return None else: # if os.getenv('SHELL') == '/bin/tcsh' or os.getenv('SHELL') == '/bin/csh': # source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-csh\n') # elif os.getenv('SHELL') == '/bin/bash' or self.use_remote: # source_file='export XChemExplorer_DIR="'+os.getenv('XChemExplorer_DIR')+'"\n' # source_file+='source %s\n' %os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh\n') # else: # source_file='' # v1.2.1 - pandda.setup files should be obsolete now that pandda is part of ccp4 # 08/10/2020 - pandda v0.2.12 installation at DLS is obsolete # source_file='source /dls/science/groups/i04-1/software/pandda_0.2.12/ccp4/ccp4-7.0/bin/ccp4.setup-sh\n' source_file = '' source_file += 'export XChemExplorer_DIR="' + os.getenv('XChemExplorer_DIR') + '"\n' if os.path.isfile(self.filter_pdb + '.pdb'): print('filter pdb located') filter_pdb=' filter.pdb='+self.filter_pdb+'.pdb' print('will use ' + filter_pdb + 'as a filter for pandda.analyse') else: if self.use_remote: stat_command = self.remote_string.replace("qsub'", str('stat ' + self.filter_pdb + "'")) output = subprocess.Popen(stat_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = output.communicate() print out if 'cannot stat' in out: filter_pdb = '' else: filter_pdb = ' filter.pdb=' + self.filter_pdb + '.pdb' else: filter_pdb='' os.chdir(self.panddas_directory) # note: copied latest pandda.setup-sh from XCE2 installation (08/08/2017) dls = '' if self.data_directory.startswith('/dls'): dls = ( source_file + '\n' 'module load pymol/1.8.2.0\n' '\n' 'module load ccp4/7.0.072\n' '\n' ) Cmds = ( '#!'+os.getenv('SHELL')+'\n' + '\n' + dls + 'cd ' + self.panddas_directory + '\n' + '\n' ) ignore = [] char = [] zmap = [] for i in range(0, self.pandda_analyse_data_table.rowCount()): ignore_all_checkbox = self.pandda_analyse_data_table.cellWidget(i, 7) ignore_characterisation_checkbox = self.pandda_analyse_data_table.cellWidget(i, 8) ignore_zmap_checkbox = self.pandda_analyse_data_table.cellWidget(i, 9) if ignore_all_checkbox.isChecked(): ignore.append(str(self.pandda_analyse_data_table.item(i, 0).text())) if ignore_characterisation_checkbox.isChecked(): char.append(str(self.pandda_analyse_data_table.item(i, 0).text())) if ignore_zmap_checkbox.isChecked(): zmap.append(str(self.pandda_analyse_data_table.item(i, 0).text())) print ignore def append_to_ignore_string(datasets_list, append_string): if len(datasets_list)==0: append_string = '' for i in range(0, len(datasets_list)): if i < len(datasets_list)-1: append_string += str(datasets_list[i] + ',') else: append_string += str(datasets_list[i] +'"') print(append_string) return append_string ignore_string = 'ignore_datasets="' ignore_string = append_to_ignore_string(ignore, ignore_string) char_string = 'exclude_from_characterisation="' char_string = append_to_ignore_string(char, char_string) zmap_string = 'exclude_from_z_map_analysis="' zmap_string = append_to_ignore_string(zmap, zmap_string) for i in range(number_of_cyles): Cmds += ( 'pandda.analyse '+ ' data_dirs="'+self.data_directory.replace('/*','')+'/*"'+ ' out_dir="'+self.panddas_directory+'"' ' min_build_datasets='+self.min_build_datasets+ ' max_new_datasets='+self.max_new_datasets+ ' grid_spacing='+self.grid_spacing+ ' cpus='+self.nproc+ ' events.order_by='+self.sort_event+ filter_pdb+ ' pdb_style='+self.pdb_style+ ' mtz_style='+self.mtz_style+ ' lig_style=/compound/*.cif'+ ' apply_b_factor_scaling='+self.wilson_scaling+ ' write_average_map='+self.write_mean_maps + ' average_map=' + self.calc_map_by + ' ' + ignore_string +' '+ char_string +' '+ zmap_string +' '+ '\n' ) Cmds += self.select_ground_state_model Cmds += self.make_ligand_links Cmds += '\n' data_dir_string = self.data_directory.replace('/*', '') Cmds += str( 'find ' + data_dir_string + '/*/compound -name "*.cif" | while read line; do echo ${line//"' + data_dir_string + '"/"' + self.panddas_directory + '/processed_datasets/"}| while read line2; do cp $line ${line2//compound/ligand_files} > /dev/null 2>&1; ' 'done; done;') Cmds += '\n' Cmds += str( 'find ' + data_dir_string + '/*/compound -name "*.pdb" | while read line; do echo ${line//"' + data_dir_string + '"/"' + self.panddas_directory + '/processed_datasets/"}| while read line2; do cp $line ${line2//compound/ligand_files} > /dev/null 2>&1; ' 'done; done;') self.Logfile.insert('running pandda.analyse with the following command:\n'+Cmds) f = open('pandda.sh','w') f.write(Cmds) f.close() # #>>> for testing # self.submit_mode='local machine' self.Logfile.insert('trying to run pandda.analyse on ' + str(self.submit_mode)) if self.submit_mode=='local machine': self.Logfile.insert('running PANDDA on local machine') os.system('chmod +x pandda.sh') os.system('./pandda.sh &') elif self.use_remote: # handles remote submission of pandda.analyse jobs submission_string = self.remote_string.replace("qsub'", str('cd ' + self.panddas_directory + '; ' + "qsub -P labxchem -q medium.q -N pandda 5 -l exclusive,m_mem_free=100G pandda.sh'")) os.system(submission_string) self.Logfile.insert(str('running PANDDA remotely, using: ' + submission_string)) else: self.Logfile.insert('running PANDDA on cluster, using qsub...') os.system('qsub -P labxchem -q medium.q -N pandda -l exclusive,m_mem_free=100G pandda.sh') self.emit(QtCore.SIGNAL('datasource_menu_reload_samples')) class giant_cluster_datasets(QtCore.QThread): def __init__(self,initial_model_directory,pandda_params,xce_logfile,datasource,): QtCore.QThread.__init__(self) self.panddas_directory=pandda_params['out_dir'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.Logfile=XChemLog.updateLog(xce_logfile) self.initial_model_directory=initial_model_directory self.db=XChemDB.data_source(datasource) def run(self): self.emit(QtCore.SIGNAL('update_progress_bar'), 0) if self.pdb_style.replace(' ','') == '': self.Logfile.insert('PDB style is not set in pandda.analyse!') self.Logfile.insert('cannot start pandda.analyse') self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'PDB style is not set in pandda.analyse!') return None if self.mtz_style.replace(' ','') == '': self.Logfile.insert('MTZ style is not set in pandda.analyse!') self.Logfile.insert('cannot start pandda.analyse') self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'MTZ style is not set in pandda.analyse!') return None # 1.) prepare output directory os.chdir(self.panddas_directory) if os.path.isdir('cluster_analysis'): self.Logfile.insert('removing old cluster_analysis directory in {0!s}'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'removing old cluster_analysis directory in {0!s}'.format(self.panddas_directory)) os.system('/bin/rm -fr cluster_analysis 2> /dev/null') self.Logfile.insert('creating cluster_analysis directory in {0!s}'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'creating cluster_analysis directory in {0!s}'.format(self.panddas_directory)) os.mkdir('cluster_analysis') self.emit(QtCore.SIGNAL('update_progress_bar'), 10) # 2.) go through project directory and make sure that all pdb files really exist # broken links derail the giant.cluster_mtzs_and_pdbs script self.Logfile.insert('cleaning up broken links of {0!s} and {1!s} in {2!s}'.format(self.pdb_style, self.mtz_style, self.initial_model_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'cleaning up broken links of {0!s} and {1!s} in {2!s}'.format(self.pdb_style, self.mtz_style, self.initial_model_directory)) os.chdir(self.initial_model_directory) for xtal in glob.glob('*'): if not os.path.isfile(os.path.join(xtal,self.pdb_style)): self.Logfile.insert('missing {0!s} and {1!s} for {2!s}'.format(self.pdb_style, self.mtz_style, xtal)) os.system('/bin/rm {0!s}/{1!s} 2> /dev/null'.format(xtal, self.pdb_style)) os.system('/bin/rm {0!s}/{1!s} 2> /dev/null'.format(xtal, self.mtz_style)) self.emit(QtCore.SIGNAL('update_progress_bar'), 20) # 3.) giant.cluster_mtzs_and_pdbs self.Logfile.insert("running giant.cluster_mtzs_and_pdbs {0!s}/*/{1!s} pdb_regex='{2!s}/(.*)/{3!s}' out_dir='{4!s}/cluster_analysis'".format(self.initial_model_directory, self.pdb_style, self.initial_model_directory, self.pdb_style, self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'running giant.cluster_mtzs_and_pdbs') if os.getenv('SHELL') == '/bin/tcsh' or os.getenv('SHELL') == '/bin/csh': source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-csh') elif os.getenv('SHELL') == '/bin/bash': source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh') else: source_file='' Cmds = ( '#!'+os.getenv('SHELL')+'\n' 'unset PYTHONPATH\n' 'source '+source_file+'\n' "giant.datasets.cluster %s/*/%s pdb_regex='%s/(.*)/%s' out_dir='%s/cluster_analysis'" %(self.initial_model_directory,self.pdb_style,self.initial_model_directory,self.pdb_style,self.panddas_directory) ) # os.system("giant.cluster_mtzs_and_pdbs %s/*/%s pdb_regex='%s/(.*)/%s' out_dir='%s/cluster_analysis'" %(self.initial_model_directory,self.pdb_style,self.initial_model_directory,self.pdb_style,self.panddas_directory)) os.system(Cmds) self.emit(QtCore.SIGNAL('update_progress_bar'), 80) # 4.) analyse output self.Logfile.insert('parsing {0!s}/cluster_analysis'.format(self.panddas_directory)) self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'parsing {0!s}/cluster_analysis'.format(self.panddas_directory)) os.chdir('{0!s}/cluster_analysis'.format(self.panddas_directory)) cluster_dict={} for out_dir in sorted(glob.glob('*')): if os.path.isdir(out_dir): cluster_dict[out_dir]=[] for folder in glob.glob(os.path.join(out_dir,'pdbs','*')): xtal=folder[folder.rfind('/')+1:] cluster_dict[out_dir].append(xtal) self.emit(QtCore.SIGNAL('update_progress_bar'), 90) # 5.) update datasource self.Logfile.insert('updating datasource with results from giant.cluster_mtzs_and_pdbs') if cluster_dict != {}: for key in cluster_dict: for xtal in cluster_dict[key]: db_dict= {'CrystalFormName': key} self.db.update_data_source(xtal,db_dict) # 6.) finish self.emit(QtCore.SIGNAL('update_progress_bar'), 100) self.Logfile.insert('finished giant.cluster_mtzs_and_pdbs') self.emit(QtCore.SIGNAL('datasource_menu_reload_samples')) class check_if_pandda_can_run: # reasons why pandda cannot be run # - there is currently a job running in the pandda directory # - min datasets available is too low # - required input paramters are not complete # - map amplitude and phase labels don't exist def __init__(self,pandda_params,xce_logfile,datasource): self.data_directory=pandda_params['data_dir'] self.panddas_directory=pandda_params['out_dir'] self.min_build_datasets=pandda_params['min_build_datasets'] self.pdb_style=pandda_params['pdb_style'] self.mtz_style=pandda_params['mtz_style'] self.input_dir_structure=pandda_params['pandda_dir_structure'] self.problem_found=False self.error_code=-1 self.Logfile=XChemLog.updateLog(xce_logfile) self.db=XChemDB.data_source(datasource) def number_of_available_datasets(self): counter=0 for file in glob.glob(os.path.join(self.input_dir_structure,self.pdb_style)): if os.path.isfile(file): counter+=1 self.Logfile.insert('pandda.analyse: found {0!s} useable datasets'.format(counter)) return counter def get_first_dataset_in_project_directory(self): first_dataset='' for file in glob.glob(os.path.join(self.input_dir_structure,self.pdb_style)): if os.path.isfile(file): first_dataset=file break return first_dataset def compare_number_of_atoms_in_reference_vs_all_datasets(self,refData,dataset_list): mismatched_datasets=[] pdbtools=XChemUtils.pdbtools(refData) refPDB=refData[refData.rfind('/')+1:] refPDBlist=pdbtools.get_init_pdb_as_list() n_atom_ref=len(refPDBlist) for n_datasets,dataset in enumerate(dataset_list): if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)): n_atom=len(pdbtools.get_pdb_as_list(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style))) if n_atom_ref == n_atom: self.Logfile.insert('{0!s}: atoms in PDB file ({1!s}): {2!s}; atoms in Reference file: {3!s} ===> OK'.format(dataset, self.pdb_style, str(n_atom), str(n_atom_ref))) if n_atom_ref != n_atom: self.Logfile.insert('{0!s}: atoms in PDB file ({1!s}): {2!s}; atoms in Reference file: {3!s} ===> ERROR'.format(dataset, self.pdb_style, str(n_atom), str(n_atom_ref))) mismatched_datasets.append(dataset) return n_datasets,mismatched_datasets def get_datasets_which_fit_to_reference_file(self,ref,reference_directory,cluster_dict,allowed_unitcell_difference_percent): refStructure=XChemUtils.pdbtools(os.path.join(reference_directory,ref+'.pdb')) symmRef=refStructure.get_spg_number_from_pdb() ucVolRef=refStructure.calc_unitcell_volume_from_pdb() cluster_dict[ref]=[] cluster_dict[ref].append(os.path.join(reference_directory,ref+'.pdb')) for dataset in glob.glob(os.path.join(self.data_directory,self.pdb_style)): datasetStructure=XChemUtils.pdbtools(dataset) symmDataset=datasetStructure.get_spg_number_from_pdb() ucVolDataset=datasetStructure.calc_unitcell_volume_from_pdb() if symmDataset == symmRef: try: difference=math.fabs(1-(float(ucVolRef)/float(ucVolDataset)))*100 if difference < allowed_unitcell_difference_percent: sampleID=dataset.replace('/'+self.pdb_style,'')[dataset.replace('/'+self.pdb_style,'').rfind('/')+1:] cluster_dict[ref].append(sampleID) except ZeroDivisionError: continue return cluster_dict def remove_dimple_files(self,dataset_list): for n_datasets,dataset in enumerate(dataset_list): db_dict={} if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)): os.system('/bin/rm '+os.path.join(self.data_directory.replace('*',''),dataset,self.pdb_style)) self.Logfile.insert('{0!s}: removing {1!s}'.format(dataset, self.pdb_style)) db_dict['DimplePathToPDB']='' db_dict['DimpleRcryst']='' db_dict['DimpleRfree']='' db_dict['DimpleResolutionHigh']='' db_dict['DimpleStatus']='pending' if os.path.isfile(os.path.join(self.data_directory.replace('*',''),dataset,self.mtz_style)): os.system('/bin/rm '+os.path.join(self.data_directory.replace('*',''),dataset,self.mtz_style)) self.Logfile.insert('{0!s}: removing {1!s}'.format(dataset, self.mtz_style)) db_dict['DimplePathToMTZ']='' if db_dict != {}: self.db.update_data_source(dataset,db_dict) def analyse_pdb_style(self): pdb_found=False for file in glob.glob(os.path.join(self.data_directory,self.pdb_style)): if os.path.isfile(file): pdb_found=True break if not pdb_found: self.error_code=1 message=self.warning_messages() return message def analyse_mtz_style(self): mtz_found=False for file in glob.glob(os.path.join(self.data_directory,self.mtz_style)): if os.path.isfile(file): mtz_found=True break if not mtz_found: self.error_code=2 message=self.warning_messages() return message def analyse_min_build_dataset(self): counter=0 for file in glob.glob(os.path.join(self.data_directory,self.mtz_style)): if os.path.isfile(file): counter+=1 if counter <= self.min_build_datasets: self.error_code=3 message=self.warning_messages() return message def warning_messages(self): message='' if self.error_code==1: message='PDB file does not exist' if self.error_code==2: message='MTZ file does not exist' if self.error_code==3: message='Not enough datasets available' return message class convert_all_event_maps_in_database(QtCore.QThread): def __init__(self,initial_model_directory,xce_logfile,datasource): QtCore.QThread.__init__(self) self.xce_logfile=xce_logfile self.Logfile=XChemLog.updateLog(xce_logfile) self.initial_model_directory=initial_model_directory self.datasource=datasource self.db=XChemDB.data_source(datasource) def run(self): sqlite = ( 'select' ' CrystalName,' ' PANDDA_site_event_map,' ' PANDDA_site_ligand_resname,' ' PANDDA_site_ligand_chain,' ' PANDDA_site_ligand_sequence_number,' ' PANDDA_site_ligand_altLoc ' 'from panddaTable ' 'where PANDDA_site_event_map not like "event%"' ) print sqlite query=self.db.execute_statement(sqlite) print query progress_step=1 if len(query) != 0: progress_step=100/float(len(query)) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) for item in query: print item xtalID=str(item[0]) event_map=str(item[1]) resname=str(item[2]) chainID=str(item[3]) resseq=str(item[4]) altLoc=str(item[5]) if os.path.isfile(os.path.join(self.initial_model_directory,xtalID,'refine.pdb')): os.chdir(os.path.join(self.initial_model_directory,xtalID)) self.Logfile.insert('extracting ligand ({0!s},{1!s},{2!s},{3!s}) from refine.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc))) XChemUtils.pdbtools(os.path.join(self.initial_model_directory,xtalID,'refine.pdb')).save_specific_ligands_to_pdb(resname,chainID,resseq,altLoc) if os.path.isfile('ligand_{0!s}_{1!s}_{2!s}_{3!s}.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc))): ligand_pdb='ligand_{0!s}_{1!s}_{2!s}_{3!s}.pdb'.format(str(resname), str(chainID), str(resseq), str(altLoc)) print os.path.join(self.initial_model_directory,xtalID,ligand_pdb) else: self.Logfile.insert('could not extract ligand; trying next...') continue else: self.Logfile.insert('directory: '+os.path.join(self.initial_model_directory,xtalID)+' -> cannot find refine.pdb; trying next') continue if os.path.isfile(os.path.join(self.initial_model_directory,xtalID,'refine.mtz')): resolution=XChemUtils.mtztools(os.path.join(self.initial_model_directory,xtalID,'refine.mtz')).get_high_resolution_from_mtz() else: self.Logfile.insert('directory: '+os.path.join(self.initial_model_directory,xtalID)+' -> cannot find refine.mtz; trying next') continue self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'eventMap -> SF for '+event_map) convert_event_map_to_SF(self.initial_model_directory,xtalID,event_map,ligand_pdb,self.xce_logfile,self.datasource,resolution).run() progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) class convert_event_map_to_SF: def __init__(self,project_directory,xtalID,event_map,ligand_pdb,xce_logfile,db_file,resolution): self.Logfile=XChemLog.updateLog(xce_logfile) self.event_map=event_map if not os.path.isfile(self.event_map): self.Logfile.insert('cannot find Event map: '+self.event_map) self.Logfile.insert('cannot convert event_map to structure factors!') return None self.project_directory=project_directory self.xtalID=xtalID self.event_map=event_map self.ligand_pdb=ligand_pdb self.event=event_map[event_map.rfind('/')+1:].replace('.map','').replace('.ccp4','') self.db=XChemDB.data_source(db_file) self.resolution=resolution def run(self): os.chdir(os.path.join(self.project_directory,self.xtalID)) # remove exisiting mtz file if os.path.isfile(self.event+'.mtz'): self.Logfile.insert('removing existing '+self.event+'.mtz') os.system('/bin/rm '+self.event+'.mtz') # event maps generated with pandda v0.2 or higher have the same symmetry as the crystal # but phenix.map_to_structure_facors only accepts maps in spg P1 # therefore map is first expanded to full unit cell and spg of map then set tp p1 # other conversion option like cinvfft give for whatever reason uninterpretable maps self.convert_map_to_p1() # run phenix.map_to_structure_factors self.run_phenix_map_to_structure_factors() self.remove_and_rename_column_labels() # check if output files exist if not os.path.isfile('{0!s}.mtz'.format(self.event)): self.Logfile.insert('cannot find {0!s}.mtz'.format(self.event)) else: self.Logfile.insert('conversion successful, {0!s}.mtz exists'.format(self.event)) # update datasource with event_map_mtz information self.update_database() def calculate_electron_density_map(self,mtzin): missing_columns=False column_dict=XChemUtils.mtztools(mtzin).get_all_columns_as_dict() if 'FWT' in column_dict['F'] and 'PHWT' in column_dict['PHS']: labin=' labin F1=FWT PHI=PHWT\n' elif '2FOFCWT' in column_dict['F'] and 'PH2FOFCWT' in column_dict['PHS']: labin=' labin F1=2FOFCWT PHI=PH2FOFCWT\n' else: missing_columns=True if not missing_columns: os.chdir(os.path.join(self.project_directory,self.xtalID)) cmd = ( 'fft hklin '+mtzin+' mapout 2fofc.map << EOF\n' +labin+ 'EOF\n' ) self.Logfile.insert('calculating 2fofc map from '+mtzin) os.system(cmd) else: self.Logfile.insert('cannot calculate 2fofc.map; missing map coefficients') def prepare_conversion_script(self): os.chdir(os.path.join(self.project_directory, self.xtalID)) # see also: # http://www.phaser.cimr.cam.ac.uk/index.php/Using_Electron_Density_as_a_Model if os.getcwd().startswith('/dls'): phenix_module='module_load_phenix\n' else: phenix_module='' cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' +phenix_module+ '\n' 'pdbset XYZIN %s XYZOUT mask_ligand.pdb << eof\n' %self.ligand_pdb+ ' SPACEGROUP {0!s}\n'.format(self.space_group)+ ' CELL {0!s}\n'.format((' '.join(self.unit_cell)))+ ' END\n' 'eof\n' '\n' 'ncsmask XYZIN mask_ligand.pdb MSKOUT mask_ligand.msk << eof\n' ' GRID %s\n' %(' '.join(self.gridElectronDensityMap))+ ' RADIUS 10\n' ' PEAK 1\n' 'eof\n' '\n' 'mapmask MAPIN %s MAPOUT onecell_event_map.map << eof\n' %self.event_map+ ' XYZLIM CELL\n' 'eof\n' '\n' 'maprot MAPIN onecell_event_map.map MSKIN mask_ligand.msk WRKOUT masked_event_map.map << eof\n' ' MODE FROM\n' ' SYMMETRY WORK %s\n' %self.space_group_numberElectronDensityMap+ ' AVERAGE\n' ' ROTATE EULER 0 0 0\n' ' TRANSLATE 0 0 0\n' 'eof\n' '\n' 'mapmask MAPIN masked_event_map.map MAPOUT masked_event_map_fullcell.map << eof\n' ' XYZLIM CELL\n' ' PAD 0.0\n' 'eof\n' '\n' 'sfall HKLOUT %s.mtz MAPIN masked_event_map_fullcell.map << eof\n' %self.event+ ' LABOUT FC=FC_event PHIC=PHIC_event\n' ' MODE SFCALC MAPIN\n' ' RESOLUTION %s\n' %self.resolution+ ' END\n' ) self.Logfile.insert('preparing script for conversion of Event map to SF') f = open('eventMap2sf.sh','w') f.write(cmd) f.close() os.system('chmod +x eventMap2sf.sh') def run_conversion_script(self): self.Logfile.insert('running conversion script...') os.system('./eventMap2sf.sh') def convert_map_to_p1(self): self.Logfile.insert('running mapmask -> converting map to p1...') cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'mapmask mapin %s mapout %s_p1.map << eof\n' %(self.event_map,self.event) + 'xyzlin cell\n' 'symmetry p1\n' ) self.Logfile.insert('mapmask command:\n%s' %cmd) os.system(cmd) def run_phenix_map_to_structure_factors(self): if float(self.resolution) < 1.21: # program complains if resolution is 1.2 or higher self.resolution='1.21' self.Logfile.insert('running phenix.map_to_structure_factors {0!s}_p1.map d_min={1!s} output_file_name={2!s}_tmp.mtz'.format(self.event, self.resolution, self.event)) os.system('phenix.map_to_structure_factors {0!s}_p1.map d_min={1!s} output_file_name={2!s}_tmp.mtz'.format(self.event, self.resolution, self.event)) def run_cinvfft(self,mtzin): # mtzin is usually refine.mtz self.Logfile.insert('running cinvfft -mapin {0!s} -mtzin {1!s} -mtzout {2!s}_tmp.mtz -colout event'.format(self.event_map, mtzin, self.event)) os.system('cinvfft -mapin {0!s} -mtzin {1!s} -mtzout {2!s}_tmp.mtz -colout event'.format(self.event_map, mtzin, self.event)) def remove_and_rename_column_labels(self): cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'cad hklin1 %s_tmp.mtz hklout %s.mtz << eof\n' %(self.event,self.event)+ ' labin file_number 1 E1=F-obs E2=PHIF\n' ' labout file_number 1 E1=F_ampl E2=PHIF\n' 'eof\n' '\n' ) self.Logfile.insert('running CAD: new column labels F_ampl,PHIF') os.system(cmd) def remove_and_rename_column_labels_after_cinvfft(self): cmd = ( '#!'+os.getenv('SHELL')+'\n' '\n' 'cad hklin1 %s_tmp.mtz hklout %s.mtz << eof\n' %(self.event,self.event)+ ' labin file_number 1 E1=event.F_phi.F E2=event.F_phi.phi\n' ' labout file_number 1 E1=F_ampl E2=PHIF\n' 'eof\n' '\n' ) self.Logfile.insert('running CAD: renaming event.F_phi.F -> F_ampl and event.F_phi.phi -> PHIF') os.system(cmd) def update_database(self): sqlite = ( "update panddaTable set " " PANDDA_site_event_map_mtz = '%s' " %os.path.join(self.project_directory,self.xtalID,self.event+'.mtz')+ " where PANDDA_site_event_map is '{0!s}' ".format(self.event_map) ) self.db.execute_statement(sqlite) self.Logfile.insert('updating data source: '+sqlite) def clean_output_directory(self): os.system('/bin/rm mask_targetcell.pdb') os.system('/bin/rm mask_targetcell.msk') os.system('/bin/rm onecell.map') os.system('/bin/rm masked_targetcell.map') os.system('/bin/rm masked_fullcell.map') os.system('/bin/rm eventMap2sf.sh') os.system('/bin/rm '+self.ligand_pdb) class run_pandda_inspect_at_home(QtCore.QThread): def __init__(self,panddaDir,xce_logfile): QtCore.QThread.__init__(self) self.panddaDir=panddaDir self.Logfile=XChemLog.updateLog(xce_logfile) def run(self): os.chdir(os.path.join(self.panddaDir,'processed_datasets')) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob('*'))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) self.Logfile.insert('parsing '+self.panddaDir) for xtal in sorted(glob.glob('*')): for files in glob.glob(xtal+'/ligand_files/*'): if os.path.islink(files): self.emit(QtCore.SIGNAL('update_status_bar(QString)'), 'replacing symlink for {0!s} with real file'.format(files)) self.Logfile.insert('replacing symlink for {0!s} with real file'.format(files)) os.system('cp --remove-destination {0!s} {1!s}/ligand_files'.format(os.path.realpath(files), xtal)) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) XChemToolTips.run_pandda_inspect_at_home(self.panddaDir) class convert_apo_structures_to_mmcif(QtCore.QThread): def __init__(self,panddaDir,xce_logfile): QtCore.QThread.__init__(self) self.panddaDir=panddaDir self.Logfile=XChemLog.updateLog(xce_logfile) def sf_convert_environment(self): pdb_extract_init = '' if os.path.isdir('/dls'): pdb_extract_init = 'source /dls/science/groups/i04-1/software/pdb-extract-prod/setup.sh\n' pdb_extract_init += '/dls/science/groups/i04-1/software/pdb-extract-prod/bin/sf_convert' else: pdb_extract_init = 'source ' + os.path.join(os.getenv('XChemExplorer_DIR'), 'pdb_extract/pdb-extract-prod/setup.sh') + '\n' pdb_extract_init += +os.path.join(os.getenv('XChemExplorer_DIR'), 'pdb_extract/pdb-extract-prod/bin/sf_convert') return pdb_extract_init def run(self): self.Logfile.insert('converting apo structures in pandda directory to mmcif files') self.Logfile.insert('chanfing to '+self.panddaDir) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob(os.path.join(self.panddaDir,'processed_datasets','*')))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) pdb_extract_init = self.sf_convert_environment() self.Logfile.insert('parsing '+self.panddaDir) for dirs in glob.glob(os.path.join(self.panddaDir,'processed_datasets','*')): xtal = dirs[dirs.rfind('/')+1:] self.Logfile.insert('%s: converting %s to mmcif' %(xtal,xtal+'-pandda-input.mtz')) if os.path.isfile(os.path.join(dirs,xtal+'-pandda-input.mtz')): if os.path.isfile(os.path.join(dirs,xtal+'_sf.mmcif')): self.Logfile.insert('%s: %s_sf.mmcif exists; skipping...' %(xtal,xtal)) else: os.chdir(dirs) Cmd = (pdb_extract_init + ' -o mmcif' ' -sf %s' % xtal+'-pandda-input.mtz' + ' -out {0!s}_sf.mmcif > {1!s}.sf_mmcif.log'.format(xtal, xtal)) self.Logfile.insert('running command: '+Cmd) os.system(Cmd) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) class check_number_of_modelled_ligands(QtCore.QThread): def __init__(self,project_directory,xce_logfile,db_file): QtCore.QThread.__init__(self) self.Logfile=XChemLog.updateLog(xce_logfile) self.project_directory=project_directory self.db=XChemDB.data_source(db_file) self.errorDict={} def update_errorDict(self,xtal,message): if xtal not in self.errorDict: self.errorDict[xtal]=[] self.errorDict[xtal].append(message) def insert_new_row_in_panddaTable(self,xtal,ligand,site,dbDict): resname= site[0] chain= site[1] seqnum= site[2] altLoc= site[3] x_site= site[5][0] y_site= site[5][1] z_site= site[5][2] resnameSimilarSite= ligand[0] chainSimilarSite= ligand[1] seqnumSimilarSite= ligand[2] siteList=[] for entry in dbDict[xtal]: siteList.append(str(entry[0])) if entry[4] == resnameSimilarSite and entry[5] == chainSimilarSite and entry[6] == seqnumSimilarSite: eventMap= str(entry[7]) eventMap_mtz= str(entry[8]) initialPDB= str(entry[9]) initialMTZ= str(entry[10]) event_id= str(entry[12]) PanDDApath= str(entry[13]) db_dict={ 'PANDDA_site_index': str(int(max(siteList))+1), 'PANDDApath': PanDDApath, 'PANDDA_site_ligand_id': resname+'-'+chain+'-'+seqnum, 'PANDDA_site_ligand_resname': resname, 'PANDDA_site_ligand_chain': chain, 'PANDDA_site_ligand_sequence_number': seqnum, 'PANDDA_site_ligand_altLoc': 'D', 'PANDDA_site_event_index': event_id, 'PANDDA_site_event_map': eventMap, 'PANDDA_site_event_map_mtz': eventMap_mtz, 'PANDDA_site_initial_model': initialPDB, 'PANDDA_site_initial_mtz': initialMTZ, 'PANDDA_site_ligand_placed': 'True', 'PANDDA_site_x': x_site, 'PANDDA_site_y': y_site, 'PANDDA_site_z': z_site } print xtal,db_dict def run(self): self.Logfile.insert('reading modelled ligands from panddaTable') dbDict={} sqlite = ( "select " " CrystalName," " PANDDA_site_index," " PANDDA_site_x," " PANDDA_site_y," " PANDDA_site_z," " PANDDA_site_ligand_resname," " PANDDA_site_ligand_chain," " PANDDA_site_ligand_sequence_number," " PANDDA_site_event_map," " PANDDA_site_event_map_mtz," " PANDDA_site_initial_model," " PANDDA_site_initial_mtz," " RefinementOutcome," " PANDDA_site_event_index," " PANDDApath " "from panddaTable " ) dbEntries=self.db.execute_statement(sqlite) for item in dbEntries: xtal= str(item[0]) site= str(item[1]) x= str(item[2]) y= str(item[3]) z= str(item[4]) resname= str(item[5]) chain= str(item[6]) seqnum= str(item[7]) eventMap= str(item[8]) eventMap_mtz= str(item[9]) initialPDB= str(item[10]) initialMTZ= str(item[11]) outcome= str(item[12]) event= str(item[13]) PanDDApath= str(item[14]) if xtal not in dbDict: dbDict[xtal]=[] dbDict[xtal].append([site,x,y,z,resname,chain,seqnum,eventMap,eventMap_mtz,initialPDB,initialMTZ,outcome,event,PanDDApath]) os.chdir(self.project_directory) progress_step=1 if len(glob.glob('*')) != 0: progress_step=100/float(len(glob.glob('*'))) else: progress_step=1 progress=0 self.emit(QtCore.SIGNAL('update_progress_bar'), progress) for xtal in sorted(glob.glob('*')): if os.path.isfile(os.path.join(xtal,'refine.pdb')): ligands=XChemUtils.pdbtools(os.path.join(xtal,'refine.pdb')).ligand_details_as_list() self.Logfile.insert('{0!s}: found file refine.pdb'.format(xtal)) if ligands: if os.path.isdir(os.path.join(xtal,'xceTmp')): os.system('/bin/rm -fr {0!s}'.format(os.path.join(xtal,'xceTmp'))) os.mkdir(os.path.join(xtal,'xceTmp')) else: self.Logfile.warning('{0!s}: cannot find ligand molecule in refine.pdb; skipping...'.format(xtal)) continue made_sym_copies=False ligands_not_in_panddaTable=[] for n,item in enumerate(ligands): resnameLIG= item[0] chainLIG= item[1] seqnumLIG= item[2] altLocLIG= item[3] occupancyLig= item[4] if altLocLIG.replace(' ','') == '': self.Logfile.insert(xtal+': found a ligand not modelled with pandda.inspect -> {0!s} {1!s} {2!s}'.format(resnameLIG, chainLIG, seqnumLIG)) residue_xyz = XChemUtils.pdbtools(os.path.join(xtal,'refine.pdb')).get_center_of_gravity_of_residue_ish(item[1],item[2]) ligands[n].append(residue_xyz) foundLigand=False if xtal in dbDict: for entry in dbDict[xtal]: resnameTable=entry[4] chainTable=entry[5] seqnumTable=entry[6] self.Logfile.insert('panddaTable: {0!s} {1!s} {2!s} {3!s}'.format(xtal, resnameTable, chainTable, seqnumTable)) if resnameLIG == resnameTable and chainLIG == chainTable and seqnumLIG == seqnumTable: self.Logfile.insert('{0!s}: found ligand in database -> {1!s} {2!s} {3!s}'.format(xtal, resnameTable, chainTable, seqnumTable)) foundLigand=True if not foundLigand: self.Logfile.error('{0!s}: did NOT find ligand in database -> {1!s} {2!s} {3!s}'.format(xtal, resnameLIG, chainLIG, seqnumLIG)) ligands_not_in_panddaTable.append([resnameLIG,chainLIG,seqnumLIG,altLocLIG,occupancyLig,residue_xyz]) else: self.Logfile.warning('ligand in PDB file, but dataset not listed in panddaTable: {0!s} -> {1!s} {2!s} {3!s}'.format(xtal, item[0], item[1], item[2])) for entry in ligands_not_in_panddaTable: self.Logfile.error('{0!s}: refine.pdb contains a ligand that is not assigned in the panddaTable: {1!s} {2!s} {3!s} {4!s}'.format(xtal, entry[0], entry[1], entry[2], entry[3])) for site in ligands_not_in_panddaTable: for files in glob.glob(os.path.join(self.project_directory,xtal,'xceTmp','ligand_*_*.pdb')): mol_xyz = XChemUtils.pdbtools(files).get_center_of_gravity_of_molecule_ish() # now need to check if there is a unassigned entry in panddaTable that is close for entry in dbDict[xtal]: distance = XChemUtils.misc().calculate_distance_between_coordinates(mol_xyz[0], mol_xyz[1],mol_xyz[2],entry[1],entry[2], entry[3]) self.Logfile.insert('{0!s}: {1!s} {2!s} {3!s} <---> {4!s} {5!s} {6!s}'.format(xtal, mol_xyz[0], mol_xyz[1], mol_xyz[2], entry[1], entry[2], entry[3])) self.Logfile.insert('{0!s}: symm equivalent molecule: {1!s}'.format(xtal, files)) self.Logfile.insert('{0!s}: distance: {1!s}'.format(xtal, str(distance))) progress += progress_step self.emit(QtCore.SIGNAL('update_progress_bar'), progress) if self.errorDict != {}: self.update_errorDict('General','The aforementioned PDB files were automatically changed by XCE!\nPlease check and refine them!!!') self.emit(QtCore.SIGNAL('show_error_dict'), self.errorDict) class find_event_map_for_ligand(QtCore.QThread): def __init__(self,project_directory,xce_logfile,external_software): QtCore.QThread.__init__(self) self.Logfile=XChemLog.updateLog(xce_logfile) self.project_directory=project_directory self.external_software=external_software try: import gemmi self.Logfile.insert('found gemmi library in ccp4-python') except ImportError: self.external_software['gemmi'] = False self.Logfile.warning('cannot import gemmi; will use phenix.map_to_structure_factors instead') def run(self): self.Logfile.insert('======== checking ligand CC in event maps ========') for dirs in sorted(glob.glob(os.path.join(self.project_directory,'*'))): xtal = dirs[dirs.rfind('/')+1:] if os.path.isfile(os.path.join(dirs,'refine.pdb')) and \ os.path.isfile(os.path.join(dirs,'refine.mtz')): self.Logfile.insert('%s: found refine.pdb' %xtal) os.chdir(dirs) try: p = gemmi.read_structure('refine.pdb') except: self.Logfile.error('gemmi library not available') self.external_software['gemmi'] = False reso = XChemUtils.mtztools('refine.mtz').get_dmin() ligList = XChemUtils.pdbtools('refine.pdb').save_residues_with_resname(dirs,'LIG') self.Logfile.insert('%s: found %s ligands of type LIG in refine.pdb' %(xtal,str(len(ligList)))) for maps in glob.glob(os.path.join(dirs,'*event*.native.ccp4')): if self.external_software['gemmi']: self.convert_map_to_sf_with_gemmi(maps,p) else: self.expand_map_to_p1(maps) self.convert_map_to_sf(maps.replace('.ccp4','.P1.ccp4'),reso) summary = '' for lig in sorted(ligList): if self.external_software['gemmi']: for mtz in sorted(glob.glob(os.path.join(dirs,'*event*.native.mtz'))): self.get_lig_cc(mtz,lig) cc = self.check_lig_cc(mtz.replace('.mtz', '_CC.log')) summary += '%s: %s LIG CC = %s (%s)\n' %(xtal,lig,cc,mtz[mtz.rfind('/')+1:]) else: for mtz in sorted(glob.glob(os.path.join(dirs,'*event*.native*P1.mtz'))): self.get_lig_cc(mtz,lig) cc = self.check_lig_cc(mtz.replace('.mtz', '_CC.log')) summary += '%s: %s LIG CC = %s (%s)\n' %(xtal,lig,cc,mtz[mtz.rfind('/')+1:]) self.Logfile.insert('\nsummary of CC analysis:\n======================:\n'+summary) def expand_map_to_p1(self,emap): self.Logfile.insert('expanding map to P1: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.P1.ccp4')): self.Logfile.warning('P1 map exists; skipping...') return cmd = ( 'mapmask MAPIN %s MAPOUT %s << eof\n' %(emap,emap.replace('.ccp4','.P1.ccp4'))+ ' XYZLIM CELL\n' ' PAD 0.0\n' ' SYMMETRY 1\n' 'eof\n' ) os.system(cmd) def convert_map_to_sf(self,emap,reso): self.Logfile.insert('converting ccp4 map to mtz with phenix.map_to_structure_factors: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.mtz')): self.Logfile.warning('mtz file of event map exists; skipping...') return cmd = ( 'module load phenix\n' 'phenix.map_to_structure_factors %s d_min=%s\n' %(emap,reso)+ '/bin/mv map_to_structure_factors.mtz %s' %emap.replace('.ccp4', '.mtz') ) os.system(cmd) def get_lig_cc(self,mtz,lig): self.Logfile.insert('calculating CC for %s in %s' %(lig,mtz)) if os.path.isfile(mtz.replace('.mtz', '_CC.log')): self.Logfile.warning('logfile of CC analysis exists; skipping...') return cmd = ( 'module load phenix\n' 'phenix.get_cc_mtz_pdb %s %s > %s' % (mtz, lig, mtz.replace('.mtz', '_CC.log')) ) os.system(cmd) def check_lig_cc(self,log): cc = 'n/a' if os.path.isfile(log): for line in open(log): if line.startswith('local'): cc = line.split()[len(line.split()) - 1] else: self.Logfile.error('logfile does not exist: %s' %log) return cc def convert_map_to_sf_with_gemmi(self,emap,p): self.Logfile.insert('converting ccp4 map to mtz with gemmi map2sf: %s' %emap) if os.path.isfile(emap.replace('.ccp4','.mtz')): self.Logfile.warning('mtz file of event map exists; skipping...') return cmd = 'gemmi map2sf %s %s FWT PHWT --dmin=%s' %(emap,emap.replace('.ccp4','.mtz'),p.resolution) self.Logfile.insert('converting map with command:\n' + cmd) os.system(cmd)
en
0.659973
# last edited: 10/08/2017, 10:25 #from XChemUtils import mtztools #def get_names_of_current_clusters(xce_logfile,panddas_directory): # Logfile=XChemLog.updateLog(xce_logfile) # Logfile.insert('parsing {0!s}/cluster_analysis'.format(panddas_directory)) # os.chdir('{0!s}/cluster_analysis'.format(panddas_directory)) # cluster_dict={} # for out_dir in sorted(glob.glob('*')): # if os.path.isdir(out_dir): # cluster_dict[out_dir]=[] # found_first_pdb=False # for folder in glob.glob(os.path.join(out_dir,'pdbs','*')): # xtal=folder[folder.rfind('/')+1:] # if not found_first_pdb: # if os.path.isfile(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb') ): # cluster_dict[out_dir].append(os.path.join(panddas_directory,'cluster_analysis',out_dir,'pdbs',xtal,xtal+'.pdb')) # found_first_pdb=True # cluster_dict[out_dir].append(xtal) # return cluster_dict # self.initial_model_directory=initial_model_directory # self.db.create_missing_columns() # self.db_list=self.db.get_empty_db_dict() # self.external_software=XChemUtils.external_software(xce_logfile).check() # self.xce_logfile=xce_logfile # self.already_exported_models=[] # find all folders with *-pandda-model.pdb # if only NEW models shall be exported, check timestamps # find pandda_inspect_events.csv and read in as pandas dataframe # find out ligand event map relationship # convert event map to SF # move existing event maps in project directory to old folder # copy event MTZ to project directory # copy pandda-model to project directory # make map from MTZ and cut around ligand # update database # refine models # some time in the future... # create folder for new refinement cycle # compoundID=str(item[1]) ####################################################### # create folder for new refinement cycle # first find which samples are in interesting datasets and have a model # and determine the timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' # v1.3.8.2 - removed option to update database only # if not self.update_datasource_only: # if not self.update_datasource_only: # sample_list=self.db.execute_statement("select CrystalName,CompoundCode from mainTable where RefinementOutcome='2 - PANDDA model';") # for item in sample_list: # xtal=str(item[0]) # compoundID=str(item[1]) ####################################################### # create folder for new refinement cycle # elif xtal in os.path.join(self.panddas_directory,'processed_datasets',xtal,'modelled_structures', # '{}-pandda-model.pdb'.format(xtal)): # self.Logfile.insert('{}: cannot start refinement because {}'.format(xtal,xtal) + # ' does not have a modelled structure. Check whether you expect this dataset to ' + # ' have a modelled structure, compare pandda.inspect and datasource,' # ' then tell XCHEMBB ') # first make a note of all the datasets which were used in pandda directory # do the same as before, but look for rejected datasets # check if EVENT map exists in project directory # initial pandda model and mtz file # find apo structures which were used # XXX missing XXX # this is necessary, otherwise RefinementOutcome will be reset for samples that are actually already in refinement # finally find all samples which do not have a pandda hit # DimplePANDDAhit # for xtal in glob.glob('*'): # if xtal not in pandda_hit_list: # self.Logfile.insert(xtal+': not in interesting_datasets; updating database...') # self.db.execute_statement("update mainTable set DimplePANDDAhit = 'False' where CrystalName is '{0!s}'".format(xtal)) # first find which samples are in interesting datasets and have a model # and determine the timestamp # now get these models from the database and compare the datestamps # Note: only get the models that underwent some form of refinement, # because only if the model was updated in pandda.inspect will it be exported and refined # compare timestamps and only export the ones where the timestamp of the file is newer than the one in the DB # this will be raised if timestamp is not properly formatted; # which will usually be the case when respective field in database is blank # these are hopefully legacy cases which are from before this extensive check was introduced (13/01/2017) # update the DB: # set timestamp to current timestamp of file and set RefinementOutcome to '2-pandda...' # 'source '+os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh')+'\n' # print self.reference_dir # print self.filter_pdb # how to run pandda.analyse on large datasets # # 1) Run the normal pandda command, with the new setting, e.g. # pandda.analyse data_dirs=... max_new_datasets=500 # This will do the analysis on the first 500 datasets and build the statistical maps - just as normal. # # 2) Run pandda with the same command: # pandda.analyse data_dirs=... max_new_datasets=500 # This will add 500 new datasets, and process them using the existing statistical maps # (this will be quicker than the original analysis). It will then merge the results of the two analyses. # # 3) Repeat 2) until you don't add any "new" datasets. Then you can build the models as normal. # modulo gives remainder after integer division # if os.getenv('SHELL') == '/bin/tcsh' or os.getenv('SHELL') == '/bin/csh': # source_file=os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-csh\n') # elif os.getenv('SHELL') == '/bin/bash' or self.use_remote: # source_file='export XChemExplorer_DIR="'+os.getenv('XChemExplorer_DIR')+'"\n' # source_file+='source %s\n' %os.path.join(os.getenv('XChemExplorer_DIR'),'setup-scripts','pandda.setup-sh\n') # else: # source_file='' # v1.2.1 - pandda.setup files should be obsolete now that pandda is part of ccp4 # 08/10/2020 - pandda v0.2.12 installation at DLS is obsolete # source_file='source /dls/science/groups/i04-1/software/pandda_0.2.12/ccp4/ccp4-7.0/bin/ccp4.setup-sh\n' # note: copied latest pandda.setup-sh from XCE2 installation (08/08/2017) # #>>> for testing # self.submit_mode='local machine' # handles remote submission of pandda.analyse jobs # 1.) prepare output directory # 2.) go through project directory and make sure that all pdb files really exist # broken links derail the giant.cluster_mtzs_and_pdbs script # 3.) giant.cluster_mtzs_and_pdbs # os.system("giant.cluster_mtzs_and_pdbs %s/*/%s pdb_regex='%s/(.*)/%s' out_dir='%s/cluster_analysis'" %(self.initial_model_directory,self.pdb_style,self.initial_model_directory,self.pdb_style,self.panddas_directory)) # 4.) analyse output # 5.) update datasource # 6.) finish # reasons why pandda cannot be run # - there is currently a job running in the pandda directory # - min datasets available is too low # - required input paramters are not complete # - map amplitude and phase labels don't exist # remove exisiting mtz file # event maps generated with pandda v0.2 or higher have the same symmetry as the crystal # but phenix.map_to_structure_facors only accepts maps in spg P1 # therefore map is first expanded to full unit cell and spg of map then set tp p1 # other conversion option like cinvfft give for whatever reason uninterpretable maps # run phenix.map_to_structure_factors # check if output files exist # update datasource with event_map_mtz information # see also: # http://www.phaser.cimr.cam.ac.uk/index.php/Using_Electron_Density_as_a_Model # program complains if resolution is 1.2 or higher # mtzin is usually refine.mtz # now need to check if there is a unassigned entry in panddaTable that is close
2.021227
2
OmegaErp/Apps/base/forms/__init__.py
OMAR-EHAB777/FerpMenu
0
8027
# -*- coding: utf-8 -*- """ Global app forms """ # Standard Library import re # Django Library from django import forms from django.contrib.auth.forms import UserChangeForm, UserCreationForm from django.utils.translation import ugettext_lazy as _ # Thirdparty Library from dal import autocomplete # Localfolder Library from ..models import PyCompany, PyCountry, PyUser from .partner import PartnerForm class PerfilForm(forms.ModelForm): """Class to update the user profile on the system """ class Meta: model = PyUser fields = ( 'first_name', 'last_name', 'celular', ) labels = { 'first_name': _('Name'), 'last_name': _('Last Name'), 'celular': _('Mobile Phone'), } widgets = { 'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'celular': forms.TextInput(attrs={'class': 'form-control'}), } class PersonaChangeForm(UserChangeForm): """for something will be """ class Meta(UserChangeForm.Meta): model = PyUser fields = ( 'email', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'date_joined', 'first_name', 'last_name', ) # ========================================================================== # class PasswordRecoveryForm(forms.ModelForm): """To send the account recovery correction """ class Meta(): model = PyUser fields = ( 'email', ) widgets = { 'email': forms.EmailInput( attrs={'class': 'form-control', 'placeholder': _('Email')} ), } # ========================================================================== # class PasswordSetForm(forms.Form): """To send the account recovery correction """ password1 = forms.CharField( widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': _('Password')} ) ) password2 = forms.CharField( widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': _('Retype password')} ) ) def clean(self): super().clean() password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') print('entre8888') if password1 != password2: raise forms.ValidationError( _('The two password fields didn\'t match.') ) if password1 != password2: raise forms.ValidationError( _('The two password fields didn\'t match.') ) class PersonaCreationForm(UserCreationForm): """This form class renders the record sheet of users """ class Meta(UserCreationForm.Meta): model = PyUser fields = ( 'email', ) widgets = { 'email': forms.EmailInput( attrs={'class': 'form-control', 'placeholder': _('Email')} ), } class AvatarForm(forms.ModelForm): """Class to update the user profile on the system """ class Meta: model = PyUser fields = ( 'avatar', ) class InitForm(forms.ModelForm): """From of OMegaERP initializacion """ email = forms.EmailField( widget=forms.EmailInput( attrs={ 'placeholder': _('Admin email') } ) ) password = forms.CharField( max_length=100, widget=forms.PasswordInput( attrs={ 'placeholder': _('Admin Password') } ) ) class Meta: model = PyCompany fields = [ 'name', 'country', 'email', 'password' ] labels = { 'name': _('Company Name'), 'country': _('Country'), 'email': _('Admin user email'), 'password': _('Password'), } widgets = { 'name': forms.TextInput( attrs={ 'class': 'form-control', 'data-placeholder': _('Company Name'), 'style': 'width: 100%', }, ), 'country': autocomplete.ModelSelect2( url='PyCountry:autocomplete', attrs={ 'class': 'form-control', 'data-placeholder': _('Select a country...'), 'style': 'width: 100%', }, ), 'email': forms.EmailInput( attrs={ 'class': 'form-control', 'data-placeholder': _('Admin user email'), 'style': 'width: 100%', }, ), } class ActivateForm(forms.Form): """To activate or deactivate an object in OmegaERP """ object_name = forms.CharField(max_length=100, widget=forms.HiddenInput) object_pk = forms.IntegerField(widget=forms.HiddenInput)
# -*- coding: utf-8 -*- """ Global app forms """ # Standard Library import re # Django Library from django import forms from django.contrib.auth.forms import UserChangeForm, UserCreationForm from django.utils.translation import ugettext_lazy as _ # Thirdparty Library from dal import autocomplete # Localfolder Library from ..models import PyCompany, PyCountry, PyUser from .partner import PartnerForm class PerfilForm(forms.ModelForm): """Class to update the user profile on the system """ class Meta: model = PyUser fields = ( 'first_name', 'last_name', 'celular', ) labels = { 'first_name': _('Name'), 'last_name': _('Last Name'), 'celular': _('Mobile Phone'), } widgets = { 'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'celular': forms.TextInput(attrs={'class': 'form-control'}), } class PersonaChangeForm(UserChangeForm): """for something will be """ class Meta(UserChangeForm.Meta): model = PyUser fields = ( 'email', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'date_joined', 'first_name', 'last_name', ) # ========================================================================== # class PasswordRecoveryForm(forms.ModelForm): """To send the account recovery correction """ class Meta(): model = PyUser fields = ( 'email', ) widgets = { 'email': forms.EmailInput( attrs={'class': 'form-control', 'placeholder': _('Email')} ), } # ========================================================================== # class PasswordSetForm(forms.Form): """To send the account recovery correction """ password1 = forms.CharField( widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': _('Password')} ) ) password2 = forms.CharField( widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': _('Retype password')} ) ) def clean(self): super().clean() password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') print('entre8888') if password1 != password2: raise forms.ValidationError( _('The two password fields didn\'t match.') ) if password1 != password2: raise forms.ValidationError( _('The two password fields didn\'t match.') ) class PersonaCreationForm(UserCreationForm): """This form class renders the record sheet of users """ class Meta(UserCreationForm.Meta): model = PyUser fields = ( 'email', ) widgets = { 'email': forms.EmailInput( attrs={'class': 'form-control', 'placeholder': _('Email')} ), } class AvatarForm(forms.ModelForm): """Class to update the user profile on the system """ class Meta: model = PyUser fields = ( 'avatar', ) class InitForm(forms.ModelForm): """From of OMegaERP initializacion """ email = forms.EmailField( widget=forms.EmailInput( attrs={ 'placeholder': _('Admin email') } ) ) password = forms.CharField( max_length=100, widget=forms.PasswordInput( attrs={ 'placeholder': _('Admin Password') } ) ) class Meta: model = PyCompany fields = [ 'name', 'country', 'email', 'password' ] labels = { 'name': _('Company Name'), 'country': _('Country'), 'email': _('Admin user email'), 'password': _('Password'), } widgets = { 'name': forms.TextInput( attrs={ 'class': 'form-control', 'data-placeholder': _('Company Name'), 'style': 'width: 100%', }, ), 'country': autocomplete.ModelSelect2( url='PyCountry:autocomplete', attrs={ 'class': 'form-control', 'data-placeholder': _('Select a country...'), 'style': 'width: 100%', }, ), 'email': forms.EmailInput( attrs={ 'class': 'form-control', 'data-placeholder': _('Admin user email'), 'style': 'width: 100%', }, ), } class ActivateForm(forms.Form): """To activate or deactivate an object in OmegaERP """ object_name = forms.CharField(max_length=100, widget=forms.HiddenInput) object_pk = forms.IntegerField(widget=forms.HiddenInput)
en
0.688546
# -*- coding: utf-8 -*- Global app forms # Standard Library # Django Library # Thirdparty Library # Localfolder Library Class to update the user profile on the system for something will be # ========================================================================== # To send the account recovery correction # ========================================================================== # To send the account recovery correction This form class renders the record sheet of users Class to update the user profile on the system From of OMegaERP initializacion To activate or deactivate an object in OmegaERP
2.02492
2
test-drf-project/tests/conftest.py
fvlima/drf-view-profiler
30
8028
from unittest import mock import pytest from django.http import HttpRequest from rest_framework.response import Response from rest_framework.test import APIClient from drf_viewset_profiler.middleware import LineProfilerViewSetMiddleware @pytest.fixture def api_client(): return APIClient() @pytest.fixture def mock_http_request(): http_request = HttpRequest() http_request.method = "GET" return http_request @pytest.fixture def mock_http_response(mock_http_request): response = Response() mock_http_request.line_profiler = mock.Mock() mock_http_request.parser_context = {"view": mock.Mock()} response.renderer_context = {"request": mock_http_request} return response @pytest.fixture def mock_output_writer(monkeypatch): mock_output_writer_ = mock.Mock() monkeypatch.setattr("drf_viewset_profiler.middleware.output_writer.stream", mock_output_writer_) return mock_output_writer_ @pytest.fixture def mock_line_profiler_viewset_middleware(): return LineProfilerViewSetMiddleware()
from unittest import mock import pytest from django.http import HttpRequest from rest_framework.response import Response from rest_framework.test import APIClient from drf_viewset_profiler.middleware import LineProfilerViewSetMiddleware @pytest.fixture def api_client(): return APIClient() @pytest.fixture def mock_http_request(): http_request = HttpRequest() http_request.method = "GET" return http_request @pytest.fixture def mock_http_response(mock_http_request): response = Response() mock_http_request.line_profiler = mock.Mock() mock_http_request.parser_context = {"view": mock.Mock()} response.renderer_context = {"request": mock_http_request} return response @pytest.fixture def mock_output_writer(monkeypatch): mock_output_writer_ = mock.Mock() monkeypatch.setattr("drf_viewset_profiler.middleware.output_writer.stream", mock_output_writer_) return mock_output_writer_ @pytest.fixture def mock_line_profiler_viewset_middleware(): return LineProfilerViewSetMiddleware()
none
1
2.198992
2
Examples/VirtualLab/virtual_experiment_f.py
diehlpk/muDIC
70
8029
# This allows for running the example when the repo has been cloned import sys from os.path import abspath sys.path.extend([abspath(".")]) # Example code follows import logging import numpy as np import matplotlib.pyplot as plt import muDIC.vlab as vlab import muDIC as dic """ This example case runs an experiment where a deformation gradient is used to deform a synthetically generated speckle, the speckle is then down sampled by a factor of four and sensor artifacts are included. The analysis is then performed and the resulting deformation gradient field is compared to the one used to deform the images """ # Set the amount of info printed to terminal during analysis logging.basicConfig(format='%(name)s:%(levelname)s:%(message)s', level=logging.INFO) show_results = False # Define the image you want to analyse n_imgs = 2 image_shape = (500, 500) downsample_factor = 4 super_image_shape = tuple(dim * downsample_factor for dim in image_shape) # Make a speckle image speckle_image = vlab.rosta_speckle(super_image_shape, dot_size=4, density=0.5, smoothness=2.0) # Make an image deformed F = np.array([[1.01,0],[0.01,1.0]]) image_deformer = vlab.imageDeformer_from_defGrad(F) # Make an image down-sampler including downscaling, fill-factor and sensor grid irregularities downsampler = vlab.Downsampler(image_shape=super_image_shape, factor=downsample_factor, fill=.95, pixel_offset_stddev=0.05) # Make a noise injector producing 2% gaussian additive noise noise_injector = vlab.noise_injector("gaussian", sigma=.02) # Make an synthetic image generation pipeline image_generator = vlab.SyntheticImageGenerator(speckle_image=speckle_image, image_deformer=image_deformer, downsampler=downsampler, noise_injector=noise_injector, n=n_imgs) # Put it into an image stack image_stack = dic.ImageStack(image_generator) # Now, make a mesh. Make sure to use enough elements mesher = dic.Mesher(deg_n=3, deg_e=3,type="spline") #mesh = mesher.mesh(image_stack) # Use this if you want to use a GUI mesh = mesher.mesh(image_stack,Xc1=50,Xc2=450,Yc1=50,Yc2=450,n_ely=8,n_elx=8, GUI=False) # Prepare the analysis input and initiate the analysis input = dic.DICInput(mesh, image_stack) input.tol = 1e-6 input.interpolation_order = 4 dic_job = dic.DICAnalysis(input) results = dic_job.run() # Calculate the fields for later use. Seed is used when spline elements are used and upscale is used for Q4. fields = dic.Fields(results, seed=101,upscale=10) # We will now compare the results from the analysis to the deformation gradient which the image was deformed by if show_results: plt.figure() plt.imshow(F[0,0] - fields.F()[0, 0,0, :, :, 1], cmap=plt.cm.magma) plt.xlabel("Element e-coordinate") plt.ylabel("Element n-coordinate") plt.colorbar() plt.title("Difference in deformation gradient component 0,0 within the element") fig1 = plt.figure() ax1 = fig1.add_subplot(111) #line1 = ax1.plot(res_field[:, 50], label="correct") line2 = ax1.plot(fields.F()[0, 0,0, :, 50, 1], label="DIC") ax1.set_xlabel("element e-coordinate") ax1.set_ylabel("Deformation gradient component 0,0 []") ax2 = fig1.add_subplot(111, sharex=ax1, frameon=False) line3 = ax2.plot(F[0,0] - fields.F()[0, 0,0, :, 50, 1], "r--", label="difference") ax2.yaxis.tick_right() ax2.yaxis.set_label_position("right") ax2.set_ylabel("Deviation []") plt.title("Deformation gradient component 0,0") fig1.legend() plt.show()
# This allows for running the example when the repo has been cloned import sys from os.path import abspath sys.path.extend([abspath(".")]) # Example code follows import logging import numpy as np import matplotlib.pyplot as plt import muDIC.vlab as vlab import muDIC as dic """ This example case runs an experiment where a deformation gradient is used to deform a synthetically generated speckle, the speckle is then down sampled by a factor of four and sensor artifacts are included. The analysis is then performed and the resulting deformation gradient field is compared to the one used to deform the images """ # Set the amount of info printed to terminal during analysis logging.basicConfig(format='%(name)s:%(levelname)s:%(message)s', level=logging.INFO) show_results = False # Define the image you want to analyse n_imgs = 2 image_shape = (500, 500) downsample_factor = 4 super_image_shape = tuple(dim * downsample_factor for dim in image_shape) # Make a speckle image speckle_image = vlab.rosta_speckle(super_image_shape, dot_size=4, density=0.5, smoothness=2.0) # Make an image deformed F = np.array([[1.01,0],[0.01,1.0]]) image_deformer = vlab.imageDeformer_from_defGrad(F) # Make an image down-sampler including downscaling, fill-factor and sensor grid irregularities downsampler = vlab.Downsampler(image_shape=super_image_shape, factor=downsample_factor, fill=.95, pixel_offset_stddev=0.05) # Make a noise injector producing 2% gaussian additive noise noise_injector = vlab.noise_injector("gaussian", sigma=.02) # Make an synthetic image generation pipeline image_generator = vlab.SyntheticImageGenerator(speckle_image=speckle_image, image_deformer=image_deformer, downsampler=downsampler, noise_injector=noise_injector, n=n_imgs) # Put it into an image stack image_stack = dic.ImageStack(image_generator) # Now, make a mesh. Make sure to use enough elements mesher = dic.Mesher(deg_n=3, deg_e=3,type="spline") #mesh = mesher.mesh(image_stack) # Use this if you want to use a GUI mesh = mesher.mesh(image_stack,Xc1=50,Xc2=450,Yc1=50,Yc2=450,n_ely=8,n_elx=8, GUI=False) # Prepare the analysis input and initiate the analysis input = dic.DICInput(mesh, image_stack) input.tol = 1e-6 input.interpolation_order = 4 dic_job = dic.DICAnalysis(input) results = dic_job.run() # Calculate the fields for later use. Seed is used when spline elements are used and upscale is used for Q4. fields = dic.Fields(results, seed=101,upscale=10) # We will now compare the results from the analysis to the deformation gradient which the image was deformed by if show_results: plt.figure() plt.imshow(F[0,0] - fields.F()[0, 0,0, :, :, 1], cmap=plt.cm.magma) plt.xlabel("Element e-coordinate") plt.ylabel("Element n-coordinate") plt.colorbar() plt.title("Difference in deformation gradient component 0,0 within the element") fig1 = plt.figure() ax1 = fig1.add_subplot(111) #line1 = ax1.plot(res_field[:, 50], label="correct") line2 = ax1.plot(fields.F()[0, 0,0, :, 50, 1], label="DIC") ax1.set_xlabel("element e-coordinate") ax1.set_ylabel("Deformation gradient component 0,0 []") ax2 = fig1.add_subplot(111, sharex=ax1, frameon=False) line3 = ax2.plot(F[0,0] - fields.F()[0, 0,0, :, 50, 1], "r--", label="difference") ax2.yaxis.tick_right() ax2.yaxis.set_label_position("right") ax2.set_ylabel("Deviation []") plt.title("Deformation gradient component 0,0") fig1.legend() plt.show()
en
0.906513
# This allows for running the example when the repo has been cloned # Example code follows This example case runs an experiment where a deformation gradient is used to deform a synthetically generated speckle, the speckle is then down sampled by a factor of four and sensor artifacts are included. The analysis is then performed and the resulting deformation gradient field is compared to the one used to deform the images # Set the amount of info printed to terminal during analysis # Define the image you want to analyse # Make a speckle image # Make an image deformed # Make an image down-sampler including downscaling, fill-factor and sensor grid irregularities # Make a noise injector producing 2% gaussian additive noise # Make an synthetic image generation pipeline # Put it into an image stack # Now, make a mesh. Make sure to use enough elements #mesh = mesher.mesh(image_stack) # Use this if you want to use a GUI # Prepare the analysis input and initiate the analysis # Calculate the fields for later use. Seed is used when spline elements are used and upscale is used for Q4. # We will now compare the results from the analysis to the deformation gradient which the image was deformed by #line1 = ax1.plot(res_field[:, 50], label="correct")
2.461902
2
src/template_config.py
ckaestne/toxicity-detector
7
8030
<filename>src/template_config.py mongo = { "user": "", "passwd": "", "db": "ghtorrent" } perspective_api_key = ""
<filename>src/template_config.py mongo = { "user": "", "passwd": "", "db": "ghtorrent" } perspective_api_key = ""
none
1
1.138955
1
tests/unit/dataactvalidator/test_fabs38_detached_award_financial_assistance_2.py
COEJKnight/one
1
8031
<filename>tests/unit/dataactvalidator/test_fabs38_detached_award_financial_assistance_2.py<gh_stars>1-10 from tests.unit.dataactcore.factories.staging import DetachedAwardFinancialAssistanceFactory from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'fabs38_detached_award_financial_assistance_2' def test_column_headers(database): expected_subset = {"row_number", "awarding_office_code"} actual = set(query_columns(_FILE, database)) assert expected_subset == actual def test_success(database): """ AwardingOfficeCode must be six characters long. """ det_award_1 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAAAA') det_award_2 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='111111') det_award_3 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAA111') det_award_4 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='') det_award_5 = DetachedAwardFinancialAssistanceFactory(awarding_office_code=None) errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3, det_award_4, det_award_5]) assert errors == 0 def test_failure(database): """ AwardingOfficeCode must be six characters long. """ det_award_1 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAA1') det_award_2 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAAAAA') errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2]) assert errors == 2
<filename>tests/unit/dataactvalidator/test_fabs38_detached_award_financial_assistance_2.py<gh_stars>1-10 from tests.unit.dataactcore.factories.staging import DetachedAwardFinancialAssistanceFactory from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'fabs38_detached_award_financial_assistance_2' def test_column_headers(database): expected_subset = {"row_number", "awarding_office_code"} actual = set(query_columns(_FILE, database)) assert expected_subset == actual def test_success(database): """ AwardingOfficeCode must be six characters long. """ det_award_1 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAAAA') det_award_2 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='111111') det_award_3 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAA111') det_award_4 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='') det_award_5 = DetachedAwardFinancialAssistanceFactory(awarding_office_code=None) errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3, det_award_4, det_award_5]) assert errors == 0 def test_failure(database): """ AwardingOfficeCode must be six characters long. """ det_award_1 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAA1') det_award_2 = DetachedAwardFinancialAssistanceFactory(awarding_office_code='AAAAAAA') errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2]) assert errors == 2
en
0.855806
AwardingOfficeCode must be six characters long. AwardingOfficeCode must be six characters long.
2.407259
2
Optimisation Portfolios/HERC.py
BrandonAFong/Ideas
0
8032
<reponame>BrandonAFong/Ideas<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 31 22:48:21 2021 @author: apple """ import numpy as np import pandas as pd from HRP import seriation import fastcluster from scipy.cluster.hierarchy import fcluster from gap_statistic import OptimalK from backtest import df_to_matrix #HERC def intersection(list1, list2): intersec = [set(list1) & set(list2)] return intersec def compute_allocation(covar, clusters,Z,dimensions): numClusters = len(clusters) aWeights = np.array([1.] * len(covar)) cWeights = np.array([1.] * numClusters) cVar = np.array([0.] * numClusters) for i, cluster in clusters.items(): cluster_covar = covar[cluster, :][:, cluster] inv_diag = 1 / np.diag(cluster_covar) aWeights[cluster] = inv_diag / np.sum(inv_diag) for i, cluster in clusters.items(): weights = aWeights[cluster] cVar[i - 1] = np.dot( weights, np.dot(covar[cluster, :][:, cluster], weights)) for m in range(numClusters - 1): left = int(Z[dimensions - 2 - m, 0]) lc = seriation(Z, dimensions, left) right = int(Z[dimensions - 2 - m, 1]) rc = seriation(Z, dimensions, right) id_lc = [] id_rc = [] for i, cluster in clusters.items(): if sorted(intersection(lc, cluster)) == sorted(cluster): id_lc.append(i) if sorted(intersection(rc, cluster)) == sorted(cluster): id_rc.append(i) id_lc = np.array(id_lc) - 1 id_rc = np.array(id_rc) - 1 alpha = 0 lcVar = np.sum(cVar[id_lc]) rcVar = np.sum(cVar[id_rc]) alpha = lcVar / (lcVar + rcVar) cWeights[id_lc] = cWeights[ id_lc] * alpha cWeights[id_rc] = cWeights[ id_rc] * (1 - alpha) for i, cluster in clusters.items(): aWeights[cluster] = aWeights[cluster] * cWeights[ i - 1] return aWeights #Dataframe of returns def HERC(mat_ret): #Need to first calculate the optimal number of clusters #The mat_ret that goes into this must be a np array of returns # correl_mat = mat_ret.corr(method='pearson') column_dic = {k:v for v, k in enumerate(mat_ret.columns)} correl_mat = df_to_matrix(mat_ret.corr(method='pearson')) dist = 1 - correl_mat dim = len(dist) tri_a, tri_b = np.triu_indices(dim, k = 1) Z = fastcluster.linkage(dist[tri_a, tri_b], method='ward') optimalK = OptimalK(parallel_backend = 'rust') n_clusters = optimalK(mat_ret.values, cluster_array = np.arange(1,len(mat_ret))) nb_clusters = n_clusters clustering_inds = fcluster(Z, nb_clusters, criterion='maxclust') clusters = {i: [] for i in range(min(clustering_inds),max(clustering_inds) + 1)} for i, v in enumerate(clustering_inds): clusters[v].append(i) HERC_w = compute_allocation(correl_mat, clusters, Z, dim) HERC_w = pd.Series(HERC_w) my_inverted_dict = dict(map(reversed, column_dic.items())) HERC_w = HERC_w.rename(index = my_inverted_dict) return HERC_w
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 31 22:48:21 2021 @author: apple """ import numpy as np import pandas as pd from HRP import seriation import fastcluster from scipy.cluster.hierarchy import fcluster from gap_statistic import OptimalK from backtest import df_to_matrix #HERC def intersection(list1, list2): intersec = [set(list1) & set(list2)] return intersec def compute_allocation(covar, clusters,Z,dimensions): numClusters = len(clusters) aWeights = np.array([1.] * len(covar)) cWeights = np.array([1.] * numClusters) cVar = np.array([0.] * numClusters) for i, cluster in clusters.items(): cluster_covar = covar[cluster, :][:, cluster] inv_diag = 1 / np.diag(cluster_covar) aWeights[cluster] = inv_diag / np.sum(inv_diag) for i, cluster in clusters.items(): weights = aWeights[cluster] cVar[i - 1] = np.dot( weights, np.dot(covar[cluster, :][:, cluster], weights)) for m in range(numClusters - 1): left = int(Z[dimensions - 2 - m, 0]) lc = seriation(Z, dimensions, left) right = int(Z[dimensions - 2 - m, 1]) rc = seriation(Z, dimensions, right) id_lc = [] id_rc = [] for i, cluster in clusters.items(): if sorted(intersection(lc, cluster)) == sorted(cluster): id_lc.append(i) if sorted(intersection(rc, cluster)) == sorted(cluster): id_rc.append(i) id_lc = np.array(id_lc) - 1 id_rc = np.array(id_rc) - 1 alpha = 0 lcVar = np.sum(cVar[id_lc]) rcVar = np.sum(cVar[id_rc]) alpha = lcVar / (lcVar + rcVar) cWeights[id_lc] = cWeights[ id_lc] * alpha cWeights[id_rc] = cWeights[ id_rc] * (1 - alpha) for i, cluster in clusters.items(): aWeights[cluster] = aWeights[cluster] * cWeights[ i - 1] return aWeights #Dataframe of returns def HERC(mat_ret): #Need to first calculate the optimal number of clusters #The mat_ret that goes into this must be a np array of returns # correl_mat = mat_ret.corr(method='pearson') column_dic = {k:v for v, k in enumerate(mat_ret.columns)} correl_mat = df_to_matrix(mat_ret.corr(method='pearson')) dist = 1 - correl_mat dim = len(dist) tri_a, tri_b = np.triu_indices(dim, k = 1) Z = fastcluster.linkage(dist[tri_a, tri_b], method='ward') optimalK = OptimalK(parallel_backend = 'rust') n_clusters = optimalK(mat_ret.values, cluster_array = np.arange(1,len(mat_ret))) nb_clusters = n_clusters clustering_inds = fcluster(Z, nb_clusters, criterion='maxclust') clusters = {i: [] for i in range(min(clustering_inds),max(clustering_inds) + 1)} for i, v in enumerate(clustering_inds): clusters[v].append(i) HERC_w = compute_allocation(correl_mat, clusters, Z, dim) HERC_w = pd.Series(HERC_w) my_inverted_dict = dict(map(reversed, column_dic.items())) HERC_w = HERC_w.rename(index = my_inverted_dict) return HERC_w
en
0.613924
#!/usr/bin/env python3 # -*- coding: utf-8 -*- Created on Tue Aug 31 22:48:21 2021 @author: apple #HERC #Dataframe of returns #Need to first calculate the optimal number of clusters #The mat_ret that goes into this must be a np array of returns # correl_mat = mat_ret.corr(method='pearson')
2.066397
2
src/conv/convertManifest2Curation.py
nakamura196/i3
3
8033
import urllib.request from bs4 import BeautifulSoup import csv import requests import os import json import time import glob files = glob.glob("/Users/nakamura/git/d_iiif/iiif/src/collections/nijl/data/json/*.json") for i in range(len(files)): file = files[i] file_id = file.split("/")[-1].replace(".json", "") opath = "/Users/nakamura/git/d_iiif/iiif/src/collections/nijl/data/curation/"+file_id+".json" if not os.path.exists(opath): fw = open(opath, 'w') curation_data = {} curation_uri = "curation:"+file_id+".json" with open(file) as f: try: df = json.load(f) except: continue anno_count = 1 if "sequences" in df: print(file) members = [] canvases = df["sequences"][0]["canvases"] for j in range(len(canvases)): canvas = canvases[j] if "otherContent" in canvas: id = canvas["otherContent"][0]["@id"] headers = {"content-type": "application/json"} # time.sleep(0.5) r = requests.get(id, headers=headers) data = r.json() print(id) resources = data["resources"] for resource in resources: member_id = resource["on"] res = resource["resource"] chars = res["chars"] member = { "@id": member_id, "@type": "sc:Canvas", "label": "[Annotation " + str(anno_count) + "]", "description": chars, "metadata": [ { "label": res["@type"], "value": chars } ] } anno_count += 1 members.append(member) if len(members) > 0: label = "" if "label" in df: label = df["label"] curation_data = { "@context": [ "http://iiif.io/api/presentation/2/context.json", "http://codh.rois.ac.jp/iiif/curation/1/context.json" ], "@type": "cr:Curation", "@id": curation_uri, "label": "Automatic curation by IIIF Converter", "selections": [ { "@id": curation_uri + "/range1", "@type": "sc:Range", "label": "Automatic curation by IIIF Converter", "members": members, "within": { "@id": df["@id"], "@type": "sc:Manifest", "label": label } } ] } json.dump(curation_data, fw, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
import urllib.request from bs4 import BeautifulSoup import csv import requests import os import json import time import glob files = glob.glob("/Users/nakamura/git/d_iiif/iiif/src/collections/nijl/data/json/*.json") for i in range(len(files)): file = files[i] file_id = file.split("/")[-1].replace(".json", "") opath = "/Users/nakamura/git/d_iiif/iiif/src/collections/nijl/data/curation/"+file_id+".json" if not os.path.exists(opath): fw = open(opath, 'w') curation_data = {} curation_uri = "curation:"+file_id+".json" with open(file) as f: try: df = json.load(f) except: continue anno_count = 1 if "sequences" in df: print(file) members = [] canvases = df["sequences"][0]["canvases"] for j in range(len(canvases)): canvas = canvases[j] if "otherContent" in canvas: id = canvas["otherContent"][0]["@id"] headers = {"content-type": "application/json"} # time.sleep(0.5) r = requests.get(id, headers=headers) data = r.json() print(id) resources = data["resources"] for resource in resources: member_id = resource["on"] res = resource["resource"] chars = res["chars"] member = { "@id": member_id, "@type": "sc:Canvas", "label": "[Annotation " + str(anno_count) + "]", "description": chars, "metadata": [ { "label": res["@type"], "value": chars } ] } anno_count += 1 members.append(member) if len(members) > 0: label = "" if "label" in df: label = df["label"] curation_data = { "@context": [ "http://iiif.io/api/presentation/2/context.json", "http://codh.rois.ac.jp/iiif/curation/1/context.json" ], "@type": "cr:Curation", "@id": curation_uri, "label": "Automatic curation by IIIF Converter", "selections": [ { "@id": curation_uri + "/range1", "@type": "sc:Range", "label": "Automatic curation by IIIF Converter", "members": members, "within": { "@id": df["@id"], "@type": "sc:Manifest", "label": label } } ] } json.dump(curation_data, fw, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
en
0.766672
# time.sleep(0.5)
2.621495
3
programme.py
GaLaXy102/Vacationing
0
8034
<reponame>GaLaXy102/Vacationing from lib import get_itineraries import data if __name__ == '__main__': for itinerary in get_itineraries(data.sicily): print("#" * 24) print(itinerary) print("")
from lib import get_itineraries import data if __name__ == '__main__': for itinerary in get_itineraries(data.sicily): print("#" * 24) print(itinerary) print("")
none
1
2.049516
2
sawyer/mujoco/tasks/transition_pick_and_place_task.py
rlagywjd802/gym-sawyer
0
8035
import numpy as np from sawyer.mujoco.tasks.base import ComposableTask class TransitionTask(ComposableTask): """ Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self): pass def compute_reward(self, obs, info): return 0 def is_success(self, obs, info=None, init=None): raise NotImplementedError def is_terminate(self, obs, init): return self.is_success(obs, init=init) def is_fail(self, obs): raise NotImplementedError def reset(self): pass @property def completion_bonus(self): return self._completion_bonus class TransitionPickTask(TransitionTask): """ Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self, success_thresh=0.05, object_lift_target=0.3, completion_bonus=0): self._success_thresh = success_thresh self._obj_lift_target = object_lift_target self._completion_bonus = completion_bonus self._t = 0 def is_success(self, obs, info=None, init=None): return True if init: self.reset() goal = obs[11:14] + np.array([0, 0, 0.04]) box_pos = obs[4:7] d = np.linalg.norm(box_pos - goal, axis=-1) print("****[pick/is success] box_pos:{}, goal:{}, d:{}".format(box_pos, goal, d)) return d < self._success_thresh def is_fail(self, obs): self._t += 1 if self._t >= 1 and not self.is_success(obs): return True return False def reset(self): self._t = 0 class TransitionPlaceTask(TransitionTask): """ Task to place object at a desired location. """ def __init__(self, success_thresh=0.015, completion_bonus=0): self._success_thresh = success_thresh self._completion_bonus = completion_bonus self._prev_box_pos = None def is_success(self, obs, info=None, init=None): if init: self.reset() box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.03 abs_diff = abs(box_pos - goal) print("****[place/is success] abs_diff:{}".format(abs_diff)) return ( abs_diff[0] < max_xy_diff and abs_diff[1] < max_xy_diff and box_pos[2] < 0.21 ) def is_fail(self, obs): box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.03 abs_diff = abs(box_pos - goal) if self._prev_box_pos is None: self._prev_box_pos = box_pos else: max_z_diff = 0.009 z_diff = self._prev_box_pos[2] - box_pos[2] print("****[place/is_fail] z_diff:{}, box_pos_z:{}".format(z_diff, box_pos[2])) print(self._prev_box_pos[2], box_pos[2]) if abs_diff[0] > max_xy_diff or abs_diff[1] > max_xy_diff or z_diff < max_z_diff: return True else: self._prev_box_pos = box_pos return False def reset(self): self._prev_box_pos = None class TransitionPickAndPlaceTask(TransitionTask): """ Task to pick up an object and place the object at a desired location. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self, success_thresh=0.01, completion_bonus=0): self._success_thresh = success_thresh self._completion_bonus = completion_bonus self._prev_box_pos = None self._picked = False self._placing = False def is_success(self, obs, info=None, init=None): if init: self.reset() box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.02 abs_diff = abs(box_pos - goal) print("****[pick&place/is success] abs_diff:{}, box_z:{}".format(abs_diff, box_pos[2])) return ( abs_diff[0] < max_xy_diff and abs_diff[1] < max_xy_diff and box_pos[2] < 0.22 ) def is_fail(self, obs): box_pos = obs[4:7] goal = obs[11:14] abs_diff = abs(box_pos - goal) max_xy_diff = 0.03 if self._picked: self._placing = True print("placing True") else: print("placing False") if self._picked and not self._placing: print("return True") return True self._picked = True if self._placing: if self._prev_box_pos is None: self._prev_box_pos = box_pos else: max_z_diff = 0.009 z_diff = self._prev_box_pos[2] - box_pos[2] print("****[pick&place/is_fail] z_diff:{}, box_pos_z:{}".format(z_diff, box_pos[2])) print(self._prev_box_pos[2], box_pos[2]) if box_pos[2] < 0.24 and (abs_diff[0] > max_xy_diff or abs_diff[1] > max_xy_diff or z_diff < max_z_diff): print("return True") return True else: self._prev_box_pos = box_pos return False def get_next_primitive(self, obs, prev_primitive): if prev_primitive == -1: return 'pick' return 'place' def reset(self): self._picked = False self._placing = False self._prev_box_pos = None
import numpy as np from sawyer.mujoco.tasks.base import ComposableTask class TransitionTask(ComposableTask): """ Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self): pass def compute_reward(self, obs, info): return 0 def is_success(self, obs, info=None, init=None): raise NotImplementedError def is_terminate(self, obs, init): return self.is_success(obs, init=init) def is_fail(self, obs): raise NotImplementedError def reset(self): pass @property def completion_bonus(self): return self._completion_bonus class TransitionPickTask(TransitionTask): """ Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self, success_thresh=0.05, object_lift_target=0.3, completion_bonus=0): self._success_thresh = success_thresh self._obj_lift_target = object_lift_target self._completion_bonus = completion_bonus self._t = 0 def is_success(self, obs, info=None, init=None): return True if init: self.reset() goal = obs[11:14] + np.array([0, 0, 0.04]) box_pos = obs[4:7] d = np.linalg.norm(box_pos - goal, axis=-1) print("****[pick/is success] box_pos:{}, goal:{}, d:{}".format(box_pos, goal, d)) return d < self._success_thresh def is_fail(self, obs): self._t += 1 if self._t >= 1 and not self.is_success(obs): return True return False def reset(self): self._t = 0 class TransitionPlaceTask(TransitionTask): """ Task to place object at a desired location. """ def __init__(self, success_thresh=0.015, completion_bonus=0): self._success_thresh = success_thresh self._completion_bonus = completion_bonus self._prev_box_pos = None def is_success(self, obs, info=None, init=None): if init: self.reset() box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.03 abs_diff = abs(box_pos - goal) print("****[place/is success] abs_diff:{}".format(abs_diff)) return ( abs_diff[0] < max_xy_diff and abs_diff[1] < max_xy_diff and box_pos[2] < 0.21 ) def is_fail(self, obs): box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.03 abs_diff = abs(box_pos - goal) if self._prev_box_pos is None: self._prev_box_pos = box_pos else: max_z_diff = 0.009 z_diff = self._prev_box_pos[2] - box_pos[2] print("****[place/is_fail] z_diff:{}, box_pos_z:{}".format(z_diff, box_pos[2])) print(self._prev_box_pos[2], box_pos[2]) if abs_diff[0] > max_xy_diff or abs_diff[1] > max_xy_diff or z_diff < max_z_diff: return True else: self._prev_box_pos = box_pos return False def reset(self): self._prev_box_pos = None class TransitionPickAndPlaceTask(TransitionTask): """ Task to pick up an object and place the object at a desired location. Success condition: - Object is grasped and has been lifted above the table """ def __init__(self, success_thresh=0.01, completion_bonus=0): self._success_thresh = success_thresh self._completion_bonus = completion_bonus self._prev_box_pos = None self._picked = False self._placing = False def is_success(self, obs, info=None, init=None): if init: self.reset() box_pos = obs[4:7] goal = obs[11:14] max_xy_diff = 0.02 abs_diff = abs(box_pos - goal) print("****[pick&place/is success] abs_diff:{}, box_z:{}".format(abs_diff, box_pos[2])) return ( abs_diff[0] < max_xy_diff and abs_diff[1] < max_xy_diff and box_pos[2] < 0.22 ) def is_fail(self, obs): box_pos = obs[4:7] goal = obs[11:14] abs_diff = abs(box_pos - goal) max_xy_diff = 0.03 if self._picked: self._placing = True print("placing True") else: print("placing False") if self._picked and not self._placing: print("return True") return True self._picked = True if self._placing: if self._prev_box_pos is None: self._prev_box_pos = box_pos else: max_z_diff = 0.009 z_diff = self._prev_box_pos[2] - box_pos[2] print("****[pick&place/is_fail] z_diff:{}, box_pos_z:{}".format(z_diff, box_pos[2])) print(self._prev_box_pos[2], box_pos[2]) if box_pos[2] < 0.24 and (abs_diff[0] > max_xy_diff or abs_diff[1] > max_xy_diff or z_diff < max_z_diff): print("return True") return True else: self._prev_box_pos = box_pos return False def get_next_primitive(self, obs, prev_primitive): if prev_primitive == -1: return 'pick' return 'place' def reset(self): self._picked = False self._placing = False self._prev_box_pos = None
en
0.949899
Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table Task to pick up an object with the robot gripper. Success condition: - Object is grasped and has been lifted above the table Task to place object at a desired location. Task to pick up an object and place the object at a desired location. Success condition: - Object is grasped and has been lifted above the table
2.570647
3
tests/app/test_jinja_filters.py
nealedj/eq-survey-runner
0
8036
<reponame>nealedj/eq-survey-runner # coding: utf-8 from types import SimpleNamespace from datetime import datetime, timedelta from unittest.mock import patch from dateutil.relativedelta import relativedelta from jinja2 import Undefined, Markup from mock import Mock from app.jinja_filters import ( format_date, format_conditional_date, format_currency, get_currency_symbol, format_multilined_string, format_percentage, format_date_range, format_household_member_name, format_datetime, format_number_to_alphabetic_letter, format_unit, format_currency_for_input, format_number, format_unordered_list, format_unit_input_label, format_household_member_name_possessive, concatenated_list, calculate_years_difference, get_current_date, as_london_tz, max_value, min_value, get_question_title, get_answer_label, format_duration, calculate_offset_from_weekday_in_last_whole_week, format_date_custom, format_date_range_no_repeated_month_year, format_repeating_summary, format_address_list) from tests.app.app_context_test_case import AppContextTestCase class TestJinjaFilters(AppContextTestCase): # pylint: disable=too-many-public-methods def setUp(self): self.autoescape_context = Mock(autoescape=True) super(TestJinjaFilters, self).setUp() @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_currency_for_input(self): self.assertEqual(format_currency_for_input('100', 2), '100.00') self.assertEqual(format_currency_for_input('100.0', 2), '100.00') self.assertEqual(format_currency_for_input('100.00', 2), '100.00') self.assertEqual(format_currency_for_input('1000'), '1,000') self.assertEqual(format_currency_for_input('10000'), '10,000') self.assertEqual(format_currency_for_input('100000000'), '100,000,000') self.assertEqual(format_currency_for_input('100000000', 2), '100,000,000.00') self.assertEqual(format_currency_for_input(0, 2), '0.00') self.assertEqual(format_currency_for_input(0), '0') self.assertEqual(format_currency_for_input(''), '') self.assertEqual(format_currency_for_input(None), '') self.assertEqual(format_currency_for_input(Undefined()), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_get_currency_symbol(self): self.assertEqual(get_currency_symbol('GBP'), '£') self.assertEqual(get_currency_symbol('EUR'), '€') self.assertEqual(get_currency_symbol('USD'), 'US$') self.assertEqual(get_currency_symbol('JPY'), 'JP¥') self.assertEqual(get_currency_symbol(''), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_currency(self): self.assertEqual(format_currency(self.autoescape_context, '11', 'GBP'), "<span class='date'>£11.00</span>") self.assertEqual(format_currency(self.autoescape_context, '11.99', 'GBP'), "<span class='date'>£11.99</span>") self.assertEqual(format_currency(self.autoescape_context, '11000', 'USD'), "<span class='date'>US$11,000.00</span>") self.assertEqual(format_currency(self.autoescape_context, 0), "<span class='date'>£0.00</span>") self.assertEqual(format_currency(self.autoescape_context, 0.00), "<span class='date'>£0.00</span>") self.assertEqual(format_currency(self.autoescape_context, '', ), "<span class='date'></span>") self.assertEqual(format_currency(self.autoescape_context, None), "<span class='date'></span>") self.assertEqual(format_currency(self.autoescape_context, Undefined()), "<span class='date'></span>") @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_number(self): self.assertEqual(format_number(123), '123') self.assertEqual(format_number('123.4'), '123.4') self.assertEqual(format_number('123.40'), '123.4') self.assertEqual(format_number('1000'), '1,000') self.assertEqual(format_number('10000'), '10,000') self.assertEqual(format_number('100000000'), '100,000,000') self.assertEqual(format_number(0), '0') self.assertEqual(format_number(0.00), '0') self.assertEqual(format_number(''), '') self.assertEqual(format_number(None), '') self.assertEqual(format_number(Undefined()), '') def test_format_multilined_string_matches_carriage_return(self): # Given new_line = 'this is on a new\rline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string_matches_new_line(self): # Given new_line = 'this is on a new\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string_matches_carriage_return_new_line(self): # Given new_line = 'this is on a new\r\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string(self): # Given new_line = 'this is\ron a\nnew\r\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is<br>on a<br>new<br>line') def test_format_multilined_string_auto_escape(self): # Given new_line = '<' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(str(format_value), '&lt;') def test_get_current_date(self): # Given date_format = '%-d %B %Y' # When format_value = get_current_date(self.autoescape_context) current_date = as_london_tz(datetime.utcnow()).strftime(date_format) # Then self.assertEqual(format_value, "<span class='date'>{date}</span>".format(date=current_date)) def test_format_date(self): # Given date = '2017-01-01' # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span>") def test_format_date_month_year(self): # Given date = '2017-01' # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>January 2017</span>") def test_format_date_markup(self): # Given date = [Markup('2017-01')] # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>January 2017</span>") def test_format_date_non_string(self): # Given date = 123 # When format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, 123) def test_format_date_none(self): # Given date = None # When format_value = format_date(self.autoescape_context, date) # Then self.assertIsNone(format_value) def test_format_date_time_in_bst(self): # Given date_time = '2018-03-29T11:59:13.528680' # When with self.app_request_context('/'): format_value = format_datetime(self.autoescape_context, date_time) # Then self.assertEqual(format_value, "<span class='date'>29 March 2018 at 12:59</span>") def test_format_date_time_in_gmt(self): # Given date_time = '2018-10-28T11:59:13.528680' # When with self.app_request_context('/'): format_value = format_datetime(self.autoescape_context, date_time) # Then self.assertEqual(format_value, "<span class='date'>28 October 2018 at 11:59</span>") def test_format_conditional_date_not_date(self): # Given no test for integers this check was removed from jinja_filters invalid_input = [('1', None), ('1-1-1', None)] # When for nonsense in invalid_input: date1 = nonsense[0] date2 = nonsense[1] with self.assertRaises(Exception) as exception: format_conditional_date(self.autoescape_context, date1, date2) # Then self.assertIn("does not match format '%Y-%m'", str(exception.exception)) def test_format_conditional_date_not_set(self): # Given # When with self.assertRaises(Exception) as exception: format_conditional_date(self.autoescape_context, None, None) # Then self.assertIn('No valid dates passed to format_conditional_dates filter', str(exception.exception)) def test_format_conditional_date(self): # Given datelist = [('2016-01-12', '2016-02-12', '12 January 2016'), ('2017-12-23', None, '23 December 2017'), (None, '2017-12-24', '24 December 2017')] # When with self.app_request_context('/'): for triple in datelist: date1 = triple[0] date2 = triple[1] format_value = format_conditional_date(self.autoescape_context, date1, date2) # Then self.assertEqual(format_value, "<span class='date'>{date}</span>".format(date=triple[2])) def test_calculate_years_difference(self): with patch('app.setup.get_session_store', return_value=None): # Given ten_years_ago = (datetime.today()+relativedelta(years=-10)).strftime('%Y-%m-%d') date_list = [('2017-01-30', '2018-01-30', '1 year'), ('2015-02-02', '2018-02-01', '2 years'), ('2016-02-29', '2017-02-28', '1 year'), ('2016-02-29', '2020-02-28', '3 years'), (ten_years_ago, 'now', '10 years')] for dates in date_list: start_date = dates[0] end_date = dates[1] # When calculated_value = calculate_years_difference(start_date, end_date) # Then self.assertEqual(calculated_value, dates[2]) def test_calculate_years_difference_none(self): # Given with self.assertRaises(Exception) as e: # When calculate_years_difference(None, '2017-01-17') # Then self.assertEqual('Valid date(s) not passed to calculate_years_difference filter', str(e.exception)) def test_format_date_range(self): # Given start_date = '2017-01-01' end_date = '2017-01-31' # When with self.app_request_context('/'): format_value = format_date_range(self.autoescape_context, start_date, end_date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span> to <span class='date'>31 January 2017</span>") def test_format_date_range_missing_end_date(self): # Given start_date = '2017-01-01' # When with self.app_request_context('/'): format_value = format_date_range(self.autoescape_context, start_date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span>") def test_format_household_member_name(self): # Given name = ['John', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_no_surname(self): # Given name = ['John', ''] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'John') def test_format_household_member_name_surname_is_none(self): # Given name = ['John', None] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'John') def test_format_household_member_name_no_first_name(self): # Given name = ['', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'Doe') def test_format_household_member_name_first_name_is_none(self): # Given name = [None, 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'Doe') def test_format_household_member_name_first_middle_and_last(self): # Given name = ['John', 'J', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_no_middle_name(self): # Given name = ['John', '', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_middle_name_is_none(self): # Given name = ['John', None, 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_trim_spaces(self): # Given name = ['John ', ' Doe '] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_possessive(self): # Given name = ['John', 'Doe'] # When format_value = format_household_member_name_possessive(name) self.assertEqual(format_value, '<NAME>\u2019s') def test_format_household_member_name_possessive_with_no_names(self): # Given name = [Undefined(), Undefined()] # When format_value = format_household_member_name_possessive(name) self.assertIsNone(format_value) def test_format_household_member_name_possessive_trailing_s(self): # Given name = ['John', 'Does'] # When format_value = format_household_member_name_possessive(name) self.assertEqual(format_value, '<NAME>\u2019') def test_concatenated_list(self): # Given list_items = ['1 The ONS', 'Newport', 'NP108XG'] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, '1 The ONS, Newport, NP108XG') def test_concatenated_list_one_entry(self): # Given list_items = ['One entry'] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, 'One entry') def test_concatenated_list_trim_white_spaces_and_trailing_commas(self): # Given list_items = ['', '1 The ONS ', 'Newport ', ' NP108XG', ''] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, '1 The ONS, Newport, NP108XG') def test_format_percentage(self): self.assertEqual(format_percentage('100'), '100%') self.assertEqual(format_percentage(100), '100%') self.assertEqual(format_percentage(4.5), '4.5%') def test_format_number_to_alphabetic_letter(self): self.assertEqual(format_number_to_alphabetic_letter(0), 'a') self.assertEqual(format_number_to_alphabetic_letter(4), 'e') self.assertEqual(format_number_to_alphabetic_letter(25), 'z') self.assertEqual(format_number_to_alphabetic_letter(-1), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_unit(self): self.assertEqual(format_unit('length-meter', 100), '100 m') self.assertEqual(format_unit('length-centimeter', 100), '100 cm') self.assertEqual(format_unit('length-mile', 100), '100 mi') self.assertEqual(format_unit('length-kilometer', 100), '100 km') self.assertEqual(format_unit('area-square-meter', 100), '100 m²') self.assertEqual(format_unit('area-square-centimeter', 100), '100 cm²') self.assertEqual(format_unit('area-square-kilometer', 100), '100 km²') self.assertEqual(format_unit('area-square-mile', 100), '100 sq mi') self.assertEqual(format_unit('area-hectare', 100), '100 ha') self.assertEqual(format_unit('area-acre', 100), '100 ac') self.assertEqual(format_unit('volume-cubic-meter', 100), '100 m³') self.assertEqual(format_unit('volume-cubic-centimeter', 100), '100 cm³') self.assertEqual(format_unit('volume-liter', 100), '100 l') self.assertEqual(format_unit('volume-hectoliter', 100), '100 hl') self.assertEqual(format_unit('volume-megaliter', 100), '100 Ml') self.assertEqual(format_unit('duration-hour', 100), '100 hrs') self.assertEqual(format_unit('duration-hour', 100, 'long'), '100 hours') self.assertEqual(format_unit('duration-year', 100, 'long'), '100 years') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='cy')) def test_format_unit_welsh(self): self.assertEqual(format_unit('duration-hour', 100), '100 awr') self.assertEqual(format_unit('duration-year', 100), '100 bl') self.assertEqual(format_unit('duration-hour', 100, 'long'), '100 awr') self.assertEqual(format_unit('duration-year', 100, 'long'), '100 mlynedd') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_unit_input_label(self): self.assertEqual(format_unit_input_label('length-meter'), 'm') self.assertEqual(format_unit_input_label('length-centimeter'), 'cm') self.assertEqual(format_unit_input_label('length-mile'), 'mi') self.assertEqual(format_unit_input_label('length-kilometer'), 'km') self.assertEqual(format_unit_input_label('area-square-meter'), 'm²') self.assertEqual(format_unit_input_label('area-square-centimeter'), 'cm²') self.assertEqual(format_unit_input_label('area-square-kilometer'), 'km²') self.assertEqual(format_unit_input_label('area-square-mile'), 'sq mi') self.assertEqual(format_unit_input_label('area-hectare'), 'ha') self.assertEqual(format_unit_input_label('area-acre'), 'ac') self.assertEqual(format_unit_input_label('volume-cubic-meter'), 'm³') self.assertEqual(format_unit_input_label('volume-cubic-centimeter'), 'cm³') self.assertEqual(format_unit_input_label('volume-liter'), 'l') self.assertEqual(format_unit_input_label('volume-hectoliter'), 'hl') self.assertEqual(format_unit_input_label('volume-megaliter'), 'Ml') self.assertEqual(format_unit_input_label('duration-hour'), 'hr') self.assertEqual(format_unit_input_label('duration-hour', 'long'), 'hours') self.assertEqual(format_unit_input_label('duration-year'), 'yr') self.assertEqual(format_unit_input_label('duration-year', 'long'), 'years') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='cy')) def test_format_unit_input_label_welsh(self): self.assertEqual(format_unit_input_label('duration-hour'), 'awr') self.assertEqual(format_unit_input_label('duration-hour', 'long'), 'awr') self.assertEqual(format_unit_input_label('duration-year'), 'bl') self.assertEqual(format_unit_input_label('duration-year', 'long'), 'flynedd') def test_format_year_month_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'years': 5, 'months': 4}), '5 years 4 months') self.assertEqual(format_duration({'years': 5, 'months': 0}), '5 years') self.assertEqual(format_duration({'years': 0, 'months': 4}), '4 months') self.assertEqual(format_duration({'years': 1, 'months': 1}), '1 year 1 month') self.assertEqual(format_duration({'years': 0, 'months': 0}), '0 months') def test_format_year_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'years': 5}), '5 years') self.assertEqual(format_duration({'years': 1}), '1 year') self.assertEqual(format_duration({'years': 0}), '0 years') def test_format_month_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'months': 5}), '5 months') self.assertEqual(format_duration({'months': 1}), '1 month') self.assertEqual(format_duration({'months': 0}), '0 months') def test_format_unordered_list(self): list_items = [['item 1', 'item 2']] formatted_value = format_unordered_list(self.autoescape_context, list_items) expected_value = '<ul><li>item 1</li><li>item 2</li></ul>' self.assertEqual(expected_value, formatted_value) def test_format_unordered_list_with_no_input(self): list_items = [] formatted_value = format_unordered_list(self.autoescape_context, list_items) self.assertEqual('', formatted_value) def test_format_unordered_list_with_empty_list(self): list_items = [[]] formatted_value = format_unordered_list(self.autoescape_context, list_items) self.assertEqual('', formatted_value) def test_max_value(self): # Given two_ints = (1, 2) # When max_of_two = max_value(*two_ints) # Then self.assertEqual(max_of_two, 2) def test_max_value_none(self): # Given one_int = (1, None) # When max_of_two = max_value(*one_int) # Then self.assertEqual(max_of_two, 1) def test_max_value_undefined(self): # Given args = ('foo', Undefined()) # When with self.assertRaises(Exception) as exception: max_value(*args) # Then self.assertIn( "Cannot determine maximum of incompatible types max(<class 'str'>," " <class 'jinja2.runtime.Undefined'>)", str(exception.exception)) def test_max_values_incompatible(self): # Given args = (1, 'abc') # When with self.assertRaises(Exception) as exception: max_value(*args) # Then self.assertIn( "Cannot determine maximum of incompatible types max(<class 'int'>," " <class 'str'>)", str(exception.exception)) def test_max_values_compatible(self): # Given args = (-1, True) # When max_of_two = max_value(*args) # Then self.assertEqual(max_of_two, True) def test_max_value_str(self): # Given two_str = ('a', 'abc') # When max_of_two = max_value(*two_str) # Then self.assertEqual(max_of_two, 'abc') def test_max_value_date(self): # Given now = datetime.utcnow() then = now - timedelta(seconds=60) two_dates = (then, now) # When max_of_two = max_value(*two_dates) # Then self.assertEqual(max_of_two, now) def test_min_value(self): # Given two_ints = (1, 2) # When min_of_two = min_value(*two_ints) # Then self.assertEqual(min_of_two, 1) def test_min_value_none(self): # Given one_int = (1, None) # When min_of_two = min_value(*one_int) # Then self.assertEqual(min_of_two, 1) def test_min_value_undefined(self): # Given args = ('foo', Undefined()) # When with self.assertRaises(Exception) as exception: min_value(*args) # Then self.assertIn( "Cannot determine minimum of incompatible types min(<class 'str'>," " <class 'jinja2.runtime.Undefined'>)", str(exception.exception)) def test_min_values_incompatible(self): # Given args = (1, 'abc') # When with self.assertRaises(Exception) as exception: min_value(*args) # Then self.assertIn( "Cannot determine minimum of incompatible types min(<class 'int'>," " <class 'str'>)", str(exception.exception)) def test_min_values_compatible(self): # Given args = (-1, True) # When min_of_two = min_value(*args) # Then self.assertEqual(min_of_two, -1) def test_min_value_str(self): # Given two_str = ('a', 'abc') # When min_of_two = min_value(*two_str) # Then self.assertEqual(min_of_two, 'a') def test_min_value_date(self): # Given now = datetime.utcnow() then = now - timedelta(seconds=60) two_dates = (then, now) # When min_of_two = min_value(*two_dates) # Then self.assertEqual(min_of_two, then) def test_get_question_title_with_title_value(self): # Given question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'title': 'question_title' } } ) # When title = get_question_title(context, question_id) # Then self.assertEqual(title, 'question_title') def test_get_question_title_with_question_titles(self): # Given question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question' }, 'content': { 'question_titles': { 'question': 'default_question_title' } } } ) # When title = get_question_title(context, question_id) # Then self.assertEqual(title, 'default_question_title') def test_get_answer_label_with_answer_label(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'answers': [{ 'id': 'answer', 'label': 'answer_label' }] } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'answer_label') def test_get_answer_label_with_no_answer_label_and_title(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'title': 'question_title', 'answers': [{ 'id': 'answer' }] } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'question_title') def test_get_answer_label_with_no_answer_label_and_question_titles(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'answers': [{ 'id': 'answer' }] }, 'content': { 'question_titles': { 'question': 'default_question_title' } } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'default_question_title') def test_offset_date_from_day(self): test_cases = [ # (Input Date, offset, day of week, expected output) ('2018-08-10', {}, 'SU', '2018-08-05'), # Friday outputs previous Sunday ('2018-08-05', {}, 'SU', '2018-07-29'), # Sunday outputs previous Sunday (Must be a full Sunday) ('2018-08-06', {}, 'SU', '2018-08-05'), # Monday outputs previous Sunday ('2018-08-06', {'days': -1}, 'SU', '2018-08-04'), # Previous sunday with -1 day offset ('2018-08-05', {'weeks': 1}, 'SU', '2018-08-05'), # Previous sunday with +1 month offset, back to input ('2018-08-10', {}, 'FR', '2018-08-03'), # Friday outputs previous Friday ('2018-08-10T13:32:20.365665', {}, 'FR', '2018-08-03'), # Ensure we can handle datetime input ('2018-08-10', {'weeks': 4}, 'FR', '2018-08-31'), # Friday outputs previous Friday + 4 weeks ('2018-08-10', {'bad_period': 4}, 'FR', '2018-08-03'), # Friday outputs previous Friday + nothing ('2018-08-10', {'years': 1}, 'FR', '2019-08-03'), # Friday outputs previous Friday + 1 year ('2018-08-10', {'years': 1, 'weeks': 1, 'days': 1}, 'FR', '2019-08-11'), # Friday outputs previous Friday + 1 year + 1 week + 1 day ] for case in test_cases: self.assertEqual(calculate_offset_from_weekday_in_last_whole_week(*case[0:3]), case[3]) def test_bad_day_of_week_offset_date_from_day(self): with self.assertRaises(Exception): calculate_offset_from_weekday_in_last_whole_week('2018-08-10', {}, 'BA') def test_offset_date_defaults_to_now_if_date_not_passed(self): with patch('app.jinja_filters.datetime') as mock_datetime: # pylint: disable=unnecessary-lambda mock_datetime.utcnow.return_value = datetime(2018, 8, 10) mock_datetime.strftime.side_effect = lambda *args, **kw: datetime.strftime(*args, **kw) result = calculate_offset_from_weekday_in_last_whole_week(None, {}, 'SU') self.assertEqual(result, '2018-08-05') def test_format_date_custom(self): test_cases = [ # Input Date, date format, show year ('2018-08-14', 'EEEE d MMMM YYYY', 'Tuesday 14 August 2018'), ('2018-08-14', 'EEEE d MMMM', 'Tuesday 14 August'), ('2018-08-14', 'EEEE d', 'Tuesday 14'), ('2018-08-14', 'd MMMM YYYY', '14 August 2018'), ] with self.app_request_context('/'): for case in test_cases: self.assertEqual( format_date_custom(self.autoescape_context, *case[0:2]), "<span class='date'>{}</span>".format(case[2]) ) def test_format_date_range_no_repeated_month_year(self): test_cases = [ # Start Date, End Date, Date Format, Output Expected First, Output Expected Second ('2018-08-14', '2018-08-16', 'EEEE d MMMM YYYY', 'Tuesday 14', 'Thursday 16 August 2018'), ('2018-07-31', '2018-08-16', 'EEEE d MMMM YYYY', 'Tuesday 31 July', 'Thursday 16 August 2018'), ('2017-12-31', '2018-08-16', 'EEEE d MMMM YYYY', 'Sunday 31 December 2017', 'Thursday 16 August 2018'), ('2017-12-31', '2018-08-16', 'MMMM YYYY', 'December 2017', 'August 2018'), ('2018-08-14', '2018-08-16', 'MMMM YYYY', 'August 2018', 'August 2018'), ('2017-12-31', '2018-08-16', 'YYYY', '2017', '2018'), ('2017-07-31', '2018-08-16', 'YYYY', '2017', '2018'), ('2018-08-14', '2018-08-16', 'EEEE d', 'Tuesday 14', 'Thursday 16') ] with self.app_request_context('/'): for case in test_cases: self.assertEqual( format_date_range_no_repeated_month_year(self.autoescape_context, *case[0:3]), "<span class='date'>{}</span> to <span class='date'>{}</span>".format(case[3], case[4]) ) @patch('app.jinja_filters.format_unordered_list') def test_format_repeated_summaries_unformatted(self, patched_format): # pylint: disable=no-self-use test_cases = [ # (input list, expected output) ([['John', 'Smith'], [['Jane', 'Sarah'], ['Smith', 'Smythe']]], ['<NAME>', '<NAME>', '<NAME>']), ([['John', 'Smith']], ['<NAME>']), ([['John', 'Smith'], ['Andy', 'Smith'], ['David', 'Smith']], ['<NAME>', '<NAME>', '<NAME>']), ([[['Jane', 'Sarah'], ['Smith', 'Smith']]], ['<NAME>', '<NAME>']), ([[['David', 'Sarah'], ['Smith', 'Smith']]], ['<NAME>', '<NAME>']), ([[['David', 'Sarah'], ['', 'Smith']]], ['David', '<NAME>']), ([['John', 'Smith'], [[], []]], ['<NAME>']) ] for case in test_cases: format_repeating_summary(None, case[0]) # Format unordered list takes a list of lists patched_format.assert_called_with(None, [[Markup(x) for x in case[1]]]) def test_format_repeated_summaries_no_input(self): self.assertEqual('', format_repeating_summary(None, [])) def test_format_repeated_summaries_delimiters(self): self.autoescape_context = Mock(autoescape=True) output = format_repeating_summary(self.autoescape_context, [['', '51 Testing Gardens', '', 'Bristol', 'BS9 1AW']], delimiter=', ') self.assertEqual(output, '<ul><li>51 Testing Gardens, Bristol, BS9 1AW</li></ul>') def test_format_address_list_undefined_values(self): user_entered_address = [Undefined(), Undefined(), Undefined(), Undefined(), Undefined()] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('123<br />Testy<br />Place<br />Newport<br />NP5 7AR', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_missing_values(self): user_entered_address = ['44', 'Testing', '', 'Swansea', ''] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('44<br />Testing<br />Swansea', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_None_value(self): user_entered_address = [None, None, None, None, None] metadata_address = [None, None, None, None, None] with self.assertRaises(Exception): format_address_list(user_entered_address, metadata_address) def test_format_address_list_no_values_in_answer(self): user_entered_address = ['', '', '', '', ''] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('123<br />Testy<br />Place<br />Newport<br />NP5 7AR', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_no_metadata(self): user_entered_address = ['44', 'Testing', 'Gardens', 'Swansea', 'SA1 1AA'] metadata_address = [] self.assertEqual('44<br />Testing<br />Gardens<br />Swansea<br />SA1 1AA', format_address_list(user_entered_address, metadata_address)) def test_format_address_list(self): user_entered_address = ['44', 'Testing', 'Gardens', 'Swansea', 'SA1 1AA'] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('44<br />Testing<br />Gardens<br />Swansea<br />SA1 1AA', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_concatenated_list_no_values(self): answer_address = ['', '', ''] metadata_address = ['', '', ''] with self.assertRaises(Exception) as error: format_address_list(answer_address, metadata_address) self.assertEqual('No valid address passed to format_address_list filter', error.exception.args[0])
# coding: utf-8 from types import SimpleNamespace from datetime import datetime, timedelta from unittest.mock import patch from dateutil.relativedelta import relativedelta from jinja2 import Undefined, Markup from mock import Mock from app.jinja_filters import ( format_date, format_conditional_date, format_currency, get_currency_symbol, format_multilined_string, format_percentage, format_date_range, format_household_member_name, format_datetime, format_number_to_alphabetic_letter, format_unit, format_currency_for_input, format_number, format_unordered_list, format_unit_input_label, format_household_member_name_possessive, concatenated_list, calculate_years_difference, get_current_date, as_london_tz, max_value, min_value, get_question_title, get_answer_label, format_duration, calculate_offset_from_weekday_in_last_whole_week, format_date_custom, format_date_range_no_repeated_month_year, format_repeating_summary, format_address_list) from tests.app.app_context_test_case import AppContextTestCase class TestJinjaFilters(AppContextTestCase): # pylint: disable=too-many-public-methods def setUp(self): self.autoescape_context = Mock(autoescape=True) super(TestJinjaFilters, self).setUp() @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_currency_for_input(self): self.assertEqual(format_currency_for_input('100', 2), '100.00') self.assertEqual(format_currency_for_input('100.0', 2), '100.00') self.assertEqual(format_currency_for_input('100.00', 2), '100.00') self.assertEqual(format_currency_for_input('1000'), '1,000') self.assertEqual(format_currency_for_input('10000'), '10,000') self.assertEqual(format_currency_for_input('100000000'), '100,000,000') self.assertEqual(format_currency_for_input('100000000', 2), '100,000,000.00') self.assertEqual(format_currency_for_input(0, 2), '0.00') self.assertEqual(format_currency_for_input(0), '0') self.assertEqual(format_currency_for_input(''), '') self.assertEqual(format_currency_for_input(None), '') self.assertEqual(format_currency_for_input(Undefined()), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_get_currency_symbol(self): self.assertEqual(get_currency_symbol('GBP'), '£') self.assertEqual(get_currency_symbol('EUR'), '€') self.assertEqual(get_currency_symbol('USD'), 'US$') self.assertEqual(get_currency_symbol('JPY'), 'JP¥') self.assertEqual(get_currency_symbol(''), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_currency(self): self.assertEqual(format_currency(self.autoescape_context, '11', 'GBP'), "<span class='date'>£11.00</span>") self.assertEqual(format_currency(self.autoescape_context, '11.99', 'GBP'), "<span class='date'>£11.99</span>") self.assertEqual(format_currency(self.autoescape_context, '11000', 'USD'), "<span class='date'>US$11,000.00</span>") self.assertEqual(format_currency(self.autoescape_context, 0), "<span class='date'>£0.00</span>") self.assertEqual(format_currency(self.autoescape_context, 0.00), "<span class='date'>£0.00</span>") self.assertEqual(format_currency(self.autoescape_context, '', ), "<span class='date'></span>") self.assertEqual(format_currency(self.autoescape_context, None), "<span class='date'></span>") self.assertEqual(format_currency(self.autoescape_context, Undefined()), "<span class='date'></span>") @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_number(self): self.assertEqual(format_number(123), '123') self.assertEqual(format_number('123.4'), '123.4') self.assertEqual(format_number('123.40'), '123.4') self.assertEqual(format_number('1000'), '1,000') self.assertEqual(format_number('10000'), '10,000') self.assertEqual(format_number('100000000'), '100,000,000') self.assertEqual(format_number(0), '0') self.assertEqual(format_number(0.00), '0') self.assertEqual(format_number(''), '') self.assertEqual(format_number(None), '') self.assertEqual(format_number(Undefined()), '') def test_format_multilined_string_matches_carriage_return(self): # Given new_line = 'this is on a new\rline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string_matches_new_line(self): # Given new_line = 'this is on a new\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string_matches_carriage_return_new_line(self): # Given new_line = 'this is on a new\r\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is on a new<br>line') def test_format_multilined_string(self): # Given new_line = 'this is\ron a\nnew\r\nline' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(format_value, 'this is<br>on a<br>new<br>line') def test_format_multilined_string_auto_escape(self): # Given new_line = '<' # When format_value = format_multilined_string(self.autoescape_context, new_line) self.assertEqual(str(format_value), '&lt;') def test_get_current_date(self): # Given date_format = '%-d %B %Y' # When format_value = get_current_date(self.autoescape_context) current_date = as_london_tz(datetime.utcnow()).strftime(date_format) # Then self.assertEqual(format_value, "<span class='date'>{date}</span>".format(date=current_date)) def test_format_date(self): # Given date = '2017-01-01' # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span>") def test_format_date_month_year(self): # Given date = '2017-01' # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>January 2017</span>") def test_format_date_markup(self): # Given date = [Markup('2017-01')] # When with self.app_request_context('/'): format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, "<span class='date'>January 2017</span>") def test_format_date_non_string(self): # Given date = 123 # When format_value = format_date(self.autoescape_context, date) # Then self.assertEqual(format_value, 123) def test_format_date_none(self): # Given date = None # When format_value = format_date(self.autoescape_context, date) # Then self.assertIsNone(format_value) def test_format_date_time_in_bst(self): # Given date_time = '2018-03-29T11:59:13.528680' # When with self.app_request_context('/'): format_value = format_datetime(self.autoescape_context, date_time) # Then self.assertEqual(format_value, "<span class='date'>29 March 2018 at 12:59</span>") def test_format_date_time_in_gmt(self): # Given date_time = '2018-10-28T11:59:13.528680' # When with self.app_request_context('/'): format_value = format_datetime(self.autoescape_context, date_time) # Then self.assertEqual(format_value, "<span class='date'>28 October 2018 at 11:59</span>") def test_format_conditional_date_not_date(self): # Given no test for integers this check was removed from jinja_filters invalid_input = [('1', None), ('1-1-1', None)] # When for nonsense in invalid_input: date1 = nonsense[0] date2 = nonsense[1] with self.assertRaises(Exception) as exception: format_conditional_date(self.autoescape_context, date1, date2) # Then self.assertIn("does not match format '%Y-%m'", str(exception.exception)) def test_format_conditional_date_not_set(self): # Given # When with self.assertRaises(Exception) as exception: format_conditional_date(self.autoescape_context, None, None) # Then self.assertIn('No valid dates passed to format_conditional_dates filter', str(exception.exception)) def test_format_conditional_date(self): # Given datelist = [('2016-01-12', '2016-02-12', '12 January 2016'), ('2017-12-23', None, '23 December 2017'), (None, '2017-12-24', '24 December 2017')] # When with self.app_request_context('/'): for triple in datelist: date1 = triple[0] date2 = triple[1] format_value = format_conditional_date(self.autoescape_context, date1, date2) # Then self.assertEqual(format_value, "<span class='date'>{date}</span>".format(date=triple[2])) def test_calculate_years_difference(self): with patch('app.setup.get_session_store', return_value=None): # Given ten_years_ago = (datetime.today()+relativedelta(years=-10)).strftime('%Y-%m-%d') date_list = [('2017-01-30', '2018-01-30', '1 year'), ('2015-02-02', '2018-02-01', '2 years'), ('2016-02-29', '2017-02-28', '1 year'), ('2016-02-29', '2020-02-28', '3 years'), (ten_years_ago, 'now', '10 years')] for dates in date_list: start_date = dates[0] end_date = dates[1] # When calculated_value = calculate_years_difference(start_date, end_date) # Then self.assertEqual(calculated_value, dates[2]) def test_calculate_years_difference_none(self): # Given with self.assertRaises(Exception) as e: # When calculate_years_difference(None, '2017-01-17') # Then self.assertEqual('Valid date(s) not passed to calculate_years_difference filter', str(e.exception)) def test_format_date_range(self): # Given start_date = '2017-01-01' end_date = '2017-01-31' # When with self.app_request_context('/'): format_value = format_date_range(self.autoescape_context, start_date, end_date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span> to <span class='date'>31 January 2017</span>") def test_format_date_range_missing_end_date(self): # Given start_date = '2017-01-01' # When with self.app_request_context('/'): format_value = format_date_range(self.autoescape_context, start_date) # Then self.assertEqual(format_value, "<span class='date'>1 January 2017</span>") def test_format_household_member_name(self): # Given name = ['John', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_no_surname(self): # Given name = ['John', ''] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'John') def test_format_household_member_name_surname_is_none(self): # Given name = ['John', None] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'John') def test_format_household_member_name_no_first_name(self): # Given name = ['', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'Doe') def test_format_household_member_name_first_name_is_none(self): # Given name = [None, 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, 'Doe') def test_format_household_member_name_first_middle_and_last(self): # Given name = ['John', 'J', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_no_middle_name(self): # Given name = ['John', '', 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_middle_name_is_none(self): # Given name = ['John', None, 'Doe'] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_trim_spaces(self): # Given name = ['John ', ' Doe '] # When format_value = format_household_member_name(name) self.assertEqual(format_value, '<NAME>') def test_format_household_member_name_possessive(self): # Given name = ['John', 'Doe'] # When format_value = format_household_member_name_possessive(name) self.assertEqual(format_value, '<NAME>\u2019s') def test_format_household_member_name_possessive_with_no_names(self): # Given name = [Undefined(), Undefined()] # When format_value = format_household_member_name_possessive(name) self.assertIsNone(format_value) def test_format_household_member_name_possessive_trailing_s(self): # Given name = ['John', 'Does'] # When format_value = format_household_member_name_possessive(name) self.assertEqual(format_value, '<NAME>\u2019') def test_concatenated_list(self): # Given list_items = ['1 The ONS', 'Newport', 'NP108XG'] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, '1 The ONS, Newport, NP108XG') def test_concatenated_list_one_entry(self): # Given list_items = ['One entry'] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, 'One entry') def test_concatenated_list_trim_white_spaces_and_trailing_commas(self): # Given list_items = ['', '1 The ONS ', 'Newport ', ' NP108XG', ''] # When format_value = concatenated_list(list_items) self.assertEqual(format_value, '1 The ONS, Newport, NP108XG') def test_format_percentage(self): self.assertEqual(format_percentage('100'), '100%') self.assertEqual(format_percentage(100), '100%') self.assertEqual(format_percentage(4.5), '4.5%') def test_format_number_to_alphabetic_letter(self): self.assertEqual(format_number_to_alphabetic_letter(0), 'a') self.assertEqual(format_number_to_alphabetic_letter(4), 'e') self.assertEqual(format_number_to_alphabetic_letter(25), 'z') self.assertEqual(format_number_to_alphabetic_letter(-1), '') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_unit(self): self.assertEqual(format_unit('length-meter', 100), '100 m') self.assertEqual(format_unit('length-centimeter', 100), '100 cm') self.assertEqual(format_unit('length-mile', 100), '100 mi') self.assertEqual(format_unit('length-kilometer', 100), '100 km') self.assertEqual(format_unit('area-square-meter', 100), '100 m²') self.assertEqual(format_unit('area-square-centimeter', 100), '100 cm²') self.assertEqual(format_unit('area-square-kilometer', 100), '100 km²') self.assertEqual(format_unit('area-square-mile', 100), '100 sq mi') self.assertEqual(format_unit('area-hectare', 100), '100 ha') self.assertEqual(format_unit('area-acre', 100), '100 ac') self.assertEqual(format_unit('volume-cubic-meter', 100), '100 m³') self.assertEqual(format_unit('volume-cubic-centimeter', 100), '100 cm³') self.assertEqual(format_unit('volume-liter', 100), '100 l') self.assertEqual(format_unit('volume-hectoliter', 100), '100 hl') self.assertEqual(format_unit('volume-megaliter', 100), '100 Ml') self.assertEqual(format_unit('duration-hour', 100), '100 hrs') self.assertEqual(format_unit('duration-hour', 100, 'long'), '100 hours') self.assertEqual(format_unit('duration-year', 100, 'long'), '100 years') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='cy')) def test_format_unit_welsh(self): self.assertEqual(format_unit('duration-hour', 100), '100 awr') self.assertEqual(format_unit('duration-year', 100), '100 bl') self.assertEqual(format_unit('duration-hour', 100, 'long'), '100 awr') self.assertEqual(format_unit('duration-year', 100, 'long'), '100 mlynedd') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='en_GB')) def test_format_unit_input_label(self): self.assertEqual(format_unit_input_label('length-meter'), 'm') self.assertEqual(format_unit_input_label('length-centimeter'), 'cm') self.assertEqual(format_unit_input_label('length-mile'), 'mi') self.assertEqual(format_unit_input_label('length-kilometer'), 'km') self.assertEqual(format_unit_input_label('area-square-meter'), 'm²') self.assertEqual(format_unit_input_label('area-square-centimeter'), 'cm²') self.assertEqual(format_unit_input_label('area-square-kilometer'), 'km²') self.assertEqual(format_unit_input_label('area-square-mile'), 'sq mi') self.assertEqual(format_unit_input_label('area-hectare'), 'ha') self.assertEqual(format_unit_input_label('area-acre'), 'ac') self.assertEqual(format_unit_input_label('volume-cubic-meter'), 'm³') self.assertEqual(format_unit_input_label('volume-cubic-centimeter'), 'cm³') self.assertEqual(format_unit_input_label('volume-liter'), 'l') self.assertEqual(format_unit_input_label('volume-hectoliter'), 'hl') self.assertEqual(format_unit_input_label('volume-megaliter'), 'Ml') self.assertEqual(format_unit_input_label('duration-hour'), 'hr') self.assertEqual(format_unit_input_label('duration-hour', 'long'), 'hours') self.assertEqual(format_unit_input_label('duration-year'), 'yr') self.assertEqual(format_unit_input_label('duration-year', 'long'), 'years') @patch('app.jinja_filters.flask_babel.get_locale', Mock(return_value='cy')) def test_format_unit_input_label_welsh(self): self.assertEqual(format_unit_input_label('duration-hour'), 'awr') self.assertEqual(format_unit_input_label('duration-hour', 'long'), 'awr') self.assertEqual(format_unit_input_label('duration-year'), 'bl') self.assertEqual(format_unit_input_label('duration-year', 'long'), 'flynedd') def test_format_year_month_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'years': 5, 'months': 4}), '5 years 4 months') self.assertEqual(format_duration({'years': 5, 'months': 0}), '5 years') self.assertEqual(format_duration({'years': 0, 'months': 4}), '4 months') self.assertEqual(format_duration({'years': 1, 'months': 1}), '1 year 1 month') self.assertEqual(format_duration({'years': 0, 'months': 0}), '0 months') def test_format_year_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'years': 5}), '5 years') self.assertEqual(format_duration({'years': 1}), '1 year') self.assertEqual(format_duration({'years': 0}), '0 years') def test_format_month_duration(self): with self.app_request_context('/'): self.assertEqual(format_duration({'months': 5}), '5 months') self.assertEqual(format_duration({'months': 1}), '1 month') self.assertEqual(format_duration({'months': 0}), '0 months') def test_format_unordered_list(self): list_items = [['item 1', 'item 2']] formatted_value = format_unordered_list(self.autoescape_context, list_items) expected_value = '<ul><li>item 1</li><li>item 2</li></ul>' self.assertEqual(expected_value, formatted_value) def test_format_unordered_list_with_no_input(self): list_items = [] formatted_value = format_unordered_list(self.autoescape_context, list_items) self.assertEqual('', formatted_value) def test_format_unordered_list_with_empty_list(self): list_items = [[]] formatted_value = format_unordered_list(self.autoescape_context, list_items) self.assertEqual('', formatted_value) def test_max_value(self): # Given two_ints = (1, 2) # When max_of_two = max_value(*two_ints) # Then self.assertEqual(max_of_two, 2) def test_max_value_none(self): # Given one_int = (1, None) # When max_of_two = max_value(*one_int) # Then self.assertEqual(max_of_two, 1) def test_max_value_undefined(self): # Given args = ('foo', Undefined()) # When with self.assertRaises(Exception) as exception: max_value(*args) # Then self.assertIn( "Cannot determine maximum of incompatible types max(<class 'str'>," " <class 'jinja2.runtime.Undefined'>)", str(exception.exception)) def test_max_values_incompatible(self): # Given args = (1, 'abc') # When with self.assertRaises(Exception) as exception: max_value(*args) # Then self.assertIn( "Cannot determine maximum of incompatible types max(<class 'int'>," " <class 'str'>)", str(exception.exception)) def test_max_values_compatible(self): # Given args = (-1, True) # When max_of_two = max_value(*args) # Then self.assertEqual(max_of_two, True) def test_max_value_str(self): # Given two_str = ('a', 'abc') # When max_of_two = max_value(*two_str) # Then self.assertEqual(max_of_two, 'abc') def test_max_value_date(self): # Given now = datetime.utcnow() then = now - timedelta(seconds=60) two_dates = (then, now) # When max_of_two = max_value(*two_dates) # Then self.assertEqual(max_of_two, now) def test_min_value(self): # Given two_ints = (1, 2) # When min_of_two = min_value(*two_ints) # Then self.assertEqual(min_of_two, 1) def test_min_value_none(self): # Given one_int = (1, None) # When min_of_two = min_value(*one_int) # Then self.assertEqual(min_of_two, 1) def test_min_value_undefined(self): # Given args = ('foo', Undefined()) # When with self.assertRaises(Exception) as exception: min_value(*args) # Then self.assertIn( "Cannot determine minimum of incompatible types min(<class 'str'>," " <class 'jinja2.runtime.Undefined'>)", str(exception.exception)) def test_min_values_incompatible(self): # Given args = (1, 'abc') # When with self.assertRaises(Exception) as exception: min_value(*args) # Then self.assertIn( "Cannot determine minimum of incompatible types min(<class 'int'>," " <class 'str'>)", str(exception.exception)) def test_min_values_compatible(self): # Given args = (-1, True) # When min_of_two = min_value(*args) # Then self.assertEqual(min_of_two, -1) def test_min_value_str(self): # Given two_str = ('a', 'abc') # When min_of_two = min_value(*two_str) # Then self.assertEqual(min_of_two, 'a') def test_min_value_date(self): # Given now = datetime.utcnow() then = now - timedelta(seconds=60) two_dates = (then, now) # When min_of_two = min_value(*two_dates) # Then self.assertEqual(min_of_two, then) def test_get_question_title_with_title_value(self): # Given question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'title': 'question_title' } } ) # When title = get_question_title(context, question_id) # Then self.assertEqual(title, 'question_title') def test_get_question_title_with_question_titles(self): # Given question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question' }, 'content': { 'question_titles': { 'question': 'default_question_title' } } } ) # When title = get_question_title(context, question_id) # Then self.assertEqual(title, 'default_question_title') def test_get_answer_label_with_answer_label(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'answers': [{ 'id': 'answer', 'label': 'answer_label' }] } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'answer_label') def test_get_answer_label_with_no_answer_label_and_title(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'title': 'question_title', 'answers': [{ 'id': 'answer' }] } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'question_title') def test_get_answer_label_with_no_answer_label_and_question_titles(self): # Given answer_id = 'answer' question_id = 'question' context = SimpleNamespace( parent={ 'question': { 'id': 'question', 'answers': [{ 'id': 'answer' }] }, 'content': { 'question_titles': { 'question': 'default_question_title' } } } ) # When answer_label = get_answer_label(context, answer_id, question_id) # Then self.assertEqual(answer_label, 'default_question_title') def test_offset_date_from_day(self): test_cases = [ # (Input Date, offset, day of week, expected output) ('2018-08-10', {}, 'SU', '2018-08-05'), # Friday outputs previous Sunday ('2018-08-05', {}, 'SU', '2018-07-29'), # Sunday outputs previous Sunday (Must be a full Sunday) ('2018-08-06', {}, 'SU', '2018-08-05'), # Monday outputs previous Sunday ('2018-08-06', {'days': -1}, 'SU', '2018-08-04'), # Previous sunday with -1 day offset ('2018-08-05', {'weeks': 1}, 'SU', '2018-08-05'), # Previous sunday with +1 month offset, back to input ('2018-08-10', {}, 'FR', '2018-08-03'), # Friday outputs previous Friday ('2018-08-10T13:32:20.365665', {}, 'FR', '2018-08-03'), # Ensure we can handle datetime input ('2018-08-10', {'weeks': 4}, 'FR', '2018-08-31'), # Friday outputs previous Friday + 4 weeks ('2018-08-10', {'bad_period': 4}, 'FR', '2018-08-03'), # Friday outputs previous Friday + nothing ('2018-08-10', {'years': 1}, 'FR', '2019-08-03'), # Friday outputs previous Friday + 1 year ('2018-08-10', {'years': 1, 'weeks': 1, 'days': 1}, 'FR', '2019-08-11'), # Friday outputs previous Friday + 1 year + 1 week + 1 day ] for case in test_cases: self.assertEqual(calculate_offset_from_weekday_in_last_whole_week(*case[0:3]), case[3]) def test_bad_day_of_week_offset_date_from_day(self): with self.assertRaises(Exception): calculate_offset_from_weekday_in_last_whole_week('2018-08-10', {}, 'BA') def test_offset_date_defaults_to_now_if_date_not_passed(self): with patch('app.jinja_filters.datetime') as mock_datetime: # pylint: disable=unnecessary-lambda mock_datetime.utcnow.return_value = datetime(2018, 8, 10) mock_datetime.strftime.side_effect = lambda *args, **kw: datetime.strftime(*args, **kw) result = calculate_offset_from_weekday_in_last_whole_week(None, {}, 'SU') self.assertEqual(result, '2018-08-05') def test_format_date_custom(self): test_cases = [ # Input Date, date format, show year ('2018-08-14', 'EEEE d MMMM YYYY', 'Tuesday 14 August 2018'), ('2018-08-14', 'EEEE d MMMM', 'Tuesday 14 August'), ('2018-08-14', 'EEEE d', 'Tuesday 14'), ('2018-08-14', 'd MMMM YYYY', '14 August 2018'), ] with self.app_request_context('/'): for case in test_cases: self.assertEqual( format_date_custom(self.autoescape_context, *case[0:2]), "<span class='date'>{}</span>".format(case[2]) ) def test_format_date_range_no_repeated_month_year(self): test_cases = [ # Start Date, End Date, Date Format, Output Expected First, Output Expected Second ('2018-08-14', '2018-08-16', 'EEEE d MMMM YYYY', 'Tuesday 14', 'Thursday 16 August 2018'), ('2018-07-31', '2018-08-16', 'EEEE d MMMM YYYY', 'Tuesday 31 July', 'Thursday 16 August 2018'), ('2017-12-31', '2018-08-16', 'EEEE d MMMM YYYY', 'Sunday 31 December 2017', 'Thursday 16 August 2018'), ('2017-12-31', '2018-08-16', 'MMMM YYYY', 'December 2017', 'August 2018'), ('2018-08-14', '2018-08-16', 'MMMM YYYY', 'August 2018', 'August 2018'), ('2017-12-31', '2018-08-16', 'YYYY', '2017', '2018'), ('2017-07-31', '2018-08-16', 'YYYY', '2017', '2018'), ('2018-08-14', '2018-08-16', 'EEEE d', 'Tuesday 14', 'Thursday 16') ] with self.app_request_context('/'): for case in test_cases: self.assertEqual( format_date_range_no_repeated_month_year(self.autoescape_context, *case[0:3]), "<span class='date'>{}</span> to <span class='date'>{}</span>".format(case[3], case[4]) ) @patch('app.jinja_filters.format_unordered_list') def test_format_repeated_summaries_unformatted(self, patched_format): # pylint: disable=no-self-use test_cases = [ # (input list, expected output) ([['John', 'Smith'], [['Jane', 'Sarah'], ['Smith', 'Smythe']]], ['<NAME>', '<NAME>', '<NAME>']), ([['John', 'Smith']], ['<NAME>']), ([['John', 'Smith'], ['Andy', 'Smith'], ['David', 'Smith']], ['<NAME>', '<NAME>', '<NAME>']), ([[['Jane', 'Sarah'], ['Smith', 'Smith']]], ['<NAME>', '<NAME>']), ([[['David', 'Sarah'], ['Smith', 'Smith']]], ['<NAME>', '<NAME>']), ([[['David', 'Sarah'], ['', 'Smith']]], ['David', '<NAME>']), ([['John', 'Smith'], [[], []]], ['<NAME>']) ] for case in test_cases: format_repeating_summary(None, case[0]) # Format unordered list takes a list of lists patched_format.assert_called_with(None, [[Markup(x) for x in case[1]]]) def test_format_repeated_summaries_no_input(self): self.assertEqual('', format_repeating_summary(None, [])) def test_format_repeated_summaries_delimiters(self): self.autoescape_context = Mock(autoescape=True) output = format_repeating_summary(self.autoescape_context, [['', '51 Testing Gardens', '', 'Bristol', 'BS9 1AW']], delimiter=', ') self.assertEqual(output, '<ul><li>51 Testing Gardens, Bristol, BS9 1AW</li></ul>') def test_format_address_list_undefined_values(self): user_entered_address = [Undefined(), Undefined(), Undefined(), Undefined(), Undefined()] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('123<br />Testy<br />Place<br />Newport<br />NP5 7AR', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_missing_values(self): user_entered_address = ['44', 'Testing', '', 'Swansea', ''] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('44<br />Testing<br />Swansea', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_None_value(self): user_entered_address = [None, None, None, None, None] metadata_address = [None, None, None, None, None] with self.assertRaises(Exception): format_address_list(user_entered_address, metadata_address) def test_format_address_list_no_values_in_answer(self): user_entered_address = ['', '', '', '', ''] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('123<br />Testy<br />Place<br />Newport<br />NP5 7AR', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_no_metadata(self): user_entered_address = ['44', 'Testing', 'Gardens', 'Swansea', 'SA1 1AA'] metadata_address = [] self.assertEqual('44<br />Testing<br />Gardens<br />Swansea<br />SA1 1AA', format_address_list(user_entered_address, metadata_address)) def test_format_address_list(self): user_entered_address = ['44', 'Testing', 'Gardens', 'Swansea', 'SA1 1AA'] metadata_address = ['123', 'Testy', 'Place', 'Newport', 'NP5 7AR'] self.assertEqual('44<br />Testing<br />Gardens<br />Swansea<br />SA1 1AA', format_address_list(user_entered_address, metadata_address)) def test_format_address_list_concatenated_list_no_values(self): answer_address = ['', '', ''] metadata_address = ['', '', ''] with self.assertRaises(Exception) as error: format_address_list(answer_address, metadata_address) self.assertEqual('No valid address passed to format_address_list filter', error.exception.args[0])
en
0.494334
# coding: utf-8 # pylint: disable=too-many-public-methods # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given no test for integers this check was removed from jinja_filters # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # Given # When # Then # (Input Date, offset, day of week, expected output) # Friday outputs previous Sunday # Sunday outputs previous Sunday (Must be a full Sunday) # Monday outputs previous Sunday # Previous sunday with -1 day offset # Previous sunday with +1 month offset, back to input # Friday outputs previous Friday # Ensure we can handle datetime input # Friday outputs previous Friday + 4 weeks # Friday outputs previous Friday + nothing # Friday outputs previous Friday + 1 year # Friday outputs previous Friday + 1 year + 1 week + 1 day # pylint: disable=unnecessary-lambda # Input Date, date format, show year # Start Date, End Date, Date Format, Output Expected First, Output Expected Second # pylint: disable=no-self-use # (input list, expected output) # Format unordered list takes a list of lists
2.368902
2
levels/sombie.py
superhasduper/PythonGames
1
8037
import arcade import os SPRITE_SCALING = 0.5 SPRITE_NATIVE_SIZE = 128 SPRITE_SIZE = int(SPRITE_NATIVE_SIZE * SPRITE_SCALING) SCREEN_WIDTH = SPRITE_SIZE * 14 SCREEN_HEIGHT = SPRITE_SIZE * 10 MOVEMENT_SPEED = 5 COIN_SCALE = 0.7 class Room: """ This class holds all the information about the different rooms. """ def __init__(self): # You may want many lists. Lists for coins, monsters, etc. self.wall_list = None self.coin_list = None self.door_list = None self.smallpotion_list = None self.bigpotion_list = None # This holds the background images. If you don't want changing # background images, you can delete this part. self.background = None self.score = 0 def setup_room_1(): """ Create and return room 1. If your program gets large, you may want to separate this into different files. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.wall_list = arcade.SpriteList() room.door_list = arcade.SpriteList() room.coin_list = arcade.SpriteList() room.smallpotion_list = arcade.SpriteList() room.bigpotion_list = arcade.SpriteList() for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up on the right side if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x == 0: wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): if not (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x == 0: door = arcade.Sprite("fence.png", SPRITE_SCALING) door.left = x door.bottom = y room.door_list.append(door) wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 5 * SPRITE_SIZE room.wall_list.append(wall) # If you want coins or monsters in a level, then add that code here. # Load the background image for this level. room.background = arcade.load_texture("g.png") for i in range(300,600,75): coin = arcade.Sprite("coin.png",COIN_SCALE) coin.center_x = i coin.center_y = 500 room.coin_list.append(coin) smallpotion = arcade.Sprite("big.png",0.05) smallpotion.center_x = 100 smallpotion.center_y = 900 room.smallpotion_list.append(smallpotion) return room def setup_room_2(): """ Create and return room 2. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.door_list = arcade.SpriteList() room.wall_list = arcade.SpriteList() room.coin_list = arcade.SpriteList() room.smallpotion_list = arcade.SpriteList() room.bigpotion_list = arcade.SpriteList() # -- Set up the walls # Create bottom and top row of boxes # This y loops a list of two, the coordinate 0, and just under the top of window for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x != 0: wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 1 * SPRITE_SIZE wall.bottom = 6 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 1 * SPRITE_SIZE wall.bottom = 3 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 3 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 3 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 5 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 2.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom =3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 0.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 9 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 2.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 9 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 7.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 8 * SPRITE_SIZE room.wall_list.append(wall) room.background = arcade.load_texture("g.png") bigpotion = arcade.Sprite("small.png",0.05) bigpotion.center_x = 800 bigpotion.center_y = 100 room.bigpotion_list.append(bigpotion) return room class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height): """ Initializer """ super().__init__(width, height,"Tocate el pnnywise") # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Sprite lists self.current_room = 0 # Set up the player self.game_over = False self.door_list = None self.rooms = None self.score = 0 self.coin_list = None self.player_sprite = None self.physics_engine = None self.smallpotion_list = None self.bigpotion_list = None def setup(self): """ Set up the game and initialize the variables. """ # Set up the player self.player_sprite = arcade.AnimatedWalkingSprite() self.score = 0 self.coin_list = arcade.SpriteList() self.smallpotion_list = arcade.SpriteList() self.bigpotion_list = arcade.SpriteList() self.player_sprite.center_x = 100 self.player_sprite.center_y = 150 character_scale = 0.75 self.player_sprite.stand_right_textures = [] self.player_sprite.stand_right_textures.append(arcade.load_texture("zombie_stand.png", scale=character_scale)) self.player_sprite.stand_left_textures = [] self.player_sprite.stand_left_textures.append(arcade.load_texture("zombie_stand.png", scale=character_scale, mirrored=True)) self.player_sprite.walk_right_textures = [] self.player_sprite.walk_right_textures.append(arcade.load_texture("zombie_walk1.png", scale=character_scale)) self.player_sprite.walk_right_textures.append(arcade.load_texture("zombie_walk2.png", scale=character_scale)) self.player_sprite.walk_left_textures = [] self.player_sprite.walk_left_textures.append(arcade.load_texture("zombie_walk1.png", scale=character_scale, mirrored=True)) self.player_sprite.walk_left_textures.append(arcade.load_texture("zombie_walk2.png", scale=character_scale, mirrored=True)) # Our list of rooms self.rooms = [] # Create the rooms. Extend the pattern for each room. room = setup_room_1() self.rooms.append(room) room = setup_room_2() self.rooms.append(room) # Our starting room number self.current_room = 0 # Create a physics engine for this room self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].door_list) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw the background texture arcade.draw_texture_rectangle(SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2, SCREEN_WIDTH, SCREEN_HEIGHT, self.rooms[self.current_room].background) # Draw all the walls in this room self.rooms[self.current_room].door_list.draw() self.rooms[self.current_room].wall_list.draw() self.rooms[self.current_room].coin_list.draw() self.rooms[self.current_room].bigpotion_list.draw() self.rooms[self.current_room].smallpotion_list.draw() # If you have coins or monsters, then copy and modify the line # above for each list. output = "Score: {}".format(self.score) arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) self.player_sprite.draw() def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.W: self.player_sprite.change_y = MOVEMENT_SPEED elif key == arcade.key.S: self.player_sprite.change_y = -MOVEMENT_SPEED elif key == arcade.key.A: self.player_sprite.change_x = -MOVEMENT_SPEED elif key == arcade.key.D: self.player_sprite.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.W or key == arcade.key.S: self.player_sprite.change_y = 0 elif key == arcade.key.A or key == arcade.key.D: self.player_sprite.change_x = 0 def update(self, delta_time): """ Movement and game logic """ self.player_sprite.update_animation() # Call update on all sprites (The sprites don't do much in this # example though.) self.physics_engine.update() # Do some logic here to figure out what room we are in, and if we need to go # to a different room. if self.player_sprite.center_x > SCREEN_WIDTH and self.current_room == 0: self.current_room = 1 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = 0 elif self.player_sprite.center_x < 0 and self.current_room == 1: self.current_room = 0 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = SCREEN_WIDTH hit_list = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].coin_list) hit_list2 = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].bigpotion_list) hit_list3 = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].smallpotion_list) for coin in hit_list: coin.kill() self.score += 1 my_sound = arcade.load_sound("coinsound.wav") arcade.play_sound(my_sound) if self.score == 4: for i in self.rooms[self.current_room].door_list: i.kill() your_sound = arcade.load_sound("door.wav") arcade.play_sound(your_sound) for smallpotion in hit_list3: smallpotion.kill() self.player_sprite.scale=0.5 tu_sound = arcade.load_sound("shrink.wav") arcade.play_sound(tu_sound) for bigpotion in hit_list2: bigpotion.kill() self.player_sprite.scale=1 yo_sound = arcade.load_sound("grow.wav") arcade.play_sound(yo_sound) def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT) window.setup() arcade.run() if __name__ == "__main__": main()
import arcade import os SPRITE_SCALING = 0.5 SPRITE_NATIVE_SIZE = 128 SPRITE_SIZE = int(SPRITE_NATIVE_SIZE * SPRITE_SCALING) SCREEN_WIDTH = SPRITE_SIZE * 14 SCREEN_HEIGHT = SPRITE_SIZE * 10 MOVEMENT_SPEED = 5 COIN_SCALE = 0.7 class Room: """ This class holds all the information about the different rooms. """ def __init__(self): # You may want many lists. Lists for coins, monsters, etc. self.wall_list = None self.coin_list = None self.door_list = None self.smallpotion_list = None self.bigpotion_list = None # This holds the background images. If you don't want changing # background images, you can delete this part. self.background = None self.score = 0 def setup_room_1(): """ Create and return room 1. If your program gets large, you may want to separate this into different files. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.wall_list = arcade.SpriteList() room.door_list = arcade.SpriteList() room.coin_list = arcade.SpriteList() room.smallpotion_list = arcade.SpriteList() room.bigpotion_list = arcade.SpriteList() for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up on the right side if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x == 0: wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): if not (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x == 0: door = arcade.Sprite("fence.png", SPRITE_SCALING) door.left = x door.bottom = y room.door_list.append(door) wall = arcade.Sprite("gravel_dirt.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 5 * SPRITE_SIZE room.wall_list.append(wall) # If you want coins or monsters in a level, then add that code here. # Load the background image for this level. room.background = arcade.load_texture("g.png") for i in range(300,600,75): coin = arcade.Sprite("coin.png",COIN_SCALE) coin.center_x = i coin.center_y = 500 room.coin_list.append(coin) smallpotion = arcade.Sprite("big.png",0.05) smallpotion.center_x = 100 smallpotion.center_y = 900 room.smallpotion_list.append(smallpotion) return room def setup_room_2(): """ Create and return room 2. """ room = Room() """ Set up the game and initialize the variables. """ # Sprite lists room.door_list = arcade.SpriteList() room.wall_list = arcade.SpriteList() room.coin_list = arcade.SpriteList() room.smallpotion_list = arcade.SpriteList() room.bigpotion_list = arcade.SpriteList() # -- Set up the walls # Create bottom and top row of boxes # This y loops a list of two, the coordinate 0, and just under the top of window for y in (0, SCREEN_HEIGHT - SPRITE_SIZE): # Loop for each box going across for x in range(0, SCREEN_WIDTH, SPRITE_SIZE): wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) # Create left and right column of boxes for x in (0, SCREEN_WIDTH - SPRITE_SIZE): # Loop for each box going across for y in range(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE, SPRITE_SIZE): # Skip making a block 4 and 5 blocks up if (y != SPRITE_SIZE * 4 and y != SPRITE_SIZE * 5) or x != 0: wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = x wall.bottom = y room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 1 * SPRITE_SIZE wall.bottom = 6 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 1 * SPRITE_SIZE wall.bottom = 3 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 3 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 2 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 3 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 5 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 4 * SPRITE_SIZE wall.bottom = 2.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom =3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 0.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 6 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 7 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 9 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 1.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 2.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 3.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 4.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 5.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 10 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 9 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 6.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 7.5 * SPRITE_SIZE room.wall_list.append(wall) wall = arcade.Sprite("stone_snow.png", SPRITE_SCALING) wall.left = 8 * SPRITE_SIZE wall.bottom = 8 * SPRITE_SIZE room.wall_list.append(wall) room.background = arcade.load_texture("g.png") bigpotion = arcade.Sprite("small.png",0.05) bigpotion.center_x = 800 bigpotion.center_y = 100 room.bigpotion_list.append(bigpotion) return room class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height): """ Initializer """ super().__init__(width, height,"Tocate el pnnywise") # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Sprite lists self.current_room = 0 # Set up the player self.game_over = False self.door_list = None self.rooms = None self.score = 0 self.coin_list = None self.player_sprite = None self.physics_engine = None self.smallpotion_list = None self.bigpotion_list = None def setup(self): """ Set up the game and initialize the variables. """ # Set up the player self.player_sprite = arcade.AnimatedWalkingSprite() self.score = 0 self.coin_list = arcade.SpriteList() self.smallpotion_list = arcade.SpriteList() self.bigpotion_list = arcade.SpriteList() self.player_sprite.center_x = 100 self.player_sprite.center_y = 150 character_scale = 0.75 self.player_sprite.stand_right_textures = [] self.player_sprite.stand_right_textures.append(arcade.load_texture("zombie_stand.png", scale=character_scale)) self.player_sprite.stand_left_textures = [] self.player_sprite.stand_left_textures.append(arcade.load_texture("zombie_stand.png", scale=character_scale, mirrored=True)) self.player_sprite.walk_right_textures = [] self.player_sprite.walk_right_textures.append(arcade.load_texture("zombie_walk1.png", scale=character_scale)) self.player_sprite.walk_right_textures.append(arcade.load_texture("zombie_walk2.png", scale=character_scale)) self.player_sprite.walk_left_textures = [] self.player_sprite.walk_left_textures.append(arcade.load_texture("zombie_walk1.png", scale=character_scale, mirrored=True)) self.player_sprite.walk_left_textures.append(arcade.load_texture("zombie_walk2.png", scale=character_scale, mirrored=True)) # Our list of rooms self.rooms = [] # Create the rooms. Extend the pattern for each room. room = setup_room_1() self.rooms.append(room) room = setup_room_2() self.rooms.append(room) # Our starting room number self.current_room = 0 # Create a physics engine for this room self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].door_list) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw the background texture arcade.draw_texture_rectangle(SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2, SCREEN_WIDTH, SCREEN_HEIGHT, self.rooms[self.current_room].background) # Draw all the walls in this room self.rooms[self.current_room].door_list.draw() self.rooms[self.current_room].wall_list.draw() self.rooms[self.current_room].coin_list.draw() self.rooms[self.current_room].bigpotion_list.draw() self.rooms[self.current_room].smallpotion_list.draw() # If you have coins or monsters, then copy and modify the line # above for each list. output = "Score: {}".format(self.score) arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) self.player_sprite.draw() def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.W: self.player_sprite.change_y = MOVEMENT_SPEED elif key == arcade.key.S: self.player_sprite.change_y = -MOVEMENT_SPEED elif key == arcade.key.A: self.player_sprite.change_x = -MOVEMENT_SPEED elif key == arcade.key.D: self.player_sprite.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.W or key == arcade.key.S: self.player_sprite.change_y = 0 elif key == arcade.key.A or key == arcade.key.D: self.player_sprite.change_x = 0 def update(self, delta_time): """ Movement and game logic """ self.player_sprite.update_animation() # Call update on all sprites (The sprites don't do much in this # example though.) self.physics_engine.update() # Do some logic here to figure out what room we are in, and if we need to go # to a different room. if self.player_sprite.center_x > SCREEN_WIDTH and self.current_room == 0: self.current_room = 1 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = 0 elif self.player_sprite.center_x < 0 and self.current_room == 1: self.current_room = 0 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.rooms[self.current_room].wall_list) self.player_sprite.center_x = SCREEN_WIDTH hit_list = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].coin_list) hit_list2 = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].bigpotion_list) hit_list3 = arcade.check_for_collision_with_list(self.player_sprite,self.rooms[self.current_room].smallpotion_list) for coin in hit_list: coin.kill() self.score += 1 my_sound = arcade.load_sound("coinsound.wav") arcade.play_sound(my_sound) if self.score == 4: for i in self.rooms[self.current_room].door_list: i.kill() your_sound = arcade.load_sound("door.wav") arcade.play_sound(your_sound) for smallpotion in hit_list3: smallpotion.kill() self.player_sprite.scale=0.5 tu_sound = arcade.load_sound("shrink.wav") arcade.play_sound(tu_sound) for bigpotion in hit_list2: bigpotion.kill() self.player_sprite.scale=1 yo_sound = arcade.load_sound("grow.wav") arcade.play_sound(yo_sound) def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT) window.setup() arcade.run() if __name__ == "__main__": main()
en
0.891822
This class holds all the information about the different rooms. # You may want many lists. Lists for coins, monsters, etc. # This holds the background images. If you don't want changing # background images, you can delete this part. Create and return room 1. If your program gets large, you may want to separate this into different files. Set up the game and initialize the variables. # Sprite lists # Loop for each box going across # Create left and right column of boxes # Loop for each box going across # Skip making a block 4 and 5 blocks up on the right side # Loop for each box going across # If you want coins or monsters in a level, then add that code here. # Load the background image for this level. Create and return room 2. Set up the game and initialize the variables. # Sprite lists # -- Set up the walls # Create bottom and top row of boxes # This y loops a list of two, the coordinate 0, and just under the top of window # Loop for each box going across # Create left and right column of boxes # Loop for each box going across # Skip making a block 4 and 5 blocks up Main application class. Initializer # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. # Sprite lists # Set up the player Set up the game and initialize the variables. # Set up the player # Our list of rooms # Create the rooms. Extend the pattern for each room. # Our starting room number # Create a physics engine for this room Render the screen. # This command has to happen before we start drawing # Draw the background texture # Draw all the walls in this room # If you have coins or monsters, then copy and modify the line # above for each list. Called whenever a key is pressed. Called when the user releases a key. Movement and game logic # Call update on all sprites (The sprites don't do much in this # example though.) # Do some logic here to figure out what room we are in, and if we need to go # to a different room. Main method
3.671239
4
venv/lib/python3.6/site-packages/gevent/testing/openfiles.py
Guillaume-Fernandez/phishfinder
10
8038
# Copyright (c) 2018 gevent community # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, print_function, division import os import unittest import re from . import sysinfo # Linux/OS X/BSD platforms can implement this by calling out to lsof if sysinfo.WIN: def _run_lsof(): raise unittest.SkipTest("lsof not expected on Windows") else: def _run_lsof(): import tempfile pid = os.getpid() fd, tmpname = tempfile.mkstemp('get_open_files') os.close(fd) lsof_command = 'lsof -p %s > %s' % (pid, tmpname) if os.system(lsof_command): # XXX: This prints to the console an annoying message: 'lsof is not recognized' raise unittest.SkipTest("lsof failed") with open(tmpname) as fobj: data = fobj.read().strip() os.remove(tmpname) return data def default_get_open_files(pipes=False): data = _run_lsof() results = {} for line in data.split('\n'): line = line.strip() if not line or line.startswith("COMMAND"): # Skip header and blank lines continue split = re.split(r'\s+', line) _command, _pid, _user, fd = split[:4] # Pipes (on OS X, at least) get an fd like "3" while normal files get an fd like "1u" if fd[:-1].isdigit() or fd.isdigit(): if not pipes and fd[-1].isdigit(): continue fd = int(fd[:-1]) if not fd[-1].isdigit() else int(fd) if fd in results: params = (fd, line, split, results.get(fd), data) raise AssertionError('error when parsing lsof output: duplicate fd=%r\nline=%r\nsplit=%r\nprevious=%r\ndata:\n%s' % params) results[fd] = line if not results: raise AssertionError('failed to parse lsof:\n%s' % (data, )) results['data'] = data return results def default_get_number_open_files(): if os.path.exists('/proc/'): # Linux only fd_directory = '/proc/%d/fd' % os.getpid() return len(os.listdir(fd_directory)) try: return len(get_open_files(pipes=True)) - 1 except (OSError, AssertionError, unittest.SkipTest): return 0 lsof_get_open_files = default_get_open_files try: # psutil import subprocess which on Python 3 imports selectors. # This can expose issues with monkey-patching. import psutil except ImportError: get_open_files = default_get_open_files get_number_open_files = default_get_number_open_files else: # If psutil is available (it is cross-platform) use that. # It is *much* faster than shelling out to lsof each time # (Running 14 tests takes 3.964s with lsof and 0.046 with psutil) # However, it still doesn't completely solve the issue on Windows: fds are reported # as -1 there, so we can't fully check those. def get_open_files(): """ Return a list of popenfile and pconn objects. Note that other than `fd`, they have different attributes. .. important:: If you want to find open sockets, on Windows and linux, it is important that the socket at least be listening (socket.listen(1)). Unlike the lsof implementation, this will only return sockets in a state like that. """ results = dict() process = psutil.Process() results['data'] = process.open_files() + process.connections('all') for x in results['data']: results[x.fd] = x results['data'] += ['From psutil', process] return results def get_number_open_files(): process = psutil.Process() try: return process.num_fds() except AttributeError: # num_fds is unix only. Is num_handles close enough on Windows? return 0
# Copyright (c) 2018 gevent community # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, print_function, division import os import unittest import re from . import sysinfo # Linux/OS X/BSD platforms can implement this by calling out to lsof if sysinfo.WIN: def _run_lsof(): raise unittest.SkipTest("lsof not expected on Windows") else: def _run_lsof(): import tempfile pid = os.getpid() fd, tmpname = tempfile.mkstemp('get_open_files') os.close(fd) lsof_command = 'lsof -p %s > %s' % (pid, tmpname) if os.system(lsof_command): # XXX: This prints to the console an annoying message: 'lsof is not recognized' raise unittest.SkipTest("lsof failed") with open(tmpname) as fobj: data = fobj.read().strip() os.remove(tmpname) return data def default_get_open_files(pipes=False): data = _run_lsof() results = {} for line in data.split('\n'): line = line.strip() if not line or line.startswith("COMMAND"): # Skip header and blank lines continue split = re.split(r'\s+', line) _command, _pid, _user, fd = split[:4] # Pipes (on OS X, at least) get an fd like "3" while normal files get an fd like "1u" if fd[:-1].isdigit() or fd.isdigit(): if not pipes and fd[-1].isdigit(): continue fd = int(fd[:-1]) if not fd[-1].isdigit() else int(fd) if fd in results: params = (fd, line, split, results.get(fd), data) raise AssertionError('error when parsing lsof output: duplicate fd=%r\nline=%r\nsplit=%r\nprevious=%r\ndata:\n%s' % params) results[fd] = line if not results: raise AssertionError('failed to parse lsof:\n%s' % (data, )) results['data'] = data return results def default_get_number_open_files(): if os.path.exists('/proc/'): # Linux only fd_directory = '/proc/%d/fd' % os.getpid() return len(os.listdir(fd_directory)) try: return len(get_open_files(pipes=True)) - 1 except (OSError, AssertionError, unittest.SkipTest): return 0 lsof_get_open_files = default_get_open_files try: # psutil import subprocess which on Python 3 imports selectors. # This can expose issues with monkey-patching. import psutil except ImportError: get_open_files = default_get_open_files get_number_open_files = default_get_number_open_files else: # If psutil is available (it is cross-platform) use that. # It is *much* faster than shelling out to lsof each time # (Running 14 tests takes 3.964s with lsof and 0.046 with psutil) # However, it still doesn't completely solve the issue on Windows: fds are reported # as -1 there, so we can't fully check those. def get_open_files(): """ Return a list of popenfile and pconn objects. Note that other than `fd`, they have different attributes. .. important:: If you want to find open sockets, on Windows and linux, it is important that the socket at least be listening (socket.listen(1)). Unlike the lsof implementation, this will only return sockets in a state like that. """ results = dict() process = psutil.Process() results['data'] = process.open_files() + process.connections('all') for x in results['data']: results[x.fd] = x results['data'] += ['From psutil', process] return results def get_number_open_files(): process = psutil.Process() try: return process.num_fds() except AttributeError: # num_fds is unix only. Is num_handles close enough on Windows? return 0
en
0.858515
# Copyright (c) 2018 gevent community # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Linux/OS X/BSD platforms can implement this by calling out to lsof # XXX: This prints to the console an annoying message: 'lsof is not recognized' # Skip header and blank lines # Pipes (on OS X, at least) get an fd like "3" while normal files get an fd like "1u" # Linux only # psutil import subprocess which on Python 3 imports selectors. # This can expose issues with monkey-patching. # If psutil is available (it is cross-platform) use that. # It is *much* faster than shelling out to lsof each time # (Running 14 tests takes 3.964s with lsof and 0.046 with psutil) # However, it still doesn't completely solve the issue on Windows: fds are reported # as -1 there, so we can't fully check those. Return a list of popenfile and pconn objects. Note that other than `fd`, they have different attributes. .. important:: If you want to find open sockets, on Windows and linux, it is important that the socket at least be listening (socket.listen(1)). Unlike the lsof implementation, this will only return sockets in a state like that. # num_fds is unix only. Is num_handles close enough on Windows?
2.048503
2
examples/multiprocess_example.py
ct-clmsn/distributed-tensorflow-orchestration
5
8039
<gh_stars>1-10 ''' marathon_example.py performs a simple matrix multiply using 3 compute nodes ''' def parseargs(): parser = argparse.ArgumentParser(description='Marathon for TensorFlow.') parser.add_argument('--n_tasks', default=1, help='an integer for the accumulator') parser.add_argument('--cpu', default=100.0, help='an integer for the accumulator') parser.add_argument('--mem', default=100.0, help='an integer for the accumulator') parser.add_argument('--taskname', default=uuid.uuid1(), help='name for the task') parser.add_argument('--url', help='DNS addr to marathon') parser.add_argument('--usr', help='marathon username') parser.add_argument('--usrpwd', help='marathon password') parser.add_argument('--uri', help='curl-friendly URI to the tensorflow client executable (url?, hdfs?, docker?)') args = parser.parse_args() return args if __name__ == '__main__': from sys import argv import tensorflow as tf from dtforchestrator import * args = parseargs() with MultiprocessTensorFlowSession(args.taskname, args.n_tasks) as tfdevices: with tf.device(tfdevices.getDeviceSpec(1)): matrix1 = tf.constant([[3.],[3.]]) with tf.device(tfdevices.getDeviceSpec(2)): matrix2 = tf.constant([[3.,3.]]) with tf.device(tfdevices.getDeviceSpec(0)): matrix0 = tf.constant([[3.,3.]]) product1 = tf.matmul(matrix0, matrix1) product2 = tf.matmul(matrix2, matrix1) with tf.Session(tfdevices.localGRPC()) as sess: res = sess.run(product1) print res res = sess.run(product2) print res
''' marathon_example.py performs a simple matrix multiply using 3 compute nodes ''' def parseargs(): parser = argparse.ArgumentParser(description='Marathon for TensorFlow.') parser.add_argument('--n_tasks', default=1, help='an integer for the accumulator') parser.add_argument('--cpu', default=100.0, help='an integer for the accumulator') parser.add_argument('--mem', default=100.0, help='an integer for the accumulator') parser.add_argument('--taskname', default=uuid.uuid1(), help='name for the task') parser.add_argument('--url', help='DNS addr to marathon') parser.add_argument('--usr', help='marathon username') parser.add_argument('--usrpwd', help='marathon password') parser.add_argument('--uri', help='curl-friendly URI to the tensorflow client executable (url?, hdfs?, docker?)') args = parser.parse_args() return args if __name__ == '__main__': from sys import argv import tensorflow as tf from dtforchestrator import * args = parseargs() with MultiprocessTensorFlowSession(args.taskname, args.n_tasks) as tfdevices: with tf.device(tfdevices.getDeviceSpec(1)): matrix1 = tf.constant([[3.],[3.]]) with tf.device(tfdevices.getDeviceSpec(2)): matrix2 = tf.constant([[3.,3.]]) with tf.device(tfdevices.getDeviceSpec(0)): matrix0 = tf.constant([[3.,3.]]) product1 = tf.matmul(matrix0, matrix1) product2 = tf.matmul(matrix2, matrix1) with tf.Session(tfdevices.localGRPC()) as sess: res = sess.run(product1) print res res = sess.run(product2) print res
en
0.490669
marathon_example.py performs a simple matrix multiply using 3 compute nodes
2.453282
2
FAUCovidCrawler/AWSLambda/lambda_function.py
Awannaphasch2016/CDKFAUCovid19Cralwer
0
8040
<reponame>Awannaphasch2016/CDKFAUCovid19Cralwer ''' Original code contributor: mentzera Article link: https://aws.amazon.com/blogs/big-data/building-a-near-real-time-discovery-platform-with-aws/ ''' import boto3 import json import twitter_to_es # from Examples.Demo.AWS_Related.TwitterStreamWithAWS.LambdaWithS3Trigger import \ # twitter_to_es from tweet_utils import \ get_tweet, id_field, get_tweet_mapping headers = {"Content-Type": "application/json"} s3 = boto3.client('s3') kinesis_client = boto3.client('kinesis') # dynamoDb_client = boto3.client('dynamodb') # Lambda execution starts here def handler(event, context): for record in event['Records']: # Get the bucket name and key for the new file bucket = record['s3']['bucket']['name'] key = record['s3']['object']['key'] # Get s3 object, read, and split the file into lines try: obj = s3.get_object(Bucket=bucket, Key=key) except Exception as e: print(e) print( 'Error getting object {} from bucket {}. Make sure they exist and your bucket is in the same region as this function.'.format( key, bucket)) raise e # Parse s3 object content (JSON) try: # https://stackoverflow.com/questions/31976273/open-s3-object-as-a-string-with-boto3 s3_file_content = obj['Body'].read().decode('utf-8') # clean trailing comma if s3_file_content.endswith(',\n'): s3_file_content = s3_file_content[:-2] tweets_str = '[' + s3_file_content + ']' # print(tweets_str) tweets = json.loads(tweets_str) except Exception as e: print(e) print('Error loading json from object {} in bucket {}'.format(key, bucket)) raise e for doc in tweets: tweet = get_tweet(doc) # print(tweet['sentiments']) print(tweet) print('===\n\n\n') #===================== #==send data to dynamoDB #===================== # Get the service resource. dynamodb = boto3.resource('dynamodb') # Instantiate a table resource object without actually # creating a DynamoDB table. Note that the attributes of this table # are lazy-loaded: a request is not made nor are the attribute # values populated until the attributes # on the table resource are accessed or its load() method is called. table = dynamodb.Table('faucovidstream_twitter_with_sentiment') # Print out some data about the table. # This will cause a request to be made to DynamoDB and its attribute # values will be set based on the response. print(table.creation_date_time) dynamodb.put_item( Item=tweet )
''' Original code contributor: mentzera Article link: https://aws.amazon.com/blogs/big-data/building-a-near-real-time-discovery-platform-with-aws/ ''' import boto3 import json import twitter_to_es # from Examples.Demo.AWS_Related.TwitterStreamWithAWS.LambdaWithS3Trigger import \ # twitter_to_es from tweet_utils import \ get_tweet, id_field, get_tweet_mapping headers = {"Content-Type": "application/json"} s3 = boto3.client('s3') kinesis_client = boto3.client('kinesis') # dynamoDb_client = boto3.client('dynamodb') # Lambda execution starts here def handler(event, context): for record in event['Records']: # Get the bucket name and key for the new file bucket = record['s3']['bucket']['name'] key = record['s3']['object']['key'] # Get s3 object, read, and split the file into lines try: obj = s3.get_object(Bucket=bucket, Key=key) except Exception as e: print(e) print( 'Error getting object {} from bucket {}. Make sure they exist and your bucket is in the same region as this function.'.format( key, bucket)) raise e # Parse s3 object content (JSON) try: # https://stackoverflow.com/questions/31976273/open-s3-object-as-a-string-with-boto3 s3_file_content = obj['Body'].read().decode('utf-8') # clean trailing comma if s3_file_content.endswith(',\n'): s3_file_content = s3_file_content[:-2] tweets_str = '[' + s3_file_content + ']' # print(tweets_str) tweets = json.loads(tweets_str) except Exception as e: print(e) print('Error loading json from object {} in bucket {}'.format(key, bucket)) raise e for doc in tweets: tweet = get_tweet(doc) # print(tweet['sentiments']) print(tweet) print('===\n\n\n') #===================== #==send data to dynamoDB #===================== # Get the service resource. dynamodb = boto3.resource('dynamodb') # Instantiate a table resource object without actually # creating a DynamoDB table. Note that the attributes of this table # are lazy-loaded: a request is not made nor are the attribute # values populated until the attributes # on the table resource are accessed or its load() method is called. table = dynamodb.Table('faucovidstream_twitter_with_sentiment') # Print out some data about the table. # This will cause a request to be made to DynamoDB and its attribute # values will be set based on the response. print(table.creation_date_time) dynamodb.put_item( Item=tweet )
en
0.760083
Original code contributor: mentzera Article link: https://aws.amazon.com/blogs/big-data/building-a-near-real-time-discovery-platform-with-aws/ # from Examples.Demo.AWS_Related.TwitterStreamWithAWS.LambdaWithS3Trigger import \ # twitter_to_es # dynamoDb_client = boto3.client('dynamodb') # Lambda execution starts here # Get the bucket name and key for the new file # Get s3 object, read, and split the file into lines # Parse s3 object content (JSON) # https://stackoverflow.com/questions/31976273/open-s3-object-as-a-string-with-boto3 # clean trailing comma # print(tweets_str) # print(tweet['sentiments']) #===================== #==send data to dynamoDB #===================== # Get the service resource. # Instantiate a table resource object without actually # creating a DynamoDB table. Note that the attributes of this table # are lazy-loaded: a request is not made nor are the attribute # values populated until the attributes # on the table resource are accessed or its load() method is called. # Print out some data about the table. # This will cause a request to be made to DynamoDB and its attribute # values will be set based on the response.
2.645139
3
user_messages/context_processors.py
everaccountable/django-user-messages
21
8041
from django.contrib.messages.constants import DEFAULT_LEVELS from user_messages.api import get_messages def messages(request): """ Return a lazy 'messages' context variable as well as 'DEFAULT_MESSAGE_LEVELS'. """ return { "messages": get_messages(request=request), "DEFAULT_MESSAGE_LEVELS": DEFAULT_LEVELS, }
from django.contrib.messages.constants import DEFAULT_LEVELS from user_messages.api import get_messages def messages(request): """ Return a lazy 'messages' context variable as well as 'DEFAULT_MESSAGE_LEVELS'. """ return { "messages": get_messages(request=request), "DEFAULT_MESSAGE_LEVELS": DEFAULT_LEVELS, }
en
0.943273
Return a lazy 'messages' context variable as well as 'DEFAULT_MESSAGE_LEVELS'.
2.075097
2
Day_5/highest_score.py
ecanro/100DaysOfCode_Python
0
8042
<filename>Day_5/highest_score.py ## Highest Score # 🚨 Don't change the code below 👇 student_scores = input("Input a list of student scores: ").split() for n in range(0, len(student_scores)): student_scores[n] = int(student_scores[n]) print(student_scores) # 🚨 Don't change the code above 👆 # Write your code below this row 👇 highest_score = 0 for scores in student_scores: if scores > highest_score: highest_score = scores print(f'The highest score is: {highest_score}') # functional code print(max(student_scores))
<filename>Day_5/highest_score.py ## Highest Score # 🚨 Don't change the code below 👇 student_scores = input("Input a list of student scores: ").split() for n in range(0, len(student_scores)): student_scores[n] = int(student_scores[n]) print(student_scores) # 🚨 Don't change the code above 👆 # Write your code below this row 👇 highest_score = 0 for scores in student_scores: if scores > highest_score: highest_score = scores print(f'The highest score is: {highest_score}') # functional code print(max(student_scores))
en
0.651194
## Highest Score # 🚨 Don't change the code below 👇 # 🚨 Don't change the code above 👆 # Write your code below this row 👇 # functional code
3.903788
4
finetune/finetune.py
zaixizhang/MGSSL
43
8043
<gh_stars>10-100 import argparse from loader import MoleculeDataset from torch_geometric.data import DataLoader import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import numpy as np from model import GNN, GNN_graphpred from sklearn.metrics import roc_auc_score from splitters import scaffold_split, random_split import pandas as pd import os import shutil from tensorboardX import SummaryWriter criterion = nn.BCEWithLogitsLoss(reduction = "none") def train(args, model, device, loader, optimizer): model.train() for step, batch in enumerate(tqdm(loader, desc="Iteration")): batch = batch.to(device) pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch) y = batch.y.view(pred.shape).to(torch.float64) #Whether y is non-null or not. is_valid = y**2 > 0 #Loss matrix loss_mat = criterion(pred.double(), (y+1)/2) #loss matrix after removing null target loss_mat = torch.where(is_valid, loss_mat, torch.zeros(loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype)) optimizer.zero_grad() loss = torch.sum(loss_mat)/torch.sum(is_valid) loss.backward() optimizer.step() def eval(args, model, device, loader): model.eval() y_true = [] y_scores = [] for step, batch in enumerate(tqdm(loader, desc="Iteration")): batch = batch.to(device) with torch.no_grad(): pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch) y_true.append(batch.y.view(pred.shape)) y_scores.append(pred) y_true = torch.cat(y_true, dim = 0).cpu().numpy() y_scores = torch.cat(y_scores, dim = 0).cpu().numpy() roc_list = [] for i in range(y_true.shape[1]): #AUC is only defined when there is at least one positive data. if np.sum(y_true[:,i] == 1) > 0 and np.sum(y_true[:,i] == -1) > 0: is_valid = y_true[:,i]**2 > 0 roc_list.append(roc_auc_score((y_true[is_valid,i] + 1)/2, y_scores[is_valid,i])) if len(roc_list) < y_true.shape[1]: print("Some target is missing!") print("Missing ratio: %f" %(1 - float(len(roc_list))/y_true.shape[1])) return sum(roc_list)/len(roc_list) #y_true.shape[1] def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks') parser.add_argument('--device', type=int, default=0, help='which gpu to use if any (default: 0)') parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)') parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train (default: 100)') parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)') parser.add_argument('--lr_scale', type=float, default=1, help='relative learning rate for the feature extraction layer (default: 1)') parser.add_argument('--decay', type=float, default=0, help='weight decay (default: 0)') parser.add_argument('--num_layer', type=int, default=5, help='number of GNN message passing layers (default: 5).') parser.add_argument('--emb_dim', type=int, default=300, help='embedding dimensions (default: 300)') parser.add_argument('--dropout_ratio', type=float, default=0.5, help='dropout ratio (default: 0.5)') parser.add_argument('--graph_pooling', type=str, default="mean", help='graph level pooling (sum, mean, max, set2set, attention)') parser.add_argument('--JK', type=str, default="last", help='how the node features across layers are combined. last, sum, max or concat') parser.add_argument('--gnn_type', type=str, default="gin") parser.add_argument('--dataset', type=str, default = 'sider', help='root directory of dataset. For now, only classification.') parser.add_argument('--input_model_file', type=str, default = '../motif_based_pretrain/saved_model/motif_pretrain.pth', help='filename to read the model (if there is any)') parser.add_argument('--filename', type=str, default = '', help='output filename') parser.add_argument('--seed', type=int, default=42, help = "Seed for splitting the dataset.") parser.add_argument('--runseed', type=int, default=0, help = "Seed for minibatch selection, random initialization.") parser.add_argument('--split', type = str, default="scaffold", help = "random or scaffold or random_scaffold") parser.add_argument('--eval_train', type=int, default = 1, help='evaluating training or not') parser.add_argument('--num_workers', type=int, default = 4, help='number of workers for dataset loading') args = parser.parse_args() torch.manual_seed(args.runseed) np.random.seed(args.runseed) device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.runseed) #Bunch of classification tasks if args.dataset == "tox21": num_tasks = 12 elif args.dataset == "hiv": num_tasks = 1 elif args.dataset == "pcba": num_tasks = 128 elif args.dataset == "muv": num_tasks = 17 elif args.dataset == "bace": num_tasks = 1 elif args.dataset == "bbbp": num_tasks = 1 elif args.dataset == "toxcast": num_tasks = 617 elif args.dataset == "sider": num_tasks = 27 elif args.dataset == "clintox": num_tasks = 2 else: raise ValueError("Invalid dataset name.") #set up dataset dataset = MoleculeDataset("dataset/" + args.dataset, dataset=args.dataset) print(dataset) if args.split == "scaffold": smiles_list = pd.read_csv('dataset/' + args.dataset + '/processed/smiles.csv', header=None)[0].tolist() train_dataset, valid_dataset, test_dataset = scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1) print("scaffold") elif args.split == "random": train_dataset, valid_dataset, test_dataset = random_split(dataset, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed) print("random") elif args.split == "random_scaffold": smiles_list = pd.read_csv('dataset/' + args.dataset + '/processed/smiles.csv', header=None)[0].tolist() train_dataset, valid_dataset, test_dataset = random_scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed) print("random scaffold") else: raise ValueError("Invalid split option.") print(train_dataset[0]) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers) val_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) #set up model model = GNN_graphpred(args.num_layer, args.emb_dim, num_tasks, JK = args.JK, drop_ratio = args.dropout_ratio, graph_pooling = args.graph_pooling, gnn_type = args.gnn_type) if not args.input_model_file == "": model.from_pretrained(args.input_model_file) model.to(device) #set up optimizer #different learning rate for different part of GNN model_param_group = [] model_param_group.append({"params": model.gnn.parameters()}) if args.graph_pooling == "attention": model_param_group.append({"params": model.pool.parameters(), "lr":args.lr*args.lr_scale}) model_param_group.append({"params": model.graph_pred_linear.parameters(), "lr":args.lr*args.lr_scale}) optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay) print(optimizer) for epoch in range(1, args.epochs+1): print("====epoch " + str(epoch)) train(args, model, device, train_loader, optimizer) print("====Evaluation") if args.eval_train: train_acc = eval(args, model, device, train_loader) else: print("omit the training accuracy computation") train_acc = 0 val_acc = eval(args, model, device, val_loader) test_acc = eval(args, model, device, test_loader) print("train: %f val: %f test: %f" %(train_acc, val_acc, test_acc)) if __name__ == "__main__": main()
import argparse from loader import MoleculeDataset from torch_geometric.data import DataLoader import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import numpy as np from model import GNN, GNN_graphpred from sklearn.metrics import roc_auc_score from splitters import scaffold_split, random_split import pandas as pd import os import shutil from tensorboardX import SummaryWriter criterion = nn.BCEWithLogitsLoss(reduction = "none") def train(args, model, device, loader, optimizer): model.train() for step, batch in enumerate(tqdm(loader, desc="Iteration")): batch = batch.to(device) pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch) y = batch.y.view(pred.shape).to(torch.float64) #Whether y is non-null or not. is_valid = y**2 > 0 #Loss matrix loss_mat = criterion(pred.double(), (y+1)/2) #loss matrix after removing null target loss_mat = torch.where(is_valid, loss_mat, torch.zeros(loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype)) optimizer.zero_grad() loss = torch.sum(loss_mat)/torch.sum(is_valid) loss.backward() optimizer.step() def eval(args, model, device, loader): model.eval() y_true = [] y_scores = [] for step, batch in enumerate(tqdm(loader, desc="Iteration")): batch = batch.to(device) with torch.no_grad(): pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch) y_true.append(batch.y.view(pred.shape)) y_scores.append(pred) y_true = torch.cat(y_true, dim = 0).cpu().numpy() y_scores = torch.cat(y_scores, dim = 0).cpu().numpy() roc_list = [] for i in range(y_true.shape[1]): #AUC is only defined when there is at least one positive data. if np.sum(y_true[:,i] == 1) > 0 and np.sum(y_true[:,i] == -1) > 0: is_valid = y_true[:,i]**2 > 0 roc_list.append(roc_auc_score((y_true[is_valid,i] + 1)/2, y_scores[is_valid,i])) if len(roc_list) < y_true.shape[1]: print("Some target is missing!") print("Missing ratio: %f" %(1 - float(len(roc_list))/y_true.shape[1])) return sum(roc_list)/len(roc_list) #y_true.shape[1] def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks') parser.add_argument('--device', type=int, default=0, help='which gpu to use if any (default: 0)') parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)') parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train (default: 100)') parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)') parser.add_argument('--lr_scale', type=float, default=1, help='relative learning rate for the feature extraction layer (default: 1)') parser.add_argument('--decay', type=float, default=0, help='weight decay (default: 0)') parser.add_argument('--num_layer', type=int, default=5, help='number of GNN message passing layers (default: 5).') parser.add_argument('--emb_dim', type=int, default=300, help='embedding dimensions (default: 300)') parser.add_argument('--dropout_ratio', type=float, default=0.5, help='dropout ratio (default: 0.5)') parser.add_argument('--graph_pooling', type=str, default="mean", help='graph level pooling (sum, mean, max, set2set, attention)') parser.add_argument('--JK', type=str, default="last", help='how the node features across layers are combined. last, sum, max or concat') parser.add_argument('--gnn_type', type=str, default="gin") parser.add_argument('--dataset', type=str, default = 'sider', help='root directory of dataset. For now, only classification.') parser.add_argument('--input_model_file', type=str, default = '../motif_based_pretrain/saved_model/motif_pretrain.pth', help='filename to read the model (if there is any)') parser.add_argument('--filename', type=str, default = '', help='output filename') parser.add_argument('--seed', type=int, default=42, help = "Seed for splitting the dataset.") parser.add_argument('--runseed', type=int, default=0, help = "Seed for minibatch selection, random initialization.") parser.add_argument('--split', type = str, default="scaffold", help = "random or scaffold or random_scaffold") parser.add_argument('--eval_train', type=int, default = 1, help='evaluating training or not') parser.add_argument('--num_workers', type=int, default = 4, help='number of workers for dataset loading') args = parser.parse_args() torch.manual_seed(args.runseed) np.random.seed(args.runseed) device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.runseed) #Bunch of classification tasks if args.dataset == "tox21": num_tasks = 12 elif args.dataset == "hiv": num_tasks = 1 elif args.dataset == "pcba": num_tasks = 128 elif args.dataset == "muv": num_tasks = 17 elif args.dataset == "bace": num_tasks = 1 elif args.dataset == "bbbp": num_tasks = 1 elif args.dataset == "toxcast": num_tasks = 617 elif args.dataset == "sider": num_tasks = 27 elif args.dataset == "clintox": num_tasks = 2 else: raise ValueError("Invalid dataset name.") #set up dataset dataset = MoleculeDataset("dataset/" + args.dataset, dataset=args.dataset) print(dataset) if args.split == "scaffold": smiles_list = pd.read_csv('dataset/' + args.dataset + '/processed/smiles.csv', header=None)[0].tolist() train_dataset, valid_dataset, test_dataset = scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1) print("scaffold") elif args.split == "random": train_dataset, valid_dataset, test_dataset = random_split(dataset, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed) print("random") elif args.split == "random_scaffold": smiles_list = pd.read_csv('dataset/' + args.dataset + '/processed/smiles.csv', header=None)[0].tolist() train_dataset, valid_dataset, test_dataset = random_scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed) print("random scaffold") else: raise ValueError("Invalid split option.") print(train_dataset[0]) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers) val_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) #set up model model = GNN_graphpred(args.num_layer, args.emb_dim, num_tasks, JK = args.JK, drop_ratio = args.dropout_ratio, graph_pooling = args.graph_pooling, gnn_type = args.gnn_type) if not args.input_model_file == "": model.from_pretrained(args.input_model_file) model.to(device) #set up optimizer #different learning rate for different part of GNN model_param_group = [] model_param_group.append({"params": model.gnn.parameters()}) if args.graph_pooling == "attention": model_param_group.append({"params": model.pool.parameters(), "lr":args.lr*args.lr_scale}) model_param_group.append({"params": model.graph_pred_linear.parameters(), "lr":args.lr*args.lr_scale}) optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay) print(optimizer) for epoch in range(1, args.epochs+1): print("====epoch " + str(epoch)) train(args, model, device, train_loader, optimizer) print("====Evaluation") if args.eval_train: train_acc = eval(args, model, device, train_loader) else: print("omit the training accuracy computation") train_acc = 0 val_acc = eval(args, model, device, val_loader) test_acc = eval(args, model, device, test_loader) print("train: %f val: %f test: %f" %(train_acc, val_acc, test_acc)) if __name__ == "__main__": main()
en
0.825241
#Whether y is non-null or not. #Loss matrix #loss matrix after removing null target #AUC is only defined when there is at least one positive data. #y_true.shape[1] # Training settings #Bunch of classification tasks #set up dataset #set up model #set up optimizer #different learning rate for different part of GNN
2.097953
2
jumpscale/packages/vdc_dashboard/bottle/api/exceptions.py
threefoldtech/js-sdk
13
8044
<reponame>threefoldtech/js-sdk from jumpscale.core import exceptions class BaseError(exceptions.Base): """a generic base error for bcdb rest, with status code""" def __init__(self, status, *args, **kwargs): super().__init__(*args, *kwargs) self.status = status class VDCNotFound(BaseError): pass class MissingAuthorizationHeader(BaseError): pass class InvalidCredentials(BaseError): pass class MissingArgument(BaseError): pass class StellarServiceDown(BaseError): pass class FlavorNotSupported(BaseError): pass class NoEnoughCapacity(BaseError): pass class AdddingNodeFailed(BaseError): pass class VirtualMachineDeploymentFailed(BaseError): pass class CannotDeleteMasterNode(BaseError): pass class ZDBDeploymentFailed(BaseError): pass class ZDBDeletionFailed(BaseError): pass class KubeConfigNotFound(BaseError): pass class InvalidKubeConfig(BaseError): pass class ZStorConfigNotFound(BaseError): pass class InvalidZStorConfig(BaseError): pass class NoEnoughFunds(BaseError): pass class BadRequestError(BaseError): pass class UnknownError(BaseError): pass
from jumpscale.core import exceptions class BaseError(exceptions.Base): """a generic base error for bcdb rest, with status code""" def __init__(self, status, *args, **kwargs): super().__init__(*args, *kwargs) self.status = status class VDCNotFound(BaseError): pass class MissingAuthorizationHeader(BaseError): pass class InvalidCredentials(BaseError): pass class MissingArgument(BaseError): pass class StellarServiceDown(BaseError): pass class FlavorNotSupported(BaseError): pass class NoEnoughCapacity(BaseError): pass class AdddingNodeFailed(BaseError): pass class VirtualMachineDeploymentFailed(BaseError): pass class CannotDeleteMasterNode(BaseError): pass class ZDBDeploymentFailed(BaseError): pass class ZDBDeletionFailed(BaseError): pass class KubeConfigNotFound(BaseError): pass class InvalidKubeConfig(BaseError): pass class ZStorConfigNotFound(BaseError): pass class InvalidZStorConfig(BaseError): pass class NoEnoughFunds(BaseError): pass class BadRequestError(BaseError): pass class UnknownError(BaseError): pass
en
0.552627
a generic base error for bcdb rest, with status code
2.26575
2
neurokit2/signal/signal_plot.py
gutierrezps/NeuroKit
1
8045
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import pandas as pd from ..events import events_plot from ..stats import standardize as nk_standardize def signal_plot( signal, sampling_rate=None, subplots=False, standardize=False, labels=None, **kwargs ): """Plot signal with events as vertical lines. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Needs to be supplied if the data should be plotted over time in seconds. Otherwise the data is plotted over samples. Defaults to None. subplots : bool If True, each signal is plotted in a subplot. standardize : bool If True, all signals will have the same scale (useful for visualisation). labels : str or list Defaults to None. **kwargs : optional Arguments passed to matplotlib plotting. Examples ---------- >>> import numpy as np >>> import pandas as pd >>> import neurokit2 as nk >>> >>> signal = nk.signal_simulate(duration=10, sampling_rate=1000) >>> nk.signal_plot(signal, sampling_rate=1000, color="red") >>> >>> data = pd.DataFrame({"Signal2": np.cos(np.linspace(start=0, stop=20, num=1000)), ... "Signal3": np.sin(np.linspace(start=0, stop=20, num=1000)), ... "Signal4": nk.signal_binarize(np.cos(np.linspace(start=0, stop=40, num=1000)))}) >>> nk.signal_plot(data, labels=['signal_1', 'signal_2', 'signal_3'], subplots=True) >>> nk.signal_plot([signal, data], standardize=True) """ # Sanitize format if isinstance(signal, list): try: for i in signal: len(i) except TypeError: signal = np.array(signal) if isinstance(signal, pd.DataFrame) is False: # If list is passed if isinstance(signal, list) or len(np.array(signal).shape) > 1: out = pd.DataFrame() for i, content in enumerate(signal): if isinstance(content, (pd.DataFrame, pd.Series)): out = pd.concat([out, content], axis=1, sort=True) else: out = pd.concat( [out, pd.DataFrame({"Signal" + str(i + 1): content})], axis=1, sort=True, ) signal = out # If vector is passed else: signal = pd.DataFrame({"Signal": signal}) # Copy signal signal = signal.copy() # Guess continuous and events columns continuous_columns = list(signal.columns.values) events_columns = [] for col in signal.columns: vector = signal[col] if vector.nunique() == 2: indices = np.where(vector == np.max(vector.unique())) if bool(np.any(np.diff(indices) == 1)) is False: events_columns.append(col) continuous_columns.remove(col) # Adjust for sampling rate if sampling_rate is not None: signal.index = signal.index / sampling_rate title_x = "Time (seconds)" else: title_x = "Time" # x_axis = np.linspace(0, signal.shape[0] / sampling_rate, signal.shape[0]) # x_axis = pd.DataFrame(x_axis, columns=["Time (s)"]) # signal = pd.concat([signal, x_axis], axis=1) # signal = signal.set_index("Time (s)") # Plot accordingly if len(events_columns) > 0: events = [] for col in events_columns: vector = signal[col] events.append(np.where(vector == np.max(vector.unique()))[0]) plot = events_plot(events, signal=signal[continuous_columns]) if sampling_rate is None and signal.index.is_integer(): plot.gca().set_xlabel("Samples") else: plot.gca().set_xlabel(title_x) else: # Aesthetics colors = [ "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", ] if len(continuous_columns) > len(colors): colors = plt.cm.viridis(np.linspace(0, 1, len(continuous_columns))) # Plot if standardize is True: signal[continuous_columns] = nk_standardize(signal[continuous_columns]) if subplots is True: _, axes = plt.subplots(nrows=len(continuous_columns), ncols=1, sharex=True, **kwargs) for ax, col, color in zip(axes, continuous_columns, colors): ax.plot(signal[col], c=color, **kwargs) else: plot = signal[continuous_columns].plot(subplots=False, sharex=True, **kwargs) if sampling_rate is None and signal.index.is_integer(): plt.xlabel("Samples") else: plt.xlabel(title_x) # Tidy legend locations and add labels if labels is None: labels = continuous_columns.copy() if isinstance(labels, str): n_labels = len([labels]) labels = [labels] elif isinstance(labels, list): n_labels = len(labels) if len(signal[continuous_columns].columns) != n_labels: raise ValueError( "NeuroKit error: signal_plot(): number of labels does not equal the number of plotted signals." ) if subplots is False: plt.legend(labels, loc=1) else: for i, label in enumerate(labels): axes[i].legend([label], loc=1)
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import pandas as pd from ..events import events_plot from ..stats import standardize as nk_standardize def signal_plot( signal, sampling_rate=None, subplots=False, standardize=False, labels=None, **kwargs ): """Plot signal with events as vertical lines. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Needs to be supplied if the data should be plotted over time in seconds. Otherwise the data is plotted over samples. Defaults to None. subplots : bool If True, each signal is plotted in a subplot. standardize : bool If True, all signals will have the same scale (useful for visualisation). labels : str or list Defaults to None. **kwargs : optional Arguments passed to matplotlib plotting. Examples ---------- >>> import numpy as np >>> import pandas as pd >>> import neurokit2 as nk >>> >>> signal = nk.signal_simulate(duration=10, sampling_rate=1000) >>> nk.signal_plot(signal, sampling_rate=1000, color="red") >>> >>> data = pd.DataFrame({"Signal2": np.cos(np.linspace(start=0, stop=20, num=1000)), ... "Signal3": np.sin(np.linspace(start=0, stop=20, num=1000)), ... "Signal4": nk.signal_binarize(np.cos(np.linspace(start=0, stop=40, num=1000)))}) >>> nk.signal_plot(data, labels=['signal_1', 'signal_2', 'signal_3'], subplots=True) >>> nk.signal_plot([signal, data], standardize=True) """ # Sanitize format if isinstance(signal, list): try: for i in signal: len(i) except TypeError: signal = np.array(signal) if isinstance(signal, pd.DataFrame) is False: # If list is passed if isinstance(signal, list) or len(np.array(signal).shape) > 1: out = pd.DataFrame() for i, content in enumerate(signal): if isinstance(content, (pd.DataFrame, pd.Series)): out = pd.concat([out, content], axis=1, sort=True) else: out = pd.concat( [out, pd.DataFrame({"Signal" + str(i + 1): content})], axis=1, sort=True, ) signal = out # If vector is passed else: signal = pd.DataFrame({"Signal": signal}) # Copy signal signal = signal.copy() # Guess continuous and events columns continuous_columns = list(signal.columns.values) events_columns = [] for col in signal.columns: vector = signal[col] if vector.nunique() == 2: indices = np.where(vector == np.max(vector.unique())) if bool(np.any(np.diff(indices) == 1)) is False: events_columns.append(col) continuous_columns.remove(col) # Adjust for sampling rate if sampling_rate is not None: signal.index = signal.index / sampling_rate title_x = "Time (seconds)" else: title_x = "Time" # x_axis = np.linspace(0, signal.shape[0] / sampling_rate, signal.shape[0]) # x_axis = pd.DataFrame(x_axis, columns=["Time (s)"]) # signal = pd.concat([signal, x_axis], axis=1) # signal = signal.set_index("Time (s)") # Plot accordingly if len(events_columns) > 0: events = [] for col in events_columns: vector = signal[col] events.append(np.where(vector == np.max(vector.unique()))[0]) plot = events_plot(events, signal=signal[continuous_columns]) if sampling_rate is None and signal.index.is_integer(): plot.gca().set_xlabel("Samples") else: plot.gca().set_xlabel(title_x) else: # Aesthetics colors = [ "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", ] if len(continuous_columns) > len(colors): colors = plt.cm.viridis(np.linspace(0, 1, len(continuous_columns))) # Plot if standardize is True: signal[continuous_columns] = nk_standardize(signal[continuous_columns]) if subplots is True: _, axes = plt.subplots(nrows=len(continuous_columns), ncols=1, sharex=True, **kwargs) for ax, col, color in zip(axes, continuous_columns, colors): ax.plot(signal[col], c=color, **kwargs) else: plot = signal[continuous_columns].plot(subplots=False, sharex=True, **kwargs) if sampling_rate is None and signal.index.is_integer(): plt.xlabel("Samples") else: plt.xlabel(title_x) # Tidy legend locations and add labels if labels is None: labels = continuous_columns.copy() if isinstance(labels, str): n_labels = len([labels]) labels = [labels] elif isinstance(labels, list): n_labels = len(labels) if len(signal[continuous_columns].columns) != n_labels: raise ValueError( "NeuroKit error: signal_plot(): number of labels does not equal the number of plotted signals." ) if subplots is False: plt.legend(labels, loc=1) else: for i, label in enumerate(labels): axes[i].legend([label], loc=1)
en
0.603918
# -*- coding: utf-8 -*- Plot signal with events as vertical lines. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Needs to be supplied if the data should be plotted over time in seconds. Otherwise the data is plotted over samples. Defaults to None. subplots : bool If True, each signal is plotted in a subplot. standardize : bool If True, all signals will have the same scale (useful for visualisation). labels : str or list Defaults to None. **kwargs : optional Arguments passed to matplotlib plotting. Examples ---------- >>> import numpy as np >>> import pandas as pd >>> import neurokit2 as nk >>> >>> signal = nk.signal_simulate(duration=10, sampling_rate=1000) >>> nk.signal_plot(signal, sampling_rate=1000, color="red") >>> >>> data = pd.DataFrame({"Signal2": np.cos(np.linspace(start=0, stop=20, num=1000)), ... "Signal3": np.sin(np.linspace(start=0, stop=20, num=1000)), ... "Signal4": nk.signal_binarize(np.cos(np.linspace(start=0, stop=40, num=1000)))}) >>> nk.signal_plot(data, labels=['signal_1', 'signal_2', 'signal_3'], subplots=True) >>> nk.signal_plot([signal, data], standardize=True) # Sanitize format # If list is passed # If vector is passed # Copy signal # Guess continuous and events columns # Adjust for sampling rate # x_axis = np.linspace(0, signal.shape[0] / sampling_rate, signal.shape[0]) # x_axis = pd.DataFrame(x_axis, columns=["Time (s)"]) # signal = pd.concat([signal, x_axis], axis=1) # signal = signal.set_index("Time (s)") # Plot accordingly # Aesthetics # Plot # Tidy legend locations and add labels
3.479799
3
migrations/versions/1a89721126f7_only_one_validation_per_mission_user_.py
MTES-MCT/mobilic-api
0
8046
"""Only one validation per mission, user and actor Revision ID: <KEY> Revises: <KEY> Create Date: 2021-10-14 11:22:01.124488 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): op.execute( """ WITH validation_duplicates AS ( SELECT id, ROW_NUMBER() OVER (PARTITION BY user_id, mission_id, submitter_id ORDER BY reception_time DESC) AS rn FROM mission_validation ) DELETE FROM mission_validation mv USING validation_duplicates vd WHERE mv.id = vd.id AND vd.rn >= 2 """ ) op.execute( """ ALTER TABLE mission_validation ADD CONSTRAINT only_one_validation_per_submitter_mission_and_user EXCLUDE USING GIST ( mission_id WITH =, submitter_id WITH =, user_id WITH = ) """ ) def downgrade(): op.drop_constraint( "only_one_validation_per_submitter_mission_and_user", "mission_validation", )
"""Only one validation per mission, user and actor Revision ID: <KEY> Revises: <KEY> Create Date: 2021-10-14 11:22:01.124488 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): op.execute( """ WITH validation_duplicates AS ( SELECT id, ROW_NUMBER() OVER (PARTITION BY user_id, mission_id, submitter_id ORDER BY reception_time DESC) AS rn FROM mission_validation ) DELETE FROM mission_validation mv USING validation_duplicates vd WHERE mv.id = vd.id AND vd.rn >= 2 """ ) op.execute( """ ALTER TABLE mission_validation ADD CONSTRAINT only_one_validation_per_submitter_mission_and_user EXCLUDE USING GIST ( mission_id WITH =, submitter_id WITH =, user_id WITH = ) """ ) def downgrade(): op.drop_constraint( "only_one_validation_per_submitter_mission_and_user", "mission_validation", )
en
0.550867
Only one validation per mission, user and actor Revision ID: <KEY> Revises: <KEY> Create Date: 2021-10-14 11:22:01.124488 # revision identifiers, used by Alembic. WITH validation_duplicates AS ( SELECT id, ROW_NUMBER() OVER (PARTITION BY user_id, mission_id, submitter_id ORDER BY reception_time DESC) AS rn FROM mission_validation ) DELETE FROM mission_validation mv USING validation_duplicates vd WHERE mv.id = vd.id AND vd.rn >= 2 ALTER TABLE mission_validation ADD CONSTRAINT only_one_validation_per_submitter_mission_and_user EXCLUDE USING GIST ( mission_id WITH =, submitter_id WITH =, user_id WITH = )
1.486342
1
packages/facilities/rtdb/python/rtdb2_get.py
Falcons-Robocup/code
2
8047
# Copyright 2020 <NAME> (Falcons) # SPDX-License-Identifier: Apache-2.0 #!/usr/bin/python import os import sys import argparse from rtdb2 import RtDB2Store, RTDB2_DEFAULT_PATH import rtdb2tools from hexdump import hexdump # Main structure of the program if __name__ == "__main__": # Argument parsing. descriptionTxt = 'This tool reads a value from the database given an RtDB key.\n' exampleTxt = """Example: rtdb2_get.py -a 6 ROBOT_STATE age: 2h shared: True list: False value: [2, [1581172987, 618438], [0.05368572473526001, -0.2938263416290283, 5.330356597900391], [0.1385340541601181, -0.8020891547203064, 0.7817431688308716], False, [0.0, 0.0], 6, 'A'] Example: rtdb2_get.py -a 2 DIAG_WORLDMODEL_LOCAL -x "['balls'][0]['result']" [[5.3209381103515625, 0.5837346315383911, 0.15281200408935547], [-0.0029433025047183037, 0.01433953270316124, 1.2758345292240847e-05], 1.0, [22033, 1889585904]] """ parser = argparse.ArgumentParser(description=descriptionTxt, epilog=exampleTxt, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-a', '--agent', help='agent ID to use', type=int, default=rtdb2tools.guessAgentId()) parser.add_argument('-s', '--serialized', help='also show serialized string (as hexdump)', action='store_true') parser.add_argument('-p', '--path', help='database path to use', type=str, default=RTDB2_DEFAULT_PATH) parser.add_argument('-x', '--expression', help='evaluate expression, useful to fetch a specific element', type=str) parser.add_argument('key', help='RtDB key to read') args = parser.parse_args() # Create instance of RtDB2Store and read databases from disk rtdb2Store = RtDB2Store(args.path) item = rtdb2Store.get(args.agent, args.key, timeout=None) if args.expression: print(eval("item.value" + args.expression)) else: print(str(item)) if args.serialized: hexdump(item.value_serialized) rtdb2Store.closeAll()
# Copyright 2020 <NAME> (Falcons) # SPDX-License-Identifier: Apache-2.0 #!/usr/bin/python import os import sys import argparse from rtdb2 import RtDB2Store, RTDB2_DEFAULT_PATH import rtdb2tools from hexdump import hexdump # Main structure of the program if __name__ == "__main__": # Argument parsing. descriptionTxt = 'This tool reads a value from the database given an RtDB key.\n' exampleTxt = """Example: rtdb2_get.py -a 6 ROBOT_STATE age: 2h shared: True list: False value: [2, [1581172987, 618438], [0.05368572473526001, -0.2938263416290283, 5.330356597900391], [0.1385340541601181, -0.8020891547203064, 0.7817431688308716], False, [0.0, 0.0], 6, 'A'] Example: rtdb2_get.py -a 2 DIAG_WORLDMODEL_LOCAL -x "['balls'][0]['result']" [[5.3209381103515625, 0.5837346315383911, 0.15281200408935547], [-0.0029433025047183037, 0.01433953270316124, 1.2758345292240847e-05], 1.0, [22033, 1889585904]] """ parser = argparse.ArgumentParser(description=descriptionTxt, epilog=exampleTxt, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-a', '--agent', help='agent ID to use', type=int, default=rtdb2tools.guessAgentId()) parser.add_argument('-s', '--serialized', help='also show serialized string (as hexdump)', action='store_true') parser.add_argument('-p', '--path', help='database path to use', type=str, default=RTDB2_DEFAULT_PATH) parser.add_argument('-x', '--expression', help='evaluate expression, useful to fetch a specific element', type=str) parser.add_argument('key', help='RtDB key to read') args = parser.parse_args() # Create instance of RtDB2Store and read databases from disk rtdb2Store = RtDB2Store(args.path) item = rtdb2Store.get(args.agent, args.key, timeout=None) if args.expression: print(eval("item.value" + args.expression)) else: print(str(item)) if args.serialized: hexdump(item.value_serialized) rtdb2Store.closeAll()
en
0.436715
# Copyright 2020 <NAME> (Falcons) # SPDX-License-Identifier: Apache-2.0 #!/usr/bin/python # Main structure of the program # Argument parsing. Example: rtdb2_get.py -a 6 ROBOT_STATE age: 2h shared: True list: False value: [2, [1581172987, 618438], [0.05368572473526001, -0.2938263416290283, 5.330356597900391], [0.1385340541601181, -0.8020891547203064, 0.7817431688308716], False, [0.0, 0.0], 6, 'A'] Example: rtdb2_get.py -a 2 DIAG_WORLDMODEL_LOCAL -x "['balls'][0]['result']" [[5.3209381103515625, 0.5837346315383911, 0.15281200408935547], [-0.0029433025047183037, 0.01433953270316124, 1.2758345292240847e-05], 1.0, [22033, 1889585904]] # Create instance of RtDB2Store and read databases from disk
2.525046
3
algorithms/A3C/atari/atari_env_deprecated.py
what3versin/reinforce_py
1
8048
from __future__ import print_function from __future__ import division import os import gym import numpy as np from skimage.transform import resize from skimage.color import rgb2gray class Atari(object): s_dim = [84, 84, 1] a_dim = 3 def __init__(self, args, record_video=False): self.env = gym.make('BreakoutNoFrameskip-v4') self.ale = self.env.env.ale # ale interface if record_video: video_dir = os.path.join(args.save_path, 'videos') if not os.path.exists(video_dir): os.makedirs(video_dir) self.env = gym.wrappers.Monitor( self.env, video_dir, video_callable=lambda x: True, resume=True) self.ale = self.env.env.env.ale self.screen_size = Atari.s_dim[:2] # 84x84 self.noop_max = 30 self.frame_skip = 4 self.frame_feq = 4 self.s_dim = Atari.s_dim self.a_dim = Atari.a_dim self.action_space = [1, 2, 3] # Breakout specify self.done = True def new_round(self): if not self.done: # dead but not done # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) obs = self.preprocess(obs) else: # terminal self.env.reset() # No-op for _ in range(np.random.randint(1, self.noop_max + 1)): obs, _, done, _ = self.env.step(0) obs = self.preprocess(obs) return obs def preprocess(self, observ): return resize(rgb2gray(observ), self.screen_size) def step(self, action): observ, reward, dead = None, 0, False for _ in range(self.frame_skip): lives_before = self.ale.lives() o, r, self.done, _ = self.env.step(self.action_space[action]) lives_after = self.ale.lives() reward += r if lives_before > lives_after: dead = True break observ = self.preprocess(o) observ = np.reshape(observ, newshape=self.screen_size + [1]) self.state = np.append(self.state[:, :, 1:], observ, axis=2) return self.state, reward, dead, self.done
from __future__ import print_function from __future__ import division import os import gym import numpy as np from skimage.transform import resize from skimage.color import rgb2gray class Atari(object): s_dim = [84, 84, 1] a_dim = 3 def __init__(self, args, record_video=False): self.env = gym.make('BreakoutNoFrameskip-v4') self.ale = self.env.env.ale # ale interface if record_video: video_dir = os.path.join(args.save_path, 'videos') if not os.path.exists(video_dir): os.makedirs(video_dir) self.env = gym.wrappers.Monitor( self.env, video_dir, video_callable=lambda x: True, resume=True) self.ale = self.env.env.env.ale self.screen_size = Atari.s_dim[:2] # 84x84 self.noop_max = 30 self.frame_skip = 4 self.frame_feq = 4 self.s_dim = Atari.s_dim self.a_dim = Atari.a_dim self.action_space = [1, 2, 3] # Breakout specify self.done = True def new_round(self): if not self.done: # dead but not done # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) obs = self.preprocess(obs) else: # terminal self.env.reset() # No-op for _ in range(np.random.randint(1, self.noop_max + 1)): obs, _, done, _ = self.env.step(0) obs = self.preprocess(obs) return obs def preprocess(self, observ): return resize(rgb2gray(observ), self.screen_size) def step(self, action): observ, reward, dead = None, 0, False for _ in range(self.frame_skip): lives_before = self.ale.lives() o, r, self.done, _ = self.env.step(self.action_space[action]) lives_after = self.ale.lives() reward += r if lives_before > lives_after: dead = True break observ = self.preprocess(o) observ = np.reshape(observ, newshape=self.screen_size + [1]) self.state = np.append(self.state[:, :, 1:], observ, axis=2) return self.state, reward, dead, self.done
en
0.407234
# ale interface # 84x84 # Breakout specify # dead but not done # no-op step to advance from terminal/lost life state # terminal # No-op
2.579429
3
content/_build/jupyter_execute/macm.py
NBCLab/nimare-paper
3
8049
<reponame>NBCLab/nimare-paper #!/usr/bin/env python # coding: utf-8 # # Meta-Analytic Coactivation Modeling # In[1]: # First, import the necessary modules and functions import os from datetime import datetime import matplotlib.pyplot as plt from myst_nb import glue from repo2data.repo2data import Repo2Data import nimare start = datetime.now() # Install the data if running locally, or points to cached data if running on neurolibre DATA_REQ_FILE = os.path.join("../binder/data_requirement.json") FIG_DIR = os.path.abspath("../images") # Download data repo2data = Repo2Data(DATA_REQ_FILE) data_path = repo2data.install() data_path = os.path.join(data_path[0], "data") # Now, load the Datasets we will use in this chapter neurosynth_dset = nimare.dataset.Dataset.load(os.path.join(data_path, "neurosynth_dataset.pkl.gz")) # Meta-analytic coactivation modeling (MACM) {cite:p}`Laird2009-gc,Robinson2010-iv,Eickhoff2010-vx`, also known as meta-analytic connectivity modeling, uses meta-analytic data to measure co-occurrence of activations between brain regions providing evidence of functional connectivity of brain regions across tasks. # In coordinate-based MACM, whole-brain studies within the database are selected based on whether or not they report at least one peak in a region of interest specified for the analysis. # These studies are then subjected to a meta-analysis, often comparing the selected studies to those remaining in the database. # In this way, the significance of each voxel in the analysis corresponds to whether there is greater convergence of foci at the voxel among studies which also report foci in the region of interest than those which do not. # # <!-- TODO: Determine appropriate citation style here. --> # # MACM results have historically been accorded a similar interpretation to task-related functional connectivity (e.g., {cite:p}`Hok2015-lt,Kellermann2013-en`), although this approach is quite removed from functional connectivity analyses of task fMRI data (e.g., beta-series correlations, psychophysiological interactions, or even seed-to-voxel functional connectivity analyses on task data). # Nevertheless, MACM analyses do show high correspondence with resting-state functional connectivity {cite:p}`Reid2017-ez`. # MACM has been used to characterize the task-based functional coactivation of the cerebellum {cite:p}`Riedel2015-tx`, lateral prefrontal cortex {cite:p}`Reid2016-ba`, fusiform gyrus {cite:p}`Caspers2014-ja`, and several other brain regions. # # Within NiMARE, MACMs can be performed by selecting studies in a Dataset based on the presence of activation within a target mask or coordinate-centered sphere. # # In this section, we will perform two MACMs- one with a target mask and one with a coordinate-centered sphere. # For the former, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_mask`. # For the latter, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_coordinate`. # In[2]: # Create Dataset only containing studies with peaks within the amygdala mask amygdala_mask = os.path.join(data_path, "amygdala_roi.nii.gz") amygdala_ids = neurosynth_dset.get_studies_by_mask(amygdala_mask) dset_amygdala = neurosynth_dset.slice(amygdala_ids) # Create Dataset only containing studies with peaks within the sphere ROI sphere_ids = neurosynth_dset.get_studies_by_coordinate([[24, -2, -20]], r=6) dset_sphere = neurosynth_dset.slice(sphere_ids) # In[3]: import numpy as np from nilearn import input_data, plotting # In order to plot a sphere with a precise radius around a coordinate with # nilearn, we need to use a NiftiSpheresMasker mask_img = neurosynth_dset.masker.mask_img sphere_masker = input_data.NiftiSpheresMasker([[24, -2, -20]], radius=6, mask_img=mask_img) sphere_masker.fit(mask_img) sphere_img = sphere_masker.inverse_transform(np.array([[1]])) fig, axes = plt.subplots(figsize=(6, 4), nrows=2) display = plotting.plot_roi( amygdala_mask, annotate=False, draw_cross=False, axes=axes[0], figure=fig, ) axes[0].set_title("Amygdala ROI") display = plotting.plot_roi( sphere_img, annotate=False, draw_cross=False, axes=axes[1], figure=fig, ) axes[1].set_title("Spherical ROI") glue("figure_macm_rois", fig, display=False) # ```{glue:figure} figure_macm_rois # :name: figure_macm_rois # :align: center # # Region of interest masks for (1) a target mask-based MACM and (2) a coordinate-based MACM. # ``` # Once the `Dataset` has been reduced to studies with coordinates within the mask or sphere requested, any of the supported CBMA Estimators can be run. # In[4]: from nimare import meta meta_amyg = meta.cbma.ale.ALE(kernel__sample_size=20) results_amyg = meta_amyg.fit(dset_amygdala) meta_sphere = meta.cbma.ale.ALE(kernel__sample_size=20) results_sphere = meta_sphere.fit(dset_sphere) # In[5]: meta_results = { "Amygdala ALE MACM": results_amyg.get_map("z", return_type="image"), "Sphere ALE MACM": results_sphere.get_map("z", return_type="image"), } fig, axes = plt.subplots(figsize=(6, 4), nrows=2) for i_meta, (name, file_) in enumerate(meta_results.items()): display = plotting.plot_stat_map( file_, annotate=False, axes=axes[i_meta], cmap="Reds", cut_coords=[24, -2, -20], draw_cross=False, figure=fig, ) axes[i_meta].set_title(name) colorbar = display._cbar colorbar_ticks = colorbar.get_ticks() if colorbar_ticks[0] < 0: new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]] else: new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]] colorbar.set_ticks(new_ticks, update_ticks=True) glue("figure_macm", fig, display=False) # ```{glue:figure} figure_macm # :name: figure_macm # :align: center # # Unthresholded z-statistic maps for (1) the target mask-based MACM and (2) the coordinate-based MACM. # ``` # In[6]: end = datetime.now() print(f"macm.md took {end - start} to build.")
#!/usr/bin/env python # coding: utf-8 # # Meta-Analytic Coactivation Modeling # In[1]: # First, import the necessary modules and functions import os from datetime import datetime import matplotlib.pyplot as plt from myst_nb import glue from repo2data.repo2data import Repo2Data import nimare start = datetime.now() # Install the data if running locally, or points to cached data if running on neurolibre DATA_REQ_FILE = os.path.join("../binder/data_requirement.json") FIG_DIR = os.path.abspath("../images") # Download data repo2data = Repo2Data(DATA_REQ_FILE) data_path = repo2data.install() data_path = os.path.join(data_path[0], "data") # Now, load the Datasets we will use in this chapter neurosynth_dset = nimare.dataset.Dataset.load(os.path.join(data_path, "neurosynth_dataset.pkl.gz")) # Meta-analytic coactivation modeling (MACM) {cite:p}`Laird2009-gc,Robinson2010-iv,Eickhoff2010-vx`, also known as meta-analytic connectivity modeling, uses meta-analytic data to measure co-occurrence of activations between brain regions providing evidence of functional connectivity of brain regions across tasks. # In coordinate-based MACM, whole-brain studies within the database are selected based on whether or not they report at least one peak in a region of interest specified for the analysis. # These studies are then subjected to a meta-analysis, often comparing the selected studies to those remaining in the database. # In this way, the significance of each voxel in the analysis corresponds to whether there is greater convergence of foci at the voxel among studies which also report foci in the region of interest than those which do not. # # <!-- TODO: Determine appropriate citation style here. --> # # MACM results have historically been accorded a similar interpretation to task-related functional connectivity (e.g., {cite:p}`Hok2015-lt,Kellermann2013-en`), although this approach is quite removed from functional connectivity analyses of task fMRI data (e.g., beta-series correlations, psychophysiological interactions, or even seed-to-voxel functional connectivity analyses on task data). # Nevertheless, MACM analyses do show high correspondence with resting-state functional connectivity {cite:p}`Reid2017-ez`. # MACM has been used to characterize the task-based functional coactivation of the cerebellum {cite:p}`Riedel2015-tx`, lateral prefrontal cortex {cite:p}`Reid2016-ba`, fusiform gyrus {cite:p}`Caspers2014-ja`, and several other brain regions. # # Within NiMARE, MACMs can be performed by selecting studies in a Dataset based on the presence of activation within a target mask or coordinate-centered sphere. # # In this section, we will perform two MACMs- one with a target mask and one with a coordinate-centered sphere. # For the former, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_mask`. # For the latter, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_coordinate`. # In[2]: # Create Dataset only containing studies with peaks within the amygdala mask amygdala_mask = os.path.join(data_path, "amygdala_roi.nii.gz") amygdala_ids = neurosynth_dset.get_studies_by_mask(amygdala_mask) dset_amygdala = neurosynth_dset.slice(amygdala_ids) # Create Dataset only containing studies with peaks within the sphere ROI sphere_ids = neurosynth_dset.get_studies_by_coordinate([[24, -2, -20]], r=6) dset_sphere = neurosynth_dset.slice(sphere_ids) # In[3]: import numpy as np from nilearn import input_data, plotting # In order to plot a sphere with a precise radius around a coordinate with # nilearn, we need to use a NiftiSpheresMasker mask_img = neurosynth_dset.masker.mask_img sphere_masker = input_data.NiftiSpheresMasker([[24, -2, -20]], radius=6, mask_img=mask_img) sphere_masker.fit(mask_img) sphere_img = sphere_masker.inverse_transform(np.array([[1]])) fig, axes = plt.subplots(figsize=(6, 4), nrows=2) display = plotting.plot_roi( amygdala_mask, annotate=False, draw_cross=False, axes=axes[0], figure=fig, ) axes[0].set_title("Amygdala ROI") display = plotting.plot_roi( sphere_img, annotate=False, draw_cross=False, axes=axes[1], figure=fig, ) axes[1].set_title("Spherical ROI") glue("figure_macm_rois", fig, display=False) # ```{glue:figure} figure_macm_rois # :name: figure_macm_rois # :align: center # # Region of interest masks for (1) a target mask-based MACM and (2) a coordinate-based MACM. # ``` # Once the `Dataset` has been reduced to studies with coordinates within the mask or sphere requested, any of the supported CBMA Estimators can be run. # In[4]: from nimare import meta meta_amyg = meta.cbma.ale.ALE(kernel__sample_size=20) results_amyg = meta_amyg.fit(dset_amygdala) meta_sphere = meta.cbma.ale.ALE(kernel__sample_size=20) results_sphere = meta_sphere.fit(dset_sphere) # In[5]: meta_results = { "Amygdala ALE MACM": results_amyg.get_map("z", return_type="image"), "Sphere ALE MACM": results_sphere.get_map("z", return_type="image"), } fig, axes = plt.subplots(figsize=(6, 4), nrows=2) for i_meta, (name, file_) in enumerate(meta_results.items()): display = plotting.plot_stat_map( file_, annotate=False, axes=axes[i_meta], cmap="Reds", cut_coords=[24, -2, -20], draw_cross=False, figure=fig, ) axes[i_meta].set_title(name) colorbar = display._cbar colorbar_ticks = colorbar.get_ticks() if colorbar_ticks[0] < 0: new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]] else: new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]] colorbar.set_ticks(new_ticks, update_ticks=True) glue("figure_macm", fig, display=False) # ```{glue:figure} figure_macm # :name: figure_macm # :align: center # # Unthresholded z-statistic maps for (1) the target mask-based MACM and (2) the coordinate-based MACM. # ``` # In[6]: end = datetime.now() print(f"macm.md took {end - start} to build.")
en
0.817132
#!/usr/bin/env python # coding: utf-8 # # Meta-Analytic Coactivation Modeling # In[1]: # First, import the necessary modules and functions # Install the data if running locally, or points to cached data if running on neurolibre # Download data # Now, load the Datasets we will use in this chapter # Meta-analytic coactivation modeling (MACM) {cite:p}`Laird2009-gc,Robinson2010-iv,Eickhoff2010-vx`, also known as meta-analytic connectivity modeling, uses meta-analytic data to measure co-occurrence of activations between brain regions providing evidence of functional connectivity of brain regions across tasks. # In coordinate-based MACM, whole-brain studies within the database are selected based on whether or not they report at least one peak in a region of interest specified for the analysis. # These studies are then subjected to a meta-analysis, often comparing the selected studies to those remaining in the database. # In this way, the significance of each voxel in the analysis corresponds to whether there is greater convergence of foci at the voxel among studies which also report foci in the region of interest than those which do not. # # <!-- TODO: Determine appropriate citation style here. --> # # MACM results have historically been accorded a similar interpretation to task-related functional connectivity (e.g., {cite:p}`Hok2015-lt,Kellermann2013-en`), although this approach is quite removed from functional connectivity analyses of task fMRI data (e.g., beta-series correlations, psychophysiological interactions, or even seed-to-voxel functional connectivity analyses on task data). # Nevertheless, MACM analyses do show high correspondence with resting-state functional connectivity {cite:p}`Reid2017-ez`. # MACM has been used to characterize the task-based functional coactivation of the cerebellum {cite:p}`Riedel2015-tx`, lateral prefrontal cortex {cite:p}`Reid2016-ba`, fusiform gyrus {cite:p}`Caspers2014-ja`, and several other brain regions. # # Within NiMARE, MACMs can be performed by selecting studies in a Dataset based on the presence of activation within a target mask or coordinate-centered sphere. # # In this section, we will perform two MACMs- one with a target mask and one with a coordinate-centered sphere. # For the former, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_mask`. # For the latter, we use {py:meth}`nimare.dataset.Dataset.get_studies_by_coordinate`. # In[2]: # Create Dataset only containing studies with peaks within the amygdala mask # Create Dataset only containing studies with peaks within the sphere ROI # In[3]: # In order to plot a sphere with a precise radius around a coordinate with # nilearn, we need to use a NiftiSpheresMasker # ```{glue:figure} figure_macm_rois # :name: figure_macm_rois # :align: center # # Region of interest masks for (1) a target mask-based MACM and (2) a coordinate-based MACM. # ``` # Once the `Dataset` has been reduced to studies with coordinates within the mask or sphere requested, any of the supported CBMA Estimators can be run. # In[4]: # In[5]: # ```{glue:figure} figure_macm # :name: figure_macm # :align: center # # Unthresholded z-statistic maps for (1) the target mask-based MACM and (2) the coordinate-based MACM. # ``` # In[6]:
2.356604
2
cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IPSLA_ECHO_MIB.py
Maikor/ydk-py
0
8050
<filename>cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IPSLA_ECHO_MIB.py """ CISCO_IPSLA_ECHO_MIB This MIB module defines the templates for IP SLA operations of ICMP echo, UDP echo and TCP connect. The ICMP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an ICMP echo request message to the destination and receiving an ICMP echo reply. The UDP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an UDP echo request message to the destination and receiving an UDP echo reply. The TCP connect operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken to perform a TCP connect operation. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class CISCOIPSLAECHOMIB(Entity): """ .. attribute:: cipslaicmpechotmpltable A table that contains ICMP echo template definitions **type**\: :py:class:`CipslaIcmpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable>` .. attribute:: cipslaudpechotmpltable A table that contains UDP echo template specific definitions **type**\: :py:class:`CipslaUdpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable>` .. attribute:: cipslatcpconntmpltable A table that contains TCP connect template specific definitions **type**\: :py:class:`CipslaTcpConnTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB, self).__init__() self._top_entity = None self.yang_name = "CISCO-IPSLA-ECHO-MIB" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaIcmpEchoTmplTable", ("cipslaicmpechotmpltable", CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable)), ("cipslaUdpEchoTmplTable", ("cipslaudpechotmpltable", CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable)), ("cipslaTcpConnTmplTable", ("cipslatcpconntmpltable", CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable))]) self._leafs = OrderedDict() self.cipslaicmpechotmpltable = CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable() self.cipslaicmpechotmpltable.parent = self self._children_name_map["cipslaicmpechotmpltable"] = "cipslaIcmpEchoTmplTable" self.cipslaudpechotmpltable = CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable() self.cipslaudpechotmpltable.parent = self self._children_name_map["cipslaudpechotmpltable"] = "cipslaUdpEchoTmplTable" self.cipslatcpconntmpltable = CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable() self.cipslatcpconntmpltable.parent = self self._children_name_map["cipslatcpconntmpltable"] = "cipslaTcpConnTmplTable" self._segment_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB, [], name, value) class CipslaIcmpEchoTmplTable(Entity): """ A table that contains ICMP echo template definitions. .. attribute:: cipslaicmpechotmplentry A row entry representing an IPSLA ICMP echo template **type**\: list of :py:class:`CipslaIcmpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable, self).__init__() self.yang_name = "cipslaIcmpEchoTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaIcmpEchoTmplEntry", ("cipslaicmpechotmplentry", CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry))]) self._leafs = OrderedDict() self.cipslaicmpechotmplentry = YList(self) self._segment_path = lambda: "cipslaIcmpEchoTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable, [], name, value) class CipslaIcmpEchoTmplEntry(Entity): """ A row entry representing an IPSLA ICMP echo template. .. attribute:: cipslaicmpechotmplname (key) This field is used to specify the ICMP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaicmpechotmpldescription This field is used to provide description for the ICMP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaicmpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaIcmpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaicmpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaicmpechotmpltimeout Specifies the duration to wait for a IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaicmpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaicmpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' IP SLA request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 0..16384 **units**\: octets .. attribute:: cipslaicmpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaicmpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaicmpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaIcmpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaicmpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaicmpechotmplhistbuckets The maximum number of history buckets to record. This value is set to the number of operations to keep per lifetime. After cipslaIcmpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaIcmpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaicmpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaIcmpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry.CipslaIcmpEchoTmplHistFilter>` .. attribute:: cipslaicmpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaicmpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaIcmpEchoTmplStatsNumDistBuckets will be kept. The last cipslaIcmpEchoTmplStatsNumDistBucket will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaicmpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaIcmpEchoTmplDistBuckets = 5 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaIcmpEchoTmplDistBuckets = 1 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaIcmpEchoTmplDistInterval does not apply when cipslaIcmpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaicmpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaicmpechotmplrowstatus The status of the conceptual ICMP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry, self).__init__() self.yang_name = "cipslaIcmpEchoTmplEntry" self.yang_parent_name = "cipslaIcmpEchoTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslaicmpechotmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslaicmpechotmplname', (YLeaf(YType.str, 'cipslaIcmpEchoTmplName'), ['str'])), ('cipslaicmpechotmpldescription', (YLeaf(YType.str, 'cipslaIcmpEchoTmplDescription'), ['str'])), ('cipslaicmpechotmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslaicmpechotmplsrcaddr', (YLeaf(YType.str, 'cipslaIcmpEchoTmplSrcAddr'), ['str'])), ('cipslaicmpechotmpltimeout', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplTimeOut'), ['int'])), ('cipslaicmpechotmplverifydata', (YLeaf(YType.boolean, 'cipslaIcmpEchoTmplVerifyData'), ['bool'])), ('cipslaicmpechotmplreqdatasize', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplReqDataSize'), ['int'])), ('cipslaicmpechotmpltos', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplTOS'), ['int'])), ('cipslaicmpechotmplvrfname', (YLeaf(YType.str, 'cipslaIcmpEchoTmplVrfName'), ['str'])), ('cipslaicmpechotmplthreshold', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplThreshold'), ['int'])), ('cipslaicmpechotmplhistlives', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplHistLives'), ['int'])), ('cipslaicmpechotmplhistbuckets', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplHistBuckets'), ['int'])), ('cipslaicmpechotmplhistfilter', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry.CipslaIcmpEchoTmplHistFilter')])), ('cipslaicmpechotmplstatshours', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplStatsHours'), ['int'])), ('cipslaicmpechotmpldistbuckets', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplDistBuckets'), ['int'])), ('cipslaicmpechotmpldistinterval', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplDistInterval'), ['int'])), ('cipslaicmpechotmplstoragetype', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslaicmpechotmplrowstatus', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslaicmpechotmplname = None self.cipslaicmpechotmpldescription = None self.cipslaicmpechotmplsrcaddrtype = None self.cipslaicmpechotmplsrcaddr = None self.cipslaicmpechotmpltimeout = None self.cipslaicmpechotmplverifydata = None self.cipslaicmpechotmplreqdatasize = None self.cipslaicmpechotmpltos = None self.cipslaicmpechotmplvrfname = None self.cipslaicmpechotmplthreshold = None self.cipslaicmpechotmplhistlives = None self.cipslaicmpechotmplhistbuckets = None self.cipslaicmpechotmplhistfilter = None self.cipslaicmpechotmplstatshours = None self.cipslaicmpechotmpldistbuckets = None self.cipslaicmpechotmpldistinterval = None self.cipslaicmpechotmplstoragetype = None self.cipslaicmpechotmplrowstatus = None self._segment_path = lambda: "cipslaIcmpEchoTmplEntry" + "[cipslaIcmpEchoTmplName='" + str(self.cipslaicmpechotmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaIcmpEchoTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry, ['cipslaicmpechotmplname', 'cipslaicmpechotmpldescription', 'cipslaicmpechotmplsrcaddrtype', 'cipslaicmpechotmplsrcaddr', 'cipslaicmpechotmpltimeout', 'cipslaicmpechotmplverifydata', 'cipslaicmpechotmplreqdatasize', 'cipslaicmpechotmpltos', 'cipslaicmpechotmplvrfname', 'cipslaicmpechotmplthreshold', 'cipslaicmpechotmplhistlives', 'cipslaicmpechotmplhistbuckets', 'cipslaicmpechotmplhistfilter', 'cipslaicmpechotmplstatshours', 'cipslaicmpechotmpldistbuckets', 'cipslaicmpechotmpldistinterval', 'cipslaicmpechotmplstoragetype', 'cipslaicmpechotmplrowstatus'], name, value) class CipslaIcmpEchoTmplHistFilter(Enum): """ CipslaIcmpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") class CipslaUdpEchoTmplTable(Entity): """ A table that contains UDP echo template specific definitions. .. attribute:: cipslaudpechotmplentry A row entry representing an IPSLA UDP echo template **type**\: list of :py:class:`CipslaUdpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable, self).__init__() self.yang_name = "cipslaUdpEchoTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaUdpEchoTmplEntry", ("cipslaudpechotmplentry", CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry))]) self._leafs = OrderedDict() self.cipslaudpechotmplentry = YList(self) self._segment_path = lambda: "cipslaUdpEchoTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable, [], name, value) class CipslaUdpEchoTmplEntry(Entity): """ A row entry representing an IPSLA UDP echo template. .. attribute:: cipslaudpechotmplname (key) A string which specifies the UDP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaudpechotmpldescription A string which provides description to the UDP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaudpechotmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslaudpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaUdpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaudpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaudpechotmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslaudpechotmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaudpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaudpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' RTT request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 4..1500 **units**\: octets .. attribute:: cipslaudpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaudpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing Table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaudpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaUdpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaudpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaudpechotmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaUdpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaUdpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaudpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaUdpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry.CipslaUdpEchoTmplHistFilter>` .. attribute:: cipslaudpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaudpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaUdpEchoTmplStatsNumDistBuckets will be kept. The last cipslaUdpEchoTmplStatsNumDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaudpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaUdpEchoTmplDistBuckets = 5 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaUdpEchoTmplDistBuckets = 1 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaUdpEchoTmplDistInterval does not apply when cipslaUdpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaudpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaudpechotmplrowstatus The status of the conceptual UDP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry, self).__init__() self.yang_name = "cipslaUdpEchoTmplEntry" self.yang_parent_name = "cipslaUdpEchoTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslaudpechotmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslaudpechotmplname', (YLeaf(YType.str, 'cipslaUdpEchoTmplName'), ['str'])), ('cipslaudpechotmpldescription', (YLeaf(YType.str, 'cipslaUdpEchoTmplDescription'), ['str'])), ('cipslaudpechotmplcontrolenable', (YLeaf(YType.boolean, 'cipslaUdpEchoTmplControlEnable'), ['bool'])), ('cipslaudpechotmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslaudpechotmplsrcaddr', (YLeaf(YType.str, 'cipslaUdpEchoTmplSrcAddr'), ['str'])), ('cipslaudpechotmplsrcport', (YLeaf(YType.uint16, 'cipslaUdpEchoTmplSrcPort'), ['int'])), ('cipslaudpechotmpltimeout', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplTimeOut'), ['int'])), ('cipslaudpechotmplverifydata', (YLeaf(YType.boolean, 'cipslaUdpEchoTmplVerifyData'), ['bool'])), ('cipslaudpechotmplreqdatasize', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplReqDataSize'), ['int'])), ('cipslaudpechotmpltos', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplTOS'), ['int'])), ('cipslaudpechotmplvrfname', (YLeaf(YType.str, 'cipslaUdpEchoTmplVrfName'), ['str'])), ('cipslaudpechotmplthreshold', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplThreshold'), ['int'])), ('cipslaudpechotmplhistlives', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplHistLives'), ['int'])), ('cipslaudpechotmplhistbuckets', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplHistBuckets'), ['int'])), ('cipslaudpechotmplhistfilter', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry.CipslaUdpEchoTmplHistFilter')])), ('cipslaudpechotmplstatshours', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplStatsHours'), ['int'])), ('cipslaudpechotmpldistbuckets', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplDistBuckets'), ['int'])), ('cipslaudpechotmpldistinterval', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplDistInterval'), ['int'])), ('cipslaudpechotmplstoragetype', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslaudpechotmplrowstatus', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslaudpechotmplname = None self.cipslaudpechotmpldescription = None self.cipslaudpechotmplcontrolenable = None self.cipslaudpechotmplsrcaddrtype = None self.cipslaudpechotmplsrcaddr = None self.cipslaudpechotmplsrcport = None self.cipslaudpechotmpltimeout = None self.cipslaudpechotmplverifydata = None self.cipslaudpechotmplreqdatasize = None self.cipslaudpechotmpltos = None self.cipslaudpechotmplvrfname = None self.cipslaudpechotmplthreshold = None self.cipslaudpechotmplhistlives = None self.cipslaudpechotmplhistbuckets = None self.cipslaudpechotmplhistfilter = None self.cipslaudpechotmplstatshours = None self.cipslaudpechotmpldistbuckets = None self.cipslaudpechotmpldistinterval = None self.cipslaudpechotmplstoragetype = None self.cipslaudpechotmplrowstatus = None self._segment_path = lambda: "cipslaUdpEchoTmplEntry" + "[cipslaUdpEchoTmplName='" + str(self.cipslaudpechotmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaUdpEchoTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry, ['cipslaudpechotmplname', 'cipslaudpechotmpldescription', 'cipslaudpechotmplcontrolenable', 'cipslaudpechotmplsrcaddrtype', 'cipslaudpechotmplsrcaddr', 'cipslaudpechotmplsrcport', 'cipslaudpechotmpltimeout', 'cipslaudpechotmplverifydata', 'cipslaudpechotmplreqdatasize', 'cipslaudpechotmpltos', 'cipslaudpechotmplvrfname', 'cipslaudpechotmplthreshold', 'cipslaudpechotmplhistlives', 'cipslaudpechotmplhistbuckets', 'cipslaudpechotmplhistfilter', 'cipslaudpechotmplstatshours', 'cipslaudpechotmpldistbuckets', 'cipslaudpechotmpldistinterval', 'cipslaudpechotmplstoragetype', 'cipslaudpechotmplrowstatus'], name, value) class CipslaUdpEchoTmplHistFilter(Enum): """ CipslaUdpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") class CipslaTcpConnTmplTable(Entity): """ A table that contains TCP connect template specific definitions. .. attribute:: cipslatcpconntmplentry A row entry representing an IPSLA TCP connect template **type**\: list of :py:class:`CipslaTcpConnTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable, self).__init__() self.yang_name = "cipslaTcpConnTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaTcpConnTmplEntry", ("cipslatcpconntmplentry", CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry))]) self._leafs = OrderedDict() self.cipslatcpconntmplentry = YList(self) self._segment_path = lambda: "cipslaTcpConnTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable, [], name, value) class CipslaTcpConnTmplEntry(Entity): """ A row entry representing an IPSLA TCP connect template. .. attribute:: cipslatcpconntmplname (key) A string which specifies the TCP connect template name **type**\: str **length:** 1..64 .. attribute:: cipslatcpconntmpldescription A string which provides description for the TCP connect template **type**\: str **length:** 0..128 .. attribute:: cipslatcpconntmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslatcpconntmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaTcpConnTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslatcpconntmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslatcpconntmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslatcpconntmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslatcpconntmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslatcpconntmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslatcpconntmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaTcpConnTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslatcpconntmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslatcpconntmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaTcpConnTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaTcpConnTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslatcpconntmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaTcpConnTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry.CipslaTcpConnTmplHistFilter>` .. attribute:: cipslatcpconntmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslatcpconntmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaTcpConnTmplDistBuckets will be kept. The last cipslaTcpConnTmplDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslatcpconntmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaTcpConnTmplDistBuckets = 5 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaTcpConnTmplDistBuckets = 1 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaTcpConnTmplDistInterval does not apply when cipslaTcpConnTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslatcpconntmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslatcpconntmplrowstatus The status of the conceptual tcp connect control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry, self).__init__() self.yang_name = "cipslaTcpConnTmplEntry" self.yang_parent_name = "cipslaTcpConnTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslatcpconntmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslatcpconntmplname', (YLeaf(YType.str, 'cipslaTcpConnTmplName'), ['str'])), ('cipslatcpconntmpldescription', (YLeaf(YType.str, 'cipslaTcpConnTmplDescription'), ['str'])), ('cipslatcpconntmplcontrolenable', (YLeaf(YType.boolean, 'cipslaTcpConnTmplControlEnable'), ['bool'])), ('cipslatcpconntmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslatcpconntmplsrcaddr', (YLeaf(YType.str, 'cipslaTcpConnTmplSrcAddr'), ['str'])), ('cipslatcpconntmplsrcport', (YLeaf(YType.uint16, 'cipslaTcpConnTmplSrcPort'), ['int'])), ('cipslatcpconntmpltimeout', (YLeaf(YType.uint32, 'cipslaTcpConnTmplTimeOut'), ['int'])), ('cipslatcpconntmplverifydata', (YLeaf(YType.boolean, 'cipslaTcpConnTmplVerifyData'), ['bool'])), ('cipslatcpconntmpltos', (YLeaf(YType.uint32, 'cipslaTcpConnTmplTOS'), ['int'])), ('cipslatcpconntmplthreshold', (YLeaf(YType.uint32, 'cipslaTcpConnTmplThreshold'), ['int'])), ('cipslatcpconntmplhistlives', (YLeaf(YType.uint32, 'cipslaTcpConnTmplHistLives'), ['int'])), ('cipslatcpconntmplhistbuckets', (YLeaf(YType.uint32, 'cipslaTcpConnTmplHistBuckets'), ['int'])), ('cipslatcpconntmplhistfilter', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry.CipslaTcpConnTmplHistFilter')])), ('cipslatcpconntmplstatshours', (YLeaf(YType.uint32, 'cipslaTcpConnTmplStatsHours'), ['int'])), ('cipslatcpconntmpldistbuckets', (YLeaf(YType.uint32, 'cipslaTcpConnTmplDistBuckets'), ['int'])), ('cipslatcpconntmpldistinterval', (YLeaf(YType.uint32, 'cipslaTcpConnTmplDistInterval'), ['int'])), ('cipslatcpconntmplstoragetype', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslatcpconntmplrowstatus', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslatcpconntmplname = None self.cipslatcpconntmpldescription = None self.cipslatcpconntmplcontrolenable = None self.cipslatcpconntmplsrcaddrtype = None self.cipslatcpconntmplsrcaddr = None self.cipslatcpconntmplsrcport = None self.cipslatcpconntmpltimeout = None self.cipslatcpconntmplverifydata = None self.cipslatcpconntmpltos = None self.cipslatcpconntmplthreshold = None self.cipslatcpconntmplhistlives = None self.cipslatcpconntmplhistbuckets = None self.cipslatcpconntmplhistfilter = None self.cipslatcpconntmplstatshours = None self.cipslatcpconntmpldistbuckets = None self.cipslatcpconntmpldistinterval = None self.cipslatcpconntmplstoragetype = None self.cipslatcpconntmplrowstatus = None self._segment_path = lambda: "cipslaTcpConnTmplEntry" + "[cipslaTcpConnTmplName='" + str(self.cipslatcpconntmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaTcpConnTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry, ['cipslatcpconntmplname', 'cipslatcpconntmpldescription', 'cipslatcpconntmplcontrolenable', 'cipslatcpconntmplsrcaddrtype', 'cipslatcpconntmplsrcaddr', 'cipslatcpconntmplsrcport', 'cipslatcpconntmpltimeout', 'cipslatcpconntmplverifydata', 'cipslatcpconntmpltos', 'cipslatcpconntmplthreshold', 'cipslatcpconntmplhistlives', 'cipslatcpconntmplhistbuckets', 'cipslatcpconntmplhistfilter', 'cipslatcpconntmplstatshours', 'cipslatcpconntmpldistbuckets', 'cipslatcpconntmpldistinterval', 'cipslatcpconntmplstoragetype', 'cipslatcpconntmplrowstatus'], name, value) class CipslaTcpConnTmplHistFilter(Enum): """ CipslaTcpConnTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") def clone_ptr(self): self._top_entity = CISCOIPSLAECHOMIB() return self._top_entity
<filename>cisco-ios-xe/ydk/models/cisco_ios_xe/CISCO_IPSLA_ECHO_MIB.py """ CISCO_IPSLA_ECHO_MIB This MIB module defines the templates for IP SLA operations of ICMP echo, UDP echo and TCP connect. The ICMP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an ICMP echo request message to the destination and receiving an ICMP echo reply. The UDP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an UDP echo request message to the destination and receiving an UDP echo reply. The TCP connect operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken to perform a TCP connect operation. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class CISCOIPSLAECHOMIB(Entity): """ .. attribute:: cipslaicmpechotmpltable A table that contains ICMP echo template definitions **type**\: :py:class:`CipslaIcmpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable>` .. attribute:: cipslaudpechotmpltable A table that contains UDP echo template specific definitions **type**\: :py:class:`CipslaUdpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable>` .. attribute:: cipslatcpconntmpltable A table that contains TCP connect template specific definitions **type**\: :py:class:`CipslaTcpConnTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB, self).__init__() self._top_entity = None self.yang_name = "CISCO-IPSLA-ECHO-MIB" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaIcmpEchoTmplTable", ("cipslaicmpechotmpltable", CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable)), ("cipslaUdpEchoTmplTable", ("cipslaudpechotmpltable", CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable)), ("cipslaTcpConnTmplTable", ("cipslatcpconntmpltable", CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable))]) self._leafs = OrderedDict() self.cipslaicmpechotmpltable = CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable() self.cipslaicmpechotmpltable.parent = self self._children_name_map["cipslaicmpechotmpltable"] = "cipslaIcmpEchoTmplTable" self.cipslaudpechotmpltable = CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable() self.cipslaudpechotmpltable.parent = self self._children_name_map["cipslaudpechotmpltable"] = "cipslaUdpEchoTmplTable" self.cipslatcpconntmpltable = CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable() self.cipslatcpconntmpltable.parent = self self._children_name_map["cipslatcpconntmpltable"] = "cipslaTcpConnTmplTable" self._segment_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB, [], name, value) class CipslaIcmpEchoTmplTable(Entity): """ A table that contains ICMP echo template definitions. .. attribute:: cipslaicmpechotmplentry A row entry representing an IPSLA ICMP echo template **type**\: list of :py:class:`CipslaIcmpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable, self).__init__() self.yang_name = "cipslaIcmpEchoTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaIcmpEchoTmplEntry", ("cipslaicmpechotmplentry", CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry))]) self._leafs = OrderedDict() self.cipslaicmpechotmplentry = YList(self) self._segment_path = lambda: "cipslaIcmpEchoTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable, [], name, value) class CipslaIcmpEchoTmplEntry(Entity): """ A row entry representing an IPSLA ICMP echo template. .. attribute:: cipslaicmpechotmplname (key) This field is used to specify the ICMP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaicmpechotmpldescription This field is used to provide description for the ICMP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaicmpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaIcmpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaicmpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaicmpechotmpltimeout Specifies the duration to wait for a IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaicmpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaicmpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' IP SLA request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 0..16384 **units**\: octets .. attribute:: cipslaicmpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaicmpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaicmpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaIcmpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaicmpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaicmpechotmplhistbuckets The maximum number of history buckets to record. This value is set to the number of operations to keep per lifetime. After cipslaIcmpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaIcmpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaicmpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaIcmpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry.CipslaIcmpEchoTmplHistFilter>` .. attribute:: cipslaicmpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaicmpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaIcmpEchoTmplStatsNumDistBuckets will be kept. The last cipslaIcmpEchoTmplStatsNumDistBucket will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaicmpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaIcmpEchoTmplDistBuckets = 5 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaIcmpEchoTmplDistBuckets = 1 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaIcmpEchoTmplDistInterval does not apply when cipslaIcmpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaicmpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaicmpechotmplrowstatus The status of the conceptual ICMP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry, self).__init__() self.yang_name = "cipslaIcmpEchoTmplEntry" self.yang_parent_name = "cipslaIcmpEchoTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslaicmpechotmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslaicmpechotmplname', (YLeaf(YType.str, 'cipslaIcmpEchoTmplName'), ['str'])), ('cipslaicmpechotmpldescription', (YLeaf(YType.str, 'cipslaIcmpEchoTmplDescription'), ['str'])), ('cipslaicmpechotmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslaicmpechotmplsrcaddr', (YLeaf(YType.str, 'cipslaIcmpEchoTmplSrcAddr'), ['str'])), ('cipslaicmpechotmpltimeout', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplTimeOut'), ['int'])), ('cipslaicmpechotmplverifydata', (YLeaf(YType.boolean, 'cipslaIcmpEchoTmplVerifyData'), ['bool'])), ('cipslaicmpechotmplreqdatasize', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplReqDataSize'), ['int'])), ('cipslaicmpechotmpltos', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplTOS'), ['int'])), ('cipslaicmpechotmplvrfname', (YLeaf(YType.str, 'cipslaIcmpEchoTmplVrfName'), ['str'])), ('cipslaicmpechotmplthreshold', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplThreshold'), ['int'])), ('cipslaicmpechotmplhistlives', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplHistLives'), ['int'])), ('cipslaicmpechotmplhistbuckets', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplHistBuckets'), ['int'])), ('cipslaicmpechotmplhistfilter', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry.CipslaIcmpEchoTmplHistFilter')])), ('cipslaicmpechotmplstatshours', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplStatsHours'), ['int'])), ('cipslaicmpechotmpldistbuckets', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplDistBuckets'), ['int'])), ('cipslaicmpechotmpldistinterval', (YLeaf(YType.uint32, 'cipslaIcmpEchoTmplDistInterval'), ['int'])), ('cipslaicmpechotmplstoragetype', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslaicmpechotmplrowstatus', (YLeaf(YType.enumeration, 'cipslaIcmpEchoTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslaicmpechotmplname = None self.cipslaicmpechotmpldescription = None self.cipslaicmpechotmplsrcaddrtype = None self.cipslaicmpechotmplsrcaddr = None self.cipslaicmpechotmpltimeout = None self.cipslaicmpechotmplverifydata = None self.cipslaicmpechotmplreqdatasize = None self.cipslaicmpechotmpltos = None self.cipslaicmpechotmplvrfname = None self.cipslaicmpechotmplthreshold = None self.cipslaicmpechotmplhistlives = None self.cipslaicmpechotmplhistbuckets = None self.cipslaicmpechotmplhistfilter = None self.cipslaicmpechotmplstatshours = None self.cipslaicmpechotmpldistbuckets = None self.cipslaicmpechotmpldistinterval = None self.cipslaicmpechotmplstoragetype = None self.cipslaicmpechotmplrowstatus = None self._segment_path = lambda: "cipslaIcmpEchoTmplEntry" + "[cipslaIcmpEchoTmplName='" + str(self.cipslaicmpechotmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaIcmpEchoTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry, ['cipslaicmpechotmplname', 'cipslaicmpechotmpldescription', 'cipslaicmpechotmplsrcaddrtype', 'cipslaicmpechotmplsrcaddr', 'cipslaicmpechotmpltimeout', 'cipslaicmpechotmplverifydata', 'cipslaicmpechotmplreqdatasize', 'cipslaicmpechotmpltos', 'cipslaicmpechotmplvrfname', 'cipslaicmpechotmplthreshold', 'cipslaicmpechotmplhistlives', 'cipslaicmpechotmplhistbuckets', 'cipslaicmpechotmplhistfilter', 'cipslaicmpechotmplstatshours', 'cipslaicmpechotmpldistbuckets', 'cipslaicmpechotmpldistinterval', 'cipslaicmpechotmplstoragetype', 'cipslaicmpechotmplrowstatus'], name, value) class CipslaIcmpEchoTmplHistFilter(Enum): """ CipslaIcmpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") class CipslaUdpEchoTmplTable(Entity): """ A table that contains UDP echo template specific definitions. .. attribute:: cipslaudpechotmplentry A row entry representing an IPSLA UDP echo template **type**\: list of :py:class:`CipslaUdpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable, self).__init__() self.yang_name = "cipslaUdpEchoTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaUdpEchoTmplEntry", ("cipslaudpechotmplentry", CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry))]) self._leafs = OrderedDict() self.cipslaudpechotmplentry = YList(self) self._segment_path = lambda: "cipslaUdpEchoTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable, [], name, value) class CipslaUdpEchoTmplEntry(Entity): """ A row entry representing an IPSLA UDP echo template. .. attribute:: cipslaudpechotmplname (key) A string which specifies the UDP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaudpechotmpldescription A string which provides description to the UDP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaudpechotmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslaudpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaUdpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaudpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaudpechotmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslaudpechotmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaudpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaudpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' RTT request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 4..1500 **units**\: octets .. attribute:: cipslaudpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaudpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing Table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaudpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaUdpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaudpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaudpechotmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaUdpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaUdpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaudpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaUdpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry.CipslaUdpEchoTmplHistFilter>` .. attribute:: cipslaudpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaudpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaUdpEchoTmplStatsNumDistBuckets will be kept. The last cipslaUdpEchoTmplStatsNumDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaudpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaUdpEchoTmplDistBuckets = 5 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaUdpEchoTmplDistBuckets = 1 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaUdpEchoTmplDistInterval does not apply when cipslaUdpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaudpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaudpechotmplrowstatus The status of the conceptual UDP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry, self).__init__() self.yang_name = "cipslaUdpEchoTmplEntry" self.yang_parent_name = "cipslaUdpEchoTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslaudpechotmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslaudpechotmplname', (YLeaf(YType.str, 'cipslaUdpEchoTmplName'), ['str'])), ('cipslaudpechotmpldescription', (YLeaf(YType.str, 'cipslaUdpEchoTmplDescription'), ['str'])), ('cipslaudpechotmplcontrolenable', (YLeaf(YType.boolean, 'cipslaUdpEchoTmplControlEnable'), ['bool'])), ('cipslaudpechotmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslaudpechotmplsrcaddr', (YLeaf(YType.str, 'cipslaUdpEchoTmplSrcAddr'), ['str'])), ('cipslaudpechotmplsrcport', (YLeaf(YType.uint16, 'cipslaUdpEchoTmplSrcPort'), ['int'])), ('cipslaudpechotmpltimeout', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplTimeOut'), ['int'])), ('cipslaudpechotmplverifydata', (YLeaf(YType.boolean, 'cipslaUdpEchoTmplVerifyData'), ['bool'])), ('cipslaudpechotmplreqdatasize', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplReqDataSize'), ['int'])), ('cipslaudpechotmpltos', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplTOS'), ['int'])), ('cipslaudpechotmplvrfname', (YLeaf(YType.str, 'cipslaUdpEchoTmplVrfName'), ['str'])), ('cipslaudpechotmplthreshold', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplThreshold'), ['int'])), ('cipslaudpechotmplhistlives', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplHistLives'), ['int'])), ('cipslaudpechotmplhistbuckets', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplHistBuckets'), ['int'])), ('cipslaudpechotmplhistfilter', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry.CipslaUdpEchoTmplHistFilter')])), ('cipslaudpechotmplstatshours', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplStatsHours'), ['int'])), ('cipslaudpechotmpldistbuckets', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplDistBuckets'), ['int'])), ('cipslaudpechotmpldistinterval', (YLeaf(YType.uint32, 'cipslaUdpEchoTmplDistInterval'), ['int'])), ('cipslaudpechotmplstoragetype', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslaudpechotmplrowstatus', (YLeaf(YType.enumeration, 'cipslaUdpEchoTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslaudpechotmplname = None self.cipslaudpechotmpldescription = None self.cipslaudpechotmplcontrolenable = None self.cipslaudpechotmplsrcaddrtype = None self.cipslaudpechotmplsrcaddr = None self.cipslaudpechotmplsrcport = None self.cipslaudpechotmpltimeout = None self.cipslaudpechotmplverifydata = None self.cipslaudpechotmplreqdatasize = None self.cipslaudpechotmpltos = None self.cipslaudpechotmplvrfname = None self.cipslaudpechotmplthreshold = None self.cipslaudpechotmplhistlives = None self.cipslaudpechotmplhistbuckets = None self.cipslaudpechotmplhistfilter = None self.cipslaudpechotmplstatshours = None self.cipslaudpechotmpldistbuckets = None self.cipslaudpechotmpldistinterval = None self.cipslaudpechotmplstoragetype = None self.cipslaudpechotmplrowstatus = None self._segment_path = lambda: "cipslaUdpEchoTmplEntry" + "[cipslaUdpEchoTmplName='" + str(self.cipslaudpechotmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaUdpEchoTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry, ['cipslaudpechotmplname', 'cipslaudpechotmpldescription', 'cipslaudpechotmplcontrolenable', 'cipslaudpechotmplsrcaddrtype', 'cipslaudpechotmplsrcaddr', 'cipslaudpechotmplsrcport', 'cipslaudpechotmpltimeout', 'cipslaudpechotmplverifydata', 'cipslaudpechotmplreqdatasize', 'cipslaudpechotmpltos', 'cipslaudpechotmplvrfname', 'cipslaudpechotmplthreshold', 'cipslaudpechotmplhistlives', 'cipslaudpechotmplhistbuckets', 'cipslaudpechotmplhistfilter', 'cipslaudpechotmplstatshours', 'cipslaudpechotmpldistbuckets', 'cipslaudpechotmpldistinterval', 'cipslaudpechotmplstoragetype', 'cipslaudpechotmplrowstatus'], name, value) class CipslaUdpEchoTmplHistFilter(Enum): """ CipslaUdpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") class CipslaTcpConnTmplTable(Entity): """ A table that contains TCP connect template specific definitions. .. attribute:: cipslatcpconntmplentry A row entry representing an IPSLA TCP connect template **type**\: list of :py:class:`CipslaTcpConnTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable, self).__init__() self.yang_name = "cipslaTcpConnTmplTable" self.yang_parent_name = "CISCO-IPSLA-ECHO-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cipslaTcpConnTmplEntry", ("cipslatcpconntmplentry", CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry))]) self._leafs = OrderedDict() self.cipslatcpconntmplentry = YList(self) self._segment_path = lambda: "cipslaTcpConnTmplTable" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable, [], name, value) class CipslaTcpConnTmplEntry(Entity): """ A row entry representing an IPSLA TCP connect template. .. attribute:: cipslatcpconntmplname (key) A string which specifies the TCP connect template name **type**\: str **length:** 1..64 .. attribute:: cipslatcpconntmpldescription A string which provides description for the TCP connect template **type**\: str **length:** 0..128 .. attribute:: cipslatcpconntmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslatcpconntmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaTcpConnTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslatcpconntmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslatcpconntmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslatcpconntmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslatcpconntmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslatcpconntmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslatcpconntmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaTcpConnTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslatcpconntmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslatcpconntmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaTcpConnTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaTcpConnTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslatcpconntmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaTcpConnTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry.CipslaTcpConnTmplHistFilter>` .. attribute:: cipslatcpconntmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslatcpconntmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaTcpConnTmplDistBuckets will be kept. The last cipslaTcpConnTmplDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslatcpconntmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaTcpConnTmplDistBuckets = 5 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaTcpConnTmplDistBuckets = 1 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaTcpConnTmplDistInterval does not apply when cipslaTcpConnTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslatcpconntmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslatcpconntmplrowstatus The status of the conceptual tcp connect control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'CISCO-IPSLA-ECHO-MIB' _revision = '2007-08-16' def __init__(self): super(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry, self).__init__() self.yang_name = "cipslaTcpConnTmplEntry" self.yang_parent_name = "cipslaTcpConnTmplTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['cipslatcpconntmplname'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('cipslatcpconntmplname', (YLeaf(YType.str, 'cipslaTcpConnTmplName'), ['str'])), ('cipslatcpconntmpldescription', (YLeaf(YType.str, 'cipslaTcpConnTmplDescription'), ['str'])), ('cipslatcpconntmplcontrolenable', (YLeaf(YType.boolean, 'cipslaTcpConnTmplControlEnable'), ['bool'])), ('cipslatcpconntmplsrcaddrtype', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplSrcAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('cipslatcpconntmplsrcaddr', (YLeaf(YType.str, 'cipslaTcpConnTmplSrcAddr'), ['str'])), ('cipslatcpconntmplsrcport', (YLeaf(YType.uint16, 'cipslaTcpConnTmplSrcPort'), ['int'])), ('cipslatcpconntmpltimeout', (YLeaf(YType.uint32, 'cipslaTcpConnTmplTimeOut'), ['int'])), ('cipslatcpconntmplverifydata', (YLeaf(YType.boolean, 'cipslaTcpConnTmplVerifyData'), ['bool'])), ('cipslatcpconntmpltos', (YLeaf(YType.uint32, 'cipslaTcpConnTmplTOS'), ['int'])), ('cipslatcpconntmplthreshold', (YLeaf(YType.uint32, 'cipslaTcpConnTmplThreshold'), ['int'])), ('cipslatcpconntmplhistlives', (YLeaf(YType.uint32, 'cipslaTcpConnTmplHistLives'), ['int'])), ('cipslatcpconntmplhistbuckets', (YLeaf(YType.uint32, 'cipslaTcpConnTmplHistBuckets'), ['int'])), ('cipslatcpconntmplhistfilter', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplHistFilter'), [('ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB', 'CISCOIPSLAECHOMIB', 'CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry.CipslaTcpConnTmplHistFilter')])), ('cipslatcpconntmplstatshours', (YLeaf(YType.uint32, 'cipslaTcpConnTmplStatsHours'), ['int'])), ('cipslatcpconntmpldistbuckets', (YLeaf(YType.uint32, 'cipslaTcpConnTmplDistBuckets'), ['int'])), ('cipslatcpconntmpldistinterval', (YLeaf(YType.uint32, 'cipslaTcpConnTmplDistInterval'), ['int'])), ('cipslatcpconntmplstoragetype', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('cipslatcpconntmplrowstatus', (YLeaf(YType.enumeration, 'cipslaTcpConnTmplRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.cipslatcpconntmplname = None self.cipslatcpconntmpldescription = None self.cipslatcpconntmplcontrolenable = None self.cipslatcpconntmplsrcaddrtype = None self.cipslatcpconntmplsrcaddr = None self.cipslatcpconntmplsrcport = None self.cipslatcpconntmpltimeout = None self.cipslatcpconntmplverifydata = None self.cipslatcpconntmpltos = None self.cipslatcpconntmplthreshold = None self.cipslatcpconntmplhistlives = None self.cipslatcpconntmplhistbuckets = None self.cipslatcpconntmplhistfilter = None self.cipslatcpconntmplstatshours = None self.cipslatcpconntmpldistbuckets = None self.cipslatcpconntmpldistinterval = None self.cipslatcpconntmplstoragetype = None self.cipslatcpconntmplrowstatus = None self._segment_path = lambda: "cipslaTcpConnTmplEntry" + "[cipslaTcpConnTmplName='" + str(self.cipslatcpconntmplname) + "']" self._absolute_path = lambda: "CISCO-IPSLA-ECHO-MIB:CISCO-IPSLA-ECHO-MIB/cipslaTcpConnTmplTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry, ['cipslatcpconntmplname', 'cipslatcpconntmpldescription', 'cipslatcpconntmplcontrolenable', 'cipslatcpconntmplsrcaddrtype', 'cipslatcpconntmplsrcaddr', 'cipslatcpconntmplsrcport', 'cipslatcpconntmpltimeout', 'cipslatcpconntmplverifydata', 'cipslatcpconntmpltos', 'cipslatcpconntmplthreshold', 'cipslatcpconntmplhistlives', 'cipslatcpconntmplhistbuckets', 'cipslatcpconntmplhistfilter', 'cipslatcpconntmplstatshours', 'cipslatcpconntmpldistbuckets', 'cipslatcpconntmpldistinterval', 'cipslatcpconntmplstoragetype', 'cipslatcpconntmplrowstatus'], name, value) class CipslaTcpConnTmplHistFilter(Enum): """ CipslaTcpConnTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 """ none = Enum.YLeaf(1, "none") all = Enum.YLeaf(2, "all") overThreshold = Enum.YLeaf(3, "overThreshold") failures = Enum.YLeaf(4, "failures") def clone_ptr(self): self._top_entity = CISCOIPSLAECHOMIB() return self._top_entity
en
0.665907
CISCO_IPSLA_ECHO_MIB This MIB module defines the templates for IP SLA operations of ICMP echo, UDP echo and TCP connect. The ICMP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an ICMP echo request message to the destination and receiving an ICMP echo reply. The UDP echo operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken between sending an UDP echo request message to the destination and receiving an UDP echo reply. The TCP connect operation measures end\-to\-end response time between a Cisco router and any IP enabled device by computing the time taken to perform a TCP connect operation. .. attribute:: cipslaicmpechotmpltable A table that contains ICMP echo template definitions **type**\: :py:class:`CipslaIcmpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable>` .. attribute:: cipslaudpechotmpltable A table that contains UDP echo template specific definitions **type**\: :py:class:`CipslaUdpEchoTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable>` .. attribute:: cipslatcpconntmpltable A table that contains TCP connect template specific definitions **type**\: :py:class:`CipslaTcpConnTmplTable <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable>` A table that contains ICMP echo template definitions. .. attribute:: cipslaicmpechotmplentry A row entry representing an IPSLA ICMP echo template **type**\: list of :py:class:`CipslaIcmpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry>` A row entry representing an IPSLA ICMP echo template. .. attribute:: cipslaicmpechotmplname (key) This field is used to specify the ICMP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaicmpechotmpldescription This field is used to provide description for the ICMP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaicmpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaIcmpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaicmpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaicmpechotmpltimeout Specifies the duration to wait for a IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaicmpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaicmpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' IP SLA request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 0..16384 **units**\: octets .. attribute:: cipslaicmpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaicmpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaicmpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaIcmpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaicmpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaicmpechotmplhistbuckets The maximum number of history buckets to record. This value is set to the number of operations to keep per lifetime. After cipslaIcmpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaIcmpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaicmpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaIcmpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaIcmpEchoTmplTable.CipslaIcmpEchoTmplEntry.CipslaIcmpEchoTmplHistFilter>` .. attribute:: cipslaicmpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaicmpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaIcmpEchoTmplStatsNumDistBuckets will be kept. The last cipslaIcmpEchoTmplStatsNumDistBucket will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaicmpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaIcmpEchoTmplDistBuckets = 5 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaIcmpEchoTmplDistBuckets = 1 buckets cipslaIcmpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaIcmpEchoTmplDistInterval does not apply when cipslaIcmpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaicmpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaicmpechotmplrowstatus The status of the conceptual ICMP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` CipslaIcmpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaIcmpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 A table that contains UDP echo template specific definitions. .. attribute:: cipslaudpechotmplentry A row entry representing an IPSLA UDP echo template **type**\: list of :py:class:`CipslaUdpEchoTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry>` A row entry representing an IPSLA UDP echo template. .. attribute:: cipslaudpechotmplname (key) A string which specifies the UDP echo template name **type**\: str **length:** 1..64 .. attribute:: cipslaudpechotmpldescription A string which provides description to the UDP echo template **type**\: str **length:** 0..128 .. attribute:: cipslaudpechotmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslaudpechotmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaUdpEchoTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslaudpechotmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslaudpechotmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslaudpechotmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslaudpechotmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslaudpechotmplreqdatasize This object represents the number of octets to be placed into the ARR Data portion of the request message, when using SNA protocols. For non\-ARR protocols' RTT request/responses, this value represents the native payload size. REMEMBER\: The ARR Header overhead is not included in this value **type**\: int **range:** 4..1500 **units**\: octets .. attribute:: cipslaudpechotmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslaudpechotmplvrfname This field is used to specify the VRF name with which the IP SLA operation will be used. For regular IP SLA operation this field should not be configured. The agent will use this field to identify the VRF routing Table for this operation **type**\: str **length:** 0..32 .. attribute:: cipslaudpechotmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaUdpEchoTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslaudpechotmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslaudpechotmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaUdpEchoTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaUdpEchoTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslaudpechotmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaUdpEchoTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaUdpEchoTmplTable.CipslaUdpEchoTmplEntry.CipslaUdpEchoTmplHistFilter>` .. attribute:: cipslaudpechotmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslaudpechotmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaUdpEchoTmplStatsNumDistBuckets will be kept. The last cipslaUdpEchoTmplStatsNumDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslaudpechotmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaUdpEchoTmplDistBuckets = 5 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaUdpEchoTmplDistBuckets = 1 buckets cipslaUdpEchoTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaUdpEchoTmplDistInterval does not apply when cipslaUdpEchoTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslaudpechotmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslaudpechotmplrowstatus The status of the conceptual UDP echo template control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` CipslaUdpEchoTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaUdpEchoTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4 A table that contains TCP connect template specific definitions. .. attribute:: cipslatcpconntmplentry A row entry representing an IPSLA TCP connect template **type**\: list of :py:class:`CipslaTcpConnTmplEntry <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry>` A row entry representing an IPSLA TCP connect template. .. attribute:: cipslatcpconntmplname (key) A string which specifies the TCP connect template name **type**\: str **length:** 1..64 .. attribute:: cipslatcpconntmpldescription A string which provides description for the TCP connect template **type**\: str **length:** 0..128 .. attribute:: cipslatcpconntmplcontrolenable If this object is enabled, then the IP SLA application will send control messages to a responder, residing on the target router to respond to the data request packets being sent by the source router **type**\: bool .. attribute:: cipslatcpconntmplsrcaddrtype An enumerated value which specifies the IP address type of the source. It must be used along with the cipslaTcpConnTmplSrcAddr object **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: cipslatcpconntmplsrcaddr A string which specifies the IP address of the source **type**\: str **length:** 0..255 .. attribute:: cipslatcpconntmplsrcport This object represents the source's port number. If this object is not specified, the application will get a port allocated by the system **type**\: int **range:** 0..65535 .. attribute:: cipslatcpconntmpltimeout Specifies the duration to wait for an IP SLA operation completion. For connection oriented protocols, this may cause the connection to be closed by the operation. Once closed, it will be assumed that the connection reestablishment will be performed. To prevent unwanted closure of connections, be sure to set this value to a realistic connection timeout **type**\: int **range:** 0..604800000 **units**\: milliseconds .. attribute:: cipslatcpconntmplverifydata When set to true, the resulting data in each IP SLA operation is compared with the expected data. This includes checking header information (if possible) and exact packet size **type**\: bool .. attribute:: cipslatcpconntmpltos This object represents the type of service octet in an IP header **type**\: int **range:** 0..255 .. attribute:: cipslatcpconntmplthreshold This object defines an administrative threshold limit. If the IP SLA operation time exceeds this limit and if the condition specified in cipslaTcpConnTmplHistFilter is satisfied, one threshold crossing occurrence will be counted **type**\: int **range:** 0..2147483647 **units**\: milliseconds .. attribute:: cipslatcpconntmplhistlives The maximum number of history lives to record. A life is defined by the countdown (or transition) to zero by the cipslaAutoGroupScheduleLife object. A new life is created when the same conceptual control row is restarted via the transition of the cipslaAutoGroupScheduleLife object and its subsequent countdown. The value of zero will shut off all data collection **type**\: int **range:** 0..2 .. attribute:: cipslatcpconntmplhistbuckets The maximum number of history buckets to record. This value should be set to the number of operations to keep per lifetime. After cipslaTcpConnTmplHistBuckets are filled, the oldest entries are deleted and the most recent cipslaTcpConnTmplHistBuckets buckets are retained **type**\: int **range:** 1..60 .. attribute:: cipslatcpconntmplhistfilter Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded **type**\: :py:class:`CipslaTcpConnTmplHistFilter <ydk.models.cisco_ios_xe.CISCO_IPSLA_ECHO_MIB.CISCOIPSLAECHOMIB.CipslaTcpConnTmplTable.CipslaTcpConnTmplEntry.CipslaTcpConnTmplHistFilter>` .. attribute:: cipslatcpconntmplstatshours The maximum number of hours for which statistics are maintained. Specifically this is the number of hourly groups to keep before rolling over. The value of one is not advisable because the hourly group will close and immediately be deleted before the network management station will have the opportunity to retrieve the statistics. The value of zero will shut off data collection **type**\: int **range:** 0..25 **units**\: hours .. attribute:: cipslatcpconntmpldistbuckets The maximum number of statistical distribution buckets to accumulate. Since this index does not rollover, only the first cipslaTcpConnTmplDistBuckets will be kept. The last cipslaTcpConnTmplDistBuckets will contain all entries from its distribution interval start point to infinity **type**\: int **range:** 1..20 .. attribute:: cipslatcpconntmpldistinterval The statistical distribution buckets interval. Distribution Bucket Example\: cipslaTcpConnTmplDistBuckets = 5 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| Bucket 2 \| Bucket 3 \| Bucket 4 \| Bucket 5 \| \| 0\-9 ms \| 10\-19 ms \| 20\-29 ms \| 30\-39 ms \| 40\-Inf ms \| Odd Example\: cipslaTcpConnTmplDistBuckets = 1 buckets cipslaTcpConnTmplDistInterval = 10 milliseconds \| Bucket 1 \| \| 0\-Inf ms \| Thus, this odd example shows that the value of cipslaTcpConnTmplDistInterval does not apply when cipslaTcpConnTmplDistBuckets is one **type**\: int **range:** 1..100 **units**\: milliseconds .. attribute:: cipslatcpconntmplstoragetype The storage type of this conceptual row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: cipslatcpconntmplrowstatus The status of the conceptual tcp connect control row. When the status is active, all the read\-create objects in that row can be modified **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` CipslaTcpConnTmplHistFilter (Enum Class) Defines a filter for adding RTT results to the history buffer\: none(1) \- no history is recorded all(2) \- the results of all completion times and failed completions are recorded overThreshold(3) \- the results of completion times over cipslaTcpConnTmplThreshold are recorded. failures(4) \- the results of failed operations (only) are recorded. .. data:: none = 1 .. data:: all = 2 .. data:: overThreshold = 3 .. data:: failures = 4
1.838984
2
example/model-parallel/matrix_factorization/train.py
tkameyama/incubator-mxnet
1
8051
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import logging import time import mxnet as mx import numpy as np from get_data import get_movielens_iter, get_movielens_data from model import matrix_fact_model_parallel_net logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Run model parallel version of matrix factorization", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--num-epoch', type=int, default=3, help='number of epochs to train') parser.add_argument('--batch-size', type=int, default=256, help='number of examples per batch') parser.add_argument('--print-every', type=int, default=100, help='logging interval') parser.add_argument('--factor-size', type=int, default=128, help="the factor size of the embedding operation") parser.add_argument('--num-gpus', type=int, default=2, help="number of gpus to use") MOVIELENS = { 'dataset': 'ml-10m', 'train': './ml-10M100K/r1.train', 'val': './ml-10M100K/r1.test', 'max_user': 71569, 'max_movie': 65135, } if __name__ == '__main__': head = '%(asctime)-15s %(message)s' logging.basicConfig(level=logging.INFO, format=head) # arg parser args = parser.parse_args() logging.info(args) num_epoch = args.num_epoch batch_size = args.batch_size optimizer = 'sgd' factor_size = args.factor_size print_every = args.print_every num_gpus = args.num_gpus momentum = 0.9 learning_rate = 0.1 # prepare dataset and iterators max_user = MOVIELENS['max_user'] max_movies = MOVIELENS['max_movie'] get_movielens_data(MOVIELENS['dataset']) train_iter = get_movielens_iter(MOVIELENS['train'], batch_size) val_iter = get_movielens_iter(MOVIELENS['val'], batch_size) # construct the model net = matrix_fact_model_parallel_net(factor_size, factor_size, max_user, max_movies) # construct the module # map the ctx_group attribute to the context assignment group2ctxs={'dev1':[mx.cpu()]*num_gpus, 'dev2':[mx.gpu(i) for i in range(num_gpus)]} # Creating a module by passing group2ctxs attribute which maps # the ctx_group attribute to the context assignment mod = mx.module.Module(symbol=net, context=[mx.cpu()]*num_gpus, data_names=['user', 'item'], label_names=['score'], group2ctxs=group2ctxs) # the initializer used to initialize the parameters initializer = mx.init.Xavier(factor_type="in", magnitude=2.34) # the parameters for the optimizer constructor optimizer_params = { 'learning_rate': learning_rate, 'wd': 1e-4, 'momentum': momentum, 'rescale_grad': 1.0/batch_size} # use MSE as the metric metric = mx.gluon.metric.create(['MSE']) speedometer = mx.callback.Speedometer(batch_size, print_every) # start training mod.fit(train_iter, val_iter, eval_metric = metric, num_epoch = num_epoch, optimizer = optimizer, optimizer_params = optimizer_params, initializer = initializer, batch_end_callback = speedometer)
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import logging import time import mxnet as mx import numpy as np from get_data import get_movielens_iter, get_movielens_data from model import matrix_fact_model_parallel_net logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Run model parallel version of matrix factorization", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--num-epoch', type=int, default=3, help='number of epochs to train') parser.add_argument('--batch-size', type=int, default=256, help='number of examples per batch') parser.add_argument('--print-every', type=int, default=100, help='logging interval') parser.add_argument('--factor-size', type=int, default=128, help="the factor size of the embedding operation") parser.add_argument('--num-gpus', type=int, default=2, help="number of gpus to use") MOVIELENS = { 'dataset': 'ml-10m', 'train': './ml-10M100K/r1.train', 'val': './ml-10M100K/r1.test', 'max_user': 71569, 'max_movie': 65135, } if __name__ == '__main__': head = '%(asctime)-15s %(message)s' logging.basicConfig(level=logging.INFO, format=head) # arg parser args = parser.parse_args() logging.info(args) num_epoch = args.num_epoch batch_size = args.batch_size optimizer = 'sgd' factor_size = args.factor_size print_every = args.print_every num_gpus = args.num_gpus momentum = 0.9 learning_rate = 0.1 # prepare dataset and iterators max_user = MOVIELENS['max_user'] max_movies = MOVIELENS['max_movie'] get_movielens_data(MOVIELENS['dataset']) train_iter = get_movielens_iter(MOVIELENS['train'], batch_size) val_iter = get_movielens_iter(MOVIELENS['val'], batch_size) # construct the model net = matrix_fact_model_parallel_net(factor_size, factor_size, max_user, max_movies) # construct the module # map the ctx_group attribute to the context assignment group2ctxs={'dev1':[mx.cpu()]*num_gpus, 'dev2':[mx.gpu(i) for i in range(num_gpus)]} # Creating a module by passing group2ctxs attribute which maps # the ctx_group attribute to the context assignment mod = mx.module.Module(symbol=net, context=[mx.cpu()]*num_gpus, data_names=['user', 'item'], label_names=['score'], group2ctxs=group2ctxs) # the initializer used to initialize the parameters initializer = mx.init.Xavier(factor_type="in", magnitude=2.34) # the parameters for the optimizer constructor optimizer_params = { 'learning_rate': learning_rate, 'wd': 1e-4, 'momentum': momentum, 'rescale_grad': 1.0/batch_size} # use MSE as the metric metric = mx.gluon.metric.create(['MSE']) speedometer = mx.callback.Speedometer(batch_size, print_every) # start training mod.fit(train_iter, val_iter, eval_metric = metric, num_epoch = num_epoch, optimizer = optimizer, optimizer_params = optimizer_params, initializer = initializer, batch_end_callback = speedometer)
en
0.80025
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # arg parser # prepare dataset and iterators # construct the model # construct the module # map the ctx_group attribute to the context assignment # Creating a module by passing group2ctxs attribute which maps # the ctx_group attribute to the context assignment # the initializer used to initialize the parameters # the parameters for the optimizer constructor # use MSE as the metric # start training
2.117392
2
scripts/libfranka_gui_gripper_run.py
nbfigueroa/franka_interactive_controllers
6
8052
#!/usr/bin/env python3 import shlex from tkinter import * from tkinter import messagebox from psutil import Popen top = Tk() top.title("Franka Gripper Control") top.geometry("300x75") def open(): node_process = Popen(shlex.split('rosrun franka_interactive_controllers libfranka_gripper_run 1')) messagebox.showinfo("Open Gripper", "Gripper Opened") node_process.terminate() def close(): node_process = Popen(shlex.split('rosrun franka_interactive_controllers libfranka_gripper_run 0')) messagebox.showinfo("Close Gripper", "Gripper Closed") node_process.terminate() B1 = Button(top, text = "Open Gripper", command = open) B1.place(x = 30,y = 20) B2 = Button(top, text = "Close Gripper", command = close) B2.place(x = 160,y = 20) top.mainloop()
#!/usr/bin/env python3 import shlex from tkinter import * from tkinter import messagebox from psutil import Popen top = Tk() top.title("Franka Gripper Control") top.geometry("300x75") def open(): node_process = Popen(shlex.split('rosrun franka_interactive_controllers libfranka_gripper_run 1')) messagebox.showinfo("Open Gripper", "Gripper Opened") node_process.terminate() def close(): node_process = Popen(shlex.split('rosrun franka_interactive_controllers libfranka_gripper_run 0')) messagebox.showinfo("Close Gripper", "Gripper Closed") node_process.terminate() B1 = Button(top, text = "Open Gripper", command = open) B1.place(x = 30,y = 20) B2 = Button(top, text = "Close Gripper", command = close) B2.place(x = 160,y = 20) top.mainloop()
fr
0.221828
#!/usr/bin/env python3
3.106617
3
codeforces.com/1669F/solution.py
zubtsov/competitive-programming
0
8053
<filename>codeforces.com/1669F/solution.py for i in range(int(input())): number_of_candies = int(input()) candies_weights = list(map(int, input().split())) bob_pos = number_of_candies - 1 alice_pos = 0 bob_current_weight = 0 alice_current_weight = 0 last_equal_candies_total_number = 0 while alice_pos <= bob_pos: if alice_current_weight <= bob_current_weight: alice_current_weight += candies_weights[alice_pos] alice_pos += 1 else: bob_current_weight += candies_weights[bob_pos] bob_pos -= 1 if alice_current_weight == bob_current_weight: last_equal_candies_total_number = alice_pos + (number_of_candies - bob_pos - 1) print(last_equal_candies_total_number)
<filename>codeforces.com/1669F/solution.py for i in range(int(input())): number_of_candies = int(input()) candies_weights = list(map(int, input().split())) bob_pos = number_of_candies - 1 alice_pos = 0 bob_current_weight = 0 alice_current_weight = 0 last_equal_candies_total_number = 0 while alice_pos <= bob_pos: if alice_current_weight <= bob_current_weight: alice_current_weight += candies_weights[alice_pos] alice_pos += 1 else: bob_current_weight += candies_weights[bob_pos] bob_pos -= 1 if alice_current_weight == bob_current_weight: last_equal_candies_total_number = alice_pos + (number_of_candies - bob_pos - 1) print(last_equal_candies_total_number)
none
1
3.37836
3
client/client_build.py
patriotemeritus/grr
1
8054
#!/usr/bin/env python """This tool builds or repacks the client binaries. This handles invocations for the build across the supported platforms including handling Visual Studio, pyinstaller and other packaging mechanisms. """ import logging import os import platform import time # pylint: disable=unused-import from grr.client import client_plugins # pylint: enable=unused-import from grr.lib import build from grr.lib import builders from grr.lib import config_lib from grr.lib import flags from grr.lib import startup parser = flags.PARSER # Guess which arch we should be building based on where we are running. if platform.architecture()[0] == "32bit": default_arch = "i386" else: default_arch = "amd64" default_platform = platform.system().lower() parser.add_argument( "--platform", choices=["darwin", "linux", "windows"], default=default_platform, help="The platform to build or repack for. This will default to " "the current platform: %s." % platform.system()) parser.add_argument( "--arch", choices=["amd64", "i386"], default=default_arch, help="The architecture to build or repack for.") # Guess which package format we should be building based on where we are # running. if default_platform == "linux": distro = platform.linux_distribution()[0] if distro in ["Ubuntu", "debian"]: default_package = "deb" elif distro in ["CentOS Linux", "CentOS", "centos", "redhat", "fedora"]: default_package = "rpm" else: default_package = None elif default_platform == "darwin": default_package = "dmg" elif default_platform == "windows": default_package = "exe" parser.add_argument( "--package_format", choices=["deb", "rpm"], default=default_package, help="The packaging format to use when building a Linux client.") # Initialize sub parsers and their arguments. subparsers = parser.add_subparsers( title="subcommands", dest="subparser_name", description="valid subcommands") # Build arguments. parser_build = subparsers.add_parser( "build", help="Build a client from source.") parser_repack = subparsers.add_parser( "repack", help="Repack a zip file into an installer (Only useful when " "signing).") parser_repack.add_argument("--template", default=None, help="The template zip file to repack.") parser_repack.add_argument("--output", default=None, help="The path to write the output installer.") parser_repack.add_argument("--outputdir", default="", help="The directory to which we should write the " "output installer. Installers will be named " "automatically from config options. Incompatible" " with --output") parser_repack.add_argument("--debug_build", action="store_true", default=False, help="Create a debug client.") parser_repack.add_argument("-p", "--plugins", default=[], nargs="+", help="Additional python files that will be loaded " "as custom plugins.") parser_deploy = subparsers.add_parser( "deploy", help="Build a deployable self installer from a package.") parser_deploy.add_argument("--template", default=None, help="The template zip file to deploy.") parser_deploy.add_argument("--templatedir", default="", help="Directory containing template zip files to " "repack. Incompatible with --template") parser_deploy.add_argument("--output", default=None, help="The path to write the output installer.") parser_deploy.add_argument("--outputdir", default="", help="The directory to which we should write the " "output installer. Installers will be named " "automatically from config options. Incompatible" " with --output") parser_deploy.add_argument("-p", "--plugins", default=[], nargs="+", help="Additional python files that will be loaded " "as custom plugins.") parser_deploy.add_argument("--debug_build", action="store_true", default=False, help="Create a debug client.") parser_buildanddeploy = subparsers.add_parser( "buildanddeploy", help="Build and deploy clients for multiple labels and architectures.") parser_buildanddeploy.add_argument("--template", default=None, help="The template zip file to repack, if " "none is specified we will build it.") args = parser.parse_args() def GetBuilder(context): """Get the appropriate builder based on the selected flags.""" try: if args.platform == "darwin": context = ["Platform:Darwin"] + context builder_obj = builders.DarwinClientBuilder elif args.platform == "windows": context = ["Platform:Windows"] + context builder_obj = builders.WindowsClientBuilder elif args.platform == "linux": if args.package_format == "deb": context = ["Platform:Linux"] + context builder_obj = builders.LinuxClientBuilder elif args.package_format == "rpm": context = ["Platform:Linux", "Target:LinuxRpm"] + context builder_obj = builders.CentosClientBuilder else: parser.error("Couldn't guess packaging format for: %s" % platform.linux_distribution()[0]) else: parser.error("Unsupported build platform: %s" % args.platform) except AttributeError: raise RuntimeError("Unable to build for platform %s when running " "on current platform." % args.platform) return builder_obj(context=context) def GetDeployer(context): """Get the appropriate client deployer based on the selected flags.""" if args.platform == "darwin": context = ["Platform:Darwin"] + context deployer_obj = build.DarwinClientDeployer elif args.platform == "windows": context = ["Platform:Windows"] + context deployer_obj = build.WindowsClientDeployer elif args.platform == "linux": if args.package_format == "deb": context = ["Platform:Linux"] + context deployer_obj = build.LinuxClientDeployer else: context = ["Platform:Linux", "Target:LinuxRpm"] + context deployer_obj = build.CentosClientDeployer else: parser.error("Unsupported build platform: %s" % args.platform) return deployer_obj(context=context) def TemplateInputFilename(context): """Build template file name from config.""" if args.templatedir: filename = config_lib.CONFIG.Get("PyInstaller.template_filename", context=context) return os.path.join(args.templatedir, filename) return None def BuildAndDeploy(context): """Run build and deploy to create installers.""" # ISO 8601 date timestamp = time.strftime("%Y-%m-%dT%H:%M:%S%z") if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) # Output directory like: 2015-02-13T21:48:47-0800/linux_amd64_deb/ spec = "_".join((args.platform, args.arch, args.package_format)) output_dir = os.path.join(config_lib.CONFIG.Get( "ClientBuilder.executables_path", context=context), timestamp, spec) # If we weren't passed a template, build one if args.template: template_path = args.template else: template_path = os.path.join(output_dir, config_lib.CONFIG.Get( "PyInstaller.template_filename", context=context)) builder_obj = GetBuilder(context) builder_obj.MakeExecutableTemplate(output_file=template_path) # Get the list of contexts which we should be building. context_list = config_lib.CONFIG.Get("ClientBuilder.BuildTargets") logging.info("Building installers for: %s", context_list) config_orig = config_lib.CONFIG.ExportState() deployed_list = [] for deploycontext in context_list: # Add the settings for this context for newcontext in deploycontext.split(","): config_lib.CONFIG.AddContext(newcontext) context.append(newcontext) try: # If the ClientBuilder.target_platforms doesn't match our environment, # skip. if not config_lib.CONFIG.MatchBuildContext(args.platform, args.arch, args.package_format): continue deployer = GetDeployer(context) # Make a nicer filename out of the context string. context_filename = deploycontext.replace( "AllPlatforms Context,", "").replace(",", "_").replace(" ", "_") deployed_list.append(context_filename) output_filename = os.path.join( output_dir, context_filename, config_lib.CONFIG.Get("ClientBuilder.output_filename", context=deployer.context)) logging.info("Deploying %s as %s with labels: %s", deploycontext, config_lib.CONFIG.Get( "Client.name", context=deployer.context), config_lib.CONFIG.Get( "Client.labels", context=deployer.context)) deployer.MakeDeployableBinary(template_path, output_filename) finally: # Remove the custom settings for the next deploy for newcontext in deploycontext.split(","): context.remove(newcontext) config_lib.ImportConfigManger(config_orig) logging.info("Complete, installers for %s are in %s", deployed_list, output_dir) def main(_): """Launch the appropriate builder.""" config_lib.CONFIG.AddContext( "ClientBuilder Context", "Context applied when we run the client builder script.") startup.ClientInit() # Make sure we have all the secondary configs since they may be set under the # ClientBuilder Context for secondconfig in config_lib.CONFIG["ConfigIncludes"]: config_lib.CONFIG.LoadSecondaryConfig(secondconfig) # Use basic console output logging so we can see what is happening. logger = logging.getLogger() handler = logging.StreamHandler() handler.setLevel(logging.INFO) logger.handlers = [handler] # The following is used to change the identity of the builder based on the # target platform. context = flags.FLAGS.context if args.arch == "amd64": context.append("Arch:amd64") else: context.append("Arch:i386") if args.subparser_name == "build": builder_obj = GetBuilder(context) builder_obj.MakeExecutableTemplate() elif args.subparser_name == "repack": if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) if args.debug_build: context += ["DebugClientBuild Context"] deployer = GetDeployer(context) output_filename = os.path.join( args.outputdir, config_lib.CONFIG.Get( "ClientBuilder.output_filename", context=deployer.context)) deployer.RepackInstaller(open(args.template, "rb").read(), args.output or output_filename) elif args.subparser_name == "deploy": if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) if args.debug_build: context += ["DebugClientBuild Context"] deployer = GetDeployer(context) template_path = (args.template or TemplateInputFilename(deployer.context) or config_lib.CONFIG.Get("ClientBuilder.template_path", context=deployer.context)) # If neither output filename or output directory is specified, # use the default location from the config file. output = None if args.output: output = args.output elif args.outputdir: # If output filename isn't specified, write to args.outputdir with a # .deployed extension so we can distinguish it from repacked binaries. filename = ".".join( (config_lib.CONFIG.Get("ClientBuilder.output_filename", context=deployer.context), "deployed")) output = os.path.join(args.outputdir, filename) deployer.MakeDeployableBinary(template_path, output) elif args.subparser_name == "buildanddeploy": BuildAndDeploy(context) if __name__ == "__main__": flags.StartMain(main)
#!/usr/bin/env python """This tool builds or repacks the client binaries. This handles invocations for the build across the supported platforms including handling Visual Studio, pyinstaller and other packaging mechanisms. """ import logging import os import platform import time # pylint: disable=unused-import from grr.client import client_plugins # pylint: enable=unused-import from grr.lib import build from grr.lib import builders from grr.lib import config_lib from grr.lib import flags from grr.lib import startup parser = flags.PARSER # Guess which arch we should be building based on where we are running. if platform.architecture()[0] == "32bit": default_arch = "i386" else: default_arch = "amd64" default_platform = platform.system().lower() parser.add_argument( "--platform", choices=["darwin", "linux", "windows"], default=default_platform, help="The platform to build or repack for. This will default to " "the current platform: %s." % platform.system()) parser.add_argument( "--arch", choices=["amd64", "i386"], default=default_arch, help="The architecture to build or repack for.") # Guess which package format we should be building based on where we are # running. if default_platform == "linux": distro = platform.linux_distribution()[0] if distro in ["Ubuntu", "debian"]: default_package = "deb" elif distro in ["CentOS Linux", "CentOS", "centos", "redhat", "fedora"]: default_package = "rpm" else: default_package = None elif default_platform == "darwin": default_package = "dmg" elif default_platform == "windows": default_package = "exe" parser.add_argument( "--package_format", choices=["deb", "rpm"], default=default_package, help="The packaging format to use when building a Linux client.") # Initialize sub parsers and their arguments. subparsers = parser.add_subparsers( title="subcommands", dest="subparser_name", description="valid subcommands") # Build arguments. parser_build = subparsers.add_parser( "build", help="Build a client from source.") parser_repack = subparsers.add_parser( "repack", help="Repack a zip file into an installer (Only useful when " "signing).") parser_repack.add_argument("--template", default=None, help="The template zip file to repack.") parser_repack.add_argument("--output", default=None, help="The path to write the output installer.") parser_repack.add_argument("--outputdir", default="", help="The directory to which we should write the " "output installer. Installers will be named " "automatically from config options. Incompatible" " with --output") parser_repack.add_argument("--debug_build", action="store_true", default=False, help="Create a debug client.") parser_repack.add_argument("-p", "--plugins", default=[], nargs="+", help="Additional python files that will be loaded " "as custom plugins.") parser_deploy = subparsers.add_parser( "deploy", help="Build a deployable self installer from a package.") parser_deploy.add_argument("--template", default=None, help="The template zip file to deploy.") parser_deploy.add_argument("--templatedir", default="", help="Directory containing template zip files to " "repack. Incompatible with --template") parser_deploy.add_argument("--output", default=None, help="The path to write the output installer.") parser_deploy.add_argument("--outputdir", default="", help="The directory to which we should write the " "output installer. Installers will be named " "automatically from config options. Incompatible" " with --output") parser_deploy.add_argument("-p", "--plugins", default=[], nargs="+", help="Additional python files that will be loaded " "as custom plugins.") parser_deploy.add_argument("--debug_build", action="store_true", default=False, help="Create a debug client.") parser_buildanddeploy = subparsers.add_parser( "buildanddeploy", help="Build and deploy clients for multiple labels and architectures.") parser_buildanddeploy.add_argument("--template", default=None, help="The template zip file to repack, if " "none is specified we will build it.") args = parser.parse_args() def GetBuilder(context): """Get the appropriate builder based on the selected flags.""" try: if args.platform == "darwin": context = ["Platform:Darwin"] + context builder_obj = builders.DarwinClientBuilder elif args.platform == "windows": context = ["Platform:Windows"] + context builder_obj = builders.WindowsClientBuilder elif args.platform == "linux": if args.package_format == "deb": context = ["Platform:Linux"] + context builder_obj = builders.LinuxClientBuilder elif args.package_format == "rpm": context = ["Platform:Linux", "Target:LinuxRpm"] + context builder_obj = builders.CentosClientBuilder else: parser.error("Couldn't guess packaging format for: %s" % platform.linux_distribution()[0]) else: parser.error("Unsupported build platform: %s" % args.platform) except AttributeError: raise RuntimeError("Unable to build for platform %s when running " "on current platform." % args.platform) return builder_obj(context=context) def GetDeployer(context): """Get the appropriate client deployer based on the selected flags.""" if args.platform == "darwin": context = ["Platform:Darwin"] + context deployer_obj = build.DarwinClientDeployer elif args.platform == "windows": context = ["Platform:Windows"] + context deployer_obj = build.WindowsClientDeployer elif args.platform == "linux": if args.package_format == "deb": context = ["Platform:Linux"] + context deployer_obj = build.LinuxClientDeployer else: context = ["Platform:Linux", "Target:LinuxRpm"] + context deployer_obj = build.CentosClientDeployer else: parser.error("Unsupported build platform: %s" % args.platform) return deployer_obj(context=context) def TemplateInputFilename(context): """Build template file name from config.""" if args.templatedir: filename = config_lib.CONFIG.Get("PyInstaller.template_filename", context=context) return os.path.join(args.templatedir, filename) return None def BuildAndDeploy(context): """Run build and deploy to create installers.""" # ISO 8601 date timestamp = time.strftime("%Y-%m-%dT%H:%M:%S%z") if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) # Output directory like: 2015-02-13T21:48:47-0800/linux_amd64_deb/ spec = "_".join((args.platform, args.arch, args.package_format)) output_dir = os.path.join(config_lib.CONFIG.Get( "ClientBuilder.executables_path", context=context), timestamp, spec) # If we weren't passed a template, build one if args.template: template_path = args.template else: template_path = os.path.join(output_dir, config_lib.CONFIG.Get( "PyInstaller.template_filename", context=context)) builder_obj = GetBuilder(context) builder_obj.MakeExecutableTemplate(output_file=template_path) # Get the list of contexts which we should be building. context_list = config_lib.CONFIG.Get("ClientBuilder.BuildTargets") logging.info("Building installers for: %s", context_list) config_orig = config_lib.CONFIG.ExportState() deployed_list = [] for deploycontext in context_list: # Add the settings for this context for newcontext in deploycontext.split(","): config_lib.CONFIG.AddContext(newcontext) context.append(newcontext) try: # If the ClientBuilder.target_platforms doesn't match our environment, # skip. if not config_lib.CONFIG.MatchBuildContext(args.platform, args.arch, args.package_format): continue deployer = GetDeployer(context) # Make a nicer filename out of the context string. context_filename = deploycontext.replace( "AllPlatforms Context,", "").replace(",", "_").replace(" ", "_") deployed_list.append(context_filename) output_filename = os.path.join( output_dir, context_filename, config_lib.CONFIG.Get("ClientBuilder.output_filename", context=deployer.context)) logging.info("Deploying %s as %s with labels: %s", deploycontext, config_lib.CONFIG.Get( "Client.name", context=deployer.context), config_lib.CONFIG.Get( "Client.labels", context=deployer.context)) deployer.MakeDeployableBinary(template_path, output_filename) finally: # Remove the custom settings for the next deploy for newcontext in deploycontext.split(","): context.remove(newcontext) config_lib.ImportConfigManger(config_orig) logging.info("Complete, installers for %s are in %s", deployed_list, output_dir) def main(_): """Launch the appropriate builder.""" config_lib.CONFIG.AddContext( "ClientBuilder Context", "Context applied when we run the client builder script.") startup.ClientInit() # Make sure we have all the secondary configs since they may be set under the # ClientBuilder Context for secondconfig in config_lib.CONFIG["ConfigIncludes"]: config_lib.CONFIG.LoadSecondaryConfig(secondconfig) # Use basic console output logging so we can see what is happening. logger = logging.getLogger() handler = logging.StreamHandler() handler.setLevel(logging.INFO) logger.handlers = [handler] # The following is used to change the identity of the builder based on the # target platform. context = flags.FLAGS.context if args.arch == "amd64": context.append("Arch:amd64") else: context.append("Arch:i386") if args.subparser_name == "build": builder_obj = GetBuilder(context) builder_obj.MakeExecutableTemplate() elif args.subparser_name == "repack": if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) if args.debug_build: context += ["DebugClientBuild Context"] deployer = GetDeployer(context) output_filename = os.path.join( args.outputdir, config_lib.CONFIG.Get( "ClientBuilder.output_filename", context=deployer.context)) deployer.RepackInstaller(open(args.template, "rb").read(), args.output or output_filename) elif args.subparser_name == "deploy": if args.plugins: config_lib.CONFIG.Set("Client.plugins", args.plugins) if args.debug_build: context += ["DebugClientBuild Context"] deployer = GetDeployer(context) template_path = (args.template or TemplateInputFilename(deployer.context) or config_lib.CONFIG.Get("ClientBuilder.template_path", context=deployer.context)) # If neither output filename or output directory is specified, # use the default location from the config file. output = None if args.output: output = args.output elif args.outputdir: # If output filename isn't specified, write to args.outputdir with a # .deployed extension so we can distinguish it from repacked binaries. filename = ".".join( (config_lib.CONFIG.Get("ClientBuilder.output_filename", context=deployer.context), "deployed")) output = os.path.join(args.outputdir, filename) deployer.MakeDeployableBinary(template_path, output) elif args.subparser_name == "buildanddeploy": BuildAndDeploy(context) if __name__ == "__main__": flags.StartMain(main)
en
0.851849
#!/usr/bin/env python This tool builds or repacks the client binaries. This handles invocations for the build across the supported platforms including handling Visual Studio, pyinstaller and other packaging mechanisms. # pylint: disable=unused-import # pylint: enable=unused-import # Guess which arch we should be building based on where we are running. # Guess which package format we should be building based on where we are # running. # Initialize sub parsers and their arguments. # Build arguments. Get the appropriate builder based on the selected flags. Get the appropriate client deployer based on the selected flags. Build template file name from config. Run build and deploy to create installers. # ISO 8601 date # Output directory like: 2015-02-13T21:48:47-0800/linux_amd64_deb/ # If we weren't passed a template, build one # Get the list of contexts which we should be building. # Add the settings for this context # If the ClientBuilder.target_platforms doesn't match our environment, # skip. # Make a nicer filename out of the context string. # Remove the custom settings for the next deploy Launch the appropriate builder. # Make sure we have all the secondary configs since they may be set under the # ClientBuilder Context # Use basic console output logging so we can see what is happening. # The following is used to change the identity of the builder based on the # target platform. # If neither output filename or output directory is specified, # use the default location from the config file. # If output filename isn't specified, write to args.outputdir with a # .deployed extension so we can distinguish it from repacked binaries.
2.3135
2
Greyatom-projects/code.py
naveena41/greyatom-python-for-data-science
0
8055
<gh_stars>0 # -------------- # Code starts here # Create the lists class_1 = ['<NAME>', '<NAME>', '<NAME>', '<NAME>'] class_2 = ['<NAME>', '<NAME>', '<NAME>'] # Concatenate both the strings new_class = class_1+class_2 print(new_class) # Append the list new_class.append('<NAME>') # Print updated list print(new_class) # Remove the element from the list new_class.remove('<NAME>') # Print the list print(new_class) # Create the Dictionary courses = {"math": 65, "english": 70, "history": 80, "french": 70, "science":60} # Slice the dict and stores the all subjects marks in variable total = 65+70+80+70+60 print(total) # Store the all the subject in one variable `Total` # Print the total # Insert percentage formula percentage =float(total)*(100/500) # Print the percentage print(percentage) # Create the Dictionary mathematics = {"<NAME>" :78, "<NAME>" :95, "<NAME>" :65, "<NAME>" :50, "<NAME>" :70, "<NAME>" :66, "<NAME>" :75} topper = max(mathematics,key = mathematics.get) print(topper) # Given string print(topper.split()) # Create variable first_name first_name = 'andrew' # Create variable Last_name and store last two element in the list Last_name ='ng' # Concatenate the string full_name = Last_name+' '+first_name # print the full_name print(full_name) # print the name in upper case certificate_name = full_name.upper() print(certificate_name) # Code ends here
# -------------- # Code starts here # Create the lists class_1 = ['<NAME>', '<NAME>', '<NAME>', '<NAME>'] class_2 = ['<NAME>', '<NAME>', '<NAME>'] # Concatenate both the strings new_class = class_1+class_2 print(new_class) # Append the list new_class.append('<NAME>') # Print updated list print(new_class) # Remove the element from the list new_class.remove('<NAME>') # Print the list print(new_class) # Create the Dictionary courses = {"math": 65, "english": 70, "history": 80, "french": 70, "science":60} # Slice the dict and stores the all subjects marks in variable total = 65+70+80+70+60 print(total) # Store the all the subject in one variable `Total` # Print the total # Insert percentage formula percentage =float(total)*(100/500) # Print the percentage print(percentage) # Create the Dictionary mathematics = {"<NAME>" :78, "<NAME>" :95, "<NAME>" :65, "<NAME>" :50, "<NAME>" :70, "<NAME>" :66, "<NAME>" :75} topper = max(mathematics,key = mathematics.get) print(topper) # Given string print(topper.split()) # Create variable first_name first_name = 'andrew' # Create variable Last_name and store last two element in the list Last_name ='ng' # Concatenate the string full_name = Last_name+' '+first_name # print the full_name print(full_name) # print the name in upper case certificate_name = full_name.upper() print(certificate_name) # Code ends here
en
0.597958
# -------------- # Code starts here # Create the lists # Concatenate both the strings # Append the list # Print updated list # Remove the element from the list # Print the list # Create the Dictionary # Slice the dict and stores the all subjects marks in variable # Store the all the subject in one variable `Total` # Print the total # Insert percentage formula # Print the percentage # Create the Dictionary # Given string # Create variable first_name # Create variable Last_name and store last two element in the list # Concatenate the string # print the full_name # print the name in upper case # Code ends here
4.204773
4
environments/recommenders/recsim_wrapper_test.py
jackblandin/ml-fairness-gym
0
8056
# coding=utf-8 # Copyright 2022 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for recsim.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import test_util from environments.recommenders import recsim_wrapper from recsim.environments import interest_exploration class RecommenderTest(absltest.TestCase): def test_interest_exploration_can_run(self): env_config = { 'num_candidates': 5, 'slate_size': 2, 'resample_documents': False, 'seed': 100, } params = recsim_wrapper.Params( recsim_env=interest_exploration.create_environment(env_config)) env = recsim_wrapper.RecsimWrapper(params) test_util.run_test_simulation(env=env, stackelberg=True) def test_interest_exploration_can_run_with_resampling(self): env_config = { 'num_candidates': 5, 'slate_size': 2, 'resample_documents': True, 'seed': 100, } params = recsim_wrapper.Params( recsim_env=interest_exploration.create_environment(env_config)) env = recsim_wrapper.RecsimWrapper(params) test_util.run_test_simulation(env=env, stackelberg=True) if __name__ == '__main__': absltest.main()
# coding=utf-8 # Copyright 2022 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for recsim.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import test_util from environments.recommenders import recsim_wrapper from recsim.environments import interest_exploration class RecommenderTest(absltest.TestCase): def test_interest_exploration_can_run(self): env_config = { 'num_candidates': 5, 'slate_size': 2, 'resample_documents': False, 'seed': 100, } params = recsim_wrapper.Params( recsim_env=interest_exploration.create_environment(env_config)) env = recsim_wrapper.RecsimWrapper(params) test_util.run_test_simulation(env=env, stackelberg=True) def test_interest_exploration_can_run_with_resampling(self): env_config = { 'num_candidates': 5, 'slate_size': 2, 'resample_documents': True, 'seed': 100, } params = recsim_wrapper.Params( recsim_env=interest_exploration.create_environment(env_config)) env = recsim_wrapper.RecsimWrapper(params) test_util.run_test_simulation(env=env, stackelberg=True) if __name__ == '__main__': absltest.main()
en
0.839689
# coding=utf-8 # Copyright 2022 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 Tests for recsim.py.
2.011801
2
moss_client_cli.py
mernst32/dl-searchcode-code
0
8057
import argparse import csv import os from moss_client.core import submit_and_dl, parse_moss_reports data_folder = 'data' def handle_input(user_id, base_folder, parse, only_parse, join_file, batch): global data_folder abs_path = os.path.abspath(os.path.dirname(__file__)) root_data_folder = os.path.join(abs_path, data_folder) if not os.path.exists(root_data_folder): os.makedirs(root_data_folder) report_links_file = os.path.join(root_data_folder, 'links_to_moss_reports.html') report_csv_file = os.path.join(root_data_folder, 'moss_report.csv') if not os.path.isabs(base_folder): base_folder = os.path.join(abs_path, base_folder) if len(join_file) > 0: expected_keys = ["SC_Filepath", "Stackoverflow_Links"] with open(join_file, mode='r', encoding='utf-8') as csv_file: csv_reader = csv.DictReader(csv_file) actual_keys = csv_reader.fieldnames if expected_keys[0] != actual_keys[0] or expected_keys[1] != actual_keys[1]: print("Error: Unexpected Headers! SC_Filepath and Stackoverflow_Links are required!") return -1 if not only_parse: submit_and_dl(user_id, base_folder, report_links_file, batch) if parse or only_parse: print("Parsing the moss reports...") parse_moss_reports(report_links_file, report_csv_file, join_file) if __name__ == "__main__": parser = argparse.ArgumentParser( description="MOSS CLI client for submitting java files to the service and downloading the report from the " "service locally. Will go through the sub folders of the given folder and submit the java files " "for plagiarism checks and download the reports locally, creating a linking file in the process") parser.add_argument('user_id', metavar='U', nargs=1, help="Your user-id for the MOSS service.") parser.add_argument('folder', metavar='F', nargs=1, help="The folder whose contents you want to submit.") parser.add_argument('-p', '--parse', action='store_true', help="Parses the moss reports into a csv file.") parser.add_argument('-o', '--only-parse', action='store_true', help="Only parses the local moss reports and does not submit files and download the reports. " "Requires the reports and the links_to_reports html file created normally by this app.") parser.add_argument('-j', '--join-file', nargs=1, default=[""], help="When the parse or only-parse option is given, joins the parsed data with the parsed data.") parser.add_argument('-b', '--batch-mode', action='store_true', help="Only submits a 100 folders to the Moss Service, also looks for already processed folders so " "that it does not submit those again.") args = parser.parse_args() handle_input(args.user_id[0], args.folder[0], args.parse, args.only_parse, args.join_file[0], args.batch_mode)
import argparse import csv import os from moss_client.core import submit_and_dl, parse_moss_reports data_folder = 'data' def handle_input(user_id, base_folder, parse, only_parse, join_file, batch): global data_folder abs_path = os.path.abspath(os.path.dirname(__file__)) root_data_folder = os.path.join(abs_path, data_folder) if not os.path.exists(root_data_folder): os.makedirs(root_data_folder) report_links_file = os.path.join(root_data_folder, 'links_to_moss_reports.html') report_csv_file = os.path.join(root_data_folder, 'moss_report.csv') if not os.path.isabs(base_folder): base_folder = os.path.join(abs_path, base_folder) if len(join_file) > 0: expected_keys = ["SC_Filepath", "Stackoverflow_Links"] with open(join_file, mode='r', encoding='utf-8') as csv_file: csv_reader = csv.DictReader(csv_file) actual_keys = csv_reader.fieldnames if expected_keys[0] != actual_keys[0] or expected_keys[1] != actual_keys[1]: print("Error: Unexpected Headers! SC_Filepath and Stackoverflow_Links are required!") return -1 if not only_parse: submit_and_dl(user_id, base_folder, report_links_file, batch) if parse or only_parse: print("Parsing the moss reports...") parse_moss_reports(report_links_file, report_csv_file, join_file) if __name__ == "__main__": parser = argparse.ArgumentParser( description="MOSS CLI client for submitting java files to the service and downloading the report from the " "service locally. Will go through the sub folders of the given folder and submit the java files " "for plagiarism checks and download the reports locally, creating a linking file in the process") parser.add_argument('user_id', metavar='U', nargs=1, help="Your user-id for the MOSS service.") parser.add_argument('folder', metavar='F', nargs=1, help="The folder whose contents you want to submit.") parser.add_argument('-p', '--parse', action='store_true', help="Parses the moss reports into a csv file.") parser.add_argument('-o', '--only-parse', action='store_true', help="Only parses the local moss reports and does not submit files and download the reports. " "Requires the reports and the links_to_reports html file created normally by this app.") parser.add_argument('-j', '--join-file', nargs=1, default=[""], help="When the parse or only-parse option is given, joins the parsed data with the parsed data.") parser.add_argument('-b', '--batch-mode', action='store_true', help="Only submits a 100 folders to the Moss Service, also looks for already processed folders so " "that it does not submit those again.") args = parser.parse_args() handle_input(args.user_id[0], args.folder[0], args.parse, args.only_parse, args.join_file[0], args.batch_mode)
none
1
2.836682
3
catkin_ws/src/localization/src/localization_node.py
DiegoOrtegoP/Software
12
8058
<gh_stars>10-100 #!/usr/bin/env python import rospy #from apriltags_ros.msg import AprilTagDetectionArray from duckietown_msgs.msg import AprilTagsWithInfos import tf2_ros from tf2_msgs.msg import TFMessage import tf.transformations as tr from geometry_msgs.msg import Transform, TransformStamped import numpy as np from localization import PoseAverage from visualization_msgs.msg import Marker # Localization Node # Author: <NAME> # Inputs: apriltags/duckietown_msgs/AprilTags - A list of april tags in a camera frame # Outputs: pose2d/duckietown_msgs/Pose2dStamped - The estimated pose of the robot in the world frame in 2D coordinates # pose3d/geometry_msgs/PoseStamped - The estimated pose of the robot in the world frame in 3D coordinates class LocalizationNode(object): def __init__(self): self.node_name = 'localization_node' # Constants self.world_frame = "world" self.duckiebot_frame = "duckiebot" self.duckiebot_lifetime = self.setupParam("~duckiebot_lifetime", 5) # The number of seconds to keep the duckiebot alive bewtween detections self.highlight_lifetime = self.setupParam("~highlight_lifetime", 3) # The number of seconds to keep a sign highlighted after a detection # Setup the publishers and subscribers self.sub_april = rospy.Subscriber("~apriltags", AprilTagsWithInfos, self.tag_callback) self.pub_tf = rospy.Publisher("/tf", TFMessage, queue_size=1, latch=True) self.pub_rviz = rospy.Publisher("/sign_highlights", Marker, queue_size=1, latch=True) # Setup the transform listener self.tfbuf = tf2_ros.Buffer() self.tfl = tf2_ros.TransformListener(self.tfbuf) # Use a timer to make the duckiebot disappear self.lifetimer = rospy.Time.now() self.publish_duckie_marker() rospy.loginfo("[%s] has started", self.node_name) def tag_callback(self, msg_tag): # Listen for the transform of the tag in the world avg = PoseAverage.PoseAverage() for tag in msg_tag.detections: try: Tt_w = self.tfbuf.lookup_transform(self.world_frame, "tag_{id}".format(id=tag.id), rospy.Time(), rospy.Duration(1)) Mtbase_w=self.transform_to_matrix(Tt_w.transform) Mt_tbase = tr.concatenate_matrices(tr.translation_matrix((0,0,0.17)), tr.euler_matrix(0,0,np.pi)) Mt_w = tr.concatenate_matrices(Mtbase_w,Mt_tbase) Mt_r=self.pose_to_matrix(tag.pose) Mr_t=np.linalg.inv(Mt_r) Mr_w=np.dot(Mt_w,Mr_t) Tr_w = self.matrix_to_transform(Mr_w) avg.add_pose(Tr_w) self.publish_sign_highlight(tag.id) except(tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as ex: rospy.logwarn("Error looking up transform for tag_%s", tag.id) rospy.logwarn(ex.message) Tr_w = avg.get_average() # Average of the opinions # Broadcast the robot transform if Tr_w is not None: # Set the z translation, and x and y rotations to 0 Tr_w.translation.z = 0 rot = Tr_w.rotation rotz=tr.euler_from_quaternion((rot.x, rot.y, rot.z, rot.w))[2] (rot.x, rot.y, rot.z, rot.w) = tr.quaternion_from_euler(0, 0, rotz) T = TransformStamped() T.transform = Tr_w T.header.frame_id = self.world_frame T.header.stamp = rospy.Time.now() T.child_frame_id = self.duckiebot_frame self.pub_tf.publish(TFMessage([T])) self.lifetimer = rospy.Time.now() def publish_duckie_marker(self): # Publish a duckiebot transform far away unless the timer was reset rate = rospy.Rate(10) while not rospy.is_shutdown(): rate.sleep() if rospy.Time.now() - self.lifetimer > rospy.Duration(self.duckiebot_lifetime): T = TransformStamped() T.transform.translation.z = 1000 # Throw it 1km in the air T.transform.rotation.w = 1 T.header.frame_id = self.world_frame T.header.stamp = rospy.Time.now() T.child_frame_id = self.duckiebot_frame self.pub_tf.publish(TFMessage([T])) def publish_sign_highlight(self, id): # Publish a highlight marker on the sign that is seen by the robot m = Marker() m.header.frame_id="tag_{id}".format(id=id) m.header.stamp = rospy.Time.now() m.id=id m.lifetime = rospy.Duration(self.highlight_lifetime) m.type = Marker.CYLINDER p = m.pose.position o = m.pose.orientation c = m.color s = m.scale s.x, s.y, s.z = (0.1, 0.1, 0.3) p.z = 0.15 c.a, c.r, c.g, c.b = (0.2, 0.9, 0.9, 0.0) o.w = 1 self.pub_rviz.publish(m) def pose_to_matrix(self, p): # Return the 4x4 homogeneous matrix for a PoseStamped.msg p from the geometry_msgs trans = (p.pose.position.x, p.pose.position.y, p.pose.position.z) rot = (p.pose.orientation.x, p.pose.orientation.y, p.pose.orientation.z, p.pose.orientation.w) return np.dot(tr.translation_matrix(trans), tr.quaternion_matrix(rot)) def transform_to_matrix(self, T): # Return the 4x4 homogeneous matrix for a TransformStamped.msg T from the geometry_msgs trans = (T.translation.x, T.translation.y, T.translation.z) rot = (T.rotation.x, T.rotation.y, T.rotation.z, T.rotation.w) return np.dot(tr.translation_matrix(trans), tr.quaternion_matrix(rot)) def matrix_to_transform(self, M): # Return a TransformStamped.msg T from the geometry_msgs from a 4x4 homogeneous matrix T=Transform() (T.translation.x, T.translation.y, T.translation.z) = tr.translation_from_matrix(M) (T.rotation.x, T.rotation.y, T.rotation.z, T.rotation.w) = tr.quaternion_from_matrix(M) return T def setupParam(self, param_name, default_value): value = rospy.get_param(param_name, default_value) rospy.set_param(param_name, value) #Write to parameter server for transparancy rospy.loginfo("[%s] %s = %s " % (self.node_name, param_name, value)) return value if __name__ == '__main__': rospy.init_node('localization_node', anonymous=False) localization_node = LocalizationNode() rospy.spin()
#!/usr/bin/env python import rospy #from apriltags_ros.msg import AprilTagDetectionArray from duckietown_msgs.msg import AprilTagsWithInfos import tf2_ros from tf2_msgs.msg import TFMessage import tf.transformations as tr from geometry_msgs.msg import Transform, TransformStamped import numpy as np from localization import PoseAverage from visualization_msgs.msg import Marker # Localization Node # Author: <NAME> # Inputs: apriltags/duckietown_msgs/AprilTags - A list of april tags in a camera frame # Outputs: pose2d/duckietown_msgs/Pose2dStamped - The estimated pose of the robot in the world frame in 2D coordinates # pose3d/geometry_msgs/PoseStamped - The estimated pose of the robot in the world frame in 3D coordinates class LocalizationNode(object): def __init__(self): self.node_name = 'localization_node' # Constants self.world_frame = "world" self.duckiebot_frame = "duckiebot" self.duckiebot_lifetime = self.setupParam("~duckiebot_lifetime", 5) # The number of seconds to keep the duckiebot alive bewtween detections self.highlight_lifetime = self.setupParam("~highlight_lifetime", 3) # The number of seconds to keep a sign highlighted after a detection # Setup the publishers and subscribers self.sub_april = rospy.Subscriber("~apriltags", AprilTagsWithInfos, self.tag_callback) self.pub_tf = rospy.Publisher("/tf", TFMessage, queue_size=1, latch=True) self.pub_rviz = rospy.Publisher("/sign_highlights", Marker, queue_size=1, latch=True) # Setup the transform listener self.tfbuf = tf2_ros.Buffer() self.tfl = tf2_ros.TransformListener(self.tfbuf) # Use a timer to make the duckiebot disappear self.lifetimer = rospy.Time.now() self.publish_duckie_marker() rospy.loginfo("[%s] has started", self.node_name) def tag_callback(self, msg_tag): # Listen for the transform of the tag in the world avg = PoseAverage.PoseAverage() for tag in msg_tag.detections: try: Tt_w = self.tfbuf.lookup_transform(self.world_frame, "tag_{id}".format(id=tag.id), rospy.Time(), rospy.Duration(1)) Mtbase_w=self.transform_to_matrix(Tt_w.transform) Mt_tbase = tr.concatenate_matrices(tr.translation_matrix((0,0,0.17)), tr.euler_matrix(0,0,np.pi)) Mt_w = tr.concatenate_matrices(Mtbase_w,Mt_tbase) Mt_r=self.pose_to_matrix(tag.pose) Mr_t=np.linalg.inv(Mt_r) Mr_w=np.dot(Mt_w,Mr_t) Tr_w = self.matrix_to_transform(Mr_w) avg.add_pose(Tr_w) self.publish_sign_highlight(tag.id) except(tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as ex: rospy.logwarn("Error looking up transform for tag_%s", tag.id) rospy.logwarn(ex.message) Tr_w = avg.get_average() # Average of the opinions # Broadcast the robot transform if Tr_w is not None: # Set the z translation, and x and y rotations to 0 Tr_w.translation.z = 0 rot = Tr_w.rotation rotz=tr.euler_from_quaternion((rot.x, rot.y, rot.z, rot.w))[2] (rot.x, rot.y, rot.z, rot.w) = tr.quaternion_from_euler(0, 0, rotz) T = TransformStamped() T.transform = Tr_w T.header.frame_id = self.world_frame T.header.stamp = rospy.Time.now() T.child_frame_id = self.duckiebot_frame self.pub_tf.publish(TFMessage([T])) self.lifetimer = rospy.Time.now() def publish_duckie_marker(self): # Publish a duckiebot transform far away unless the timer was reset rate = rospy.Rate(10) while not rospy.is_shutdown(): rate.sleep() if rospy.Time.now() - self.lifetimer > rospy.Duration(self.duckiebot_lifetime): T = TransformStamped() T.transform.translation.z = 1000 # Throw it 1km in the air T.transform.rotation.w = 1 T.header.frame_id = self.world_frame T.header.stamp = rospy.Time.now() T.child_frame_id = self.duckiebot_frame self.pub_tf.publish(TFMessage([T])) def publish_sign_highlight(self, id): # Publish a highlight marker on the sign that is seen by the robot m = Marker() m.header.frame_id="tag_{id}".format(id=id) m.header.stamp = rospy.Time.now() m.id=id m.lifetime = rospy.Duration(self.highlight_lifetime) m.type = Marker.CYLINDER p = m.pose.position o = m.pose.orientation c = m.color s = m.scale s.x, s.y, s.z = (0.1, 0.1, 0.3) p.z = 0.15 c.a, c.r, c.g, c.b = (0.2, 0.9, 0.9, 0.0) o.w = 1 self.pub_rviz.publish(m) def pose_to_matrix(self, p): # Return the 4x4 homogeneous matrix for a PoseStamped.msg p from the geometry_msgs trans = (p.pose.position.x, p.pose.position.y, p.pose.position.z) rot = (p.pose.orientation.x, p.pose.orientation.y, p.pose.orientation.z, p.pose.orientation.w) return np.dot(tr.translation_matrix(trans), tr.quaternion_matrix(rot)) def transform_to_matrix(self, T): # Return the 4x4 homogeneous matrix for a TransformStamped.msg T from the geometry_msgs trans = (T.translation.x, T.translation.y, T.translation.z) rot = (T.rotation.x, T.rotation.y, T.rotation.z, T.rotation.w) return np.dot(tr.translation_matrix(trans), tr.quaternion_matrix(rot)) def matrix_to_transform(self, M): # Return a TransformStamped.msg T from the geometry_msgs from a 4x4 homogeneous matrix T=Transform() (T.translation.x, T.translation.y, T.translation.z) = tr.translation_from_matrix(M) (T.rotation.x, T.rotation.y, T.rotation.z, T.rotation.w) = tr.quaternion_from_matrix(M) return T def setupParam(self, param_name, default_value): value = rospy.get_param(param_name, default_value) rospy.set_param(param_name, value) #Write to parameter server for transparancy rospy.loginfo("[%s] %s = %s " % (self.node_name, param_name, value)) return value if __name__ == '__main__': rospy.init_node('localization_node', anonymous=False) localization_node = LocalizationNode() rospy.spin()
en
0.696005
#!/usr/bin/env python #from apriltags_ros.msg import AprilTagDetectionArray # Localization Node # Author: <NAME> # Inputs: apriltags/duckietown_msgs/AprilTags - A list of april tags in a camera frame # Outputs: pose2d/duckietown_msgs/Pose2dStamped - The estimated pose of the robot in the world frame in 2D coordinates # pose3d/geometry_msgs/PoseStamped - The estimated pose of the robot in the world frame in 3D coordinates # Constants # The number of seconds to keep the duckiebot alive bewtween detections # The number of seconds to keep a sign highlighted after a detection # Setup the publishers and subscribers # Setup the transform listener # Use a timer to make the duckiebot disappear # Listen for the transform of the tag in the world # Average of the opinions # Broadcast the robot transform # Set the z translation, and x and y rotations to 0 # Publish a duckiebot transform far away unless the timer was reset # Throw it 1km in the air # Publish a highlight marker on the sign that is seen by the robot # Return the 4x4 homogeneous matrix for a PoseStamped.msg p from the geometry_msgs # Return the 4x4 homogeneous matrix for a TransformStamped.msg T from the geometry_msgs # Return a TransformStamped.msg T from the geometry_msgs from a 4x4 homogeneous matrix #Write to parameter server for transparancy
2.452056
2
gen_data/get_teams.py
wusui/NCAA2019
0
8059
#!/usr/bin/python # pylint: disable=W0223 """ Get a list of teams """ from html.parser import HTMLParser import requests class ChkTeams(HTMLParser): """ Extract team names from page """ def __init__(self): HTMLParser.__init__(self) self.retval = [] def handle_starttag(self, tag, attrs): for apt in attrs: if apt[0] == 'title': if apt[1] != "ESPN Search": self.retval.append(apt[1]) DATALOC = "http://www.espn.com/mens-college-basketball/tournament/bracket" def check_teams(): """ Extract a list of teams (schools) """ req = requests.get(DATALOC) parser = ChkTeams() parser.feed(req.text) retv = parser.retval return retv[8:] def make_team_list(): """ Call check_teams and stick result in text file """ listv = check_teams() with open('teams.txt', 'w') as ofile: for team in listv: ofile.write(team + '\n') if __name__ == '__main__': make_team_list()
#!/usr/bin/python # pylint: disable=W0223 """ Get a list of teams """ from html.parser import HTMLParser import requests class ChkTeams(HTMLParser): """ Extract team names from page """ def __init__(self): HTMLParser.__init__(self) self.retval = [] def handle_starttag(self, tag, attrs): for apt in attrs: if apt[0] == 'title': if apt[1] != "ESPN Search": self.retval.append(apt[1]) DATALOC = "http://www.espn.com/mens-college-basketball/tournament/bracket" def check_teams(): """ Extract a list of teams (schools) """ req = requests.get(DATALOC) parser = ChkTeams() parser.feed(req.text) retv = parser.retval return retv[8:] def make_team_list(): """ Call check_teams and stick result in text file """ listv = check_teams() with open('teams.txt', 'w') as ofile: for team in listv: ofile.write(team + '\n') if __name__ == '__main__': make_team_list()
en
0.723916
#!/usr/bin/python # pylint: disable=W0223 Get a list of teams Extract team names from page Extract a list of teams (schools) Call check_teams and stick result in text file
3.30506
3
svgserver/app.py
omniscale/svgserver
2
8060
<reponame>omniscale/svgserver import codecs import tempfile from contextlib import closing from .cgi import CGIClient from .combine import CombineSVG from .mapserv import MapServer, InternalError from .tree import build_tree def _recursive_add_layer(nodes, params, svg, mapserver, translations): for node in nodes: group_name = format_group_name(node, translations) svg.push_group(group_name) if node.layer: params["layers"] = node.layer params["format"] = "image/svg+xml" resp = mapserver.get(params) if resp.headers["Content-type"] != "image/svg+xml": raise InternalError( "received non SVG response for layer %s:\n%s\n%s" % (node.layer, resp.headers, resp.read()) ) svg.add(resp) if node.subs: _recursive_add_layer(node.subs, params, svg, mapserver, translations) svg.pop_group() def format_group_name(node, translations): if isinstance(node.name, tuple): return ', '.join(translations.get(n, n) for n in node.name) return translations.get(node.name, node.name) def layered_svg(params, translations={}, mapserver_binary="mapserv", root_id='map'): mapserver = MapServer(binary=mapserver_binary) layers = mapserver.layer_names(params) nodes = build_tree(layers) root_id = translations.get(root_id, root_id) f = tempfile.TemporaryFile() try: with CombineSVG(f, root_id=root_id) as svg: _recursive_add_layer( nodes, params=params, svg=svg, mapserver=mapserver, translations=translations, ) f.seek(0) return f except: # close to remove temporary file f.close() raise def load_translations(filename): if not filename: return {} translations = {} with codecs.open(filename, encoding="utf8") as f: for line in f: line = line.strip() if not line or line.startswith('#'): continue if '=' not in line: continue key, translation = line.split('=', 1) translations[key.strip()] = translation.strip() return translations if __name__ == "__main__": import os import logging logging.basicConfig(level=logging.DEBUG) params = { "service": "WMS", "version": "1.1.1", "request": "GetMap", "width": 1234, "height": 769, "srs": "EPSG:3857", "styles": "", "format": "image/svg+xml", "bbox": "775214.9923087133,6721788.224989068,776688.4414913012,6722705.993822992", "map": os.path.abspath(os.path.dirname(__file__) + "/../tests/ms.map"), } with closing(layered_svg(params)) as f: print(f.read())
import codecs import tempfile from contextlib import closing from .cgi import CGIClient from .combine import CombineSVG from .mapserv import MapServer, InternalError from .tree import build_tree def _recursive_add_layer(nodes, params, svg, mapserver, translations): for node in nodes: group_name = format_group_name(node, translations) svg.push_group(group_name) if node.layer: params["layers"] = node.layer params["format"] = "image/svg+xml" resp = mapserver.get(params) if resp.headers["Content-type"] != "image/svg+xml": raise InternalError( "received non SVG response for layer %s:\n%s\n%s" % (node.layer, resp.headers, resp.read()) ) svg.add(resp) if node.subs: _recursive_add_layer(node.subs, params, svg, mapserver, translations) svg.pop_group() def format_group_name(node, translations): if isinstance(node.name, tuple): return ', '.join(translations.get(n, n) for n in node.name) return translations.get(node.name, node.name) def layered_svg(params, translations={}, mapserver_binary="mapserv", root_id='map'): mapserver = MapServer(binary=mapserver_binary) layers = mapserver.layer_names(params) nodes = build_tree(layers) root_id = translations.get(root_id, root_id) f = tempfile.TemporaryFile() try: with CombineSVG(f, root_id=root_id) as svg: _recursive_add_layer( nodes, params=params, svg=svg, mapserver=mapserver, translations=translations, ) f.seek(0) return f except: # close to remove temporary file f.close() raise def load_translations(filename): if not filename: return {} translations = {} with codecs.open(filename, encoding="utf8") as f: for line in f: line = line.strip() if not line or line.startswith('#'): continue if '=' not in line: continue key, translation = line.split('=', 1) translations[key.strip()] = translation.strip() return translations if __name__ == "__main__": import os import logging logging.basicConfig(level=logging.DEBUG) params = { "service": "WMS", "version": "1.1.1", "request": "GetMap", "width": 1234, "height": 769, "srs": "EPSG:3857", "styles": "", "format": "image/svg+xml", "bbox": "775214.9923087133,6721788.224989068,776688.4414913012,6722705.993822992", "map": os.path.abspath(os.path.dirname(__file__) + "/../tests/ms.map"), } with closing(layered_svg(params)) as f: print(f.read())
en
0.742444
# close to remove temporary file
2.275507
2
11_app/script/purchase_order.py
israillaky/ERPOSAPP11
0
8061
import frappe @frappe.whitelist() def filt_itemby_supplier(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql("""Select parent from `tabItem Supplier` where supplier= %s""",(filters.get("supplier"))); @frappe.whitelist() def filteritem(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql("""select item_code, item_name, item_group, volume, item_type,stock_uom from `tabItem`""");
import frappe @frappe.whitelist() def filt_itemby_supplier(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql("""Select parent from `tabItem Supplier` where supplier= %s""",(filters.get("supplier"))); @frappe.whitelist() def filteritem(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql("""select item_code, item_name, item_group, volume, item_type,stock_uom from `tabItem`""");
en
0.368554
Select parent from `tabItem Supplier` where supplier= %s select item_code, item_name, item_group, volume, item_type,stock_uom from `tabItem`
1.804717
2
src/common/bio/smiles.py
duttaprat/proteinGAN
8
8062
from common.bio.constants import SMILES_CHARACTER_TO_ID, ID_TO_SMILES_CHARACTER def from_smiles_to_id(data, column): """Converts sequences from smiles to ids Args: data: data that contains characters that need to be converted to ids column: a column of the dataframe that contains characters that need to be converted to ids Returns: array of ids """ return [[SMILES_CHARACTER_TO_ID[char] for char in val] for index, val in data[column].iteritems()] def from_id_from_smiles(data, column): """Converts sequences from ids to smiles characters Args: data: data that contains ids that need to be converted to characters column: a column of the dataframe that contains ids that need to be converted to characters Returns: array of characters """ return [[ID_TO_SMILES_CHARACTER[id] for id in val] for index, val in data[column].iteritems()]
from common.bio.constants import SMILES_CHARACTER_TO_ID, ID_TO_SMILES_CHARACTER def from_smiles_to_id(data, column): """Converts sequences from smiles to ids Args: data: data that contains characters that need to be converted to ids column: a column of the dataframe that contains characters that need to be converted to ids Returns: array of ids """ return [[SMILES_CHARACTER_TO_ID[char] for char in val] for index, val in data[column].iteritems()] def from_id_from_smiles(data, column): """Converts sequences from ids to smiles characters Args: data: data that contains ids that need to be converted to characters column: a column of the dataframe that contains ids that need to be converted to characters Returns: array of characters """ return [[ID_TO_SMILES_CHARACTER[id] for id in val] for index, val in data[column].iteritems()]
en
0.885739
Converts sequences from smiles to ids Args: data: data that contains characters that need to be converted to ids column: a column of the dataframe that contains characters that need to be converted to ids Returns: array of ids Converts sequences from ids to smiles characters Args: data: data that contains ids that need to be converted to characters column: a column of the dataframe that contains ids that need to be converted to characters Returns: array of characters
3.250393
3
test/lib_config_test.py
yokoyama-flogics/ibp_monitor_2
3
8063
import os import sys import unittest # Set Python search path to the parent directory sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib.config import * class TestLibConfig(unittest.TestCase): def test_config_noconfigfile(self): config = BeaconConfigParser('not_exist.cfg') with self.assertRaises(ConfigParser.NoSectionError): config.getpath('Test', 'dbdir') def test_config_default(self): import os os.environ['HOME'] = 'notexist' config = BeaconConfigParser() with self.assertRaises(ConfigParser.NoSectionError): config.get('Signal', 'samplerate') def test_config_items(self): config = BeaconConfigParser('test_config.cfg') self.assertEqual(config.get('Test', 'dbdir'), 'nodb') self.assertEqual(config.getpath('Test', 'dbdir'), 'nodb') self.assertEqual(config.getint('Signal', 'samplerate'), 16000) if __name__ == "__main__": unittest.main(buffer=True)
import os import sys import unittest # Set Python search path to the parent directory sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib.config import * class TestLibConfig(unittest.TestCase): def test_config_noconfigfile(self): config = BeaconConfigParser('not_exist.cfg') with self.assertRaises(ConfigParser.NoSectionError): config.getpath('Test', 'dbdir') def test_config_default(self): import os os.environ['HOME'] = 'notexist' config = BeaconConfigParser() with self.assertRaises(ConfigParser.NoSectionError): config.get('Signal', 'samplerate') def test_config_items(self): config = BeaconConfigParser('test_config.cfg') self.assertEqual(config.get('Test', 'dbdir'), 'nodb') self.assertEqual(config.getpath('Test', 'dbdir'), 'nodb') self.assertEqual(config.getint('Signal', 'samplerate'), 16000) if __name__ == "__main__": unittest.main(buffer=True)
en
0.606285
# Set Python search path to the parent directory
2.786767
3
tests/test_installation.py
phdye/nimporter
0
8064
<reponame>phdye/nimporter """ Test to make sure that libraries built with Nimporter can be installed via Pip. """ import sys, os, subprocess, shutil, pkg_resources, json, warnings from pathlib import Path import pytest import nimporter PYTHON = 'python' if sys.platform == 'win32' else 'python3' PIP = 'pip' if shutil.which('pip') else 'pip3' @pytest.mark.integration_test def test_ensure_nimporter_installed(): "Make sure that Nimporter is installed before running integration tests." libs = {lib.key.lower() for lib in pkg_resources.working_set} assert 'nimporter' in libs, ( f'Nimporter is not installed. Please install via:' f'`{PIP} install .` before running the integration tests.' ) @pytest.mark.integration_test def test_create_sdist(): "Test the successful creation of a source distribution." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.integration_test def test_create_bdist(): "Test the successful create of a wheel." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.slow_integration_test def test_install_sdist(): "Make sure that the project can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 (target,) = targets assert target.exists() subprocess.Popen(f'{PIP} install {target}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait() @pytest.mark.slow_integration_test def test_install_bdist(): "Make sure that the wheel can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 wheel = targets[0] assert wheel.exists() subprocess.Popen(f'{PIP} install {wheel}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait()
""" Test to make sure that libraries built with Nimporter can be installed via Pip. """ import sys, os, subprocess, shutil, pkg_resources, json, warnings from pathlib import Path import pytest import nimporter PYTHON = 'python' if sys.platform == 'win32' else 'python3' PIP = 'pip' if shutil.which('pip') else 'pip3' @pytest.mark.integration_test def test_ensure_nimporter_installed(): "Make sure that Nimporter is installed before running integration tests." libs = {lib.key.lower() for lib in pkg_resources.working_set} assert 'nimporter' in libs, ( f'Nimporter is not installed. Please install via:' f'`{PIP} install .` before running the integration tests.' ) @pytest.mark.integration_test def test_create_sdist(): "Test the successful creation of a source distribution." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.integration_test def test_create_bdist(): "Test the successful create of a wheel." with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 assert targets[0].exists() # Make sure the appropriate compiler is being used for extension in Path('nim-extensions').iterdir(): (nim_build_data_file,) = extension.glob('*json') nim_build_data = json.loads(nim_build_data_file.read_text()) expected = nimporter.NimCompiler.get_compatible_compiler() installed_ccs = nimporter.NimCompiler.get_installed_compilers() if not expected: warnings.warn( f'No compatible C compiler installed: {installed_ccs}' ) else: cc_path = installed_ccs[expected] actual = nim_build_data['linkcmd'].split()[0].strip() if not actual.startswith(cc_path.stem): warnings.warn( f'Nim used a different C compiler than what Python ' f'expects. Python uses {cc_path.stem} and Nim used ' f'{actual}' ) finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) @pytest.mark.slow_integration_test def test_install_sdist(): "Make sure that the project can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py sdist'.split()).wait() dist = Path('dist') egg = Path('project1.egg-info') try: assert dist.exists() assert egg.exists() targets = list(dist.glob('project1*')) assert len(targets) == 1 (target,) = targets assert target.exists() subprocess.Popen(f'{PIP} install {target}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait() @pytest.mark.slow_integration_test def test_install_bdist(): "Make sure that the wheel can be installed by Pip" with nimporter.cd('tests/proj1'): subprocess.Popen(f'{PYTHON} setup.py bdist_wheel'.split()).wait() dist = Path('dist') build = Path('build') egg = Path('project1.egg-info') try: assert dist.exists() assert build.exists() assert egg.exists() targets = list(Path('dist').glob('project1*.whl')) assert len(targets) == 1 wheel = targets[0] assert wheel.exists() subprocess.Popen(f'{PIP} install {wheel}'.split()).wait() finally: shutil.rmtree(str(dist.absolute())) shutil.rmtree(str(build.absolute())) shutil.rmtree(str(egg.absolute())) # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. with nimporter.cd('../..'): try: import proj1 assert proj1 import proj1.performance assert proj1.performance import proj1.lib1 assert proj1.lib1 assert proj1.foo assert proj1.bar assert proj1.baz assert proj1.baz() == 1 except Exception as e: warnings.warn(str(e)) # Cannot delete a DLL in use by another process on Windows if sys.platform != 'win32': subprocess.Popen(f'{PIP} uninstall project1 -y'.split()).wait()
en
0.955609
Test to make sure that libraries built with Nimporter can be installed via Pip. # Make sure the appropriate compiler is being used # Make sure the appropriate compiler is being used # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. # Cannot delete a DLL in use by another process on Windows # Make sure that `tests/proj1` is not imported as a SimpleNamespace and that # the installed library in `site-packages` is used. # Cannot delete a DLL in use by another process on Windows
2.452555
2
hotpot_sample_dict.py
bvanaken/pytorch-pretrained-BERT
1
8065
<gh_stars>1-10 samples = { "2_brother_plays": { "question_parts": [range(1, 13), range(13, 17)], "sp_parts": [range(20, 43), range(50, 60)] } }
samples = { "2_brother_plays": { "question_parts": [range(1, 13), range(13, 17)], "sp_parts": [range(20, 43), range(50, 60)] } }
none
1
1.23568
1
src/applications/blog/migrations/0003_post_author.py
alexander-sidorov/tms-z43
2
8066
<filename>src/applications/blog/migrations/0003_post_author.py # Generated by Django 3.1.7 on 2021-03-24 17:41 import django.db.models.deletion from django.conf import settings from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("blog", "0002_auto_20210323_1834"), ] operations = [ migrations.AddField( model_name="post", name="author", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ]
<filename>src/applications/blog/migrations/0003_post_author.py # Generated by Django 3.1.7 on 2021-03-24 17:41 import django.db.models.deletion from django.conf import settings from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("blog", "0002_auto_20210323_1834"), ] operations = [ migrations.AddField( model_name="post", name="author", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ]
en
0.831672
# Generated by Django 3.1.7 on 2021-03-24 17:41
1.513943
2
sdk/python/pulumi_aws/cloudformation/stack_set.py
mdop-wh/pulumi-aws
0
8067
<reponame>mdop-wh/pulumi-aws # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = ['StackSet'] class StackSet(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, administration_role_arn: Optional[pulumi.Input[str]] = None, capabilities: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, description: Optional[pulumi.Input[str]] = None, execution_role_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parameters: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_body: Optional[pulumi.Input[str]] = None, template_url: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Manages a CloudFormation StackSet. StackSets allow CloudFormation templates to be easily deployed across multiple accounts and regions via StackSet Instances (`cloudformation.StackSetInstance` resource). Additional information about StackSets can be found in the [AWS CloudFormation User Guide](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html). > **NOTE:** All template parameters, including those with a `Default`, must be configured or ignored with the `lifecycle` configuration block `ignore_changes` argument. > **NOTE:** All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. ## Example Usage ```python import pulumi import pulumi_aws as aws a_ws_cloud_formation_stack_set_administration_role_assume_role_policy = aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", principals=[aws.iam.GetPolicyDocumentStatementPrincipalArgs( identifiers=["cloudformation.amazonaws.com"], type="Service", )], )]) a_ws_cloud_formation_stack_set_administration_role = aws.iam.Role("aWSCloudFormationStackSetAdministrationRole", assume_role_policy=a_ws_cloud_formation_stack_set_administration_role_assume_role_policy.json) example = aws.cloudformation.StackSet("example", administration_role_arn=a_ws_cloud_formation_stack_set_administration_role.arn, parameters={ "VPCCidr": "10.0.0.0/16", }, template_body=\"\"\"{ "Parameters" : { "VPCCidr" : { "Type" : "String", "Default" : "10.0.0.0/16", "Description" : "Enter the CIDR block for the VPC. Default is 10.0.0.0/16." } }, "Resources" : { "myVpc": { "Type" : "AWS::EC2::VPC", "Properties" : { "CidrBlock" : { "Ref" : "VPCCidr" }, "Tags" : [ {"Key": "Name", "Value": "Primary_CF_VPC"} ] } } } } \"\"\") a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document = example.execution_role_name.apply(lambda execution_role_name: aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", resources=[f"arn:aws:iam::*:role/{execution_role_name}"], )])) a_ws_cloud_formation_stack_set_administration_role_execution_policy_role_policy = aws.iam.RolePolicy("aWSCloudFormationStackSetAdministrationRoleExecutionPolicyRolePolicy", policy=a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document.json, role=a_ws_cloud_formation_stack_set_administration_role.name) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if administration_role_arn is None: raise TypeError("Missing required property 'administration_role_arn'") __props__['administration_role_arn'] = administration_role_arn __props__['capabilities'] = capabilities __props__['description'] = description __props__['execution_role_name'] = execution_role_name __props__['name'] = name __props__['parameters'] = parameters __props__['tags'] = tags __props__['template_body'] = template_body __props__['template_url'] = template_url __props__['arn'] = None __props__['stack_set_id'] = None super(StackSet, __self__).__init__( 'aws:cloudformation/stackSet:StackSet', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, administration_role_arn: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, capabilities: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, description: Optional[pulumi.Input[str]] = None, execution_role_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parameters: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, stack_set_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_body: Optional[pulumi.Input[str]] = None, template_url: Optional[pulumi.Input[str]] = None) -> 'StackSet': """ Get an existing StackSet resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[str] arn: Amazon Resource Name (ARN) of the StackSet. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[str] stack_set_id: Unique identifier of the StackSet. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["administration_role_arn"] = administration_role_arn __props__["arn"] = arn __props__["capabilities"] = capabilities __props__["description"] = description __props__["execution_role_name"] = execution_role_name __props__["name"] = name __props__["parameters"] = parameters __props__["stack_set_id"] = stack_set_id __props__["tags"] = tags __props__["template_body"] = template_body __props__["template_url"] = template_url return StackSet(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="administrationRoleArn") def administration_role_arn(self) -> pulumi.Output[str]: """ Amazon Resource Number (ARN) of the IAM Role in the administrator account. """ return pulumi.get(self, "administration_role_arn") @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ Amazon Resource Name (ARN) of the StackSet. """ return pulumi.get(self, "arn") @property @pulumi.getter def capabilities(self) -> pulumi.Output[Optional[List[str]]]: """ A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. """ return pulumi.get(self, "capabilities") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the StackSet. """ return pulumi.get(self, "description") @property @pulumi.getter(name="executionRoleName") def execution_role_name(self) -> pulumi.Output[Optional[str]]: """ Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. """ return pulumi.get(self, "execution_role_name") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. """ return pulumi.get(self, "name") @property @pulumi.getter def parameters(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. """ return pulumi.get(self, "parameters") @property @pulumi.getter(name="stackSetId") def stack_set_id(self) -> pulumi.Output[str]: """ Unique identifier of the StackSet. """ return pulumi.get(self, "stack_set_id") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="templateBody") def template_body(self) -> pulumi.Output[str]: """ String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. """ return pulumi.get(self, "template_body") @property @pulumi.getter(name="templateUrl") def template_url(self) -> pulumi.Output[Optional[str]]: """ String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ return pulumi.get(self, "template_url") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = ['StackSet'] class StackSet(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, administration_role_arn: Optional[pulumi.Input[str]] = None, capabilities: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, description: Optional[pulumi.Input[str]] = None, execution_role_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parameters: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_body: Optional[pulumi.Input[str]] = None, template_url: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Manages a CloudFormation StackSet. StackSets allow CloudFormation templates to be easily deployed across multiple accounts and regions via StackSet Instances (`cloudformation.StackSetInstance` resource). Additional information about StackSets can be found in the [AWS CloudFormation User Guide](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html). > **NOTE:** All template parameters, including those with a `Default`, must be configured or ignored with the `lifecycle` configuration block `ignore_changes` argument. > **NOTE:** All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. ## Example Usage ```python import pulumi import pulumi_aws as aws a_ws_cloud_formation_stack_set_administration_role_assume_role_policy = aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", principals=[aws.iam.GetPolicyDocumentStatementPrincipalArgs( identifiers=["cloudformation.amazonaws.com"], type="Service", )], )]) a_ws_cloud_formation_stack_set_administration_role = aws.iam.Role("aWSCloudFormationStackSetAdministrationRole", assume_role_policy=a_ws_cloud_formation_stack_set_administration_role_assume_role_policy.json) example = aws.cloudformation.StackSet("example", administration_role_arn=a_ws_cloud_formation_stack_set_administration_role.arn, parameters={ "VPCCidr": "10.0.0.0/16", }, template_body=\"\"\"{ "Parameters" : { "VPCCidr" : { "Type" : "String", "Default" : "10.0.0.0/16", "Description" : "Enter the CIDR block for the VPC. Default is 10.0.0.0/16." } }, "Resources" : { "myVpc": { "Type" : "AWS::EC2::VPC", "Properties" : { "CidrBlock" : { "Ref" : "VPCCidr" }, "Tags" : [ {"Key": "Name", "Value": "Primary_CF_VPC"} ] } } } } \"\"\") a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document = example.execution_role_name.apply(lambda execution_role_name: aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", resources=[f"arn:aws:iam::*:role/{execution_role_name}"], )])) a_ws_cloud_formation_stack_set_administration_role_execution_policy_role_policy = aws.iam.RolePolicy("aWSCloudFormationStackSetAdministrationRoleExecutionPolicyRolePolicy", policy=a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document.json, role=a_ws_cloud_formation_stack_set_administration_role.name) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if administration_role_arn is None: raise TypeError("Missing required property 'administration_role_arn'") __props__['administration_role_arn'] = administration_role_arn __props__['capabilities'] = capabilities __props__['description'] = description __props__['execution_role_name'] = execution_role_name __props__['name'] = name __props__['parameters'] = parameters __props__['tags'] = tags __props__['template_body'] = template_body __props__['template_url'] = template_url __props__['arn'] = None __props__['stack_set_id'] = None super(StackSet, __self__).__init__( 'aws:cloudformation/stackSet:StackSet', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, administration_role_arn: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, capabilities: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, description: Optional[pulumi.Input[str]] = None, execution_role_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parameters: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, stack_set_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_body: Optional[pulumi.Input[str]] = None, template_url: Optional[pulumi.Input[str]] = None) -> 'StackSet': """ Get an existing StackSet resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[str] arn: Amazon Resource Name (ARN) of the StackSet. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[str] stack_set_id: Unique identifier of the StackSet. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["administration_role_arn"] = administration_role_arn __props__["arn"] = arn __props__["capabilities"] = capabilities __props__["description"] = description __props__["execution_role_name"] = execution_role_name __props__["name"] = name __props__["parameters"] = parameters __props__["stack_set_id"] = stack_set_id __props__["tags"] = tags __props__["template_body"] = template_body __props__["template_url"] = template_url return StackSet(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="administrationRoleArn") def administration_role_arn(self) -> pulumi.Output[str]: """ Amazon Resource Number (ARN) of the IAM Role in the administrator account. """ return pulumi.get(self, "administration_role_arn") @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ Amazon Resource Name (ARN) of the StackSet. """ return pulumi.get(self, "arn") @property @pulumi.getter def capabilities(self) -> pulumi.Output[Optional[List[str]]]: """ A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. """ return pulumi.get(self, "capabilities") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the StackSet. """ return pulumi.get(self, "description") @property @pulumi.getter(name="executionRoleName") def execution_role_name(self) -> pulumi.Output[Optional[str]]: """ Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. """ return pulumi.get(self, "execution_role_name") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. """ return pulumi.get(self, "name") @property @pulumi.getter def parameters(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. """ return pulumi.get(self, "parameters") @property @pulumi.getter(name="stackSetId") def stack_set_id(self) -> pulumi.Output[str]: """ Unique identifier of the StackSet. """ return pulumi.get(self, "stack_set_id") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="templateBody") def template_body(self) -> pulumi.Output[str]: """ String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. """ return pulumi.get(self, "template_body") @property @pulumi.getter(name="templateUrl") def template_url(self) -> pulumi.Output[Optional[str]]: """ String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. """ return pulumi.get(self, "template_url") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
en
0.559059
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** Manages a CloudFormation StackSet. StackSets allow CloudFormation templates to be easily deployed across multiple accounts and regions via StackSet Instances (`cloudformation.StackSetInstance` resource). Additional information about StackSets can be found in the [AWS CloudFormation User Guide](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html). > **NOTE:** All template parameters, including those with a `Default`, must be configured or ignored with the `lifecycle` configuration block `ignore_changes` argument. > **NOTE:** All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. ## Example Usage ```python import pulumi import pulumi_aws as aws a_ws_cloud_formation_stack_set_administration_role_assume_role_policy = aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", principals=[aws.iam.GetPolicyDocumentStatementPrincipalArgs( identifiers=["cloudformation.amazonaws.com"], type="Service", )], )]) a_ws_cloud_formation_stack_set_administration_role = aws.iam.Role("aWSCloudFormationStackSetAdministrationRole", assume_role_policy=a_ws_cloud_formation_stack_set_administration_role_assume_role_policy.json) example = aws.cloudformation.StackSet("example", administration_role_arn=a_ws_cloud_formation_stack_set_administration_role.arn, parameters={ "VPCCidr": "10.0.0.0/16", }, template_body=\"\"\"{ "Parameters" : { "VPCCidr" : { "Type" : "String", "Default" : "10.0.0.0/16", "Description" : "Enter the CIDR block for the VPC. Default is 10.0.0.0/16." } }, "Resources" : { "myVpc": { "Type" : "AWS::EC2::VPC", "Properties" : { "CidrBlock" : { "Ref" : "VPCCidr" }, "Tags" : [ {"Key": "Name", "Value": "Primary_CF_VPC"} ] } } } } \"\"\") a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document = example.execution_role_name.apply(lambda execution_role_name: aws.iam.get_policy_document(statements=[aws.iam.GetPolicyDocumentStatementArgs( actions=["sts:AssumeRole"], effect="Allow", resources=[f"arn:aws:iam::*:role/{execution_role_name}"], )])) a_ws_cloud_formation_stack_set_administration_role_execution_policy_role_policy = aws.iam.RolePolicy("aWSCloudFormationStackSetAdministrationRoleExecutionPolicyRolePolicy", policy=a_ws_cloud_formation_stack_set_administration_role_execution_policy_policy_document.json, role=a_ws_cloud_formation_stack_set_administration_role.name) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. Get an existing StackSet resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] administration_role_arn: Amazon Resource Number (ARN) of the IAM Role in the administrator account. :param pulumi.Input[str] arn: Amazon Resource Name (ARN) of the StackSet. :param pulumi.Input[List[pulumi.Input[str]]] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. :param pulumi.Input[str] description: Description of the StackSet. :param pulumi.Input[str] execution_role_name: Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. :param pulumi.Input[str] name: Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] parameters: Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. :param pulumi.Input[str] stack_set_id: Unique identifier of the StackSet. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. :param pulumi.Input[str] template_body: String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. :param pulumi.Input[str] template_url: String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`. Amazon Resource Number (ARN) of the IAM Role in the administrator account. Amazon Resource Name (ARN) of the StackSet. A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, `CAPABILITY_AUTO_EXPAND`. Description of the StackSet. Name of the IAM Role in all target accounts for StackSet operations. Defaults to `AWSCloudFormationStackSetExecutionRole`. Name of the StackSet. The name must be unique in the region where you create your StackSet. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic character and cannot be longer than 128 characters. Key-value map of input parameters for the StackSet template. All template parameters, including those with a `Default`, must be configured or ignored with `lifecycle` configuration block `ignore_changes` argument. All `NoEcho` template parameters must be ignored with the `lifecycle` configuration block `ignore_changes` argument. Unique identifier of the StackSet. Key-value map of tags to associate with this StackSet and the Stacks created from it. AWS CloudFormation also propagates these tags to supported resources that are created in the Stacks. A maximum number of 50 tags can be specified. String containing the CloudFormation template body. Maximum size: 51,200 bytes. Conflicts with `template_url`. String containing the location of a file containing the CloudFormation template body. The URL must point to a template that is located in an Amazon S3 bucket. Maximum location file size: 460,800 bytes. Conflicts with `template_body`.
1.63394
2
code/config/imports.py
farioso-fernando/cover-meu-beat
0
8068
from kivy.uix.screenmanager import ScreenManager from kivy.uix.boxlayout import BoxLayout from kivy.lang.builder import Builder from kivy.animation import Animation from kivy.core.window import Window from kivymd.app import MDApp import kivymd import kivy print( ) def version(): kivy.require('2.0.0') print( )
from kivy.uix.screenmanager import ScreenManager from kivy.uix.boxlayout import BoxLayout from kivy.lang.builder import Builder from kivy.animation import Animation from kivy.core.window import Window from kivymd.app import MDApp import kivymd import kivy print( ) def version(): kivy.require('2.0.0') print( )
none
1
1.761887
2
claripy/vsa/valueset.py
kwalberg/claripy
0
8069
import functools import itertools import numbers from ..backend_object import BackendObject from ..annotation import Annotation def normalize_types_two_args(f): @functools.wraps(f) def normalizer(self, region, o): """ Convert any object to an object that we can process. """ if isinstance(o, Base): raise ClaripyValueError("BoolResult can't handle AST objects directly") if not isinstance(o, StridedInterval): raise ClaripyVSAOperationError('Unsupported operand type %s' % type(o)) return f(self, region, o) return normalizer def normalize_types_one_arg(f): @functools.wraps(f) def normalizer(self, o): """ Convert any object to an object that we can process. """ if isinstance(o, Base): raise ClaripyValueError("BoolResult can't handle AST objects directly") return f(self, o) return normalizer vs_id_ctr = itertools.count() class RegionAnnotation(Annotation): """ Use RegionAnnotation to annotate ASTs. Normally, an AST annotated by RegionAnnotations is treated as a ValueSet. Note that Annotation objects are immutable. Do not change properties of an Annotation object without creating a new one. """ def __init__(self, region_id, region_base_addr, offset): self.region_id = region_id self.region_base_addr = region_base_addr self.offset = offset # Do necessary conversion here if isinstance(self.region_base_addr, Base): self.region_base_addr = self.region_base_addr._model_vsa if isinstance(self.offset, Base): self.offset = self.offset._model_vsa @property def eliminatable(self): """ A Region annotation is not eliminatable in simplifications. :return: False :rtype: bool """ return False @property def relocatable(self): """ A Region annotation is not relocatable in simplifications. :return: False :rtype: bool """ return False # # Public methods # def relocate(self, src, dst): """ Override Annotation.relocate(). :param src: The old AST :param dst: The new AST, as the result of a simplification :return: The new annotation that should be applied on the new AST """ raise ClaripyVSAError('RegionAnnotation is not relocatable') # # Overriding base methods # def __hash__(self): return hash((self.region_id, self.region_base_addr, hash(self.offset))) def __repr__(self): return "<RegionAnnotation %s:%#08x>" % (self.region_id, self.offset) class ValueSet(BackendObject): """ ValueSet is a mapping between memory regions and corresponding offsets. """ def __init__(self, name=None, region=None, region_base_addr=None, bits=None, val=None): """ Constructor. :param str name: Name of this ValueSet object. Only for debugging purposes. :param str region: Region ID. :param int region_base_addr: Base address of the region. :param int bits: Size of the ValueSet. :param val: an initial offset """ self._name = 'VS_%d' % next(vs_id_ctr) if name is None else name if bits is None: raise ClaripyVSAError('bits must be specified when creating a ValueSet.') self._bits = bits self._si = StridedInterval.empty(bits) self._regions = {} self._region_base_addrs = {} self._reversed = False # Shortcuts for initialization # May not be useful though... if region is not None and region_base_addr is not None and val is not None: if isinstance(region_base_addr, numbers.Number): # Convert it to a StridedInterval region_base_addr = StridedInterval(bits=self._bits, stride=1, lower_bound=region_base_addr, upper_bound=region_base_addr) if isinstance(val, numbers.Number): val = StridedInterval(bits=bits, stride=0, lower_bound=val, upper_bound=val) if isinstance(val, StridedInterval): self._set_si(region, region_base_addr, val) else: raise ClaripyVSAError("Unsupported type '%s' for argument 'val'" % type(val)) else: if region is not None or val is not None: raise ClaripyVSAError("You must specify 'region' and 'val' at the same time.") # # Properties # @property def name(self): return self._name @property def bits(self): return self._bits @property def regions(self): return self._regions @property def reversed(self): return self._reversed @property def unique(self): return len(self.regions) == 1 and self.regions.values()[0].unique @property def cardinality(self): card = 0 for region in self._regions: card += self._regions[region].cardinality return card @property def is_empty(self): return len(self._regions) == 0 @property def valueset(self): return self # # Private methods # def _set_si(self, region, region_base_addr, si): if isinstance(si, numbers.Number): si = StridedInterval(bits=self.bits, stride=0, lower_bound=si, upper_bound=si) if isinstance(region_base_addr, numbers.Number): region_base_addr = StridedInterval(bits=self.bits, stride=0, lower_bound=region_base_addr, upper_bound=region_base_addr ) if not isinstance(si, StridedInterval): raise ClaripyVSAOperationError('Unsupported type %s for si' % type(si)) self._regions[region] = si self._region_base_addrs[region] = region_base_addr self._si = self._si.union(region_base_addr + si) def _merge_si(self, region, region_base_addr, si): if isinstance(region_base_addr, numbers.Number): region_base_addr = StridedInterval(bits=self.bits, stride=0, lower_bound=region_base_addr, upper_bound=region_base_addr ) if region not in self._regions: self._set_si(region, region_base_addr, si) else: self._regions[region] = self._regions[region].union(si) self._region_base_addrs[region] = self._region_base_addrs[region].union(region_base_addr) self._si = self._si.union(region_base_addr + si) # # Public methods # @staticmethod def empty(bits): return ValueSet(bits=bits) def items(self): return self._regions.items() def size(self): return len(self) def copy(self): """ Make a copy of self and return. :return: A new ValueSet object. :rtype: ValueSet """ vs = ValueSet(bits=self.bits) vs._regions = self._regions.copy() vs._region_base_addrs = self._region_base_addrs.copy() vs._reversed = self._reversed vs._si = self._si.copy() return vs def get_si(self, region): if region in self._regions: return self._regions[region] # TODO: Should we return a None, or an empty SI instead? return None def stridedinterval(self): return self._si def apply_annotation(self, annotation): """ Apply a new annotation onto self, and return a new ValueSet object. :param RegionAnnotation annotation: The annotation to apply. :return: A new ValueSet object :rtype: ValueSet """ vs = self.copy() vs._merge_si(annotation.region_id, annotation.region_base_addr, annotation.offset) return vs def __repr__(self): s = "" for region, si in self._regions.items(): s = "%s: %s" % (region, si) return "(" + s + ")" def __len__(self): return self._bits def __hash__(self): return hash(tuple((r, hash(self._regions[r])) for r in self._regions)) # # Arithmetic operations # @normalize_types_one_arg def __add__(self, other): """ Binary operation: addition Note that even if "other" is a ValueSet object. we still treat it as a StridedInterval. Adding two ValueSets together does not make sense (which is essentially adding two pointers together). :param StridedInterval other: The other operand. :return: A new ValueSet object :rtype: ValueSet """ new_vs = ValueSet(bits=self.bits) # Call __add__ on self._si new_vs._si = self._si.__add__(other) for region in self._regions: new_vs._regions[region] = self._regions[region] + other return new_vs @normalize_types_one_arg def __radd__(self, other): return self.__add__(other) @normalize_types_one_arg def __sub__(self, other): """ Binary operation: subtraction :param other: The other operand :return: A StridedInterval or a ValueSet. """ deltas = [ ] # TODO: Handle more cases if isinstance(other, ValueSet): # A subtraction between two ValueSets produces a StridedInterval if self.regions.keys() == other.regions.keys(): for region in self._regions: deltas.append(self._regions[region] - other._regions[region]) else: # TODO: raise the proper exception here raise NotImplementedError() delta = StridedInterval.empty(self.bits) for d in deltas: delta = delta.union(d) return delta else: # A subtraction between a ValueSet and a StridedInterval produces another ValueSet new_vs = self.copy() # Call __sub__ on the base class new_vs._si = self._si.__sub__(other) for region, si in new_vs._regions.items(): new_vs._regions[region] = si - other return new_vs @normalize_types_one_arg def __and__(self, other): """ Binary operation: and Note that even if `other` is a ValueSet object, it will be treated as a StridedInterval as well. Doing & between two pointers that are not the same do not make sense. :param other: The other operand :return: A ValueSet as the result :rtype: ValueSet """ if type(other) is ValueSet: # The only case where calling & between two points makes sense if self.identical(other): return self.copy() if BoolResult.is_true(other == 0): # Corner case: a & 0 = 0 return StridedInterval(bits=self.bits, stride=0, lower_bound=0, upper_bound=0) if BoolResult.is_true(other < 0x100): # Special case - sometimes (addr & mask) is used for testing whether the address is aligned or not # We return a StridedInterval instead ret = None for region, si in self._regions.items(): r = si.__and__(other) ret = r if ret is None else ret.union(r) return ret else: # We should return a ValueSet here new_vs = self.copy() for region, si in self._regions.items(): r = si.__and__(other) new_vs._regions[region] = r return new_vs def __eq__(self, other): """ Binary operation: == :param other: The other operand :return: True/False/Maybe """ if isinstance(other, ValueSet): same = False different = False for region, si in other.regions.items(): if region in self.regions: comp_ret = self.regions[region] == si if BoolResult.has_true(comp_ret): same = True if BoolResult.has_false(comp_ret): different = True else: different = True if same and not different: return TrueResult() if same and different: return MaybeResult() return FalseResult() elif isinstance(other, StridedInterval): if 'global' in self.regions: return self.regions['global'] == other else: return FalseResult() else: return FalseResult() def __ne__(self, other): """ Binary operation: == :param other: The other operand :return: True/False/Maybe """ return ~ (self == other) # # Backend operations # def eval(self, n, signed=False): if signed: # How are you going to deal with a negative pointer? raise ClaripyVSAOperationError('`signed` cannot be True when calling ValueSet.eval().') results = [] for _, si in self._regions.items(): if len(results) < n: results.extend(si.eval(n)) return results @property def min(self): """ The minimum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the minimum integer value of this value-set. :rtype: int """ if len(self.regions) != 1: raise ClaripyVSAOperationError("'min()' onlly works on single-region value-sets.") return self.get_si(next(iter(self.regions))).min @property def max(self): """ The maximum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the maximum integer value of this value-set. :rtype: int """ if len(self.regions) != 1: raise ClaripyVSAOperationError("'max()' onlly works on single-region value-sets.") return self.get_si(next(iter(self.regions))).max def reverse(self): # TODO: obviously valueset.reverse is not properly implemented. I'm disabling the old annoying output line for # TODO: now. I will implement the proper reversing support soon. vs = self.copy() vs._reversed = not vs._reversed return vs def extract(self, high_bit, low_bit): """ Operation extract - A cheap hack is implemented: a copy of self is returned if (high_bit - low_bit + 1 == self.bits), which is a ValueSet instance. Otherwise a StridedInterval is returned. :param high_bit: :param low_bit: :return: A ValueSet or a StridedInterval """ if high_bit - low_bit + 1 == self.bits: return self.copy() if ('global' in self._regions and len(self._regions.keys()) > 1) or \ len(self._regions.keys()) > 0: si_ret = StridedInterval.top(high_bit - low_bit + 1) else: if 'global' in self._regions: si = self._regions['global'] si_ret = si.extract(high_bit, low_bit) else: si_ret = StridedInterval.empty(high_bit - low_bit + 1) return si_ret def concat(self, b): new_vs = ValueSet(bits=self.bits + b.bits) # TODO: This logic is obviously flawed. Correct it later :-( if isinstance(b, StridedInterval): for region, si in self._regions.items(): new_vs._set_si(region, self._region_base_addrs[region], si.concat(b)) elif isinstance(b, ValueSet): for region, si in self._regions.items(): new_vs._set_si(region, self._region_base_addrs[region], si.concat(b.get_si(region))) else: raise ClaripyVSAOperationError('ValueSet.concat() got an unsupported operand %s (type %s)' % (b, type(b))) return new_vs @normalize_types_one_arg def union(self, b): merged_vs = self.copy() if type(b) is ValueSet: for region, si in b.regions.items(): if region not in merged_vs._regions: merged_vs._regions[region] = si else: merged_vs._regions[region] = merged_vs._regions[region].union(si) merged_vs._si = merged_vs._si.union(b._si) else: for region, si in merged_vs._regions.items(): merged_vs._regions[region] = merged_vs._regions[region].union(b) merged_vs._si = merged_vs._si.union(b) return merged_vs @normalize_types_one_arg def widen(self, b): merged_vs = self.copy() if isinstance(b, ValueSet): for region, si in b.regions.items(): if region not in merged_vs.regions: merged_vs.regions[region] = si else: merged_vs.regions[region] = merged_vs.regions[region].widen(si) merged_vs._si = merged_vs._si.widen(b._si) else: for region in merged_vs._regions: merged_vs._regions[region] = merged_vs._regions[region].widen(b) merged_vs._si = merged_vs._si.widen(b) return merged_vs @normalize_types_one_arg def intersection(self, b): vs = self.copy() if isinstance(b, ValueSet): for region, si in b.regions.items(): if region not in vs.regions: pass else: vs.regions[region] = vs.regions[region].intersection(si) if vs.regions[region].is_empty: del vs.regions[region] vs._si = vs._si.intersection(b._si) else: for region in self._regions: vs.regions[region] = vs.regions[region].intersection(b) if vs.regions[region].is_empty: del vs.regions[region] vs._si = vs._si.intersection(b) return vs def identical(self, o): """ Used to make exact comparisons between two ValueSets. :param o: The other ValueSet to compare with. :return: True if they are exactly same, False otherwise. """ if self._reversed != o._reversed: return False for region, si in self.regions.items(): if region in o.regions: o_si = o.regions[region] if not si.identical(o_si): return False else: return False return True from ..ast.base import Base from .strided_interval import StridedInterval from .bool_result import BoolResult, TrueResult, FalseResult, MaybeResult from .errors import ClaripyVSAOperationError, ClaripyVSAError from ..errors import ClaripyValueError
import functools import itertools import numbers from ..backend_object import BackendObject from ..annotation import Annotation def normalize_types_two_args(f): @functools.wraps(f) def normalizer(self, region, o): """ Convert any object to an object that we can process. """ if isinstance(o, Base): raise ClaripyValueError("BoolResult can't handle AST objects directly") if not isinstance(o, StridedInterval): raise ClaripyVSAOperationError('Unsupported operand type %s' % type(o)) return f(self, region, o) return normalizer def normalize_types_one_arg(f): @functools.wraps(f) def normalizer(self, o): """ Convert any object to an object that we can process. """ if isinstance(o, Base): raise ClaripyValueError("BoolResult can't handle AST objects directly") return f(self, o) return normalizer vs_id_ctr = itertools.count() class RegionAnnotation(Annotation): """ Use RegionAnnotation to annotate ASTs. Normally, an AST annotated by RegionAnnotations is treated as a ValueSet. Note that Annotation objects are immutable. Do not change properties of an Annotation object without creating a new one. """ def __init__(self, region_id, region_base_addr, offset): self.region_id = region_id self.region_base_addr = region_base_addr self.offset = offset # Do necessary conversion here if isinstance(self.region_base_addr, Base): self.region_base_addr = self.region_base_addr._model_vsa if isinstance(self.offset, Base): self.offset = self.offset._model_vsa @property def eliminatable(self): """ A Region annotation is not eliminatable in simplifications. :return: False :rtype: bool """ return False @property def relocatable(self): """ A Region annotation is not relocatable in simplifications. :return: False :rtype: bool """ return False # # Public methods # def relocate(self, src, dst): """ Override Annotation.relocate(). :param src: The old AST :param dst: The new AST, as the result of a simplification :return: The new annotation that should be applied on the new AST """ raise ClaripyVSAError('RegionAnnotation is not relocatable') # # Overriding base methods # def __hash__(self): return hash((self.region_id, self.region_base_addr, hash(self.offset))) def __repr__(self): return "<RegionAnnotation %s:%#08x>" % (self.region_id, self.offset) class ValueSet(BackendObject): """ ValueSet is a mapping between memory regions and corresponding offsets. """ def __init__(self, name=None, region=None, region_base_addr=None, bits=None, val=None): """ Constructor. :param str name: Name of this ValueSet object. Only for debugging purposes. :param str region: Region ID. :param int region_base_addr: Base address of the region. :param int bits: Size of the ValueSet. :param val: an initial offset """ self._name = 'VS_%d' % next(vs_id_ctr) if name is None else name if bits is None: raise ClaripyVSAError('bits must be specified when creating a ValueSet.') self._bits = bits self._si = StridedInterval.empty(bits) self._regions = {} self._region_base_addrs = {} self._reversed = False # Shortcuts for initialization # May not be useful though... if region is not None and region_base_addr is not None and val is not None: if isinstance(region_base_addr, numbers.Number): # Convert it to a StridedInterval region_base_addr = StridedInterval(bits=self._bits, stride=1, lower_bound=region_base_addr, upper_bound=region_base_addr) if isinstance(val, numbers.Number): val = StridedInterval(bits=bits, stride=0, lower_bound=val, upper_bound=val) if isinstance(val, StridedInterval): self._set_si(region, region_base_addr, val) else: raise ClaripyVSAError("Unsupported type '%s' for argument 'val'" % type(val)) else: if region is not None or val is not None: raise ClaripyVSAError("You must specify 'region' and 'val' at the same time.") # # Properties # @property def name(self): return self._name @property def bits(self): return self._bits @property def regions(self): return self._regions @property def reversed(self): return self._reversed @property def unique(self): return len(self.regions) == 1 and self.regions.values()[0].unique @property def cardinality(self): card = 0 for region in self._regions: card += self._regions[region].cardinality return card @property def is_empty(self): return len(self._regions) == 0 @property def valueset(self): return self # # Private methods # def _set_si(self, region, region_base_addr, si): if isinstance(si, numbers.Number): si = StridedInterval(bits=self.bits, stride=0, lower_bound=si, upper_bound=si) if isinstance(region_base_addr, numbers.Number): region_base_addr = StridedInterval(bits=self.bits, stride=0, lower_bound=region_base_addr, upper_bound=region_base_addr ) if not isinstance(si, StridedInterval): raise ClaripyVSAOperationError('Unsupported type %s for si' % type(si)) self._regions[region] = si self._region_base_addrs[region] = region_base_addr self._si = self._si.union(region_base_addr + si) def _merge_si(self, region, region_base_addr, si): if isinstance(region_base_addr, numbers.Number): region_base_addr = StridedInterval(bits=self.bits, stride=0, lower_bound=region_base_addr, upper_bound=region_base_addr ) if region not in self._regions: self._set_si(region, region_base_addr, si) else: self._regions[region] = self._regions[region].union(si) self._region_base_addrs[region] = self._region_base_addrs[region].union(region_base_addr) self._si = self._si.union(region_base_addr + si) # # Public methods # @staticmethod def empty(bits): return ValueSet(bits=bits) def items(self): return self._regions.items() def size(self): return len(self) def copy(self): """ Make a copy of self and return. :return: A new ValueSet object. :rtype: ValueSet """ vs = ValueSet(bits=self.bits) vs._regions = self._regions.copy() vs._region_base_addrs = self._region_base_addrs.copy() vs._reversed = self._reversed vs._si = self._si.copy() return vs def get_si(self, region): if region in self._regions: return self._regions[region] # TODO: Should we return a None, or an empty SI instead? return None def stridedinterval(self): return self._si def apply_annotation(self, annotation): """ Apply a new annotation onto self, and return a new ValueSet object. :param RegionAnnotation annotation: The annotation to apply. :return: A new ValueSet object :rtype: ValueSet """ vs = self.copy() vs._merge_si(annotation.region_id, annotation.region_base_addr, annotation.offset) return vs def __repr__(self): s = "" for region, si in self._regions.items(): s = "%s: %s" % (region, si) return "(" + s + ")" def __len__(self): return self._bits def __hash__(self): return hash(tuple((r, hash(self._regions[r])) for r in self._regions)) # # Arithmetic operations # @normalize_types_one_arg def __add__(self, other): """ Binary operation: addition Note that even if "other" is a ValueSet object. we still treat it as a StridedInterval. Adding two ValueSets together does not make sense (which is essentially adding two pointers together). :param StridedInterval other: The other operand. :return: A new ValueSet object :rtype: ValueSet """ new_vs = ValueSet(bits=self.bits) # Call __add__ on self._si new_vs._si = self._si.__add__(other) for region in self._regions: new_vs._regions[region] = self._regions[region] + other return new_vs @normalize_types_one_arg def __radd__(self, other): return self.__add__(other) @normalize_types_one_arg def __sub__(self, other): """ Binary operation: subtraction :param other: The other operand :return: A StridedInterval or a ValueSet. """ deltas = [ ] # TODO: Handle more cases if isinstance(other, ValueSet): # A subtraction between two ValueSets produces a StridedInterval if self.regions.keys() == other.regions.keys(): for region in self._regions: deltas.append(self._regions[region] - other._regions[region]) else: # TODO: raise the proper exception here raise NotImplementedError() delta = StridedInterval.empty(self.bits) for d in deltas: delta = delta.union(d) return delta else: # A subtraction between a ValueSet and a StridedInterval produces another ValueSet new_vs = self.copy() # Call __sub__ on the base class new_vs._si = self._si.__sub__(other) for region, si in new_vs._regions.items(): new_vs._regions[region] = si - other return new_vs @normalize_types_one_arg def __and__(self, other): """ Binary operation: and Note that even if `other` is a ValueSet object, it will be treated as a StridedInterval as well. Doing & between two pointers that are not the same do not make sense. :param other: The other operand :return: A ValueSet as the result :rtype: ValueSet """ if type(other) is ValueSet: # The only case where calling & between two points makes sense if self.identical(other): return self.copy() if BoolResult.is_true(other == 0): # Corner case: a & 0 = 0 return StridedInterval(bits=self.bits, stride=0, lower_bound=0, upper_bound=0) if BoolResult.is_true(other < 0x100): # Special case - sometimes (addr & mask) is used for testing whether the address is aligned or not # We return a StridedInterval instead ret = None for region, si in self._regions.items(): r = si.__and__(other) ret = r if ret is None else ret.union(r) return ret else: # We should return a ValueSet here new_vs = self.copy() for region, si in self._regions.items(): r = si.__and__(other) new_vs._regions[region] = r return new_vs def __eq__(self, other): """ Binary operation: == :param other: The other operand :return: True/False/Maybe """ if isinstance(other, ValueSet): same = False different = False for region, si in other.regions.items(): if region in self.regions: comp_ret = self.regions[region] == si if BoolResult.has_true(comp_ret): same = True if BoolResult.has_false(comp_ret): different = True else: different = True if same and not different: return TrueResult() if same and different: return MaybeResult() return FalseResult() elif isinstance(other, StridedInterval): if 'global' in self.regions: return self.regions['global'] == other else: return FalseResult() else: return FalseResult() def __ne__(self, other): """ Binary operation: == :param other: The other operand :return: True/False/Maybe """ return ~ (self == other) # # Backend operations # def eval(self, n, signed=False): if signed: # How are you going to deal with a negative pointer? raise ClaripyVSAOperationError('`signed` cannot be True when calling ValueSet.eval().') results = [] for _, si in self._regions.items(): if len(results) < n: results.extend(si.eval(n)) return results @property def min(self): """ The minimum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the minimum integer value of this value-set. :rtype: int """ if len(self.regions) != 1: raise ClaripyVSAOperationError("'min()' onlly works on single-region value-sets.") return self.get_si(next(iter(self.regions))).min @property def max(self): """ The maximum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the maximum integer value of this value-set. :rtype: int """ if len(self.regions) != 1: raise ClaripyVSAOperationError("'max()' onlly works on single-region value-sets.") return self.get_si(next(iter(self.regions))).max def reverse(self): # TODO: obviously valueset.reverse is not properly implemented. I'm disabling the old annoying output line for # TODO: now. I will implement the proper reversing support soon. vs = self.copy() vs._reversed = not vs._reversed return vs def extract(self, high_bit, low_bit): """ Operation extract - A cheap hack is implemented: a copy of self is returned if (high_bit - low_bit + 1 == self.bits), which is a ValueSet instance. Otherwise a StridedInterval is returned. :param high_bit: :param low_bit: :return: A ValueSet or a StridedInterval """ if high_bit - low_bit + 1 == self.bits: return self.copy() if ('global' in self._regions and len(self._regions.keys()) > 1) or \ len(self._regions.keys()) > 0: si_ret = StridedInterval.top(high_bit - low_bit + 1) else: if 'global' in self._regions: si = self._regions['global'] si_ret = si.extract(high_bit, low_bit) else: si_ret = StridedInterval.empty(high_bit - low_bit + 1) return si_ret def concat(self, b): new_vs = ValueSet(bits=self.bits + b.bits) # TODO: This logic is obviously flawed. Correct it later :-( if isinstance(b, StridedInterval): for region, si in self._regions.items(): new_vs._set_si(region, self._region_base_addrs[region], si.concat(b)) elif isinstance(b, ValueSet): for region, si in self._regions.items(): new_vs._set_si(region, self._region_base_addrs[region], si.concat(b.get_si(region))) else: raise ClaripyVSAOperationError('ValueSet.concat() got an unsupported operand %s (type %s)' % (b, type(b))) return new_vs @normalize_types_one_arg def union(self, b): merged_vs = self.copy() if type(b) is ValueSet: for region, si in b.regions.items(): if region not in merged_vs._regions: merged_vs._regions[region] = si else: merged_vs._regions[region] = merged_vs._regions[region].union(si) merged_vs._si = merged_vs._si.union(b._si) else: for region, si in merged_vs._regions.items(): merged_vs._regions[region] = merged_vs._regions[region].union(b) merged_vs._si = merged_vs._si.union(b) return merged_vs @normalize_types_one_arg def widen(self, b): merged_vs = self.copy() if isinstance(b, ValueSet): for region, si in b.regions.items(): if region not in merged_vs.regions: merged_vs.regions[region] = si else: merged_vs.regions[region] = merged_vs.regions[region].widen(si) merged_vs._si = merged_vs._si.widen(b._si) else: for region in merged_vs._regions: merged_vs._regions[region] = merged_vs._regions[region].widen(b) merged_vs._si = merged_vs._si.widen(b) return merged_vs @normalize_types_one_arg def intersection(self, b): vs = self.copy() if isinstance(b, ValueSet): for region, si in b.regions.items(): if region not in vs.regions: pass else: vs.regions[region] = vs.regions[region].intersection(si) if vs.regions[region].is_empty: del vs.regions[region] vs._si = vs._si.intersection(b._si) else: for region in self._regions: vs.regions[region] = vs.regions[region].intersection(b) if vs.regions[region].is_empty: del vs.regions[region] vs._si = vs._si.intersection(b) return vs def identical(self, o): """ Used to make exact comparisons between two ValueSets. :param o: The other ValueSet to compare with. :return: True if they are exactly same, False otherwise. """ if self._reversed != o._reversed: return False for region, si in self.regions.items(): if region in o.regions: o_si = o.regions[region] if not si.identical(o_si): return False else: return False return True from ..ast.base import Base from .strided_interval import StridedInterval from .bool_result import BoolResult, TrueResult, FalseResult, MaybeResult from .errors import ClaripyVSAOperationError, ClaripyVSAError from ..errors import ClaripyValueError
en
0.811738
Convert any object to an object that we can process. Convert any object to an object that we can process. Use RegionAnnotation to annotate ASTs. Normally, an AST annotated by RegionAnnotations is treated as a ValueSet. Note that Annotation objects are immutable. Do not change properties of an Annotation object without creating a new one. # Do necessary conversion here A Region annotation is not eliminatable in simplifications. :return: False :rtype: bool A Region annotation is not relocatable in simplifications. :return: False :rtype: bool # # Public methods # Override Annotation.relocate(). :param src: The old AST :param dst: The new AST, as the result of a simplification :return: The new annotation that should be applied on the new AST # # Overriding base methods # #08x>" % (self.region_id, self.offset) ValueSet is a mapping between memory regions and corresponding offsets. Constructor. :param str name: Name of this ValueSet object. Only for debugging purposes. :param str region: Region ID. :param int region_base_addr: Base address of the region. :param int bits: Size of the ValueSet. :param val: an initial offset # Shortcuts for initialization # May not be useful though... # Convert it to a StridedInterval # # Properties # # # Private methods # # # Public methods # Make a copy of self and return. :return: A new ValueSet object. :rtype: ValueSet # TODO: Should we return a None, or an empty SI instead? Apply a new annotation onto self, and return a new ValueSet object. :param RegionAnnotation annotation: The annotation to apply. :return: A new ValueSet object :rtype: ValueSet # # Arithmetic operations # Binary operation: addition Note that even if "other" is a ValueSet object. we still treat it as a StridedInterval. Adding two ValueSets together does not make sense (which is essentially adding two pointers together). :param StridedInterval other: The other operand. :return: A new ValueSet object :rtype: ValueSet # Call __add__ on self._si Binary operation: subtraction :param other: The other operand :return: A StridedInterval or a ValueSet. # TODO: Handle more cases # A subtraction between two ValueSets produces a StridedInterval # TODO: raise the proper exception here # A subtraction between a ValueSet and a StridedInterval produces another ValueSet # Call __sub__ on the base class Binary operation: and Note that even if `other` is a ValueSet object, it will be treated as a StridedInterval as well. Doing & between two pointers that are not the same do not make sense. :param other: The other operand :return: A ValueSet as the result :rtype: ValueSet # The only case where calling & between two points makes sense # Corner case: a & 0 = 0 # Special case - sometimes (addr & mask) is used for testing whether the address is aligned or not # We return a StridedInterval instead # We should return a ValueSet here Binary operation: == :param other: The other operand :return: True/False/Maybe Binary operation: == :param other: The other operand :return: True/False/Maybe # # Backend operations # # How are you going to deal with a negative pointer? The minimum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the minimum integer value of this value-set. :rtype: int The maximum integer value of a value-set. It is only defined when there is exactly one region. :return: A integer that represents the maximum integer value of this value-set. :rtype: int # TODO: obviously valueset.reverse is not properly implemented. I'm disabling the old annoying output line for # TODO: now. I will implement the proper reversing support soon. Operation extract - A cheap hack is implemented: a copy of self is returned if (high_bit - low_bit + 1 == self.bits), which is a ValueSet instance. Otherwise a StridedInterval is returned. :param high_bit: :param low_bit: :return: A ValueSet or a StridedInterval # TODO: This logic is obviously flawed. Correct it later :-( Used to make exact comparisons between two ValueSets. :param o: The other ValueSet to compare with. :return: True if they are exactly same, False otherwise.
2.622855
3
fardaastationapi.py
sina-cb/fardaastationapi
0
8070
import logging from episodes import find_updates, db, count_all from logging import error as logi from flask import Flask, jsonify, request def create_app(config, debug=False, testing=False, config_overrides=None): app = Flask(__name__) app.config.from_object(config) app.config['JSON_AS_ASCII'] = False app.debug = debug app.testing = testing if config_overrides: app.config.update(config_overrides) # Configure logging if not app.testing: logging.basicConfig(level=logging.INFO) @app.before_request def before_request(): db.connect() @app.after_request def after_request(response): db.close() return response @app.route('/get_new_episodes') def get_new_episodes(): appengine_request = request.headers.get('X-Appengine-Cron') if appengine_request == 'true': from scraper import update_episodes update_episodes() return '<h1>Success</h1>' else: return '<h1>This is a crobjob and all the requests should come from appengine.</h1>' @app.route('/get_updates') def get_update(): timestamp = request.args.get('timestamp', '') if timestamp == '': logi('Default timestamp') timestamp = 0 else: timestamp = long(timestamp) result = find_updates(timestamp) return jsonify(result) @app.route('/') def welcome(): message = '{}{}{}{}'.format('<h1>Welcome to FardaStationAPI WebService</h1>', '<p>To get information about the latest episodes of Fardaa Station (by ' 'RadioFarda.com) please send a GET request to ' 'http://fardastationapi.appspot.com/get_updates URL.</p>', '<p>A UNIX epoch timestamp can also be passed in as an argument to filter out the ' 'episodes before that timestamp. Example: ' 'https://fardastationapi.appspot.com/get_updates?timestamp=1512629949</p>', '<h1>Current number of episodes: {}</h1>'.format(count_all())) return message # Add an error handler. This is useful for debugging the live application, # however, you should disable the output of the exception for production # applications. @app.errorhandler(500) def server_error(e): return """ An internal error occurred: <pre>{}</pre> See logs for full stacktrace. """.format(e), 500 return app
import logging from episodes import find_updates, db, count_all from logging import error as logi from flask import Flask, jsonify, request def create_app(config, debug=False, testing=False, config_overrides=None): app = Flask(__name__) app.config.from_object(config) app.config['JSON_AS_ASCII'] = False app.debug = debug app.testing = testing if config_overrides: app.config.update(config_overrides) # Configure logging if not app.testing: logging.basicConfig(level=logging.INFO) @app.before_request def before_request(): db.connect() @app.after_request def after_request(response): db.close() return response @app.route('/get_new_episodes') def get_new_episodes(): appengine_request = request.headers.get('X-Appengine-Cron') if appengine_request == 'true': from scraper import update_episodes update_episodes() return '<h1>Success</h1>' else: return '<h1>This is a crobjob and all the requests should come from appengine.</h1>' @app.route('/get_updates') def get_update(): timestamp = request.args.get('timestamp', '') if timestamp == '': logi('Default timestamp') timestamp = 0 else: timestamp = long(timestamp) result = find_updates(timestamp) return jsonify(result) @app.route('/') def welcome(): message = '{}{}{}{}'.format('<h1>Welcome to FardaStationAPI WebService</h1>', '<p>To get information about the latest episodes of Fardaa Station (by ' 'RadioFarda.com) please send a GET request to ' 'http://fardastationapi.appspot.com/get_updates URL.</p>', '<p>A UNIX epoch timestamp can also be passed in as an argument to filter out the ' 'episodes before that timestamp. Example: ' 'https://fardastationapi.appspot.com/get_updates?timestamp=1512629949</p>', '<h1>Current number of episodes: {}</h1>'.format(count_all())) return message # Add an error handler. This is useful for debugging the live application, # however, you should disable the output of the exception for production # applications. @app.errorhandler(500) def server_error(e): return """ An internal error occurred: <pre>{}</pre> See logs for full stacktrace. """.format(e), 500 return app
en
0.809759
# Configure logging # Add an error handler. This is useful for debugging the live application, # however, you should disable the output of the exception for production # applications. An internal error occurred: <pre>{}</pre> See logs for full stacktrace.
2.239657
2
pytglib/api/types/can_transfer_ownership_result_password_too_fresh.py
iTeam-co/pytglib
6
8071
<filename>pytglib/api/types/can_transfer_ownership_result_password_too_fresh.py from ..utils import Object class CanTransferOwnershipResultPasswordTooFresh(Object): """ The 2-step verification was enabled recently, user needs to wait Attributes: ID (:obj:`str`): ``CanTransferOwnershipResultPasswordTooFresh`` Args: retry_after (:obj:`int`): Time left before the session can be used to transfer ownership of a chat, in seconds Returns: CanTransferOwnershipResult Raises: :class:`telegram.Error` """ ID = "canTransferOwnershipResultPasswordTooFresh" def __init__(self, retry_after, **kwargs): self.retry_after = retry_after # int @staticmethod def read(q: dict, *args) -> "CanTransferOwnershipResultPasswordTooFresh": retry_after = q.get('retry_after') return CanTransferOwnershipResultPasswordTooFresh(retry_after)
<filename>pytglib/api/types/can_transfer_ownership_result_password_too_fresh.py from ..utils import Object class CanTransferOwnershipResultPasswordTooFresh(Object): """ The 2-step verification was enabled recently, user needs to wait Attributes: ID (:obj:`str`): ``CanTransferOwnershipResultPasswordTooFresh`` Args: retry_after (:obj:`int`): Time left before the session can be used to transfer ownership of a chat, in seconds Returns: CanTransferOwnershipResult Raises: :class:`telegram.Error` """ ID = "canTransferOwnershipResultPasswordTooFresh" def __init__(self, retry_after, **kwargs): self.retry_after = retry_after # int @staticmethod def read(q: dict, *args) -> "CanTransferOwnershipResultPasswordTooFresh": retry_after = q.get('retry_after') return CanTransferOwnershipResultPasswordTooFresh(retry_after)
en
0.757871
The 2-step verification was enabled recently, user needs to wait Attributes: ID (:obj:`str`): ``CanTransferOwnershipResultPasswordTooFresh`` Args: retry_after (:obj:`int`): Time left before the session can be used to transfer ownership of a chat, in seconds Returns: CanTransferOwnershipResult Raises: :class:`telegram.Error` # int
2.251375
2
catapult.py
spraakbanken/sparv-catapult
0
8072
# -*- coding: utf-8 -*- # catapult: runs python scripts in already running processes to eliminate the # python interpreter startup time. # # The lexicon for sparv.saldo.annotate and sparv.saldo.compound can be pre-loaded and # shared between processes. See the variable annotators in handle and start. # # Run scripts in the catapult with the c program catalaunch. from builtins import range, object from multiprocessing import Process, cpu_count from decorator import decorator import logging import os import re import runpy import socket import sys import traceback import sparv.util as util RECV_LEN = 4096 # Important to preload all modules otherwise processes will need to do # it upon request, introducing new delays. # # These imports uses the __all__ variables in the __init__ files. from sparv.util import * from sparv import * logging.basicConfig(format="%(process)d %(asctime)-15s %(message)s") log = logging.getLogger(__name__) log.setLevel(logging.INFO) """ Splits at every space that is not preceded by a backslash. """ splitter = re.compile('(?<!\\\\) ') def set_last_argument(*values): """ Decorates a function f, setting its last argument(s) to the given value(s). Used for setting the saldo lexicons to sparv.saldo.annotate and sparv.saldo.compound, and the process "dictionary" to sparv.malt.maltparse. The decorator module is used to give the same signature and docstring to the function, which is exploited in sparv.util.run. """ @decorator def inner(f, *args, **kwargs): args = list(args) for v in values: args.pop() for v in values: args.append(v) f(*args, **kwargs) return inner def handle(client_sock, verbose, annotators): """ Handle a client: parse the arguments, change to the relevant directory, then run the script. Stdout and stderr are directed to /dev/null or to the client socket. """ def chunk_send(msg): """ Sends a message chunk until it is totally received in the other end """ msg = msg.encode(util.UTF8) while len(msg) > 0: sent = client_sock.send(msg) if sent == 0: raise RuntimeError("socket connection broken") msg = msg[sent:] def set_stdout_stderr(): """ Put stdout and stderr to the client_sock, if verbose. Returns the clean-up handler. """ class Writer(object): def write(self, msg): log.debug(msg) if verbose: chunk_send(msg) def flush(self): pass orig_stds = sys.stdout, sys.stderr w = Writer() sys.stdout = w sys.stderr = w def cleanup(): """ Restores stdout and stderr """ sys.stdout = orig_stds[0] sys.stderr = orig_stds[1] client_sock.close() return cleanup # Receive data data = b"" new_data = None # Message is terminated with a lone \ while new_data is None or not new_data.endswith(b'\\'): new_data = client_sock.recv(RECV_LEN) log.debug("Received %s", new_data) data += new_data if len(new_data) == 0: log.warning("Received null!") chunk_send("Error when receiving: got an empty message") return # Drop the terminating \ data = data[0:-1] # Split arguments on spaces, and replace '\ ' to ' ' and \\ to \ args = [arg.replace('\\ ', ' ').replace('\\\\', '\\') for arg in re.split(splitter, data.decode(util.UTF8))] log.debug("Args: %s", args) ### PING? ### if len(args) == 2 and args[1] == "PING": log.info("Ping requested") chunk_send("PONG") return # If the first argument is -m, the following argument is a module # name instead of a script name module_flag = len(args) > 2 and args[1] == '-m' if module_flag: args.pop(1) if len(args) > 1: # First argument is the pwd of the caller old_pwd = os.getcwd() pwd = args.pop(0) log.info('Running %s', args[0]) log.debug('with arguments: %s', ' '.join(args[1:])) log.debug('in directory %s', pwd) # Set stdout and stderr, which returns the cleaup function cleanup = set_stdout_stderr() # Run the command try: sys.argv = args os.chdir(pwd) if module_flag: annotator = annotators.get(args[0], None) if not annotator: # some of the annotators require two arguments annotator = annotators.get((args[0], args[1]), None) if annotator: # skip the first argument now sys.argv = args[0] sys.argv.extend(args[2:]) if annotator: util.run.main(annotator) else: runpy.run_module(args[0], run_name='__main__') else: runpy.run_path(args[0], run_name='__main__') except (ImportError, IOError): # If file does not exist, send the error message chunk_send("%s\n" % sys.exc_info()[1]) cleanup() log.exception("File does not exist") except: # Send other errors, and if verbose, send tracebacks chunk_send("%s\n" % sys.exc_info()[1]) traceback.print_exception(*sys.exc_info()) cleanup() log.exception("Unknown error") else: cleanup() os.chdir(old_pwd) # Run the cleanup function if there is one (only used with malt) annotators.get((args[0], 'cleanup'), lambda: None)() log.info('Completed %s', args[0]) else: log.info('Cannot handle %s', data) chunk_send('Cannot handle %s\n' % data) def worker(server_socket, verbose, annotators, malt_args=None, swener_args=None): """ Workers listen to the socket server, and handle incoming requests Each process starts an own maltparser process, because they are cheap and cannot serve multiple clients at the same time. """ if malt_args: process_dict = dict(process=None, restart=True) def start_malt(): if process_dict['process'] is None or process_dict['restart']: old_process = process_dict['process'] old_process and util.system.kill_process(old_process) malt_process = malt.maltstart(**malt_args) if verbose: log.info('(Re)started malt process: %s', malt_process) process_dict['process'] = malt_process annotators['sparv.malt'] = set_last_argument(process_dict)(malt.maltparse) elif verbose: log.info("Not restarting malt this time") start_malt() annotators['sparv.malt', 'cleanup'] = start_malt if swener_args: process_dict = dict(process=None, restart=True) def start_swener(): if process_dict['process'] is None or process_dict['restart']: old_process = process_dict['process'] old_process and util.system.kill_process(old_process) swener_process = swener.swenerstart(**swener_args) if verbose: log.info('(Re)started SweNER process: %s', swener_process) process_dict['process'] = swener_process annotators['sparv.swener'] = set_last_argument(process_dict)(swener.tag_ne) elif verbose: log.info("Not restarting SweNER this time") start_swener() annotators['sparv.swener', 'cleanup'] = start_swener if verbose: log.info("Worker running!") while True: client_sock, addr = server_socket.accept() try: handle(client_sock, verbose, annotators) except: log.exception('Error in handling code') traceback.print_exception(*sys.exc_info()) client_sock.close() def start(socket_path, processes=1, verbose='false', saldo_model=None, compound_model=None, stats_model=None, dalin_model=None, swedberg_model=None, blingbring_model=None, malt_jar=None, malt_model=None, malt_encoding=util.UTF8, sentiment_model=None, swefn_model=None, swener=False, swener_encoding=util.UTF8): """ Starts a catapult on a socket file, using a number of processes. If verbose is false, all stdout and stderr programs produce is piped to /dev/null, otherwise it is sent to the client. The computation is done by the catapult processes, however. Regardless of what verbose is, client errors should be reported both in the catapult and to the client. The saldo model and compound model can be pre-loaded and shared in memory between processes. Start processes using catalaunch. """ if os.path.exists(socket_path): log.error('socket %s already exists', socket_path) exit(1) verbose = verbose.lower() == 'true' log.info('Verbose: %s', verbose) # If processes does not contain an int, set it to the number of processors try: processes = int(processes) except: processes = cpu_count() # Start the socket server_socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) server_socket.bind(socket_path) server_socket.listen(processes) # The dictionary of functions with saved lexica, indexed by module name strings annotators = {} # Load Saldo and older lexicons lexicons = [m for m in [saldo_model, dalin_model, swedberg_model] if m] if lexicons: lexicon_dict = {} for lexicon in lexicons: lexicon_dict[os.path.basename(lexicon).rstrip(".pickle")] = saldo.SaldoLexicon(lexicon) annotators['sparv.saldo'] = set_last_argument(lexicon_dict)(saldo.annotate) if stats_model and compound_model: annotators['sparv.compound'] = set_last_argument( compound.SaldoCompLexicon(compound_model), compound.StatsLexicon(stats_model))(compound.annotate) elif compound_model: annotators['sparv.compound_simple'] = set_last_argument( compound_simple.SaldoLexicon(compound_model))(compound_simple.annotate) # if blingbring_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(blingbring_model))(lexical_classes.annotate_bb_words) # if swefn_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(swefn_model))(lexical_classes.annotate_swefn_words) if sentiment_model: annotators['sparv.sentiment'] = set_last_argument( util.PickledLexicon(sentiment_model))(sentiment.sentiment) # if models_1700s: # models = models_1700s.split() # lexicons = [saldo.SaldoLexicon(lex) for lex in models] # annotators[('sparv.fsv', '--annotate_fallback')] = set_last_argument(lexicons)(fsv.annotate_fallback) # annotators[('sparv.fsv', '--annotate_full')] = set_last_argument(lexicons)(fsv.annotate_full) if verbose: log.info('Loaded annotators: %s', list(annotators.keys())) if malt_jar and malt_model: malt_args = dict(maltjar=malt_jar, model=malt_model, encoding=malt_encoding, send_empty_sentence=True) else: malt_args = None if swener: swener_args = dict(stdin="", encoding=swener_encoding, verbose=True) else: swener_args = None # Start processes-1 workers workers = [Process(target=worker, args=[server_socket, verbose, annotators, malt_args]) for i in range(processes - 1)] for p in workers: p.start() # Additionally, let this thread be worker 0 worker(server_socket, verbose, annotators, malt_args, swener_args) if __name__ == '__main__': util.run.main(start)
# -*- coding: utf-8 -*- # catapult: runs python scripts in already running processes to eliminate the # python interpreter startup time. # # The lexicon for sparv.saldo.annotate and sparv.saldo.compound can be pre-loaded and # shared between processes. See the variable annotators in handle and start. # # Run scripts in the catapult with the c program catalaunch. from builtins import range, object from multiprocessing import Process, cpu_count from decorator import decorator import logging import os import re import runpy import socket import sys import traceback import sparv.util as util RECV_LEN = 4096 # Important to preload all modules otherwise processes will need to do # it upon request, introducing new delays. # # These imports uses the __all__ variables in the __init__ files. from sparv.util import * from sparv import * logging.basicConfig(format="%(process)d %(asctime)-15s %(message)s") log = logging.getLogger(__name__) log.setLevel(logging.INFO) """ Splits at every space that is not preceded by a backslash. """ splitter = re.compile('(?<!\\\\) ') def set_last_argument(*values): """ Decorates a function f, setting its last argument(s) to the given value(s). Used for setting the saldo lexicons to sparv.saldo.annotate and sparv.saldo.compound, and the process "dictionary" to sparv.malt.maltparse. The decorator module is used to give the same signature and docstring to the function, which is exploited in sparv.util.run. """ @decorator def inner(f, *args, **kwargs): args = list(args) for v in values: args.pop() for v in values: args.append(v) f(*args, **kwargs) return inner def handle(client_sock, verbose, annotators): """ Handle a client: parse the arguments, change to the relevant directory, then run the script. Stdout and stderr are directed to /dev/null or to the client socket. """ def chunk_send(msg): """ Sends a message chunk until it is totally received in the other end """ msg = msg.encode(util.UTF8) while len(msg) > 0: sent = client_sock.send(msg) if sent == 0: raise RuntimeError("socket connection broken") msg = msg[sent:] def set_stdout_stderr(): """ Put stdout and stderr to the client_sock, if verbose. Returns the clean-up handler. """ class Writer(object): def write(self, msg): log.debug(msg) if verbose: chunk_send(msg) def flush(self): pass orig_stds = sys.stdout, sys.stderr w = Writer() sys.stdout = w sys.stderr = w def cleanup(): """ Restores stdout and stderr """ sys.stdout = orig_stds[0] sys.stderr = orig_stds[1] client_sock.close() return cleanup # Receive data data = b"" new_data = None # Message is terminated with a lone \ while new_data is None or not new_data.endswith(b'\\'): new_data = client_sock.recv(RECV_LEN) log.debug("Received %s", new_data) data += new_data if len(new_data) == 0: log.warning("Received null!") chunk_send("Error when receiving: got an empty message") return # Drop the terminating \ data = data[0:-1] # Split arguments on spaces, and replace '\ ' to ' ' and \\ to \ args = [arg.replace('\\ ', ' ').replace('\\\\', '\\') for arg in re.split(splitter, data.decode(util.UTF8))] log.debug("Args: %s", args) ### PING? ### if len(args) == 2 and args[1] == "PING": log.info("Ping requested") chunk_send("PONG") return # If the first argument is -m, the following argument is a module # name instead of a script name module_flag = len(args) > 2 and args[1] == '-m' if module_flag: args.pop(1) if len(args) > 1: # First argument is the pwd of the caller old_pwd = os.getcwd() pwd = args.pop(0) log.info('Running %s', args[0]) log.debug('with arguments: %s', ' '.join(args[1:])) log.debug('in directory %s', pwd) # Set stdout and stderr, which returns the cleaup function cleanup = set_stdout_stderr() # Run the command try: sys.argv = args os.chdir(pwd) if module_flag: annotator = annotators.get(args[0], None) if not annotator: # some of the annotators require two arguments annotator = annotators.get((args[0], args[1]), None) if annotator: # skip the first argument now sys.argv = args[0] sys.argv.extend(args[2:]) if annotator: util.run.main(annotator) else: runpy.run_module(args[0], run_name='__main__') else: runpy.run_path(args[0], run_name='__main__') except (ImportError, IOError): # If file does not exist, send the error message chunk_send("%s\n" % sys.exc_info()[1]) cleanup() log.exception("File does not exist") except: # Send other errors, and if verbose, send tracebacks chunk_send("%s\n" % sys.exc_info()[1]) traceback.print_exception(*sys.exc_info()) cleanup() log.exception("Unknown error") else: cleanup() os.chdir(old_pwd) # Run the cleanup function if there is one (only used with malt) annotators.get((args[0], 'cleanup'), lambda: None)() log.info('Completed %s', args[0]) else: log.info('Cannot handle %s', data) chunk_send('Cannot handle %s\n' % data) def worker(server_socket, verbose, annotators, malt_args=None, swener_args=None): """ Workers listen to the socket server, and handle incoming requests Each process starts an own maltparser process, because they are cheap and cannot serve multiple clients at the same time. """ if malt_args: process_dict = dict(process=None, restart=True) def start_malt(): if process_dict['process'] is None or process_dict['restart']: old_process = process_dict['process'] old_process and util.system.kill_process(old_process) malt_process = malt.maltstart(**malt_args) if verbose: log.info('(Re)started malt process: %s', malt_process) process_dict['process'] = malt_process annotators['sparv.malt'] = set_last_argument(process_dict)(malt.maltparse) elif verbose: log.info("Not restarting malt this time") start_malt() annotators['sparv.malt', 'cleanup'] = start_malt if swener_args: process_dict = dict(process=None, restart=True) def start_swener(): if process_dict['process'] is None or process_dict['restart']: old_process = process_dict['process'] old_process and util.system.kill_process(old_process) swener_process = swener.swenerstart(**swener_args) if verbose: log.info('(Re)started SweNER process: %s', swener_process) process_dict['process'] = swener_process annotators['sparv.swener'] = set_last_argument(process_dict)(swener.tag_ne) elif verbose: log.info("Not restarting SweNER this time") start_swener() annotators['sparv.swener', 'cleanup'] = start_swener if verbose: log.info("Worker running!") while True: client_sock, addr = server_socket.accept() try: handle(client_sock, verbose, annotators) except: log.exception('Error in handling code') traceback.print_exception(*sys.exc_info()) client_sock.close() def start(socket_path, processes=1, verbose='false', saldo_model=None, compound_model=None, stats_model=None, dalin_model=None, swedberg_model=None, blingbring_model=None, malt_jar=None, malt_model=None, malt_encoding=util.UTF8, sentiment_model=None, swefn_model=None, swener=False, swener_encoding=util.UTF8): """ Starts a catapult on a socket file, using a number of processes. If verbose is false, all stdout and stderr programs produce is piped to /dev/null, otherwise it is sent to the client. The computation is done by the catapult processes, however. Regardless of what verbose is, client errors should be reported both in the catapult and to the client. The saldo model and compound model can be pre-loaded and shared in memory between processes. Start processes using catalaunch. """ if os.path.exists(socket_path): log.error('socket %s already exists', socket_path) exit(1) verbose = verbose.lower() == 'true' log.info('Verbose: %s', verbose) # If processes does not contain an int, set it to the number of processors try: processes = int(processes) except: processes = cpu_count() # Start the socket server_socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) server_socket.bind(socket_path) server_socket.listen(processes) # The dictionary of functions with saved lexica, indexed by module name strings annotators = {} # Load Saldo and older lexicons lexicons = [m for m in [saldo_model, dalin_model, swedberg_model] if m] if lexicons: lexicon_dict = {} for lexicon in lexicons: lexicon_dict[os.path.basename(lexicon).rstrip(".pickle")] = saldo.SaldoLexicon(lexicon) annotators['sparv.saldo'] = set_last_argument(lexicon_dict)(saldo.annotate) if stats_model and compound_model: annotators['sparv.compound'] = set_last_argument( compound.SaldoCompLexicon(compound_model), compound.StatsLexicon(stats_model))(compound.annotate) elif compound_model: annotators['sparv.compound_simple'] = set_last_argument( compound_simple.SaldoLexicon(compound_model))(compound_simple.annotate) # if blingbring_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(blingbring_model))(lexical_classes.annotate_bb_words) # if swefn_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(swefn_model))(lexical_classes.annotate_swefn_words) if sentiment_model: annotators['sparv.sentiment'] = set_last_argument( util.PickledLexicon(sentiment_model))(sentiment.sentiment) # if models_1700s: # models = models_1700s.split() # lexicons = [saldo.SaldoLexicon(lex) for lex in models] # annotators[('sparv.fsv', '--annotate_fallback')] = set_last_argument(lexicons)(fsv.annotate_fallback) # annotators[('sparv.fsv', '--annotate_full')] = set_last_argument(lexicons)(fsv.annotate_full) if verbose: log.info('Loaded annotators: %s', list(annotators.keys())) if malt_jar and malt_model: malt_args = dict(maltjar=malt_jar, model=malt_model, encoding=malt_encoding, send_empty_sentence=True) else: malt_args = None if swener: swener_args = dict(stdin="", encoding=swener_encoding, verbose=True) else: swener_args = None # Start processes-1 workers workers = [Process(target=worker, args=[server_socket, verbose, annotators, malt_args]) for i in range(processes - 1)] for p in workers: p.start() # Additionally, let this thread be worker 0 worker(server_socket, verbose, annotators, malt_args, swener_args) if __name__ == '__main__': util.run.main(start)
en
0.765183
# -*- coding: utf-8 -*- # catapult: runs python scripts in already running processes to eliminate the # python interpreter startup time. # # The lexicon for sparv.saldo.annotate and sparv.saldo.compound can be pre-loaded and # shared between processes. See the variable annotators in handle and start. # # Run scripts in the catapult with the c program catalaunch. # Important to preload all modules otherwise processes will need to do # it upon request, introducing new delays. # # These imports uses the __all__ variables in the __init__ files. Splits at every space that is not preceded by a backslash. Decorates a function f, setting its last argument(s) to the given value(s). Used for setting the saldo lexicons to sparv.saldo.annotate and sparv.saldo.compound, and the process "dictionary" to sparv.malt.maltparse. The decorator module is used to give the same signature and docstring to the function, which is exploited in sparv.util.run. Handle a client: parse the arguments, change to the relevant directory, then run the script. Stdout and stderr are directed to /dev/null or to the client socket. Sends a message chunk until it is totally received in the other end Put stdout and stderr to the client_sock, if verbose. Returns the clean-up handler. Restores stdout and stderr # Receive data # Message is terminated with a lone \ # Drop the terminating \ # Split arguments on spaces, and replace '\ ' to ' ' and \\ to \ ### PING? ### # If the first argument is -m, the following argument is a module # name instead of a script name # First argument is the pwd of the caller # Set stdout and stderr, which returns the cleaup function # Run the command # some of the annotators require two arguments # skip the first argument now # If file does not exist, send the error message # Send other errors, and if verbose, send tracebacks # Run the cleanup function if there is one (only used with malt) Workers listen to the socket server, and handle incoming requests Each process starts an own maltparser process, because they are cheap and cannot serve multiple clients at the same time. Starts a catapult on a socket file, using a number of processes. If verbose is false, all stdout and stderr programs produce is piped to /dev/null, otherwise it is sent to the client. The computation is done by the catapult processes, however. Regardless of what verbose is, client errors should be reported both in the catapult and to the client. The saldo model and compound model can be pre-loaded and shared in memory between processes. Start processes using catalaunch. # If processes does not contain an int, set it to the number of processors # Start the socket # The dictionary of functions with saved lexica, indexed by module name strings # Load Saldo and older lexicons # if blingbring_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(blingbring_model))(lexical_classes.annotate_bb_words) # if swefn_model: # annotators['sparv.lexical_classes'] = set_last_argument( # util.PickledLexicon(swefn_model))(lexical_classes.annotate_swefn_words) # if models_1700s: # models = models_1700s.split() # lexicons = [saldo.SaldoLexicon(lex) for lex in models] # annotators[('sparv.fsv', '--annotate_fallback')] = set_last_argument(lexicons)(fsv.annotate_fallback) # annotators[('sparv.fsv', '--annotate_full')] = set_last_argument(lexicons)(fsv.annotate_full) # Start processes-1 workers # Additionally, let this thread be worker 0
2.301459
2
tests/test_sentiments.py
rajeshkumargp/TextBlob
6,608
8073
<reponame>rajeshkumargp/TextBlob from __future__ import unicode_literals import unittest from nose.tools import * # PEP8 asserts from nose.plugins.attrib import attr from textblob.sentiments import PatternAnalyzer, NaiveBayesAnalyzer, DISCRETE, CONTINUOUS class TestPatternSentiment(unittest.TestCase): def setUp(self): self.analyzer = PatternAnalyzer() def test_kind(self): assert_equal(self.analyzer.kind, CONTINUOUS) def test_analyze(self): p1 = "I feel great this morning." n1 = "This is a terrible car." p1_result = self.analyzer.analyze(p1) n1_result = self.analyzer.analyze(n1) assert_true(p1_result[0] > 0) assert_true(n1_result[0] < 0) assert_equal(p1_result.polarity, p1_result[0]) assert_equal(p1_result.subjectivity, p1_result[1]) def test_analyze_assessments(self): p1 = "I feel great this morning." n1 = "This is a terrible car." p1_result = self.analyzer.analyze(p1,keep_assessments=True) n1_result = self.analyzer.analyze(n1,keep_assessments=True) p1_assessment = p1_result.assessments[0] n1_assessment = n1_result.assessments[0] assert_true(p1_assessment[1] > 0) assert_true(n1_assessment[1] < 0) assert_equal(p1_result.polarity, p1_assessment[1]) assert_equal(p1_result.subjectivity, p1_assessment[2]) class TestNaiveBayesAnalyzer(unittest.TestCase): def setUp(self): self.analyzer = NaiveBayesAnalyzer() def test_kind(self): assert_equal(self.analyzer.kind, DISCRETE) @attr('slow') def test_analyze(self): p1 = 'I feel great this morning.' n1 = 'This is a terrible car.' p1_result = self.analyzer.analyze(p1) assert_equal(p1_result[0], 'pos') assert_equal(self.analyzer.analyze(n1)[0], 'neg') # The 2nd item should be the probability that it is positive assert_true(isinstance(p1_result[1], float)) # 3rd item is probability that it is negative assert_true(isinstance(p1_result[2], float)) assert_about_equal(p1_result[1] + p1_result[2], 1) assert_equal(p1_result.classification, p1_result[0]) assert_equal(p1_result.p_pos, p1_result[1]) assert_equal(p1_result.p_neg, p1_result[2]) def assert_about_equal(first, second, places=4): return assert_equal(round(first, places), second) if __name__ == '__main__': unittest.main()
from __future__ import unicode_literals import unittest from nose.tools import * # PEP8 asserts from nose.plugins.attrib import attr from textblob.sentiments import PatternAnalyzer, NaiveBayesAnalyzer, DISCRETE, CONTINUOUS class TestPatternSentiment(unittest.TestCase): def setUp(self): self.analyzer = PatternAnalyzer() def test_kind(self): assert_equal(self.analyzer.kind, CONTINUOUS) def test_analyze(self): p1 = "I feel great this morning." n1 = "This is a terrible car." p1_result = self.analyzer.analyze(p1) n1_result = self.analyzer.analyze(n1) assert_true(p1_result[0] > 0) assert_true(n1_result[0] < 0) assert_equal(p1_result.polarity, p1_result[0]) assert_equal(p1_result.subjectivity, p1_result[1]) def test_analyze_assessments(self): p1 = "I feel great this morning." n1 = "This is a terrible car." p1_result = self.analyzer.analyze(p1,keep_assessments=True) n1_result = self.analyzer.analyze(n1,keep_assessments=True) p1_assessment = p1_result.assessments[0] n1_assessment = n1_result.assessments[0] assert_true(p1_assessment[1] > 0) assert_true(n1_assessment[1] < 0) assert_equal(p1_result.polarity, p1_assessment[1]) assert_equal(p1_result.subjectivity, p1_assessment[2]) class TestNaiveBayesAnalyzer(unittest.TestCase): def setUp(self): self.analyzer = NaiveBayesAnalyzer() def test_kind(self): assert_equal(self.analyzer.kind, DISCRETE) @attr('slow') def test_analyze(self): p1 = 'I feel great this morning.' n1 = 'This is a terrible car.' p1_result = self.analyzer.analyze(p1) assert_equal(p1_result[0], 'pos') assert_equal(self.analyzer.analyze(n1)[0], 'neg') # The 2nd item should be the probability that it is positive assert_true(isinstance(p1_result[1], float)) # 3rd item is probability that it is negative assert_true(isinstance(p1_result[2], float)) assert_about_equal(p1_result[1] + p1_result[2], 1) assert_equal(p1_result.classification, p1_result[0]) assert_equal(p1_result.p_pos, p1_result[1]) assert_equal(p1_result.p_neg, p1_result[2]) def assert_about_equal(first, second, places=4): return assert_equal(round(first, places), second) if __name__ == '__main__': unittest.main()
en
0.964436
# PEP8 asserts # The 2nd item should be the probability that it is positive # 3rd item is probability that it is negative
2.613345
3
src/unicef_security/apps.py
unicef/unicef-security
0
8074
<reponame>unicef/unicef-security from django.apps import AppConfig class Config(AppConfig): name = 'unicef_security' verbose_name = "UNICEF Security"
from django.apps import AppConfig class Config(AppConfig): name = 'unicef_security' verbose_name = "UNICEF Security"
none
1
1.145537
1
utils/pretty-tests.py
isJuhn/pcsx2_ipc
7
8075
<gh_stars>1-10 import json import sys f=open(sys.argv[1]) y = json.loads(f.read()) print("Tests results: " + str(y["result"])) print("Tests duration: " + str(y["duration"])) print("Tests output:\n~~~~~~~~~~~~~~~~~~~~\n" + str(y["stdout"]))
import json import sys f=open(sys.argv[1]) y = json.loads(f.read()) print("Tests results: " + str(y["result"])) print("Tests duration: " + str(y["duration"])) print("Tests output:\n~~~~~~~~~~~~~~~~~~~~\n" + str(y["stdout"]))
none
1
2.811933
3
tests/scripts/thread-cert/test_network_layer.py
AdityaHPatwardhan/openthread
2,962
8076
<gh_stars>1000+ #!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import io import random import struct import unittest import common import network_layer def any_eid(): return bytearray([random.getrandbits(8) for _ in range(16)]) def any_mac_extended_address(): return bytearray([random.getrandbits(8) for _ in range(8)]) def any_rloc16(): return random.getrandbits(16) def any_ml_eid(): return bytearray([random.getrandbits(8) for _ in range(8)]) def any_status(): return random.getrandbits(1) def any_seconds(): return random.getrandbits(32) def any_id_sequence(): return random.getrandbits(8) def any_router_id_mask(): return random.getrandbits(64) def any_options(count=None): count = count if count is not None else random.randint(0, 255) return [random.getrandbits(8) for _ in range(count)] def any_tlv_data(length=None): _type = random.getrandbits(8) length = length if length is not None else random.getrandbits(8) value = bytearray([random.getrandbits(8) for _ in range(length)]) return bytearray([_type, length]) + value def any_tlvs_data(count=None): count = count if count is not None else random.randint(0, 16) data = bytearray() for _ in range(count): data += any_tlv_data(random.randint(1, 15)) return data class TestTargetEid(unittest.TestCase): def test_should_return_eid_value_when_eid_property_is_called(self): # GIVEN eid = any_eid() target_eid = network_layer.TargetEid(eid) # WHEN actual_eid = target_eid.eid # THEN self.assertEqual(eid, actual_eid) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN eid = any_eid() target_eid = network_layer.TargetEid(eid) # THEN self.assertEqual(target_eid, network_layer.TargetEid(eid)) class TestTargetEidFactory(unittest.TestCase): def test_should_create_TargetEid_from_bytearray_when_parse_method_is_called(self): # GIVEN eid = any_eid() factory = network_layer.TargetEidFactory() # WHEN target_eid = factory.parse(io.BytesIO(eid), common.MessageInfo()) # THEN self.assertTrue(isinstance(target_eid, network_layer.TargetEid)) self.assertEqual(eid, target_eid.eid) class TestMacExtendedAddress(unittest.TestCase): def test_should_return_mac_address_value_when_mac_address_property_is_called(self): # GIVEN mac_address = any_mac_extended_address() mac_extended_address = network_layer.MacExtendedAddress(mac_address) # WHEN actual_mac_address = mac_extended_address.mac_address # THEN self.assertEqual(mac_address, actual_mac_address) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN mac_address = any_mac_extended_address() mac_extended_address = network_layer.MacExtendedAddress(mac_address) # THEN self.assertEqual(mac_extended_address, network_layer.MacExtendedAddress(mac_address)) class TestMacExtendedAddressFactory(unittest.TestCase): def test_should_create_MacExtendedAddress_from_bytearray_when_parse_method_is_called(self): # GIVEN mac_address = any_mac_extended_address() factory = network_layer.MacExtendedAddressFactory() # WHEN mac_extended_address = factory.parse(io.BytesIO(mac_address), common.MessageInfo()) # THEN self.assertTrue(isinstance(mac_extended_address, network_layer.MacExtendedAddress)) self.assertEqual(mac_address, mac_extended_address.mac_address) class TestRloc16(unittest.TestCase): def test_should_return_rloc16_value_when_rloc16_property_is_called(self): # GIVEN rloc16 = any_rloc16() rloc16_obj = network_layer.Rloc16(rloc16) # WHEN actual_rloc16 = rloc16_obj.rloc16 # THEN self.assertEqual(rloc16, actual_rloc16) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN rloc16 = any_rloc16() rloc16_obj = network_layer.Rloc16(rloc16) # THEN self.assertEqual(rloc16_obj, network_layer.Rloc16(rloc16)) class TestRloc16Factory(unittest.TestCase): def test_should_create_Rloc16_from_bytearray_when_parse_method_is_called(self): # GIVEN rloc16 = any_rloc16() factory = network_layer.Rloc16Factory() data = bytearray(struct.pack(">H", rloc16)) # WHEN rloc16_obj = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(rloc16_obj, network_layer.Rloc16)) self.assertEqual(rloc16, rloc16_obj.rloc16) class TestMlEid(unittest.TestCase): def test_should_return_ml_eid_value_when_ml_eid_property_is_called(self): # GIVEN ml_eid = any_ml_eid() ml_eid_obj = network_layer.MlEid(ml_eid) # WHEN actual_ml_eid = ml_eid_obj.ml_eid # THEN self.assertEqual(ml_eid, actual_ml_eid) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN ml_eid = any_ml_eid() ml_eid_obj = network_layer.MlEid(ml_eid) # THEN self.assertEqual(ml_eid_obj, network_layer.MlEid(ml_eid)) class TestMlEidFactory(unittest.TestCase): def test_should_create_MlEid_from_bytearray_when_parse_method_is_called(self): # GIVEN ml_eid = any_ml_eid() factory = network_layer.MlEidFactory() # WHEN ml_eid_obj = factory.parse(io.BytesIO(ml_eid), common.MessageInfo()) # THEN self.assertTrue(isinstance(ml_eid_obj, network_layer.MlEid)) self.assertEqual(ml_eid, ml_eid_obj.ml_eid) class TestStatus(unittest.TestCase): def test_should_return_status_value_when_status_property_is_called(self): # GIVEN status = any_status() status_obj = network_layer.Status(status) # WHEN actual_status = status_obj.status # THEN self.assertEqual(status, actual_status) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN status = any_status() status_obj = network_layer.Status(status) # THEN self.assertEqual(status_obj, network_layer.Status(status)) class TestStatusFactory(unittest.TestCase): def test_should_create_Status_from_bytearray_when_parse_method_is_called(self): # GIVEN status = any_status() factory = network_layer.StatusFactory() data = bytearray([status]) # WHEN status_obj = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(status_obj, network_layer.Status)) self.assertEqual(status, status_obj.status) class TestTimeSinceLastTransaction(unittest.TestCase): def test_should_return_seconds_value_when_seconds_property_is_called(self): # GIVEN seconds = any_seconds() time_since_last_transaction = network_layer.TimeSinceLastTransaction(seconds) # WHEN actual_seconds = time_since_last_transaction.seconds # THEN self.assertEqual(seconds, actual_seconds) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN seconds = any_seconds() time_since_last_transaction = network_layer.TimeSinceLastTransaction(seconds) # THEN self.assertEqual( time_since_last_transaction, network_layer.TimeSinceLastTransaction(seconds), ) class TestTimeSinceLastTransactionFactory(unittest.TestCase): def test_should_create_TimeSinceLastTransaction_from_bytearray_when_parse_method_is_called(self): # GIVEN seconds = any_seconds() factory = network_layer.TimeSinceLastTransactionFactory() data = bytearray(struct.pack(">L", seconds)) # WHEN time_since_last_transaction = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance( time_since_last_transaction, network_layer.TimeSinceLastTransaction, )) self.assertEqual(seconds, time_since_last_transaction.seconds) class TestRouterMask(unittest.TestCase): def test_should_return_id_sequence_value_when_id_sequence_property_is_called(self): # GIVEN id_sequence = any_id_sequence() router_mask = network_layer.RouterMask(id_sequence, any_router_id_mask()) # WHEN actual_id_sequence = router_mask.id_sequence # THEN self.assertEqual(id_sequence, actual_id_sequence) def test_should_return_router_id_mask_value_when_router_id_mask_property_is_called(self): # GIVEN router_id_mask = any_router_id_mask() router_mask = network_layer.RouterMask(any_id_sequence(), router_id_mask) # WHEN actual_router_id_mask = router_mask.router_id_mask # THEN self.assertEqual(router_id_mask, actual_router_id_mask) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN id_sequence = any_id_sequence() router_id_mask = any_router_id_mask() router_mask = network_layer.RouterMask(id_sequence, router_id_mask) # THEN self.assertEqual(router_mask, network_layer.RouterMask(id_sequence, router_id_mask)) class TestRouterMaskFactory(unittest.TestCase): def test_should_create_RouterMask_from_bytearray_when_parse_method_is_called(self): # GIVEN id_sequence = any_id_sequence() router_id_mask = any_router_id_mask() factory = network_layer.RouterMaskFactory() data = bytearray([id_sequence]) + struct.pack(">Q", router_id_mask) # WHEN router_mask = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(router_mask, network_layer.RouterMask)) self.assertEqual(id_sequence, router_mask.id_sequence) self.assertEqual(router_id_mask, router_mask.router_id_mask) class TestNdOption(unittest.TestCase): def test_should_return_options_value_when_options_property_is_called(self): # GIVEN options = any_options() nd_option = network_layer.NdOption(options) # WHEN actual_options = nd_option.options # THEN self.assertEqual(options, actual_options) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN options = any_options() nd_option = network_layer.NdOption(options) # THEN self.assertEqual(nd_option, network_layer.NdOption(options)) class TestNdOptionFactory(unittest.TestCase): def test_should_create_NdOption_from_bytearray_when_parse_method_is_called(self): # GIVEN options = any_options() factory = network_layer.NdOptionFactory() data = bytearray(options) # WHEN nd_option = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(nd_option, network_layer.NdOption)) self.assertEqual(options, nd_option.options) class TestThreadNetworkData(unittest.TestCase): def test_should_return_options_value_when_options_property_is_called(self): # GIVEN tlvs = any_tlvs_data() thread_network_data = network_layer.ThreadNetworkData(tlvs) # WHEN actual_tlvs = thread_network_data.tlvs # THEN self.assertEqual(tlvs, actual_tlvs) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN tlvs = any_tlvs_data() thread_network_data = network_layer.ThreadNetworkData(tlvs) # THEN self.assertEqual(thread_network_data, network_layer.ThreadNetworkData(tlvs)) class TestThreadNetworkDataFactory(unittest.TestCase): def test_should_create_ThreadNetworkData_from_bytearray_when_parse_method_is_called(self): # GIVEN tlvs = any_tlvs_data() class DummyNetworkDataTlvsFactory: def parse(self, data, message_info): return bytearray(data.read()) factory = network_layer.ThreadNetworkDataFactory(DummyNetworkDataTlvsFactory()) # WHEN thread_network_data = factory.parse(io.BytesIO(tlvs), common.MessageInfo()) # THEN self.assertTrue(isinstance(thread_network_data, network_layer.ThreadNetworkData)) self.assertEqual(tlvs, thread_network_data.tlvs) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import io import random import struct import unittest import common import network_layer def any_eid(): return bytearray([random.getrandbits(8) for _ in range(16)]) def any_mac_extended_address(): return bytearray([random.getrandbits(8) for _ in range(8)]) def any_rloc16(): return random.getrandbits(16) def any_ml_eid(): return bytearray([random.getrandbits(8) for _ in range(8)]) def any_status(): return random.getrandbits(1) def any_seconds(): return random.getrandbits(32) def any_id_sequence(): return random.getrandbits(8) def any_router_id_mask(): return random.getrandbits(64) def any_options(count=None): count = count if count is not None else random.randint(0, 255) return [random.getrandbits(8) for _ in range(count)] def any_tlv_data(length=None): _type = random.getrandbits(8) length = length if length is not None else random.getrandbits(8) value = bytearray([random.getrandbits(8) for _ in range(length)]) return bytearray([_type, length]) + value def any_tlvs_data(count=None): count = count if count is not None else random.randint(0, 16) data = bytearray() for _ in range(count): data += any_tlv_data(random.randint(1, 15)) return data class TestTargetEid(unittest.TestCase): def test_should_return_eid_value_when_eid_property_is_called(self): # GIVEN eid = any_eid() target_eid = network_layer.TargetEid(eid) # WHEN actual_eid = target_eid.eid # THEN self.assertEqual(eid, actual_eid) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN eid = any_eid() target_eid = network_layer.TargetEid(eid) # THEN self.assertEqual(target_eid, network_layer.TargetEid(eid)) class TestTargetEidFactory(unittest.TestCase): def test_should_create_TargetEid_from_bytearray_when_parse_method_is_called(self): # GIVEN eid = any_eid() factory = network_layer.TargetEidFactory() # WHEN target_eid = factory.parse(io.BytesIO(eid), common.MessageInfo()) # THEN self.assertTrue(isinstance(target_eid, network_layer.TargetEid)) self.assertEqual(eid, target_eid.eid) class TestMacExtendedAddress(unittest.TestCase): def test_should_return_mac_address_value_when_mac_address_property_is_called(self): # GIVEN mac_address = any_mac_extended_address() mac_extended_address = network_layer.MacExtendedAddress(mac_address) # WHEN actual_mac_address = mac_extended_address.mac_address # THEN self.assertEqual(mac_address, actual_mac_address) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN mac_address = any_mac_extended_address() mac_extended_address = network_layer.MacExtendedAddress(mac_address) # THEN self.assertEqual(mac_extended_address, network_layer.MacExtendedAddress(mac_address)) class TestMacExtendedAddressFactory(unittest.TestCase): def test_should_create_MacExtendedAddress_from_bytearray_when_parse_method_is_called(self): # GIVEN mac_address = any_mac_extended_address() factory = network_layer.MacExtendedAddressFactory() # WHEN mac_extended_address = factory.parse(io.BytesIO(mac_address), common.MessageInfo()) # THEN self.assertTrue(isinstance(mac_extended_address, network_layer.MacExtendedAddress)) self.assertEqual(mac_address, mac_extended_address.mac_address) class TestRloc16(unittest.TestCase): def test_should_return_rloc16_value_when_rloc16_property_is_called(self): # GIVEN rloc16 = any_rloc16() rloc16_obj = network_layer.Rloc16(rloc16) # WHEN actual_rloc16 = rloc16_obj.rloc16 # THEN self.assertEqual(rloc16, actual_rloc16) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN rloc16 = any_rloc16() rloc16_obj = network_layer.Rloc16(rloc16) # THEN self.assertEqual(rloc16_obj, network_layer.Rloc16(rloc16)) class TestRloc16Factory(unittest.TestCase): def test_should_create_Rloc16_from_bytearray_when_parse_method_is_called(self): # GIVEN rloc16 = any_rloc16() factory = network_layer.Rloc16Factory() data = bytearray(struct.pack(">H", rloc16)) # WHEN rloc16_obj = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(rloc16_obj, network_layer.Rloc16)) self.assertEqual(rloc16, rloc16_obj.rloc16) class TestMlEid(unittest.TestCase): def test_should_return_ml_eid_value_when_ml_eid_property_is_called(self): # GIVEN ml_eid = any_ml_eid() ml_eid_obj = network_layer.MlEid(ml_eid) # WHEN actual_ml_eid = ml_eid_obj.ml_eid # THEN self.assertEqual(ml_eid, actual_ml_eid) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN ml_eid = any_ml_eid() ml_eid_obj = network_layer.MlEid(ml_eid) # THEN self.assertEqual(ml_eid_obj, network_layer.MlEid(ml_eid)) class TestMlEidFactory(unittest.TestCase): def test_should_create_MlEid_from_bytearray_when_parse_method_is_called(self): # GIVEN ml_eid = any_ml_eid() factory = network_layer.MlEidFactory() # WHEN ml_eid_obj = factory.parse(io.BytesIO(ml_eid), common.MessageInfo()) # THEN self.assertTrue(isinstance(ml_eid_obj, network_layer.MlEid)) self.assertEqual(ml_eid, ml_eid_obj.ml_eid) class TestStatus(unittest.TestCase): def test_should_return_status_value_when_status_property_is_called(self): # GIVEN status = any_status() status_obj = network_layer.Status(status) # WHEN actual_status = status_obj.status # THEN self.assertEqual(status, actual_status) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN status = any_status() status_obj = network_layer.Status(status) # THEN self.assertEqual(status_obj, network_layer.Status(status)) class TestStatusFactory(unittest.TestCase): def test_should_create_Status_from_bytearray_when_parse_method_is_called(self): # GIVEN status = any_status() factory = network_layer.StatusFactory() data = bytearray([status]) # WHEN status_obj = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(status_obj, network_layer.Status)) self.assertEqual(status, status_obj.status) class TestTimeSinceLastTransaction(unittest.TestCase): def test_should_return_seconds_value_when_seconds_property_is_called(self): # GIVEN seconds = any_seconds() time_since_last_transaction = network_layer.TimeSinceLastTransaction(seconds) # WHEN actual_seconds = time_since_last_transaction.seconds # THEN self.assertEqual(seconds, actual_seconds) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN seconds = any_seconds() time_since_last_transaction = network_layer.TimeSinceLastTransaction(seconds) # THEN self.assertEqual( time_since_last_transaction, network_layer.TimeSinceLastTransaction(seconds), ) class TestTimeSinceLastTransactionFactory(unittest.TestCase): def test_should_create_TimeSinceLastTransaction_from_bytearray_when_parse_method_is_called(self): # GIVEN seconds = any_seconds() factory = network_layer.TimeSinceLastTransactionFactory() data = bytearray(struct.pack(">L", seconds)) # WHEN time_since_last_transaction = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance( time_since_last_transaction, network_layer.TimeSinceLastTransaction, )) self.assertEqual(seconds, time_since_last_transaction.seconds) class TestRouterMask(unittest.TestCase): def test_should_return_id_sequence_value_when_id_sequence_property_is_called(self): # GIVEN id_sequence = any_id_sequence() router_mask = network_layer.RouterMask(id_sequence, any_router_id_mask()) # WHEN actual_id_sequence = router_mask.id_sequence # THEN self.assertEqual(id_sequence, actual_id_sequence) def test_should_return_router_id_mask_value_when_router_id_mask_property_is_called(self): # GIVEN router_id_mask = any_router_id_mask() router_mask = network_layer.RouterMask(any_id_sequence(), router_id_mask) # WHEN actual_router_id_mask = router_mask.router_id_mask # THEN self.assertEqual(router_id_mask, actual_router_id_mask) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN id_sequence = any_id_sequence() router_id_mask = any_router_id_mask() router_mask = network_layer.RouterMask(id_sequence, router_id_mask) # THEN self.assertEqual(router_mask, network_layer.RouterMask(id_sequence, router_id_mask)) class TestRouterMaskFactory(unittest.TestCase): def test_should_create_RouterMask_from_bytearray_when_parse_method_is_called(self): # GIVEN id_sequence = any_id_sequence() router_id_mask = any_router_id_mask() factory = network_layer.RouterMaskFactory() data = bytearray([id_sequence]) + struct.pack(">Q", router_id_mask) # WHEN router_mask = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(router_mask, network_layer.RouterMask)) self.assertEqual(id_sequence, router_mask.id_sequence) self.assertEqual(router_id_mask, router_mask.router_id_mask) class TestNdOption(unittest.TestCase): def test_should_return_options_value_when_options_property_is_called(self): # GIVEN options = any_options() nd_option = network_layer.NdOption(options) # WHEN actual_options = nd_option.options # THEN self.assertEqual(options, actual_options) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN options = any_options() nd_option = network_layer.NdOption(options) # THEN self.assertEqual(nd_option, network_layer.NdOption(options)) class TestNdOptionFactory(unittest.TestCase): def test_should_create_NdOption_from_bytearray_when_parse_method_is_called(self): # GIVEN options = any_options() factory = network_layer.NdOptionFactory() data = bytearray(options) # WHEN nd_option = factory.parse(io.BytesIO(data), common.MessageInfo()) # THEN self.assertTrue(isinstance(nd_option, network_layer.NdOption)) self.assertEqual(options, nd_option.options) class TestThreadNetworkData(unittest.TestCase): def test_should_return_options_value_when_options_property_is_called(self): # GIVEN tlvs = any_tlvs_data() thread_network_data = network_layer.ThreadNetworkData(tlvs) # WHEN actual_tlvs = thread_network_data.tlvs # THEN self.assertEqual(tlvs, actual_tlvs) def test_should_return_True_when_try_to_equal_two_the_same_type_objects_with_the_same_values(self): # GIVEN tlvs = any_tlvs_data() thread_network_data = network_layer.ThreadNetworkData(tlvs) # THEN self.assertEqual(thread_network_data, network_layer.ThreadNetworkData(tlvs)) class TestThreadNetworkDataFactory(unittest.TestCase): def test_should_create_ThreadNetworkData_from_bytearray_when_parse_method_is_called(self): # GIVEN tlvs = any_tlvs_data() class DummyNetworkDataTlvsFactory: def parse(self, data, message_info): return bytearray(data.read()) factory = network_layer.ThreadNetworkDataFactory(DummyNetworkDataTlvsFactory()) # WHEN thread_network_data = factory.parse(io.BytesIO(tlvs), common.MessageInfo()) # THEN self.assertTrue(isinstance(thread_network_data, network_layer.ThreadNetworkData)) self.assertEqual(tlvs, thread_network_data.tlvs) if __name__ == "__main__": unittest.main()
en
0.697065
#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN # GIVEN # WHEN # THEN # GIVEN # THEN # GIVEN # WHEN # THEN
1.506472
2
salt/modules/kernelpkg_linux_apt.py
markgras/salt
9,425
8077
<filename>salt/modules/kernelpkg_linux_apt.py """ Manage Linux kernel packages on APT-based systems """ import functools import logging import re try: from salt.utils.versions import LooseVersion as _LooseVersion from salt.exceptions import CommandExecutionError HAS_REQUIRED_LIBS = True except ImportError: HAS_REQUIRED_LIBS = False log = logging.getLogger(__name__) __virtualname__ = "kernelpkg" def __virtual__(): """ Load this module on Debian-based systems only """ if not HAS_REQUIRED_LIBS: return (False, "Required library could not be imported") if __grains__.get("os_family", "") in ("Kali", "Debian"): return __virtualname__ elif __grains__.get("os_family", "") == "Cumulus": return __virtualname__ return (False, "Module kernelpkg_linux_apt: no APT based system detected") def active(): """ Return the version of the running kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.active """ if "pkg.normalize_name" in __salt__: return __salt__["pkg.normalize_name"](__grains__["kernelrelease"]) return __grains__["kernelrelease"] def list_installed(): """ Return a list of all installed kernels. CLI Example: .. code-block:: bash salt '*' kernelpkg.list_installed """ pkg_re = re.compile(r"^{}-[\d.-]+-{}$".format(_package_prefix(), _kernel_type())) pkgs = __salt__["pkg.list_pkgs"](versions_as_list=True) if pkgs is None: pkgs = [] result = list(filter(pkg_re.match, pkgs)) if result is None: return [] prefix_len = len(_package_prefix()) + 1 return sorted( [pkg[prefix_len:] for pkg in result], key=functools.cmp_to_key(_cmp_version) ) def latest_available(): """ Return the version of the latest kernel from the package repositories. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_available """ result = __salt__["pkg.latest_version"]( "{}-{}".format(_package_prefix(), _kernel_type()) ) if result == "": return latest_installed() version = re.match(r"^(\d+\.\d+\.\d+)\.(\d+)", result) return "{}-{}-{}".format(version.group(1), version.group(2), _kernel_type()) def latest_installed(): """ Return the version of the latest installed kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_installed .. note:: This function may not return the same value as :py:func:`~salt.modules.kernelpkg_linux_apt.active` if a new kernel has been installed and the system has not yet been rebooted. The :py:func:`~salt.modules.kernelpkg_linux_apt.needs_reboot` function exists to detect this condition. """ pkgs = list_installed() if pkgs: return pkgs[-1] return None def needs_reboot(): """ Detect if a new kernel version has been installed but is not running. Returns True if a new kernel is installed, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.needs_reboot """ return _LooseVersion(active()) < _LooseVersion(latest_installed()) def upgrade(reboot=False, at_time=None): """ Upgrade the kernel and optionally reboot the system. reboot : False Request a reboot if a new kernel is available. at_time : immediate Schedule the reboot at some point in the future. This argument is ignored if ``reboot=False``. See :py:func:`~salt.modules.system.reboot` for more details on this argument. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade salt '*' kernelpkg.upgrade reboot=True at_time=1 .. note:: An immediate reboot often shuts down the system before the minion has a chance to return, resulting in errors. A minimal delay (1 minute) is useful to ensure the result is delivered to the master. """ result = __salt__["pkg.install"]( name="{}-{}".format(_package_prefix(), latest_available()) ) _needs_reboot = needs_reboot() ret = { "upgrades": result, "active": active(), "latest_installed": latest_installed(), "reboot_requested": reboot, "reboot_required": _needs_reboot, } if reboot and _needs_reboot: log.warning("Rebooting system due to kernel upgrade") __salt__["system.reboot"](at_time=at_time) return ret def upgrade_available(): """ Detect if a new kernel version is available in the repositories. Returns True if a new kernel is available, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade_available """ return _LooseVersion(latest_available()) > _LooseVersion(latest_installed()) def remove(release): """ Remove a specific version of the kernel. release The release number of an installed kernel. This must be the entire release number as returned by :py:func:`~salt.modules.kernelpkg_linux_apt.list_installed`, not the package name. CLI Example: .. code-block:: bash salt '*' kernelpkg.remove 4.4.0-70-generic """ if release not in list_installed(): raise CommandExecutionError( "Kernel release '{}' is not installed".format(release) ) if release == active(): raise CommandExecutionError("Active kernel cannot be removed") target = "{}-{}".format(_package_prefix(), release) log.info("Removing kernel package %s", target) __salt__["pkg.purge"](target) return {"removed": [target]} def cleanup(keep_latest=True): """ Remove all unused kernel packages from the system. keep_latest : True In the event that the active kernel is not the latest one installed, setting this to True will retain the latest kernel package, in addition to the active one. If False, all kernel packages other than the active one will be removed. CLI Example: .. code-block:: bash salt '*' kernelpkg.cleanup """ removed = [] # Loop over all installed kernel packages for kernel in list_installed(): # Keep the active kernel package if kernel == active(): continue # Optionally keep the latest kernel package if keep_latest and kernel == latest_installed(): continue # Remove the kernel package removed.extend(remove(kernel)["removed"]) return {"removed": removed} def _package_prefix(): """ Return static string for the package prefix """ return "linux-image" def _kernel_type(): """ Parse the kernel name and return its type """ return re.match(r"^[\d.-]+-(.+)$", active()).group(1) def _cmp_version(item1, item2): """ Compare function for package version sorting """ vers1 = _LooseVersion(item1) vers2 = _LooseVersion(item2) if vers1 < vers2: return -1 if vers1 > vers2: return 1 return 0
<filename>salt/modules/kernelpkg_linux_apt.py """ Manage Linux kernel packages on APT-based systems """ import functools import logging import re try: from salt.utils.versions import LooseVersion as _LooseVersion from salt.exceptions import CommandExecutionError HAS_REQUIRED_LIBS = True except ImportError: HAS_REQUIRED_LIBS = False log = logging.getLogger(__name__) __virtualname__ = "kernelpkg" def __virtual__(): """ Load this module on Debian-based systems only """ if not HAS_REQUIRED_LIBS: return (False, "Required library could not be imported") if __grains__.get("os_family", "") in ("Kali", "Debian"): return __virtualname__ elif __grains__.get("os_family", "") == "Cumulus": return __virtualname__ return (False, "Module kernelpkg_linux_apt: no APT based system detected") def active(): """ Return the version of the running kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.active """ if "pkg.normalize_name" in __salt__: return __salt__["pkg.normalize_name"](__grains__["kernelrelease"]) return __grains__["kernelrelease"] def list_installed(): """ Return a list of all installed kernels. CLI Example: .. code-block:: bash salt '*' kernelpkg.list_installed """ pkg_re = re.compile(r"^{}-[\d.-]+-{}$".format(_package_prefix(), _kernel_type())) pkgs = __salt__["pkg.list_pkgs"](versions_as_list=True) if pkgs is None: pkgs = [] result = list(filter(pkg_re.match, pkgs)) if result is None: return [] prefix_len = len(_package_prefix()) + 1 return sorted( [pkg[prefix_len:] for pkg in result], key=functools.cmp_to_key(_cmp_version) ) def latest_available(): """ Return the version of the latest kernel from the package repositories. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_available """ result = __salt__["pkg.latest_version"]( "{}-{}".format(_package_prefix(), _kernel_type()) ) if result == "": return latest_installed() version = re.match(r"^(\d+\.\d+\.\d+)\.(\d+)", result) return "{}-{}-{}".format(version.group(1), version.group(2), _kernel_type()) def latest_installed(): """ Return the version of the latest installed kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_installed .. note:: This function may not return the same value as :py:func:`~salt.modules.kernelpkg_linux_apt.active` if a new kernel has been installed and the system has not yet been rebooted. The :py:func:`~salt.modules.kernelpkg_linux_apt.needs_reboot` function exists to detect this condition. """ pkgs = list_installed() if pkgs: return pkgs[-1] return None def needs_reboot(): """ Detect if a new kernel version has been installed but is not running. Returns True if a new kernel is installed, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.needs_reboot """ return _LooseVersion(active()) < _LooseVersion(latest_installed()) def upgrade(reboot=False, at_time=None): """ Upgrade the kernel and optionally reboot the system. reboot : False Request a reboot if a new kernel is available. at_time : immediate Schedule the reboot at some point in the future. This argument is ignored if ``reboot=False``. See :py:func:`~salt.modules.system.reboot` for more details on this argument. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade salt '*' kernelpkg.upgrade reboot=True at_time=1 .. note:: An immediate reboot often shuts down the system before the minion has a chance to return, resulting in errors. A minimal delay (1 minute) is useful to ensure the result is delivered to the master. """ result = __salt__["pkg.install"]( name="{}-{}".format(_package_prefix(), latest_available()) ) _needs_reboot = needs_reboot() ret = { "upgrades": result, "active": active(), "latest_installed": latest_installed(), "reboot_requested": reboot, "reboot_required": _needs_reboot, } if reboot and _needs_reboot: log.warning("Rebooting system due to kernel upgrade") __salt__["system.reboot"](at_time=at_time) return ret def upgrade_available(): """ Detect if a new kernel version is available in the repositories. Returns True if a new kernel is available, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade_available """ return _LooseVersion(latest_available()) > _LooseVersion(latest_installed()) def remove(release): """ Remove a specific version of the kernel. release The release number of an installed kernel. This must be the entire release number as returned by :py:func:`~salt.modules.kernelpkg_linux_apt.list_installed`, not the package name. CLI Example: .. code-block:: bash salt '*' kernelpkg.remove 4.4.0-70-generic """ if release not in list_installed(): raise CommandExecutionError( "Kernel release '{}' is not installed".format(release) ) if release == active(): raise CommandExecutionError("Active kernel cannot be removed") target = "{}-{}".format(_package_prefix(), release) log.info("Removing kernel package %s", target) __salt__["pkg.purge"](target) return {"removed": [target]} def cleanup(keep_latest=True): """ Remove all unused kernel packages from the system. keep_latest : True In the event that the active kernel is not the latest one installed, setting this to True will retain the latest kernel package, in addition to the active one. If False, all kernel packages other than the active one will be removed. CLI Example: .. code-block:: bash salt '*' kernelpkg.cleanup """ removed = [] # Loop over all installed kernel packages for kernel in list_installed(): # Keep the active kernel package if kernel == active(): continue # Optionally keep the latest kernel package if keep_latest and kernel == latest_installed(): continue # Remove the kernel package removed.extend(remove(kernel)["removed"]) return {"removed": removed} def _package_prefix(): """ Return static string for the package prefix """ return "linux-image" def _kernel_type(): """ Parse the kernel name and return its type """ return re.match(r"^[\d.-]+-(.+)$", active()).group(1) def _cmp_version(item1, item2): """ Compare function for package version sorting """ vers1 = _LooseVersion(item1) vers2 = _LooseVersion(item2) if vers1 < vers2: return -1 if vers1 > vers2: return 1 return 0
en
0.687914
Manage Linux kernel packages on APT-based systems Load this module on Debian-based systems only Return the version of the running kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.active Return a list of all installed kernels. CLI Example: .. code-block:: bash salt '*' kernelpkg.list_installed Return the version of the latest kernel from the package repositories. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_available Return the version of the latest installed kernel. CLI Example: .. code-block:: bash salt '*' kernelpkg.latest_installed .. note:: This function may not return the same value as :py:func:`~salt.modules.kernelpkg_linux_apt.active` if a new kernel has been installed and the system has not yet been rebooted. The :py:func:`~salt.modules.kernelpkg_linux_apt.needs_reboot` function exists to detect this condition. Detect if a new kernel version has been installed but is not running. Returns True if a new kernel is installed, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.needs_reboot Upgrade the kernel and optionally reboot the system. reboot : False Request a reboot if a new kernel is available. at_time : immediate Schedule the reboot at some point in the future. This argument is ignored if ``reboot=False``. See :py:func:`~salt.modules.system.reboot` for more details on this argument. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade salt '*' kernelpkg.upgrade reboot=True at_time=1 .. note:: An immediate reboot often shuts down the system before the minion has a chance to return, resulting in errors. A minimal delay (1 minute) is useful to ensure the result is delivered to the master. Detect if a new kernel version is available in the repositories. Returns True if a new kernel is available, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade_available Remove a specific version of the kernel. release The release number of an installed kernel. This must be the entire release number as returned by :py:func:`~salt.modules.kernelpkg_linux_apt.list_installed`, not the package name. CLI Example: .. code-block:: bash salt '*' kernelpkg.remove 4.4.0-70-generic Remove all unused kernel packages from the system. keep_latest : True In the event that the active kernel is not the latest one installed, setting this to True will retain the latest kernel package, in addition to the active one. If False, all kernel packages other than the active one will be removed. CLI Example: .. code-block:: bash salt '*' kernelpkg.cleanup # Loop over all installed kernel packages # Keep the active kernel package # Optionally keep the latest kernel package # Remove the kernel package Return static string for the package prefix Parse the kernel name and return its type Compare function for package version sorting
2.42308
2
main.py
david-slatinek/running-a-program-on-the-CPU-vs.-on-the-GPU
0
8078
<gh_stars>0 import json import numpy as np from numba import jit from timeit import default_timer as timer # Constant, used in the formula. # Defined here to speed up the calculation, i.e. it's calculated only once # and then placed in the formula. SQRT_2PI = np.float32(np.sqrt(2 * np.pi)) # This function will run on the CPU. def gaussian_cpu(values, mean, sigma): """Calculate values of the Gaussian function. :param values: list, function input parameters. :param mean: float, arithmetic mean. :param sigma: float, standard deviation. :return: list. """ result = np.zeros_like(values) for index, item in enumerate(values): result[index] = (1 / (sigma * SQRT_2PI)) * (np.e ** (-0.5 * ((item - mean) / sigma) ** 2)) return result # This function will run on the GPU. gaussian_gpu = jit(gaussian_cpu) def write_to_file(name, values): """Write results to a file. :param name: string, file name, only prefix. :param values: dictionary, values to write. """ with open(name + ".json", 'w') as f: json.dump(values, f, indent=4) if __name__ == "__main__": # Randomly generated values. x = np.random.uniform(-3, 3, size=1000000).astype(np.float32) # Randomly generated mean. m = np.random.uniform(1, 10) # Randomly generated standard deviation. s = np.random.uniform(1, 10) # The number of rounds. n = 1 # Used to store execution time. time_results = {} for i in range(n): start = timer() gaussian_cpu(x, m, s) end = timer() - start time_results[i] = end write_to_file("cpu", time_results) for i in range(n): start = timer() gaussian_gpu(x, m, s) end = timer() - start time_results[i] = end write_to_file("gpu", time_results)
import json import numpy as np from numba import jit from timeit import default_timer as timer # Constant, used in the formula. # Defined here to speed up the calculation, i.e. it's calculated only once # and then placed in the formula. SQRT_2PI = np.float32(np.sqrt(2 * np.pi)) # This function will run on the CPU. def gaussian_cpu(values, mean, sigma): """Calculate values of the Gaussian function. :param values: list, function input parameters. :param mean: float, arithmetic mean. :param sigma: float, standard deviation. :return: list. """ result = np.zeros_like(values) for index, item in enumerate(values): result[index] = (1 / (sigma * SQRT_2PI)) * (np.e ** (-0.5 * ((item - mean) / sigma) ** 2)) return result # This function will run on the GPU. gaussian_gpu = jit(gaussian_cpu) def write_to_file(name, values): """Write results to a file. :param name: string, file name, only prefix. :param values: dictionary, values to write. """ with open(name + ".json", 'w') as f: json.dump(values, f, indent=4) if __name__ == "__main__": # Randomly generated values. x = np.random.uniform(-3, 3, size=1000000).astype(np.float32) # Randomly generated mean. m = np.random.uniform(1, 10) # Randomly generated standard deviation. s = np.random.uniform(1, 10) # The number of rounds. n = 1 # Used to store execution time. time_results = {} for i in range(n): start = timer() gaussian_cpu(x, m, s) end = timer() - start time_results[i] = end write_to_file("cpu", time_results) for i in range(n): start = timer() gaussian_gpu(x, m, s) end = timer() - start time_results[i] = end write_to_file("gpu", time_results)
en
0.742629
# Constant, used in the formula. # Defined here to speed up the calculation, i.e. it's calculated only once # and then placed in the formula. # This function will run on the CPU. Calculate values of the Gaussian function. :param values: list, function input parameters. :param mean: float, arithmetic mean. :param sigma: float, standard deviation. :return: list. # This function will run on the GPU. Write results to a file. :param name: string, file name, only prefix. :param values: dictionary, values to write. # Randomly generated values. # Randomly generated mean. # Randomly generated standard deviation. # The number of rounds. # Used to store execution time.
3.121527
3
src/jj_analyzer/__init__.py
ninetymiles/jj-logcat-analyzer
0
8079
#! /usr/bin/python import sys if sys.version_info[0] == 3: from .__main__ import * else: pass
#! /usr/bin/python import sys if sys.version_info[0] == 3: from .__main__ import * else: pass
fr
0.245098
#! /usr/bin/python
1.264367
1
utility_functions.py
Team-501-The-PowerKnights/Powerknights-Slack-Bot
1
8080
import datetime def iso_extract_info(string): """ Will get all of the info and return it as an array :param string: ISO formatted string that will be used for extraction :return: array [year, month, day, military_time_hour, minutes, hours] :note: every item is an int except for minutes :note: hours only is there is military_time_hour is greater than 12 """ elements = [] characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) military_time_hours_int = int("".join(characters[11:13])) minutes_int = "".join(characters[14:16]) hours = 0 elements.append(year_int) elements.append(month_int) elements.append(day_int) elements.append(minutes_int) if military_time_hours_int > 12: hours += military_time_hours_int - 12 elements.append(hours) return elements # # Testing: # print("[year, month, day, military_time_hour, minutes, hours]") # print(iso_extract_info('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function def iso_format_to_regular(string): """ Will take a string that is an iso formatted string and make it look readable :param string: the iso formatted string :return: str """ characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) military_time_hours_int = int("".join(characters[11:13])) minutes_int = "".join(characters[14:16]) if military_time_hours_int > 12: hours = military_time_hours_int - 12 final_string = "{month}/{day}/{year} {hour}:{minute}PM".format( month=month_int, day=day_int, year=year_int, hour=hours, minute=minutes_int) return final_string else: final_string = "{month}/{day}/{year} {hour}:{minute}AM".format( month=month_int, day=day_int, year=year_int, hour=military_time_hours_int, minute=minutes_int) return final_string # Testing: # print(iso_format_to_regular('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function def fix_time(strange_date): """ Will rearrange the strange date that Google gives and repalce it with the normal string. :param strange_date: strange time that google gives when an event is marked as "all day" :return: str """ items = strange_date.split("-") year_int = int(items[0]) month_int = int(items[1]) day_int = int(items[2]) new_str = "{month}/{day}/{year}".format( month=month_int, day=day_int, year=year_int) return new_str # Doesn't use the "iso_extract_info" function def multiday_checker_STRANGE(start_date, end_date): """ Will check if an event is more than day long :param start_date: Strange Google formatted date of the start of the event :param end_date: Strange Google formatted date of the end of the event :return: Boolean """ start_date_items = start_date.split("-") end_date_items = end_date.split("-") start_date_sum = 0 end_date_sum = 0 for string in start_date_items: number = int(string) start_date_sum += number for string in end_date_items: number = int(string) end_date_sum += number date_dif = start_date_sum - end_date_sum if date_dif > 2: return True else: return False # Testing: # print(multiday_checker_STRANGE('2019-04-21', '2019-04-22')) # Doesn't use the "iso_extract_info" function def STRANGE_string_weekday(string): """ Will take a string that is a date formatted in the Google format and find what day of the week it is :param string: Google formatted string for the date :return: string """ items = string.split("/") year_int = int(items[2]) month_int = int(items[0]) day_int = int(items[1]) datetime_instance = datetime.date(year_int, month_int, day_int) week_day_number = datetime_instance.weekday() if week_day_number == 0: return "Monday" elif week_day_number == 1: return "Tuesday" elif week_day_number == 2: return "Wendsday" elif week_day_number == 3: return "Thursday" elif week_day_number == 4: return "Friday" elif week_day_number == 5: return "Saturday" elif week_day_number == 6: return "Sunday" else: return "Error" # Testing: # print(STRANGE_string_weekday("2019-04-27")) # Doesn't use the "iso_extract_info" function def ISO_string_weekday(string): """ Will take a string that is a date formatted in the ISO format and find what day of the week it is :param string: ISO formatted string for the date :return: string """ characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) datetime_instance = datetime.date(year_int, month_int, day_int) week_day_number = datetime_instance.weekday() if week_day_number == 0: return "Monday" elif week_day_number == 1: return "Tuesday" elif week_day_number == 2: return "Wendsday" elif week_day_number == 3: return "Thursday" elif week_day_number == 4: return "Friday" elif week_day_number == 5: return "Saturday" elif week_day_number == 6: return "Sunday" else: return "Error" # Testing: # print(ISO_string_weekday('2019-06-28T16:00:00-04:00'))
import datetime def iso_extract_info(string): """ Will get all of the info and return it as an array :param string: ISO formatted string that will be used for extraction :return: array [year, month, day, military_time_hour, minutes, hours] :note: every item is an int except for minutes :note: hours only is there is military_time_hour is greater than 12 """ elements = [] characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) military_time_hours_int = int("".join(characters[11:13])) minutes_int = "".join(characters[14:16]) hours = 0 elements.append(year_int) elements.append(month_int) elements.append(day_int) elements.append(minutes_int) if military_time_hours_int > 12: hours += military_time_hours_int - 12 elements.append(hours) return elements # # Testing: # print("[year, month, day, military_time_hour, minutes, hours]") # print(iso_extract_info('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function def iso_format_to_regular(string): """ Will take a string that is an iso formatted string and make it look readable :param string: the iso formatted string :return: str """ characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) military_time_hours_int = int("".join(characters[11:13])) minutes_int = "".join(characters[14:16]) if military_time_hours_int > 12: hours = military_time_hours_int - 12 final_string = "{month}/{day}/{year} {hour}:{minute}PM".format( month=month_int, day=day_int, year=year_int, hour=hours, minute=minutes_int) return final_string else: final_string = "{month}/{day}/{year} {hour}:{minute}AM".format( month=month_int, day=day_int, year=year_int, hour=military_time_hours_int, minute=minutes_int) return final_string # Testing: # print(iso_format_to_regular('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function def fix_time(strange_date): """ Will rearrange the strange date that Google gives and repalce it with the normal string. :param strange_date: strange time that google gives when an event is marked as "all day" :return: str """ items = strange_date.split("-") year_int = int(items[0]) month_int = int(items[1]) day_int = int(items[2]) new_str = "{month}/{day}/{year}".format( month=month_int, day=day_int, year=year_int) return new_str # Doesn't use the "iso_extract_info" function def multiday_checker_STRANGE(start_date, end_date): """ Will check if an event is more than day long :param start_date: Strange Google formatted date of the start of the event :param end_date: Strange Google formatted date of the end of the event :return: Boolean """ start_date_items = start_date.split("-") end_date_items = end_date.split("-") start_date_sum = 0 end_date_sum = 0 for string in start_date_items: number = int(string) start_date_sum += number for string in end_date_items: number = int(string) end_date_sum += number date_dif = start_date_sum - end_date_sum if date_dif > 2: return True else: return False # Testing: # print(multiday_checker_STRANGE('2019-04-21', '2019-04-22')) # Doesn't use the "iso_extract_info" function def STRANGE_string_weekday(string): """ Will take a string that is a date formatted in the Google format and find what day of the week it is :param string: Google formatted string for the date :return: string """ items = string.split("/") year_int = int(items[2]) month_int = int(items[0]) day_int = int(items[1]) datetime_instance = datetime.date(year_int, month_int, day_int) week_day_number = datetime_instance.weekday() if week_day_number == 0: return "Monday" elif week_day_number == 1: return "Tuesday" elif week_day_number == 2: return "Wendsday" elif week_day_number == 3: return "Thursday" elif week_day_number == 4: return "Friday" elif week_day_number == 5: return "Saturday" elif week_day_number == 6: return "Sunday" else: return "Error" # Testing: # print(STRANGE_string_weekday("2019-04-27")) # Doesn't use the "iso_extract_info" function def ISO_string_weekday(string): """ Will take a string that is a date formatted in the ISO format and find what day of the week it is :param string: ISO formatted string for the date :return: string """ characters = list(string) year_int = int("".join(characters[0:4])) month_int = int("".join(characters[5:7])) day_int = int("".join(characters[8:10])) datetime_instance = datetime.date(year_int, month_int, day_int) week_day_number = datetime_instance.weekday() if week_day_number == 0: return "Monday" elif week_day_number == 1: return "Tuesday" elif week_day_number == 2: return "Wendsday" elif week_day_number == 3: return "Thursday" elif week_day_number == 4: return "Friday" elif week_day_number == 5: return "Saturday" elif week_day_number == 6: return "Sunday" else: return "Error" # Testing: # print(ISO_string_weekday('2019-06-28T16:00:00-04:00'))
en
0.687177
Will get all of the info and return it as an array :param string: ISO formatted string that will be used for extraction :return: array [year, month, day, military_time_hour, minutes, hours] :note: every item is an int except for minutes :note: hours only is there is military_time_hour is greater than 12 # # Testing: # print("[year, month, day, military_time_hour, minutes, hours]") # print(iso_extract_info('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function Will take a string that is an iso formatted string and make it look readable :param string: the iso formatted string :return: str # Testing: # print(iso_format_to_regular('2019-04-27T16:00:00-04:00')) # Doesn't use the "iso_extract_info" function Will rearrange the strange date that Google gives and repalce it with the normal string. :param strange_date: strange time that google gives when an event is marked as "all day" :return: str # Doesn't use the "iso_extract_info" function Will check if an event is more than day long :param start_date: Strange Google formatted date of the start of the event :param end_date: Strange Google formatted date of the end of the event :return: Boolean # Testing: # print(multiday_checker_STRANGE('2019-04-21', '2019-04-22')) # Doesn't use the "iso_extract_info" function Will take a string that is a date formatted in the Google format and find what day of the week it is :param string: Google formatted string for the date :return: string # Testing: # print(STRANGE_string_weekday("2019-04-27")) # Doesn't use the "iso_extract_info" function Will take a string that is a date formatted in the ISO format and find what day of the week it is :param string: ISO formatted string for the date :return: string # Testing: # print(ISO_string_weekday('2019-06-28T16:00:00-04:00'))
4.180344
4
python/ch_06_Animatronic_Head.py
tallamjr/mbms
18
8081
<gh_stars>10-100 from microbit import * import random, speech, radio eye_angles = [50, 140, 60, 90, 140] radio.off() sentences = [ "Hello my name is Mike", "What is your name", "I am looking at you", "Exterminate exterminate exterminate", "Number Five is alive", "I cant do that Dave", "daisee daisee give me your answer do" ] lips0 = Image("00000:" "00000:" "99999:" "00000:" "00000") lips1 = Image("00000:" "00900:" "99099:" "00900:" "00000") lips2 = Image("00000:" "09990:" "99099:" "09990:" "00000") lips = [lips0, lips1, lips2] def set_servo_angle(pin, angle): duty = 26 + (angle * 51) / 90 pin.write_analog(duty) def speak(sentence): words = sentence.split() for i in range(0, len(words)): display.show(random.choice(lips)) speech.say(words[i]) display.show(lips0) def act(): set_servo_angle(pin2, random.choice(eye_angles)) sleep(300) speak(random.choice(sentences)) set_servo_angle(pin2, 90) base_z = 0 while True: new_z = abs(accelerometer.get_z()) if abs(new_z - base_z) > 20: base_z = new_z act() if random.randint(0, 1000) == 0: # say something 1 time in 1000 act() sleep(200)
from microbit import * import random, speech, radio eye_angles = [50, 140, 60, 90, 140] radio.off() sentences = [ "Hello my name is Mike", "What is your name", "I am looking at you", "Exterminate exterminate exterminate", "Number Five is alive", "I cant do that Dave", "daisee daisee give me your answer do" ] lips0 = Image("00000:" "00000:" "99999:" "00000:" "00000") lips1 = Image("00000:" "00900:" "99099:" "00900:" "00000") lips2 = Image("00000:" "09990:" "99099:" "09990:" "00000") lips = [lips0, lips1, lips2] def set_servo_angle(pin, angle): duty = 26 + (angle * 51) / 90 pin.write_analog(duty) def speak(sentence): words = sentence.split() for i in range(0, len(words)): display.show(random.choice(lips)) speech.say(words[i]) display.show(lips0) def act(): set_servo_angle(pin2, random.choice(eye_angles)) sleep(300) speak(random.choice(sentences)) set_servo_angle(pin2, 90) base_z = 0 while True: new_z = abs(accelerometer.get_z()) if abs(new_z - base_z) > 20: base_z = new_z act() if random.randint(0, 1000) == 0: # say something 1 time in 1000 act() sleep(200)
en
0.845864
# say something 1 time in 1000
3.224124
3
debugtalk.py
caoyp2/HRunDemo
0
8082
<filename>debugtalk.py import datetime import time def sleep(n_secs): time.sleep(n_secs) def get_timestamp(): dtime = datetime.datetime.now() un_time = time.mktime(dtime.timetuple()) return str(un_time) def print_docId(docId): print(docId) def print_phonepass(phone,password): print(phone + "---------" + password)
<filename>debugtalk.py import datetime import time def sleep(n_secs): time.sleep(n_secs) def get_timestamp(): dtime = datetime.datetime.now() un_time = time.mktime(dtime.timetuple()) return str(un_time) def print_docId(docId): print(docId) def print_phonepass(phone,password): print(phone + "---------" + password)
none
1
2.687747
3
hubcare/metrics/community_metrics/issue_template/urls.py
aleronupe/2019.1-hubcare-api
7
8083
from django.urls import path from issue_template.views import IssueTemplateView urlpatterns = [ path( '<str:owner>/<str:repo>/<str:token_auth>/', IssueTemplateView.as_view() ), ]
from django.urls import path from issue_template.views import IssueTemplateView urlpatterns = [ path( '<str:owner>/<str:repo>/<str:token_auth>/', IssueTemplateView.as_view() ), ]
none
1
1.530356
2
src/hammer-vlsi/technology/sky130/sram_compiler/__init__.py
httpsgithu/hammer
138
8084
<reponame>httpsgithu/hammer import os, tempfile, subprocess from hammer_vlsi import MMMCCorner, MMMCCornerType, HammerTool, HammerToolStep, HammerSRAMGeneratorTool, SRAMParameters from hammer_vlsi.units import VoltageValue, TemperatureValue from hammer_tech import Library, ExtraLibrary from typing import NamedTuple, Dict, Any, List from abc import ABCMeta, abstractmethod class SKY130SRAMGenerator(HammerSRAMGeneratorTool): def tool_config_prefix(self) -> str: return "sram_generator.sky130" def version_number(self, version: str) -> int: return 0 # Run generator for a single sram and corner def generate_sram(self, params: SRAMParameters, corner: MMMCCorner) -> ExtraLibrary: tech_cache_dir = os.path.abspath(self.technology.cache_dir) #TODO: this is really an abuse of the corner stuff if corner.type == MMMCCornerType.Setup: speed_name = "slow" speed = "SS" elif corner.type == MMMCCornerType.Hold: speed_name = "fast" speed = "FF" elif corner.type == MMMCCornerType.Extra: speed_name = "typical" speed = "TT" # Different target memories based on port count # if params.family == "1rw": # self.logger.info("Compiling 1rw memories to DFFRAM instances") # base_dir = self.get_setting("technology.sky130.dffram_lib") # fam_code = params.family # sram_name = "RAM{d}x{w}".format( # d=params.depth, # w=params.width) # #TODO: need real libs (perhaps run Liberate here?) # #For now, use the dummy lib for all corners # corner_str = "" # # lib_path = "{b}/{n}.lib".format( # b=base_dir, # n=sram_name) # if not os.path.exists(lib_path): # self.logger.error("SKY130 1rw1r SRAM cache does not support corner: {c}".format(c=corner_str)) # return ExtraLibrary(prefix=None, library=Library( # name=sram_name, # nldm_liberty_file=lib_path, # lef_file="{b}/{n}/{n}.lef".format(b=base_dir,n=sram_name), # #TODO: GDS not generated. Unclear which DEF to use? # #gds_file="{b}/{n}/{n}.gds".format(b=base_dir,n=sram_name), # spice_file="{b}/{n}/{n}.spice".format(b=base_dir,n=sram_name), # #TODO: Will not work as-is for behav. sim (this is a structural netlist referencing std. cells) # #Need to add std cell behavioral Verilog to sim.inputs.input_files # verilog_sim="{b}/{n}/{n}.nl.v".format(b=base_dir,n=sram_name), # corner={'nmos': speed_name, 'pmos': speed_name, 'temperature': str(corner.temp.value_in_units("C")) + " C"}, # supplies={'VDD': str(corner.voltage.value_in_units("V")) + " V", 'GND': "0 V"}, # provides=[{'lib_type': "sram", 'vt': params.vt}])) # elif params.family == "1rw1r": if params.family == "1rw": self.logger.info("Compiling 1rw1r memories to OpenRAM instances") base_dir = self.get_setting("technology.sky130.openram_lib") fam_code = params.family s=round(round(params.width*params.depth/8, -3)/1000) # size in kiB w=params.width d=params.depth m=8 sram_name = f"sky130_sram_{s}kbyte_1rw1r_{w}x{d}_{m}" print(f"SRAM_NAME: {sram_name}") #TODO: Hammer SRAMParameters doesn't have this info #TODO: replace this if OpenRAM characterization done for other corners #For now, use typical lib for all corners corner_str = "TT_1p8V_25C" #corner_str = "{speed}_{volt}V_{temp}C".format( # speed = speed, # volt = str(corner.voltage.value_in_units("V")).replace(".","p"), # temp = str(int(corner.temp.value_in_units("C"))).replace(".","p")) lib_path = "{b}/{n}/{n}_{c}.lib".format( b=base_dir, n=sram_name, c=corner_str) if not os.path.exists(lib_path): self.logger.error("SKY130 1rw1r SRAM cache does not support corner: {c}".format(c=corner_str)) return ExtraLibrary(prefix=None, library=Library( name=sram_name, nldm_liberty_file=lib_path, lef_file="{b}/{n}/{n}.lef".format(b=base_dir,n=sram_name), gds_file="{b}/{n}/{n}.gds".format(b=base_dir,n=sram_name), spice_file="{b}/{n}/{n}.lvs.sp".format(b=base_dir,n=sram_name), verilog_sim="{b}/{n}/{n}.v".format(b=base_dir,n=sram_name), corner={'nmos': speed_name, 'pmos': speed_name, 'temperature': str(corner.temp.value_in_units("C")) + " C"}, supplies={'VDD': str(corner.voltage.value_in_units("V")) + " V", 'GND': "0 V"}, provides=[{'lib_type': "sram", 'vt': params.vt}])) else: self.logger.error("SKY130 SRAM cache does not support family:{f}".format(f=params.family)) return ExtraLibrary(prefix=None, library=None) tool=SKY130SRAMGenerator
import os, tempfile, subprocess from hammer_vlsi import MMMCCorner, MMMCCornerType, HammerTool, HammerToolStep, HammerSRAMGeneratorTool, SRAMParameters from hammer_vlsi.units import VoltageValue, TemperatureValue from hammer_tech import Library, ExtraLibrary from typing import NamedTuple, Dict, Any, List from abc import ABCMeta, abstractmethod class SKY130SRAMGenerator(HammerSRAMGeneratorTool): def tool_config_prefix(self) -> str: return "sram_generator.sky130" def version_number(self, version: str) -> int: return 0 # Run generator for a single sram and corner def generate_sram(self, params: SRAMParameters, corner: MMMCCorner) -> ExtraLibrary: tech_cache_dir = os.path.abspath(self.technology.cache_dir) #TODO: this is really an abuse of the corner stuff if corner.type == MMMCCornerType.Setup: speed_name = "slow" speed = "SS" elif corner.type == MMMCCornerType.Hold: speed_name = "fast" speed = "FF" elif corner.type == MMMCCornerType.Extra: speed_name = "typical" speed = "TT" # Different target memories based on port count # if params.family == "1rw": # self.logger.info("Compiling 1rw memories to DFFRAM instances") # base_dir = self.get_setting("technology.sky130.dffram_lib") # fam_code = params.family # sram_name = "RAM{d}x{w}".format( # d=params.depth, # w=params.width) # #TODO: need real libs (perhaps run Liberate here?) # #For now, use the dummy lib for all corners # corner_str = "" # # lib_path = "{b}/{n}.lib".format( # b=base_dir, # n=sram_name) # if not os.path.exists(lib_path): # self.logger.error("SKY130 1rw1r SRAM cache does not support corner: {c}".format(c=corner_str)) # return ExtraLibrary(prefix=None, library=Library( # name=sram_name, # nldm_liberty_file=lib_path, # lef_file="{b}/{n}/{n}.lef".format(b=base_dir,n=sram_name), # #TODO: GDS not generated. Unclear which DEF to use? # #gds_file="{b}/{n}/{n}.gds".format(b=base_dir,n=sram_name), # spice_file="{b}/{n}/{n}.spice".format(b=base_dir,n=sram_name), # #TODO: Will not work as-is for behav. sim (this is a structural netlist referencing std. cells) # #Need to add std cell behavioral Verilog to sim.inputs.input_files # verilog_sim="{b}/{n}/{n}.nl.v".format(b=base_dir,n=sram_name), # corner={'nmos': speed_name, 'pmos': speed_name, 'temperature': str(corner.temp.value_in_units("C")) + " C"}, # supplies={'VDD': str(corner.voltage.value_in_units("V")) + " V", 'GND': "0 V"}, # provides=[{'lib_type': "sram", 'vt': params.vt}])) # elif params.family == "1rw1r": if params.family == "1rw": self.logger.info("Compiling 1rw1r memories to OpenRAM instances") base_dir = self.get_setting("technology.sky130.openram_lib") fam_code = params.family s=round(round(params.width*params.depth/8, -3)/1000) # size in kiB w=params.width d=params.depth m=8 sram_name = f"sky130_sram_{s}kbyte_1rw1r_{w}x{d}_{m}" print(f"SRAM_NAME: {sram_name}") #TODO: Hammer SRAMParameters doesn't have this info #TODO: replace this if OpenRAM characterization done for other corners #For now, use typical lib for all corners corner_str = "TT_1p8V_25C" #corner_str = "{speed}_{volt}V_{temp}C".format( # speed = speed, # volt = str(corner.voltage.value_in_units("V")).replace(".","p"), # temp = str(int(corner.temp.value_in_units("C"))).replace(".","p")) lib_path = "{b}/{n}/{n}_{c}.lib".format( b=base_dir, n=sram_name, c=corner_str) if not os.path.exists(lib_path): self.logger.error("SKY130 1rw1r SRAM cache does not support corner: {c}".format(c=corner_str)) return ExtraLibrary(prefix=None, library=Library( name=sram_name, nldm_liberty_file=lib_path, lef_file="{b}/{n}/{n}.lef".format(b=base_dir,n=sram_name), gds_file="{b}/{n}/{n}.gds".format(b=base_dir,n=sram_name), spice_file="{b}/{n}/{n}.lvs.sp".format(b=base_dir,n=sram_name), verilog_sim="{b}/{n}/{n}.v".format(b=base_dir,n=sram_name), corner={'nmos': speed_name, 'pmos': speed_name, 'temperature': str(corner.temp.value_in_units("C")) + " C"}, supplies={'VDD': str(corner.voltage.value_in_units("V")) + " V", 'GND': "0 V"}, provides=[{'lib_type': "sram", 'vt': params.vt}])) else: self.logger.error("SKY130 SRAM cache does not support family:{f}".format(f=params.family)) return ExtraLibrary(prefix=None, library=None) tool=SKY130SRAMGenerator
en
0.421453
# Run generator for a single sram and corner #TODO: this is really an abuse of the corner stuff # Different target memories based on port count # if params.family == "1rw": # self.logger.info("Compiling 1rw memories to DFFRAM instances") # base_dir = self.get_setting("technology.sky130.dffram_lib") # fam_code = params.family # sram_name = "RAM{d}x{w}".format( # d=params.depth, # w=params.width) # #TODO: need real libs (perhaps run Liberate here?) # #For now, use the dummy lib for all corners # corner_str = "" # # lib_path = "{b}/{n}.lib".format( # b=base_dir, # n=sram_name) # if not os.path.exists(lib_path): # self.logger.error("SKY130 1rw1r SRAM cache does not support corner: {c}".format(c=corner_str)) # return ExtraLibrary(prefix=None, library=Library( # name=sram_name, # nldm_liberty_file=lib_path, # lef_file="{b}/{n}/{n}.lef".format(b=base_dir,n=sram_name), # #TODO: GDS not generated. Unclear which DEF to use? # #gds_file="{b}/{n}/{n}.gds".format(b=base_dir,n=sram_name), # spice_file="{b}/{n}/{n}.spice".format(b=base_dir,n=sram_name), # #TODO: Will not work as-is for behav. sim (this is a structural netlist referencing std. cells) # #Need to add std cell behavioral Verilog to sim.inputs.input_files # verilog_sim="{b}/{n}/{n}.nl.v".format(b=base_dir,n=sram_name), # corner={'nmos': speed_name, 'pmos': speed_name, 'temperature': str(corner.temp.value_in_units("C")) + " C"}, # supplies={'VDD': str(corner.voltage.value_in_units("V")) + " V", 'GND': "0 V"}, # provides=[{'lib_type': "sram", 'vt': params.vt}])) # elif params.family == "1rw1r": # size in kiB #TODO: Hammer SRAMParameters doesn't have this info #TODO: replace this if OpenRAM characterization done for other corners #For now, use typical lib for all corners #corner_str = "{speed}_{volt}V_{temp}C".format( # speed = speed, # volt = str(corner.voltage.value_in_units("V")).replace(".","p"), # temp = str(int(corner.temp.value_in_units("C"))).replace(".","p"))
2.26909
2
Section 4/nlp-4-ngrams.py
PacktPublishing/Hands-on-NLP-with-NLTK-and-scikit-learn-
34
8085
import collections import nltk import os from sklearn import ( datasets, model_selection, feature_extraction, linear_model, naive_bayes, ensemble ) def extract_features(corpus): '''Extract TF-IDF features from corpus''' sa_stop_words = nltk.corpus.stopwords.words("english") # words that might invert a sentence's meaning white_list = [ 'what', 'but', 'if', 'because', 'as', 'until', 'against', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'why', 'how', 'all', 'any', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'can', 'will', 'just', 'don', 'should'] # take these out of the standard NLTK stop word list sa_stop_words = [sw for sw in sa_stop_words if sw not in white_list] # vectorize means we turn non-numerical data into an array of numbers count_vectorizer = feature_extraction.text.CountVectorizer( lowercase=True, # for demonstration, True by default tokenizer=nltk.word_tokenize, # use the NLTK tokenizer min_df=2, # minimum document frequency, i.e. the word must appear more than once. ngram_range=(1, 2), stop_words=sa_stop_words ) processed_corpus = count_vectorizer.fit_transform(corpus) processed_corpus = feature_extraction.text.TfidfTransformer().fit_transform( processed_corpus) return processed_corpus data_directory = 'movie_reviews' movie_sentiment_data = datasets.load_files(data_directory, shuffle=True) print('{} files loaded.'.format(len(movie_sentiment_data.data))) print('They contain the following classes: {}.'.format( movie_sentiment_data.target_names)) movie_tfidf = extract_features(movie_sentiment_data.data) X_train, X_test, y_train, y_test = model_selection.train_test_split( movie_tfidf, movie_sentiment_data.target, test_size=0.30, random_state=42) # similar to nltk.NaiveBayesClassifier.train() clf1 = linear_model.LogisticRegression() clf1.fit(X_train, y_train) print('Logistic Regression performance: {}'.format(clf1.score(X_test, y_test))) clf2 = linear_model.SGDClassifier() clf2.fit(X_train, y_train) print('SGDClassifier performance: {}'.format(clf2.score(X_test, y_test))) clf3 = naive_bayes.MultinomialNB() clf3.fit(X_train, y_train) print('MultinomialNB performance: {}'.format(clf3.score(X_test, y_test))) clf4 = naive_bayes.BernoulliNB() clf4.fit(X_train, y_train) print('BernoulliNB performance: {}'.format(clf4.score(X_test, y_test))) voting_model = ensemble.VotingClassifier( estimators=[('lr', clf1), ('sgd', clf2), ('mnb', clf3), ('bnb', clf4)], voting='hard') voting_model.fit(X_train, y_train) print('Voting classifier performance: {}'.format( voting_model.score(X_test, y_test)))
import collections import nltk import os from sklearn import ( datasets, model_selection, feature_extraction, linear_model, naive_bayes, ensemble ) def extract_features(corpus): '''Extract TF-IDF features from corpus''' sa_stop_words = nltk.corpus.stopwords.words("english") # words that might invert a sentence's meaning white_list = [ 'what', 'but', 'if', 'because', 'as', 'until', 'against', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'why', 'how', 'all', 'any', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'can', 'will', 'just', 'don', 'should'] # take these out of the standard NLTK stop word list sa_stop_words = [sw for sw in sa_stop_words if sw not in white_list] # vectorize means we turn non-numerical data into an array of numbers count_vectorizer = feature_extraction.text.CountVectorizer( lowercase=True, # for demonstration, True by default tokenizer=nltk.word_tokenize, # use the NLTK tokenizer min_df=2, # minimum document frequency, i.e. the word must appear more than once. ngram_range=(1, 2), stop_words=sa_stop_words ) processed_corpus = count_vectorizer.fit_transform(corpus) processed_corpus = feature_extraction.text.TfidfTransformer().fit_transform( processed_corpus) return processed_corpus data_directory = 'movie_reviews' movie_sentiment_data = datasets.load_files(data_directory, shuffle=True) print('{} files loaded.'.format(len(movie_sentiment_data.data))) print('They contain the following classes: {}.'.format( movie_sentiment_data.target_names)) movie_tfidf = extract_features(movie_sentiment_data.data) X_train, X_test, y_train, y_test = model_selection.train_test_split( movie_tfidf, movie_sentiment_data.target, test_size=0.30, random_state=42) # similar to nltk.NaiveBayesClassifier.train() clf1 = linear_model.LogisticRegression() clf1.fit(X_train, y_train) print('Logistic Regression performance: {}'.format(clf1.score(X_test, y_test))) clf2 = linear_model.SGDClassifier() clf2.fit(X_train, y_train) print('SGDClassifier performance: {}'.format(clf2.score(X_test, y_test))) clf3 = naive_bayes.MultinomialNB() clf3.fit(X_train, y_train) print('MultinomialNB performance: {}'.format(clf3.score(X_test, y_test))) clf4 = naive_bayes.BernoulliNB() clf4.fit(X_train, y_train) print('BernoulliNB performance: {}'.format(clf4.score(X_test, y_test))) voting_model = ensemble.VotingClassifier( estimators=[('lr', clf1), ('sgd', clf2), ('mnb', clf3), ('bnb', clf4)], voting='hard') voting_model.fit(X_train, y_train) print('Voting classifier performance: {}'.format( voting_model.score(X_test, y_test)))
en
0.838862
Extract TF-IDF features from corpus # words that might invert a sentence's meaning # take these out of the standard NLTK stop word list # vectorize means we turn non-numerical data into an array of numbers # for demonstration, True by default # use the NLTK tokenizer # minimum document frequency, i.e. the word must appear more than once. # similar to nltk.NaiveBayesClassifier.train()
3.327625
3
code/gcd_sequence/sol_443.py
bhavinjawade/project-euler-solutions
2
8086
<reponame>bhavinjawade/project-euler-solutions # -*- coding: utf-8 -*- ''' File name: code\gcd_sequence\sol_443.py Author: <NAME> Date created: Oct 20, 2018 Python Version: 3.x ''' # Solution to Project Euler Problem #443 :: GCD sequence # # For more information see: # https://projecteuler.net/problem=443 # Problem Statement ''' Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4. The first few values are: n4567891011121314151617181920... g(n)1314161718272829303132333451545560... You are given that g(1 000) = 2524 and g(1 000 000) = 2624152. Find g(1015). ''' # Solution # Solution Approach ''' '''
# -*- coding: utf-8 -*- ''' File name: code\gcd_sequence\sol_443.py Author: <NAME> Date created: Oct 20, 2018 Python Version: 3.x ''' # Solution to Project Euler Problem #443 :: GCD sequence # # For more information see: # https://projecteuler.net/problem=443 # Problem Statement ''' Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4. The first few values are: n4567891011121314151617181920... g(n)1314161718272829303132333451545560... You are given that g(1 000) = 2524 and g(1 000 000) = 2624152. Find g(1015). ''' # Solution # Solution Approach ''' '''
en
0.622069
# -*- coding: utf-8 -*- File name: code\gcd_sequence\sol_443.py Author: <NAME> Date created: Oct 20, 2018 Python Version: 3.x # Solution to Project Euler Problem #443 :: GCD sequence # # For more information see: # https://projecteuler.net/problem=443 # Problem Statement Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4. The first few values are: n4567891011121314151617181920... g(n)1314161718272829303132333451545560... You are given that g(1 000) = 2524 and g(1 000 000) = 2624152. Find g(1015). # Solution # Solution Approach
3.370621
3
src/collectors/rabbitmq/rabbitmq.py
lreed/Diamond
0
8087
<filename>src/collectors/rabbitmq/rabbitmq.py # coding=utf-8 """ Collects data from RabbitMQ through the admin interface #### Notes * if two vhosts have the queues with the same name, the metrics will collide #### Dependencies * pyrabbit """ import diamond.collector try: from numbers import Number Number # workaround for pyflakes issue #13 import pyrabbit.api except ImportError: Number = None class RabbitMQCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(RabbitMQCollector, self).get_default_config_help() config_help.update({ 'host': 'Hostname and port to collect from', 'user': 'Username', 'password': 'Password', 'queues': 'Queues to publish. Leave empty to publish all.', }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(RabbitMQCollector, self).get_default_config() config.update({ 'path': 'rabbitmq', 'host': 'localhost:55672', 'user': 'guest', 'password': '<PASSWORD>', }) return config def collect(self): if Number is None: self.log.error('Unable to import either Number or pyrabbit.api') return {} queues = [] if 'queues' in self.config: queues = self.config['queues'].split() try: client = pyrabbit.api.Client(self.config['host'], self.config['user'], self.config['password']) for queue in client.get_queues(): # skip queues we don't want to publish if queues and queue['name'] not in queues: continue for key in queue: name = '{0}.{1}'.format('queues', queue['name']) self._publish_metrics(name, [], key, queue) overview = client.get_overview() for key in overview: self._publish_metrics('', [], key, overview) except Exception, e: self.log.error('Couldnt connect to rabbitmq %s', e) return {} def _publish_metrics(self, name, prev_keys, key, data): """Recursively publish keys""" value = data[key] keys = prev_keys + [key] if isinstance(value, dict): for new_key in value: self._publish_metrics(name, keys, new_key, value) elif isinstance(value, Number): joined_keys = '.'.join(keys) if name: publish_key = '{0}.{1}'.format(name, joined_keys) else: publish_key = joined_keys self.publish(publish_key, value)
<filename>src/collectors/rabbitmq/rabbitmq.py # coding=utf-8 """ Collects data from RabbitMQ through the admin interface #### Notes * if two vhosts have the queues with the same name, the metrics will collide #### Dependencies * pyrabbit """ import diamond.collector try: from numbers import Number Number # workaround for pyflakes issue #13 import pyrabbit.api except ImportError: Number = None class RabbitMQCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(RabbitMQCollector, self).get_default_config_help() config_help.update({ 'host': 'Hostname and port to collect from', 'user': 'Username', 'password': 'Password', 'queues': 'Queues to publish. Leave empty to publish all.', }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(RabbitMQCollector, self).get_default_config() config.update({ 'path': 'rabbitmq', 'host': 'localhost:55672', 'user': 'guest', 'password': '<PASSWORD>', }) return config def collect(self): if Number is None: self.log.error('Unable to import either Number or pyrabbit.api') return {} queues = [] if 'queues' in self.config: queues = self.config['queues'].split() try: client = pyrabbit.api.Client(self.config['host'], self.config['user'], self.config['password']) for queue in client.get_queues(): # skip queues we don't want to publish if queues and queue['name'] not in queues: continue for key in queue: name = '{0}.{1}'.format('queues', queue['name']) self._publish_metrics(name, [], key, queue) overview = client.get_overview() for key in overview: self._publish_metrics('', [], key, overview) except Exception, e: self.log.error('Couldnt connect to rabbitmq %s', e) return {} def _publish_metrics(self, name, prev_keys, key, data): """Recursively publish keys""" value = data[key] keys = prev_keys + [key] if isinstance(value, dict): for new_key in value: self._publish_metrics(name, keys, new_key, value) elif isinstance(value, Number): joined_keys = '.'.join(keys) if name: publish_key = '{0}.{1}'.format(name, joined_keys) else: publish_key = joined_keys self.publish(publish_key, value)
en
0.765086
# coding=utf-8 Collects data from RabbitMQ through the admin interface #### Notes * if two vhosts have the queues with the same name, the metrics will collide #### Dependencies * pyrabbit # workaround for pyflakes issue #13 Returns the default collector settings # skip queues we don't want to publish Recursively publish keys
2.188792
2
nemo/collections/tts/torch/data.py
MalikIdreesHasanKhan/NeMo
4,145
8088
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pickle from pathlib import Path from typing import Callable, Dict, List, Optional, Union import librosa import torch from nemo_text_processing.text_normalization.normalize import Normalizer from tqdm import tqdm from nemo.collections.asr.parts.preprocessing.features import WaveformFeaturizer from nemo.collections.tts.torch.helpers import ( BetaBinomialInterpolator, beta_binomial_prior_distribution, general_padding, ) from nemo.collections.tts.torch.tts_data_types import ( DATA_STR2DATA_CLASS, MAIN_DATA_TYPES, VALID_SUPPLEMENTARY_DATA_TYPES, DurationPrior, Durations, Energy, LMTokens, LogMel, Pitch, SpeakerID, WithLens, ) from nemo.collections.tts.torch.tts_tokenizers import BaseTokenizer, EnglishCharsTokenizer, EnglishPhonemesTokenizer from nemo.core.classes import Dataset from nemo.utils import logging class TTSDataset(Dataset): def __init__( self, manifest_filepath: str, sample_rate: int, text_tokenizer: Union[BaseTokenizer, Callable[[str], List[int]]], tokens: Optional[List[str]] = None, text_normalizer: Optional[Union[Normalizer, Callable[[str], str]]] = None, text_normalizer_call_args: Optional[Dict] = None, text_tokenizer_pad_id: Optional[int] = None, sup_data_types: Optional[List[str]] = None, sup_data_path: Optional[Union[Path, str]] = None, max_duration: Optional[float] = None, min_duration: Optional[float] = None, ignore_file: Optional[str] = None, trim: bool = False, n_fft=1024, win_length=None, hop_length=None, window="hann", n_mels=80, lowfreq=0, highfreq=None, **kwargs, ): """Dataset that loads main data types (audio and text) and specified supplementary data types (e.g. log mel, durations, pitch). Most supplementary data types will be computed on the fly and saved in the supplementary_folder if they did not exist before. Arguments for supplementary data should be also specified in this class and they will be used from kwargs (see keyword args section). Args: manifest_filepath (str, Path, List[str, Path]): Path(s) to the .json manifests containing information on the dataset. Each line in the .json file should be valid json. Note: the .json file itself is not valid json. Each line should contain the following: "audio_filepath": <PATH_TO_WAV> "mel_filepath": <PATH_TO_LOG_MEL_PT> (Optional) "duration": <Duration of audio clip in seconds> (Optional) "text": <THE_TRANSCRIPT> (Optional) sample_rate (int): The sample rate of the audio. Or the sample rate that we will resample all files to. text_tokenizer (Optional[Union[BaseTokenizer, Callable[[str], List[int]]]]): BaseTokenizer or callable which represents text tokenizer. tokens (Optional[List[str]]): Tokens from text_tokenizer. Should be specified if text_tokenizer is not BaseTokenizer. text_normalizer (Optional[Union[Normalizer, Callable[[str], str]]]): Normalizer or callable which represents text normalizer. text_normalizer_call_args (Optional[Dict]): Additional arguments for text_normalizer function. text_tokenizer_pad_id (Optional[int]): Index of padding. Should be specified if text_tokenizer is not BaseTokenizer. sup_data_types (Optional[List[str]]): List of supplementary data types. sup_data_path (Optional[Union[Path, str]]): A folder that contains or will contain supplementary data (e.g. pitch). max_duration (Optional[float]): Max duration of audio clips in seconds. All samples exceeding this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. min_duration (Optional[float]): Min duration of audio clips in seconds. All samples lower than this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. ignore_file (Optional[str, Path]): The location of a pickle-saved list of audio_ids (the stem of the audio files) that will be pruned prior to training. Defaults to None which does not prune. trim (Optional[bool]): Whether to apply librosa.effects.trim to the audio file. Defaults to False. n_fft (Optional[int]): The number of fft samples. Defaults to 1024 win_length (Optional[int]): The length of the stft windows. Defaults to None which uses n_fft. hop_length (Optional[int]): The hope length between fft computations. Defaults to None which uses n_fft//4. window (Optional[str]): One of 'hann', 'hamming', 'blackman','bartlett', 'none'. Which corresponds to the equivalent torch window function. n_mels (Optional[int]): The number of mel filters. Defaults to 80. lowfreq (Optional[int]): The lowfreq input to the mel filter calculation. Defaults to 0. highfreq (Optional[int]): The highfreq input to the mel filter calculation. Defaults to None. Keyword Args: durs_file (Optional[str]): String path to pickled durations location. durs_type (Optional[str]): Type of durations. Currently supported only "aligned-based". use_beta_binomial_interpolator (Optional[bool]): Whether to use beta-binomial interpolator. Defaults to False. pitch_fmin (Optional[float]): The fmin input to librosa.pyin. Defaults to librosa.note_to_hz('C2'). pitch_fmax (Optional[float]): The fmax input to librosa.pyin. Defaults to librosa.note_to_hz('C7'). pitch_avg (Optional[float]): The mean that we use to normalize the pitch. pitch_std (Optional[float]): The std that we use to normalize the pitch. pitch_norm (Optional[bool]): Whether to normalize pitch (via pitch_avg and pitch_std) or not. """ super().__init__() self.text_normalizer = text_normalizer self.text_normalizer_call = ( self.text_normalizer.normalize if isinstance(self.text_normalizer, Normalizer) else self.text_normalizer ) self.text_normalizer_call_args = text_normalizer_call_args if text_normalizer_call_args is not None else {} self.text_tokenizer = text_tokenizer if isinstance(self.text_tokenizer, BaseTokenizer): self.text_tokenizer_pad_id = text_tokenizer.pad self.tokens = text_tokenizer.tokens else: if text_tokenizer_pad_id is None: raise ValueError(f"text_tokenizer_pad_id must be specified if text_tokenizer is not BaseTokenizer") if tokens is None: raise ValueError(f"tokens must be specified if text_tokenizer is not BaseTokenizer") self.text_tokenizer_pad_id = text_tokenizer_pad_id self.tokens = tokens if isinstance(manifest_filepath, str): manifest_filepath = [manifest_filepath] self.manifest_filepath = manifest_filepath if sup_data_path is not None: Path(sup_data_path).mkdir(parents=True, exist_ok=True) self.sup_data_path = sup_data_path self.sup_data_types = ( [DATA_STR2DATA_CLASS[d_as_str] for d_as_str in sup_data_types] if sup_data_types is not None else [] ) self.sup_data_types_set = set(self.sup_data_types) self.data = [] audio_files = [] total_duration = 0 for manifest_file in self.manifest_filepath: with open(Path(manifest_file).expanduser(), 'r') as f: logging.info(f"Loading dataset from {manifest_file}.") for line in tqdm(f): item = json.loads(line) file_info = { "audio_filepath": item["audio_filepath"], "mel_filepath": item["mel_filepath"] if "mel_filepath" in item else None, "duration": item["duration"] if "duration" in item else None, "text_tokens": None, "speaker_id": item["speaker"] if "speaker" in item else None, } if "text" in item: text = item["text"] if self.text_normalizer is not None: text = self.text_normalizer_call(text, **self.text_normalizer_call_args) text_tokens = self.text_tokenizer(text) file_info["raw_text"] = item["text"] file_info["text_tokens"] = text_tokens audio_files.append(file_info) if file_info["duration"] is None: logging.info( "Not all audio files have duration information. Duration logging will be disabled." ) total_duration = None if total_duration is not None: total_duration += item["duration"] logging.info(f"Loaded dataset with {len(audio_files)} files.") if total_duration is not None: logging.info(f"Dataset contains {total_duration / 3600:.2f} hours.") if ignore_file: logging.info(f"using {ignore_file} to prune dataset.") with open(Path(ignore_file).expanduser(), "rb") as f: wavs_to_ignore = set(pickle.load(f)) pruned_duration = 0 if total_duration is not None else None pruned_items = 0 for item in audio_files: audio_path = item['audio_filepath'] audio_id = Path(audio_path).stem # Prune data according to min/max_duration & the ignore file if total_duration is not None: if (min_duration and item["duration"] < min_duration) or ( max_duration and item["duration"] > max_duration ): pruned_duration += item["duration"] pruned_items += 1 continue if ignore_file and (audio_id in wavs_to_ignore): pruned_items += 1 pruned_duration += item["duration"] wavs_to_ignore.remove(audio_id) continue self.data.append(item) logging.info(f"Pruned {pruned_items} files. Final dataset contains {len(self.data)} files") if pruned_duration is not None: logging.info( f"Pruned {pruned_duration / 3600:.2f} hours. Final dataset contains " f"{(total_duration - pruned_duration) / 3600:.2f} hours." ) self.sample_rate = sample_rate self.featurizer = WaveformFeaturizer(sample_rate=self.sample_rate) self.trim = trim self.n_fft = n_fft self.n_mels = n_mels self.lowfreq = lowfreq self.highfreq = highfreq self.window = window self.win_length = win_length or self.n_fft self.hop_length = hop_length self.hop_len = self.hop_length or self.n_fft // 4 self.fb = torch.tensor( librosa.filters.mel( self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.lowfreq, fmax=self.highfreq ), dtype=torch.float, ).unsqueeze(0) window_fn = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, }.get(self.window, None) self.stft = lambda x: torch.stft( input=x, n_fft=self.n_fft, hop_length=self.hop_len, win_length=self.win_length, window=window_fn(self.win_length, periodic=False).to(torch.float) if window_fn else None, ) for data_type in self.sup_data_types: if data_type not in VALID_SUPPLEMENTARY_DATA_TYPES: raise NotImplementedError(f"Current implementation of TTSDataset doesn't support {data_type} type.") getattr(self, f"add_{data_type.name}")(**kwargs) def add_log_mel(self, **kwargs): pass def add_durations(self, **kwargs): durs_file = kwargs.pop('durs_file') durs_type = kwargs.pop('durs_type') audio_stem2durs = torch.load(durs_file) self.durs = [] for tag in [Path(d["audio_filepath"]).stem for d in self.data]: durs = audio_stem2durs[tag] if durs_type == "aligner-based": self.durs.append(durs) else: raise NotImplementedError( f"{durs_type} duration type is not supported. Only align-based is supported at this moment." ) def add_duration_prior(self, **kwargs): self.use_beta_binomial_interpolator = kwargs.pop('use_beta_binomial_interpolator', False) if self.use_beta_binomial_interpolator: self.beta_binomial_interpolator = BetaBinomialInterpolator() def add_pitch(self, **kwargs): self.pitch_fmin = kwargs.pop("pitch_fmin", librosa.note_to_hz('C2')) self.pitch_fmax = kwargs.pop("pitch_fmax", librosa.note_to_hz('C7')) self.pitch_avg = kwargs.pop("pitch_avg", None) self.pitch_std = kwargs.pop("pitch_std", None) self.pitch_norm = kwargs.pop("pitch_norm", False) def add_energy(self, **kwargs): pass def add_speaker_id(self, **kwargs): pass def get_spec(self, audio): with torch.cuda.amp.autocast(enabled=False): spec = self.stft(audio) if spec.dtype in [torch.cfloat, torch.cdouble]: spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-9) return spec def get_log_mel(self, audio): with torch.cuda.amp.autocast(enabled=False): spec = self.get_spec(audio) mel = torch.matmul(self.fb.to(spec.dtype), spec) log_mel = torch.log(torch.clamp(mel, min=torch.finfo(mel.dtype).tiny)) return log_mel def __getitem__(self, index): sample = self.data[index] audio_stem = Path(sample["audio_filepath"]).stem features = self.featurizer.process(sample["audio_filepath"], trim=self.trim) audio, audio_length = features, torch.tensor(features.shape[0]).long() text = torch.tensor(sample["text_tokens"]).long() text_length = torch.tensor(len(sample["text_tokens"])).long() log_mel, log_mel_length = None, None if LogMel in self.sup_data_types_set: mel_path = sample["mel_filepath"] if mel_path is not None and Path(mel_path).exists(): log_mel = torch.load(mel_path) else: mel_path = Path(self.sup_data_path) / f"mel_{audio_stem}.pt" if mel_path.exists(): log_mel = torch.load(mel_path) else: log_mel = self.get_log_mel(audio) torch.save(log_mel, mel_path) log_mel = log_mel.squeeze(0) log_mel_length = torch.tensor(log_mel.shape[1]).long() durations = None if Durations in self.sup_data_types_set: durations = self.durs[index] duration_prior = None if DurationPrior in self.sup_data_types_set: if self.use_beta_binomial_interpolator: mel_len = self.get_log_mel(audio).shape[2] duration_prior = torch.from_numpy(self.beta_binomial_interpolator(mel_len, text_length.item())) else: prior_path = Path(self.sup_data_path) / f"pr_{audio_stem}.pt" if prior_path.exists(): duration_prior = torch.load(prior_path) else: mel_len = self.get_log_mel(audio).shape[2] duration_prior = beta_binomial_prior_distribution(text_length, mel_len) duration_prior = torch.from_numpy(duration_prior) torch.save(duration_prior, prior_path) pitch, pitch_length = None, None if Pitch in self.sup_data_types_set: pitch_name = ( f"{audio_stem}_pitch_pyin_" f"fmin{self.pitch_fmin}_fmax{self.pitch_fmax}_" f"fl{self.win_length}_hs{self.hop_len}.pt" ) pitch_path = Path(self.sup_data_path) / pitch_name if pitch_path.exists(): pitch = torch.load(pitch_path).float() else: pitch, _, _ = librosa.pyin( audio.numpy(), fmin=self.pitch_fmin, fmax=self.pitch_fmax, frame_length=self.win_length, sr=self.sample_rate, fill_na=0.0, ) pitch = torch.from_numpy(pitch).float() torch.save(pitch, pitch_path) if self.pitch_avg is not None and self.pitch_std is not None and self.pitch_norm: pitch -= self.pitch_avg pitch[pitch == -self.pitch_avg] = 0.0 # Zero out values that were perviously zero pitch /= self.pitch_std pitch_length = torch.tensor(len(pitch)).long() energy, energy_length = None, None if Energy in self.sup_data_types_set: energy_path = Path(self.sup_data_path) / f"{audio_stem}_energy_wl{self.win_length}_hs{self.hop_len}.pt" if energy_path.exists(): energy = torch.load(energy_path).float() else: spec = self.get_spec(audio) energy = torch.linalg.norm(spec.squeeze(0), axis=0).float() torch.save(energy, energy_path) energy_length = torch.tensor(len(energy)).long() speaker_id = None if SpeakerID in self.sup_data_types_set: speaker_id = torch.tensor(sample["speaker_id"]).long() return ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) def __len__(self): return len(self.data) def join_data(self, data_dict): result = [] for data_type in MAIN_DATA_TYPES + self.sup_data_types: result.append(data_dict[data_type.name]) if issubclass(data_type, WithLens): result.append(data_dict[f"{data_type.name}_lens"]) return tuple(result) def general_collate_fn(self, batch): ( _, audio_lengths, _, tokens_lengths, _, log_mel_lengths, durations_list, duration_priors_list, pitches, pitches_lengths, energies, energies_lengths, _, ) = zip(*batch) max_audio_len = max(audio_lengths).item() max_tokens_len = max(tokens_lengths).item() max_log_mel_len = max(log_mel_lengths) if LogMel in self.sup_data_types_set else None max_durations_len = max([len(i) for i in durations_list]) if Durations in self.sup_data_types_set else None max_pitches_len = max(pitches_lengths).item() if Pitch in self.sup_data_types_set else None max_energies_len = max(energies_lengths).item() if Energy in self.sup_data_types_set else None if LogMel in self.sup_data_types_set: log_mel_pad = torch.finfo(batch[0][2].dtype).tiny duration_priors = ( torch.zeros( len(duration_priors_list), max([prior_i.shape[0] for prior_i in duration_priors_list]), max([prior_i.shape[1] for prior_i in duration_priors_list]), ) if DurationPrior in self.sup_data_types_set else [] ) audios, tokens, log_mels, durations_list, pitches, energies, speaker_ids = [], [], [], [], [], [], [] for i, sample_tuple in enumerate(batch): ( audio, audio_len, token, token_len, log_mel, log_mel_len, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) = sample_tuple audio = general_padding(audio, audio_len.item(), max_audio_len) audios.append(audio) token = general_padding(token, token_len.item(), max_tokens_len, pad_value=self.text_tokenizer_pad_id) tokens.append(token) if LogMel in self.sup_data_types_set: log_mels.append(general_padding(log_mel, log_mel_len, max_log_mel_len, pad_value=log_mel_pad)) if Durations in self.sup_data_types_set: durations_list.append(general_padding(durations, len(durations), max_durations_len)) if DurationPrior in self.sup_data_types_set: duration_priors[i, : duration_prior.shape[0], : duration_prior.shape[1]] = duration_prior if Pitch in self.sup_data_types_set: pitches.append(general_padding(pitch, pitch_length.item(), max_pitches_len)) if Energy in self.sup_data_types_set: energies.append(general_padding(energy, energy_length.item(), max_energies_len)) if SpeakerID in self.sup_data_types_set: speaker_ids.append(speaker_id) data_dict = { "audio": torch.stack(audios), "audio_lens": torch.stack(audio_lengths), "text": torch.stack(tokens), "text_lens": torch.stack(tokens_lengths), "log_mel": torch.stack(log_mels) if LogMel in self.sup_data_types_set else None, "log_mel_lens": torch.stack(log_mel_lengths) if LogMel in self.sup_data_types_set else None, "durations": torch.stack(durations_list) if Durations in self.sup_data_types_set else None, "duration_prior": duration_priors if DurationPrior in self.sup_data_types_set else None, "pitch": torch.stack(pitches) if Pitch in self.sup_data_types_set else None, "pitch_lens": torch.stack(pitches_lengths) if Pitch in self.sup_data_types_set else None, "energy": torch.stack(energies) if Energy in self.sup_data_types_set else None, "energy_lens": torch.stack(energies_lengths) if Energy in self.sup_data_types_set else None, "speaker_id": torch.stack(speaker_ids) if SpeakerID in self.sup_data_types_set else None, } return data_dict def _collate_fn(self, batch): data_dict = self.general_collate_fn(batch) joined_data = self.join_data(data_dict) return joined_data class MixerTTSDataset(TTSDataset): def __init__(self, **kwargs): super().__init__(**kwargs) def _albert(self): from transformers import AlbertTokenizer # noqa pylint: disable=import-outside-toplevel self.lm_model_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') self.lm_padding_value = self.lm_model_tokenizer._convert_token_to_id('<pad>') space_value = self.lm_model_tokenizer._convert_token_to_id('▁') self.id2lm_tokens = {} for i, d in enumerate(self.data): raw_text = d["raw_text"] assert isinstance(self.text_tokenizer, EnglishPhonemesTokenizer) or isinstance( self.text_tokenizer, EnglishCharsTokenizer ) preprocess_text_as_tts_input = self.text_tokenizer.text_preprocessing_func(raw_text) lm_tokens_as_ids = self.lm_model_tokenizer.encode(preprocess_text_as_tts_input, add_special_tokens=False) if self.text_tokenizer.pad_with_space: lm_tokens_as_ids = [space_value] + lm_tokens_as_ids + [space_value] self.id2lm_tokens[i] = lm_tokens_as_ids def add_lm_tokens(self, **kwargs): lm_model = kwargs.pop('lm_model') if lm_model == "albert": self._albert() else: raise NotImplementedError( f"{lm_model} lm model is not supported. Only albert is supported at this moment." ) def __getitem__(self, index): ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) = super().__getitem__(index) lm_tokens = None if LMTokens in self.sup_data_types_set: lm_tokens = torch.tensor(self.id2lm_tokens[index]).long() return ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, lm_tokens, ) def _collate_fn(self, batch): batch = list(zip(*batch)) data_dict = self.general_collate_fn(list(zip(*batch[:13]))) lm_tokens_list = batch[13] if LMTokens in self.sup_data_types_set: lm_tokens = torch.full( (len(lm_tokens_list), max([lm_tokens.shape[0] for lm_tokens in lm_tokens_list])), fill_value=self.lm_padding_value, ) for i, lm_tokens_i in enumerate(lm_tokens_list): lm_tokens[i, : lm_tokens_i.shape[0]] = lm_tokens_i data_dict[LMTokens.name] = lm_tokens joined_data = self.join_data(data_dict) return joined_data
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pickle from pathlib import Path from typing import Callable, Dict, List, Optional, Union import librosa import torch from nemo_text_processing.text_normalization.normalize import Normalizer from tqdm import tqdm from nemo.collections.asr.parts.preprocessing.features import WaveformFeaturizer from nemo.collections.tts.torch.helpers import ( BetaBinomialInterpolator, beta_binomial_prior_distribution, general_padding, ) from nemo.collections.tts.torch.tts_data_types import ( DATA_STR2DATA_CLASS, MAIN_DATA_TYPES, VALID_SUPPLEMENTARY_DATA_TYPES, DurationPrior, Durations, Energy, LMTokens, LogMel, Pitch, SpeakerID, WithLens, ) from nemo.collections.tts.torch.tts_tokenizers import BaseTokenizer, EnglishCharsTokenizer, EnglishPhonemesTokenizer from nemo.core.classes import Dataset from nemo.utils import logging class TTSDataset(Dataset): def __init__( self, manifest_filepath: str, sample_rate: int, text_tokenizer: Union[BaseTokenizer, Callable[[str], List[int]]], tokens: Optional[List[str]] = None, text_normalizer: Optional[Union[Normalizer, Callable[[str], str]]] = None, text_normalizer_call_args: Optional[Dict] = None, text_tokenizer_pad_id: Optional[int] = None, sup_data_types: Optional[List[str]] = None, sup_data_path: Optional[Union[Path, str]] = None, max_duration: Optional[float] = None, min_duration: Optional[float] = None, ignore_file: Optional[str] = None, trim: bool = False, n_fft=1024, win_length=None, hop_length=None, window="hann", n_mels=80, lowfreq=0, highfreq=None, **kwargs, ): """Dataset that loads main data types (audio and text) and specified supplementary data types (e.g. log mel, durations, pitch). Most supplementary data types will be computed on the fly and saved in the supplementary_folder if they did not exist before. Arguments for supplementary data should be also specified in this class and they will be used from kwargs (see keyword args section). Args: manifest_filepath (str, Path, List[str, Path]): Path(s) to the .json manifests containing information on the dataset. Each line in the .json file should be valid json. Note: the .json file itself is not valid json. Each line should contain the following: "audio_filepath": <PATH_TO_WAV> "mel_filepath": <PATH_TO_LOG_MEL_PT> (Optional) "duration": <Duration of audio clip in seconds> (Optional) "text": <THE_TRANSCRIPT> (Optional) sample_rate (int): The sample rate of the audio. Or the sample rate that we will resample all files to. text_tokenizer (Optional[Union[BaseTokenizer, Callable[[str], List[int]]]]): BaseTokenizer or callable which represents text tokenizer. tokens (Optional[List[str]]): Tokens from text_tokenizer. Should be specified if text_tokenizer is not BaseTokenizer. text_normalizer (Optional[Union[Normalizer, Callable[[str], str]]]): Normalizer or callable which represents text normalizer. text_normalizer_call_args (Optional[Dict]): Additional arguments for text_normalizer function. text_tokenizer_pad_id (Optional[int]): Index of padding. Should be specified if text_tokenizer is not BaseTokenizer. sup_data_types (Optional[List[str]]): List of supplementary data types. sup_data_path (Optional[Union[Path, str]]): A folder that contains or will contain supplementary data (e.g. pitch). max_duration (Optional[float]): Max duration of audio clips in seconds. All samples exceeding this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. min_duration (Optional[float]): Min duration of audio clips in seconds. All samples lower than this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. ignore_file (Optional[str, Path]): The location of a pickle-saved list of audio_ids (the stem of the audio files) that will be pruned prior to training. Defaults to None which does not prune. trim (Optional[bool]): Whether to apply librosa.effects.trim to the audio file. Defaults to False. n_fft (Optional[int]): The number of fft samples. Defaults to 1024 win_length (Optional[int]): The length of the stft windows. Defaults to None which uses n_fft. hop_length (Optional[int]): The hope length between fft computations. Defaults to None which uses n_fft//4. window (Optional[str]): One of 'hann', 'hamming', 'blackman','bartlett', 'none'. Which corresponds to the equivalent torch window function. n_mels (Optional[int]): The number of mel filters. Defaults to 80. lowfreq (Optional[int]): The lowfreq input to the mel filter calculation. Defaults to 0. highfreq (Optional[int]): The highfreq input to the mel filter calculation. Defaults to None. Keyword Args: durs_file (Optional[str]): String path to pickled durations location. durs_type (Optional[str]): Type of durations. Currently supported only "aligned-based". use_beta_binomial_interpolator (Optional[bool]): Whether to use beta-binomial interpolator. Defaults to False. pitch_fmin (Optional[float]): The fmin input to librosa.pyin. Defaults to librosa.note_to_hz('C2'). pitch_fmax (Optional[float]): The fmax input to librosa.pyin. Defaults to librosa.note_to_hz('C7'). pitch_avg (Optional[float]): The mean that we use to normalize the pitch. pitch_std (Optional[float]): The std that we use to normalize the pitch. pitch_norm (Optional[bool]): Whether to normalize pitch (via pitch_avg and pitch_std) or not. """ super().__init__() self.text_normalizer = text_normalizer self.text_normalizer_call = ( self.text_normalizer.normalize if isinstance(self.text_normalizer, Normalizer) else self.text_normalizer ) self.text_normalizer_call_args = text_normalizer_call_args if text_normalizer_call_args is not None else {} self.text_tokenizer = text_tokenizer if isinstance(self.text_tokenizer, BaseTokenizer): self.text_tokenizer_pad_id = text_tokenizer.pad self.tokens = text_tokenizer.tokens else: if text_tokenizer_pad_id is None: raise ValueError(f"text_tokenizer_pad_id must be specified if text_tokenizer is not BaseTokenizer") if tokens is None: raise ValueError(f"tokens must be specified if text_tokenizer is not BaseTokenizer") self.text_tokenizer_pad_id = text_tokenizer_pad_id self.tokens = tokens if isinstance(manifest_filepath, str): manifest_filepath = [manifest_filepath] self.manifest_filepath = manifest_filepath if sup_data_path is not None: Path(sup_data_path).mkdir(parents=True, exist_ok=True) self.sup_data_path = sup_data_path self.sup_data_types = ( [DATA_STR2DATA_CLASS[d_as_str] for d_as_str in sup_data_types] if sup_data_types is not None else [] ) self.sup_data_types_set = set(self.sup_data_types) self.data = [] audio_files = [] total_duration = 0 for manifest_file in self.manifest_filepath: with open(Path(manifest_file).expanduser(), 'r') as f: logging.info(f"Loading dataset from {manifest_file}.") for line in tqdm(f): item = json.loads(line) file_info = { "audio_filepath": item["audio_filepath"], "mel_filepath": item["mel_filepath"] if "mel_filepath" in item else None, "duration": item["duration"] if "duration" in item else None, "text_tokens": None, "speaker_id": item["speaker"] if "speaker" in item else None, } if "text" in item: text = item["text"] if self.text_normalizer is not None: text = self.text_normalizer_call(text, **self.text_normalizer_call_args) text_tokens = self.text_tokenizer(text) file_info["raw_text"] = item["text"] file_info["text_tokens"] = text_tokens audio_files.append(file_info) if file_info["duration"] is None: logging.info( "Not all audio files have duration information. Duration logging will be disabled." ) total_duration = None if total_duration is not None: total_duration += item["duration"] logging.info(f"Loaded dataset with {len(audio_files)} files.") if total_duration is not None: logging.info(f"Dataset contains {total_duration / 3600:.2f} hours.") if ignore_file: logging.info(f"using {ignore_file} to prune dataset.") with open(Path(ignore_file).expanduser(), "rb") as f: wavs_to_ignore = set(pickle.load(f)) pruned_duration = 0 if total_duration is not None else None pruned_items = 0 for item in audio_files: audio_path = item['audio_filepath'] audio_id = Path(audio_path).stem # Prune data according to min/max_duration & the ignore file if total_duration is not None: if (min_duration and item["duration"] < min_duration) or ( max_duration and item["duration"] > max_duration ): pruned_duration += item["duration"] pruned_items += 1 continue if ignore_file and (audio_id in wavs_to_ignore): pruned_items += 1 pruned_duration += item["duration"] wavs_to_ignore.remove(audio_id) continue self.data.append(item) logging.info(f"Pruned {pruned_items} files. Final dataset contains {len(self.data)} files") if pruned_duration is not None: logging.info( f"Pruned {pruned_duration / 3600:.2f} hours. Final dataset contains " f"{(total_duration - pruned_duration) / 3600:.2f} hours." ) self.sample_rate = sample_rate self.featurizer = WaveformFeaturizer(sample_rate=self.sample_rate) self.trim = trim self.n_fft = n_fft self.n_mels = n_mels self.lowfreq = lowfreq self.highfreq = highfreq self.window = window self.win_length = win_length or self.n_fft self.hop_length = hop_length self.hop_len = self.hop_length or self.n_fft // 4 self.fb = torch.tensor( librosa.filters.mel( self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.lowfreq, fmax=self.highfreq ), dtype=torch.float, ).unsqueeze(0) window_fn = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, }.get(self.window, None) self.stft = lambda x: torch.stft( input=x, n_fft=self.n_fft, hop_length=self.hop_len, win_length=self.win_length, window=window_fn(self.win_length, periodic=False).to(torch.float) if window_fn else None, ) for data_type in self.sup_data_types: if data_type not in VALID_SUPPLEMENTARY_DATA_TYPES: raise NotImplementedError(f"Current implementation of TTSDataset doesn't support {data_type} type.") getattr(self, f"add_{data_type.name}")(**kwargs) def add_log_mel(self, **kwargs): pass def add_durations(self, **kwargs): durs_file = kwargs.pop('durs_file') durs_type = kwargs.pop('durs_type') audio_stem2durs = torch.load(durs_file) self.durs = [] for tag in [Path(d["audio_filepath"]).stem for d in self.data]: durs = audio_stem2durs[tag] if durs_type == "aligner-based": self.durs.append(durs) else: raise NotImplementedError( f"{durs_type} duration type is not supported. Only align-based is supported at this moment." ) def add_duration_prior(self, **kwargs): self.use_beta_binomial_interpolator = kwargs.pop('use_beta_binomial_interpolator', False) if self.use_beta_binomial_interpolator: self.beta_binomial_interpolator = BetaBinomialInterpolator() def add_pitch(self, **kwargs): self.pitch_fmin = kwargs.pop("pitch_fmin", librosa.note_to_hz('C2')) self.pitch_fmax = kwargs.pop("pitch_fmax", librosa.note_to_hz('C7')) self.pitch_avg = kwargs.pop("pitch_avg", None) self.pitch_std = kwargs.pop("pitch_std", None) self.pitch_norm = kwargs.pop("pitch_norm", False) def add_energy(self, **kwargs): pass def add_speaker_id(self, **kwargs): pass def get_spec(self, audio): with torch.cuda.amp.autocast(enabled=False): spec = self.stft(audio) if spec.dtype in [torch.cfloat, torch.cdouble]: spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-9) return spec def get_log_mel(self, audio): with torch.cuda.amp.autocast(enabled=False): spec = self.get_spec(audio) mel = torch.matmul(self.fb.to(spec.dtype), spec) log_mel = torch.log(torch.clamp(mel, min=torch.finfo(mel.dtype).tiny)) return log_mel def __getitem__(self, index): sample = self.data[index] audio_stem = Path(sample["audio_filepath"]).stem features = self.featurizer.process(sample["audio_filepath"], trim=self.trim) audio, audio_length = features, torch.tensor(features.shape[0]).long() text = torch.tensor(sample["text_tokens"]).long() text_length = torch.tensor(len(sample["text_tokens"])).long() log_mel, log_mel_length = None, None if LogMel in self.sup_data_types_set: mel_path = sample["mel_filepath"] if mel_path is not None and Path(mel_path).exists(): log_mel = torch.load(mel_path) else: mel_path = Path(self.sup_data_path) / f"mel_{audio_stem}.pt" if mel_path.exists(): log_mel = torch.load(mel_path) else: log_mel = self.get_log_mel(audio) torch.save(log_mel, mel_path) log_mel = log_mel.squeeze(0) log_mel_length = torch.tensor(log_mel.shape[1]).long() durations = None if Durations in self.sup_data_types_set: durations = self.durs[index] duration_prior = None if DurationPrior in self.sup_data_types_set: if self.use_beta_binomial_interpolator: mel_len = self.get_log_mel(audio).shape[2] duration_prior = torch.from_numpy(self.beta_binomial_interpolator(mel_len, text_length.item())) else: prior_path = Path(self.sup_data_path) / f"pr_{audio_stem}.pt" if prior_path.exists(): duration_prior = torch.load(prior_path) else: mel_len = self.get_log_mel(audio).shape[2] duration_prior = beta_binomial_prior_distribution(text_length, mel_len) duration_prior = torch.from_numpy(duration_prior) torch.save(duration_prior, prior_path) pitch, pitch_length = None, None if Pitch in self.sup_data_types_set: pitch_name = ( f"{audio_stem}_pitch_pyin_" f"fmin{self.pitch_fmin}_fmax{self.pitch_fmax}_" f"fl{self.win_length}_hs{self.hop_len}.pt" ) pitch_path = Path(self.sup_data_path) / pitch_name if pitch_path.exists(): pitch = torch.load(pitch_path).float() else: pitch, _, _ = librosa.pyin( audio.numpy(), fmin=self.pitch_fmin, fmax=self.pitch_fmax, frame_length=self.win_length, sr=self.sample_rate, fill_na=0.0, ) pitch = torch.from_numpy(pitch).float() torch.save(pitch, pitch_path) if self.pitch_avg is not None and self.pitch_std is not None and self.pitch_norm: pitch -= self.pitch_avg pitch[pitch == -self.pitch_avg] = 0.0 # Zero out values that were perviously zero pitch /= self.pitch_std pitch_length = torch.tensor(len(pitch)).long() energy, energy_length = None, None if Energy in self.sup_data_types_set: energy_path = Path(self.sup_data_path) / f"{audio_stem}_energy_wl{self.win_length}_hs{self.hop_len}.pt" if energy_path.exists(): energy = torch.load(energy_path).float() else: spec = self.get_spec(audio) energy = torch.linalg.norm(spec.squeeze(0), axis=0).float() torch.save(energy, energy_path) energy_length = torch.tensor(len(energy)).long() speaker_id = None if SpeakerID in self.sup_data_types_set: speaker_id = torch.tensor(sample["speaker_id"]).long() return ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) def __len__(self): return len(self.data) def join_data(self, data_dict): result = [] for data_type in MAIN_DATA_TYPES + self.sup_data_types: result.append(data_dict[data_type.name]) if issubclass(data_type, WithLens): result.append(data_dict[f"{data_type.name}_lens"]) return tuple(result) def general_collate_fn(self, batch): ( _, audio_lengths, _, tokens_lengths, _, log_mel_lengths, durations_list, duration_priors_list, pitches, pitches_lengths, energies, energies_lengths, _, ) = zip(*batch) max_audio_len = max(audio_lengths).item() max_tokens_len = max(tokens_lengths).item() max_log_mel_len = max(log_mel_lengths) if LogMel in self.sup_data_types_set else None max_durations_len = max([len(i) for i in durations_list]) if Durations in self.sup_data_types_set else None max_pitches_len = max(pitches_lengths).item() if Pitch in self.sup_data_types_set else None max_energies_len = max(energies_lengths).item() if Energy in self.sup_data_types_set else None if LogMel in self.sup_data_types_set: log_mel_pad = torch.finfo(batch[0][2].dtype).tiny duration_priors = ( torch.zeros( len(duration_priors_list), max([prior_i.shape[0] for prior_i in duration_priors_list]), max([prior_i.shape[1] for prior_i in duration_priors_list]), ) if DurationPrior in self.sup_data_types_set else [] ) audios, tokens, log_mels, durations_list, pitches, energies, speaker_ids = [], [], [], [], [], [], [] for i, sample_tuple in enumerate(batch): ( audio, audio_len, token, token_len, log_mel, log_mel_len, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) = sample_tuple audio = general_padding(audio, audio_len.item(), max_audio_len) audios.append(audio) token = general_padding(token, token_len.item(), max_tokens_len, pad_value=self.text_tokenizer_pad_id) tokens.append(token) if LogMel in self.sup_data_types_set: log_mels.append(general_padding(log_mel, log_mel_len, max_log_mel_len, pad_value=log_mel_pad)) if Durations in self.sup_data_types_set: durations_list.append(general_padding(durations, len(durations), max_durations_len)) if DurationPrior in self.sup_data_types_set: duration_priors[i, : duration_prior.shape[0], : duration_prior.shape[1]] = duration_prior if Pitch in self.sup_data_types_set: pitches.append(general_padding(pitch, pitch_length.item(), max_pitches_len)) if Energy in self.sup_data_types_set: energies.append(general_padding(energy, energy_length.item(), max_energies_len)) if SpeakerID in self.sup_data_types_set: speaker_ids.append(speaker_id) data_dict = { "audio": torch.stack(audios), "audio_lens": torch.stack(audio_lengths), "text": torch.stack(tokens), "text_lens": torch.stack(tokens_lengths), "log_mel": torch.stack(log_mels) if LogMel in self.sup_data_types_set else None, "log_mel_lens": torch.stack(log_mel_lengths) if LogMel in self.sup_data_types_set else None, "durations": torch.stack(durations_list) if Durations in self.sup_data_types_set else None, "duration_prior": duration_priors if DurationPrior in self.sup_data_types_set else None, "pitch": torch.stack(pitches) if Pitch in self.sup_data_types_set else None, "pitch_lens": torch.stack(pitches_lengths) if Pitch in self.sup_data_types_set else None, "energy": torch.stack(energies) if Energy in self.sup_data_types_set else None, "energy_lens": torch.stack(energies_lengths) if Energy in self.sup_data_types_set else None, "speaker_id": torch.stack(speaker_ids) if SpeakerID in self.sup_data_types_set else None, } return data_dict def _collate_fn(self, batch): data_dict = self.general_collate_fn(batch) joined_data = self.join_data(data_dict) return joined_data class MixerTTSDataset(TTSDataset): def __init__(self, **kwargs): super().__init__(**kwargs) def _albert(self): from transformers import AlbertTokenizer # noqa pylint: disable=import-outside-toplevel self.lm_model_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') self.lm_padding_value = self.lm_model_tokenizer._convert_token_to_id('<pad>') space_value = self.lm_model_tokenizer._convert_token_to_id('▁') self.id2lm_tokens = {} for i, d in enumerate(self.data): raw_text = d["raw_text"] assert isinstance(self.text_tokenizer, EnglishPhonemesTokenizer) or isinstance( self.text_tokenizer, EnglishCharsTokenizer ) preprocess_text_as_tts_input = self.text_tokenizer.text_preprocessing_func(raw_text) lm_tokens_as_ids = self.lm_model_tokenizer.encode(preprocess_text_as_tts_input, add_special_tokens=False) if self.text_tokenizer.pad_with_space: lm_tokens_as_ids = [space_value] + lm_tokens_as_ids + [space_value] self.id2lm_tokens[i] = lm_tokens_as_ids def add_lm_tokens(self, **kwargs): lm_model = kwargs.pop('lm_model') if lm_model == "albert": self._albert() else: raise NotImplementedError( f"{lm_model} lm model is not supported. Only albert is supported at this moment." ) def __getitem__(self, index): ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, ) = super().__getitem__(index) lm_tokens = None if LMTokens in self.sup_data_types_set: lm_tokens = torch.tensor(self.id2lm_tokens[index]).long() return ( audio, audio_length, text, text_length, log_mel, log_mel_length, durations, duration_prior, pitch, pitch_length, energy, energy_length, speaker_id, lm_tokens, ) def _collate_fn(self, batch): batch = list(zip(*batch)) data_dict = self.general_collate_fn(list(zip(*batch[:13]))) lm_tokens_list = batch[13] if LMTokens in self.sup_data_types_set: lm_tokens = torch.full( (len(lm_tokens_list), max([lm_tokens.shape[0] for lm_tokens in lm_tokens_list])), fill_value=self.lm_padding_value, ) for i, lm_tokens_i in enumerate(lm_tokens_list): lm_tokens[i, : lm_tokens_i.shape[0]] = lm_tokens_i data_dict[LMTokens.name] = lm_tokens joined_data = self.join_data(data_dict) return joined_data
en
0.769194
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Dataset that loads main data types (audio and text) and specified supplementary data types (e.g. log mel, durations, pitch). Most supplementary data types will be computed on the fly and saved in the supplementary_folder if they did not exist before. Arguments for supplementary data should be also specified in this class and they will be used from kwargs (see keyword args section). Args: manifest_filepath (str, Path, List[str, Path]): Path(s) to the .json manifests containing information on the dataset. Each line in the .json file should be valid json. Note: the .json file itself is not valid json. Each line should contain the following: "audio_filepath": <PATH_TO_WAV> "mel_filepath": <PATH_TO_LOG_MEL_PT> (Optional) "duration": <Duration of audio clip in seconds> (Optional) "text": <THE_TRANSCRIPT> (Optional) sample_rate (int): The sample rate of the audio. Or the sample rate that we will resample all files to. text_tokenizer (Optional[Union[BaseTokenizer, Callable[[str], List[int]]]]): BaseTokenizer or callable which represents text tokenizer. tokens (Optional[List[str]]): Tokens from text_tokenizer. Should be specified if text_tokenizer is not BaseTokenizer. text_normalizer (Optional[Union[Normalizer, Callable[[str], str]]]): Normalizer or callable which represents text normalizer. text_normalizer_call_args (Optional[Dict]): Additional arguments for text_normalizer function. text_tokenizer_pad_id (Optional[int]): Index of padding. Should be specified if text_tokenizer is not BaseTokenizer. sup_data_types (Optional[List[str]]): List of supplementary data types. sup_data_path (Optional[Union[Path, str]]): A folder that contains or will contain supplementary data (e.g. pitch). max_duration (Optional[float]): Max duration of audio clips in seconds. All samples exceeding this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. min_duration (Optional[float]): Min duration of audio clips in seconds. All samples lower than this will be pruned prior to training. Note: Requires "duration" to be set in the manifest file. It does not load audio to compute duration. Defaults to None which does not prune. ignore_file (Optional[str, Path]): The location of a pickle-saved list of audio_ids (the stem of the audio files) that will be pruned prior to training. Defaults to None which does not prune. trim (Optional[bool]): Whether to apply librosa.effects.trim to the audio file. Defaults to False. n_fft (Optional[int]): The number of fft samples. Defaults to 1024 win_length (Optional[int]): The length of the stft windows. Defaults to None which uses n_fft. hop_length (Optional[int]): The hope length between fft computations. Defaults to None which uses n_fft//4. window (Optional[str]): One of 'hann', 'hamming', 'blackman','bartlett', 'none'. Which corresponds to the equivalent torch window function. n_mels (Optional[int]): The number of mel filters. Defaults to 80. lowfreq (Optional[int]): The lowfreq input to the mel filter calculation. Defaults to 0. highfreq (Optional[int]): The highfreq input to the mel filter calculation. Defaults to None. Keyword Args: durs_file (Optional[str]): String path to pickled durations location. durs_type (Optional[str]): Type of durations. Currently supported only "aligned-based". use_beta_binomial_interpolator (Optional[bool]): Whether to use beta-binomial interpolator. Defaults to False. pitch_fmin (Optional[float]): The fmin input to librosa.pyin. Defaults to librosa.note_to_hz('C2'). pitch_fmax (Optional[float]): The fmax input to librosa.pyin. Defaults to librosa.note_to_hz('C7'). pitch_avg (Optional[float]): The mean that we use to normalize the pitch. pitch_std (Optional[float]): The std that we use to normalize the pitch. pitch_norm (Optional[bool]): Whether to normalize pitch (via pitch_avg and pitch_std) or not. # Prune data according to min/max_duration & the ignore file # Zero out values that were perviously zero # noqa pylint: disable=import-outside-toplevel
1.519666
2
anmotordesign/server.py
MarkWengSTR/ansys-maxwell-online
8
8089
from flask import Flask, request, jsonify from flask_cors import CORS from run import run_ansys from api.validate import spec_present, data_type_validate, spec_keys_validate, ansys_overload_check ansys_processing_count = 0 # debug # import ipdb; ipdb.set_trace() app = Flask(__name__) CORS(app) # local development cors @app.route('/run_simu', methods=["POST"]) def run_simulation(): global ansys_processing_count ansys_processing_count += 1 ctx = { "request": request.get_json(), "allow_run": True, "process": { "limit": 4, "count": ansys_processing_count, }, "start_run_response": {"msg": "start run at background"}, "error": { "validate": {"msg": ""} } } if spec_present(ctx) and \ data_type_validate(ctx) and \ spec_keys_validate(ctx) and \ ansys_overload_check(ctx): ctx = run_ansys(self.ctx) else: return jsonify(ctx["error"]["validate"]) return jsonify(ctx["response"]) if __name__ == "__main__": app.run(host='0.0.0.0', port=5000, debug=True)
from flask import Flask, request, jsonify from flask_cors import CORS from run import run_ansys from api.validate import spec_present, data_type_validate, spec_keys_validate, ansys_overload_check ansys_processing_count = 0 # debug # import ipdb; ipdb.set_trace() app = Flask(__name__) CORS(app) # local development cors @app.route('/run_simu', methods=["POST"]) def run_simulation(): global ansys_processing_count ansys_processing_count += 1 ctx = { "request": request.get_json(), "allow_run": True, "process": { "limit": 4, "count": ansys_processing_count, }, "start_run_response": {"msg": "start run at background"}, "error": { "validate": {"msg": ""} } } if spec_present(ctx) and \ data_type_validate(ctx) and \ spec_keys_validate(ctx) and \ ansys_overload_check(ctx): ctx = run_ansys(self.ctx) else: return jsonify(ctx["error"]["validate"]) return jsonify(ctx["response"]) if __name__ == "__main__": app.run(host='0.0.0.0', port=5000, debug=True)
en
0.341183
# debug # import ipdb; ipdb.set_trace() # local development cors
2.527788
3
cnn/donas_utils/dataset/__init__.py
eric8607242/darts
0
8090
<reponame>eric8607242/darts from .dataset import get_cifar100, get_cifar10, get_imagenet_lmdb, get_imagenet __all__ = ["get_cifar100", "get_cifar10", "get_imagenet_lmdb", "get_imagenet"]
from .dataset import get_cifar100, get_cifar10, get_imagenet_lmdb, get_imagenet __all__ = ["get_cifar100", "get_cifar10", "get_imagenet_lmdb", "get_imagenet"]
none
1
1.200992
1
classifier/cross_validation.py
ahmdrz/spam-classifier
1
8091
<gh_stars>1-10 from sklearn.model_selection import KFold def kfold_cross_validation(data, k=10): kfold = KFold(n_splits=k) for train, test in kfold.split(data): yield data[train], data[test]
from sklearn.model_selection import KFold def kfold_cross_validation(data, k=10): kfold = KFold(n_splits=k) for train, test in kfold.split(data): yield data[train], data[test]
none
1
2.728278
3
category/models.py
captainxavier/AutoBlog
0
8092
from django.db import models class Category(models.Model): title = models.CharField(max_length=20) class Meta: db_table = 'category' verbose_name = ("Category") verbose_name_plural = ("Categories") def __str__(self): return self.title
from django.db import models class Category(models.Model): title = models.CharField(max_length=20) class Meta: db_table = 'category' verbose_name = ("Category") verbose_name_plural = ("Categories") def __str__(self): return self.title
none
1
2.350949
2
admin_tools/urls.py
aucoeur/WeVoteServer
44
8093
# admin_tools/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.conf.urls import re_path from . import views urlpatterns = [ re_path(r'^$', views.admin_home_view, name='admin_home',), re_path(r'^data_cleanup/$', views.data_cleanup_view, name='data_cleanup'), re_path(r'^data_cleanup_organization_analysis/$', views.data_cleanup_organization_analysis_view, name='data_cleanup_organization_analysis'), re_path(r'^data_cleanup_organization_list_analysis/$', views.data_cleanup_organization_list_analysis_view, name='data_cleanup_organization_list_analysis'), re_path(r'^data_cleanup_position_list_analysis/$', views.data_cleanup_position_list_analysis_view, name='data_cleanup_position_list_analysis'), re_path(r'^data_cleanup_voter_hanging_data_process/$', views.data_cleanup_voter_hanging_data_process_view, name='data_cleanup_voter_hanging_data_process'), re_path(r'^data_cleanup_voter_list_analysis/$', views.data_cleanup_voter_list_analysis_view, name='data_cleanup_voter_list_analysis'), re_path(r'^data_voter_statistics/$', views.data_voter_statistics_view, name='data_voter_statistics'), re_path(r'^import_sample_data/$', views.import_sample_data_view, name='import_sample_data'), re_path(r'^statistics/$', views.statistics_summary_view, name='statistics_summary'), re_path(r'^sync_dashboard/$', views.sync_data_with_master_servers_view, name='sync_dashboard'), ]
# admin_tools/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.conf.urls import re_path from . import views urlpatterns = [ re_path(r'^$', views.admin_home_view, name='admin_home',), re_path(r'^data_cleanup/$', views.data_cleanup_view, name='data_cleanup'), re_path(r'^data_cleanup_organization_analysis/$', views.data_cleanup_organization_analysis_view, name='data_cleanup_organization_analysis'), re_path(r'^data_cleanup_organization_list_analysis/$', views.data_cleanup_organization_list_analysis_view, name='data_cleanup_organization_list_analysis'), re_path(r'^data_cleanup_position_list_analysis/$', views.data_cleanup_position_list_analysis_view, name='data_cleanup_position_list_analysis'), re_path(r'^data_cleanup_voter_hanging_data_process/$', views.data_cleanup_voter_hanging_data_process_view, name='data_cleanup_voter_hanging_data_process'), re_path(r'^data_cleanup_voter_list_analysis/$', views.data_cleanup_voter_list_analysis_view, name='data_cleanup_voter_list_analysis'), re_path(r'^data_voter_statistics/$', views.data_voter_statistics_view, name='data_voter_statistics'), re_path(r'^import_sample_data/$', views.import_sample_data_view, name='import_sample_data'), re_path(r'^statistics/$', views.statistics_summary_view, name='statistics_summary'), re_path(r'^sync_dashboard/$', views.sync_data_with_master_servers_view, name='sync_dashboard'), ]
en
0.869473
# admin_tools/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*-
1.65709
2
hippynn/graphs/nodes/base/multi.py
tautomer/hippynn
21
8094
""" A base node that provides several output tensors. """ from ....layers.algebra import Idx from .base import SingleNode, Node from .. import _debprint from ...indextypes import IdxType class IndexNode(SingleNode): _input_names = ("parent",) def __init__(self, name, parents, index, index_state=None): if len(parents) != 1: raise TypeError("Index node takes exactly one parent.") par = parents[0] iname = par._output_names[index] if hasattr(par, "_output_names") else "<{index}>".format(index=index) repr_info = {"parent_name": par.name, "index": iname} module = Idx(index, repr_info=repr_info) self.index = index self._index_state = IdxType.NotFound if index_state is None else index_state super().__init__(name, parents, module=module) class MultiNode(Node): # Multinode _output_names = NotImplemented _output_index_states = NotImplemented # optional? _main_output = NotImplemented def __init__(self, name, parents, module="auto", *args, db_name=None, **kwargs): super().__init__(name, parents, *args, module=module, **kwargs) self.children = tuple( IndexNode(name + "." + cn, (self,), index=i, index_state=cidx) for i, (cn, cidx) in enumerate(zip(self._output_names, self._output_index_states)) ) self.main_output.db_name = db_name def set_dbname(self, db_name): self.main_output.set_dbname(db_name) def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) # Enforce _child_index_states has same length as _output_names if cls._output_index_states is not NotImplemented: if len(cls._output_index_states) != len(cls._output_names): raise AssertionError( "Lengths of _child_index_states {} doesn't match lengths of ouput_names {}".format( cls._output_index_states, cls._output_names ) ) # Enforce no name conflict between input names and output names if cls._input_names is not NotImplemented: try: assert all(o not in cls._input_names for o in cls._output_names) except AssertionError as ae: raise ValueError( "Multi-node output names {} conflict with input names {}".format( cls._output_names, cls._input_names ) ) from ae def __dir__(self): dir_ = super().__dir__() if self._output_names is not NotImplemented: dir_ = dir_ + list(self._output_names) return dir_ def __getattr__(self, item): if item in ("children", "_output_names"): # Guard against recursion raise AttributeError("Attribute {} not yet present.".format(item)) try: return super().__getattr__(item) # Defer to BaseNode first except AttributeError: pass try: return self.children[self._output_names.index(item)] except (AttributeError, ValueError): raise AttributeError("{} object has no attribute '{}'".format(self.__class__, item)) @property def main_output(self): if self._main_output is NotImplemented: return super().main_output return getattr(self, self._main_output)
""" A base node that provides several output tensors. """ from ....layers.algebra import Idx from .base import SingleNode, Node from .. import _debprint from ...indextypes import IdxType class IndexNode(SingleNode): _input_names = ("parent",) def __init__(self, name, parents, index, index_state=None): if len(parents) != 1: raise TypeError("Index node takes exactly one parent.") par = parents[0] iname = par._output_names[index] if hasattr(par, "_output_names") else "<{index}>".format(index=index) repr_info = {"parent_name": par.name, "index": iname} module = Idx(index, repr_info=repr_info) self.index = index self._index_state = IdxType.NotFound if index_state is None else index_state super().__init__(name, parents, module=module) class MultiNode(Node): # Multinode _output_names = NotImplemented _output_index_states = NotImplemented # optional? _main_output = NotImplemented def __init__(self, name, parents, module="auto", *args, db_name=None, **kwargs): super().__init__(name, parents, *args, module=module, **kwargs) self.children = tuple( IndexNode(name + "." + cn, (self,), index=i, index_state=cidx) for i, (cn, cidx) in enumerate(zip(self._output_names, self._output_index_states)) ) self.main_output.db_name = db_name def set_dbname(self, db_name): self.main_output.set_dbname(db_name) def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) # Enforce _child_index_states has same length as _output_names if cls._output_index_states is not NotImplemented: if len(cls._output_index_states) != len(cls._output_names): raise AssertionError( "Lengths of _child_index_states {} doesn't match lengths of ouput_names {}".format( cls._output_index_states, cls._output_names ) ) # Enforce no name conflict between input names and output names if cls._input_names is not NotImplemented: try: assert all(o not in cls._input_names for o in cls._output_names) except AssertionError as ae: raise ValueError( "Multi-node output names {} conflict with input names {}".format( cls._output_names, cls._input_names ) ) from ae def __dir__(self): dir_ = super().__dir__() if self._output_names is not NotImplemented: dir_ = dir_ + list(self._output_names) return dir_ def __getattr__(self, item): if item in ("children", "_output_names"): # Guard against recursion raise AttributeError("Attribute {} not yet present.".format(item)) try: return super().__getattr__(item) # Defer to BaseNode first except AttributeError: pass try: return self.children[self._output_names.index(item)] except (AttributeError, ValueError): raise AttributeError("{} object has no attribute '{}'".format(self.__class__, item)) @property def main_output(self): if self._main_output is NotImplemented: return super().main_output return getattr(self, self._main_output)
en
0.850411
A base node that provides several output tensors. # Multinode # optional? # Enforce _child_index_states has same length as _output_names # Enforce no name conflict between input names and output names # Guard against recursion # Defer to BaseNode first
2.425441
2
main_module/__init__.py
JohanNicander/python-test-architecture
0
8095
from .zero import zero from main_module._unittester import UnitTester test = UnitTester(__name__) del UnitTester
from .zero import zero from main_module._unittester import UnitTester test = UnitTester(__name__) del UnitTester
none
1
1.329398
1
barber/cutter.py
LSSTDESC/barber
0
8096
import numpy as np import numpy.random as npr import scipy.optimize as spo import tomo_challenge.metrics as tcm # custom data type, could be replaced with/tie in to tree.py class # cut_vals is (nfeat, nbins - 1) numpy array, float # tree_ids is ((nbins,) * nfeat) numpy array, int TreePars = namedtuple('TreePars', ['cut_vals', 'tree_ids']) # should maybe put this function in a class so we can call TreePars.to_array def treepars_to_array(treepars): """ Flattens cut_vals and tree_ids for optimizer """ cuts = np.flatten(treepars.cut_vals) ids = np.flatten(treepars.tree_ids) arr = np.concatenate((cuts, ids)) return(arr) # should maybe put this function in a class so we can call TreePars.from_array def array_to_treepars(arr): """ Converts optimizer format of 1D array back into namedtuple of arrays """ flat_cuts = arr[type(arr) == float] flat_ids = arr[type(arr) == int] nbins = len(np.unique(flat_ids)) nfeat = len(flat_cuts) / (nbins - 1) # maybe do some assert checks with these just in case types have problems # cuts = arr[0:nfeat*(nbins-1)].reshape((nfeat, nbins-1)) # ids = arr[feat*(nbins-1):].reshape((nbins,) * nfeat) cuts = flat_cuts.reshape((nfeat, nbins-1)) ids = flat_ids.reshape((nbins,) * nfeat) treepars = TreePars(cuts, ids) return(treepars) def get_cuts(galaxies, ival_treepars=None, nbins=3): """ Obtains simplest possible bin definitions: cuts in the space of observables given number of bins Parameters ---------- galaxies: numpy.ndarray, float observables (magnitudes and/or colors and/or errors) to serve as features for set of galaxies shape(galaxies) = (ngals, nfeat) ival_treepars: namedtuple, numpy.ndarray, float and int, optional initial values for decision tree parameters shape(ivals.cut_vals) = (nfeat, (nbins - 1)) shape(tree_ids) = ((nbins,) * nfeat) nbins: int, optional number of bins for which to obtain cuts Returns ------- assignments: numpy.ndarray, int bin assignment for each galaxy shape(assignments) = (ngals, 1) Notes ----- `sort_gals` does the heavy lifting. `eval_metric` will call one of the metrics from [tomo_challenge](https://github.com/LSSTDESC/tomo_challenge/blob/master/tomo_challenge/metrics.py). The original idea for a general, non-cut-based optimizer was to have parameters equal to the (ngals) length array of ints representing the bin assignments, but that's not necessary for the simple cut-and-sweep barber and would probably break `spo.minimize`. """ (ngals, nfeat) = np.shape(galaxies) if ival_treepars is None: cut_ivals = np.quantile(galaxies, np.linspace(0., 1., nbins), axis=1) assert(len(np.flatten(ivals)) == nbins**nfeat) # need structure and way of making dumb version of these tree_ids = npr.random_integers(0, nbins, nbins**nfeat) assert(len(np.unique(tree_ids)) == nbins) tree_ids.reshape((nfeat, nbins)) ival_treepars = TreePars(cut_ivals, tree_ids) ivals = treepars_to_array(ival_treepars) opt_res = spo.minimize(eval_metric, ivals, args=galaxies) treepars = array_to_treepars(opt_res.x) assignments = sort_gals(galaxies, treepars) return(assignments) def sort_gals(galaxies, tree_pars): """ Divides available galaxies into subsets according to a given decision tree on their observables Parameters ---------- galaxies: nfeature x n_gal array tree: tree object Notes ----- could be based on bisect, or maybe a sklearn object? """ pass def eval_metric(arr, galaxies): """ Just calls a metric from tomo_challenge wrapped for the `spo.minimize` API Notes ----- Replace `tcm.metric` with actual call to one of the tomo_challenge metrics Actually, there's a problem in that the current tomo_challenge metrics require the true redshifts... """ treepars = array_to_treepars(arr) assignments = sort_gals(galaxies, treepars) metval = tcm.metric(assignments) return metval
import numpy as np import numpy.random as npr import scipy.optimize as spo import tomo_challenge.metrics as tcm # custom data type, could be replaced with/tie in to tree.py class # cut_vals is (nfeat, nbins - 1) numpy array, float # tree_ids is ((nbins,) * nfeat) numpy array, int TreePars = namedtuple('TreePars', ['cut_vals', 'tree_ids']) # should maybe put this function in a class so we can call TreePars.to_array def treepars_to_array(treepars): """ Flattens cut_vals and tree_ids for optimizer """ cuts = np.flatten(treepars.cut_vals) ids = np.flatten(treepars.tree_ids) arr = np.concatenate((cuts, ids)) return(arr) # should maybe put this function in a class so we can call TreePars.from_array def array_to_treepars(arr): """ Converts optimizer format of 1D array back into namedtuple of arrays """ flat_cuts = arr[type(arr) == float] flat_ids = arr[type(arr) == int] nbins = len(np.unique(flat_ids)) nfeat = len(flat_cuts) / (nbins - 1) # maybe do some assert checks with these just in case types have problems # cuts = arr[0:nfeat*(nbins-1)].reshape((nfeat, nbins-1)) # ids = arr[feat*(nbins-1):].reshape((nbins,) * nfeat) cuts = flat_cuts.reshape((nfeat, nbins-1)) ids = flat_ids.reshape((nbins,) * nfeat) treepars = TreePars(cuts, ids) return(treepars) def get_cuts(galaxies, ival_treepars=None, nbins=3): """ Obtains simplest possible bin definitions: cuts in the space of observables given number of bins Parameters ---------- galaxies: numpy.ndarray, float observables (magnitudes and/or colors and/or errors) to serve as features for set of galaxies shape(galaxies) = (ngals, nfeat) ival_treepars: namedtuple, numpy.ndarray, float and int, optional initial values for decision tree parameters shape(ivals.cut_vals) = (nfeat, (nbins - 1)) shape(tree_ids) = ((nbins,) * nfeat) nbins: int, optional number of bins for which to obtain cuts Returns ------- assignments: numpy.ndarray, int bin assignment for each galaxy shape(assignments) = (ngals, 1) Notes ----- `sort_gals` does the heavy lifting. `eval_metric` will call one of the metrics from [tomo_challenge](https://github.com/LSSTDESC/tomo_challenge/blob/master/tomo_challenge/metrics.py). The original idea for a general, non-cut-based optimizer was to have parameters equal to the (ngals) length array of ints representing the bin assignments, but that's not necessary for the simple cut-and-sweep barber and would probably break `spo.minimize`. """ (ngals, nfeat) = np.shape(galaxies) if ival_treepars is None: cut_ivals = np.quantile(galaxies, np.linspace(0., 1., nbins), axis=1) assert(len(np.flatten(ivals)) == nbins**nfeat) # need structure and way of making dumb version of these tree_ids = npr.random_integers(0, nbins, nbins**nfeat) assert(len(np.unique(tree_ids)) == nbins) tree_ids.reshape((nfeat, nbins)) ival_treepars = TreePars(cut_ivals, tree_ids) ivals = treepars_to_array(ival_treepars) opt_res = spo.minimize(eval_metric, ivals, args=galaxies) treepars = array_to_treepars(opt_res.x) assignments = sort_gals(galaxies, treepars) return(assignments) def sort_gals(galaxies, tree_pars): """ Divides available galaxies into subsets according to a given decision tree on their observables Parameters ---------- galaxies: nfeature x n_gal array tree: tree object Notes ----- could be based on bisect, or maybe a sklearn object? """ pass def eval_metric(arr, galaxies): """ Just calls a metric from tomo_challenge wrapped for the `spo.minimize` API Notes ----- Replace `tcm.metric` with actual call to one of the tomo_challenge metrics Actually, there's a problem in that the current tomo_challenge metrics require the true redshifts... """ treepars = array_to_treepars(arr) assignments = sort_gals(galaxies, treepars) metval = tcm.metric(assignments) return metval
en
0.788979
# custom data type, could be replaced with/tie in to tree.py class # cut_vals is (nfeat, nbins - 1) numpy array, float # tree_ids is ((nbins,) * nfeat) numpy array, int # should maybe put this function in a class so we can call TreePars.to_array Flattens cut_vals and tree_ids for optimizer # should maybe put this function in a class so we can call TreePars.from_array Converts optimizer format of 1D array back into namedtuple of arrays # maybe do some assert checks with these just in case types have problems # cuts = arr[0:nfeat*(nbins-1)].reshape((nfeat, nbins-1)) # ids = arr[feat*(nbins-1):].reshape((nbins,) * nfeat) Obtains simplest possible bin definitions: cuts in the space of observables given number of bins Parameters ---------- galaxies: numpy.ndarray, float observables (magnitudes and/or colors and/or errors) to serve as features for set of galaxies shape(galaxies) = (ngals, nfeat) ival_treepars: namedtuple, numpy.ndarray, float and int, optional initial values for decision tree parameters shape(ivals.cut_vals) = (nfeat, (nbins - 1)) shape(tree_ids) = ((nbins,) * nfeat) nbins: int, optional number of bins for which to obtain cuts Returns ------- assignments: numpy.ndarray, int bin assignment for each galaxy shape(assignments) = (ngals, 1) Notes ----- `sort_gals` does the heavy lifting. `eval_metric` will call one of the metrics from [tomo_challenge](https://github.com/LSSTDESC/tomo_challenge/blob/master/tomo_challenge/metrics.py). The original idea for a general, non-cut-based optimizer was to have parameters equal to the (ngals) length array of ints representing the bin assignments, but that's not necessary for the simple cut-and-sweep barber and would probably break `spo.minimize`. # need structure and way of making dumb version of these Divides available galaxies into subsets according to a given decision tree on their observables Parameters ---------- galaxies: nfeature x n_gal array tree: tree object Notes ----- could be based on bisect, or maybe a sklearn object? Just calls a metric from tomo_challenge wrapped for the `spo.minimize` API Notes ----- Replace `tcm.metric` with actual call to one of the tomo_challenge metrics Actually, there's a problem in that the current tomo_challenge metrics require the true redshifts...
2.460058
2
examples/transfer/highscore.py
coding-world/matrix_max7219
0
8097
<filename>examples/transfer/highscore.py import shelve regal = shelve.open('score.txt') def updateScore(neuerScore): if('score' in regal): score = regal['score'] if(neuerScore not in score): score.insert(0, neuerScore) score.sort() ranking = score.index(neuerScore) ranking = len(score)-ranking else: score = [neuerScore] ranking = 1 print(score) print(ranking) regal['score'] = score return ranking neuerScore = int(input("Neuer HighScore: \n")) updateScore(neuerScore)
<filename>examples/transfer/highscore.py import shelve regal = shelve.open('score.txt') def updateScore(neuerScore): if('score' in regal): score = regal['score'] if(neuerScore not in score): score.insert(0, neuerScore) score.sort() ranking = score.index(neuerScore) ranking = len(score)-ranking else: score = [neuerScore] ranking = 1 print(score) print(ranking) regal['score'] = score return ranking neuerScore = int(input("Neuer HighScore: \n")) updateScore(neuerScore)
none
1
3.386168
3
src/node/ext/ldap/scope.py
enfold/node.ext.ldap
3
8098
<reponame>enfold/node.ext.ldap<gh_stars>1-10 # -*- coding: utf-8 -*- import ldap BASE = ldap.SCOPE_BASE ONELEVEL = ldap.SCOPE_ONELEVEL SUBTREE = ldap.SCOPE_SUBTREE SCOPES = [BASE, ONELEVEL, SUBTREE] del ldap
# -*- coding: utf-8 -*- import ldap BASE = ldap.SCOPE_BASE ONELEVEL = ldap.SCOPE_ONELEVEL SUBTREE = ldap.SCOPE_SUBTREE SCOPES = [BASE, ONELEVEL, SUBTREE] del ldap
en
0.769321
# -*- coding: utf-8 -*-
1.491237
1
urban-sound-classification/feature_merge.py
tensorflow-korea/tfk-notebooks
50
8099
import glob import numpy as np X = np.empty((0, 193)) y = np.empty((0, 10)) groups = np.empty((0, 1)) npz_files = glob.glob('./urban_sound_?.npz') for fn in npz_files: print(fn) data = np.load(fn) X = np.append(X, data['X'], axis=0) y = np.append(y, data['y'], axis=0) groups = np.append(groups, data['groups'], axis=0) print(groups[groups>0]) print(X.shape, y.shape) for r in y: if np.sum(r) > 1.5: print(r) np.savez('urban_sound', X=X, y=y, groups=groups)
import glob import numpy as np X = np.empty((0, 193)) y = np.empty((0, 10)) groups = np.empty((0, 1)) npz_files = glob.glob('./urban_sound_?.npz') for fn in npz_files: print(fn) data = np.load(fn) X = np.append(X, data['X'], axis=0) y = np.append(y, data['y'], axis=0) groups = np.append(groups, data['groups'], axis=0) print(groups[groups>0]) print(X.shape, y.shape) for r in y: if np.sum(r) > 1.5: print(r) np.savez('urban_sound', X=X, y=y, groups=groups)
none
1
2.642741
3