max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
data_processing/process_xls.py
luisroel91/libdib_assesment
0
8300
import pandas as pd # Define our header col_names = [ "year", "num_males_with_income", "male_median_income_curr_dollars", "male_median_income_2019_dollars", "num_females_with_income", "female_median_income_curr_dollars", "female_median_income_2019_dollars", ] # Load Asian census data XLS, skipping all headers dfa = pd.read_excel( r'p08a.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define col names names=col_names, ) # Load White census data XLS, skipping all headers dfw = pd.read_excel( r'p08w.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define cold names names=col_names ) # Splinter off rows into age group DFs for both sets of data dfa1524 = dfa.iloc[:20] dfa2534 = dfa.iloc[25:45] dfa3544 = dfa.iloc[50:70] dfa4554 = dfa.iloc[75:95] dfa5564 = dfa.iloc[100:120] dfa6574 = dfa.iloc[125:145] dfa75 = dfa.iloc[150:170] dfw1524 = dfw.iloc[:20] dfw2534 = dfw.iloc[25:45] dfw3544 = dfw.iloc[50:70] dfw4554 = dfw.iloc[75:95] dfw5564 = dfw.iloc[100:120] dfw6574 = dfw.iloc[125:145] dfw75 = dfw.iloc[150:170] # Add Age Range col to each DF dfa1524.insert(0, 'age_range', '15-24') dfa2534.insert(0, 'age_range', '25-34') dfa3544.insert(0, 'age_range', '35-44') dfa4554.insert(0, 'age_range', '45-54') dfa5564.insert(0, 'age_range', '55-64') dfa6574.insert(0, 'age_range', '65-74') dfa75.insert(0, 'age_range', 'Over 75') dfw1524.insert(0, 'age_range', '15-24') dfw2534.insert(0, 'age_range', '25-34') dfw3544.insert(0, 'age_range', '35-44') dfw4554.insert(0, 'age_range', '45-54') dfw5564.insert(0, 'age_range', '55-64') dfw6574.insert(0, 'age_range', '65-74') dfw75.insert(0, 'age_range', 'Over 75') # Stack cleaned DF's vertically dfa = pd.concat([ dfa1524, dfa2534, dfa3544, dfa4554, dfa5564, dfa6574, dfa75 ], axis=0) dfw = pd.concat([ dfw1524, dfw2534, dfw3544, dfw4554, dfw5564, dfw6574, dfw75 ], axis=0) # Add Race col dfa.insert(0, 'race', 'asian') dfw.insert(0, 'race', 'white') # Clean garbage chars in Year col using regex dfa['year'] = dfa['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) dfw['year'] = dfw['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) # Stack our cleaned + normalized data into a single DF df = pd.concat([ dfa, dfw ], axis=0) # Convert the DF col types to conform to our CensusRecord model df = df.astype({ "race": str, "age_range": str, "year": int, "num_males_with_income": int, "male_median_income_curr_dollars": float, "male_median_income_2019_dollars": float, "num_females_with_income": int, "female_median_income_curr_dollars": float, "female_median_income_2019_dollars": float, }) # Pickle the DF df.to_pickle("./res.pkl")
import pandas as pd # Define our header col_names = [ "year", "num_males_with_income", "male_median_income_curr_dollars", "male_median_income_2019_dollars", "num_females_with_income", "female_median_income_curr_dollars", "female_median_income_2019_dollars", ] # Load Asian census data XLS, skipping all headers dfa = pd.read_excel( r'p08a.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define col names names=col_names, ) # Load White census data XLS, skipping all headers dfw = pd.read_excel( r'p08w.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define cold names names=col_names ) # Splinter off rows into age group DFs for both sets of data dfa1524 = dfa.iloc[:20] dfa2534 = dfa.iloc[25:45] dfa3544 = dfa.iloc[50:70] dfa4554 = dfa.iloc[75:95] dfa5564 = dfa.iloc[100:120] dfa6574 = dfa.iloc[125:145] dfa75 = dfa.iloc[150:170] dfw1524 = dfw.iloc[:20] dfw2534 = dfw.iloc[25:45] dfw3544 = dfw.iloc[50:70] dfw4554 = dfw.iloc[75:95] dfw5564 = dfw.iloc[100:120] dfw6574 = dfw.iloc[125:145] dfw75 = dfw.iloc[150:170] # Add Age Range col to each DF dfa1524.insert(0, 'age_range', '15-24') dfa2534.insert(0, 'age_range', '25-34') dfa3544.insert(0, 'age_range', '35-44') dfa4554.insert(0, 'age_range', '45-54') dfa5564.insert(0, 'age_range', '55-64') dfa6574.insert(0, 'age_range', '65-74') dfa75.insert(0, 'age_range', 'Over 75') dfw1524.insert(0, 'age_range', '15-24') dfw2534.insert(0, 'age_range', '25-34') dfw3544.insert(0, 'age_range', '35-44') dfw4554.insert(0, 'age_range', '45-54') dfw5564.insert(0, 'age_range', '55-64') dfw6574.insert(0, 'age_range', '65-74') dfw75.insert(0, 'age_range', 'Over 75') # Stack cleaned DF's vertically dfa = pd.concat([ dfa1524, dfa2534, dfa3544, dfa4554, dfa5564, dfa6574, dfa75 ], axis=0) dfw = pd.concat([ dfw1524, dfw2534, dfw3544, dfw4554, dfw5564, dfw6574, dfw75 ], axis=0) # Add Race col dfa.insert(0, 'race', 'asian') dfw.insert(0, 'race', 'white') # Clean garbage chars in Year col using regex dfa['year'] = dfa['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) dfw['year'] = dfw['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) # Stack our cleaned + normalized data into a single DF df = pd.concat([ dfa, dfw ], axis=0) # Convert the DF col types to conform to our CensusRecord model df = df.astype({ "race": str, "age_range": str, "year": int, "num_males_with_income": int, "male_median_income_curr_dollars": float, "male_median_income_2019_dollars": float, "num_females_with_income": int, "female_median_income_curr_dollars": float, "female_median_income_2019_dollars": float, }) # Pickle the DF df.to_pickle("./res.pkl")
en
0.843256
# Define our header # Load Asian census data XLS, skipping all headers # Make sure PD doesn't use header row for our DF # Define col names # Load White census data XLS, skipping all headers # Make sure PD doesn't use header row for our DF # Define cold names # Splinter off rows into age group DFs for both sets of data # Add Age Range col to each DF # Stack cleaned DF's vertically # Add Race col # Clean garbage chars in Year col using regex # Stack our cleaned + normalized data into a single DF # Convert the DF col types to conform to our CensusRecord model # Pickle the DF
3.22333
3
Section_1/Exercise_16.py
Szymon-Budziak/WDI_exercises_solutions
0
8301
""" Dany jest ciąg określony wzorem: A[n+1] = (A[n] % 2) ∗ (3 ∗ A[n] + 1) + (1 − A[n] % 2) ∗ A[n] / 2. Startując z dowolnej liczby naturalnej > 1 ciąg ten osiąga wartość 1. Napisać program, który znajdzie wyraz początkowy z przedziału 2-10000 dla którego wartość 1 jest osiągalna po największej liczbie kroków. """ a0 = 2 m = 1 for a0 in range(2, 10000): n = 0 while a0 != 1: a0 = (((a0 % 2) * (3 * a0 + 1)) + ((1 - (a0 % 2)) * (a0 / 2))) n += 1 if n > m: m = n a0 += 1 print(m)
""" Dany jest ciąg określony wzorem: A[n+1] = (A[n] % 2) ∗ (3 ∗ A[n] + 1) + (1 − A[n] % 2) ∗ A[n] / 2. Startując z dowolnej liczby naturalnej > 1 ciąg ten osiąga wartość 1. Napisać program, który znajdzie wyraz początkowy z przedziału 2-10000 dla którego wartość 1 jest osiągalna po największej liczbie kroków. """ a0 = 2 m = 1 for a0 in range(2, 10000): n = 0 while a0 != 1: a0 = (((a0 % 2) * (3 * a0 + 1)) + ((1 - (a0 % 2)) * (a0 / 2))) n += 1 if n > m: m = n a0 += 1 print(m)
pl
0.998092
Dany jest ciąg określony wzorem: A[n+1] = (A[n] % 2) ∗ (3 ∗ A[n] + 1) + (1 − A[n] % 2) ∗ A[n] / 2. Startując z dowolnej liczby naturalnej > 1 ciąg ten osiąga wartość 1. Napisać program, który znajdzie wyraz początkowy z przedziału 2-10000 dla którego wartość 1 jest osiągalna po największej liczbie kroków.
3.019995
3
SysPy_ver/funcs/_var_declaration.py
evlog/SysPy
4
8302
<filename>SysPy_ver/funcs/_var_declaration.py """ ***************************************************************************** * H E A D E R I N F O R M A T I O N * * ***************************************************************************** Project Name: SysPy (System Python) http://cgi.di.uoa.gr/~evlog/syspy.html File Name: _var_declaration.py Created by: <NAME> ***************************************************************************** * C O P Y R I G H T N O T I C E * * ***************************************************************************** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License, a copy of which is available from http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***************************************************************************** * D E S C R I P T I O N * * ***************************************************************************** Variable declaration when a variable assignment is tracked. """ from pdb import * def var_declaration(assign_lines_count, token_struct, assign_lines, signals, process_vars): """ FUNCTION: var_declaration(a int, b(), c[], d[], e[]) a: assign lines counter integer b: token's tupple c: list containing the VHDL code d: list containing the signal statements e: list containing Variable declaration when a variable assignment is tracked. """ # Python's variable declerations #---------------------------------------------------------------------------------------------------------------------------------- count0 = 0 count1 = 0 process_vars_d = [] vars0 = [] var0 = '' var1 = '' #---------------------------------------------------------------------------------------------------------------------------------- print("process_vars:", process_vars) # Erasing duplicated registrations in "process_vars[]" #---------------------------------------------------------------------------------------------------------------------------------- for i in range(len(process_vars)): vars0 = [] #flag_process_vars = 0 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): var0 = process_vars[i][1].replace('=', '') var0 = var0.replace('! ', '') var0 = var0.replace('>', '') var0 = var0.replace('<', '') var0 = var0.replace(' ', '') vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_item_var"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) flag_process_vars = 0 for n in range(0, len(vars0)): for j in range(len(process_vars_d)): if ((process_vars_d[j][0] == "name_left") or (process_vars_d[j][0] == "name_right")): var1 = process_vars_d[j][1].replace('=', '') var1 = var1.replace('! ', '') var1 = var1.replace('>', '') var1 = var1.replace('<', '') var1 = var1.replace(' ', '') elif (process_vars_d[j][0] == "name_right_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_item_var"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_item_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var2"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var02"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var12"): var1 = process_vars_d[j][1] if (vars0[n] == var1): if (n == 0): flag_process_vars += 1 if (n == 1): flag_process_vars += 2 if (n == 2): flag_process_vars += 4 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 4): pass elif (process_vars[i][0] == "name_right_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_item_var"): if (flag_process_vars == 0): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass process_vars = process_vars_d #---------------------------------------------------------------------------------------------------------------------------------- j = assign_lines_count for m in range(0, len(process_vars)): if ((process_vars[m][0] == "name_left") or (process_vars[m][0] == "name_right")): t = process_vars[m][1].replace('=', '') t = t.replace(' ', '') elif (process_vars[m][0] == "name_right_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_item_var"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_item_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var2"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var02"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var12"): t = process_vars[m][1] for i in range (0, len(signals)): if (t == signals[i]['N']): if (signals[i]['D'] == 'v'): L = signals[i]['L'].__doc__ n = signals[i]['N'].__doc__ if (m == 0): sp = '' while 1: if (assign_lines[j][0] == "process_sens_list"): assign_lines[j][0] = assign_lines[j][0] + "_var" for k in range(0, assign_lines[j][4]): sp = sp + ' ' assign_lines[j][1] = assign_lines[j][1].replace("begin", '') assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "-- Variables" assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "-------------------------------------------------------------------" if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" break elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" break elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " downto " + str(signals_intr[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 break elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals_intr[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " count0 = count0 + 1 break elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_type" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_type" + str(count1) + ";\n" count1 = count1 + 1 break elif (j == 0): break j = j - 1 elif (m != 0): if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals[i]['L'][1][0]) + " downto " + str(signals[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + ", " count0 = count0 + 1 elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_typev" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_typev" + str(count1) + ";\n" count1 = count1 + 1 if (len(process_vars) > 0): assign_lines[j][1] = assign_lines[j][1] + sp + "-------------------------------------------------------------------" assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "begin\n\n"
<filename>SysPy_ver/funcs/_var_declaration.py """ ***************************************************************************** * H E A D E R I N F O R M A T I O N * * ***************************************************************************** Project Name: SysPy (System Python) http://cgi.di.uoa.gr/~evlog/syspy.html File Name: _var_declaration.py Created by: <NAME> ***************************************************************************** * C O P Y R I G H T N O T I C E * * ***************************************************************************** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License, a copy of which is available from http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***************************************************************************** * D E S C R I P T I O N * * ***************************************************************************** Variable declaration when a variable assignment is tracked. """ from pdb import * def var_declaration(assign_lines_count, token_struct, assign_lines, signals, process_vars): """ FUNCTION: var_declaration(a int, b(), c[], d[], e[]) a: assign lines counter integer b: token's tupple c: list containing the VHDL code d: list containing the signal statements e: list containing Variable declaration when a variable assignment is tracked. """ # Python's variable declerations #---------------------------------------------------------------------------------------------------------------------------------- count0 = 0 count1 = 0 process_vars_d = [] vars0 = [] var0 = '' var1 = '' #---------------------------------------------------------------------------------------------------------------------------------- print("process_vars:", process_vars) # Erasing duplicated registrations in "process_vars[]" #---------------------------------------------------------------------------------------------------------------------------------- for i in range(len(process_vars)): vars0 = [] #flag_process_vars = 0 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): var0 = process_vars[i][1].replace('=', '') var0 = var0.replace('! ', '') var0 = var0.replace('>', '') var0 = var0.replace('<', '') var0 = var0.replace(' ', '') vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_item_var"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_item_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice"): var0 = process_vars[i][1][0] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][1] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): var0 = process_vars[i][1][0] vars0.append(var0) var0 = process_vars[i][1][2] vars0.append(var0) var0 = process_vars[i][1][3] vars0.append(var0) flag_process_vars = 0 for n in range(0, len(vars0)): for j in range(len(process_vars_d)): if ((process_vars_d[j][0] == "name_left") or (process_vars_d[j][0] == "name_right")): var1 = process_vars_d[j][1].replace('=', '') var1 = var1.replace('! ', '') var1 = var1.replace('>', '') var1 = var1.replace('<', '') var1 = var1.replace(' ', '') elif (process_vars_d[j][0] == "name_right_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_item_var"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_item_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_item_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice"): var1 = process_vars_d[j][1][0] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var0"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var1"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var2"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var01"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var02"): var1 = process_vars_d[j][1] elif (process_vars_d[j][0] == "name_right_array_binary_slice_var12"): var1 = process_vars_d[j][1] if (vars0[n] == var1): if (n == 0): flag_process_vars += 1 if (n == 1): flag_process_vars += 2 if (n == 2): flag_process_vars += 4 if ((process_vars[i][0] == "name_left") or (process_vars[i][0] == "name_right")): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 4): pass elif (process_vars[i][0] == "name_right_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_item_var"): if (flag_process_vars == 0): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_item_var", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_item_var", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_item_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_item_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_item_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice"): if (flag_process_vars == 0): process_vars_d.append(process_vars[i]) elif (process_vars[i][0] == "name_right_array_binary_slice_var0"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][1]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var0", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var1"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var1", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var2"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var2", process_vars[i][1][0]]) elif (flag_process_vars == 3): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var01"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][2]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var01", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var02"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][1]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var02", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass elif (process_vars[i][0] == "name_right_array_binary_slice_var12"): if (flag_process_vars == 0): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 1): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 2): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 3): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][3]]) elif (flag_process_vars == 4): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 5): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][2]]) elif (flag_process_vars == 6): process_vars_d.append(["name_right_array_binary_slice_var12", process_vars[i][1][0]]) elif (flag_process_vars == 7): pass process_vars = process_vars_d #---------------------------------------------------------------------------------------------------------------------------------- j = assign_lines_count for m in range(0, len(process_vars)): if ((process_vars[m][0] == "name_left") or (process_vars[m][0] == "name_right")): t = process_vars[m][1].replace('=', '') t = t.replace(' ', '') elif (process_vars[m][0] == "name_right_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_item_var"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_item_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_item_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice"): t = process_vars[m][1][0] elif (process_vars[m][0] == "name_right_array_binary_slice_var0"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var1"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var2"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var01"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var02"): t = process_vars[m][1] elif (process_vars[m][0] == "name_right_array_binary_slice_var12"): t = process_vars[m][1] for i in range (0, len(signals)): if (t == signals[i]['N']): if (signals[i]['D'] == 'v'): L = signals[i]['L'].__doc__ n = signals[i]['N'].__doc__ if (m == 0): sp = '' while 1: if (assign_lines[j][0] == "process_sens_list"): assign_lines[j][0] = assign_lines[j][0] + "_var" for k in range(0, assign_lines[j][4]): sp = sp + ' ' assign_lines[j][1] = assign_lines[j][1].replace("begin", '') assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "-- Variables" assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "-------------------------------------------------------------------" if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" break elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" break elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " downto " + str(signals_intr[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 break elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type type" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "variable " + signals[i]['N'] + ": " + "type" + str(count0) + ": {" for k in range(0, (signals_intr[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " count0 = count0 + 1 break elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_type" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_type" + str(count1) + ";\n" count1 = count1 + 1 break elif (j == 0): break j = j - 1 elif (m != 0): if (signals[i]['T'] == 'b'): if (L.find("int") == 0): if (n.find("list") == 0): for k in range(len(signals_intr[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic;\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic := '" + signals[i]['V'] + "';\n" elif (L.find("list") == 0): if (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals_intr[i]['L'][0] > signals_intr[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (n.find("str") == 0): if (signals[i].has_key('V') == False): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ");\n" elif (signals[i].has_key('V') == True): if (signals[i]['L'][0] > signals[i]['L'][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " downto " + str(int(signals[i]['L'][1])) + ") := \"" + signals[i]['V'] + "\";\n" else: assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": std_logic_vector(" + str(int(signals[i]['L'][0])) + " to " + str(int(signals[i]['L'][1])) + ") := '" + signals[i]['V'] + "';\n" elif (signals[i]['T'] == "int"): if (n.find("str") == 0): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (n.find("list") == 0): for k in range(len(signals[i]['N'])): if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + ";\n" elif (signals_intr[i].has_key('V') == True): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'][k] + ": integer range " + str(signals[i]['L'][0]) + " to " + str(signals[i]['L'][1]) + " := " + str(signals[i]['V']) + ";\n" elif (signals[i]['T'] == "arrb"): if (n.find("str") == 0): if (signals[i]['L'][1][0] > signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals[i]['L'][1][0]) + " downto " + str(signals[i]['L'][1][1]) + ");\n" elif (signals[i]['L'][1][0] < signals[i]['L'][1][1]): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of std_logic_vector(" + str(signals_intr[i]['L'][1][0]) + " to " + str(signals_intr[i]['L'][1][1]) + ");\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": \"" + signals[i]['V'] + "\";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\"};\n" elif (k != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + "\"" + signals[i]['V'][k] + "\", " count0 = count0 + 1 elif (signals[i]['T'] == "arri"): if (n.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "type typev" + str(count0) + " is array (" + str(signals[i]['L'][0][0]) + " to " + str(signals[i]['L'][0][1]) + ") of integer range " + str(signals[i]['L'][1][0]) + " to " + str(signals[i]['L'][1][1]) + ";\n" if (signals[i].has_key('V') == False): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ";\n" elif (signals[i].has_key('V') == True): v = signals[i]['V'].__doc__ if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": " + str(signals[i]['V']) + ";\n" elif(v.find("list") == 0): assign_lines[j][1] = assign_lines[j][1] + sp + "variable " + signals[i]['N'] + ": " + "typev" + str(count0) + ": {" for k in range(0, (signals[i]['L'][0][1] + 1)): if (k == signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + "};\n" elif (j != signals[i]['L'][0][1]): assign_lines[j][1] = assign_lines[j][1] + str(signals[i]['V'][k]) + ", " count0 = count0 + 1 elif (signals[i]['T'] == 's'): v = signals[i]['V'].__doc__ assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "type state_typev" + str(count1) + " is (" if (v.find("str") == 0): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'] + ");\n" elif (v.find("list") == 0): for k in range(len(signals[i]['V'])): if (k == (len(signals[i]['V']) - 1)): assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ");\n" else: assign_lines[j][1] = assign_lines[j][1] + signals[i]['V'][k] + ", " assign_lines[j][1] = assign_lines[j][1] + "\n" + sp + "signal " + args[i]['N'] + ": state_typev" + str(count1) + ";\n" count1 = count1 + 1 if (len(process_vars) > 0): assign_lines[j][1] = assign_lines[j][1] + sp + "-------------------------------------------------------------------" assign_lines[j][1] = assign_lines[j][1] + "\n\n" + sp + "begin\n\n"
en
0.531553
***************************************************************************** * H E A D E R I N F O R M A T I O N * * ***************************************************************************** Project Name: SysPy (System Python) http://cgi.di.uoa.gr/~evlog/syspy.html File Name: _var_declaration.py Created by: <NAME> ***************************************************************************** * C O P Y R I G H T N O T I C E * * ***************************************************************************** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License, a copy of which is available from http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***************************************************************************** * D E S C R I P T I O N * * ***************************************************************************** Variable declaration when a variable assignment is tracked. FUNCTION: var_declaration(a int, b(), c[], d[], e[]) a: assign lines counter integer b: token's tupple c: list containing the VHDL code d: list containing the signal statements e: list containing Variable declaration when a variable assignment is tracked. # Python's variable declerations #---------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------------------------------------- # Erasing duplicated registrations in "process_vars[]" #---------------------------------------------------------------------------------------------------------------------------------- #flag_process_vars = 0 #----------------------------------------------------------------------------------------------------------------------------------
1.561566
2
Giraffe/Functions.py
MaggieIllustrations/softuni-github-programming
0
8303
def say_hi(name,age): print("Hello " + name + ", you are " + age) say_hi("Mike", "35") def cube(num): # function return num*num*num result = cube(4) # variable print(result)
def say_hi(name,age): print("Hello " + name + ", you are " + age) say_hi("Mike", "35") def cube(num): # function return num*num*num result = cube(4) # variable print(result)
en
0.193963
# function # variable
3.507782
4
airspace_surgery.py
wipfli/airspaces
1
8304
<gh_stars>1-10 import glob import json path_in = './airspaces/' path_out = './airspaces_processed/' filenames = [path.split('/')[-1] for path in glob.glob(path_in + '*')] remove = { 'france_fr.geojson': [ 314327, 314187, 314360, 314359, 314362, 314361, 314364, 314363, 314333, 314329, 314331, ], 'germany_de.geojson': [ 307563, 307638, 307639, 307640, ] } replacements = { 'france_fr.geojson': [ ['Bale10 119.35', 'Bale 10 TMA 130.9'], ['Bale1 119.35', 'Bale 1 TMA 130.9'], ['Bale2 119.35', 'Bale 2 TMA 130.9'], ['Bale3 119.35', 'Bale 3 TMA 130.9'], ['Bale4 119.35', 'Bale 4 TMA 130.9'], ['Bale5 119.35', 'Bale 5 TMA 130.9'], ['Bale5 119.35', 'Bale 5 TMA 130.9'], ['Bale6 119.35', 'Bale 6 TMA 130.9'], ['Bale7 119.35', 'Bale 7 TMA 130.9'], ['Bale8 119.35', 'Bale 8 TMA 130.9'], ['Bale9 119.35', 'Bale 9 TMA 130.9'], ['Bale AZ4T1 134.67', 'Bale T1 TMA HX 134.68'], ['Bale AZ4T2 134.67', 'Bale T2 TMA HX 134.68'], ['Bale AZ4T3 134.67', 'Bale T3 TMA HX 134.68'], ['CTR BALE', 'Bale CTR 118.3'] ], 'switzerland_ch.geojson': [ ['ZURICH 10 TMA 118.1', 'ZURICH 10 TMA 124.7'], ['ZURICH 11 TMA 118.1', 'ZURICH 11 TMA 124.7'], ['ZURICH 12 TMA 118.1', 'ZURICH 12 TMA 124.7'], ['ZURICH 13 TMA 118.1', 'ZURICH 13 TMA 124.7'], ['ZURICH 14 TMA 118.1', 'ZURICH 14 TMA HX 127.755'], ['ZURICH 15 TMA 118.1', 'ZURICH 15 TMA HX 127.755'], ['ZURICH 1 TMA 118.1', 'ZURICH 1 TMA 124.7'], ['ZURICH 2 CTR 118.1', 'ZURICH 2 CTR HX 118.975'], ['ZURICH 2 TMA 118.1', 'ZURICH 2 TMA 124.7'], ['ZURICH 3 TMA 118.1', 'ZURICH 3 TMA 124.7'], ['ZURICH 4A TMA 118.1', 'ZURICH 4A TMA 124.7'], ['ZURICH 4B TMA 118.1', 'ZURICH 4B TMA 124.7'], ['ZURICH 4C TMA 118.1', 'ZURICH 4C TMA 124.7'], ['ZURICH 5 TMA 118.1', 'ZURICH 5 TMA 124.7'], ['ZURICH 6 TMA 118.1', 'ZURICH 6 TMA 124.7'], ['ZURICH 7 TMA 118.1', 'ZURICH 7 TMA 124.7'], ['ZURICH 8 TMA 118.1', 'ZURICH 8 TMA 124.7'], ['ZURICH 9 TMA 118.1', 'ZURICH 9 TMA 124.7'], ['BERN 1 TMA 121.025', 'BERN 1 TMA HX 127.325'], ['BERN 2 TMA 121.025', 'BERN 2 TMA HX 127.325'], ['BERN CTR 121.025', 'BERN CTR HX 121.025'], ['EMMEN 1 CTR 120.425', 'EMMEN 1 CTR HX 120.425'], ['EMMEN 1 TMA 120.425', 'EMMEN 1 TMA HX 134.130'], ['EMMEN 2 CTR 120.425', 'EMMEN 2 CTR HX 120.425'], ['EMMEN 2 TMA 120.425', 'EMMEN 2 TMA HX 134.130'], ['EMMEN 3 TMA 120.425', 'EMMEN 3 TMA HX 134.130'], ['EMMEN 4 TMA 120.425', 'EMMEN 4 TMA HX 134.130'], ['EMMEN 5 TMA 120.425', 'EMMEN 5 TMA HX 134.130'], ['EMMEN 6 TMA 120.425', 'EMMEN 6 TMA HX 134.130'], ] } for filename in filenames: print(filename) with open(path_in + filename) as f: data = json.load(f) if filename in replacements: targets = [r[0] for r in replacements[filename]] for feature in data['features']: if feature['properties']['N'] in targets: print('replace ' + feature['properties']['N'] + '...') feature['properties']['N'] = next(x for x in replacements[filename] if x[0] == feature['properties']['N'])[1] if filename in remove: features_out = [f for f in data['features'] if int(f['properties']['ID']) not in remove[filename]] else: features_out = data['features'] print('removed ' + str(len(data['features']) - len(features_out)) + ' features') geojson = { 'type': 'FeatureCollection', 'features': features_out } print('write ' + filename + '...') with open(path_out + filename, 'w') as f: json.dump(geojson, f) all_features = [] for filename in filenames: print('read ' + filename + '...') with open(path_out + filename) as f: all_features += json.load(f)['features'] print('write airspaces.geojson...') with open('airspaces.geojson', 'w') as f: json.dump({ 'type': 'FeatureCollection', 'features': all_features }, f) print('done')
import glob import json path_in = './airspaces/' path_out = './airspaces_processed/' filenames = [path.split('/')[-1] for path in glob.glob(path_in + '*')] remove = { 'france_fr.geojson': [ 314327, 314187, 314360, 314359, 314362, 314361, 314364, 314363, 314333, 314329, 314331, ], 'germany_de.geojson': [ 307563, 307638, 307639, 307640, ] } replacements = { 'france_fr.geojson': [ ['Bale10 119.35', 'Bale 10 TMA 130.9'], ['Bale1 119.35', 'Bale 1 TMA 130.9'], ['Bale2 119.35', 'Bale 2 TMA 130.9'], ['Bale3 119.35', 'Bale 3 TMA 130.9'], ['Bale4 119.35', 'Bale 4 TMA 130.9'], ['Bale5 119.35', 'Bale 5 TMA 130.9'], ['Bale5 119.35', 'Bale 5 TMA 130.9'], ['Bale6 119.35', 'Bale 6 TMA 130.9'], ['Bale7 119.35', 'Bale 7 TMA 130.9'], ['Bale8 119.35', 'Bale 8 TMA 130.9'], ['Bale9 119.35', 'Bale 9 TMA 130.9'], ['Bale AZ4T1 134.67', 'Bale T1 TMA HX 134.68'], ['Bale AZ4T2 134.67', 'Bale T2 TMA HX 134.68'], ['Bale AZ4T3 134.67', 'Bale T3 TMA HX 134.68'], ['CTR BALE', 'Bale CTR 118.3'] ], 'switzerland_ch.geojson': [ ['ZURICH 10 TMA 118.1', 'ZURICH 10 TMA 124.7'], ['ZURICH 11 TMA 118.1', 'ZURICH 11 TMA 124.7'], ['ZURICH 12 TMA 118.1', 'ZURICH 12 TMA 124.7'], ['ZURICH 13 TMA 118.1', 'ZURICH 13 TMA 124.7'], ['ZURICH 14 TMA 118.1', 'ZURICH 14 TMA HX 127.755'], ['ZURICH 15 TMA 118.1', 'ZURICH 15 TMA HX 127.755'], ['ZURICH 1 TMA 118.1', 'ZURICH 1 TMA 124.7'], ['ZURICH 2 CTR 118.1', 'ZURICH 2 CTR HX 118.975'], ['ZURICH 2 TMA 118.1', 'ZURICH 2 TMA 124.7'], ['ZURICH 3 TMA 118.1', 'ZURICH 3 TMA 124.7'], ['ZURICH 4A TMA 118.1', 'ZURICH 4A TMA 124.7'], ['ZURICH 4B TMA 118.1', 'ZURICH 4B TMA 124.7'], ['ZURICH 4C TMA 118.1', 'ZURICH 4C TMA 124.7'], ['ZURICH 5 TMA 118.1', 'ZURICH 5 TMA 124.7'], ['ZURICH 6 TMA 118.1', 'ZURICH 6 TMA 124.7'], ['ZURICH 7 TMA 118.1', 'ZURICH 7 TMA 124.7'], ['ZURICH 8 TMA 118.1', 'ZURICH 8 TMA 124.7'], ['ZURICH 9 TMA 118.1', 'ZURICH 9 TMA 124.7'], ['BERN 1 TMA 121.025', 'BERN 1 TMA HX 127.325'], ['BERN 2 TMA 121.025', 'BERN 2 TMA HX 127.325'], ['BERN CTR 121.025', 'BERN CTR HX 121.025'], ['EMMEN 1 CTR 120.425', 'EMMEN 1 CTR HX 120.425'], ['EMMEN 1 TMA 120.425', 'EMMEN 1 TMA HX 134.130'], ['EMMEN 2 CTR 120.425', 'EMMEN 2 CTR HX 120.425'], ['EMMEN 2 TMA 120.425', 'EMMEN 2 TMA HX 134.130'], ['EMMEN 3 TMA 120.425', 'EMMEN 3 TMA HX 134.130'], ['EMMEN 4 TMA 120.425', 'EMMEN 4 TMA HX 134.130'], ['EMMEN 5 TMA 120.425', 'EMMEN 5 TMA HX 134.130'], ['EMMEN 6 TMA 120.425', 'EMMEN 6 TMA HX 134.130'], ] } for filename in filenames: print(filename) with open(path_in + filename) as f: data = json.load(f) if filename in replacements: targets = [r[0] for r in replacements[filename]] for feature in data['features']: if feature['properties']['N'] in targets: print('replace ' + feature['properties']['N'] + '...') feature['properties']['N'] = next(x for x in replacements[filename] if x[0] == feature['properties']['N'])[1] if filename in remove: features_out = [f for f in data['features'] if int(f['properties']['ID']) not in remove[filename]] else: features_out = data['features'] print('removed ' + str(len(data['features']) - len(features_out)) + ' features') geojson = { 'type': 'FeatureCollection', 'features': features_out } print('write ' + filename + '...') with open(path_out + filename, 'w') as f: json.dump(geojson, f) all_features = [] for filename in filenames: print('read ' + filename + '...') with open(path_out + filename) as f: all_features += json.load(f)['features'] print('write airspaces.geojson...') with open('airspaces.geojson', 'w') as f: json.dump({ 'type': 'FeatureCollection', 'features': all_features }, f) print('done')
none
1
2.387058
2
AndroidSpider/spider_main.py
lidenghong1/SmallReptileTraining
1
8305
from AndroidSpider import url_manager, html_downloader, html_parser, html_output ''' 爬取百度百科 Android 关键词相关词及简介并输出为一个HTML tab网页 Extra module: BeautifulSoup ''' class SpiderMain(object): def __init__(self): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownLoader() self.parser = html_parser.HtmlParser() self.out_put = html_output.HtmlOutput() def craw(self, root_url): count = 1 self.urls.add_new_url(root_url) while self.urls.has_new_url(): try: new_url = self.urls.get_new_url() print("craw %d : %s" % (count, new_url)) headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.100 Safari/537.36" } html_content = self.downloader.download(new_url, retry_count=2, headers=headers) new_urls, new_data = self.parser.parse(new_url, html_content, "utf-8") self.urls.add_new_urls(new_urls) self.out_put.collect_data(new_data) if count >= 30: break count = count + 1 except Exception as e: print("craw failed!\n"+str(e)) self.out_put.output_html() if __name__ == "__main__": rootUrl = "http://baike.baidu.com/item/Android" objSpider = SpiderMain() objSpider.craw(rootUrl)
from AndroidSpider import url_manager, html_downloader, html_parser, html_output ''' 爬取百度百科 Android 关键词相关词及简介并输出为一个HTML tab网页 Extra module: BeautifulSoup ''' class SpiderMain(object): def __init__(self): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownLoader() self.parser = html_parser.HtmlParser() self.out_put = html_output.HtmlOutput() def craw(self, root_url): count = 1 self.urls.add_new_url(root_url) while self.urls.has_new_url(): try: new_url = self.urls.get_new_url() print("craw %d : %s" % (count, new_url)) headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.100 Safari/537.36" } html_content = self.downloader.download(new_url, retry_count=2, headers=headers) new_urls, new_data = self.parser.parse(new_url, html_content, "utf-8") self.urls.add_new_urls(new_urls) self.out_put.collect_data(new_data) if count >= 30: break count = count + 1 except Exception as e: print("craw failed!\n"+str(e)) self.out_put.output_html() if __name__ == "__main__": rootUrl = "http://baike.baidu.com/item/Android" objSpider = SpiderMain() objSpider.craw(rootUrl)
zh
0.595744
爬取百度百科 Android 关键词相关词及简介并输出为一个HTML tab网页 Extra module: BeautifulSoup
2.966678
3
trompace/mutations/__init__.py
trompamusic/ce-queries-template
1
8306
MUTATION = '''mutation {{ {mutation} }}''' def _verify_additional_type(additionaltype): """Check that the input to additionaltype is a list of strings. If it is empty, raise ValueError If it is a string, convert it to a list of strings.""" if additionaltype is None: return None if isinstance(additionaltype, str): additionaltype = [additionaltype] if len(additionaltype) == 0: raise ValueError("additionaltype must be a non-empty list") return additionaltype
MUTATION = '''mutation {{ {mutation} }}''' def _verify_additional_type(additionaltype): """Check that the input to additionaltype is a list of strings. If it is empty, raise ValueError If it is a string, convert it to a list of strings.""" if additionaltype is None: return None if isinstance(additionaltype, str): additionaltype = [additionaltype] if len(additionaltype) == 0: raise ValueError("additionaltype must be a non-empty list") return additionaltype
en
0.810291
mutation {{ {mutation} }} Check that the input to additionaltype is a list of strings. If it is empty, raise ValueError If it is a string, convert it to a list of strings.
2.809383
3
Web_App/infrastructure/infra.py
CapitalOneDevExchangeHackathon/Financial-Fitness
0
8307
import boto import boto3 from config import Config dynamodb = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION) table = dynamodb.Table('user_details') tables = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION).Table('user_details') print(tables.creation_date_time) def main(): print("29.7604267") def insert_into_db(user): print(user.lastname) try: table.put_item( Item={ 'pin': user.pin, 'firstname': user.firstname, 'lastname': user.lastname, } ) except Exception as E: print(E) return False return True if __name__ == "__main__": main()
import boto import boto3 from config import Config dynamodb = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION) table = dynamodb.Table('user_details') tables = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION).Table('user_details') print(tables.creation_date_time) def main(): print("29.7604267") def insert_into_db(user): print(user.lastname) try: table.put_item( Item={ 'pin': user.pin, 'firstname': user.firstname, 'lastname': user.lastname, } ) except Exception as E: print(E) return False return True if __name__ == "__main__": main()
none
1
2.558914
3
numberTheory/natural.py
ndarwin314/symbolicPy
0
8308
<reponame>ndarwin314/symbolicPy<filename>numberTheory/natural.py # TODO: implement algorithms in c++ or something to make them fast
# TODO: implement algorithms in c++ or something to make them fast
en
0.827268
# TODO: implement algorithms in c++ or something to make them fast
1.102762
1
SelfTests.py
TeaPackCZ/RobotZed
0
8309
<filename>SelfTests.py import os import unittest from Logger import Logger class TestLogger(unittest.TestCase): def test_file_handling(self): testLog = Logger("testLog") ## Check if program can create and open file self.assertTrue(testLog.opened) returns = testLog.close() ## Check if logger correctly signs bool OPENED and returns ## 0 as succes. self.assertFalse(testLog.opened) self.assertEqual(returns,0) returns = testLog.close() ## Check if logger returns 1 when trying to close already ## closed file self.assertEqual(returns,1) ## Do cleanup: os.remove(testLog.name) def test_logging(self): testLog = Logger("testLog") testPhrase = "TestLine\r\n" testLog.save_line(testPhrase) testLog.close() logfile = open(testLog.name) content = logfile.read() logfile.close() saved = content.split(" : ") ## Check if saved data corresponds self.assertEqual(saved[1],testPhrase) ## cleanup os.remove(testLog.name) from gpsNavigation import gpsModule,gpsPoint class TestGPSNavigation(unittest.TestCase): def test_gps_angles(self): gpsMod = gpsModule() A = gpsPoint(10,10) B = gpsPoint(10.1,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15623.0) self.assertEqual(azimut,45.0) B = gpsPoint(10.0,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,10963.0) self.assertEqual(azimut,90.0) B = gpsPoint(9.9,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15625.0) self.assertEqual(azimut,135.0) B = gpsPoint(9.9,10.0) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,11132.0) self.assertEqual(azimut,180.0) B = gpsPoint(9.9,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15625.0) self.assertEqual(azimut,225.0) B = gpsPoint(10.0,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,10963.0) self.assertEqual(azimut,270.0) B = gpsPoint(10.1,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15623.0) self.assertEqual(azimut,315.0) B = gpsPoint(10.1,10.0) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,11132.0) self.assertEqual(azimut,0) if __name__ == '__main__': unittest.main()
<filename>SelfTests.py import os import unittest from Logger import Logger class TestLogger(unittest.TestCase): def test_file_handling(self): testLog = Logger("testLog") ## Check if program can create and open file self.assertTrue(testLog.opened) returns = testLog.close() ## Check if logger correctly signs bool OPENED and returns ## 0 as succes. self.assertFalse(testLog.opened) self.assertEqual(returns,0) returns = testLog.close() ## Check if logger returns 1 when trying to close already ## closed file self.assertEqual(returns,1) ## Do cleanup: os.remove(testLog.name) def test_logging(self): testLog = Logger("testLog") testPhrase = "TestLine\r\n" testLog.save_line(testPhrase) testLog.close() logfile = open(testLog.name) content = logfile.read() logfile.close() saved = content.split(" : ") ## Check if saved data corresponds self.assertEqual(saved[1],testPhrase) ## cleanup os.remove(testLog.name) from gpsNavigation import gpsModule,gpsPoint class TestGPSNavigation(unittest.TestCase): def test_gps_angles(self): gpsMod = gpsModule() A = gpsPoint(10,10) B = gpsPoint(10.1,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15623.0) self.assertEqual(azimut,45.0) B = gpsPoint(10.0,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,10963.0) self.assertEqual(azimut,90.0) B = gpsPoint(9.9,10.1) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15625.0) self.assertEqual(azimut,135.0) B = gpsPoint(9.9,10.0) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,11132.0) self.assertEqual(azimut,180.0) B = gpsPoint(9.9,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15625.0) self.assertEqual(azimut,225.0) B = gpsPoint(10.0,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,10963.0) self.assertEqual(azimut,270.0) B = gpsPoint(10.1,9.9) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,15623.0) self.assertEqual(azimut,315.0) B = gpsPoint(10.1,10.0) distance, azimut = gpsMod.GPSData.getDirAndDist(A,B) self.assertEqual(distance,11132.0) self.assertEqual(azimut,0) if __name__ == '__main__': unittest.main()
en
0.627601
## Check if program can create and open file ## Check if logger correctly signs bool OPENED and returns ## 0 as succes. ## Check if logger returns 1 when trying to close already ## closed file ## Do cleanup: ## Check if saved data corresponds ## cleanup
3.248226
3
manga_py/parser.py
Abijithkrishna/manga-py
0
8310
from logging import warning from requests import get from .info import Info from .provider import Provider from .providers import get_provider class Parser: def __init__(self, args: dict): self.params = args def init_provider( self, chapter_progress: callable = None, global_progress: callable = None, log: callable = None, quest: callable = None, info: Info = None, quest_password: callable = None, ): original_url = self.params.get('url', '') provider_url = self.params.get('force_provider', None) provider = get_provider(provider_url or original_url) if isinstance(provider, bool): raise AttributeError('Provider not found') # update url (if redirect) self.provider = provider(info) # type: Provider self.provider.original_url = original_url real_url = self.check_url(original_url) if self.provider.allow_auto_change_url(): if real_url != original_url: warning('Manga url changed! New url: {}'.format(real_url)) self.params['url'] = real_url self.provider.quiet = self.params.get('quiet', False) self.provider.set_chapter_progress_callback(chapter_progress) self.provider.set_global_progress_callback(global_progress) self.provider.set_log_callback(log) self.provider.set_quest_callback(quest) self.provider.set_quest_password_callback(quest_password) def start(self): self.provider.process(self.params['url'], self.params) def check_url(self, url): proxy = self.params.get('proxy', None) proxies = { 'http': proxy, 'https': proxy, } if proxy else None with get(url, stream=True, proxies=proxies) as response: _url = response.url if url != _url: url = _url return url
from logging import warning from requests import get from .info import Info from .provider import Provider from .providers import get_provider class Parser: def __init__(self, args: dict): self.params = args def init_provider( self, chapter_progress: callable = None, global_progress: callable = None, log: callable = None, quest: callable = None, info: Info = None, quest_password: callable = None, ): original_url = self.params.get('url', '') provider_url = self.params.get('force_provider', None) provider = get_provider(provider_url or original_url) if isinstance(provider, bool): raise AttributeError('Provider not found') # update url (if redirect) self.provider = provider(info) # type: Provider self.provider.original_url = original_url real_url = self.check_url(original_url) if self.provider.allow_auto_change_url(): if real_url != original_url: warning('Manga url changed! New url: {}'.format(real_url)) self.params['url'] = real_url self.provider.quiet = self.params.get('quiet', False) self.provider.set_chapter_progress_callback(chapter_progress) self.provider.set_global_progress_callback(global_progress) self.provider.set_log_callback(log) self.provider.set_quest_callback(quest) self.provider.set_quest_password_callback(quest_password) def start(self): self.provider.process(self.params['url'], self.params) def check_url(self, url): proxy = self.params.get('proxy', None) proxies = { 'http': proxy, 'https': proxy, } if proxy else None with get(url, stream=True, proxies=proxies) as response: _url = response.url if url != _url: url = _url return url
it
0.268926
# update url (if redirect) # type: Provider
2.346423
2
src/villages/migrations/0008_auto_20161228_2209.py
pwelzel/bornhack-website
0
8311
<filename>src/villages/migrations/0008_auto_20161228_2209.py # -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-28 22:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('villages', '0007_village_camp'), ] operations = [ migrations.AlterField( model_name='village', name='camp', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='camps.Camp'), ), ]
<filename>src/villages/migrations/0008_auto_20161228_2209.py # -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-28 22:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('villages', '0007_village_camp'), ] operations = [ migrations.AlterField( model_name='village', name='camp', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='camps.Camp'), ), ]
en
0.787238
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-28 22:09
1.450286
1
customers/views.py
sindhumadhadi09/CustomerMgmt
0
8312
<reponame>sindhumadhadi09/CustomerMgmt from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect from django.urls import reverse from django.views import generic from django.utils import timezone from .models import Customer class IndexView(generic.ListView): template_name = 'customers/index.html' context_object_name = 'customers_list' def get_queryset(self): return Customer.objects.all() class CustomerView(generic.TemplateView): template_name = 'customers/detail.html' def add_customer(request): customer = Customer() customer.customer_firstname = request.POST['fname'] customer.customer_lastname = request.POST['lname'] customer.customer_address = request.POST['address'] customer.customer_city = request.POST['city'] customer.customer_zipcode = request.POST['zip'] customer.customer_state = request.POST['state'] customer.save() return HttpResponseRedirect(reverse('customers:index')) def delete_customer(request, customer_id): p = Customer.objects.get(pk=customer_id) p.delete() return HttpResponseRedirect(reverse('customers:index'))
from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect from django.urls import reverse from django.views import generic from django.utils import timezone from .models import Customer class IndexView(generic.ListView): template_name = 'customers/index.html' context_object_name = 'customers_list' def get_queryset(self): return Customer.objects.all() class CustomerView(generic.TemplateView): template_name = 'customers/detail.html' def add_customer(request): customer = Customer() customer.customer_firstname = request.POST['fname'] customer.customer_lastname = request.POST['lname'] customer.customer_address = request.POST['address'] customer.customer_city = request.POST['city'] customer.customer_zipcode = request.POST['zip'] customer.customer_state = request.POST['state'] customer.save() return HttpResponseRedirect(reverse('customers:index')) def delete_customer(request, customer_id): p = Customer.objects.get(pk=customer_id) p.delete() return HttpResponseRedirect(reverse('customers:index'))
none
1
2.181892
2
salt/ext/tornado/test/import_test.py
yuriks/salt
1
8313
# flake8: noqa # pylint: skip-file from __future__ import absolute_import, division, print_function from salt.ext.tornado.test.util import unittest class ImportTest(unittest.TestCase): def test_import_everything(self): # Some of our modules are not otherwise tested. Import them # all (unless they have external dependencies) here to at # least ensure that there are no syntax errors. import tornado.auth import tornado.autoreload import tornado.concurrent import tornado.escape import tornado.gen import tornado.http1connection import tornado.httpclient import tornado.httpserver import tornado.httputil import tornado.ioloop import tornado.iostream import tornado.locale import tornado.log import tornado.netutil import tornado.options import tornado.process import tornado.simple_httpclient import tornado.stack_context import tornado.tcpserver import tornado.tcpclient import tornado.template import tornado.testing import tornado.util import tornado.web import tornado.websocket import tornado.wsgi # for modules with dependencies, if those dependencies can be loaded, # load them too. def test_import_pycurl(self): try: import pycurl # type: ignore except ImportError: pass else: import tornado.curl_httpclient
# flake8: noqa # pylint: skip-file from __future__ import absolute_import, division, print_function from salt.ext.tornado.test.util import unittest class ImportTest(unittest.TestCase): def test_import_everything(self): # Some of our modules are not otherwise tested. Import them # all (unless they have external dependencies) here to at # least ensure that there are no syntax errors. import tornado.auth import tornado.autoreload import tornado.concurrent import tornado.escape import tornado.gen import tornado.http1connection import tornado.httpclient import tornado.httpserver import tornado.httputil import tornado.ioloop import tornado.iostream import tornado.locale import tornado.log import tornado.netutil import tornado.options import tornado.process import tornado.simple_httpclient import tornado.stack_context import tornado.tcpserver import tornado.tcpclient import tornado.template import tornado.testing import tornado.util import tornado.web import tornado.websocket import tornado.wsgi # for modules with dependencies, if those dependencies can be loaded, # load them too. def test_import_pycurl(self): try: import pycurl # type: ignore except ImportError: pass else: import tornado.curl_httpclient
en
0.858266
# flake8: noqa # pylint: skip-file # Some of our modules are not otherwise tested. Import them # all (unless they have external dependencies) here to at # least ensure that there are no syntax errors. # for modules with dependencies, if those dependencies can be loaded, # load them too. # type: ignore
2.1261
2
butterfree/configs/db/metastore_config.py
fossabot/butterfree
0
8314
"""Holds configurations to read and write with Spark to AWS S3.""" import os from typing import Any, Dict, List, Optional from pyspark.sql import DataFrame from butterfree.configs import environment from butterfree.configs.db import AbstractWriteConfig from butterfree.dataframe_service import extract_partition_values class MetastoreConfig(AbstractWriteConfig): """Configuration for Spark metastore database stored. By default the configuration is for AWS S3. Attributes: path: database root location. mode: writing mode used be writers. format_: expected stored file format. file_system: file schema uri, like: s3a, file. """ def __init__( self, path: str = None, mode: str = None, format_: str = None, file_system: str = None, ): self.path = path self.mode = mode self.format_ = format_ self.file_system = file_system @property def path(self) -> Optional[str]: """Bucket name.""" return self.__path @path.setter def path(self, value: str) -> None: self.__path = value or environment.get_variable("FEATURE_STORE_S3_BUCKET") @property def format_(self) -> Optional[str]: """Expected stored file format.""" return self.__format @format_.setter def format_(self, value: str) -> None: self.__format = value or "parquet" @property def mode(self) -> Optional[str]: """Writing mode used be writers.""" return self.__mode @mode.setter def mode(self, value: str) -> None: self.__mode = value or "overwrite" @property def file_system(self) -> Optional[str]: """Writing mode used be writers.""" return self.__file_system @file_system.setter def file_system(self, value: str) -> None: self.__file_system = value or "s3a" def get_options(self, key: str) -> Dict[Optional[str], Optional[str]]: """Get options for Metastore. Options will be a dictionary with the write and read configuration for Spark Metastore. Args: key: path to save data into Metastore. Returns: Options configuration for Metastore. """ return { "mode": self.mode, "format_": self.format_, "path": os.path.join(f"{self.file_system}://{self.path}/", key), } def get_path_with_partitions(self, key: str, dataframe: DataFrame) -> List: """Get options for AWS S3 from partitioned parquet file. Options will be a dictionary with the write and read configuration for Spark to AWS S3. Args: key: path to save data into AWS S3 bucket. dataframe: spark dataframe containing data from a feature set. Returns: A list of string for file-system backed data sources. """ path_list = [] dataframe_values = extract_partition_values( dataframe, partition_columns=["year", "month", "day"] ) for row in dataframe_values: path_list.append( f"{self.file_system}://{self.path}/{key}/year={row['year']}/" f"month={row['month']}/day={row['day']}" ) return path_list def translate(self, schema: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Translate feature set spark schema to the corresponding database.""" pass
"""Holds configurations to read and write with Spark to AWS S3.""" import os from typing import Any, Dict, List, Optional from pyspark.sql import DataFrame from butterfree.configs import environment from butterfree.configs.db import AbstractWriteConfig from butterfree.dataframe_service import extract_partition_values class MetastoreConfig(AbstractWriteConfig): """Configuration for Spark metastore database stored. By default the configuration is for AWS S3. Attributes: path: database root location. mode: writing mode used be writers. format_: expected stored file format. file_system: file schema uri, like: s3a, file. """ def __init__( self, path: str = None, mode: str = None, format_: str = None, file_system: str = None, ): self.path = path self.mode = mode self.format_ = format_ self.file_system = file_system @property def path(self) -> Optional[str]: """Bucket name.""" return self.__path @path.setter def path(self, value: str) -> None: self.__path = value or environment.get_variable("FEATURE_STORE_S3_BUCKET") @property def format_(self) -> Optional[str]: """Expected stored file format.""" return self.__format @format_.setter def format_(self, value: str) -> None: self.__format = value or "parquet" @property def mode(self) -> Optional[str]: """Writing mode used be writers.""" return self.__mode @mode.setter def mode(self, value: str) -> None: self.__mode = value or "overwrite" @property def file_system(self) -> Optional[str]: """Writing mode used be writers.""" return self.__file_system @file_system.setter def file_system(self, value: str) -> None: self.__file_system = value or "s3a" def get_options(self, key: str) -> Dict[Optional[str], Optional[str]]: """Get options for Metastore. Options will be a dictionary with the write and read configuration for Spark Metastore. Args: key: path to save data into Metastore. Returns: Options configuration for Metastore. """ return { "mode": self.mode, "format_": self.format_, "path": os.path.join(f"{self.file_system}://{self.path}/", key), } def get_path_with_partitions(self, key: str, dataframe: DataFrame) -> List: """Get options for AWS S3 from partitioned parquet file. Options will be a dictionary with the write and read configuration for Spark to AWS S3. Args: key: path to save data into AWS S3 bucket. dataframe: spark dataframe containing data from a feature set. Returns: A list of string for file-system backed data sources. """ path_list = [] dataframe_values = extract_partition_values( dataframe, partition_columns=["year", "month", "day"] ) for row in dataframe_values: path_list.append( f"{self.file_system}://{self.path}/{key}/year={row['year']}/" f"month={row['month']}/day={row['day']}" ) return path_list def translate(self, schema: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Translate feature set spark schema to the corresponding database.""" pass
en
0.683056
Holds configurations to read and write with Spark to AWS S3. Configuration for Spark metastore database stored. By default the configuration is for AWS S3. Attributes: path: database root location. mode: writing mode used be writers. format_: expected stored file format. file_system: file schema uri, like: s3a, file. Bucket name. Expected stored file format. Writing mode used be writers. Writing mode used be writers. Get options for Metastore. Options will be a dictionary with the write and read configuration for Spark Metastore. Args: key: path to save data into Metastore. Returns: Options configuration for Metastore. Get options for AWS S3 from partitioned parquet file. Options will be a dictionary with the write and read configuration for Spark to AWS S3. Args: key: path to save data into AWS S3 bucket. dataframe: spark dataframe containing data from a feature set. Returns: A list of string for file-system backed data sources. Translate feature set spark schema to the corresponding database.
2.69569
3
examples/2-objects.py
johanngan/special_relativity
4
8315
#!/usr/bin/env python3 import sys sys.path.append('..') import specrel.geom as geom import specrel.spacetime.physical as phy import specrel.visualize as vis # Shared parameters include_grid = True include_legend = True tlim = (0, 2) xlim = (-2, 2) # A stationary point object stationary = phy.MovingObject(0, draw_options={'label': '$v = 0$'}) ## Alternate: # direction = (1, 0) # point = (0, 0) # stationary = geom.Line(direction, point, draw_options={'label': '$v = 0$'}) title='Stationary object' p = vis.stplot(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) p.save('2-objects_stationary_point.png') p.show() # A stationary point object, animated anim = vis.stanimate(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) anim.save('2-objects_stationary_point_anim.mp4') anim.show() # A stationary point object, animated with worldline anim = vis.stanimate_with_worldline(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper right') anim.save('2-objects_stationary_point_anim_worldline.mp4') anim.show() # A bunch of moving point objects, animated moving = phy.MovingObject(0, velocity=1/2, draw_options={'color': 'red', 'label': '$v = c/2$'}) light = phy.MovingObject(0, velocity=1, draw_options={'color': 'gold', 'label': '$v = c$'}) ftl = phy.MovingObject(0, velocity=3/2, draw_options={'color': 'cyan', 'label': '$v = 3c/2$'}) objects = geom.Collection([stationary, moving, light, ftl]) title = 'Various objects' anim = vis.stanimate_with_worldline(objects, title=title, current_time_color='magenta', tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_points.mp4') anim.show() # A moving meterstick meterstick = phy.MovingObject(-1/2, length=1, velocity=1/2, draw_options={'label': 'Meterstick'}) # # Alternate: # direction = (1, 1/2) # left = geom.Line(direction, (0, -1/2)) # right = geom.Line(direction, (0, 1/2)) # meterstick = geom.Ribbon(left, right, draw_options={'label': 'Meterstick'}) title = 'Moving meterstick ($v = c/2$)' anim = vis.stanimate_with_worldline(meterstick, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_meterstick.mp4') anim.show()
#!/usr/bin/env python3 import sys sys.path.append('..') import specrel.geom as geom import specrel.spacetime.physical as phy import specrel.visualize as vis # Shared parameters include_grid = True include_legend = True tlim = (0, 2) xlim = (-2, 2) # A stationary point object stationary = phy.MovingObject(0, draw_options={'label': '$v = 0$'}) ## Alternate: # direction = (1, 0) # point = (0, 0) # stationary = geom.Line(direction, point, draw_options={'label': '$v = 0$'}) title='Stationary object' p = vis.stplot(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) p.save('2-objects_stationary_point.png') p.show() # A stationary point object, animated anim = vis.stanimate(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) anim.save('2-objects_stationary_point_anim.mp4') anim.show() # A stationary point object, animated with worldline anim = vis.stanimate_with_worldline(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper right') anim.save('2-objects_stationary_point_anim_worldline.mp4') anim.show() # A bunch of moving point objects, animated moving = phy.MovingObject(0, velocity=1/2, draw_options={'color': 'red', 'label': '$v = c/2$'}) light = phy.MovingObject(0, velocity=1, draw_options={'color': 'gold', 'label': '$v = c$'}) ftl = phy.MovingObject(0, velocity=3/2, draw_options={'color': 'cyan', 'label': '$v = 3c/2$'}) objects = geom.Collection([stationary, moving, light, ftl]) title = 'Various objects' anim = vis.stanimate_with_worldline(objects, title=title, current_time_color='magenta', tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_points.mp4') anim.show() # A moving meterstick meterstick = phy.MovingObject(-1/2, length=1, velocity=1/2, draw_options={'label': 'Meterstick'}) # # Alternate: # direction = (1, 1/2) # left = geom.Line(direction, (0, -1/2)) # right = geom.Line(direction, (0, 1/2)) # meterstick = geom.Ribbon(left, right, draw_options={'label': 'Meterstick'}) title = 'Moving meterstick ($v = c/2$)' anim = vis.stanimate_with_worldline(meterstick, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_meterstick.mp4') anim.show()
en
0.673224
#!/usr/bin/env python3 # Shared parameters # A stationary point object ## Alternate: # direction = (1, 0) # point = (0, 0) # stationary = geom.Line(direction, point, draw_options={'label': '$v = 0$'}) # A stationary point object, animated # A stationary point object, animated with worldline # A bunch of moving point objects, animated # A moving meterstick # # Alternate: # direction = (1, 1/2) # left = geom.Line(direction, (0, -1/2)) # right = geom.Line(direction, (0, 1/2)) # meterstick = geom.Ribbon(left, right, draw_options={'label': 'Meterstick'})
2.207962
2
firmware/modulator.py
mfkiwl/OpenXcvr
14
8316
from baremetal import * from math import pi, sin, cos import sys from scale import scale from settings import * from ssb import ssb_polar def modulator(clk, audio, audio_stb, settings): audio_bits = audio.subtype.bits #AM modulation am_mag = Unsigned(12).constant(0) + audio + 2048 am_phase = Signed(32).constant(0) am_stb = audio_stb #FM modulation fm_mag = Unsigned(12).constant(4095) frequency = Signed(32).constant(0) + audio nfm_scaled_frequency = frequency * (2**(32-audio_bits) * 5 / 50) nfm_phase = nfm_scaled_frequency.subtype.register(clk, en=audio_stb, init=0) nfm_phase.d(nfm_phase + nfm_scaled_frequency) scaled_frequency = frequency * (2**(32-audio_bits) * 8 / 50) fm_phase = scaled_frequency.subtype.register(clk, en=audio_stb, init=0) fm_phase.d(fm_phase + scaled_frequency) fm_stb = Boolean().register(clk, d=audio_stb, init=0) #ssb ssb_mag, ssb_phase, ssb_stb = ssb_polar(clk, audio, audio_stb, settings.mode==LSB) ssb_mag <<= 1 ssb_phase = Signed(32).constant(0) + ssb_phase ssb_phase <<= (32 - audio_bits) #cw modulation cw_mag = Unsigned(12).constant(0) cw_phase = Signed(32).constant(0) cw_stb = audio_stb #mode switching magnitude = Unsigned(12).select(settings.mode, am_mag, fm_mag, fm_mag, ssb_mag, ssb_mag, cw_mag) phase = Signed(32).select(settings.mode, am_phase, nfm_phase, fm_phase, ssb_phase, ssb_phase, cw_phase) stb = Boolean().select(settings.mode, am_stb, fm_stb, fm_stb, ssb_stb, ssb_stb, cw_stb) return magnitude, phase, audio_stb import numpy as np from matplotlib import pyplot as plt def test_modulator(stimulus, mode): settings = Settings() settings.mode = Unsigned(3).input("filter_mode") clk = Clock("clk") audio_in = Signed(12).input("i_data_in") audio_stb_in = Boolean().input("stb_in") i, q, stb = modulator(clk, audio_in, audio_stb_in, settings) #simulate clk.initialise() settings.mode.set(mode) response = [] for data in stimulus: for j in range(200): audio_stb_in.set(j==199) audio_in.set(data) clk.tick() if stb.get(): print i.get(), q.get() if i.get() is None or q.get() is None: continue response.append(i.get()*(2**20)+1j*q.get()) response = np.array(response) plt.title("Modulator") plt.xlabel("Time (samples)") plt.ylabel("Value") a, = plt.plot(np.real(response), label="I") b, = plt.plot(np.imag(response), label="Q") c, = plt.plot(stimulus*(2**20), label="Audio Input") plt.legend(handles=[a, b, c]) plt.show() if __name__ == "__main__" and "sim" in sys.argv: #mode am stim am stimulus=( np.sin(np.arange(1000)*2.0*pi*0.02)*1023+ np.sin(np.arange(1000)*2.0*pi*0.03)*1023 ) #test_modulator(stimulus, FM) #test_modulator(stimulus, FM) #test_modulator(stimulus, NBFM) test_modulator(stimulus, USB)
from baremetal import * from math import pi, sin, cos import sys from scale import scale from settings import * from ssb import ssb_polar def modulator(clk, audio, audio_stb, settings): audio_bits = audio.subtype.bits #AM modulation am_mag = Unsigned(12).constant(0) + audio + 2048 am_phase = Signed(32).constant(0) am_stb = audio_stb #FM modulation fm_mag = Unsigned(12).constant(4095) frequency = Signed(32).constant(0) + audio nfm_scaled_frequency = frequency * (2**(32-audio_bits) * 5 / 50) nfm_phase = nfm_scaled_frequency.subtype.register(clk, en=audio_stb, init=0) nfm_phase.d(nfm_phase + nfm_scaled_frequency) scaled_frequency = frequency * (2**(32-audio_bits) * 8 / 50) fm_phase = scaled_frequency.subtype.register(clk, en=audio_stb, init=0) fm_phase.d(fm_phase + scaled_frequency) fm_stb = Boolean().register(clk, d=audio_stb, init=0) #ssb ssb_mag, ssb_phase, ssb_stb = ssb_polar(clk, audio, audio_stb, settings.mode==LSB) ssb_mag <<= 1 ssb_phase = Signed(32).constant(0) + ssb_phase ssb_phase <<= (32 - audio_bits) #cw modulation cw_mag = Unsigned(12).constant(0) cw_phase = Signed(32).constant(0) cw_stb = audio_stb #mode switching magnitude = Unsigned(12).select(settings.mode, am_mag, fm_mag, fm_mag, ssb_mag, ssb_mag, cw_mag) phase = Signed(32).select(settings.mode, am_phase, nfm_phase, fm_phase, ssb_phase, ssb_phase, cw_phase) stb = Boolean().select(settings.mode, am_stb, fm_stb, fm_stb, ssb_stb, ssb_stb, cw_stb) return magnitude, phase, audio_stb import numpy as np from matplotlib import pyplot as plt def test_modulator(stimulus, mode): settings = Settings() settings.mode = Unsigned(3).input("filter_mode") clk = Clock("clk") audio_in = Signed(12).input("i_data_in") audio_stb_in = Boolean().input("stb_in") i, q, stb = modulator(clk, audio_in, audio_stb_in, settings) #simulate clk.initialise() settings.mode.set(mode) response = [] for data in stimulus: for j in range(200): audio_stb_in.set(j==199) audio_in.set(data) clk.tick() if stb.get(): print i.get(), q.get() if i.get() is None or q.get() is None: continue response.append(i.get()*(2**20)+1j*q.get()) response = np.array(response) plt.title("Modulator") plt.xlabel("Time (samples)") plt.ylabel("Value") a, = plt.plot(np.real(response), label="I") b, = plt.plot(np.imag(response), label="Q") c, = plt.plot(stimulus*(2**20), label="Audio Input") plt.legend(handles=[a, b, c]) plt.show() if __name__ == "__main__" and "sim" in sys.argv: #mode am stim am stimulus=( np.sin(np.arange(1000)*2.0*pi*0.02)*1023+ np.sin(np.arange(1000)*2.0*pi*0.03)*1023 ) #test_modulator(stimulus, FM) #test_modulator(stimulus, FM) #test_modulator(stimulus, NBFM) test_modulator(stimulus, USB)
en
0.241182
#AM modulation #FM modulation #ssb #cw modulation #mode switching #simulate #mode am stim am #test_modulator(stimulus, FM) #test_modulator(stimulus, FM) #test_modulator(stimulus, NBFM)
2.235083
2
tests/sentry/auth/test_helper.py
pierredup/sentry
0
8317
from __future__ import absolute_import from six.moves.urllib.parse import urlencode from django.test import RequestFactory from django.contrib.auth.models import AnonymousUser from sentry.auth.helper import handle_new_user from sentry.models import AuthProvider, InviteStatus, OrganizationMember from sentry.testutils import TestCase from sentry.utils.compat import mock class HandleNewUserTest(TestCase): @mock.patch("sentry.analytics.record") def test_simple(self, mock_record): provider = "dummy" request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() auth_provider = AuthProvider.objects.create( organization=self.organization, provider=provider ) identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} auth_identity = handle_new_user(auth_provider, self.organization, request, identity) user = auth_identity.user assert user.email == identity["email"] assert OrganizationMember.objects.filter(organization=self.organization, user=user).exists() signup_record = [r for r in mock_record.call_args_list if r[0][0] == "user.signup"] assert signup_record == [ mock.call( "user.signup", user_id=user.id, source="sso", provider=provider, referrer="in-app" ) ] def test_associated_existing_member_invite_by_email(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = OrganizationMember.objects.create( organization=self.organization, email=identity["email"] ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id def test_associated_existing_member_invite_request(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = self.create_member( organization=self.organization, email=identity["email"], invite_status=InviteStatus.REQUESTED_TO_BE_INVITED.value, ) auth_identity = handle_new_user(provider, self.organization, request, identity) assert OrganizationMember.objects.filter( organization=self.organization, user=auth_identity.user, invite_status=InviteStatus.APPROVED.value, ).exists() assert not OrganizationMember.objects.filter(id=member.id).exists() def test_associate_pending_invite(self): provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} # The org member invite should have a non matching email, but the # member id and token will match from the cookie, allowing association member = OrganizationMember.objects.create( organization=self.organization, email="<EMAIL>", token="abc" ) request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() request.COOKIES["pending-invite"] = urlencode( {"memberId": member.id, "token": member.token, "url": ""} ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id
from __future__ import absolute_import from six.moves.urllib.parse import urlencode from django.test import RequestFactory from django.contrib.auth.models import AnonymousUser from sentry.auth.helper import handle_new_user from sentry.models import AuthProvider, InviteStatus, OrganizationMember from sentry.testutils import TestCase from sentry.utils.compat import mock class HandleNewUserTest(TestCase): @mock.patch("sentry.analytics.record") def test_simple(self, mock_record): provider = "dummy" request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() auth_provider = AuthProvider.objects.create( organization=self.organization, provider=provider ) identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} auth_identity = handle_new_user(auth_provider, self.organization, request, identity) user = auth_identity.user assert user.email == identity["email"] assert OrganizationMember.objects.filter(organization=self.organization, user=user).exists() signup_record = [r for r in mock_record.call_args_list if r[0][0] == "user.signup"] assert signup_record == [ mock.call( "user.signup", user_id=user.id, source="sso", provider=provider, referrer="in-app" ) ] def test_associated_existing_member_invite_by_email(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = OrganizationMember.objects.create( organization=self.organization, email=identity["email"] ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id def test_associated_existing_member_invite_request(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = self.create_member( organization=self.organization, email=identity["email"], invite_status=InviteStatus.REQUESTED_TO_BE_INVITED.value, ) auth_identity = handle_new_user(provider, self.organization, request, identity) assert OrganizationMember.objects.filter( organization=self.organization, user=auth_identity.user, invite_status=InviteStatus.APPROVED.value, ).exists() assert not OrganizationMember.objects.filter(id=member.id).exists() def test_associate_pending_invite(self): provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} # The org member invite should have a non matching email, but the # member id and token will match from the cookie, allowing association member = OrganizationMember.objects.create( organization=self.organization, email="<EMAIL>", token="abc" ) request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() request.COOKIES["pending-invite"] = urlencode( {"memberId": member.id, "token": member.token, "url": ""} ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id
en
0.962702
# The org member invite should have a non matching email, but the # member id and token will match from the cookie, allowing association
2.003538
2
groundstation/broadcast_events/__init__.py
richo/groundstation
26
8318
<reponame>richo/groundstation from broadcast_ping import BroadcastPing EVENT_TYPES = { "PING": BroadcastPing, } class UnknownBroadcastEvent(Exception): pass def new_broadcast_event(data): event_type, payload = data.split(" ", 1) if event_type not in EVENT_TYPES: raise UnknownBroadcastEvent(event_type) return EVENT_TYPES[event_type](payload)
from broadcast_ping import BroadcastPing EVENT_TYPES = { "PING": BroadcastPing, } class UnknownBroadcastEvent(Exception): pass def new_broadcast_event(data): event_type, payload = data.split(" ", 1) if event_type not in EVENT_TYPES: raise UnknownBroadcastEvent(event_type) return EVENT_TYPES[event_type](payload)
none
1
2.740414
3
mbta_python/__init__.py
dougzor/mbta_python
0
8319
import datetime import requests from mbta_python.models import Stop, Direction, Schedule, Mode, \ TripSchedule, Alert, StopWithMode, Prediction HOST = "http://realtime.mbta.com/developer/api/v2" def datetime_to_epoch(dt): epoch = datetime.datetime.utcfromtimestamp(0) return int((dt - epoch).total_seconds()) class MBTASDK(object): """Wrapper around calls to the MBTA Realtime API """ def __init__(self, api_key): self.api_key = api_key def _make_request(self, path, params): url = "{}/{}".format(HOST, path) response = requests.get(url, params=params) data = response.json() error = data.get("error") if error: raise Exception(error["message"]) return response.json() def get_stops_by_location(self, latitude, longitude): """Get a List of Stops sorted by proximity to the given latitude and longitude """ params = { "lat": latitude, "lon": longitude, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbylocation", params) stops = [Stop(stop_data) for stop_data in data["stop"]] return stops def get_stops_by_route(self, route_id): """Return a List of Directions for the route_id that contain a list of Stops that Direction and Route serve """ params = { "route": route_id, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbyroute", params) return [Direction(d) for d in data["direction"]] def get_routes_by_stop(self, stop_id): """Return a list of routes that serve a particular stop """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json" } data = self._make_request("routesbystop", params) return StopWithMode(data) def get_schedules_by_stop(self, stop_id, route_id=None, direction_id=None, date=None, max_time=None, max_trips=None): """Return scheduled arrivals and departures for a direction and route for a particular stop. stop_id - Stop ID route_id - Route ID, If not included then schedule for all routes serving the stop will be returned, direction_id - Direction ID, If included then route must also be included if not included then schedule for all directions of the route serving the stop will be returned date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "route": route_id, "direction": direction_id, "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebystop", params) return Schedule(data) def get_schedules_by_routes(self, route_ids, date=None, max_time=None, max_trips=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebyroutes", params) return [Mode(m) for m in data["mode"]] def get_schedules_by_trip(self, trip_id, date=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days. If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, } data = self._make_request("schedulebytrip", params) return TripSchedule(data) def get_predictions_by_stop(self, stop_id, include_access_alerts=False, include_service_alerts=True): """Return predicted arrivals and departures in the next hour for a direction and route for a particular stop. stop_id - Stop ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbystop", params) return Prediction(data) def get_predictions_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return predictions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbyroutes", params) return Prediction(data) def get_vehicles_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return vehicle positions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("vehiclesbyroutes", params) return [Mode(m) for m in data] def get_predictions_by_trip(self, trip_id): """Return the predicted arrivals and departures for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("predictionsbytrip", params) return TripSchedule(data) def get_vehicles_by_trip(self, trip_id): """Return the predicted vehicle positions for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("vehiclesbytrip", params) return TripSchedule(data)
import datetime import requests from mbta_python.models import Stop, Direction, Schedule, Mode, \ TripSchedule, Alert, StopWithMode, Prediction HOST = "http://realtime.mbta.com/developer/api/v2" def datetime_to_epoch(dt): epoch = datetime.datetime.utcfromtimestamp(0) return int((dt - epoch).total_seconds()) class MBTASDK(object): """Wrapper around calls to the MBTA Realtime API """ def __init__(self, api_key): self.api_key = api_key def _make_request(self, path, params): url = "{}/{}".format(HOST, path) response = requests.get(url, params=params) data = response.json() error = data.get("error") if error: raise Exception(error["message"]) return response.json() def get_stops_by_location(self, latitude, longitude): """Get a List of Stops sorted by proximity to the given latitude and longitude """ params = { "lat": latitude, "lon": longitude, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbylocation", params) stops = [Stop(stop_data) for stop_data in data["stop"]] return stops def get_stops_by_route(self, route_id): """Return a List of Directions for the route_id that contain a list of Stops that Direction and Route serve """ params = { "route": route_id, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbyroute", params) return [Direction(d) for d in data["direction"]] def get_routes_by_stop(self, stop_id): """Return a list of routes that serve a particular stop """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json" } data = self._make_request("routesbystop", params) return StopWithMode(data) def get_schedules_by_stop(self, stop_id, route_id=None, direction_id=None, date=None, max_time=None, max_trips=None): """Return scheduled arrivals and departures for a direction and route for a particular stop. stop_id - Stop ID route_id - Route ID, If not included then schedule for all routes serving the stop will be returned, direction_id - Direction ID, If included then route must also be included if not included then schedule for all directions of the route serving the stop will be returned date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "route": route_id, "direction": direction_id, "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebystop", params) return Schedule(data) def get_schedules_by_routes(self, route_ids, date=None, max_time=None, max_trips=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebyroutes", params) return [Mode(m) for m in data["mode"]] def get_schedules_by_trip(self, trip_id, date=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days. If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, } data = self._make_request("schedulebytrip", params) return TripSchedule(data) def get_predictions_by_stop(self, stop_id, include_access_alerts=False, include_service_alerts=True): """Return predicted arrivals and departures in the next hour for a direction and route for a particular stop. stop_id - Stop ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbystop", params) return Prediction(data) def get_predictions_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return predictions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbyroutes", params) return Prediction(data) def get_vehicles_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return vehicle positions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("vehiclesbyroutes", params) return [Mode(m) for m in data] def get_predictions_by_trip(self, trip_id): """Return the predicted arrivals and departures for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("predictionsbytrip", params) return TripSchedule(data) def get_vehicles_by_trip(self, trip_id): """Return the predicted vehicle positions for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("vehiclesbytrip", params) return TripSchedule(data)
en
0.880313
Wrapper around calls to the MBTA Realtime API Get a List of Stops sorted by proximity to the given latitude and longitude Return a List of Directions for the route_id that contain a list of Stops that Direction and Route serve Return a list of routes that serve a particular stop Return scheduled arrivals and departures for a direction and route for a particular stop. stop_id - Stop ID route_id - Route ID, If not included then schedule for all routes serving the stop will be returned, direction_id - Direction ID, If included then route must also be included if not included then schedule for all directions of the route serving the stop will be returned date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days. If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. Return predicted arrivals and departures in the next hour for a direction and route for a particular stop. stop_id - Stop ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned Return predictions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned Return vehicle positions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned Return the predicted arrivals and departures for a particular trip. trip_id - TripID Return the predicted vehicle positions for a particular trip. trip_id - TripID
2.84457
3
density_model_torch_custom.py
piotrwinkler/breast_density_classifier
0
8320
<reponame>piotrwinkler/breast_density_classifier<gh_stars>0 import argparse import glob import os import numpy as np import torch from sklearn.metrics import accuracy_score import models_torch as models import utils EXPERIMENT_DATA_DIR = "/tmp/mgr" def inference(parameters, verbose=True) -> int: # resolve device device = torch.device( "cuda:{}".format(parameters["gpu_number"]) if parameters["device_type"] == "gpu" else "cpu" ) # load input images datum_l_cc = utils.load_images(parameters['image_path'], 'L-CC') datum_r_cc = utils.load_images(parameters['image_path'], 'R-CC') datum_l_mlo = utils.load_images(parameters['image_path'], 'L-MLO') datum_r_mlo = utils.load_images(parameters['image_path'], 'R-MLO') # construct models and prepare data if parameters["model_type"] == 'cnn': model = models.BaselineBreastModel(device, nodropout_probability=1.0, gaussian_noise_std=0.0).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = { "L-CC": torch.Tensor(datum_l_cc).permute(0, 3, 1, 2).to(device), "L-MLO": torch.Tensor(datum_l_mlo).permute(0, 3, 1, 2).to(device), "R-CC": torch.Tensor(datum_r_cc).permute(0, 3, 1, 2).to(device), "R-MLO": torch.Tensor(datum_r_mlo).permute(0, 3, 1, 2).to(device), } elif parameters["model_type"] == 'histogram': model = models.BaselineHistogramModel(num_bins=parameters["bins_histogram"]).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = torch.Tensor(utils.histogram_features_generator([ datum_l_cc, datum_r_cc, datum_l_mlo, datum_r_mlo ], parameters)).to(device) else: raise RuntimeError(parameters["model_type"]) # run prediction with torch.no_grad(): prediction_density = model(x).cpu().numpy() if verbose: # nicely prints out the predictions print('Density prediction:\n' '\tAlmost entirely fatty (0):\t\t\t' + str(prediction_density[0, 0]) + '\n' '\tScattered areas of fibroglandular density (1):\t' + str(prediction_density[0, 1]) + '\n' '\tHeterogeneously dense (2):\t\t\t' + str(prediction_density[0, 2]) + '\n' '\tExtremely dense (3):\t\t\t\t' + str(prediction_density[0, 3]) + '\n') return np.argmax(prediction_density[0])+1 # return density in scope 1 to 4 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run Inference') parser.add_argument('model_type') parser.add_argument('--bins-histogram', default=50) parser.add_argument('--model-path', default=None) parser.add_argument('--device-type', default="cpu") # parser.add_argument('--image-path', default="images/") args = parser.parse_args() parameters_ = { "model_type": args.model_type, "bins_histogram": args.bins_histogram, "model_path": args.model_path, "device_type": args.device_type, # "image_path": args.image_path, } if parameters_["model_path"] is None: if args.model_type == "histogram": parameters_["model_path"] = "saved_models/BreastDensity_BaselineHistogramModel/model.p" if args.model_type == "cnn": parameters_["model_path"] = "saved_models/BreastDensity_BaselineBreastModel/model.p" predicted_values = [] real_values = [] predicted_values_two_classes = [] real_values_two_classes = [] two_classes_mapping = {1: 0, 2: 0, 3: 1, 4: 1} for dir in glob.glob(f"{EXPERIMENT_DATA_DIR}/*/"): parameters_["image_path"] = dir predicted_density = inference(parameters_) with open(os.path.join(dir, "density.txt")) as file: real_density = int(file.read()) print(f"Predicted density: {predicted_density}") print(f"Real density: {real_density}\n") print(f"Predicted density (2 cls): {two_classes_mapping[predicted_density]}") print(f"Real density (2 cls): {two_classes_mapping[real_density]}\n") predicted_values.append(predicted_density) real_values.append(real_density) predicted_values_two_classes.append(two_classes_mapping[predicted_density]) real_values_two_classes.append(two_classes_mapping[real_density]) print(f"Total accuracy: {accuracy_score(real_values, predicted_values)}") print(f"Total accuracy two classes: {accuracy_score(real_values_two_classes, predicted_values_two_classes)}") """ python density_model_torch_custom.py histogram python density_model_torch_custom.py cnn """
import argparse import glob import os import numpy as np import torch from sklearn.metrics import accuracy_score import models_torch as models import utils EXPERIMENT_DATA_DIR = "/tmp/mgr" def inference(parameters, verbose=True) -> int: # resolve device device = torch.device( "cuda:{}".format(parameters["gpu_number"]) if parameters["device_type"] == "gpu" else "cpu" ) # load input images datum_l_cc = utils.load_images(parameters['image_path'], 'L-CC') datum_r_cc = utils.load_images(parameters['image_path'], 'R-CC') datum_l_mlo = utils.load_images(parameters['image_path'], 'L-MLO') datum_r_mlo = utils.load_images(parameters['image_path'], 'R-MLO') # construct models and prepare data if parameters["model_type"] == 'cnn': model = models.BaselineBreastModel(device, nodropout_probability=1.0, gaussian_noise_std=0.0).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = { "L-CC": torch.Tensor(datum_l_cc).permute(0, 3, 1, 2).to(device), "L-MLO": torch.Tensor(datum_l_mlo).permute(0, 3, 1, 2).to(device), "R-CC": torch.Tensor(datum_r_cc).permute(0, 3, 1, 2).to(device), "R-MLO": torch.Tensor(datum_r_mlo).permute(0, 3, 1, 2).to(device), } elif parameters["model_type"] == 'histogram': model = models.BaselineHistogramModel(num_bins=parameters["bins_histogram"]).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = torch.Tensor(utils.histogram_features_generator([ datum_l_cc, datum_r_cc, datum_l_mlo, datum_r_mlo ], parameters)).to(device) else: raise RuntimeError(parameters["model_type"]) # run prediction with torch.no_grad(): prediction_density = model(x).cpu().numpy() if verbose: # nicely prints out the predictions print('Density prediction:\n' '\tAlmost entirely fatty (0):\t\t\t' + str(prediction_density[0, 0]) + '\n' '\tScattered areas of fibroglandular density (1):\t' + str(prediction_density[0, 1]) + '\n' '\tHeterogeneously dense (2):\t\t\t' + str(prediction_density[0, 2]) + '\n' '\tExtremely dense (3):\t\t\t\t' + str(prediction_density[0, 3]) + '\n') return np.argmax(prediction_density[0])+1 # return density in scope 1 to 4 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run Inference') parser.add_argument('model_type') parser.add_argument('--bins-histogram', default=50) parser.add_argument('--model-path', default=None) parser.add_argument('--device-type', default="cpu") # parser.add_argument('--image-path', default="images/") args = parser.parse_args() parameters_ = { "model_type": args.model_type, "bins_histogram": args.bins_histogram, "model_path": args.model_path, "device_type": args.device_type, # "image_path": args.image_path, } if parameters_["model_path"] is None: if args.model_type == "histogram": parameters_["model_path"] = "saved_models/BreastDensity_BaselineHistogramModel/model.p" if args.model_type == "cnn": parameters_["model_path"] = "saved_models/BreastDensity_BaselineBreastModel/model.p" predicted_values = [] real_values = [] predicted_values_two_classes = [] real_values_two_classes = [] two_classes_mapping = {1: 0, 2: 0, 3: 1, 4: 1} for dir in glob.glob(f"{EXPERIMENT_DATA_DIR}/*/"): parameters_["image_path"] = dir predicted_density = inference(parameters_) with open(os.path.join(dir, "density.txt")) as file: real_density = int(file.read()) print(f"Predicted density: {predicted_density}") print(f"Real density: {real_density}\n") print(f"Predicted density (2 cls): {two_classes_mapping[predicted_density]}") print(f"Real density (2 cls): {two_classes_mapping[real_density]}\n") predicted_values.append(predicted_density) real_values.append(real_density) predicted_values_two_classes.append(two_classes_mapping[predicted_density]) real_values_two_classes.append(two_classes_mapping[real_density]) print(f"Total accuracy: {accuracy_score(real_values, predicted_values)}") print(f"Total accuracy two classes: {accuracy_score(real_values_two_classes, predicted_values_two_classes)}") """ python density_model_torch_custom.py histogram python density_model_torch_custom.py cnn """
en
0.419594
# resolve device # load input images # construct models and prepare data # run prediction # nicely prints out the predictions # return density in scope 1 to 4 # parser.add_argument('--image-path', default="images/") # "image_path": args.image_path, python density_model_torch_custom.py histogram python density_model_torch_custom.py cnn
2.169504
2
esmvaltool/diag_scripts/ensclus/ens_anom.py
yifatdzigan/ESMValTool
148
8321
"""Computation of ensemble anomalies based on a desired value.""" import os import numpy as np from scipy import stats # User-defined packages from read_netcdf import read_iris, save_n_2d_fields from sel_season_area import sel_area, sel_season def ens_anom(filenames, dir_output, name_outputs, varname, numens, season, area, extreme): """Ensemble anomalies. Computation of the ensemble anomalies based on the desired value from the input variable (it can be the percentile, mean, maximum, standard deviation or trend) OUTPUT: NetCDF files of ensemble mean of climatology, selected value and anomaly maps. """ print('The name of the output files will be <variable>_{0}.txt' .format(name_outputs)) print('Number of ensemble members: {0}'.format(numens)) outfiles = [] # Reading the netCDF file of 3Dfield, for all the ensemble members var_ens = [] for ens in range(numens): ifile = filenames[ens] # print('ENSEMBLE MEMBER %s' %ens) var, varunits, lat, lon, dates, _ = read_iris(ifile) # Convertion from kg m-2 s-1 to mm/day if varunits == 'kg m-2 s-1': var = var * 86400 # there are 86400 seconds in a day varunits = 'mm/day' # Selecting a season (DJF,DJFM,NDJFM,JJA) var_season, _ = sel_season(var, dates, season) # Selecting only [latS-latN, lonW-lonE] box region var_area, lat_area, lon_area = sel_area(lat, lon, var_season, area) var_ens.append(var_area) if varunits == 'kg m-2 s-1': print('\nPrecipitation rate units were converted from kg m-2 s-1 ' 'to mm/day') print('The variable is {0} ({1})'.format(varname, varunits)) print('Original var shape: (time x lat x lon)={0}'.format(var.shape)) print('var shape after selecting season {0} and area {1}: ' '(time x lat x lon)={2}'.format(season, area, var_area.shape)) if extreme == 'mean': # Compute the time mean over the entire period, for each ens member varextreme_ens = [np.nanmean(var_ens[i], axis=0) for i in range(numens)] elif len(extreme.split("_")) == 2: # Compute the chosen percentile over the period, for each ens member quant = int(extreme.partition("th")[0]) varextreme_ens = [np.nanpercentile(var_ens[i], quant, axis=0) for i in range(numens)] elif extreme == 'maximum': # Compute the maximum value over the period, for each ensemble member varextreme_ens = [np.nanmax(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'std': # Compute the standard deviation over the period, for each ens member varextreme_ens = [np.nanstd(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'trend': # Compute the linear trend over the period, for each ensemble member trendmap = np.empty((var_ens[0].shape[1], var_ens[0].shape[2])) trendmap_ens = [] for i in range(numens): for jla in range(var_ens[0].shape[1]): for jlo in range(var_ens[0].shape[2]): slope, _, _, _, _ = \ stats.linregress(range(var_ens[0].shape[0]), var_ens[i][:, jla, jlo]) trendmap[jla, jlo] = slope trendmap_ens.append(trendmap.copy()) varextreme_ens = trendmap_ens varextreme_ens_np = np.array(varextreme_ens) print('Anomalies are computed with respect to the {0}'.format(extreme)) # Compute and save the anomalies with respect to the ensemble ens_anomalies = varextreme_ens_np - np.nanmean(varextreme_ens_np, axis=0) varsave = 'ens_anomalies' ofile = os.path.join(dir_output, 'ens_anomalies_{0}.nc' .format(name_outputs)) # print(ofile) print('ens_anomalies shape: (numens x lat x lon)={0}' .format(ens_anomalies.shape)) save_n_2d_fields(lat_area, lon_area, ens_anomalies, varsave, varunits, ofile) outfiles.append(ofile) # Compute and save the climatology vartimemean_ens = [np.mean(var_ens[i], axis=0) for i in range(numens)] ens_climatologies = np.array(vartimemean_ens) varsave = 'ens_climatologies' ofile = os.path.join(dir_output, 'ens_climatologies_{0}.nc' .format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_climatologies, varsave, varunits, ofile) outfiles.append(ofile) ens_extreme = varextreme_ens_np varsave = 'ens_extreme' ofile = os.path.join(dir_output, 'ens_extreme_{0}.nc'.format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_extreme, varsave, varunits, ofile) outfiles.append(ofile) return outfiles
"""Computation of ensemble anomalies based on a desired value.""" import os import numpy as np from scipy import stats # User-defined packages from read_netcdf import read_iris, save_n_2d_fields from sel_season_area import sel_area, sel_season def ens_anom(filenames, dir_output, name_outputs, varname, numens, season, area, extreme): """Ensemble anomalies. Computation of the ensemble anomalies based on the desired value from the input variable (it can be the percentile, mean, maximum, standard deviation or trend) OUTPUT: NetCDF files of ensemble mean of climatology, selected value and anomaly maps. """ print('The name of the output files will be <variable>_{0}.txt' .format(name_outputs)) print('Number of ensemble members: {0}'.format(numens)) outfiles = [] # Reading the netCDF file of 3Dfield, for all the ensemble members var_ens = [] for ens in range(numens): ifile = filenames[ens] # print('ENSEMBLE MEMBER %s' %ens) var, varunits, lat, lon, dates, _ = read_iris(ifile) # Convertion from kg m-2 s-1 to mm/day if varunits == 'kg m-2 s-1': var = var * 86400 # there are 86400 seconds in a day varunits = 'mm/day' # Selecting a season (DJF,DJFM,NDJFM,JJA) var_season, _ = sel_season(var, dates, season) # Selecting only [latS-latN, lonW-lonE] box region var_area, lat_area, lon_area = sel_area(lat, lon, var_season, area) var_ens.append(var_area) if varunits == 'kg m-2 s-1': print('\nPrecipitation rate units were converted from kg m-2 s-1 ' 'to mm/day') print('The variable is {0} ({1})'.format(varname, varunits)) print('Original var shape: (time x lat x lon)={0}'.format(var.shape)) print('var shape after selecting season {0} and area {1}: ' '(time x lat x lon)={2}'.format(season, area, var_area.shape)) if extreme == 'mean': # Compute the time mean over the entire period, for each ens member varextreme_ens = [np.nanmean(var_ens[i], axis=0) for i in range(numens)] elif len(extreme.split("_")) == 2: # Compute the chosen percentile over the period, for each ens member quant = int(extreme.partition("th")[0]) varextreme_ens = [np.nanpercentile(var_ens[i], quant, axis=0) for i in range(numens)] elif extreme == 'maximum': # Compute the maximum value over the period, for each ensemble member varextreme_ens = [np.nanmax(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'std': # Compute the standard deviation over the period, for each ens member varextreme_ens = [np.nanstd(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'trend': # Compute the linear trend over the period, for each ensemble member trendmap = np.empty((var_ens[0].shape[1], var_ens[0].shape[2])) trendmap_ens = [] for i in range(numens): for jla in range(var_ens[0].shape[1]): for jlo in range(var_ens[0].shape[2]): slope, _, _, _, _ = \ stats.linregress(range(var_ens[0].shape[0]), var_ens[i][:, jla, jlo]) trendmap[jla, jlo] = slope trendmap_ens.append(trendmap.copy()) varextreme_ens = trendmap_ens varextreme_ens_np = np.array(varextreme_ens) print('Anomalies are computed with respect to the {0}'.format(extreme)) # Compute and save the anomalies with respect to the ensemble ens_anomalies = varextreme_ens_np - np.nanmean(varextreme_ens_np, axis=0) varsave = 'ens_anomalies' ofile = os.path.join(dir_output, 'ens_anomalies_{0}.nc' .format(name_outputs)) # print(ofile) print('ens_anomalies shape: (numens x lat x lon)={0}' .format(ens_anomalies.shape)) save_n_2d_fields(lat_area, lon_area, ens_anomalies, varsave, varunits, ofile) outfiles.append(ofile) # Compute and save the climatology vartimemean_ens = [np.mean(var_ens[i], axis=0) for i in range(numens)] ens_climatologies = np.array(vartimemean_ens) varsave = 'ens_climatologies' ofile = os.path.join(dir_output, 'ens_climatologies_{0}.nc' .format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_climatologies, varsave, varunits, ofile) outfiles.append(ofile) ens_extreme = varextreme_ens_np varsave = 'ens_extreme' ofile = os.path.join(dir_output, 'ens_extreme_{0}.nc'.format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_extreme, varsave, varunits, ofile) outfiles.append(ofile) return outfiles
en
0.845845
Computation of ensemble anomalies based on a desired value. # User-defined packages Ensemble anomalies. Computation of the ensemble anomalies based on the desired value from the input variable (it can be the percentile, mean, maximum, standard deviation or trend) OUTPUT: NetCDF files of ensemble mean of climatology, selected value and anomaly maps. # Reading the netCDF file of 3Dfield, for all the ensemble members # print('ENSEMBLE MEMBER %s' %ens) # Convertion from kg m-2 s-1 to mm/day # there are 86400 seconds in a day # Selecting a season (DJF,DJFM,NDJFM,JJA) # Selecting only [latS-latN, lonW-lonE] box region # Compute the time mean over the entire period, for each ens member # Compute the chosen percentile over the period, for each ens member # Compute the maximum value over the period, for each ensemble member # Compute the standard deviation over the period, for each ens member # Compute the linear trend over the period, for each ensemble member # Compute and save the anomalies with respect to the ensemble # print(ofile) # Compute and save the climatology
2.96774
3
pytition/petition/models.py
Te-k/Pytition
0
8322
<filename>pytition/petition/models.py from django.db import models from django.utils.html import mark_safe, strip_tags from django.utils.text import slugify from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_lazy from django.core.exceptions import ValidationError from django.db.models.signals import post_save, post_delete from django.dispatch import receiver from django.conf import settings from django.contrib.auth.hashers import get_hasher from django.db import transaction from django.urls import reverse from django.db.models import Q from tinymce import models as tinymce_models from colorfield.fields import ColorField import html class Petition(models.Model): NO = "no gradient" RIGHT = "to right" BOTTOM = "to bottom" BOTTOM_RIGHT = "to bottom right" BOTTOM_LEFT = "to bottom left" LINEAR_GRADIENT_CHOICES = ( (NO, "no gradient"), (RIGHT, "to right"), (BOTTOM, "to bottom"), (BOTTOM_RIGHT, "to bottom right"), (BOTTOM_LEFT, "to bottom left") ) MAIL = "MAIL" POST = "POST" GET = "GET" NEWSLETTER_SUBSCRIBE_METHOD_CHOICES = ( (MAIL, "MAIL"), (POST, "POST"), (GET, "GET") ) title = models.TextField(verbose_name=ugettext_lazy("Title")) text = tinymce_models.HTMLField(blank=True) side_text = tinymce_models.HTMLField(blank=True) target = models.IntegerField(default=500) linear_gradient_direction = models.CharField(choices=LINEAR_GRADIENT_CHOICES, max_length=15, default=NO, blank=True) gradient_from = ColorField(blank=True) gradient_to = ColorField(blank=True) bgcolor = ColorField(blank=True) footer_text = tinymce_models.HTMLField(blank=True) footer_links = tinymce_models.HTMLField(blank=True) twitter_description = models.CharField(max_length=200, blank=True) twitter_image = models.CharField(max_length=500, blank=True) has_newsletter = models.BooleanField(default=False) newsletter_subscribe_http_data = models.TextField(blank=True) newsletter_subscribe_http_mailfield = models.CharField(max_length=100, blank=True) newsletter_subscribe_http_url = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_subject = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_from = models.CharField(max_length=500, blank=True) newsletter_subscribe_mail_to = models.CharField(max_length=500, blank=True) newsletter_subscribe_method = models.CharField(choices=NEWSLETTER_SUBSCRIBE_METHOD_CHOICES, max_length=4, default=MAIL) newsletter_subscribe_mail_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) newsletter_subscribe_mail_smtp_port = models.IntegerField(default=25, blank=True) newsletter_subscribe_mail_smtp_user = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_password = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_tls = models.BooleanField(default=False) newsletter_subscribe_mail_smtp_starttls = models.BooleanField(default=False) org_twitter_handle = models.CharField(max_length=20, blank=True) published = models.BooleanField(default=False) newsletter_text = models.CharField(max_length=1000, blank=True) sign_form_footer = models.TextField(blank=True) confirmation_email_sender = models.CharField(max_length=100, blank=True) confirmation_email_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) confirmation_email_smtp_port = models.IntegerField(default=25, blank=True) confirmation_email_smtp_user = models.CharField(max_length=200, blank=True) confirmation_email_smtp_password = models.CharField(max_length=200, blank=True) confirmation_email_smtp_tls = models.BooleanField(default=False) confirmation_email_smtp_starttls = models.BooleanField(default=False) use_custom_email_settings = models.BooleanField(default=False) salt = models.TextField(blank=True) slugs = models.ManyToManyField('SlugModel', blank=True, through='SlugOwnership') def prepopulate_from_template(self, template): for field in self._meta.fields: if hasattr(self, field.name) and hasattr(template, field.name): template_value = getattr(template, field.name) if template_value is not None and template_value != "": setattr(self, field.name, template_value) def save(self, *args, **kwargs): super().save(*args, **kwargs) if not self.salt: hasher = get_hasher() self.salt = hasher.salt().decode('utf-8') super().save() def slugify(self): if self.slugs.count() == 0: slugtext = slugify(self.raw_title) # let's search for slug collisions filters = {'slugs__slug': slugtext} if self.organization_set.count() > 0: org = self.organization_set.first() filters.update({'organization__name': org.name}) else: user = self.pytitionuser_set.first() filters.update({'pytitionuser__user__username': user.user.username}) results = Petition.objects.filter(**filters) if results.count() > 0: raise ValueError(_("This slug is already used by another petition from this organization/user")) slug = SlugModel(slug=slugify(slugtext)) slug.save() self.slugs.add(slug) self.save() @classmethod def by_id(cls, id): try: return Petition.objects.get(pk=id) except Petition.DoesNotExist: return None def get_signature_number(self, confirmed=None): signatures = self.signature_set if confirmed is not None: signatures = signatures.filter(confirmed=confirmed) return signatures.count() def already_signed(self, email): signature_number = Signature.objects.filter(petition = self.id)\ .filter(confirmed = True).filter(email = email).count() return signature_number > 0 def confirm_signature(self, conf_hash): signature = Signature.objects.filter(petition=self.id).get(confirmation_hash=conf_hash) if signature: # Now confirm the signature corresponding to this hash signature.confirm() signature.save() return _("Thank you for confirming your signature!") else: return None def add_slug(self, slugtext): with transaction.atomic(): slugtext = slugify(slugtext) slug = SlugModel.objects.create(slug=slugtext) if self.owner_type == "org": SlugOwnership.objects.create(slug=slug, petition=self, organization=self.owner) elif self.owner_type == "user": SlugOwnership.objects.create(slug=slug, petition=self, user=self.owner) else: raise ValueError(_("This petition has no owner, cannot add slug!")) def del_slug(self, slug): slug.delete() def publish(self): self.published = True self.save() def unpublish(self): self.published = False self.save() @property def owner_type(self): if self.organization_set.count() > 0: return "org" elif self.pytitionuser_set.count() > 0: return "user" else: return "no_owner" @property def owner(self): if self.organization_set.count() > 0: return self.organization_set.first() elif self.pytitionuser_set.count() > 0: return self.pytitionuser_set.first() else: return None @property def signature_number(self): return self.get_signature_number(True) @property def raw_twitter_description(self): return html.unescape(mark_safe(strip_tags(self.twitter_description))) @property def raw_text(self): return html.unescape(mark_safe(strip_tags(self.text))) @property def raw_title(self): return html.unescape(mark_safe(strip_tags(self.title).strip())) def __str__(self): return self.raw_title def __repr__(self): return self.raw_title @property def url(self): slugs = self.slugs.all() if len(slugs) == 0: # If there is no slug, ugly url return reverse('detail', kwargs={'petition_id': self.id}) else: if self.organization_set.count() > 0: # This petition is owned by an Organization org = self.organization_set.first() return reverse("slug_show_petition", kwargs={"orgslugname": org.slugname, "petitionname": slugs[0]}) elif self.pytitionuser_set.count() > 0: # This petition is owned by a PytitionUser user = self.pytitionuser_set.first() return reverse("slug_show_petition", kwargs={"username": user.user.username, "petitionname": slugs[0]}) else: # This is a BUG! raise ValueError(_("This petition is buggy. Sorry about that!")) class SlugOwnership(models.Model): petition = models.ForeignKey(Petition, on_delete=models.CASCADE) slug = models.ForeignKey('SlugModel', on_delete=models.CASCADE) user = models.ForeignKey('PytitionUser', on_delete=models.CASCADE, blank=True, null=True, default=None) organization = models.ForeignKey('Organization', on_delete=models.CASCADE, blank=True, null=True, default=None) class Meta: constraints = [ models.UniqueConstraint(fields=['slug', 'organization'], name="unique_slugnameperorg", condition=Q(user=None)), models.UniqueConstraint(fields=['slug', 'user'], name="unique_slugnameperuser", condition=Q(organization=None)), ] class Signature(models.Model): first_name = models.CharField(max_length=50, verbose_name=ugettext_lazy("First name")) last_name = models.CharField(max_length=50, verbose_name=ugettext_lazy("Last name")) phone = models.CharField(max_length=20, blank=True, verbose_name=ugettext_lazy("Phone number")) email = models.EmailField(verbose_name=ugettext_lazy("Email address")) confirmation_hash = models.CharField(max_length=128) confirmed = models.BooleanField(default=False, verbose_name=ugettext_lazy("Confirmed")) petition = models.ForeignKey(Petition, on_delete=models.CASCADE, verbose_name=ugettext_lazy("Petition")) subscribed_to_mailinglist = models.BooleanField(default=False, verbose_name=ugettext_lazy("Subscribed to mailing list")) date = models.DateTimeField(blank=True, auto_now_add=True, verbose_name=ugettext_lazy("Date")) ipaddress = models.TextField(blank=True, null=True) def clean(self): if self.petition.already_signed(self.email): if self.petition.signature_set.filter(email = self.email).get(confirmed = True).id != self.id: raise ValidationError(_("You already signed the petition")) def save(self, *args, **kwargs): self.clean() if self.confirmed: # invalidating other signatures from same email Signature.objects.filter(petition=self.petition).filter(email=self.email)\ .exclude(id=self.id).delete() super().save(*args, **kwargs) def confirm(self): self.confirmed = True def __str__(self): return html.unescape("[{}:{}] {} {}".format(self.petition.id, "OK" if self.confirmed else "..", self.first_name, self.last_name)) def __repr__(self): return html.unescape("[{}:{}] {} {}".format(self.petition.id, "OK" if self.confirmed else "..", self.first_name, self.last_name)) class PetitionTemplate(models.Model): NO = "no gradient" RIGHT = "to right" BOTTOM = "to bottom" BOTTOM_RIGHT = "to bottom right" BOTTOM_LEFT = "to bottom left" LINEAR_GRADIENT_CHOICES = ( (NO, "no gradient"), (RIGHT, "to right"), (BOTTOM, "to bottom"), (BOTTOM_RIGHT, "to bottom right"), (BOTTOM_LEFT, "to bottom left") ) MAIL = "MAIL" POST = "POST" GET = "GET" NEWSLETTER_SUBSCRIBE_METHOD_CHOICES = ( (MAIL, "MAIL"), (POST, "POST"), (GET, "GET") ) name = models.CharField(max_length=50, verbose_name=ugettext_lazy("Name"), db_index=True) text = tinymce_models.HTMLField(blank=True) side_text = tinymce_models.HTMLField(blank=True) target = models.IntegerField(blank=True, null=True) linear_gradient_direction = models.CharField(choices=LINEAR_GRADIENT_CHOICES, max_length=15, default=NO, blank=True) gradient_from = ColorField(blank=True) gradient_to = ColorField(blank=True) bgcolor = ColorField(blank=True) footer_text = tinymce_models.HTMLField(blank=True) footer_links = tinymce_models.HTMLField(blank=True) twitter_description = models.CharField(max_length=200, blank=True) twitter_image = models.CharField(max_length=500, blank=True) has_newsletter = models.BooleanField(default=False) newsletter_subscribe_http_data = models.TextField(blank=True) newsletter_subscribe_http_mailfield = models.CharField(max_length=100, blank=True) newsletter_subscribe_http_url = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_subject = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_from = models.EmailField(max_length=500, blank=True) newsletter_subscribe_mail_to = models.EmailField(max_length=500, blank=True) newsletter_subscribe_method = models.CharField(choices=NEWSLETTER_SUBSCRIBE_METHOD_CHOICES, max_length=4, default=MAIL) newsletter_subscribe_mail_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) newsletter_subscribe_mail_smtp_port = models.IntegerField(default=25) newsletter_subscribe_mail_smtp_user = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_password = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_tls = models.BooleanField(default=False) newsletter_subscribe_mail_smtp_starttls = models.BooleanField(default=False) org_twitter_handle = models.CharField(max_length=20, blank=True) newsletter_text = models.CharField(max_length=1000, blank=True) sign_form_footer = models.TextField(blank=True) confirmation_email_sender = models.EmailField(max_length=100, blank=True) confirmation_email_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) confirmation_email_smtp_port = models.IntegerField(default=25, blank=True) confirmation_email_smtp_user = models.CharField(max_length=200, blank=True) confirmation_email_smtp_password = models.CharField(max_length=200, blank=True) confirmation_email_smtp_tls = models.BooleanField(default=False) confirmation_email_smtp_starttls = models.BooleanField(default=False) use_custom_email_settings = models.BooleanField(default=False) def __str__(self): return self.name def __repr__(self): return self.name class Meta: index_together = ["id", ] class SlugModel(models.Model): slug = models.SlugField(max_length=200) class Meta: constraints = [ models.UniqueConstraint(fields=['slug'], name='unique_slugname') ] def __str__(self): return self.slug def __repr__(self): return self.slug class Organization(models.Model): name = models.CharField(max_length=200, verbose_name=ugettext_lazy("Name"), unique=True) petition_templates = models.ManyToManyField(PetitionTemplate, through='TemplateOwnership', through_fields=['organization', 'template'], blank=True, verbose_name=ugettext_lazy("Petition templates")) petitions = models.ManyToManyField(Petition, blank=True, verbose_name=ugettext_lazy("Petitions")) default_template = models.ForeignKey(PetitionTemplate, blank=True, null=True, related_name='+', verbose_name=ugettext_lazy("Default petition template"), to_field='id', on_delete=models.SET_NULL) slugname = models.SlugField(max_length=200, unique=True) def drop(self): with transaction.atomic(): petitions = list(self.petitions.all()) templates = list(self.petition_templates.all()) self.delete() for petition in petitions: petition.delete() for template in templates: template.delete() def add_member(self, member): member.organizations.add(self) permission = Permission.objects.create(organization=self) permission.save() member.permissions.add(permission) member.save() def __str__(self): return self.name def __repr__(self): return self.name def save(self, *args, **kwargs): if not self.slugname: self.slugname = slugify(self.name) super(Organization, self).save(*args, **kwargs) @property def kind(self): return "org" @property def fullname(self): return self.name def save(self, *args, **kwargs): self.slugname = slugify(self.name) super(Organization, self).save(*args, **kwargs) class Permission(models.Model): organization = models.ForeignKey(Organization, on_delete=models.CASCADE, verbose_name=ugettext_lazy("Organization related to these permissions")) can_add_members = models.BooleanField(default=False) can_remove_members = models.BooleanField(default=False) can_create_petitions = models.BooleanField(default=False) can_modify_petitions = models.BooleanField(default=False) can_delete_petitions = models.BooleanField(default=False) can_create_templates = models.BooleanField(default=False) can_modify_templates = models.BooleanField(default=False) can_delete_templates = models.BooleanField(default=False) can_view_signatures = models.BooleanField(default=False) can_modify_signatures = models.BooleanField(default=False) can_delete_signatures = models.BooleanField(default=False) can_modify_permissions = models.BooleanField(default=False) def set_all(self, value): self.can_add_members = value self.can_remove_members = value self.can_create_petitions = value self.can_modify_petitions = value self.can_delete_petitions = value self.can_create_templates = value self.can_modify_templates = value self.can_delete_templates = value self.can_view_signatures = value self.can_modify_signatures = value self.can_delete_signatures = value self.can_modify_permissions = value self.save() def __str__(self): ret = "{orgname} : ".format(orgname=self.organization.name) if self.user.count() > 0: ret = ret + "{username}".format(username=self.user.all()[0].name) else: ret = ret + "None" return ret def __repr__(self): return self.__str__() class PytitionUser(models.Model): petitions = models.ManyToManyField(Petition, blank=True) organizations = models.ManyToManyField(Organization, related_name="members", blank=True) user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name="pytitionuser") permissions = models.ManyToManyField(Permission, related_name="user", blank=True) invitations = models.ManyToManyField(Organization, related_name="invited", blank=True) petition_templates = models.ManyToManyField(PetitionTemplate, blank=True, through='TemplateOwnership', through_fields=['user', 'template'], verbose_name=ugettext_lazy("Petition templates")) default_template = models.ForeignKey(PetitionTemplate, blank=True, null=True, related_name='+', verbose_name=ugettext_lazy("Default petition template"), to_field='id', on_delete=models.SET_NULL) def has_right(self, right, petition=None, org=None): if petition: if petition in self.petitions.all(): return True try: if not org: org = Organization.objects.get(petitions=petition, members=self) permissions = self.permissions.get(organization=org) return getattr(permissions, right) except: return False if org: try: permissions = self.permissions.get(organization=org) return getattr(permissions, right) except: return False return False def drop(self): with transaction.atomic(): orgs = list(self.organizations.all()) petitions = list(self.petitions.all()) templates = list(self.petition_templates.all()) self.delete() for org in orgs: if org.members.count() == 0: org.drop() for petition in petitions: petition.delete() for template in templates: template.delete() @property def is_authenticated(self): return self.user.is_authenticated @property def name(self): return self.username @property def username(self): return self.user.username @property def get_full_name(self): return self.user.get_full_name() @property def fullname(self): return self.get_full_name @property def kind(self): return "user" def __str__(self): return self.get_full_name def __repr__(self): return self.get_full_name @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_user_profile(sender, instance, created, **kwargs): if created: PytitionUser.objects.create(user=instance) @receiver(post_save, sender=settings.AUTH_USER_MODEL) def save_user_profile(sender, instance, **kwargs): instance.pytitionuser.save() @receiver(post_save, sender=Organization) def save_user_profile(sender, instance, **kwargs): if not instance.slugname: slugtext = slugify(instance.name) instance.slugname = slugtext instance.save() @receiver(post_delete, sender=PytitionUser) def post_delete_user(sender, instance, *args, **kwargs): if instance.user: # just in case user is not specified instance.user.delete() class TemplateOwnership(models.Model): user = models.ForeignKey(PytitionUser, blank=True, null=True, on_delete=models.CASCADE) organization = models.ForeignKey(Organization, blank=True, null=True, on_delete=models.CASCADE) template = models.ForeignKey(PetitionTemplate, to_field='id', on_delete=models.CASCADE) def clean(self): if self.user is None and self.organization is None: raise ValidationError(_("The template needs to be owned by a User or an Organization." "It cannot hang around alone by itself.")) #class Meta: # unique_together = (("user", "template"), ("organization", "template"))
<filename>pytition/petition/models.py from django.db import models from django.utils.html import mark_safe, strip_tags from django.utils.text import slugify from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_lazy from django.core.exceptions import ValidationError from django.db.models.signals import post_save, post_delete from django.dispatch import receiver from django.conf import settings from django.contrib.auth.hashers import get_hasher from django.db import transaction from django.urls import reverse from django.db.models import Q from tinymce import models as tinymce_models from colorfield.fields import ColorField import html class Petition(models.Model): NO = "no gradient" RIGHT = "to right" BOTTOM = "to bottom" BOTTOM_RIGHT = "to bottom right" BOTTOM_LEFT = "to bottom left" LINEAR_GRADIENT_CHOICES = ( (NO, "no gradient"), (RIGHT, "to right"), (BOTTOM, "to bottom"), (BOTTOM_RIGHT, "to bottom right"), (BOTTOM_LEFT, "to bottom left") ) MAIL = "MAIL" POST = "POST" GET = "GET" NEWSLETTER_SUBSCRIBE_METHOD_CHOICES = ( (MAIL, "MAIL"), (POST, "POST"), (GET, "GET") ) title = models.TextField(verbose_name=ugettext_lazy("Title")) text = tinymce_models.HTMLField(blank=True) side_text = tinymce_models.HTMLField(blank=True) target = models.IntegerField(default=500) linear_gradient_direction = models.CharField(choices=LINEAR_GRADIENT_CHOICES, max_length=15, default=NO, blank=True) gradient_from = ColorField(blank=True) gradient_to = ColorField(blank=True) bgcolor = ColorField(blank=True) footer_text = tinymce_models.HTMLField(blank=True) footer_links = tinymce_models.HTMLField(blank=True) twitter_description = models.CharField(max_length=200, blank=True) twitter_image = models.CharField(max_length=500, blank=True) has_newsletter = models.BooleanField(default=False) newsletter_subscribe_http_data = models.TextField(blank=True) newsletter_subscribe_http_mailfield = models.CharField(max_length=100, blank=True) newsletter_subscribe_http_url = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_subject = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_from = models.CharField(max_length=500, blank=True) newsletter_subscribe_mail_to = models.CharField(max_length=500, blank=True) newsletter_subscribe_method = models.CharField(choices=NEWSLETTER_SUBSCRIBE_METHOD_CHOICES, max_length=4, default=MAIL) newsletter_subscribe_mail_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) newsletter_subscribe_mail_smtp_port = models.IntegerField(default=25, blank=True) newsletter_subscribe_mail_smtp_user = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_password = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_tls = models.BooleanField(default=False) newsletter_subscribe_mail_smtp_starttls = models.BooleanField(default=False) org_twitter_handle = models.CharField(max_length=20, blank=True) published = models.BooleanField(default=False) newsletter_text = models.CharField(max_length=1000, blank=True) sign_form_footer = models.TextField(blank=True) confirmation_email_sender = models.CharField(max_length=100, blank=True) confirmation_email_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) confirmation_email_smtp_port = models.IntegerField(default=25, blank=True) confirmation_email_smtp_user = models.CharField(max_length=200, blank=True) confirmation_email_smtp_password = models.CharField(max_length=200, blank=True) confirmation_email_smtp_tls = models.BooleanField(default=False) confirmation_email_smtp_starttls = models.BooleanField(default=False) use_custom_email_settings = models.BooleanField(default=False) salt = models.TextField(blank=True) slugs = models.ManyToManyField('SlugModel', blank=True, through='SlugOwnership') def prepopulate_from_template(self, template): for field in self._meta.fields: if hasattr(self, field.name) and hasattr(template, field.name): template_value = getattr(template, field.name) if template_value is not None and template_value != "": setattr(self, field.name, template_value) def save(self, *args, **kwargs): super().save(*args, **kwargs) if not self.salt: hasher = get_hasher() self.salt = hasher.salt().decode('utf-8') super().save() def slugify(self): if self.slugs.count() == 0: slugtext = slugify(self.raw_title) # let's search for slug collisions filters = {'slugs__slug': slugtext} if self.organization_set.count() > 0: org = self.organization_set.first() filters.update({'organization__name': org.name}) else: user = self.pytitionuser_set.first() filters.update({'pytitionuser__user__username': user.user.username}) results = Petition.objects.filter(**filters) if results.count() > 0: raise ValueError(_("This slug is already used by another petition from this organization/user")) slug = SlugModel(slug=slugify(slugtext)) slug.save() self.slugs.add(slug) self.save() @classmethod def by_id(cls, id): try: return Petition.objects.get(pk=id) except Petition.DoesNotExist: return None def get_signature_number(self, confirmed=None): signatures = self.signature_set if confirmed is not None: signatures = signatures.filter(confirmed=confirmed) return signatures.count() def already_signed(self, email): signature_number = Signature.objects.filter(petition = self.id)\ .filter(confirmed = True).filter(email = email).count() return signature_number > 0 def confirm_signature(self, conf_hash): signature = Signature.objects.filter(petition=self.id).get(confirmation_hash=conf_hash) if signature: # Now confirm the signature corresponding to this hash signature.confirm() signature.save() return _("Thank you for confirming your signature!") else: return None def add_slug(self, slugtext): with transaction.atomic(): slugtext = slugify(slugtext) slug = SlugModel.objects.create(slug=slugtext) if self.owner_type == "org": SlugOwnership.objects.create(slug=slug, petition=self, organization=self.owner) elif self.owner_type == "user": SlugOwnership.objects.create(slug=slug, petition=self, user=self.owner) else: raise ValueError(_("This petition has no owner, cannot add slug!")) def del_slug(self, slug): slug.delete() def publish(self): self.published = True self.save() def unpublish(self): self.published = False self.save() @property def owner_type(self): if self.organization_set.count() > 0: return "org" elif self.pytitionuser_set.count() > 0: return "user" else: return "no_owner" @property def owner(self): if self.organization_set.count() > 0: return self.organization_set.first() elif self.pytitionuser_set.count() > 0: return self.pytitionuser_set.first() else: return None @property def signature_number(self): return self.get_signature_number(True) @property def raw_twitter_description(self): return html.unescape(mark_safe(strip_tags(self.twitter_description))) @property def raw_text(self): return html.unescape(mark_safe(strip_tags(self.text))) @property def raw_title(self): return html.unescape(mark_safe(strip_tags(self.title).strip())) def __str__(self): return self.raw_title def __repr__(self): return self.raw_title @property def url(self): slugs = self.slugs.all() if len(slugs) == 0: # If there is no slug, ugly url return reverse('detail', kwargs={'petition_id': self.id}) else: if self.organization_set.count() > 0: # This petition is owned by an Organization org = self.organization_set.first() return reverse("slug_show_petition", kwargs={"orgslugname": org.slugname, "petitionname": slugs[0]}) elif self.pytitionuser_set.count() > 0: # This petition is owned by a PytitionUser user = self.pytitionuser_set.first() return reverse("slug_show_petition", kwargs={"username": user.user.username, "petitionname": slugs[0]}) else: # This is a BUG! raise ValueError(_("This petition is buggy. Sorry about that!")) class SlugOwnership(models.Model): petition = models.ForeignKey(Petition, on_delete=models.CASCADE) slug = models.ForeignKey('SlugModel', on_delete=models.CASCADE) user = models.ForeignKey('PytitionUser', on_delete=models.CASCADE, blank=True, null=True, default=None) organization = models.ForeignKey('Organization', on_delete=models.CASCADE, blank=True, null=True, default=None) class Meta: constraints = [ models.UniqueConstraint(fields=['slug', 'organization'], name="unique_slugnameperorg", condition=Q(user=None)), models.UniqueConstraint(fields=['slug', 'user'], name="unique_slugnameperuser", condition=Q(organization=None)), ] class Signature(models.Model): first_name = models.CharField(max_length=50, verbose_name=ugettext_lazy("First name")) last_name = models.CharField(max_length=50, verbose_name=ugettext_lazy("Last name")) phone = models.CharField(max_length=20, blank=True, verbose_name=ugettext_lazy("Phone number")) email = models.EmailField(verbose_name=ugettext_lazy("Email address")) confirmation_hash = models.CharField(max_length=128) confirmed = models.BooleanField(default=False, verbose_name=ugettext_lazy("Confirmed")) petition = models.ForeignKey(Petition, on_delete=models.CASCADE, verbose_name=ugettext_lazy("Petition")) subscribed_to_mailinglist = models.BooleanField(default=False, verbose_name=ugettext_lazy("Subscribed to mailing list")) date = models.DateTimeField(blank=True, auto_now_add=True, verbose_name=ugettext_lazy("Date")) ipaddress = models.TextField(blank=True, null=True) def clean(self): if self.petition.already_signed(self.email): if self.petition.signature_set.filter(email = self.email).get(confirmed = True).id != self.id: raise ValidationError(_("You already signed the petition")) def save(self, *args, **kwargs): self.clean() if self.confirmed: # invalidating other signatures from same email Signature.objects.filter(petition=self.petition).filter(email=self.email)\ .exclude(id=self.id).delete() super().save(*args, **kwargs) def confirm(self): self.confirmed = True def __str__(self): return html.unescape("[{}:{}] {} {}".format(self.petition.id, "OK" if self.confirmed else "..", self.first_name, self.last_name)) def __repr__(self): return html.unescape("[{}:{}] {} {}".format(self.petition.id, "OK" if self.confirmed else "..", self.first_name, self.last_name)) class PetitionTemplate(models.Model): NO = "no gradient" RIGHT = "to right" BOTTOM = "to bottom" BOTTOM_RIGHT = "to bottom right" BOTTOM_LEFT = "to bottom left" LINEAR_GRADIENT_CHOICES = ( (NO, "no gradient"), (RIGHT, "to right"), (BOTTOM, "to bottom"), (BOTTOM_RIGHT, "to bottom right"), (BOTTOM_LEFT, "to bottom left") ) MAIL = "MAIL" POST = "POST" GET = "GET" NEWSLETTER_SUBSCRIBE_METHOD_CHOICES = ( (MAIL, "MAIL"), (POST, "POST"), (GET, "GET") ) name = models.CharField(max_length=50, verbose_name=ugettext_lazy("Name"), db_index=True) text = tinymce_models.HTMLField(blank=True) side_text = tinymce_models.HTMLField(blank=True) target = models.IntegerField(blank=True, null=True) linear_gradient_direction = models.CharField(choices=LINEAR_GRADIENT_CHOICES, max_length=15, default=NO, blank=True) gradient_from = ColorField(blank=True) gradient_to = ColorField(blank=True) bgcolor = ColorField(blank=True) footer_text = tinymce_models.HTMLField(blank=True) footer_links = tinymce_models.HTMLField(blank=True) twitter_description = models.CharField(max_length=200, blank=True) twitter_image = models.CharField(max_length=500, blank=True) has_newsletter = models.BooleanField(default=False) newsletter_subscribe_http_data = models.TextField(blank=True) newsletter_subscribe_http_mailfield = models.CharField(max_length=100, blank=True) newsletter_subscribe_http_url = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_subject = models.CharField(max_length=1000, blank=True) newsletter_subscribe_mail_from = models.EmailField(max_length=500, blank=True) newsletter_subscribe_mail_to = models.EmailField(max_length=500, blank=True) newsletter_subscribe_method = models.CharField(choices=NEWSLETTER_SUBSCRIBE_METHOD_CHOICES, max_length=4, default=MAIL) newsletter_subscribe_mail_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) newsletter_subscribe_mail_smtp_port = models.IntegerField(default=25) newsletter_subscribe_mail_smtp_user = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_password = models.CharField(max_length=200, blank=True) newsletter_subscribe_mail_smtp_tls = models.BooleanField(default=False) newsletter_subscribe_mail_smtp_starttls = models.BooleanField(default=False) org_twitter_handle = models.CharField(max_length=20, blank=True) newsletter_text = models.CharField(max_length=1000, blank=True) sign_form_footer = models.TextField(blank=True) confirmation_email_sender = models.EmailField(max_length=100, blank=True) confirmation_email_smtp_host = models.CharField(max_length=100, default='localhost', blank=True) confirmation_email_smtp_port = models.IntegerField(default=25, blank=True) confirmation_email_smtp_user = models.CharField(max_length=200, blank=True) confirmation_email_smtp_password = models.CharField(max_length=200, blank=True) confirmation_email_smtp_tls = models.BooleanField(default=False) confirmation_email_smtp_starttls = models.BooleanField(default=False) use_custom_email_settings = models.BooleanField(default=False) def __str__(self): return self.name def __repr__(self): return self.name class Meta: index_together = ["id", ] class SlugModel(models.Model): slug = models.SlugField(max_length=200) class Meta: constraints = [ models.UniqueConstraint(fields=['slug'], name='unique_slugname') ] def __str__(self): return self.slug def __repr__(self): return self.slug class Organization(models.Model): name = models.CharField(max_length=200, verbose_name=ugettext_lazy("Name"), unique=True) petition_templates = models.ManyToManyField(PetitionTemplate, through='TemplateOwnership', through_fields=['organization', 'template'], blank=True, verbose_name=ugettext_lazy("Petition templates")) petitions = models.ManyToManyField(Petition, blank=True, verbose_name=ugettext_lazy("Petitions")) default_template = models.ForeignKey(PetitionTemplate, blank=True, null=True, related_name='+', verbose_name=ugettext_lazy("Default petition template"), to_field='id', on_delete=models.SET_NULL) slugname = models.SlugField(max_length=200, unique=True) def drop(self): with transaction.atomic(): petitions = list(self.petitions.all()) templates = list(self.petition_templates.all()) self.delete() for petition in petitions: petition.delete() for template in templates: template.delete() def add_member(self, member): member.organizations.add(self) permission = Permission.objects.create(organization=self) permission.save() member.permissions.add(permission) member.save() def __str__(self): return self.name def __repr__(self): return self.name def save(self, *args, **kwargs): if not self.slugname: self.slugname = slugify(self.name) super(Organization, self).save(*args, **kwargs) @property def kind(self): return "org" @property def fullname(self): return self.name def save(self, *args, **kwargs): self.slugname = slugify(self.name) super(Organization, self).save(*args, **kwargs) class Permission(models.Model): organization = models.ForeignKey(Organization, on_delete=models.CASCADE, verbose_name=ugettext_lazy("Organization related to these permissions")) can_add_members = models.BooleanField(default=False) can_remove_members = models.BooleanField(default=False) can_create_petitions = models.BooleanField(default=False) can_modify_petitions = models.BooleanField(default=False) can_delete_petitions = models.BooleanField(default=False) can_create_templates = models.BooleanField(default=False) can_modify_templates = models.BooleanField(default=False) can_delete_templates = models.BooleanField(default=False) can_view_signatures = models.BooleanField(default=False) can_modify_signatures = models.BooleanField(default=False) can_delete_signatures = models.BooleanField(default=False) can_modify_permissions = models.BooleanField(default=False) def set_all(self, value): self.can_add_members = value self.can_remove_members = value self.can_create_petitions = value self.can_modify_petitions = value self.can_delete_petitions = value self.can_create_templates = value self.can_modify_templates = value self.can_delete_templates = value self.can_view_signatures = value self.can_modify_signatures = value self.can_delete_signatures = value self.can_modify_permissions = value self.save() def __str__(self): ret = "{orgname} : ".format(orgname=self.organization.name) if self.user.count() > 0: ret = ret + "{username}".format(username=self.user.all()[0].name) else: ret = ret + "None" return ret def __repr__(self): return self.__str__() class PytitionUser(models.Model): petitions = models.ManyToManyField(Petition, blank=True) organizations = models.ManyToManyField(Organization, related_name="members", blank=True) user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name="pytitionuser") permissions = models.ManyToManyField(Permission, related_name="user", blank=True) invitations = models.ManyToManyField(Organization, related_name="invited", blank=True) petition_templates = models.ManyToManyField(PetitionTemplate, blank=True, through='TemplateOwnership', through_fields=['user', 'template'], verbose_name=ugettext_lazy("Petition templates")) default_template = models.ForeignKey(PetitionTemplate, blank=True, null=True, related_name='+', verbose_name=ugettext_lazy("Default petition template"), to_field='id', on_delete=models.SET_NULL) def has_right(self, right, petition=None, org=None): if petition: if petition in self.petitions.all(): return True try: if not org: org = Organization.objects.get(petitions=petition, members=self) permissions = self.permissions.get(organization=org) return getattr(permissions, right) except: return False if org: try: permissions = self.permissions.get(organization=org) return getattr(permissions, right) except: return False return False def drop(self): with transaction.atomic(): orgs = list(self.organizations.all()) petitions = list(self.petitions.all()) templates = list(self.petition_templates.all()) self.delete() for org in orgs: if org.members.count() == 0: org.drop() for petition in petitions: petition.delete() for template in templates: template.delete() @property def is_authenticated(self): return self.user.is_authenticated @property def name(self): return self.username @property def username(self): return self.user.username @property def get_full_name(self): return self.user.get_full_name() @property def fullname(self): return self.get_full_name @property def kind(self): return "user" def __str__(self): return self.get_full_name def __repr__(self): return self.get_full_name @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_user_profile(sender, instance, created, **kwargs): if created: PytitionUser.objects.create(user=instance) @receiver(post_save, sender=settings.AUTH_USER_MODEL) def save_user_profile(sender, instance, **kwargs): instance.pytitionuser.save() @receiver(post_save, sender=Organization) def save_user_profile(sender, instance, **kwargs): if not instance.slugname: slugtext = slugify(instance.name) instance.slugname = slugtext instance.save() @receiver(post_delete, sender=PytitionUser) def post_delete_user(sender, instance, *args, **kwargs): if instance.user: # just in case user is not specified instance.user.delete() class TemplateOwnership(models.Model): user = models.ForeignKey(PytitionUser, blank=True, null=True, on_delete=models.CASCADE) organization = models.ForeignKey(Organization, blank=True, null=True, on_delete=models.CASCADE) template = models.ForeignKey(PetitionTemplate, to_field='id', on_delete=models.CASCADE) def clean(self): if self.user is None and self.organization is None: raise ValidationError(_("The template needs to be owned by a User or an Organization." "It cannot hang around alone by itself.")) #class Meta: # unique_together = (("user", "template"), ("organization", "template"))
en
0.848554
# let's search for slug collisions # Now confirm the signature corresponding to this hash # If there is no slug, ugly url # This petition is owned by an Organization # This petition is owned by a PytitionUser # This is a BUG! # invalidating other signatures from same email # just in case user is not specified #class Meta: # unique_together = (("user", "template"), ("organization", "template"))
2.057399
2
bin/socialhistory.py
JohnShullTopDev/generating-traning-data-for-healthcare-machine-learningcare-
1
8323
import csv from testdata import SOCIALHISTORY_FILE from testdata import rndDate from patient import Patient SMOKINGCODES = { '428041000124106': 'Current some day smoker', '266919005' : 'Never smoker', '449868002' : 'Current every day smoker', '266927001' : 'Unknown if ever smoked', '8517006' : 'Former smoker' } class SocialHistory(object): """Create instances of SocialHistory; also maintains socialHistory by patient id""" socialHistories = {} # Dictionary of socialHistory by patient ID @classmethod def load(cls): """Loads patient SocialHistory""" # Loop through socialHistories and build patient socialHistory lists: histories = csv.reader(open(SOCIALHISTORY_FILE, 'U'), dialect='excel-tab') header = next(histories) for history in histories: cls(dict(zip(header, history))) # Create a socialHistory instance def __init__(self, p): self.pid = p['PID'] self.id = p['ID'] self.smokingStatusCode = p['SMOKINGSTATUSCODE'] self.smokingStatusText = SMOKINGCODES[self.smokingStatusCode] # Append socialHistory to the patient's socialHistory list: if self.pid in self.__class__.socialHistories: raise "Found >1 socialHistory for a patient" else: self.__class__.socialHistories[self.pid] = self def toJSON(self, prefix=""): if prefix: prefix += "-" patient = Patient.mpi[self.pid] return { "request": { "method": "PUT", "url": "Observation/" + prefix + "smokingstatus-" + self.id }, "resource": { "id": prefix + "smokingstatus-" + self.id, "resourceType": "Observation", "status": "final", "identifier": [ { "use" : "official", "system": "http://www.bmc.nl/zorgportal/identifiers/observations", "value" : prefix + self.id } ], "text": { "status": "generated", "div": '<div xmlns="http://www.w3.org/1999/xhtml">' + 'Tobacco smoking status: %s</div>'%self.smokingStatusText }, "performer": [ { "reference": "Practitioner/" + prefix + "Practitioner-" + patient.gp } ], "effectiveDateTime": rndDate(2016).isoformat(), "code": { "coding": [ { "system" : "http://loinc.org", "code" : "72166-2", "display": "Tobacco smoking status" } ], "text": "Tobacco smoking status" }, "subject": { "reference": "Patient/" + prefix + self.pid }, "category": [ { "coding": [ { "system" : "http://hl7.org/fhir/observation-category", "code" : "social-history", "display": "Social History" } ], "text": "Social History" } ], "valueCodeableConcept": { "coding": [ { "system" : "http://snomed.info/sct", "code" : self.smokingStatusCode, "display": self.smokingStatusText } ], "text": self.smokingStatusText } } }
import csv from testdata import SOCIALHISTORY_FILE from testdata import rndDate from patient import Patient SMOKINGCODES = { '428041000124106': 'Current some day smoker', '266919005' : 'Never smoker', '449868002' : 'Current every day smoker', '266927001' : 'Unknown if ever smoked', '8517006' : 'Former smoker' } class SocialHistory(object): """Create instances of SocialHistory; also maintains socialHistory by patient id""" socialHistories = {} # Dictionary of socialHistory by patient ID @classmethod def load(cls): """Loads patient SocialHistory""" # Loop through socialHistories and build patient socialHistory lists: histories = csv.reader(open(SOCIALHISTORY_FILE, 'U'), dialect='excel-tab') header = next(histories) for history in histories: cls(dict(zip(header, history))) # Create a socialHistory instance def __init__(self, p): self.pid = p['PID'] self.id = p['ID'] self.smokingStatusCode = p['SMOKINGSTATUSCODE'] self.smokingStatusText = SMOKINGCODES[self.smokingStatusCode] # Append socialHistory to the patient's socialHistory list: if self.pid in self.__class__.socialHistories: raise "Found >1 socialHistory for a patient" else: self.__class__.socialHistories[self.pid] = self def toJSON(self, prefix=""): if prefix: prefix += "-" patient = Patient.mpi[self.pid] return { "request": { "method": "PUT", "url": "Observation/" + prefix + "smokingstatus-" + self.id }, "resource": { "id": prefix + "smokingstatus-" + self.id, "resourceType": "Observation", "status": "final", "identifier": [ { "use" : "official", "system": "http://www.bmc.nl/zorgportal/identifiers/observations", "value" : prefix + self.id } ], "text": { "status": "generated", "div": '<div xmlns="http://www.w3.org/1999/xhtml">' + 'Tobacco smoking status: %s</div>'%self.smokingStatusText }, "performer": [ { "reference": "Practitioner/" + prefix + "Practitioner-" + patient.gp } ], "effectiveDateTime": rndDate(2016).isoformat(), "code": { "coding": [ { "system" : "http://loinc.org", "code" : "72166-2", "display": "Tobacco smoking status" } ], "text": "Tobacco smoking status" }, "subject": { "reference": "Patient/" + prefix + self.pid }, "category": [ { "coding": [ { "system" : "http://hl7.org/fhir/observation-category", "code" : "social-history", "display": "Social History" } ], "text": "Social History" } ], "valueCodeableConcept": { "coding": [ { "system" : "http://snomed.info/sct", "code" : self.smokingStatusCode, "display": self.smokingStatusText } ], "text": self.smokingStatusText } } }
en
0.694716
Create instances of SocialHistory; also maintains socialHistory by patient id # Dictionary of socialHistory by patient ID Loads patient SocialHistory # Loop through socialHistories and build patient socialHistory lists: # Create a socialHistory instance # Append socialHistory to the patient's socialHistory list:
3.061729
3
Python X/Dictionaries in python.py
nirobio/puzzles
0
8324
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# dictionaries, look-up tables & key-value pairs\n", "# d = {} OR d = dict()\n", "# e.g. d = {\"George\": 24, \"Tom\": 32}\n", "\n", "d = {}\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "d[\"George\"] = 24" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "d[\"Tom\"] = 32\n", "d[\"Jenny\"] = 16" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'George': 24, 'Tom': 32, 'Jenny': 16}\n" ] } ], "source": [ "print(d)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'Jenny' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-5-0bdfff196d23>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mJenny\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'Jenny' is not defined" ] } ], "source": [ "print(d[Jenny])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32\n" ] } ], "source": [ "print(d[\"Tom\"])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "d[\"Jenny\"] = 20" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "print(d[\"Jenny\"])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# keys are strings or numbers \n", "\n", "d[10] = 100" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100\n" ] } ], "source": [ "print(d[10])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# how to iterate over key-value pairs" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "key:\n", "George\n", "value:\n", "24\n", "\n", "key:\n", "Tom\n", "value:\n", "32\n", "\n", "key:\n", "Jenny\n", "value:\n", "20\n", "\n", "key:\n", "10\n", "value:\n", "100\n", "\n" ] } ], "source": [ " for key, value in d.items():\n", " print(\"key:\")\n", " print(key)\n", " print(\"value:\")\n", " print(value)\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# dictionaries, look-up tables & key-value pairs\n", "# d = {} OR d = dict()\n", "# e.g. d = {\"George\": 24, \"Tom\": 32}\n", "\n", "d = {}\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "d[\"George\"] = 24" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "d[\"Tom\"] = 32\n", "d[\"Jenny\"] = 16" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'George': 24, 'Tom': 32, 'Jenny': 16}\n" ] } ], "source": [ "print(d)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'Jenny' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-5-0bdfff196d23>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mJenny\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'Jenny' is not defined" ] } ], "source": [ "print(d[Jenny])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32\n" ] } ], "source": [ "print(d[\"Tom\"])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "d[\"Jenny\"] = 20" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "print(d[\"Jenny\"])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# keys are strings or numbers \n", "\n", "d[10] = 100" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100\n" ] } ], "source": [ "print(d[10])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# how to iterate over key-value pairs" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "key:\n", "George\n", "value:\n", "24\n", "\n", "key:\n", "Tom\n", "value:\n", "32\n", "\n", "key:\n", "Jenny\n", "value:\n", "20\n", "\n", "key:\n", "10\n", "value:\n", "100\n", "\n" ] } ], "source": [ " for key, value in d.items():\n", " print(\"key:\")\n", " print(key)\n", " print(\"value:\")\n", " print(value)\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
none
1
1.947433
2
lib/spack/spack/test/cache_fetch.py
LiamBindle/spack
2,360
8325
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import pytest from llnl.util.filesystem import mkdirp, touch import spack.config from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError from spack.stage import Stage @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch_missing_cache(tmpdir, _fetch_method): """Ensure raise a missing cache file.""" testpath = str(tmpdir) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url='file:///not-a-real-cache-file') with Stage(fetcher, path=testpath): with pytest.raises(NoCacheError, match=r'No cache'): fetcher.fetch() @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch(tmpdir, _fetch_method): """Ensure a fetch after expanding is effectively a no-op.""" testpath = str(tmpdir) cache = os.path.join(testpath, 'cache.tar.gz') touch(cache) url = 'file:///{0}'.format(cache) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url=url) with Stage(fetcher, path=testpath) as stage: source_path = stage.source_path mkdirp(source_path) fetcher.fetch()
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import pytest from llnl.util.filesystem import mkdirp, touch import spack.config from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError from spack.stage import Stage @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch_missing_cache(tmpdir, _fetch_method): """Ensure raise a missing cache file.""" testpath = str(tmpdir) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url='file:///not-a-real-cache-file') with Stage(fetcher, path=testpath): with pytest.raises(NoCacheError, match=r'No cache'): fetcher.fetch() @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch(tmpdir, _fetch_method): """Ensure a fetch after expanding is effectively a no-op.""" testpath = str(tmpdir) cache = os.path.join(testpath, 'cache.tar.gz') touch(cache) url = 'file:///{0}'.format(cache) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url=url) with Stage(fetcher, path=testpath) as stage: source_path = stage.source_path mkdirp(source_path) fetcher.fetch()
en
0.71959
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) Ensure raise a missing cache file. Ensure a fetch after expanding is effectively a no-op.
2.01561
2
temp_range_sql.py
hanhanwu/Hanhan-Spark-Python
45
8326
<reponame>hanhanwu/Hanhan-Spark-Python __author__ = 'hanhanw' import sys from pyspark import SparkConf, SparkContext from pyspark.sql.context import SQLContext from pyspark.sql.types import StructType, StructField, StringType, DoubleType conf = SparkConf().setAppName("temp range sql") sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) assert sc.version >= '1.5.1' inputs1 = sys.argv[1] output = sys.argv[2] def get_range(recordings): recordings.registerTempTable('Recordings') dfrange = sqlContext.sql(""" SELECT r1.DateTime, r1.StationID, (r1.DataValue-r2.DataValue) AS Range FROM (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMAX') r1 JOIN (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMIN') r2 ON (r1.StationID = r2.StationID AND r1.DateTime = r2.DateTime) """) dfrange.registerTempTable('RangeTable') df_maxrange = sqlContext.sql(""" SELECT DateTime, MAX(Range) AS MaxRange FROM RangeTable GROUP BY DateTime """) df_maxrange.registerTempTable('MaxRange') df_result = sqlContext.sql(""" SELECT t1.DateTime as DateTime, t1.StationID as StationID, t2.MaxRange as MaxRange FROM RangeTable t1 JOIN MaxRange t2 ON (t1.DateTime = t2.DateTime AND t1.Range = t2.MaxRange) """) return df_result def main(): temp_schema = StructType([ StructField('StationID', StringType(), False), StructField('DateTime', StringType(), False), StructField('Observation', StringType(), False), StructField('DataValue', DoubleType(), False), StructField('MFlag', StringType(), True), StructField('QFlag', StringType(), True), StructField('SFlag', StringType(), True), StructField('OBSTime', StringType(), True), ]) df = sqlContext.read.format('com.databricks.spark.csv').options(header='false').load(inputs1, schema=temp_schema) df = df.filter(df.QFlag == '') dfrange = get_range(df) result = dfrange.rdd.map(lambda r: str(r.DateTime)+' '+str(r.StationID)+' '+str(r.MaxRange)) outdata = result.sortBy(lambda r: r[0]).coalesce(1) outdata.saveAsTextFile(output) if __name__ == "__main__": main()
__author__ = 'hanhanw' import sys from pyspark import SparkConf, SparkContext from pyspark.sql.context import SQLContext from pyspark.sql.types import StructType, StructField, StringType, DoubleType conf = SparkConf().setAppName("temp range sql") sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) assert sc.version >= '1.5.1' inputs1 = sys.argv[1] output = sys.argv[2] def get_range(recordings): recordings.registerTempTable('Recordings') dfrange = sqlContext.sql(""" SELECT r1.DateTime, r1.StationID, (r1.DataValue-r2.DataValue) AS Range FROM (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMAX') r1 JOIN (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMIN') r2 ON (r1.StationID = r2.StationID AND r1.DateTime = r2.DateTime) """) dfrange.registerTempTable('RangeTable') df_maxrange = sqlContext.sql(""" SELECT DateTime, MAX(Range) AS MaxRange FROM RangeTable GROUP BY DateTime """) df_maxrange.registerTempTable('MaxRange') df_result = sqlContext.sql(""" SELECT t1.DateTime as DateTime, t1.StationID as StationID, t2.MaxRange as MaxRange FROM RangeTable t1 JOIN MaxRange t2 ON (t1.DateTime = t2.DateTime AND t1.Range = t2.MaxRange) """) return df_result def main(): temp_schema = StructType([ StructField('StationID', StringType(), False), StructField('DateTime', StringType(), False), StructField('Observation', StringType(), False), StructField('DataValue', DoubleType(), False), StructField('MFlag', StringType(), True), StructField('QFlag', StringType(), True), StructField('SFlag', StringType(), True), StructField('OBSTime', StringType(), True), ]) df = sqlContext.read.format('com.databricks.spark.csv').options(header='false').load(inputs1, schema=temp_schema) df = df.filter(df.QFlag == '') dfrange = get_range(df) result = dfrange.rdd.map(lambda r: str(r.DateTime)+' '+str(r.StationID)+' '+str(r.MaxRange)) outdata = result.sortBy(lambda r: r[0]).coalesce(1) outdata.saveAsTextFile(output) if __name__ == "__main__": main()
en
0.595405
SELECT r1.DateTime, r1.StationID, (r1.DataValue-r2.DataValue) AS Range FROM (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMAX') r1 JOIN (SELECT StationID, DateTime, Observation, DataValue FROM Recordings WHERE Observation='TMIN') r2 ON (r1.StationID = r2.StationID AND r1.DateTime = r2.DateTime) SELECT DateTime, MAX(Range) AS MaxRange FROM RangeTable GROUP BY DateTime SELECT t1.DateTime as DateTime, t1.StationID as StationID, t2.MaxRange as MaxRange FROM RangeTable t1 JOIN MaxRange t2 ON (t1.DateTime = t2.DateTime AND t1.Range = t2.MaxRange)
2.667005
3
container/pyf/graphqltypes/Event.py
Pompino/react-components-23KB
2
8327
from typing_extensions import Required #from sqlalchemy.sql.sqltypes import Boolean from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int from models.EventsRelated.EventModel import EventModel from graphqltypes.Utils import extractSession class EventType(ObjectType): id = ID() name = String() lastchange = DateTime() externalId = String() users = List('graphqltypes.User.UserType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.users groups = List('graphqltypes.Group.GroupType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.groups rooms = List('graphqltypes.Room.RoomType') def resolve_rooms(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.rooms
from typing_extensions import Required #from sqlalchemy.sql.sqltypes import Boolean from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int from models.EventsRelated.EventModel import EventModel from graphqltypes.Utils import extractSession class EventType(ObjectType): id = ID() name = String() lastchange = DateTime() externalId = String() users = List('graphqltypes.User.UserType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.users groups = List('graphqltypes.Group.GroupType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.groups rooms = List('graphqltypes.Room.RoomType') def resolve_rooms(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.rooms
en
0.150175
#from sqlalchemy.sql.sqltypes import Boolean
2.173708
2
desktop/core/ext-py/openpyxl-2.3.0-b2/openpyxl/drawing/shape.py
kokosing/hue
3
8328
<filename>desktop/core/ext-py/openpyxl-2.3.0-b2/openpyxl/drawing/shape.py from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl from openpyxl.styles.colors import Color, BLACK, WHITE from openpyxl.utils.units import ( pixels_to_EMU, EMU_to_pixels, short_color, ) from openpyxl.compat import deprecated from openpyxl.xml.functions import Element, SubElement, tostring from openpyxl.xml.constants import ( DRAWING_NS, SHEET_DRAWING_NS, CHART_NS, CHART_DRAWING_NS, PKG_REL_NS ) from openpyxl.compat.strings import safe_string class Shape(object): """ a drawing inside a chart coordiantes are specified by the user in the axis units """ MARGIN_LEFT = 6 + 13 + 1 MARGIN_BOTTOM = 17 + 11 FONT_WIDTH = 7 FONT_HEIGHT = 8 ROUND_RECT = 'roundRect' RECT = 'rect' # other shapes to define : ''' "line" "lineInv" "triangle" "rtTriangle" "diamond" "parallelogram" "trapezoid" "nonIsoscelesTrapezoid" "pentagon" "hexagon" "heptagon" "octagon" "decagon" "dodecagon" "star4" "star5" "star6" "star7" "star8" "star10" "star12" "star16" "star24" "star32" "roundRect" "round1Rect" "round2SameRect" "round2DiagRect" "snipRoundRect" "snip1Rect" "snip2SameRect" "snip2DiagRect" "plaque" "ellipse" "teardrop" "homePlate" "chevron" "pieWedge" "pie" "blockArc" "donut" "noSmoking" "rightArrow" "leftArrow" "upArrow" "downArrow" "stripedRightArrow" "notchedRightArrow" "bentUpArrow" "leftRightArrow" "upDownArrow" "leftUpArrow" "leftRightUpArrow" "quadArrow" "leftArrowCallout" "rightArrowCallout" "upArrowCallout" "downArrowCallout" "leftRightArrowCallout" "upDownArrowCallout" "quadArrowCallout" "bentArrow" "uturnArrow" "circularArrow" "leftCircularArrow" "leftRightCircularArrow" "curvedRightArrow" "curvedLeftArrow" "curvedUpArrow" "curvedDownArrow" "swooshArrow" "cube" "can" "lightningBolt" "heart" "sun" "moon" "smileyFace" "irregularSeal1" "irregularSeal2" "foldedCorner" "bevel" "frame" "halfFrame" "corner" "diagStripe" "chord" "arc" "leftBracket" "rightBracket" "leftBrace" "rightBrace" "bracketPair" "bracePair" "straightConnector1" "bentConnector2" "bentConnector3" "bentConnector4" "bentConnector5" "curvedConnector2" "curvedConnector3" "curvedConnector4" "curvedConnector5" "callout1" "callout2" "callout3" "accentCallout1" "accentCallout2" "accentCallout3" "borderCallout1" "borderCallout2" "borderCallout3" "accentBorderCallout1" "accentBorderCallout2" "accentBorderCallout3" "wedgeRectCallout" "wedgeRoundRectCallout" "wedgeEllipseCallout" "cloudCallout" "cloud" "ribbon" "ribbon2" "ellipseRibbon" "ellipseRibbon2" "leftRightRibbon" "verticalScroll" "horizontalScroll" "wave" "doubleWave" "plus" "flowChartProcess" "flowChartDecision" "flowChartInputOutput" "flowChartPredefinedProcess" "flowChartInternalStorage" "flowChartDocument" "flowChartMultidocument" "flowChartTerminator" "flowChartPreparation" "flowChartManualInput" "flowChartManualOperation" "flowChartConnector" "flowChartPunchedCard" "flowChartPunchedTape" "flowChartSummingJunction" "flowChartOr" "flowChartCollate" "flowChartSort" "flowChartExtract" "flowChartMerge" "flowChartOfflineStorage" "flowChartOnlineStorage" "flowChartMagneticTape" "flowChartMagneticDisk" "flowChartMagneticDrum" "flowChartDisplay" "flowChartDelay" "flowChartAlternateProcess" "flowChartOffpageConnector" "actionButtonBlank" "actionButtonHome" "actionButtonHelp" "actionButtonInformation" "actionButtonForwardNext" "actionButtonBackPrevious" "actionButtonEnd" "actionButtonBeginning" "actionButtonReturn" "actionButtonDocument" "actionButtonSound" "actionButtonMovie" "gear6" "gear9" "funnel" "mathPlus" "mathMinus" "mathMultiply" "mathDivide" "mathEqual" "mathNotEqual" "cornerTabs" "squareTabs" "plaqueTabs" "chartX" "chartStar" "chartPlus" ''' @deprecated("Chart Drawings need a complete rewrite") def __init__(self, chart, coordinates=((0, 0), (1, 1)), text=None, scheme="accent1"): self.chart = chart self.coordinates = coordinates # in axis units self.text = text self.scheme = scheme self.style = Shape.RECT self.border_width = 0 self.border_color = BLACK # "F3B3C5" self.color = WHITE self.text_color = BLACK @property def border_color(self): return self._border_color @border_color.setter def border_color(self, color): self._border_color = short_color(color) @property def color(self): return self._color @color.setter def color(self, color): self._color = short_color(color) @property def text_color(self): return self._text_color @text_color.setter def text_color(self, color): self._text_color = short_color(color) @property def border_width(self): return self._border_width @border_width.setter def border_width(self, w): self._border_width = w @property def coordinates(self): """Return coordindates in axis units""" return self._coordinates @coordinates.setter def coordinates(self, coords): """ set shape coordinates in percentages (left, top, right, bottom) """ # this needs refactoring to reflect changes in charts self.axis_coordinates = coords (x1, y1), (x2, y2) = coords # bottom left, top right drawing_width = pixels_to_EMU(self.chart.drawing.width) drawing_height = pixels_to_EMU(self.chart.drawing.height) plot_width = drawing_width * self.chart.width plot_height = drawing_height * self.chart.height margin_left = self.chart._get_margin_left() * drawing_width xunit = plot_width / self.chart.get_x_units() margin_top = self.chart._get_margin_top() * drawing_height yunit = self.chart.get_y_units() x_start = (margin_left + (float(x1) * xunit)) / drawing_width y_start = ((margin_top + plot_height - (float(y1) * yunit)) / drawing_height) x_end = (margin_left + (float(x2) * xunit)) / drawing_width y_end = ((margin_top + plot_height - (float(y2) * yunit)) / drawing_height) # allow user to specify y's in whatever order # excel expect y_end to be lower if y_end < y_start: y_end, y_start = y_start, y_end self._coordinates = ( self._norm_pct(x_start), self._norm_pct(y_start), self._norm_pct(x_end), self._norm_pct(y_end) ) @staticmethod def _norm_pct(pct): """ force shapes to appear by truncating too large sizes """ if pct > 1: return 1 elif pct < 0: return 0 return pct class ShapeWriter(object): """ one file per shape """ def __init__(self, shapes): self._shapes = shapes def write(self, shape_id): root = Element('{%s}userShapes' % CHART_NS) for shape in self._shapes: anchor = SubElement(root, '{%s}relSizeAnchor' % CHART_DRAWING_NS) xstart, ystart, xend, yend = shape.coordinates _from = SubElement(anchor, '{%s}from' % CHART_DRAWING_NS) SubElement(_from, '{%s}x' % CHART_DRAWING_NS).text = str(xstart) SubElement(_from, '{%s}y' % CHART_DRAWING_NS).text = str(ystart) _to = SubElement(anchor, '{%s}to' % CHART_DRAWING_NS) SubElement(_to, '{%s}x' % CHART_DRAWING_NS).text = str(xend) SubElement(_to, '{%s}y' % CHART_DRAWING_NS).text = str(yend) sp = SubElement(anchor, '{%s}sp' % CHART_DRAWING_NS, {'macro':'', 'textlink':''}) nvspr = SubElement(sp, '{%s}nvSpPr' % CHART_DRAWING_NS) SubElement(nvspr, '{%s}cNvPr' % CHART_DRAWING_NS, {'id':str(shape_id), 'name':'shape %s' % shape_id}) SubElement(nvspr, '{%s}cNvSpPr' % CHART_DRAWING_NS) sppr = SubElement(sp, '{%s}spPr' % CHART_DRAWING_NS) frm = SubElement(sppr, '{%s}xfrm' % DRAWING_NS,) # no transformation SubElement(frm, '{%s}off' % DRAWING_NS, {'x':'0', 'y':'0'}) SubElement(frm, '{%s}ext' % DRAWING_NS, {'cx':'0', 'cy':'0'}) prstgeom = SubElement(sppr, '{%s}prstGeom' % DRAWING_NS, {'prst':str(shape.style)}) SubElement(prstgeom, '{%s}avLst' % DRAWING_NS) fill = SubElement(sppr, '{%s}solidFill' % DRAWING_NS, ) SubElement(fill, '{%s}srgbClr' % DRAWING_NS, {'val':shape.color}) border = SubElement(sppr, '{%s}ln' % DRAWING_NS, {'w':str(shape._border_width)}) sf = SubElement(border, '{%s}solidFill' % DRAWING_NS) SubElement(sf, '{%s}srgbClr' % DRAWING_NS, {'val':shape.border_color}) self._write_style(sp) self._write_text(sp, shape) shape_id += 1 return tostring(root) def _write_text(self, node, shape): """ write text in the shape """ tx_body = SubElement(node, '{%s}txBody' % CHART_DRAWING_NS) SubElement(tx_body, '{%s}bodyPr' % DRAWING_NS, {'vertOverflow':'clip'}) SubElement(tx_body, '{%s}lstStyle' % DRAWING_NS) p = SubElement(tx_body, '{%s}p' % DRAWING_NS) if shape.text: r = SubElement(p, '{%s}r' % DRAWING_NS) rpr = SubElement(r, '{%s}rPr' % DRAWING_NS, {'lang':'en-US'}) fill = SubElement(rpr, '{%s}solidFill' % DRAWING_NS) SubElement(fill, '{%s}srgbClr' % DRAWING_NS, {'val':shape.text_color}) SubElement(r, '{%s}t' % DRAWING_NS).text = shape.text else: SubElement(p, '{%s}endParaRPr' % DRAWING_NS, {'lang':'en-US'}) def _write_style(self, node): """ write style theme """ style = SubElement(node, '{%s}style' % CHART_DRAWING_NS) ln_ref = SubElement(style, '{%s}lnRef' % DRAWING_NS, {'idx':'2'}) scheme_clr = SubElement(ln_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) SubElement(scheme_clr, '{%s}shade' % DRAWING_NS, {'val':'50000'}) fill_ref = SubElement(style, '{%s}fillRef' % DRAWING_NS, {'idx':'1'}) SubElement(fill_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) effect_ref = SubElement(style, '{%s}effectRef' % DRAWING_NS, {'idx':'0'}) SubElement(effect_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) font_ref = SubElement(style, '{%s}fontRef' % DRAWING_NS, {'idx':'minor'}) SubElement(font_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'lt1'})
<filename>desktop/core/ext-py/openpyxl-2.3.0-b2/openpyxl/drawing/shape.py from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl from openpyxl.styles.colors import Color, BLACK, WHITE from openpyxl.utils.units import ( pixels_to_EMU, EMU_to_pixels, short_color, ) from openpyxl.compat import deprecated from openpyxl.xml.functions import Element, SubElement, tostring from openpyxl.xml.constants import ( DRAWING_NS, SHEET_DRAWING_NS, CHART_NS, CHART_DRAWING_NS, PKG_REL_NS ) from openpyxl.compat.strings import safe_string class Shape(object): """ a drawing inside a chart coordiantes are specified by the user in the axis units """ MARGIN_LEFT = 6 + 13 + 1 MARGIN_BOTTOM = 17 + 11 FONT_WIDTH = 7 FONT_HEIGHT = 8 ROUND_RECT = 'roundRect' RECT = 'rect' # other shapes to define : ''' "line" "lineInv" "triangle" "rtTriangle" "diamond" "parallelogram" "trapezoid" "nonIsoscelesTrapezoid" "pentagon" "hexagon" "heptagon" "octagon" "decagon" "dodecagon" "star4" "star5" "star6" "star7" "star8" "star10" "star12" "star16" "star24" "star32" "roundRect" "round1Rect" "round2SameRect" "round2DiagRect" "snipRoundRect" "snip1Rect" "snip2SameRect" "snip2DiagRect" "plaque" "ellipse" "teardrop" "homePlate" "chevron" "pieWedge" "pie" "blockArc" "donut" "noSmoking" "rightArrow" "leftArrow" "upArrow" "downArrow" "stripedRightArrow" "notchedRightArrow" "bentUpArrow" "leftRightArrow" "upDownArrow" "leftUpArrow" "leftRightUpArrow" "quadArrow" "leftArrowCallout" "rightArrowCallout" "upArrowCallout" "downArrowCallout" "leftRightArrowCallout" "upDownArrowCallout" "quadArrowCallout" "bentArrow" "uturnArrow" "circularArrow" "leftCircularArrow" "leftRightCircularArrow" "curvedRightArrow" "curvedLeftArrow" "curvedUpArrow" "curvedDownArrow" "swooshArrow" "cube" "can" "lightningBolt" "heart" "sun" "moon" "smileyFace" "irregularSeal1" "irregularSeal2" "foldedCorner" "bevel" "frame" "halfFrame" "corner" "diagStripe" "chord" "arc" "leftBracket" "rightBracket" "leftBrace" "rightBrace" "bracketPair" "bracePair" "straightConnector1" "bentConnector2" "bentConnector3" "bentConnector4" "bentConnector5" "curvedConnector2" "curvedConnector3" "curvedConnector4" "curvedConnector5" "callout1" "callout2" "callout3" "accentCallout1" "accentCallout2" "accentCallout3" "borderCallout1" "borderCallout2" "borderCallout3" "accentBorderCallout1" "accentBorderCallout2" "accentBorderCallout3" "wedgeRectCallout" "wedgeRoundRectCallout" "wedgeEllipseCallout" "cloudCallout" "cloud" "ribbon" "ribbon2" "ellipseRibbon" "ellipseRibbon2" "leftRightRibbon" "verticalScroll" "horizontalScroll" "wave" "doubleWave" "plus" "flowChartProcess" "flowChartDecision" "flowChartInputOutput" "flowChartPredefinedProcess" "flowChartInternalStorage" "flowChartDocument" "flowChartMultidocument" "flowChartTerminator" "flowChartPreparation" "flowChartManualInput" "flowChartManualOperation" "flowChartConnector" "flowChartPunchedCard" "flowChartPunchedTape" "flowChartSummingJunction" "flowChartOr" "flowChartCollate" "flowChartSort" "flowChartExtract" "flowChartMerge" "flowChartOfflineStorage" "flowChartOnlineStorage" "flowChartMagneticTape" "flowChartMagneticDisk" "flowChartMagneticDrum" "flowChartDisplay" "flowChartDelay" "flowChartAlternateProcess" "flowChartOffpageConnector" "actionButtonBlank" "actionButtonHome" "actionButtonHelp" "actionButtonInformation" "actionButtonForwardNext" "actionButtonBackPrevious" "actionButtonEnd" "actionButtonBeginning" "actionButtonReturn" "actionButtonDocument" "actionButtonSound" "actionButtonMovie" "gear6" "gear9" "funnel" "mathPlus" "mathMinus" "mathMultiply" "mathDivide" "mathEqual" "mathNotEqual" "cornerTabs" "squareTabs" "plaqueTabs" "chartX" "chartStar" "chartPlus" ''' @deprecated("Chart Drawings need a complete rewrite") def __init__(self, chart, coordinates=((0, 0), (1, 1)), text=None, scheme="accent1"): self.chart = chart self.coordinates = coordinates # in axis units self.text = text self.scheme = scheme self.style = Shape.RECT self.border_width = 0 self.border_color = BLACK # "F3B3C5" self.color = WHITE self.text_color = BLACK @property def border_color(self): return self._border_color @border_color.setter def border_color(self, color): self._border_color = short_color(color) @property def color(self): return self._color @color.setter def color(self, color): self._color = short_color(color) @property def text_color(self): return self._text_color @text_color.setter def text_color(self, color): self._text_color = short_color(color) @property def border_width(self): return self._border_width @border_width.setter def border_width(self, w): self._border_width = w @property def coordinates(self): """Return coordindates in axis units""" return self._coordinates @coordinates.setter def coordinates(self, coords): """ set shape coordinates in percentages (left, top, right, bottom) """ # this needs refactoring to reflect changes in charts self.axis_coordinates = coords (x1, y1), (x2, y2) = coords # bottom left, top right drawing_width = pixels_to_EMU(self.chart.drawing.width) drawing_height = pixels_to_EMU(self.chart.drawing.height) plot_width = drawing_width * self.chart.width plot_height = drawing_height * self.chart.height margin_left = self.chart._get_margin_left() * drawing_width xunit = plot_width / self.chart.get_x_units() margin_top = self.chart._get_margin_top() * drawing_height yunit = self.chart.get_y_units() x_start = (margin_left + (float(x1) * xunit)) / drawing_width y_start = ((margin_top + plot_height - (float(y1) * yunit)) / drawing_height) x_end = (margin_left + (float(x2) * xunit)) / drawing_width y_end = ((margin_top + plot_height - (float(y2) * yunit)) / drawing_height) # allow user to specify y's in whatever order # excel expect y_end to be lower if y_end < y_start: y_end, y_start = y_start, y_end self._coordinates = ( self._norm_pct(x_start), self._norm_pct(y_start), self._norm_pct(x_end), self._norm_pct(y_end) ) @staticmethod def _norm_pct(pct): """ force shapes to appear by truncating too large sizes """ if pct > 1: return 1 elif pct < 0: return 0 return pct class ShapeWriter(object): """ one file per shape """ def __init__(self, shapes): self._shapes = shapes def write(self, shape_id): root = Element('{%s}userShapes' % CHART_NS) for shape in self._shapes: anchor = SubElement(root, '{%s}relSizeAnchor' % CHART_DRAWING_NS) xstart, ystart, xend, yend = shape.coordinates _from = SubElement(anchor, '{%s}from' % CHART_DRAWING_NS) SubElement(_from, '{%s}x' % CHART_DRAWING_NS).text = str(xstart) SubElement(_from, '{%s}y' % CHART_DRAWING_NS).text = str(ystart) _to = SubElement(anchor, '{%s}to' % CHART_DRAWING_NS) SubElement(_to, '{%s}x' % CHART_DRAWING_NS).text = str(xend) SubElement(_to, '{%s}y' % CHART_DRAWING_NS).text = str(yend) sp = SubElement(anchor, '{%s}sp' % CHART_DRAWING_NS, {'macro':'', 'textlink':''}) nvspr = SubElement(sp, '{%s}nvSpPr' % CHART_DRAWING_NS) SubElement(nvspr, '{%s}cNvPr' % CHART_DRAWING_NS, {'id':str(shape_id), 'name':'shape %s' % shape_id}) SubElement(nvspr, '{%s}cNvSpPr' % CHART_DRAWING_NS) sppr = SubElement(sp, '{%s}spPr' % CHART_DRAWING_NS) frm = SubElement(sppr, '{%s}xfrm' % DRAWING_NS,) # no transformation SubElement(frm, '{%s}off' % DRAWING_NS, {'x':'0', 'y':'0'}) SubElement(frm, '{%s}ext' % DRAWING_NS, {'cx':'0', 'cy':'0'}) prstgeom = SubElement(sppr, '{%s}prstGeom' % DRAWING_NS, {'prst':str(shape.style)}) SubElement(prstgeom, '{%s}avLst' % DRAWING_NS) fill = SubElement(sppr, '{%s}solidFill' % DRAWING_NS, ) SubElement(fill, '{%s}srgbClr' % DRAWING_NS, {'val':shape.color}) border = SubElement(sppr, '{%s}ln' % DRAWING_NS, {'w':str(shape._border_width)}) sf = SubElement(border, '{%s}solidFill' % DRAWING_NS) SubElement(sf, '{%s}srgbClr' % DRAWING_NS, {'val':shape.border_color}) self._write_style(sp) self._write_text(sp, shape) shape_id += 1 return tostring(root) def _write_text(self, node, shape): """ write text in the shape """ tx_body = SubElement(node, '{%s}txBody' % CHART_DRAWING_NS) SubElement(tx_body, '{%s}bodyPr' % DRAWING_NS, {'vertOverflow':'clip'}) SubElement(tx_body, '{%s}lstStyle' % DRAWING_NS) p = SubElement(tx_body, '{%s}p' % DRAWING_NS) if shape.text: r = SubElement(p, '{%s}r' % DRAWING_NS) rpr = SubElement(r, '{%s}rPr' % DRAWING_NS, {'lang':'en-US'}) fill = SubElement(rpr, '{%s}solidFill' % DRAWING_NS) SubElement(fill, '{%s}srgbClr' % DRAWING_NS, {'val':shape.text_color}) SubElement(r, '{%s}t' % DRAWING_NS).text = shape.text else: SubElement(p, '{%s}endParaRPr' % DRAWING_NS, {'lang':'en-US'}) def _write_style(self, node): """ write style theme """ style = SubElement(node, '{%s}style' % CHART_DRAWING_NS) ln_ref = SubElement(style, '{%s}lnRef' % DRAWING_NS, {'idx':'2'}) scheme_clr = SubElement(ln_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) SubElement(scheme_clr, '{%s}shade' % DRAWING_NS, {'val':'50000'}) fill_ref = SubElement(style, '{%s}fillRef' % DRAWING_NS, {'idx':'1'}) SubElement(fill_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) effect_ref = SubElement(style, '{%s}effectRef' % DRAWING_NS, {'idx':'0'}) SubElement(effect_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'accent1'}) font_ref = SubElement(style, '{%s}fontRef' % DRAWING_NS, {'idx':'minor'}) SubElement(font_ref, '{%s}schemeClr' % DRAWING_NS, {'val':'lt1'})
en
0.60914
# Copyright (c) 2010-2015 openpyxl a drawing inside a chart coordiantes are specified by the user in the axis units # other shapes to define : "line" "lineInv" "triangle" "rtTriangle" "diamond" "parallelogram" "trapezoid" "nonIsoscelesTrapezoid" "pentagon" "hexagon" "heptagon" "octagon" "decagon" "dodecagon" "star4" "star5" "star6" "star7" "star8" "star10" "star12" "star16" "star24" "star32" "roundRect" "round1Rect" "round2SameRect" "round2DiagRect" "snipRoundRect" "snip1Rect" "snip2SameRect" "snip2DiagRect" "plaque" "ellipse" "teardrop" "homePlate" "chevron" "pieWedge" "pie" "blockArc" "donut" "noSmoking" "rightArrow" "leftArrow" "upArrow" "downArrow" "stripedRightArrow" "notchedRightArrow" "bentUpArrow" "leftRightArrow" "upDownArrow" "leftUpArrow" "leftRightUpArrow" "quadArrow" "leftArrowCallout" "rightArrowCallout" "upArrowCallout" "downArrowCallout" "leftRightArrowCallout" "upDownArrowCallout" "quadArrowCallout" "bentArrow" "uturnArrow" "circularArrow" "leftCircularArrow" "leftRightCircularArrow" "curvedRightArrow" "curvedLeftArrow" "curvedUpArrow" "curvedDownArrow" "swooshArrow" "cube" "can" "lightningBolt" "heart" "sun" "moon" "smileyFace" "irregularSeal1" "irregularSeal2" "foldedCorner" "bevel" "frame" "halfFrame" "corner" "diagStripe" "chord" "arc" "leftBracket" "rightBracket" "leftBrace" "rightBrace" "bracketPair" "bracePair" "straightConnector1" "bentConnector2" "bentConnector3" "bentConnector4" "bentConnector5" "curvedConnector2" "curvedConnector3" "curvedConnector4" "curvedConnector5" "callout1" "callout2" "callout3" "accentCallout1" "accentCallout2" "accentCallout3" "borderCallout1" "borderCallout2" "borderCallout3" "accentBorderCallout1" "accentBorderCallout2" "accentBorderCallout3" "wedgeRectCallout" "wedgeRoundRectCallout" "wedgeEllipseCallout" "cloudCallout" "cloud" "ribbon" "ribbon2" "ellipseRibbon" "ellipseRibbon2" "leftRightRibbon" "verticalScroll" "horizontalScroll" "wave" "doubleWave" "plus" "flowChartProcess" "flowChartDecision" "flowChartInputOutput" "flowChartPredefinedProcess" "flowChartInternalStorage" "flowChartDocument" "flowChartMultidocument" "flowChartTerminator" "flowChartPreparation" "flowChartManualInput" "flowChartManualOperation" "flowChartConnector" "flowChartPunchedCard" "flowChartPunchedTape" "flowChartSummingJunction" "flowChartOr" "flowChartCollate" "flowChartSort" "flowChartExtract" "flowChartMerge" "flowChartOfflineStorage" "flowChartOnlineStorage" "flowChartMagneticTape" "flowChartMagneticDisk" "flowChartMagneticDrum" "flowChartDisplay" "flowChartDelay" "flowChartAlternateProcess" "flowChartOffpageConnector" "actionButtonBlank" "actionButtonHome" "actionButtonHelp" "actionButtonInformation" "actionButtonForwardNext" "actionButtonBackPrevious" "actionButtonEnd" "actionButtonBeginning" "actionButtonReturn" "actionButtonDocument" "actionButtonSound" "actionButtonMovie" "gear6" "gear9" "funnel" "mathPlus" "mathMinus" "mathMultiply" "mathDivide" "mathEqual" "mathNotEqual" "cornerTabs" "squareTabs" "plaqueTabs" "chartX" "chartStar" "chartPlus" # in axis units # "F3B3C5" Return coordindates in axis units set shape coordinates in percentages (left, top, right, bottom) # this needs refactoring to reflect changes in charts # bottom left, top right # allow user to specify y's in whatever order # excel expect y_end to be lower force shapes to appear by truncating too large sizes one file per shape # no transformation write text in the shape write style theme
2.299718
2
scripts/VCF/FILTER/subset_vcf.py
elowy01/igsr_analysis
3
8329
from VcfQC import VcfQC from ReseqTrackDB import File from ReseqTrackDB import ReseqTrackDB import argparse import os import logging import datetime #get command line arguments parser = argparse.ArgumentParser(description='Script to subset a VCF by excluding the variants within the regions defined by a BED file') ''' Reseqtrack DB connection parameters ''' parser.add_argument('--hostname', type=str, required=True, help='Hostname for ReseqTrack DB' ) parser.add_argument('--username', type=str, required=True, help='User for ReseqTrack DB' ) parser.add_argument('--port', type=int, required=True, help='Port number in the ReseqTrack DB' ) parser.add_argument('--pwd', type=str, help='PWD for the ReseqTrack DB' ) parser.add_argument('--db', type=str, required=True, help='DB name in the ReseqTrack DB' ) parser.add_argument('--type', type=str, required=True, help='Type of the new VCF file' ) parser.add_argument('--vcftools_folder', type=str, required=True, help='Folder containing the VCFtools binary' ) parser.add_argument('--bgzip_folder', type=str, required=True, help='Folder containing the bgzip binary') parser.add_argument('--filename', type=str, required=True, help='Name (without the fullpath) of the VCF file that will be analysed. It assumes that the filename format is for example lc_bams.gatk.xxxx.vcf.gz, where lc_bams is the analysis group and gatk is the method used' ) parser.add_argument('--bed', type=str, required=True, help='BED file containing the coordinates to exclude' ) parser.add_argument('--outsuffix', type=str, required=True, help='Suffix for vcf output file. i.e. no_cms or no_offtarget' ) parser.add_argument('--outdir', type=str, required=True, help='Directory used to put the output files.' ) args = parser.parse_args() if __name__ == '__main__': if os.path.isdir(args.outdir) == False: raise Exception("Output dir does not exist: %s"%args.outdir) hostname=args.hostname username=args.username db=args.db port=args.port pwd=args.pwd reseqdb = ReseqTrackDB(host=hostname,user=username,port=port,pwd=<PASSWORD>,db=db) file=reseqdb.fetch_file_by_filename(args.filename) #constructing the out filename now = datetime.datetime.now().strftime('%Y%m%d') bits= os.path.basename(file.name).split('.') outprefix=bits[0]+"."+bits[1]+"."+args.outsuffix+"."+now log_filename="subset_vcf_%s.log"% outprefix logger = logging.getLogger("subset_vcf") logger.setLevel(logging.INFO) # create the logging file handler fh = logging.FileHandler(log_filename) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # add handler to logger object logger.addHandler(fh) logger.info("Program started") vcfQC = VcfQC(vcf=file.path,bgzip_folder=args.bgzip_folder,vcftools_folder=args.vcftools_folder) vcffile=vcfQC.subset_vcf(bed=args.bed,outprefix=outprefix,outdir=args.outdir,create_index=True) f=File(path=vcffile,type=args.type,host_id=1,withdrawn=0) f.store(reseqdb,do_md5=True) logger.info("Done!.")
from VcfQC import VcfQC from ReseqTrackDB import File from ReseqTrackDB import ReseqTrackDB import argparse import os import logging import datetime #get command line arguments parser = argparse.ArgumentParser(description='Script to subset a VCF by excluding the variants within the regions defined by a BED file') ''' Reseqtrack DB connection parameters ''' parser.add_argument('--hostname', type=str, required=True, help='Hostname for ReseqTrack DB' ) parser.add_argument('--username', type=str, required=True, help='User for ReseqTrack DB' ) parser.add_argument('--port', type=int, required=True, help='Port number in the ReseqTrack DB' ) parser.add_argument('--pwd', type=str, help='PWD for the ReseqTrack DB' ) parser.add_argument('--db', type=str, required=True, help='DB name in the ReseqTrack DB' ) parser.add_argument('--type', type=str, required=True, help='Type of the new VCF file' ) parser.add_argument('--vcftools_folder', type=str, required=True, help='Folder containing the VCFtools binary' ) parser.add_argument('--bgzip_folder', type=str, required=True, help='Folder containing the bgzip binary') parser.add_argument('--filename', type=str, required=True, help='Name (without the fullpath) of the VCF file that will be analysed. It assumes that the filename format is for example lc_bams.gatk.xxxx.vcf.gz, where lc_bams is the analysis group and gatk is the method used' ) parser.add_argument('--bed', type=str, required=True, help='BED file containing the coordinates to exclude' ) parser.add_argument('--outsuffix', type=str, required=True, help='Suffix for vcf output file. i.e. no_cms or no_offtarget' ) parser.add_argument('--outdir', type=str, required=True, help='Directory used to put the output files.' ) args = parser.parse_args() if __name__ == '__main__': if os.path.isdir(args.outdir) == False: raise Exception("Output dir does not exist: %s"%args.outdir) hostname=args.hostname username=args.username db=args.db port=args.port pwd=args.pwd reseqdb = ReseqTrackDB(host=hostname,user=username,port=port,pwd=<PASSWORD>,db=db) file=reseqdb.fetch_file_by_filename(args.filename) #constructing the out filename now = datetime.datetime.now().strftime('%Y%m%d') bits= os.path.basename(file.name).split('.') outprefix=bits[0]+"."+bits[1]+"."+args.outsuffix+"."+now log_filename="subset_vcf_%s.log"% outprefix logger = logging.getLogger("subset_vcf") logger.setLevel(logging.INFO) # create the logging file handler fh = logging.FileHandler(log_filename) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # add handler to logger object logger.addHandler(fh) logger.info("Program started") vcfQC = VcfQC(vcf=file.path,bgzip_folder=args.bgzip_folder,vcftools_folder=args.vcftools_folder) vcffile=vcfQC.subset_vcf(bed=args.bed,outprefix=outprefix,outdir=args.outdir,create_index=True) f=File(path=vcffile,type=args.type,host_id=1,withdrawn=0) f.store(reseqdb,do_md5=True) logger.info("Done!.")
en
0.394076
#get command line arguments Reseqtrack DB connection parameters #constructing the out filename # create the logging file handler # add handler to logger object
2.635062
3
controllers/restart.py
Acidburn0zzz/helloworld
0
8330
<reponame>Acidburn0zzz/helloworld import os from base import BaseHandler class RestartHandler(BaseHandler): def get(self): if not self.authenticate(superuser=True): return os.system('touch ' + self.application.settings["restart_path"]) self.redirect(self.get_argument("next"))
import os from base import BaseHandler class RestartHandler(BaseHandler): def get(self): if not self.authenticate(superuser=True): return os.system('touch ' + self.application.settings["restart_path"]) self.redirect(self.get_argument("next"))
none
1
2.321021
2
nova/tests/unit/conductor/tasks/test_migrate.py
badock/nova-tidb
0
8331
<gh_stars>0 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova.compute import rpcapi as compute_rpcapi from nova.conductor.tasks import migrate from nova import objects from nova.scheduler import client as scheduler_client from nova.scheduler import utils as scheduler_utils from nova import test from nova.tests.unit.conductor.test_conductor import FakeContext from nova.tests.unit import fake_flavor from nova.tests.unit import fake_instance class MigrationTaskTestCase(test.NoDBTestCase): def setUp(self): super(MigrationTaskTestCase, self).setUp() self.user_id = 'fake' self.project_id = 'fake' self.context = FakeContext(self.user_id, self.project_id) self.flavor = fake_flavor.fake_flavor_obj(self.context) self.flavor.extra_specs = {'extra_specs': 'fake'} inst = fake_instance.fake_db_instance(image_ref='image_ref', instance_type=self.flavor) inst_object = objects.Instance( flavor=self.flavor, numa_topology=None, pci_requests=None, system_metadata={'image_hw_disk_bus': 'scsi'}) self.instance = objects.Instance._from_db_object( self.context, inst_object, inst, []) self.request_spec = objects.RequestSpec(image=objects.ImageMeta()) self.hosts = [dict(host='host1', nodename=None, limits={})] self.filter_properties = {'limits': {}, 'retry': {'num_attempts': 1, 'hosts': [['host1', None]]}} self.reservations = [] self.clean_shutdown = True def _generate_task(self): return migrate.MigrationTask(self.context, self.instance, self.flavor, self.request_spec, self.reservations, self.clean_shutdown, compute_rpcapi.ComputeAPI(), scheduler_client.SchedulerClient()) @mock.patch.object(objects.RequestSpec, 'from_components') @mock.patch.object(scheduler_utils, 'setup_instance_group') @mock.patch.object(scheduler_client.SchedulerClient, 'select_destinations') @mock.patch.object(compute_rpcapi.ComputeAPI, 'prep_resize') @mock.patch.object(objects.Quotas, 'from_reservations') def test_execute(self, quotas_mock, prep_resize_mock, sel_dest_mock, sig_mock, request_spec_from_components): sel_dest_mock.return_value = self.hosts task = self._generate_task() request_spec_from_components.return_value = self.request_spec legacy_request_spec = self.request_spec.to_legacy_request_spec_dict() task.execute() quotas_mock.assert_called_once_with(self.context, self.reservations, instance=self.instance) sig_mock.assert_called_once_with(self.context, legacy_request_spec, self.filter_properties) task.scheduler_client.select_destinations.assert_called_once_with( self.context, self.request_spec) prep_resize_mock.assert_called_once_with( self.context, self.instance, legacy_request_spec['image'], self.flavor, self.hosts[0]['host'], self.reservations, request_spec=legacy_request_spec, filter_properties=self.filter_properties, node=self.hosts[0]['nodename'], clean_shutdown=self.clean_shutdown) self.assertFalse(quotas_mock.return_value.rollback.called) def test_rollback(self): task = self._generate_task() task.quotas = mock.MagicMock() task.rollback() task.quotas.rollback.assert_called_once_with()
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova.compute import rpcapi as compute_rpcapi from nova.conductor.tasks import migrate from nova import objects from nova.scheduler import client as scheduler_client from nova.scheduler import utils as scheduler_utils from nova import test from nova.tests.unit.conductor.test_conductor import FakeContext from nova.tests.unit import fake_flavor from nova.tests.unit import fake_instance class MigrationTaskTestCase(test.NoDBTestCase): def setUp(self): super(MigrationTaskTestCase, self).setUp() self.user_id = 'fake' self.project_id = 'fake' self.context = FakeContext(self.user_id, self.project_id) self.flavor = fake_flavor.fake_flavor_obj(self.context) self.flavor.extra_specs = {'extra_specs': 'fake'} inst = fake_instance.fake_db_instance(image_ref='image_ref', instance_type=self.flavor) inst_object = objects.Instance( flavor=self.flavor, numa_topology=None, pci_requests=None, system_metadata={'image_hw_disk_bus': 'scsi'}) self.instance = objects.Instance._from_db_object( self.context, inst_object, inst, []) self.request_spec = objects.RequestSpec(image=objects.ImageMeta()) self.hosts = [dict(host='host1', nodename=None, limits={})] self.filter_properties = {'limits': {}, 'retry': {'num_attempts': 1, 'hosts': [['host1', None]]}} self.reservations = [] self.clean_shutdown = True def _generate_task(self): return migrate.MigrationTask(self.context, self.instance, self.flavor, self.request_spec, self.reservations, self.clean_shutdown, compute_rpcapi.ComputeAPI(), scheduler_client.SchedulerClient()) @mock.patch.object(objects.RequestSpec, 'from_components') @mock.patch.object(scheduler_utils, 'setup_instance_group') @mock.patch.object(scheduler_client.SchedulerClient, 'select_destinations') @mock.patch.object(compute_rpcapi.ComputeAPI, 'prep_resize') @mock.patch.object(objects.Quotas, 'from_reservations') def test_execute(self, quotas_mock, prep_resize_mock, sel_dest_mock, sig_mock, request_spec_from_components): sel_dest_mock.return_value = self.hosts task = self._generate_task() request_spec_from_components.return_value = self.request_spec legacy_request_spec = self.request_spec.to_legacy_request_spec_dict() task.execute() quotas_mock.assert_called_once_with(self.context, self.reservations, instance=self.instance) sig_mock.assert_called_once_with(self.context, legacy_request_spec, self.filter_properties) task.scheduler_client.select_destinations.assert_called_once_with( self.context, self.request_spec) prep_resize_mock.assert_called_once_with( self.context, self.instance, legacy_request_spec['image'], self.flavor, self.hosts[0]['host'], self.reservations, request_spec=legacy_request_spec, filter_properties=self.filter_properties, node=self.hosts[0]['nodename'], clean_shutdown=self.clean_shutdown) self.assertFalse(quotas_mock.return_value.rollback.called) def test_rollback(self): task = self._generate_task() task.quotas = mock.MagicMock() task.rollback() task.quotas.rollback.assert_called_once_with()
en
0.859654
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.
1.615812
2
CH7_GitCmdAndCtrl/modules/environment.py
maxmac12/BlackHatPython
0
8332
import os def run(**kwargs): print("[*] In environment module.") return str(os.environ)
import os def run(**kwargs): print("[*] In environment module.") return str(os.environ)
none
1
1.895633
2
diskcatalog/core/views.py
rywjhzd/Cataloging-and-Visualizing-Cradles-of-Planet-Formation
0
8333
from django.shortcuts import render from .models import Disk import os def index(request): context = {} disk_list = Disk.objects.all() context['disk_list'] = disk_list return render(request, 'index.html', context) #def index(request): # module_dir = os.path.dirname(__file__) # file_path = os.path.join(module_dir, 'data.txt') # disk_list = open(file_path , 'r') # data = data_file.read() # context = {'disk_list': data} # return render(request, 'index.html', context)
from django.shortcuts import render from .models import Disk import os def index(request): context = {} disk_list = Disk.objects.all() context['disk_list'] = disk_list return render(request, 'index.html', context) #def index(request): # module_dir = os.path.dirname(__file__) # file_path = os.path.join(module_dir, 'data.txt') # disk_list = open(file_path , 'r') # data = data_file.read() # context = {'disk_list': data} # return render(request, 'index.html', context)
en
0.113488
#def index(request): # module_dir = os.path.dirname(__file__) # file_path = os.path.join(module_dir, 'data.txt') # disk_list = open(file_path , 'r') # data = data_file.read() # context = {'disk_list': data} # return render(request, 'index.html', context)
2.02282
2
misc/python/materialize/checks/insert_select.py
guswynn/materialize
0
8334
<reponame>guswynn/materialize<filename>misc/python/materialize/checks/insert_select.py # Copyright Materialize, Inc. and contributors. All rights reserved. # # Use of this software is governed by the Business Source License # included in the LICENSE file at the root of this repository. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0. from textwrap import dedent from typing import List from materialize.checks.actions import Testdrive from materialize.checks.checks import Check class InsertSelect(Check): def initialize(self) -> Testdrive: return Testdrive( dedent( """ > CREATE TABLE insert_select_destination (f1 STRING); > CREATE TABLE insert_select_source_table (f1 STRING); > INSERT INTO insert_select_source_table SELECT 'T1' || generate_series FROM generate_series(1,10000); """ ) ) def manipulate(self) -> List[Testdrive]: return [ Testdrive(dedent(s)) for s in [ """ > INSERT INTO insert_select_source_table SELECT 'T2' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; """, """ > INSERT INTO insert_select_source_table SELECT 'T3' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; """, ] ] def validate(self) -> Testdrive: return Testdrive( dedent( """ > SELECT LEFT(f1, 2), COUNT(*), COUNT(DISTINCT f1) FROM insert_select_destination GROUP BY LEFT(f1, 2); T1 20000 10000 T2 20000 10000 T3 10000 10000 """ ) )
# Copyright Materialize, Inc. and contributors. All rights reserved. # # Use of this software is governed by the Business Source License # included in the LICENSE file at the root of this repository. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0. from textwrap import dedent from typing import List from materialize.checks.actions import Testdrive from materialize.checks.checks import Check class InsertSelect(Check): def initialize(self) -> Testdrive: return Testdrive( dedent( """ > CREATE TABLE insert_select_destination (f1 STRING); > CREATE TABLE insert_select_source_table (f1 STRING); > INSERT INTO insert_select_source_table SELECT 'T1' || generate_series FROM generate_series(1,10000); """ ) ) def manipulate(self) -> List[Testdrive]: return [ Testdrive(dedent(s)) for s in [ """ > INSERT INTO insert_select_source_table SELECT 'T2' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; """, """ > INSERT INTO insert_select_source_table SELECT 'T3' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; """, ] ] def validate(self) -> Testdrive: return Testdrive( dedent( """ > SELECT LEFT(f1, 2), COUNT(*), COUNT(DISTINCT f1) FROM insert_select_destination GROUP BY LEFT(f1, 2); T1 20000 10000 T2 20000 10000 T3 10000 10000 """ ) )
en
0.660477
# Copyright Materialize, Inc. and contributors. All rights reserved. # # Use of this software is governed by the Business Source License # included in the LICENSE file at the root of this repository. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0. > CREATE TABLE insert_select_destination (f1 STRING); > CREATE TABLE insert_select_source_table (f1 STRING); > INSERT INTO insert_select_source_table SELECT 'T1' || generate_series FROM generate_series(1,10000); > INSERT INTO insert_select_source_table SELECT 'T2' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; > INSERT INTO insert_select_source_table SELECT 'T3' || generate_series FROM generate_series(1, 10000); > INSERT INTO insert_select_destination SELECT * FROM insert_select_source_table; > SELECT LEFT(f1, 2), COUNT(*), COUNT(DISTINCT f1) FROM insert_select_destination GROUP BY LEFT(f1, 2); T1 20000 10000 T2 20000 10000 T3 10000 10000
2.126746
2
mojoco trivial/mujocoSim/UR5/simple_example/Mujoco_py_example.py
garlicbutter/Jonathan-Tom
2
8335
<filename>mojoco trivial/mujocoSim/UR5/simple_example/Mujoco_py_example.py import numpy as np import mujoco_py as mj from mujoco_py_renderer import SimulationError, XMLError, MujocoPyRenderer from mujoco_py import (MjSim, load_model_from_xml,functions, load_model_from_path, MjSimState, ignore_mujoco_warnings, load_model_from_mjb) from matplotlib import pyplot as plt import time xml = """ <mujoco model="example"> <compiler coordinate="global"/> <default> <geom rgba=".8 .6 .4 1"/> </default> <asset> <texture type="skybox" builtin="gradient" rgb1="1 1 1" rgb2=".6 .8 1" width="256" height="256"/> </asset> <worldbody> <light pos="0 1 1" dir="0 -1 -1" diffuse="1 1 1"/> <geom name="floor" pos="0 0 0" rgba="0.8 0.9 0.8 1" size="10 10 10" type="plane"/> <body> <site name="world" size="0.1" pos="0 0 0" /> <geom name="first_pole" type="capsule" fromto="0 0 0 0 0 0.5" size="0.04"/> <joint name='a' type="hinge" pos="0 0 0" axis="0 0 1" /> <body name="second_pole"> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0 0 0.5 0.5 0 0.5" size="0.04" name="second_pole"/> <joint name='b' type="hinge" pos="0 0 0.5" axis="0 1 0"/> <body name='third_pole'> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0.5 0 0.5 1 0 0.5" size="0.04" name="third_pole"/> <joint name='c' type="hinge" pos="0.5 0 0.5" axis="0 1 0"/> <site name="target" size="0.1" pos="1 0 0.5" /> <body name="mass"> <inertial pos="1 0 0.5" mass="1e-2" diaginertia="1e-008 1e-008 1e-008" /> <geom type="sphere" pos="1 0 0.5" size="0.2" name="mass"/> </body> </body> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> <motor joint="c"/> </actuator> </mujoco> """ model = load_model_from_xml(xml) sim = MjSim(model) viewer = MujocoPyRenderer(sim) sim.reset() # After reset jacobians are all zeros sim.forward() target_jacp = np.zeros(3 * sim.model.nv) target_jacr= np.zeros(3 * sim.model.nv) F=np.array([0,0,-9.81*1e-2,0,0,0]).T #np.testing.assert_allclose(target_jacp, np.zeros(3 * sim.model.nv)) # After first forward, jacobians are real #sim.forward() K_diag=2000 C_diag=100 A_diag=1e-3 K=np.identity(3)*K_diag C=np.identity(3)*C_diag A=np.identity(3)*A_diag #K_diag=0.3 #C_diag=0.05 for i in range(3): K[i, i]=K_diag C[i,i]=C_diag A[i, i] = A_diag x_intial=sim.data.site_xpos[1] print(x_intial) x_desired=np.array([0,1,0.3]) v_intial=sim.data.site_xvelp[1] v_desired=np.array([0,0,0]) a_desired=np.array([0,0,0]) a_intial=np.array([0,0,0]) dt=sim.model.opt.timestep #sim.data.get_site_jacp('target', jacp=target_jacp) # Should be unchanged after steps (zero action) graph=[] for _ in range(100000): F[:3]=np.dot(K,x_desired-x_intial)+np.dot(C,v_desired-v_intial)+np.dot(A,a_desired-a_intial) H = np.zeros(sim.model.nv* sim.model.nv) functions.mj_fullM(sim.model, H, sim.data.qM) sim.data.get_site_jacp('target', jacp=target_jacp) sim.data.get_site_jacr('target', jacr=target_jacr) J_L = target_jacp.reshape((3, sim.model.nv)) J_A = target_jacr.reshape((3, sim.model.nv)) J = np.concatenate((J_L, J_A), axis=0) H_L =np.dot(np.linalg.pinv(J_L.T),np.dot(H.reshape(sim.model.nv, sim.model.nv), np.linalg.pinv(J_L))) H_all=np.dot(np.linalg.pinv(J.T),np.dot(H.reshape(sim.model.nv, sim.model.nv), np.linalg.pinv(J))) #F_a=np.dot(A,0.3-sim.data.qacc) #action = np.dot(J_L.T, np.dot(H_L, F[:3]))+sim.data.qfrc_bias action = sim.data.qfrc_bias+np.dot(H.reshape(3,3),np.dot(J_L.T,F[:3])) #print(action) #action = np.dot(J.T, F) sim.data.ctrl[:] = action sim.step() sim.forward() #print(np.max(action)) #print(sim.data.qacc) viewer.render() x_intial = sim.data.site_xpos[1] a_intial=(v_intial-sim.data.site_xvelp[1])/dt print(a_intial) v_intial = sim.data.site_xvelp[1] normal=np.linalg.norm(x_intial-x_desired) #print(normal) if normal<0.1: print("in") if x_desired[0]==0: x_desired = np.array([-1, 0, 0.5]) elif x_desired[0]==1: x_desired = np.array([0, 1, 0.3]) elif x_desired[0] == -1: x_desired = np.array([1, 0, 0.5]) graph.append(np.abs(x_intial-x_desired)) # sim.forward() print("the desired is {} and the intial is{}".format(x_desired,x_intial)) plt.plot(graph) plt.show()
<filename>mojoco trivial/mujocoSim/UR5/simple_example/Mujoco_py_example.py import numpy as np import mujoco_py as mj from mujoco_py_renderer import SimulationError, XMLError, MujocoPyRenderer from mujoco_py import (MjSim, load_model_from_xml,functions, load_model_from_path, MjSimState, ignore_mujoco_warnings, load_model_from_mjb) from matplotlib import pyplot as plt import time xml = """ <mujoco model="example"> <compiler coordinate="global"/> <default> <geom rgba=".8 .6 .4 1"/> </default> <asset> <texture type="skybox" builtin="gradient" rgb1="1 1 1" rgb2=".6 .8 1" width="256" height="256"/> </asset> <worldbody> <light pos="0 1 1" dir="0 -1 -1" diffuse="1 1 1"/> <geom name="floor" pos="0 0 0" rgba="0.8 0.9 0.8 1" size="10 10 10" type="plane"/> <body> <site name="world" size="0.1" pos="0 0 0" /> <geom name="first_pole" type="capsule" fromto="0 0 0 0 0 0.5" size="0.04"/> <joint name='a' type="hinge" pos="0 0 0" axis="0 0 1" /> <body name="second_pole"> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0 0 0.5 0.5 0 0.5" size="0.04" name="second_pole"/> <joint name='b' type="hinge" pos="0 0 0.5" axis="0 1 0"/> <body name='third_pole'> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0.5 0 0.5 1 0 0.5" size="0.04" name="third_pole"/> <joint name='c' type="hinge" pos="0.5 0 0.5" axis="0 1 0"/> <site name="target" size="0.1" pos="1 0 0.5" /> <body name="mass"> <inertial pos="1 0 0.5" mass="1e-2" diaginertia="1e-008 1e-008 1e-008" /> <geom type="sphere" pos="1 0 0.5" size="0.2" name="mass"/> </body> </body> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> <motor joint="c"/> </actuator> </mujoco> """ model = load_model_from_xml(xml) sim = MjSim(model) viewer = MujocoPyRenderer(sim) sim.reset() # After reset jacobians are all zeros sim.forward() target_jacp = np.zeros(3 * sim.model.nv) target_jacr= np.zeros(3 * sim.model.nv) F=np.array([0,0,-9.81*1e-2,0,0,0]).T #np.testing.assert_allclose(target_jacp, np.zeros(3 * sim.model.nv)) # After first forward, jacobians are real #sim.forward() K_diag=2000 C_diag=100 A_diag=1e-3 K=np.identity(3)*K_diag C=np.identity(3)*C_diag A=np.identity(3)*A_diag #K_diag=0.3 #C_diag=0.05 for i in range(3): K[i, i]=K_diag C[i,i]=C_diag A[i, i] = A_diag x_intial=sim.data.site_xpos[1] print(x_intial) x_desired=np.array([0,1,0.3]) v_intial=sim.data.site_xvelp[1] v_desired=np.array([0,0,0]) a_desired=np.array([0,0,0]) a_intial=np.array([0,0,0]) dt=sim.model.opt.timestep #sim.data.get_site_jacp('target', jacp=target_jacp) # Should be unchanged after steps (zero action) graph=[] for _ in range(100000): F[:3]=np.dot(K,x_desired-x_intial)+np.dot(C,v_desired-v_intial)+np.dot(A,a_desired-a_intial) H = np.zeros(sim.model.nv* sim.model.nv) functions.mj_fullM(sim.model, H, sim.data.qM) sim.data.get_site_jacp('target', jacp=target_jacp) sim.data.get_site_jacr('target', jacr=target_jacr) J_L = target_jacp.reshape((3, sim.model.nv)) J_A = target_jacr.reshape((3, sim.model.nv)) J = np.concatenate((J_L, J_A), axis=0) H_L =np.dot(np.linalg.pinv(J_L.T),np.dot(H.reshape(sim.model.nv, sim.model.nv), np.linalg.pinv(J_L))) H_all=np.dot(np.linalg.pinv(J.T),np.dot(H.reshape(sim.model.nv, sim.model.nv), np.linalg.pinv(J))) #F_a=np.dot(A,0.3-sim.data.qacc) #action = np.dot(J_L.T, np.dot(H_L, F[:3]))+sim.data.qfrc_bias action = sim.data.qfrc_bias+np.dot(H.reshape(3,3),np.dot(J_L.T,F[:3])) #print(action) #action = np.dot(J.T, F) sim.data.ctrl[:] = action sim.step() sim.forward() #print(np.max(action)) #print(sim.data.qacc) viewer.render() x_intial = sim.data.site_xpos[1] a_intial=(v_intial-sim.data.site_xvelp[1])/dt print(a_intial) v_intial = sim.data.site_xvelp[1] normal=np.linalg.norm(x_intial-x_desired) #print(normal) if normal<0.1: print("in") if x_desired[0]==0: x_desired = np.array([-1, 0, 0.5]) elif x_desired[0]==1: x_desired = np.array([0, 1, 0.3]) elif x_desired[0] == -1: x_desired = np.array([1, 0, 0.5]) graph.append(np.abs(x_intial-x_desired)) # sim.forward() print("the desired is {} and the intial is{}".format(x_desired,x_intial)) plt.plot(graph) plt.show()
en
0.245874
<mujoco model="example"> <compiler coordinate="global"/> <default> <geom rgba=".8 .6 .4 1"/> </default> <asset> <texture type="skybox" builtin="gradient" rgb1="1 1 1" rgb2=".6 .8 1" width="256" height="256"/> </asset> <worldbody> <light pos="0 1 1" dir="0 -1 -1" diffuse="1 1 1"/> <geom name="floor" pos="0 0 0" rgba="0.8 0.9 0.8 1" size="10 10 10" type="plane"/> <body> <site name="world" size="0.1" pos="0 0 0" /> <geom name="first_pole" type="capsule" fromto="0 0 0 0 0 0.5" size="0.04"/> <joint name='a' type="hinge" pos="0 0 0" axis="0 0 1" /> <body name="second_pole"> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0 0 0.5 0.5 0 0.5" size="0.04" name="second_pole"/> <joint name='b' type="hinge" pos="0 0 0.5" axis="0 1 0"/> <body name='third_pole'> <inertial pos="0 0 0" mass="0.00000001" diaginertia="1e-008 1e-008 1e-008" /> <geom type="capsule" fromto="0.5 0 0.5 1 0 0.5" size="0.04" name="third_pole"/> <joint name='c' type="hinge" pos="0.5 0 0.5" axis="0 1 0"/> <site name="target" size="0.1" pos="1 0 0.5" /> <body name="mass"> <inertial pos="1 0 0.5" mass="1e-2" diaginertia="1e-008 1e-008 1e-008" /> <geom type="sphere" pos="1 0 0.5" size="0.2" name="mass"/> </body> </body> </body> </body> </worldbody> <actuator> <motor joint="a"/> <motor joint="b"/> <motor joint="c"/> </actuator> </mujoco> # After reset jacobians are all zeros #np.testing.assert_allclose(target_jacp, np.zeros(3 * sim.model.nv)) # After first forward, jacobians are real #sim.forward() #K_diag=0.3 #C_diag=0.05 #sim.data.get_site_jacp('target', jacp=target_jacp) # Should be unchanged after steps (zero action) #F_a=np.dot(A,0.3-sim.data.qacc) #action = np.dot(J_L.T, np.dot(H_L, F[:3]))+sim.data.qfrc_bias #print(action) #action = np.dot(J.T, F) #print(np.max(action)) #print(sim.data.qacc) #print(normal) # sim.forward()
2.032383
2
evaluation/wordpress/pull_docker_images_from_private_registry.py
seveirbian/gear-old
0
8336
import sys # package need to be installed, pip install docker import docker import time import yaml import os import xlwt auto = False private_registry = "192.168.3.11:9999/" # result result = [["tag", "finishTime", "size", "data"], ] class Puller: def __init__(self, images): self.images_to_pull = images def check(self): # detect whether the file exists, if true, delete it if os.path.exists("./images_pulled.txt"): os.remove("./images_pulled.txt") def pull(self): self.check() client = docker.from_env() # if don't give a tag, then all image under this registry will be pulled repos = self.images_to_pull[0]["repo"] for repo in repos: tags = self.images_to_pull[1][repo] for tag in tags: print "start pulling: ", private_registry+repo, ":", tag # get present time startTime = time.time() # get present net data cnetdata = get_net_data() # pull images try: image_pulled = client.images.pull(repository=private_registry+repo, tag=str(tag)) # print pull time finishTime = time.time() - startTime print "finished in " , finishTime, "s" # get image's size size = image_pulled.attrs[u'Size'] / 1000000.0 print "image size: ", size data = get_net_data() - cnetdata print "pull data: ", data print "\n" # record the image and its pulling time result.append([tag, finishTime, size, data]) except docker.errors.NotFound: print private_registry+repo + " not found...\n\n" except docker.errors.ImageNotFound: print private_registry+repo + " image not fount...\n\n" if auto != True: raw_input("Next?") class Generator: def __init__(self, profilePath=""): self.profilePath = profilePath def generateFromProfile(self): if self.profilePath == "": print "Error: profile path is null" with open(self.profilePath, 'r') as f: self.images = yaml.load(f, Loader=yaml.FullLoader) return self.images def get_net_data(): netCard = "/proc/net/dev" fd = open(netCard, "r") for line in fd.readlines(): if line.find("enp0s3") >= 0: field = line.split() data = float(field[1]) / 1024.0 / 1024.0 fd.close() return data if __name__ == "__main__": if len(sys.argv) == 2: auto = True generator = Generator(os.path.split(os.path.realpath(__file__))[0]+"/image_versions.yaml") images = generator.generateFromProfile() puller = Puller(images) puller.pull() # create a workbook sheet workbook = xlwt.Workbook() sheet = workbook.add_sheet("run_time") for row in range(len(result)): for column in range(len(result[row])): sheet.write(row, column, result[row][column]) workbook.save(os.path.split(os.path.realpath(__file__))[0]+"/pull.xls")
import sys # package need to be installed, pip install docker import docker import time import yaml import os import xlwt auto = False private_registry = "192.168.3.11:9999/" # result result = [["tag", "finishTime", "size", "data"], ] class Puller: def __init__(self, images): self.images_to_pull = images def check(self): # detect whether the file exists, if true, delete it if os.path.exists("./images_pulled.txt"): os.remove("./images_pulled.txt") def pull(self): self.check() client = docker.from_env() # if don't give a tag, then all image under this registry will be pulled repos = self.images_to_pull[0]["repo"] for repo in repos: tags = self.images_to_pull[1][repo] for tag in tags: print "start pulling: ", private_registry+repo, ":", tag # get present time startTime = time.time() # get present net data cnetdata = get_net_data() # pull images try: image_pulled = client.images.pull(repository=private_registry+repo, tag=str(tag)) # print pull time finishTime = time.time() - startTime print "finished in " , finishTime, "s" # get image's size size = image_pulled.attrs[u'Size'] / 1000000.0 print "image size: ", size data = get_net_data() - cnetdata print "pull data: ", data print "\n" # record the image and its pulling time result.append([tag, finishTime, size, data]) except docker.errors.NotFound: print private_registry+repo + " not found...\n\n" except docker.errors.ImageNotFound: print private_registry+repo + " image not fount...\n\n" if auto != True: raw_input("Next?") class Generator: def __init__(self, profilePath=""): self.profilePath = profilePath def generateFromProfile(self): if self.profilePath == "": print "Error: profile path is null" with open(self.profilePath, 'r') as f: self.images = yaml.load(f, Loader=yaml.FullLoader) return self.images def get_net_data(): netCard = "/proc/net/dev" fd = open(netCard, "r") for line in fd.readlines(): if line.find("enp0s3") >= 0: field = line.split() data = float(field[1]) / 1024.0 / 1024.0 fd.close() return data if __name__ == "__main__": if len(sys.argv) == 2: auto = True generator = Generator(os.path.split(os.path.realpath(__file__))[0]+"/image_versions.yaml") images = generator.generateFromProfile() puller = Puller(images) puller.pull() # create a workbook sheet workbook = xlwt.Workbook() sheet = workbook.add_sheet("run_time") for row in range(len(result)): for column in range(len(result[row])): sheet.write(row, column, result[row][column]) workbook.save(os.path.split(os.path.realpath(__file__))[0]+"/pull.xls")
en
0.807653
# package need to be installed, pip install docker # result # detect whether the file exists, if true, delete it # if don't give a tag, then all image under this registry will be pulled # get present time # get present net data # pull images # print pull time # get image's size # record the image and its pulling time # create a workbook sheet
2.470561
2
jiminy/envs/vnc_wog.py
sibeshkar/jiminy
3
8337
<reponame>sibeshkar/jiminy<filename>jiminy/envs/vnc_wog.py from jiminy.envs import vnc_env from jiminy.spaces import VNCActionSpace class WorldOfGooEnv(vnc_env.VNCEnv): def __init__(self): super(WorldOfGooEnv, self).__init__() # TODO: set action space screen shape to match # HACK: empty keys list fails for some weird reason, give it an 'a' self.action_space = VNCActionSpace(keys=['a'], buttonmasks=[1])
from jiminy.envs import vnc_env from jiminy.spaces import VNCActionSpace class WorldOfGooEnv(vnc_env.VNCEnv): def __init__(self): super(WorldOfGooEnv, self).__init__() # TODO: set action space screen shape to match # HACK: empty keys list fails for some weird reason, give it an 'a' self.action_space = VNCActionSpace(keys=['a'], buttonmasks=[1])
en
0.743451
# TODO: set action space screen shape to match # HACK: empty keys list fails for some weird reason, give it an 'a'
2.276347
2
fedml_api/standalone/federated_sgan/fedssgan_api.py
arj119/FedML
0
8338
<filename>fedml_api/standalone/federated_sgan/fedssgan_api.py<gh_stars>0 import copy import logging import random from typing import List, Tuple import numpy as np import torch import wandb from torch.utils.data import ConcatDataset from fedml_api.standalone.fedavg.my_model_trainer import MyModelTrainer from fedml_api.standalone.federated_sgan.ac_gan_model_trainer import ACGANModelTrainer from fedml_api.standalone.federated_sgan.client import FedSSGANClient from fedml_api.standalone.federated_sgan.model_trainer import FedSSGANModelTrainer from fedml_api.standalone.utils.HeterogeneousModelBaseTrainerAPI import HeterogeneousModelBaseTrainerAPI class FedSSGANAPI(HeterogeneousModelBaseTrainerAPI): def __init__(self, dataset, device, args, adapter_model, client_models: List[Tuple[torch.nn.Module, int]]): """ Args: dataset: Dataset presplit into data loaders device: Device to run training on args: Additional args client_models: List of client models and their frequency participating (assuming a stateful algorithm for simplicity) """ super().__init__(dataset, device, args) self.global_model = MyModelTrainer(adapter_model) self._setup_clients(self.train_data_local_num_dict, self.train_data_local_dict, self.test_data_local_dict, client_models) self._plot_client_training_data_distribution() def _setup_clients(self, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, client_models): logging.info("############setup_clients (START)#############") c_idx = 0 for local_model, freq in client_models: for i in range(freq): model_trainer = ACGANModelTrainer( copy.deepcopy(self.global_model.model), copy.deepcopy(local_model) ) c = FedSSGANClient(c_idx, train_data_local_dict[c_idx], test_data_local_dict[c_idx], train_data_local_num_dict[c_idx], self.test_global, self.args, self.device, model_trainer) c_idx += 1 self.client_list.append(c) logging.info("############setup_clients (END)#############") def train(self): logging.info('\n###############Pre-Training clients#############\n') for i, c in enumerate(self.client_list): logging.info(f'Pre=training client: {i}') c.pre_train() logging.info('###############Pre-Training clients (END)###########\n') unlabelled_synthesised_data = None w_global = self.global_model.get_model_params() for round_idx in range(self.args.comm_round): logging.info("################Communication round : {}".format(round_idx)) w_locals = [] synthesised_data_locals = [] client_synthesised_data_lens = {'round': round_idx} client: FedSSGANClient for idx, client in enumerate(self.client_list): # Update client synthetic datasets # client.set_synthetic_dataset(unlabelled_synthesised_data) # Local round w = client.train(copy.deepcopy(w_global), round_idx) # self.logger.info("local weights = " + str(w)) w_locals.append((client.get_sample_number(), copy.deepcopy(w))) # synthetic_data = client.generate_synthetic_dataset() # if synthetic_data is not None: # synthesised_data_locals.append(synthetic_data) # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = len(synthetic_data) # else: # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = 0 # # if len(synthesised_data_locals) > 0: # unlabelled_synthesised_data = ConcatDataset(synthesised_data_locals) # logging.info(f'\n Synthetic Unlabelled Dataset Size: {len(unlabelled_synthesised_data)}\n') # client_synthesised_data_lens['Total Synthetic Dataset Size'] = len(unlabelled_synthesised_data) # else: # unlabelled_synthesised_data = None # client_synthesised_data_lens['Total Synthetic Dataset Size'] = 0 # wandb.log(client_synthesised_data_lens) # update global weights w_global = self._aggregate(w_locals) self.global_model.set_model_params(w_global) # test results # at last round if round_idx == self.args.comm_round - 1: self._local_test_on_all_clients(round_idx) # per {frequency_of_the_test} round elif round_idx % self.args.frequency_of_the_test == 0: if self.args.dataset.startswith("stackoverflow"): self._local_test_on_validation_set(round_idx) else: self._local_test_on_all_clients(round_idx)
<filename>fedml_api/standalone/federated_sgan/fedssgan_api.py<gh_stars>0 import copy import logging import random from typing import List, Tuple import numpy as np import torch import wandb from torch.utils.data import ConcatDataset from fedml_api.standalone.fedavg.my_model_trainer import MyModelTrainer from fedml_api.standalone.federated_sgan.ac_gan_model_trainer import ACGANModelTrainer from fedml_api.standalone.federated_sgan.client import FedSSGANClient from fedml_api.standalone.federated_sgan.model_trainer import FedSSGANModelTrainer from fedml_api.standalone.utils.HeterogeneousModelBaseTrainerAPI import HeterogeneousModelBaseTrainerAPI class FedSSGANAPI(HeterogeneousModelBaseTrainerAPI): def __init__(self, dataset, device, args, adapter_model, client_models: List[Tuple[torch.nn.Module, int]]): """ Args: dataset: Dataset presplit into data loaders device: Device to run training on args: Additional args client_models: List of client models and their frequency participating (assuming a stateful algorithm for simplicity) """ super().__init__(dataset, device, args) self.global_model = MyModelTrainer(adapter_model) self._setup_clients(self.train_data_local_num_dict, self.train_data_local_dict, self.test_data_local_dict, client_models) self._plot_client_training_data_distribution() def _setup_clients(self, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, client_models): logging.info("############setup_clients (START)#############") c_idx = 0 for local_model, freq in client_models: for i in range(freq): model_trainer = ACGANModelTrainer( copy.deepcopy(self.global_model.model), copy.deepcopy(local_model) ) c = FedSSGANClient(c_idx, train_data_local_dict[c_idx], test_data_local_dict[c_idx], train_data_local_num_dict[c_idx], self.test_global, self.args, self.device, model_trainer) c_idx += 1 self.client_list.append(c) logging.info("############setup_clients (END)#############") def train(self): logging.info('\n###############Pre-Training clients#############\n') for i, c in enumerate(self.client_list): logging.info(f'Pre=training client: {i}') c.pre_train() logging.info('###############Pre-Training clients (END)###########\n') unlabelled_synthesised_data = None w_global = self.global_model.get_model_params() for round_idx in range(self.args.comm_round): logging.info("################Communication round : {}".format(round_idx)) w_locals = [] synthesised_data_locals = [] client_synthesised_data_lens = {'round': round_idx} client: FedSSGANClient for idx, client in enumerate(self.client_list): # Update client synthetic datasets # client.set_synthetic_dataset(unlabelled_synthesised_data) # Local round w = client.train(copy.deepcopy(w_global), round_idx) # self.logger.info("local weights = " + str(w)) w_locals.append((client.get_sample_number(), copy.deepcopy(w))) # synthetic_data = client.generate_synthetic_dataset() # if synthetic_data is not None: # synthesised_data_locals.append(synthetic_data) # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = len(synthetic_data) # else: # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = 0 # # if len(synthesised_data_locals) > 0: # unlabelled_synthesised_data = ConcatDataset(synthesised_data_locals) # logging.info(f'\n Synthetic Unlabelled Dataset Size: {len(unlabelled_synthesised_data)}\n') # client_synthesised_data_lens['Total Synthetic Dataset Size'] = len(unlabelled_synthesised_data) # else: # unlabelled_synthesised_data = None # client_synthesised_data_lens['Total Synthetic Dataset Size'] = 0 # wandb.log(client_synthesised_data_lens) # update global weights w_global = self._aggregate(w_locals) self.global_model.set_model_params(w_global) # test results # at last round if round_idx == self.args.comm_round - 1: self._local_test_on_all_clients(round_idx) # per {frequency_of_the_test} round elif round_idx % self.args.frequency_of_the_test == 0: if self.args.dataset.startswith("stackoverflow"): self._local_test_on_validation_set(round_idx) else: self._local_test_on_all_clients(round_idx)
en
0.572174
Args: dataset: Dataset presplit into data loaders device: Device to run training on args: Additional args client_models: List of client models and their frequency participating (assuming a stateful algorithm for simplicity) ###########setup_clients (START)#############") ###########setup_clients (END)#############") ###############Pre-Training clients#############\n') ##############Pre-Training clients (END)###########\n') ###############Communication round : {}".format(round_idx)) # Update client synthetic datasets # client.set_synthetic_dataset(unlabelled_synthesised_data) # Local round # self.logger.info("local weights = " + str(w)) # synthetic_data = client.generate_synthetic_dataset() # if synthetic_data is not None: # synthesised_data_locals.append(synthetic_data) # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = len(synthetic_data) # else: # client_synthesised_data_lens[f'Client_{idx}: Synthetic Dataset Size'] = 0 # # if len(synthesised_data_locals) > 0: # unlabelled_synthesised_data = ConcatDataset(synthesised_data_locals) # logging.info(f'\n Synthetic Unlabelled Dataset Size: {len(unlabelled_synthesised_data)}\n') # client_synthesised_data_lens['Total Synthetic Dataset Size'] = len(unlabelled_synthesised_data) # else: # unlabelled_synthesised_data = None # client_synthesised_data_lens['Total Synthetic Dataset Size'] = 0 # wandb.log(client_synthesised_data_lens) # update global weights # test results # at last round # per {frequency_of_the_test} round
2.082507
2
pytorch-word2vec-master/csv.py
arjun-sai-krishnan/tamil-morpho-embeddings
2
8339
<filename>pytorch-word2vec-master/csv.py<gh_stars>1-10 #!/usr/bin/env python3 import argparse from collections import Counter import pdb import pickle import re import sys import time import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch import optim import torch.nn.functional as F import torch.multiprocessing as mp import data_producer from multiprocessing import set_start_method parser = argparse.ArgumentParser() parser.add_argument("--train", type=str, default="", help="training file") parser.add_argument("--vocab", type=str, default="", help="vocab pickle file") parser.add_argument("--save", type=str, default="csv.pth.tar", help="saved model filename") parser.add_argument("--size", type=int, default=300, help="word embedding dimension") parser.add_argument("--window", type=int, default=5, help="context window size") parser.add_argument("--sample", type=float, default=1e-5, help="subsample threshold") parser.add_argument("--negative", type=int, default=10, help="number of negative samples") parser.add_argument("--delta", type=float, default=0.15, help="create new sense for a type if similarity lower than this value.") parser.add_argument("--min_count", type=int, default=5, help="minimum frequency of a word") parser.add_argument("--processes", type=int, default=4, help="number of processes") parser.add_argument("--num_workers", type=int, default=6, help="number of workers for data processsing") parser.add_argument("--iter", type=int, default=3, help="number of iterations") parser.add_argument("--lr", type=float, default=-1.0, help="initial learning rate") parser.add_argument("--batch_size", type=int, default=100, help="(max) batch size") parser.add_argument("--cuda", action='store_true', default=False, help="enable cuda") parser.add_argument("--multi_proto", action='store_true', default=False, help="True: multi-prototype, False:single-prototype") MAX_SENT_LEN = 1000 # Build the vocabulary. def file_split(f, delim=' \t\n', bufsize=1024): prev = '' while True: s = f.read(bufsize) if not s: break tokens = re.split('['+delim+']{1,}', s) if len(tokens) > 1: yield prev + tokens[0] prev = tokens[-1] for x in tokens[1:-1]: yield x else: prev += s if prev: yield prev def build_vocab(args): vocab = Counter() word_count = 0 for word in file_split(open(args.train)): vocab[word] += 1 word_count += 1 if word_count % 10000 == 0: sys.stdout.write('%d\r' % len(vocab)) freq = {k:v for k,v in vocab.items() if v >= args.min_count} word_count = sum([freq[k] for k in freq]) word_list = sorted(freq, key=freq.get, reverse=True) word2idx = {} for i,w in enumerate(word_list): word2idx[w] = i print("Vocab size: %ld" % len(word2idx)) print("Words in train file: %ld" % word_count) vars(args)['vocab_size'] = len(word2idx) vars(args)['train_words'] = word_count return word2idx, word_list, freq class CSV(nn.Module): def __init__(self, args): super(CSV, self).__init__() self.global_embs = nn.Embedding(args.vocab_size+1, args.size, padding_idx=args.vocab_size, sparse=True) self.sense_embs = nn.Embedding(args.vocab_size*5, args.size, sparse=True) self.ctx_weight = torch.nn.Parameter(torch.ones(2*args.window, args.size)) self.word2sense = [ [i] for i in range(args.vocab_size) ] ''' word2sense = np.zeros((args.vocab_size, 5), dtype='int32') for i in range(args.vocab_size): word2sense[i, 0] = i self.word2sense = torch.nn.Parameter(torch.from_numpy(word2sense).int()) self.word_sense_cnts = torch.nn.Parameter(torch.ones((args.vocab_size,)).int()) ''' self.global_embs.weight.data.uniform_(-0.5/args.size, 0.5/args.size) self.sense_embs.weight.data.uniform_(-0.5/args.size, 0.5/args.size) self.n_senses = args.vocab_size self.sense_capacity = args.vocab_size*5 self.batch_size = args.batch_size self.size = args.size self.window = args.window self.negative = args.negative self.pad_idx = args.vocab_size def get_context_feats(self, ctx_type_indices): ctx_type_embs = self.global_embs(ctx_type_indices) return torch.sum(ctx_type_embs * self.ctx_weight, 1).cpu().data.numpy() def get_possible_sense_embs(self, type_indices, cuda=True): sense_indices = [] sense2idx = {} for type_id in type_indices: for s_id in self.word2sense[type_id]: if s_id not in sense2idx: sense2idx[s_id] = len(sense_indices) sense_indices.append( s_id ) sense_indices = np.array(sense_indices) if cuda: sense_embs = self.sense_embs(Variable(torch.LongTensor(sense_indices).cuda())) return sense2idx, sense_embs.cpu().data.numpy() else: sense_embs = self.sense_embs(Variable(torch.LongTensor(sense_indices))) return sense2idx, sense_embs.data.numpy() def forward(self, data): ctx_type_indices = data[:, 0:2*self.window] pos_sense_idx = data[:, 2*self.window+1] neg_sense_indices = data[:, 2*self.window+2:2*self.window+2+self.negative] neg_mask = data[:, 2*self.window+2+self.negative:].float() ctx_type_embs = self.global_embs(ctx_type_indices) pos_sense_embs = self.sense_embs(pos_sense_idx) neg_sense_embs = self.sense_embs(neg_sense_indices) ctx_feats = torch.sum(ctx_type_embs * self.ctx_weight, 1, keepdim=True) # Neg Log Likelihood pos_ips = torch.sum(ctx_feats[:,0,:] * pos_sense_embs, 1) pos_loss = torch.sum( -F.logsigmoid(torch.clamp(pos_ips,max=10,min=-10))) neg_ips = torch.bmm(neg_sense_embs, ctx_feats.permute(0,2,1))[:,:,0] neg_loss = torch.sum( -F.logsigmoid(torch.clamp(-neg_ips,max=10,min=-10)) * neg_mask ) return pos_loss + neg_loss # Initialize model. def init_net(args): if args.lr == -1.0: vars(args)['lr'] = 0.05 return CSV(args) def save_model(filename, model, args, word2idx): torch.save({ 'word2idx':word2idx, 'args':args, #'word2sense': model.word2sense, 'n_senses': model.n_senses, 'params': model.state_dict() }, filename) def load_model(filename): checkpoint = torch.load(filename) word2idx = checkpoint['word2idx'] args = checkpoint['args'] model = CSV(args) if args.cuda: model.cuda() model.global_embs.weight.data = checkpoint['params']['global_embs.weight'] model.sense_embs.weight.data = checkpoint['params']['sense_embs.weight'] model.ctx_weight.data = checkpoint['params']['ctx_weight'] model.word2sense = checkpoint['word2sense'] #model.word2sense.data = checkpoint['params']['word2sense'] #model.word_sense_cnts.data = checkpoint['params']['word_sense_cnts'] model.n_senses = checkpoint['n_senses'] return model, word2idx # Training def train_process_sent_producer(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args): n_proc = 1 if args.stage == 2 else args.processes N = 1 if args.stage == 2 else args.iter neg = 0 if args.stage == 2 else args.negative if args.negative > 0: table_ptr_val = data_producer.init_unigram_table(word_list, freq, args.train_words) train_file = open(args.train) file_pos = args.file_size * p_id // n_proc train_file.seek(file_pos, 0) while True: try: train_file.read(1) except UnicodeDecodeError: file_pos -= 1 train_file.seek(file_pos, 0) else: train_file.seek(file_pos, 0) break batch_count = 0 batch_placeholder = np.zeros((args.batch_size, 2*args.window+2+2*neg), 'int64') for it in range(N): train_file.seek(file_pos, 0) last_word_cnt = 0 word_cnt = 0 sentence = [] prev = '' eof = False while True: if eof or train_file.tell() > file_pos + args.file_size / n_proc: break while True: s = train_file.read(1) if not s: eof = True break elif s == ' ' or s == '\t': if prev in word2idx: sentence.append(prev) prev = '' if len(sentence) >= MAX_SENT_LEN: break elif s == '\n': if prev in word2idx: sentence.append(prev) prev = '' break else: prev += s if len(sentence) > 0: # subsampling sent_id = [] if args.sample != 0: sent_len = len(sentence) i = 0 while i < sent_len: word = sentence[i] f = freq[word] / args.train_words pb = (np.sqrt(f / args.sample) + 1) * args.sample / f; if pb > np.random.random_sample(): sent_id.append( word2idx[word] ) i += 1 if len(sent_id) < 2: word_cnt += len(sentence) sentence.clear() continue next_random = (2**24) * np.random.randint(0, 2**24) + np.random.randint(0, 2**24) chunk = data_producer.cbow_producer(sent_id, len(sent_id), table_ptr_val, args.window, neg, args.vocab_size, args.batch_size, next_random) chunk_pos = 0 while chunk_pos < chunk.shape[0]: remain_space = args.batch_size - batch_count remain_chunk = chunk.shape[0] - chunk_pos if remain_chunk < remain_space: take_from_chunk = remain_chunk else: take_from_chunk = remain_space batch_placeholder[batch_count:batch_count+take_from_chunk, :] = chunk[chunk_pos:chunk_pos+take_from_chunk, :] batch_count += take_from_chunk if batch_count == args.batch_size: data_queue.put(batch_placeholder) batch_count = 0 chunk_pos += take_from_chunk word_cnt += len(sentence) if word_cnt - last_word_cnt > 10000: with word_count_actual.get_lock(): word_count_actual.value += word_cnt - last_word_cnt last_word_cnt = word_cnt sentence.clear() with word_count_actual.get_lock(): word_count_actual.value += word_cnt - last_word_cnt print(p_id, it, file_pos, train_file.tell(), args.file_size) if batch_count > 0: data_queue.put(batch_placeholder[:batch_count,:]) data_queue.put(None) print(p_id, file_pos, train_file.tell(), args.file_size) def train_process(p_id, word_count_actual, word2idx, word_list, freq, args, model): data_queue = mp.SimpleQueue() lr = args.lr #optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) optimizer = optim.Adagrad(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) t = mp.Process(target=train_process_sent_producer, args=(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args)) t.start() #n_iter = 1 if args.stage == 2 else args.iter n_iter = args.iter # get from data_queue and feed to model prev_word_cnt = 0 while True: chunk = data_queue.get() if chunk is None: break else: # lr anneal & output if word_count_actual.value - prev_word_cnt > 10000: #if args.lr_anneal: # lr = args.lr * (1 - word_count_actual.value / (n_iter * args.train_words)) # if lr < 0.0001 * args.lr: # lr = 0.0001 * args.lr # for param_group in optimizer.param_groups: # param_group['lr'] = lr #sys.stdout.write("\rAlpha: %0.8f, Progess: %0.2f, Words/sec: %f, word_cnt: %d" % (lr, word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.write("\rProgess: %0.2f, Words/sec: %f, word_cnt: %d" % (word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.flush() prev_word_cnt = word_count_actual.value if args.stage == 1: if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) optimizer.zero_grad() loss = model(data) loss.backward() optimizer.step() model.global_embs.weight.data[args.vocab_size].fill_(0) elif args.stage == 3: if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) #type_ids = chunk[:, 2*args.window+1:2*args.window+2+2*args.negative] type_ids = chunk[:, 2*args.window+1:2*args.window+2+args.negative] type_ids = np.reshape(type_ids, (type_ids.shape[0] * type_ids.shape[1])) sense2idx, sense_embs = model.get_possible_sense_embs(type_ids.tolist()) # get type_idx from chunk, and do sense selection here. context_feats = model.get_context_feats(data[:, :2*args.window]) chunk = data_producer.select_sense(chunk, context_feats, sense2idx, sense_embs, model.word2sense, chunk.shape[0], args.size, args.window, args.negative) if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) optimizer.zero_grad() loss = model(data) loss.backward() optimizer.step() model.global_embs.weight.data[args.vocab_size].fill_(0) t.join() def train_process_stage2(p_id, word_count_actual, word2idx, word_list, freq, args, model): data_queue = mp.SimpleQueue() sense_embs = model.sense_embs.weight.data.numpy() counter_list = np.zeros((model.sense_capacity), dtype='float32') t = mp.Process(target=train_process_sent_producer, args=(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args)) t.start() n_iter = 1 # get from data_queue and feed to model prev_word_cnt = 0 while True: chunk = data_queue.get() if chunk is None: break else: if word_count_actual.value - prev_word_cnt > 10000: sys.stdout.write("\rProgess: %0.2f, Words/sec: %f, word_cnt: %d" % (word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.flush() prev_word_cnt = word_count_actual.value if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) context_feats = model.get_context_feats(data[:, :2*args.window]) # update sense_embs create_cnt = data_producer.create_n_update_sense(chunk[:, 2*args.window+1], context_feats, sense_embs, model.word2sense, counter_list, chunk.shape[0], args.size, args.delta, model.n_senses) model.n_senses += create_cnt #if model.n_senses + args.batch_size > model.sense_capacity: # new_capacity = model.sense_capacity * 3 // 2 # counter_list = np.concatenate( (counter_list, np.ones((new_capacity - model.sense_capacity),dtype='float32')), axis=0) # zero = np.zeros((new_capacity - model.sense_capacity, args.size), 'float32') # sense_embs = np.concatenate((sense_embs, zero), 0) # model.sense_capacity = new_capacity # print("\nexapnded sense_embs: %d" % model.n_senses) t.join() sense_embs[:model.n_senses, :] = sense_embs[:model.n_senses, :] / counter_list[:model.n_senses, None] if __name__ == '__main__': set_start_method('forkserver') args = parser.parse_args() print("Starting training using file %s" % args.train) train_file = open(args.train) train_file.seek(0, 2) vars(args)['file_size'] = train_file.tell() word_count_actual = mp.Value('L', 0) if args.vocab == '': word2idx, word_list, freq = build_vocab(args) else: with open(args.vocab, 'rb') as f: word2idx, word_list, freq, pos2idx, dep2id = pickle.load(f) word_count = sum([freq[k] for k in freq]) vars(args)['vocab_size'] = len(word2idx) vars(args)['train_words'] = word_count print("Vocab size: %ld" % len(word2idx)) print("Words in train file: %ld" % word_count) model = init_net(args) model.share_memory() if args.cuda: model.cuda() # stage 1, learn robust context representation. vars(args)['stage'] = 1 print("Stage 1") vars(args)['lr_anneal'] = True vars(args)['t_start'] = time.monotonic() processes = [] for p_id in range(args.processes): p = mp.Process(target=train_process, args=(p_id, word_count_actual, word2idx, word_list, freq, args, model)) p.start() processes.append(p) for p in processes: p.join() del processes print("\nStage 1, ", time.monotonic() - args.t_start, " secs ", word_count_actual.value) filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage1.pth.tar' save_model(filename, model, args, word2idx) if args.multi_proto: # stage 2, create new sense in a non-parametric way. # Freeze model paramters except sense_embs, and use only 1 process to prevent race condition old_batch_size = vars(args)['batch_size'] model.global_embs.requires_grad = False model.ctx_weight.requires_grad = False model.sense_embs = model.sense_embs.cpu() vars(args)['stage'] = 2 vars(args)['batch_size'] = 5000 print("\nStage 2") word_count_actual.value = 0 vars(args)['t_start'] = time.monotonic() train_process_stage2(0, word_count_actual, word2idx, word_list, freq, args, model) if args.cuda: model.cuda() print("\nStage 2, ", time.monotonic() - args.t_start, " secs") print("Current # of senses: %d" % model.n_senses) pdb.set_trace() filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage2.pth.tar' save_model(filename, model, args, word2idx) # stage 3, no more sense creation. vars(args)['lr'] = args.lr * 0.01 vars(args)['batch_size'] = old_batch_size model.global_embs.requires_grad = True model.ctx_weight.requires_grad = True vars(args)['stage'] = 3 print("\nBegin stage 3") word_count_actual.value = 0 vars(args)['t_start'] = time.monotonic() processes = [] for p_id in range(args.processes): p = mp.Process(target=train_process, args=(p_id, word_count_actual, word2idx, word_list, freq, args, model)) p.start() processes.append(p) for p in processes: p.join() print("\nStage 3, ", time.monotonic() - args.t_start, " secs") # save model filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage3.pth.tar' save_model(filename, model, args, word2idx) print("")
<filename>pytorch-word2vec-master/csv.py<gh_stars>1-10 #!/usr/bin/env python3 import argparse from collections import Counter import pdb import pickle import re import sys import time import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch import optim import torch.nn.functional as F import torch.multiprocessing as mp import data_producer from multiprocessing import set_start_method parser = argparse.ArgumentParser() parser.add_argument("--train", type=str, default="", help="training file") parser.add_argument("--vocab", type=str, default="", help="vocab pickle file") parser.add_argument("--save", type=str, default="csv.pth.tar", help="saved model filename") parser.add_argument("--size", type=int, default=300, help="word embedding dimension") parser.add_argument("--window", type=int, default=5, help="context window size") parser.add_argument("--sample", type=float, default=1e-5, help="subsample threshold") parser.add_argument("--negative", type=int, default=10, help="number of negative samples") parser.add_argument("--delta", type=float, default=0.15, help="create new sense for a type if similarity lower than this value.") parser.add_argument("--min_count", type=int, default=5, help="minimum frequency of a word") parser.add_argument("--processes", type=int, default=4, help="number of processes") parser.add_argument("--num_workers", type=int, default=6, help="number of workers for data processsing") parser.add_argument("--iter", type=int, default=3, help="number of iterations") parser.add_argument("--lr", type=float, default=-1.0, help="initial learning rate") parser.add_argument("--batch_size", type=int, default=100, help="(max) batch size") parser.add_argument("--cuda", action='store_true', default=False, help="enable cuda") parser.add_argument("--multi_proto", action='store_true', default=False, help="True: multi-prototype, False:single-prototype") MAX_SENT_LEN = 1000 # Build the vocabulary. def file_split(f, delim=' \t\n', bufsize=1024): prev = '' while True: s = f.read(bufsize) if not s: break tokens = re.split('['+delim+']{1,}', s) if len(tokens) > 1: yield prev + tokens[0] prev = tokens[-1] for x in tokens[1:-1]: yield x else: prev += s if prev: yield prev def build_vocab(args): vocab = Counter() word_count = 0 for word in file_split(open(args.train)): vocab[word] += 1 word_count += 1 if word_count % 10000 == 0: sys.stdout.write('%d\r' % len(vocab)) freq = {k:v for k,v in vocab.items() if v >= args.min_count} word_count = sum([freq[k] for k in freq]) word_list = sorted(freq, key=freq.get, reverse=True) word2idx = {} for i,w in enumerate(word_list): word2idx[w] = i print("Vocab size: %ld" % len(word2idx)) print("Words in train file: %ld" % word_count) vars(args)['vocab_size'] = len(word2idx) vars(args)['train_words'] = word_count return word2idx, word_list, freq class CSV(nn.Module): def __init__(self, args): super(CSV, self).__init__() self.global_embs = nn.Embedding(args.vocab_size+1, args.size, padding_idx=args.vocab_size, sparse=True) self.sense_embs = nn.Embedding(args.vocab_size*5, args.size, sparse=True) self.ctx_weight = torch.nn.Parameter(torch.ones(2*args.window, args.size)) self.word2sense = [ [i] for i in range(args.vocab_size) ] ''' word2sense = np.zeros((args.vocab_size, 5), dtype='int32') for i in range(args.vocab_size): word2sense[i, 0] = i self.word2sense = torch.nn.Parameter(torch.from_numpy(word2sense).int()) self.word_sense_cnts = torch.nn.Parameter(torch.ones((args.vocab_size,)).int()) ''' self.global_embs.weight.data.uniform_(-0.5/args.size, 0.5/args.size) self.sense_embs.weight.data.uniform_(-0.5/args.size, 0.5/args.size) self.n_senses = args.vocab_size self.sense_capacity = args.vocab_size*5 self.batch_size = args.batch_size self.size = args.size self.window = args.window self.negative = args.negative self.pad_idx = args.vocab_size def get_context_feats(self, ctx_type_indices): ctx_type_embs = self.global_embs(ctx_type_indices) return torch.sum(ctx_type_embs * self.ctx_weight, 1).cpu().data.numpy() def get_possible_sense_embs(self, type_indices, cuda=True): sense_indices = [] sense2idx = {} for type_id in type_indices: for s_id in self.word2sense[type_id]: if s_id not in sense2idx: sense2idx[s_id] = len(sense_indices) sense_indices.append( s_id ) sense_indices = np.array(sense_indices) if cuda: sense_embs = self.sense_embs(Variable(torch.LongTensor(sense_indices).cuda())) return sense2idx, sense_embs.cpu().data.numpy() else: sense_embs = self.sense_embs(Variable(torch.LongTensor(sense_indices))) return sense2idx, sense_embs.data.numpy() def forward(self, data): ctx_type_indices = data[:, 0:2*self.window] pos_sense_idx = data[:, 2*self.window+1] neg_sense_indices = data[:, 2*self.window+2:2*self.window+2+self.negative] neg_mask = data[:, 2*self.window+2+self.negative:].float() ctx_type_embs = self.global_embs(ctx_type_indices) pos_sense_embs = self.sense_embs(pos_sense_idx) neg_sense_embs = self.sense_embs(neg_sense_indices) ctx_feats = torch.sum(ctx_type_embs * self.ctx_weight, 1, keepdim=True) # Neg Log Likelihood pos_ips = torch.sum(ctx_feats[:,0,:] * pos_sense_embs, 1) pos_loss = torch.sum( -F.logsigmoid(torch.clamp(pos_ips,max=10,min=-10))) neg_ips = torch.bmm(neg_sense_embs, ctx_feats.permute(0,2,1))[:,:,0] neg_loss = torch.sum( -F.logsigmoid(torch.clamp(-neg_ips,max=10,min=-10)) * neg_mask ) return pos_loss + neg_loss # Initialize model. def init_net(args): if args.lr == -1.0: vars(args)['lr'] = 0.05 return CSV(args) def save_model(filename, model, args, word2idx): torch.save({ 'word2idx':word2idx, 'args':args, #'word2sense': model.word2sense, 'n_senses': model.n_senses, 'params': model.state_dict() }, filename) def load_model(filename): checkpoint = torch.load(filename) word2idx = checkpoint['word2idx'] args = checkpoint['args'] model = CSV(args) if args.cuda: model.cuda() model.global_embs.weight.data = checkpoint['params']['global_embs.weight'] model.sense_embs.weight.data = checkpoint['params']['sense_embs.weight'] model.ctx_weight.data = checkpoint['params']['ctx_weight'] model.word2sense = checkpoint['word2sense'] #model.word2sense.data = checkpoint['params']['word2sense'] #model.word_sense_cnts.data = checkpoint['params']['word_sense_cnts'] model.n_senses = checkpoint['n_senses'] return model, word2idx # Training def train_process_sent_producer(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args): n_proc = 1 if args.stage == 2 else args.processes N = 1 if args.stage == 2 else args.iter neg = 0 if args.stage == 2 else args.negative if args.negative > 0: table_ptr_val = data_producer.init_unigram_table(word_list, freq, args.train_words) train_file = open(args.train) file_pos = args.file_size * p_id // n_proc train_file.seek(file_pos, 0) while True: try: train_file.read(1) except UnicodeDecodeError: file_pos -= 1 train_file.seek(file_pos, 0) else: train_file.seek(file_pos, 0) break batch_count = 0 batch_placeholder = np.zeros((args.batch_size, 2*args.window+2+2*neg), 'int64') for it in range(N): train_file.seek(file_pos, 0) last_word_cnt = 0 word_cnt = 0 sentence = [] prev = '' eof = False while True: if eof or train_file.tell() > file_pos + args.file_size / n_proc: break while True: s = train_file.read(1) if not s: eof = True break elif s == ' ' or s == '\t': if prev in word2idx: sentence.append(prev) prev = '' if len(sentence) >= MAX_SENT_LEN: break elif s == '\n': if prev in word2idx: sentence.append(prev) prev = '' break else: prev += s if len(sentence) > 0: # subsampling sent_id = [] if args.sample != 0: sent_len = len(sentence) i = 0 while i < sent_len: word = sentence[i] f = freq[word] / args.train_words pb = (np.sqrt(f / args.sample) + 1) * args.sample / f; if pb > np.random.random_sample(): sent_id.append( word2idx[word] ) i += 1 if len(sent_id) < 2: word_cnt += len(sentence) sentence.clear() continue next_random = (2**24) * np.random.randint(0, 2**24) + np.random.randint(0, 2**24) chunk = data_producer.cbow_producer(sent_id, len(sent_id), table_ptr_val, args.window, neg, args.vocab_size, args.batch_size, next_random) chunk_pos = 0 while chunk_pos < chunk.shape[0]: remain_space = args.batch_size - batch_count remain_chunk = chunk.shape[0] - chunk_pos if remain_chunk < remain_space: take_from_chunk = remain_chunk else: take_from_chunk = remain_space batch_placeholder[batch_count:batch_count+take_from_chunk, :] = chunk[chunk_pos:chunk_pos+take_from_chunk, :] batch_count += take_from_chunk if batch_count == args.batch_size: data_queue.put(batch_placeholder) batch_count = 0 chunk_pos += take_from_chunk word_cnt += len(sentence) if word_cnt - last_word_cnt > 10000: with word_count_actual.get_lock(): word_count_actual.value += word_cnt - last_word_cnt last_word_cnt = word_cnt sentence.clear() with word_count_actual.get_lock(): word_count_actual.value += word_cnt - last_word_cnt print(p_id, it, file_pos, train_file.tell(), args.file_size) if batch_count > 0: data_queue.put(batch_placeholder[:batch_count,:]) data_queue.put(None) print(p_id, file_pos, train_file.tell(), args.file_size) def train_process(p_id, word_count_actual, word2idx, word_list, freq, args, model): data_queue = mp.SimpleQueue() lr = args.lr #optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) optimizer = optim.Adagrad(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) t = mp.Process(target=train_process_sent_producer, args=(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args)) t.start() #n_iter = 1 if args.stage == 2 else args.iter n_iter = args.iter # get from data_queue and feed to model prev_word_cnt = 0 while True: chunk = data_queue.get() if chunk is None: break else: # lr anneal & output if word_count_actual.value - prev_word_cnt > 10000: #if args.lr_anneal: # lr = args.lr * (1 - word_count_actual.value / (n_iter * args.train_words)) # if lr < 0.0001 * args.lr: # lr = 0.0001 * args.lr # for param_group in optimizer.param_groups: # param_group['lr'] = lr #sys.stdout.write("\rAlpha: %0.8f, Progess: %0.2f, Words/sec: %f, word_cnt: %d" % (lr, word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.write("\rProgess: %0.2f, Words/sec: %f, word_cnt: %d" % (word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.flush() prev_word_cnt = word_count_actual.value if args.stage == 1: if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) optimizer.zero_grad() loss = model(data) loss.backward() optimizer.step() model.global_embs.weight.data[args.vocab_size].fill_(0) elif args.stage == 3: if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) #type_ids = chunk[:, 2*args.window+1:2*args.window+2+2*args.negative] type_ids = chunk[:, 2*args.window+1:2*args.window+2+args.negative] type_ids = np.reshape(type_ids, (type_ids.shape[0] * type_ids.shape[1])) sense2idx, sense_embs = model.get_possible_sense_embs(type_ids.tolist()) # get type_idx from chunk, and do sense selection here. context_feats = model.get_context_feats(data[:, :2*args.window]) chunk = data_producer.select_sense(chunk, context_feats, sense2idx, sense_embs, model.word2sense, chunk.shape[0], args.size, args.window, args.negative) if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) optimizer.zero_grad() loss = model(data) loss.backward() optimizer.step() model.global_embs.weight.data[args.vocab_size].fill_(0) t.join() def train_process_stage2(p_id, word_count_actual, word2idx, word_list, freq, args, model): data_queue = mp.SimpleQueue() sense_embs = model.sense_embs.weight.data.numpy() counter_list = np.zeros((model.sense_capacity), dtype='float32') t = mp.Process(target=train_process_sent_producer, args=(p_id, data_queue, word_count_actual, word_list, word2idx, freq, args)) t.start() n_iter = 1 # get from data_queue and feed to model prev_word_cnt = 0 while True: chunk = data_queue.get() if chunk is None: break else: if word_count_actual.value - prev_word_cnt > 10000: sys.stdout.write("\rProgess: %0.2f, Words/sec: %f, word_cnt: %d" % (word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) sys.stdout.flush() prev_word_cnt = word_count_actual.value if args.cuda: data = Variable(torch.LongTensor(chunk).cuda(), requires_grad=False) else: data = Variable(torch.LongTensor(chunk), requires_grad=False) context_feats = model.get_context_feats(data[:, :2*args.window]) # update sense_embs create_cnt = data_producer.create_n_update_sense(chunk[:, 2*args.window+1], context_feats, sense_embs, model.word2sense, counter_list, chunk.shape[0], args.size, args.delta, model.n_senses) model.n_senses += create_cnt #if model.n_senses + args.batch_size > model.sense_capacity: # new_capacity = model.sense_capacity * 3 // 2 # counter_list = np.concatenate( (counter_list, np.ones((new_capacity - model.sense_capacity),dtype='float32')), axis=0) # zero = np.zeros((new_capacity - model.sense_capacity, args.size), 'float32') # sense_embs = np.concatenate((sense_embs, zero), 0) # model.sense_capacity = new_capacity # print("\nexapnded sense_embs: %d" % model.n_senses) t.join() sense_embs[:model.n_senses, :] = sense_embs[:model.n_senses, :] / counter_list[:model.n_senses, None] if __name__ == '__main__': set_start_method('forkserver') args = parser.parse_args() print("Starting training using file %s" % args.train) train_file = open(args.train) train_file.seek(0, 2) vars(args)['file_size'] = train_file.tell() word_count_actual = mp.Value('L', 0) if args.vocab == '': word2idx, word_list, freq = build_vocab(args) else: with open(args.vocab, 'rb') as f: word2idx, word_list, freq, pos2idx, dep2id = pickle.load(f) word_count = sum([freq[k] for k in freq]) vars(args)['vocab_size'] = len(word2idx) vars(args)['train_words'] = word_count print("Vocab size: %ld" % len(word2idx)) print("Words in train file: %ld" % word_count) model = init_net(args) model.share_memory() if args.cuda: model.cuda() # stage 1, learn robust context representation. vars(args)['stage'] = 1 print("Stage 1") vars(args)['lr_anneal'] = True vars(args)['t_start'] = time.monotonic() processes = [] for p_id in range(args.processes): p = mp.Process(target=train_process, args=(p_id, word_count_actual, word2idx, word_list, freq, args, model)) p.start() processes.append(p) for p in processes: p.join() del processes print("\nStage 1, ", time.monotonic() - args.t_start, " secs ", word_count_actual.value) filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage1.pth.tar' save_model(filename, model, args, word2idx) if args.multi_proto: # stage 2, create new sense in a non-parametric way. # Freeze model paramters except sense_embs, and use only 1 process to prevent race condition old_batch_size = vars(args)['batch_size'] model.global_embs.requires_grad = False model.ctx_weight.requires_grad = False model.sense_embs = model.sense_embs.cpu() vars(args)['stage'] = 2 vars(args)['batch_size'] = 5000 print("\nStage 2") word_count_actual.value = 0 vars(args)['t_start'] = time.monotonic() train_process_stage2(0, word_count_actual, word2idx, word_list, freq, args, model) if args.cuda: model.cuda() print("\nStage 2, ", time.monotonic() - args.t_start, " secs") print("Current # of senses: %d" % model.n_senses) pdb.set_trace() filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage2.pth.tar' save_model(filename, model, args, word2idx) # stage 3, no more sense creation. vars(args)['lr'] = args.lr * 0.01 vars(args)['batch_size'] = old_batch_size model.global_embs.requires_grad = True model.ctx_weight.requires_grad = True vars(args)['stage'] = 3 print("\nBegin stage 3") word_count_actual.value = 0 vars(args)['t_start'] = time.monotonic() processes = [] for p_id in range(args.processes): p = mp.Process(target=train_process, args=(p_id, word_count_actual, word2idx, word_list, freq, args, model)) p.start() processes.append(p) for p in processes: p.join() print("\nStage 3, ", time.monotonic() - args.t_start, " secs") # save model filename = args.save if not filename.endswith('.pth.tar'): filename += '.stage3.pth.tar' save_model(filename, model, args, word2idx) print("")
en
0.419023
#!/usr/bin/env python3 # Build the vocabulary. word2sense = np.zeros((args.vocab_size, 5), dtype='int32') for i in range(args.vocab_size): word2sense[i, 0] = i self.word2sense = torch.nn.Parameter(torch.from_numpy(word2sense).int()) self.word_sense_cnts = torch.nn.Parameter(torch.ones((args.vocab_size,)).int()) # Neg Log Likelihood # Initialize model. #'word2sense': model.word2sense, #model.word2sense.data = checkpoint['params']['word2sense'] #model.word_sense_cnts.data = checkpoint['params']['word_sense_cnts'] # Training # subsampling #optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) #n_iter = 1 if args.stage == 2 else args.iter # get from data_queue and feed to model # lr anneal & output #if args.lr_anneal: # lr = args.lr * (1 - word_count_actual.value / (n_iter * args.train_words)) # if lr < 0.0001 * args.lr: # lr = 0.0001 * args.lr # for param_group in optimizer.param_groups: # param_group['lr'] = lr #sys.stdout.write("\rAlpha: %0.8f, Progess: %0.2f, Words/sec: %f, word_cnt: %d" % (lr, word_count_actual.value / (n_iter * args.train_words) * 100, word_count_actual.value / (time.monotonic() - args.t_start), word_count_actual.value)) #type_ids = chunk[:, 2*args.window+1:2*args.window+2+2*args.negative] # get type_idx from chunk, and do sense selection here. # get from data_queue and feed to model # update sense_embs #if model.n_senses + args.batch_size > model.sense_capacity: # new_capacity = model.sense_capacity * 3 // 2 # counter_list = np.concatenate( (counter_list, np.ones((new_capacity - model.sense_capacity),dtype='float32')), axis=0) # zero = np.zeros((new_capacity - model.sense_capacity, args.size), 'float32') # sense_embs = np.concatenate((sense_embs, zero), 0) # model.sense_capacity = new_capacity # print("\nexapnded sense_embs: %d" % model.n_senses) # stage 1, learn robust context representation. # stage 2, create new sense in a non-parametric way. # Freeze model paramters except sense_embs, and use only 1 process to prevent race condition # of senses: %d" % model.n_senses) # stage 3, no more sense creation. # save model
2.453386
2
Ogrenciler/Varol/buyuksayi.py
ProEgitim/Python-Dersleri-BEM
1
8340
sayi1 = int(input("1. Sayı: ")) sayi2 = int(input("2. Sayı: ")) sayi3 = int(input("3. Sayı: ")) sayi4 = int(input("4. Sayı: ")) sayi5 = int(input("5. Sayı: ")) sayilar=[]; sayilar.append(sayi1) sayilar.append(sayi2) sayilar.append(sayi3) sayilar.append(sayi4) sayilar.append(sayi5) sayilar.sort() print("En büyük sayimiz..",sayilar[-1])
sayi1 = int(input("1. Sayı: ")) sayi2 = int(input("2. Sayı: ")) sayi3 = int(input("3. Sayı: ")) sayi4 = int(input("4. Sayı: ")) sayi5 = int(input("5. Sayı: ")) sayilar=[]; sayilar.append(sayi1) sayilar.append(sayi2) sayilar.append(sayi3) sayilar.append(sayi4) sayilar.append(sayi5) sayilar.sort() print("En büyük sayimiz..",sayilar[-1])
none
1
3.649919
4
baselines/deepq/build_graph_mfec.py
MouseHu/emdqn
0
8341
<gh_stars>0 """Deep Q learning graph The functions in this file can are used to create the following functions: ======= act ======== Function to chose an action given an observation Parameters ---------- observation: object Observation that can be feed into the output of make_obs_ph stochastic: bool if set to False all the actions are always deterministic (default False) update_eps_ph: float update epsilon a new value, if negative not update happens (default: no update) Returns ------- Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for every element of the batch. ======= train ======= Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error: td_error = Q(s,a) - (r + gamma * max_a' Q(s', a')) loss = huber_loss[td_error] Parameters ---------- obs_t: object a batch of observations action: np.array actions that were selected upon seeing obs_t. dtype must be int32 and shape must be (batch_size,) reward: np.array immediate reward attained after executing those actions dtype must be float32 and shape must be (batch_size,) obs_tp1: object observations that followed obs_t done: np.array 1 if obs_t was the last observation in the episode and 0 otherwise obs_tp1 gets ignored, but must be of the valid shape. dtype must be float32 and shape must be (batch_size,) weight: np.array imporance weights for every element of the batch (gradient is multiplied by the importance weight) dtype must be float32 and shape must be (batch_size,) Returns ------- td_error: np.array a list of differences between Q(s,a) and the target in Bellman's equation. dtype is float32 and shape is (batch_size,) ======= update_target ======== copy the parameters from optimized Q function to the target Q function. In Q learning we actually optimize the following error: Q(s,a) - (r + gamma * max_a' Q'(s', a')) Where Q' is lagging behind Q to stablize the learning. For example for Atari Q' is set to Q once every 10000 updates training steps. """ import tensorflow as tf import baselines.common.tf_util as U import numpy as np def build_act_mf(make_obs_ph, q_func, z_noise, num_actions, scope="deepq", reuse=None): with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) q, q_deterministic, v_mean, v_logvar, z_mean, z_logvar, recon_obs = q_func(observations_ph.get(), z_noise, num_actions, scope="q_func", reuse=tf.AUTO_REUSE) act = U.function(inputs=[observations_ph,z_noise], outputs=[z_mean, z_logvar]) return act def build_train_mf(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0, scope="mfec", alpha=1.0, beta=1.0, theta=1.0, latent_dim=32, ib=True, reuse=None): """Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. """ act_noise = tf.placeholder(tf.float32, [None, latent_dim], name="act_noise") act_f = build_act_mf(make_obs_ph, q_func, act_noise, num_actions, scope=scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): # set up placeholders # EMDQN obs_vae_input = U.ensure_tf_input(make_obs_ph("obs_vae")) z_noise_vae = tf.placeholder(tf.float32, [None, latent_dim], name="z_noise_vae") inputs = [obs_vae_input,z_noise_vae] if ib: qec_input = tf.placeholder(tf.float32, [None], name='qec') inputs.append(qec_input) outputs = [] q_vae, q_deterministic_vae, v_mean_vae, v_logvar_vae, z_mean_vae, z_logvar_vae, recon_obs = q_func(obs_vae_input.get(), z_noise_vae, num_actions, scope="q_func", reuse=True) q_func_vars = U.scope_vars(U.absolute_scope_name("q_func")) encoder_loss = -1 + z_mean_vae ** 2 + tf.exp(z_logvar_vae) - z_logvar_vae total_loss = tf.reduce_mean(beta * encoder_loss) decoder_loss = tf.keras.losses.binary_crossentropy(tf.reshape(recon_obs, [-1]), tf.reshape( tf.dtypes.cast(obs_vae_input._placeholder, tf.float32), [-1])) print("here", z_mean_vae.shape, z_logvar_vae.shape, encoder_loss.shape, decoder_loss.shape) vae_loss = beta * encoder_loss + theta * decoder_loss outputs.append(encoder_loss) outputs.append(decoder_loss) outputs.append(vae_loss) total_loss += tf.reduce_mean(theta * decoder_loss) if ib: ib_loss = (v_mean_vae - tf.stop_gradient(tf.expand_dims(qec_input, 1))) ** 2 / tf.exp( v_logvar_vae) + v_logvar_vae print("here2", v_mean_vae.shape, tf.expand_dims(qec_input, 1).shape, v_logvar_vae.shape, ib_loss.shape) total_ib_loss = alpha * ib_loss + beta * encoder_loss outputs.append(total_ib_loss) total_loss += tf.reduce_mean(alpha * ib_loss) if grad_norm_clipping is not None: optimize_expr = U.minimize_and_clip(optimizer, total_loss, var_list=q_func_vars, clip_val=grad_norm_clipping) else: optimize_expr = optimizer.minimize(total_loss, var_list=q_func_vars) # Create callable functions # EMDQN total_loss_summary = tf.summary.scalar("total loss", total_loss) z_var_summary = tf.summary.scalar("z_var", tf.reduce_mean(tf.exp(z_logvar_vae))) encoder_loss_summary = tf.summary.scalar("encoder loss", tf.reduce_mean(encoder_loss)) decoder_loss_summary = tf.summary.scalar("decoder loss", tf.reduce_mean(decoder_loss)) summaries = [total_loss_summary, z_var_summary, encoder_loss_summary, decoder_loss_summary] if ib: ib_loss_summary = tf.summary.scalar("ib loss", tf.reduce_mean(ib_loss)) total_ib_loss_summary = tf.summary.scalar("total ib loss", tf.reduce_mean(total_ib_loss)) summaries.append(ib_loss_summary) summaries.append(total_ib_loss_summary) summary = tf.summary.merge(summaries) outputs.append(summary) train = U.function( inputs=inputs, outputs=[total_loss,summary], updates=[optimize_expr] ) return act_f, train
"""Deep Q learning graph The functions in this file can are used to create the following functions: ======= act ======== Function to chose an action given an observation Parameters ---------- observation: object Observation that can be feed into the output of make_obs_ph stochastic: bool if set to False all the actions are always deterministic (default False) update_eps_ph: float update epsilon a new value, if negative not update happens (default: no update) Returns ------- Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for every element of the batch. ======= train ======= Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error: td_error = Q(s,a) - (r + gamma * max_a' Q(s', a')) loss = huber_loss[td_error] Parameters ---------- obs_t: object a batch of observations action: np.array actions that were selected upon seeing obs_t. dtype must be int32 and shape must be (batch_size,) reward: np.array immediate reward attained after executing those actions dtype must be float32 and shape must be (batch_size,) obs_tp1: object observations that followed obs_t done: np.array 1 if obs_t was the last observation in the episode and 0 otherwise obs_tp1 gets ignored, but must be of the valid shape. dtype must be float32 and shape must be (batch_size,) weight: np.array imporance weights for every element of the batch (gradient is multiplied by the importance weight) dtype must be float32 and shape must be (batch_size,) Returns ------- td_error: np.array a list of differences between Q(s,a) and the target in Bellman's equation. dtype is float32 and shape is (batch_size,) ======= update_target ======== copy the parameters from optimized Q function to the target Q function. In Q learning we actually optimize the following error: Q(s,a) - (r + gamma * max_a' Q'(s', a')) Where Q' is lagging behind Q to stablize the learning. For example for Atari Q' is set to Q once every 10000 updates training steps. """ import tensorflow as tf import baselines.common.tf_util as U import numpy as np def build_act_mf(make_obs_ph, q_func, z_noise, num_actions, scope="deepq", reuse=None): with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) q, q_deterministic, v_mean, v_logvar, z_mean, z_logvar, recon_obs = q_func(observations_ph.get(), z_noise, num_actions, scope="q_func", reuse=tf.AUTO_REUSE) act = U.function(inputs=[observations_ph,z_noise], outputs=[z_mean, z_logvar]) return act def build_train_mf(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0, scope="mfec", alpha=1.0, beta=1.0, theta=1.0, latent_dim=32, ib=True, reuse=None): """Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. """ act_noise = tf.placeholder(tf.float32, [None, latent_dim], name="act_noise") act_f = build_act_mf(make_obs_ph, q_func, act_noise, num_actions, scope=scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): # set up placeholders # EMDQN obs_vae_input = U.ensure_tf_input(make_obs_ph("obs_vae")) z_noise_vae = tf.placeholder(tf.float32, [None, latent_dim], name="z_noise_vae") inputs = [obs_vae_input,z_noise_vae] if ib: qec_input = tf.placeholder(tf.float32, [None], name='qec') inputs.append(qec_input) outputs = [] q_vae, q_deterministic_vae, v_mean_vae, v_logvar_vae, z_mean_vae, z_logvar_vae, recon_obs = q_func(obs_vae_input.get(), z_noise_vae, num_actions, scope="q_func", reuse=True) q_func_vars = U.scope_vars(U.absolute_scope_name("q_func")) encoder_loss = -1 + z_mean_vae ** 2 + tf.exp(z_logvar_vae) - z_logvar_vae total_loss = tf.reduce_mean(beta * encoder_loss) decoder_loss = tf.keras.losses.binary_crossentropy(tf.reshape(recon_obs, [-1]), tf.reshape( tf.dtypes.cast(obs_vae_input._placeholder, tf.float32), [-1])) print("here", z_mean_vae.shape, z_logvar_vae.shape, encoder_loss.shape, decoder_loss.shape) vae_loss = beta * encoder_loss + theta * decoder_loss outputs.append(encoder_loss) outputs.append(decoder_loss) outputs.append(vae_loss) total_loss += tf.reduce_mean(theta * decoder_loss) if ib: ib_loss = (v_mean_vae - tf.stop_gradient(tf.expand_dims(qec_input, 1))) ** 2 / tf.exp( v_logvar_vae) + v_logvar_vae print("here2", v_mean_vae.shape, tf.expand_dims(qec_input, 1).shape, v_logvar_vae.shape, ib_loss.shape) total_ib_loss = alpha * ib_loss + beta * encoder_loss outputs.append(total_ib_loss) total_loss += tf.reduce_mean(alpha * ib_loss) if grad_norm_clipping is not None: optimize_expr = U.minimize_and_clip(optimizer, total_loss, var_list=q_func_vars, clip_val=grad_norm_clipping) else: optimize_expr = optimizer.minimize(total_loss, var_list=q_func_vars) # Create callable functions # EMDQN total_loss_summary = tf.summary.scalar("total loss", total_loss) z_var_summary = tf.summary.scalar("z_var", tf.reduce_mean(tf.exp(z_logvar_vae))) encoder_loss_summary = tf.summary.scalar("encoder loss", tf.reduce_mean(encoder_loss)) decoder_loss_summary = tf.summary.scalar("decoder loss", tf.reduce_mean(decoder_loss)) summaries = [total_loss_summary, z_var_summary, encoder_loss_summary, decoder_loss_summary] if ib: ib_loss_summary = tf.summary.scalar("ib loss", tf.reduce_mean(ib_loss)) total_ib_loss_summary = tf.summary.scalar("total ib loss", tf.reduce_mean(total_ib_loss)) summaries.append(ib_loss_summary) summaries.append(total_ib_loss_summary) summary = tf.summary.merge(summaries) outputs.append(summary) train = U.function( inputs=inputs, outputs=[total_loss,summary], updates=[optimize_expr] ) return act_f, train
en
0.760463
Deep Q learning graph The functions in this file can are used to create the following functions: ======= act ======== Function to chose an action given an observation Parameters ---------- observation: object Observation that can be feed into the output of make_obs_ph stochastic: bool if set to False all the actions are always deterministic (default False) update_eps_ph: float update epsilon a new value, if negative not update happens (default: no update) Returns ------- Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for every element of the batch. ======= train ======= Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error: td_error = Q(s,a) - (r + gamma * max_a' Q(s', a')) loss = huber_loss[td_error] Parameters ---------- obs_t: object a batch of observations action: np.array actions that were selected upon seeing obs_t. dtype must be int32 and shape must be (batch_size,) reward: np.array immediate reward attained after executing those actions dtype must be float32 and shape must be (batch_size,) obs_tp1: object observations that followed obs_t done: np.array 1 if obs_t was the last observation in the episode and 0 otherwise obs_tp1 gets ignored, but must be of the valid shape. dtype must be float32 and shape must be (batch_size,) weight: np.array imporance weights for every element of the batch (gradient is multiplied by the importance weight) dtype must be float32 and shape must be (batch_size,) Returns ------- td_error: np.array a list of differences between Q(s,a) and the target in Bellman's equation. dtype is float32 and shape is (batch_size,) ======= update_target ======== copy the parameters from optimized Q function to the target Q function. In Q learning we actually optimize the following error: Q(s,a) - (r + gamma * max_a' Q'(s', a')) Where Q' is lagging behind Q to stablize the learning. For example for Atari Q' is set to Q once every 10000 updates training steps. Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. # set up placeholders # EMDQN # Create callable functions # EMDQN
3.10698
3
tests/test_prior.py
frodre/LMR
17
8342
<filename>tests/test_prior.py import sys sys.path.append('../') import LMR_config as cfg import LMR_prior import numpy as np import pytest def test_prior_seed(): cfg_obj = cfg.Config(**{'core':{'seed': 2}}) prior_cfg = cfg_obj.prior prior_source = '20cr' datadir_prior = 'data' datafile_prior = '[vardef_template]_gridded_dat.nc' state_variables = {'air': 'anom'} state_kind = 'anom' X = LMR_prior.prior_assignment(prior_source) X.prior_datadir = datadir_prior X.prior_datafile = datafile_prior X.statevars = state_variables X.Nens = 1 X.detrend = False X.kind = state_kind X.avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X.populate_ensemble(prior_source, prior_cfg) X2 = LMR_prior.prior_assignment(prior_source) X2.prior_datadir = datadir_prior X2.prior_datafile = datafile_prior X2.statevars = state_variables X2.Nens = 1 X2.detrend = False X2.kind = state_kind X2.avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X2.populate_ensemble(prior_source, prior_cfg) np.testing.assert_equal(X2.ens, X.ens) def test_prior_use_full_prior(): cfg_obj = cfg.Config(**{'core': {'seed': None}}) prior_cfg = cfg_obj.prior prior_source = '20cr' datadir_prior = 'data' datafile_prior = '[vardef_template]_gridded_dat.nc' state_variables = {'air': 'anom'} state_kind = 'anom' avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X = LMR_prior.prior_assignment(prior_source) X.prior_datadir = datadir_prior X.prior_datafile = datafile_prior X.statevars = state_variables X.Nens = None X.detrend = False X.kind = state_kind X.avgInterval = avgInterval X.populate_ensemble(prior_source, prior_cfg) X2 = LMR_prior.prior_assignment(prior_source) X2.prior_datadir = datadir_prior X2.prior_datafile = datafile_prior X2.statevars = state_variables X2.Nens = None X2.detrend = False X2.kind = state_kind X2.avgInterval = avgInterval X2.read_prior() # Transform full prior into ensemble-like shape prior_vals = X2.prior_dict['air']['value'] prior_vals = prior_vals.reshape(prior_vals.shape[0], -1) prior_vals = prior_vals.T np.testing.assert_equal(X.ens, prior_vals)
<filename>tests/test_prior.py import sys sys.path.append('../') import LMR_config as cfg import LMR_prior import numpy as np import pytest def test_prior_seed(): cfg_obj = cfg.Config(**{'core':{'seed': 2}}) prior_cfg = cfg_obj.prior prior_source = '20cr' datadir_prior = 'data' datafile_prior = '[vardef_template]_gridded_dat.nc' state_variables = {'air': 'anom'} state_kind = 'anom' X = LMR_prior.prior_assignment(prior_source) X.prior_datadir = datadir_prior X.prior_datafile = datafile_prior X.statevars = state_variables X.Nens = 1 X.detrend = False X.kind = state_kind X.avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X.populate_ensemble(prior_source, prior_cfg) X2 = LMR_prior.prior_assignment(prior_source) X2.prior_datadir = datadir_prior X2.prior_datafile = datafile_prior X2.statevars = state_variables X2.Nens = 1 X2.detrend = False X2.kind = state_kind X2.avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X2.populate_ensemble(prior_source, prior_cfg) np.testing.assert_equal(X2.ens, X.ens) def test_prior_use_full_prior(): cfg_obj = cfg.Config(**{'core': {'seed': None}}) prior_cfg = cfg_obj.prior prior_source = '20cr' datadir_prior = 'data' datafile_prior = '[vardef_template]_gridded_dat.nc' state_variables = {'air': 'anom'} state_kind = 'anom' avgInterval = [1,2,3,4,5,6,7,8,9,10,11,12] X = LMR_prior.prior_assignment(prior_source) X.prior_datadir = datadir_prior X.prior_datafile = datafile_prior X.statevars = state_variables X.Nens = None X.detrend = False X.kind = state_kind X.avgInterval = avgInterval X.populate_ensemble(prior_source, prior_cfg) X2 = LMR_prior.prior_assignment(prior_source) X2.prior_datadir = datadir_prior X2.prior_datafile = datafile_prior X2.statevars = state_variables X2.Nens = None X2.detrend = False X2.kind = state_kind X2.avgInterval = avgInterval X2.read_prior() # Transform full prior into ensemble-like shape prior_vals = X2.prior_dict['air']['value'] prior_vals = prior_vals.reshape(prior_vals.shape[0], -1) prior_vals = prior_vals.T np.testing.assert_equal(X.ens, prior_vals)
en
0.926232
# Transform full prior into ensemble-like shape
2.155715
2
src/salgan_dhf1k/train_bce.py
juanjo3ns/SalGAN2
0
8343
<gh_stars>0 import os from dataloader.datasetDHF1K import DHF1K from torch.utils.data import DataLoader from utils.salgan_utils import save_model, get_lr_optimizer from utils.sendTelegram import send from utils.printer import param_print from utils.salgan_generator import create_model, add_bn from evaluation.fast_evaluation import compute_metrics import numpy as np import torch from torch.nn import AvgPool2d from torch.nn.modules.loss import BCELoss import torch.backends.cudnn as cudnn from torch.optim import SGD, Adam from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR from time import time from IPython import embed from tensorboard_logger import configure, log_value, log_histogram TRAIN = 'train' VAL = 'val' TEST = 'test' def add_layer_weights(vgg_weights): # Mean of RGB weights of first layer with size [64,1,3,3] layer1 = vgg_weights['0.weight'] mean_rgb = layer1.mean(dim=1,keepdim=True) vgg_weights['0.weight'] = torch.cat([layer1.cuda(),mean_rgb.cuda()],1) # We could do it easily accessing to the weights trought model[0].weight and change dimension 1, but as we # already have the 4th channel we'd be doing the mean of all of the channels, inicializing it in the wrong way. return vgg_weights def train_eval(mode, model, optimizer, dataloader): if mode == TRAIN: N = len(ds_train)/batch_size model.train() else: N = len(ds_validate)/batch_size model.eval() total_loss = [] #iterate epoch... #iterate epoch... for i, X in enumerate(dataloader[mode]): inputs = X[0].cuda() # noramlize saliency maps values between [0,1] gt_maps = X[1].cuda()/255 embed() predictions = model.forward(inputs).squeeze() # reduce size for loss reduce_size = AvgPool2d((4,4)) pred_ = reduce_size(predictions) gt_maps_ = reduce_size(gt_maps) pred_ = pred_.view(pred_.size()[0], -1) gt_maps_ = gt_maps_.view(gt_maps_.size()[0], -1) loss = bce_loss(pred_, gt_maps_) # make actual step update if mode==TRAIN: # compute gradients loss.backward() # step optimizer optimizer.step() # reset grads for next step optimizer.zero_grad() print("\t{}/{} loss:{}".format(i, int(N), loss.item()), end="\r") total_loss.append(loss.item()) total_loss=np.mean(total_loss) return total_loss if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument("--path_out", default='sal_dhf1k_adamdepthcoordaugm2_frombestsaldepth', type=str, help="""set output path for the trained model""") parser.add_argument("--batch_size", default=12, type=int, help="""Set batch size""") parser.add_argument("--n_epochs", default=10, type=int, help="""Set total number of epochs""") parser.add_argument("--depth", default=False, type=bool, help="""Enable 4th channel with depth""") parser.add_argument("--augment", default=False, type=bool, help="""Enable data augmentation""") parser.add_argument("--coord", default=False, type=bool, help="""Enable coordconv""") parser.add_argument("--flow", default=False, type=bool, help="""Enable opticalflow""") parser.add_argument("--lr", type=float, default=0.00001, help="""Learning rate for training""") parser.add_argument("--patience", type=int, default=3, help="""Patience for learning rate scheduler (default 10)""") args = parser.parse_args() # set output path ========================================================== path_out = '../trained_models/batch12_/' + args.path_out if not os.path.exists(path_out): # create output path os.makedirs(path_out) # create output for models path_models = os.path.join(path_out, 'models') if not os.path.exists(path_models): os.makedirs(path_models) # tensorboard configure("{}".format(path_out), flush_secs=5) # data ===================================================================== batch_size = args.batch_size n_epochs = args.n_epochs lr = args.lr DEPTH = args.depth AUGMENT = args.augment COORD = args.coord FLOW = args.flow # Datasets for DHF1K ds_train = DHF1K(mode=TRAIN, transformation=True, depth=DEPTH, d_augm=AUGMENT, coord=COORD) ds_validate = DHF1K(mode=VAL, transformation=False, depth=DEPTH, d_augm=False, coord=COORD) # Dataloaders dataloader = { TRAIN: DataLoader(ds_train, batch_size=batch_size, shuffle=True, num_workers=2), VAL: DataLoader(ds_validate, batch_size=batch_size, shuffle=False, num_workers=2) } # POSSIBILITY OF CHOOSING GPU torch.cuda.set_device(1) # MODEL INITIALIZATION print("Init model...") vgg_weights = torch.load('../trained_models/salgan_baseline.pt')['state_dict'] model = create_model(3) # if DEPTH and COORD: # model = create_model(6) # for i in range(0,3): # vgg_weights = add_layer_weights(vgg_weights) # elif DEPTH: # model = create_model(4) # add_layer_weights(vgg_weights) # elif COORD: # model = create_model(5) # for i in range(0,2): # vgg_weights = add_layer_weights(vgg_weights) # else: model = create_model(3) # Instead of adding manually the layer of new weights, we could use strict=False model.load_state_dict(vgg_weights) # Add batch normalization to current model if needed model = add_bn(model) model.train() model.cuda() cudnn.benchmark = True # NOT WORKING UNMOUNTED DISK # If we have the two GPU's available we are going to use both # if torch.cuda.device_count() > 1: # print("Using ", torch.cuda.device_count(), "GPUs!") # model = torch.nn.DataParallel(model) # LOSS FUNCTION bce_loss = BCELoss() # FINE-TUNE WHOLE NETWORK OR JUST DECODER => uncomment / or different lr for each part # decoder_parameters = [] # base_params = [] # for i, (a, p) in enumerate(model.named_parameters()): # embed() # if i>25: # # print(i, a, p.shape) # decoder_parameters.append(p) # else: # base_params.append(p) # If you wanna train just the decoder put this # p.requires_grad = False # ADAM OPTIMIZER optimizer = Adam(model.parameters(), lr = lr, weight_decay=0.000001) # STOCHASTIC GRADIENT DESCENT OPTIMIZER # optimizer = SGD(model.parameters(), # lr = 0.00001, # momentum=0.9, # weight_decay=0.00001, # nesterov=True) # NUMBER OF TOTAL PARAMETERS # pytorch_total_params = sum(p.numel() for p in model.parameters()) # NUMBER OF TRAINABLE PARAMETERS trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Trainable parameters: ", trainable_parameters) send("Trainable parameters: " + str(trainable_parameters)) send("Experiment: " + args.path_out) # PRINT TABLE OF PARAMETERS param_print([path_out,"",DEPTH,AUGMENT,COORD,FLOW,batch_size,lr,n_epochs, trainable_parameters]) # set learning rate scheduler # ReduceLROnPlateau( # optimizer, # mode (str) 'min':lr es reduira quan la metrica no es redueixi mes, 'max' al contrari, # factor (float) factor de reduccio de la lr, # patience (int) num epochs sense millora a partir dels quals es redueix lr, # verbose (bool), # ) # scheduler = ReduceLROnPlateau(optimizer, # 'min', # patience=args.patience, # verbose=True) scheduler = StepLR(optimizer, step_size=3, gamma=0.1) best_loss=9999999 # main loop training ======================================================= for id_epoch in range(n_epochs): for mode in [VAL, TRAIN]: # select dataloader data_iterator = dataloader[mode] # # # saliency metrics # if mode ==VAL: # print("Evaluating metrics....") # # only do 100 images from validation # metrics = compute_metrics(model, 100, DEPTH, COORD) # # # log metric values # for metric in metrics.keys(): # log_value("Metrics/{}".format(metric), # metrics[metric], id_epoch) # # # get epoch loss # print("--> {} epoch {}".format(mode, id_epoch)) epoch_loss = train_eval(mode, model, optimizer, dataloader) lr = list(get_lr_optimizer(optimizer))[0] print("-----------") print("Done! {} epoch {} loss {} lr {}".format(mode, id_epoch, epoch_loss, lr)) send("{} epoch {}/{} loss {}".format(mode, id_epoch, n_epochs, epoch_loss)) print("\n") # record loss log_value("loss/{}".format(mode), epoch_loss, id_epoch) log_value("lr/{}".format(mode), lr, id_epoch) # for v in model.state_dict(): # log_histogram("Layer {}".format(v), model.state_dict()[v], id_epoch) if (id_epoch%2)==0: save_model(model, optimizer, id_epoch, path_out, name_model='{:03d}'.format(id_epoch)) # store model if val loss improves if mode==VAL: if best_loss > epoch_loss: # update loss best_loss = epoch_loss save_model(model, optimizer, id_epoch, path_out, name_model='best') # scheduler.step(epoch_loss) scheduler.step()
import os from dataloader.datasetDHF1K import DHF1K from torch.utils.data import DataLoader from utils.salgan_utils import save_model, get_lr_optimizer from utils.sendTelegram import send from utils.printer import param_print from utils.salgan_generator import create_model, add_bn from evaluation.fast_evaluation import compute_metrics import numpy as np import torch from torch.nn import AvgPool2d from torch.nn.modules.loss import BCELoss import torch.backends.cudnn as cudnn from torch.optim import SGD, Adam from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR from time import time from IPython import embed from tensorboard_logger import configure, log_value, log_histogram TRAIN = 'train' VAL = 'val' TEST = 'test' def add_layer_weights(vgg_weights): # Mean of RGB weights of first layer with size [64,1,3,3] layer1 = vgg_weights['0.weight'] mean_rgb = layer1.mean(dim=1,keepdim=True) vgg_weights['0.weight'] = torch.cat([layer1.cuda(),mean_rgb.cuda()],1) # We could do it easily accessing to the weights trought model[0].weight and change dimension 1, but as we # already have the 4th channel we'd be doing the mean of all of the channels, inicializing it in the wrong way. return vgg_weights def train_eval(mode, model, optimizer, dataloader): if mode == TRAIN: N = len(ds_train)/batch_size model.train() else: N = len(ds_validate)/batch_size model.eval() total_loss = [] #iterate epoch... #iterate epoch... for i, X in enumerate(dataloader[mode]): inputs = X[0].cuda() # noramlize saliency maps values between [0,1] gt_maps = X[1].cuda()/255 embed() predictions = model.forward(inputs).squeeze() # reduce size for loss reduce_size = AvgPool2d((4,4)) pred_ = reduce_size(predictions) gt_maps_ = reduce_size(gt_maps) pred_ = pred_.view(pred_.size()[0], -1) gt_maps_ = gt_maps_.view(gt_maps_.size()[0], -1) loss = bce_loss(pred_, gt_maps_) # make actual step update if mode==TRAIN: # compute gradients loss.backward() # step optimizer optimizer.step() # reset grads for next step optimizer.zero_grad() print("\t{}/{} loss:{}".format(i, int(N), loss.item()), end="\r") total_loss.append(loss.item()) total_loss=np.mean(total_loss) return total_loss if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument("--path_out", default='sal_dhf1k_adamdepthcoordaugm2_frombestsaldepth', type=str, help="""set output path for the trained model""") parser.add_argument("--batch_size", default=12, type=int, help="""Set batch size""") parser.add_argument("--n_epochs", default=10, type=int, help="""Set total number of epochs""") parser.add_argument("--depth", default=False, type=bool, help="""Enable 4th channel with depth""") parser.add_argument("--augment", default=False, type=bool, help="""Enable data augmentation""") parser.add_argument("--coord", default=False, type=bool, help="""Enable coordconv""") parser.add_argument("--flow", default=False, type=bool, help="""Enable opticalflow""") parser.add_argument("--lr", type=float, default=0.00001, help="""Learning rate for training""") parser.add_argument("--patience", type=int, default=3, help="""Patience for learning rate scheduler (default 10)""") args = parser.parse_args() # set output path ========================================================== path_out = '../trained_models/batch12_/' + args.path_out if not os.path.exists(path_out): # create output path os.makedirs(path_out) # create output for models path_models = os.path.join(path_out, 'models') if not os.path.exists(path_models): os.makedirs(path_models) # tensorboard configure("{}".format(path_out), flush_secs=5) # data ===================================================================== batch_size = args.batch_size n_epochs = args.n_epochs lr = args.lr DEPTH = args.depth AUGMENT = args.augment COORD = args.coord FLOW = args.flow # Datasets for DHF1K ds_train = DHF1K(mode=TRAIN, transformation=True, depth=DEPTH, d_augm=AUGMENT, coord=COORD) ds_validate = DHF1K(mode=VAL, transformation=False, depth=DEPTH, d_augm=False, coord=COORD) # Dataloaders dataloader = { TRAIN: DataLoader(ds_train, batch_size=batch_size, shuffle=True, num_workers=2), VAL: DataLoader(ds_validate, batch_size=batch_size, shuffle=False, num_workers=2) } # POSSIBILITY OF CHOOSING GPU torch.cuda.set_device(1) # MODEL INITIALIZATION print("Init model...") vgg_weights = torch.load('../trained_models/salgan_baseline.pt')['state_dict'] model = create_model(3) # if DEPTH and COORD: # model = create_model(6) # for i in range(0,3): # vgg_weights = add_layer_weights(vgg_weights) # elif DEPTH: # model = create_model(4) # add_layer_weights(vgg_weights) # elif COORD: # model = create_model(5) # for i in range(0,2): # vgg_weights = add_layer_weights(vgg_weights) # else: model = create_model(3) # Instead of adding manually the layer of new weights, we could use strict=False model.load_state_dict(vgg_weights) # Add batch normalization to current model if needed model = add_bn(model) model.train() model.cuda() cudnn.benchmark = True # NOT WORKING UNMOUNTED DISK # If we have the two GPU's available we are going to use both # if torch.cuda.device_count() > 1: # print("Using ", torch.cuda.device_count(), "GPUs!") # model = torch.nn.DataParallel(model) # LOSS FUNCTION bce_loss = BCELoss() # FINE-TUNE WHOLE NETWORK OR JUST DECODER => uncomment / or different lr for each part # decoder_parameters = [] # base_params = [] # for i, (a, p) in enumerate(model.named_parameters()): # embed() # if i>25: # # print(i, a, p.shape) # decoder_parameters.append(p) # else: # base_params.append(p) # If you wanna train just the decoder put this # p.requires_grad = False # ADAM OPTIMIZER optimizer = Adam(model.parameters(), lr = lr, weight_decay=0.000001) # STOCHASTIC GRADIENT DESCENT OPTIMIZER # optimizer = SGD(model.parameters(), # lr = 0.00001, # momentum=0.9, # weight_decay=0.00001, # nesterov=True) # NUMBER OF TOTAL PARAMETERS # pytorch_total_params = sum(p.numel() for p in model.parameters()) # NUMBER OF TRAINABLE PARAMETERS trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Trainable parameters: ", trainable_parameters) send("Trainable parameters: " + str(trainable_parameters)) send("Experiment: " + args.path_out) # PRINT TABLE OF PARAMETERS param_print([path_out,"",DEPTH,AUGMENT,COORD,FLOW,batch_size,lr,n_epochs, trainable_parameters]) # set learning rate scheduler # ReduceLROnPlateau( # optimizer, # mode (str) 'min':lr es reduira quan la metrica no es redueixi mes, 'max' al contrari, # factor (float) factor de reduccio de la lr, # patience (int) num epochs sense millora a partir dels quals es redueix lr, # verbose (bool), # ) # scheduler = ReduceLROnPlateau(optimizer, # 'min', # patience=args.patience, # verbose=True) scheduler = StepLR(optimizer, step_size=3, gamma=0.1) best_loss=9999999 # main loop training ======================================================= for id_epoch in range(n_epochs): for mode in [VAL, TRAIN]: # select dataloader data_iterator = dataloader[mode] # # # saliency metrics # if mode ==VAL: # print("Evaluating metrics....") # # only do 100 images from validation # metrics = compute_metrics(model, 100, DEPTH, COORD) # # # log metric values # for metric in metrics.keys(): # log_value("Metrics/{}".format(metric), # metrics[metric], id_epoch) # # # get epoch loss # print("--> {} epoch {}".format(mode, id_epoch)) epoch_loss = train_eval(mode, model, optimizer, dataloader) lr = list(get_lr_optimizer(optimizer))[0] print("-----------") print("Done! {} epoch {} loss {} lr {}".format(mode, id_epoch, epoch_loss, lr)) send("{} epoch {}/{} loss {}".format(mode, id_epoch, n_epochs, epoch_loss)) print("\n") # record loss log_value("loss/{}".format(mode), epoch_loss, id_epoch) log_value("lr/{}".format(mode), lr, id_epoch) # for v in model.state_dict(): # log_histogram("Layer {}".format(v), model.state_dict()[v], id_epoch) if (id_epoch%2)==0: save_model(model, optimizer, id_epoch, path_out, name_model='{:03d}'.format(id_epoch)) # store model if val loss improves if mode==VAL: if best_loss > epoch_loss: # update loss best_loss = epoch_loss save_model(model, optimizer, id_epoch, path_out, name_model='best') # scheduler.step(epoch_loss) scheduler.step()
en
0.505862
# Mean of RGB weights of first layer with size [64,1,3,3] # We could do it easily accessing to the weights trought model[0].weight and change dimension 1, but as we # already have the 4th channel we'd be doing the mean of all of the channels, inicializing it in the wrong way. #iterate epoch... #iterate epoch... # noramlize saliency maps values between [0,1] # reduce size for loss # make actual step update # compute gradients # step optimizer # reset grads for next step set output path for the trained model Set batch size Set total number of epochs Enable 4th channel with depth Enable data augmentation Enable coordconv Enable opticalflow Learning rate for training Patience for learning rate scheduler (default 10) # set output path ========================================================== # create output path # create output for models # tensorboard # data ===================================================================== # Datasets for DHF1K # Dataloaders # POSSIBILITY OF CHOOSING GPU # MODEL INITIALIZATION # if DEPTH and COORD: # model = create_model(6) # for i in range(0,3): # vgg_weights = add_layer_weights(vgg_weights) # elif DEPTH: # model = create_model(4) # add_layer_weights(vgg_weights) # elif COORD: # model = create_model(5) # for i in range(0,2): # vgg_weights = add_layer_weights(vgg_weights) # else: model = create_model(3) # Instead of adding manually the layer of new weights, we could use strict=False # Add batch normalization to current model if needed # NOT WORKING UNMOUNTED DISK # If we have the two GPU's available we are going to use both # if torch.cuda.device_count() > 1: # print("Using ", torch.cuda.device_count(), "GPUs!") # model = torch.nn.DataParallel(model) # LOSS FUNCTION # FINE-TUNE WHOLE NETWORK OR JUST DECODER => uncomment / or different lr for each part # decoder_parameters = [] # base_params = [] # for i, (a, p) in enumerate(model.named_parameters()): # embed() # if i>25: # # print(i, a, p.shape) # decoder_parameters.append(p) # else: # base_params.append(p) # If you wanna train just the decoder put this # p.requires_grad = False # ADAM OPTIMIZER # STOCHASTIC GRADIENT DESCENT OPTIMIZER # optimizer = SGD(model.parameters(), # lr = 0.00001, # momentum=0.9, # weight_decay=0.00001, # nesterov=True) # NUMBER OF TOTAL PARAMETERS # pytorch_total_params = sum(p.numel() for p in model.parameters()) # NUMBER OF TRAINABLE PARAMETERS # PRINT TABLE OF PARAMETERS # set learning rate scheduler # ReduceLROnPlateau( # optimizer, # mode (str) 'min':lr es reduira quan la metrica no es redueixi mes, 'max' al contrari, # factor (float) factor de reduccio de la lr, # patience (int) num epochs sense millora a partir dels quals es redueix lr, # verbose (bool), # ) # scheduler = ReduceLROnPlateau(optimizer, # 'min', # patience=args.patience, # verbose=True) # main loop training ======================================================= # select dataloader # # # saliency metrics # if mode ==VAL: # print("Evaluating metrics....") # # only do 100 images from validation # metrics = compute_metrics(model, 100, DEPTH, COORD) # # # log metric values # for metric in metrics.keys(): # log_value("Metrics/{}".format(metric), # metrics[metric], id_epoch) # # # get epoch loss # print("--> {} epoch {}".format(mode, id_epoch)) # record loss # for v in model.state_dict(): # log_histogram("Layer {}".format(v), model.state_dict()[v], id_epoch) # store model if val loss improves # update loss # scheduler.step(epoch_loss)
1.974925
2
dragontail/content/models/basicpage.py
tracon/dragontail
0
8344
<filename>dragontail/content/models/basicpage.py<gh_stars>0 # encoding: utf-8 from django.db import models from wagtail.wagtailcore.models import Page from wagtail.wagtailcore.fields import StreamField from wagtail.wagtailcore import blocks from wagtail.wagtailadmin.edit_handlers import FieldPanel, StreamFieldPanel from wagtail.wagtailimages.blocks import ImageChooserBlock class BasicPage(Page): body = StreamField([ ('paragraph', blocks.RichTextBlock()), ('image', ImageChooserBlock()), ]) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ] def get_template(self, request, *args, **kwargs): from .templatesettings import TemplateSettings template_settings = TemplateSettings.for_site(request.site) return template_settings.basic_page_template
<filename>dragontail/content/models/basicpage.py<gh_stars>0 # encoding: utf-8 from django.db import models from wagtail.wagtailcore.models import Page from wagtail.wagtailcore.fields import StreamField from wagtail.wagtailcore import blocks from wagtail.wagtailadmin.edit_handlers import FieldPanel, StreamFieldPanel from wagtail.wagtailimages.blocks import ImageChooserBlock class BasicPage(Page): body = StreamField([ ('paragraph', blocks.RichTextBlock()), ('image', ImageChooserBlock()), ]) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ] def get_template(self, request, *args, **kwargs): from .templatesettings import TemplateSettings template_settings = TemplateSettings.for_site(request.site) return template_settings.basic_page_template
en
0.83829
# encoding: utf-8
1.944486
2
infapy/v3/agentService.py
infapy/infapy
0
8345
# Copyright (c) 2021-Present (<NAME>) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests as re import infapy from infapy.exceptions import InvalidDetailsProvided class AgentService(): def __init__(self,v3,v3BaseURL,v3SessionID): self._v3 = v3 self._v3BaseURL = v3BaseURL self._v3SessionID = v3SessionID def updateAgentService(self,serviceName, serviceAction, agentId): url=self._v3BaseURL + "/public/core/v3/agent/service" headers = {'Content-Type': "application/json", 'Accept': "application/json","INFA-SESSION-ID":self._v3SessionID} body = { 'serviceName':serviceName, 'serviceAction':serviceAction, 'agentId':agentId} infapy.log.info("agentService API URL - " + url) infapy.log.info("API Headers: " + str(headers)) infapy.log.info("Body: " + str(body)) try: response = re.post(url=url, json=body, headers=headers) data = response.json() infapy.log.debug(str(data)) try: if ("error" in data): infapy.log.error("Please validate the details passed") infapy.log.error(str(data)) raise InvalidDetailsProvided except Exception as e: infapy.log.exception(e) raise except Exception as e: infapy.log.exception(e) raise infapy.log.info(data["message"]) return data
# Copyright (c) 2021-Present (<NAME>) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests as re import infapy from infapy.exceptions import InvalidDetailsProvided class AgentService(): def __init__(self,v3,v3BaseURL,v3SessionID): self._v3 = v3 self._v3BaseURL = v3BaseURL self._v3SessionID = v3SessionID def updateAgentService(self,serviceName, serviceAction, agentId): url=self._v3BaseURL + "/public/core/v3/agent/service" headers = {'Content-Type': "application/json", 'Accept': "application/json","INFA-SESSION-ID":self._v3SessionID} body = { 'serviceName':serviceName, 'serviceAction':serviceAction, 'agentId':agentId} infapy.log.info("agentService API URL - " + url) infapy.log.info("API Headers: " + str(headers)) infapy.log.info("Body: " + str(body)) try: response = re.post(url=url, json=body, headers=headers) data = response.json() infapy.log.debug(str(data)) try: if ("error" in data): infapy.log.error("Please validate the details passed") infapy.log.error(str(data)) raise InvalidDetailsProvided except Exception as e: infapy.log.exception(e) raise except Exception as e: infapy.log.exception(e) raise infapy.log.info(data["message"]) return data
en
0.851108
# Copyright (c) 2021-Present (<NAME>) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
2.067729
2
home_application/views.py
pengwow/test-demo
0
8346
<reponame>pengwow/test-demo # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from common.mymako import render_mako_context, render_json from blueking.component.shortcuts import get_client_by_request from django.views.decorators.csrf import csrf_exempt from models import TEST, HostDisk, ScriptExecInfo import json import base64 def home(request): """ 首页 """ # yewu = [ # {'id': 1, "name": u"业务1"}, # {'id': 2, "name": u"业务2"}, # {'id': 3, "name": u"业务3"}, # ] # 从环境配置获取APP信息,从request获取当前用户信息 client = get_client_by_request(request) kwargs = {} result = client.cc.search_business(kwargs) print(result) yewu = result['data']['info'] return render_mako_context(request, '/home_application/home.html', { "yewu": yewu, "AAA": u"业务列表" }) def submit_template(request): """ 首页 """ print(request.body) return render_json({"1111111": "dddddddddd"}) def dev_guide(request): """ 开发指引 """ return render_mako_context(request, '/home_application/dev_guide.html') def contactus(request): """ 联系我们 """ return render_mako_context(request, '/home_application/contact.html') def tijiao(request): data = json.loads(request.body) print(type(data)) sss = TEST(**data) sss.save() return render_json({"DATA": "AAAAAAAA"}) def host_disk(request): host_list = HostDisk.objects.all() re_list = list() for item in host_list: temp_dict = dict() temp_dict['os'] = item.os temp_dict['host_ip'] = item.host_ip temp_dict['host_name'] = item.host_name temp_dict['host_path'] = item.host_path temp_dict['create_time'] = item.create_time re_list.append(temp_dict) print(re_list) return render_mako_context(request, '/home_application/host_disk.html', {'host_all': re_list} ) def host_tijiao(request): data = request.body print(type(data)) data = json.loads(data) host = HostDisk(**data) host.save() return render_json({"status": "OK"}) def host_script(request): # 根据作业id查询日志 data = ScriptExecInfo.objects.all() client = get_client_by_request(request) script_all = list() for item in data: temp_dict = dict() kwargs = {} kwargs['bk_biz_id'] = item.bk_biz_id kwargs['job_instance_id'] = item.job_instance_id result = client.job.get_job_instance_log(kwargs) log_content = result['data'][0]['step_results'][0]['ip_logs'][0]['log_content'] temp_dict['host_ip'] = item.host_ip temp_dict['log_content'] = log_content temp_dict['script_content'] = item.script_content temp_dict['create_time'] = item.create_time script_all.append(temp_dict) return render_mako_context(request, '/home_application/host_script.html', {'script_all': script_all}, ) def script_tijiao(request): try: print(request.user.username) except Exception as e: print(str(e)) data = json.loads(request.body) client = get_client_by_request(request) kwargs = {} result = client.cc.search_business(kwargs) bk_biz_id = result['data']['info'][0]['bk_biz_id'] script_content = base64.b64encode(data['script_content']) kwargs = dict() kwargs['bk_biz_id'] = bk_biz_id kwargs['script_content'] = script_content kwargs["account"] = "root" kwargs['ip_list'] = [{'bk_cloud_id': 0, "ip": data['host_ip']}] result = client.job.fast_execute_script(kwargs) script_dict = dict() script_dict["host_ip"] = data['host_ip'] script_dict["script_content"] = data['script_content'] script_dict["job_instance_id"] = result['data']['job_instance_id'] script_dict['bk_biz_id'] = bk_biz_id scriptexecinfo = ScriptExecInfo(**script_dict) scriptexecinfo.save() return render_json({"status": "OK"}) # ####################其他 def other(request): return render_mako_context(request, '/home_application/other.html') @csrf_exempt # 注意:需要添加此装饰器 def upload_file(request): # 接收的为文件列表,需要遍历操作 files = request.FILES for item in files: _file = files.get(item) print(_file.name) print(_file.size) with open('./' + str(_file.name), 'wb') as fd: fd.write(_file.file.read()) return render_json({"status": "OK"}) def download_file(request): """ 文件下载 :param request: :return: 文件response """ from django.http import FileResponse # 接收文件名请求 file_name = request.GET.get('filename') fd = open('./' + file_name, 'rb') response = FileResponse(fd) response['Content-Type'] = 'application/octet-stream' response['Content-Disposition'] = 'attachment;filename="%s"' % file_name return response
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from common.mymako import render_mako_context, render_json from blueking.component.shortcuts import get_client_by_request from django.views.decorators.csrf import csrf_exempt from models import TEST, HostDisk, ScriptExecInfo import json import base64 def home(request): """ 首页 """ # yewu = [ # {'id': 1, "name": u"业务1"}, # {'id': 2, "name": u"业务2"}, # {'id': 3, "name": u"业务3"}, # ] # 从环境配置获取APP信息,从request获取当前用户信息 client = get_client_by_request(request) kwargs = {} result = client.cc.search_business(kwargs) print(result) yewu = result['data']['info'] return render_mako_context(request, '/home_application/home.html', { "yewu": yewu, "AAA": u"业务列表" }) def submit_template(request): """ 首页 """ print(request.body) return render_json({"1111111": "dddddddddd"}) def dev_guide(request): """ 开发指引 """ return render_mako_context(request, '/home_application/dev_guide.html') def contactus(request): """ 联系我们 """ return render_mako_context(request, '/home_application/contact.html') def tijiao(request): data = json.loads(request.body) print(type(data)) sss = TEST(**data) sss.save() return render_json({"DATA": "AAAAAAAA"}) def host_disk(request): host_list = HostDisk.objects.all() re_list = list() for item in host_list: temp_dict = dict() temp_dict['os'] = item.os temp_dict['host_ip'] = item.host_ip temp_dict['host_name'] = item.host_name temp_dict['host_path'] = item.host_path temp_dict['create_time'] = item.create_time re_list.append(temp_dict) print(re_list) return render_mako_context(request, '/home_application/host_disk.html', {'host_all': re_list} ) def host_tijiao(request): data = request.body print(type(data)) data = json.loads(data) host = HostDisk(**data) host.save() return render_json({"status": "OK"}) def host_script(request): # 根据作业id查询日志 data = ScriptExecInfo.objects.all() client = get_client_by_request(request) script_all = list() for item in data: temp_dict = dict() kwargs = {} kwargs['bk_biz_id'] = item.bk_biz_id kwargs['job_instance_id'] = item.job_instance_id result = client.job.get_job_instance_log(kwargs) log_content = result['data'][0]['step_results'][0]['ip_logs'][0]['log_content'] temp_dict['host_ip'] = item.host_ip temp_dict['log_content'] = log_content temp_dict['script_content'] = item.script_content temp_dict['create_time'] = item.create_time script_all.append(temp_dict) return render_mako_context(request, '/home_application/host_script.html', {'script_all': script_all}, ) def script_tijiao(request): try: print(request.user.username) except Exception as e: print(str(e)) data = json.loads(request.body) client = get_client_by_request(request) kwargs = {} result = client.cc.search_business(kwargs) bk_biz_id = result['data']['info'][0]['bk_biz_id'] script_content = base64.b64encode(data['script_content']) kwargs = dict() kwargs['bk_biz_id'] = bk_biz_id kwargs['script_content'] = script_content kwargs["account"] = "root" kwargs['ip_list'] = [{'bk_cloud_id': 0, "ip": data['host_ip']}] result = client.job.fast_execute_script(kwargs) script_dict = dict() script_dict["host_ip"] = data['host_ip'] script_dict["script_content"] = data['script_content'] script_dict["job_instance_id"] = result['data']['job_instance_id'] script_dict['bk_biz_id'] = bk_biz_id scriptexecinfo = ScriptExecInfo(**script_dict) scriptexecinfo.save() return render_json({"status": "OK"}) # ####################其他 def other(request): return render_mako_context(request, '/home_application/other.html') @csrf_exempt # 注意:需要添加此装饰器 def upload_file(request): # 接收的为文件列表,需要遍历操作 files = request.FILES for item in files: _file = files.get(item) print(_file.name) print(_file.size) with open('./' + str(_file.name), 'wb') as fd: fd.write(_file.file.read()) return render_json({"status": "OK"}) def download_file(request): """ 文件下载 :param request: :return: 文件response """ from django.http import FileResponse # 接收文件名请求 file_name = request.GET.get('filename') fd = open('./' + file_name, 'rb') response = FileResponse(fd) response['Content-Type'] = 'application/octet-stream' response['Content-Disposition'] = 'attachment;filename="%s"' % file_name return response
en
0.69726
# -*- coding: utf-8 -*- Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. 首页 # yewu = [ # {'id': 1, "name": u"业务1"}, # {'id': 2, "name": u"业务2"}, # {'id': 3, "name": u"业务3"}, # ] # 从环境配置获取APP信息,从request获取当前用户信息 首页 开发指引 联系我们 # 根据作业id查询日志 # ####################其他 # 注意:需要添加此装饰器 # 接收的为文件列表,需要遍历操作 文件下载 :param request: :return: 文件response # 接收文件名请求
1.761333
2
Chapter 6/09 - The built-in multiprocessing module/basic_multiprocessing.py
moseskim/Expert-Python-Programming-Fourth-Edition
0
8347
<filename>Chapter 6/09 - The built-in multiprocessing module/basic_multiprocessing.py """ "멀티프로세싱"절 예시 `multiprocessing` 모듈을 이용해 새로운 프로세스들을 생성하는 방법을 설명한다. """ from multiprocessing import Process import os def work(identifier): print(f'Hey, I am the process ' f'{identifier}, pid: {os.getpid()}') def main(): processes = [Process(target=work, args=(number,)) for number in range(5)] for process in processes: process.start() while processes: processes.pop().join() if __name__ == "__main__": main()
<filename>Chapter 6/09 - The built-in multiprocessing module/basic_multiprocessing.py """ "멀티프로세싱"절 예시 `multiprocessing` 모듈을 이용해 새로운 프로세스들을 생성하는 방법을 설명한다. """ from multiprocessing import Process import os def work(identifier): print(f'Hey, I am the process ' f'{identifier}, pid: {os.getpid()}') def main(): processes = [Process(target=work, args=(number,)) for number in range(5)] for process in processes: process.start() while processes: processes.pop().join() if __name__ == "__main__": main()
ko
0.999824
"멀티프로세싱"절 예시 `multiprocessing` 모듈을 이용해 새로운 프로세스들을 생성하는 방법을 설명한다.
3.794383
4
sweeper/cloud/localhost/manager.py
dominoFire/sweeper
0
8348
<reponame>dominoFire/sweeper __author__ = '@dominofire' import os from sweeper.cloud import resource_config_combinations from sweeper.cloud.localhost import resource_config_factory as config_factory from sweeper.resource import Resource def possible_configs(num): configs = config_factory.list_configs() combs = resource_config_combinations(num, configs) return combs def create_resource(name, config_object): res = Resource(config_object, name, 'localhost', None, None) return res def mount_distributed_file_system(name, vm_resources): vm_first = vm_resources[0] vm_first.execute_command('mkdir ./fileshare') return os.path.join(os.getcwd(), 'fileshare')
__author__ = '@dominofire' import os from sweeper.cloud import resource_config_combinations from sweeper.cloud.localhost import resource_config_factory as config_factory from sweeper.resource import Resource def possible_configs(num): configs = config_factory.list_configs() combs = resource_config_combinations(num, configs) return combs def create_resource(name, config_object): res = Resource(config_object, name, 'localhost', None, None) return res def mount_distributed_file_system(name, vm_resources): vm_first = vm_resources[0] vm_first.execute_command('mkdir ./fileshare') return os.path.join(os.getcwd(), 'fileshare')
none
1
2.060013
2
tfx/orchestration/experimental/core/service_jobs_test.py
BACtaki/tfx
1,813
8349
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.experimental.core.service_jobs.""" from absl.testing.absltest import mock import tensorflow as tf from tfx.orchestration.experimental.core import service_jobs from tfx.orchestration.experimental.core import test_utils class ExceptionHandlingServiceJobManagerWrapperTest(test_utils.TfxTest): def setUp(self): super().setUp() self._mock_service_job_manager = mock.create_autospec( service_jobs.ServiceJobManager, instance=True) self._mock_service_job_manager.ensure_node_services.return_value = ( service_jobs.ServiceStatus.SUCCESS) self._mock_service_job_manager.stop_node_services.return_value = True self._mock_service_job_manager.is_pure_service_node.return_value = True self._mock_service_job_manager.is_mixed_service_node.return_value = False self._wrapper = service_jobs.ExceptionHandlingServiceJobManagerWrapper( self._mock_service_job_manager) def test_calls_forwarded_to_underlying_instance(self): self.assertEqual(service_jobs.ServiceStatus.SUCCESS, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self.assertTrue(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self.assertTrue(self._wrapper.is_pure_service_node(mock.Mock(), 'node3')) self.assertFalse(self._wrapper.is_mixed_service_node(mock.Mock(), 'node4')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') self._mock_service_job_manager.is_pure_service_node.assert_called_once_with( mock.ANY, 'node3') self._mock_service_job_manager.is_mixed_service_node.assert_called_once_with( mock.ANY, 'node4') def test_ensure_node_services_exception_handling(self): self._mock_service_job_manager.ensure_node_services.side_effect = RuntimeError( 'test error') self.assertEqual(service_jobs.ServiceStatus.FAILED, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') def test_stop_node_services_exception_handling(self): self._mock_service_job_manager.stop_node_services.side_effect = RuntimeError( 'test error') self.assertFalse(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') if __name__ == '__main__': tf.test.main()
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.experimental.core.service_jobs.""" from absl.testing.absltest import mock import tensorflow as tf from tfx.orchestration.experimental.core import service_jobs from tfx.orchestration.experimental.core import test_utils class ExceptionHandlingServiceJobManagerWrapperTest(test_utils.TfxTest): def setUp(self): super().setUp() self._mock_service_job_manager = mock.create_autospec( service_jobs.ServiceJobManager, instance=True) self._mock_service_job_manager.ensure_node_services.return_value = ( service_jobs.ServiceStatus.SUCCESS) self._mock_service_job_manager.stop_node_services.return_value = True self._mock_service_job_manager.is_pure_service_node.return_value = True self._mock_service_job_manager.is_mixed_service_node.return_value = False self._wrapper = service_jobs.ExceptionHandlingServiceJobManagerWrapper( self._mock_service_job_manager) def test_calls_forwarded_to_underlying_instance(self): self.assertEqual(service_jobs.ServiceStatus.SUCCESS, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self.assertTrue(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self.assertTrue(self._wrapper.is_pure_service_node(mock.Mock(), 'node3')) self.assertFalse(self._wrapper.is_mixed_service_node(mock.Mock(), 'node4')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') self._mock_service_job_manager.is_pure_service_node.assert_called_once_with( mock.ANY, 'node3') self._mock_service_job_manager.is_mixed_service_node.assert_called_once_with( mock.ANY, 'node4') def test_ensure_node_services_exception_handling(self): self._mock_service_job_manager.ensure_node_services.side_effect = RuntimeError( 'test error') self.assertEqual(service_jobs.ServiceStatus.FAILED, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') def test_stop_node_services_exception_handling(self): self._mock_service_job_manager.stop_node_services.side_effect = RuntimeError( 'test error') self.assertFalse(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') if __name__ == '__main__': tf.test.main()
en
0.842701
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Tests for tfx.orchestration.experimental.core.service_jobs.
1.897286
2
dragonn/models.py
kundajelab/dragonn
251
8350
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function import matplotlib import numpy as np import os import subprocess import sys import tempfile matplotlib.use('pdf') import matplotlib.pyplot as plt from abc import abstractmethod, ABCMeta from dragonn.metrics import ClassificationResult from sklearn.svm import SVC as scikit_SVC from sklearn.tree import DecisionTreeClassifier as scikit_DecisionTree from sklearn.ensemble import RandomForestClassifier from keras.models import load_model from dragonn.runtime_metrics import * from dragonn.custom_losses import * import warnings warnings.filterwarnings('ignore') def load_dragonn_model(model_string): custom_objects={"recall":recall, "sensitivity":recall, "specificity":specificity, "fpr":fpr, "fnr":fnr, "fdr":fdr, "precision":precision, "f1":f1, "spearman_corr":spearman_corr, "ambig_binary_crossentropy":ambig_binary_crossentropy, "ambig_mean_squared_error":ambig_mean_squared_error} model=load_model(model_string,custom_objects=custom_objects) return model class Model(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, **hyperparameters): pass @abstractmethod def train(self, X, y, validation_data): pass @abstractmethod def predict(self, X): pass def test(self, X, y): return ClassificationResult(y, self.predict(X)) def score(self, X, y, metric): return self.test(X, y)[metric] class SequenceDNN(Model): """ Sequence DNN models. Parameters ---------- seq_length : int, optional length of input sequence. keras_model : instance of keras.models.Sequential, optional seq_length or keras_model must be specified. num_tasks : int, optional number of tasks. Default: 1. num_filters : list[int] | tuple[int] number of convolutional filters in each layer. Default: (15,). conv_width : list[int] | tuple[int] width of each layer's convolutional filters. Default: (15,). pool_width : int width of max pooling after the last layer. Default: 35. L1 : float strength of L1 penalty. dropout : float dropout probability in every convolutional layer. Default: 0. verbose: int Verbosity level during training. Valida values: 0, 1, 2. Returns ------- Compiled DNN model. """ def __init__(self, seq_length=None, keras_model=None, use_RNN=False, num_tasks=1, num_filters=(15, 15, 15), conv_width=(15, 15, 15), pool_width=35, GRU_size=35, TDD_size=15, L1=0, dropout=0.0, num_epochs=100, verbose=1): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Dropout, Flatten, Permute, Reshape ) from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.layers.recurrent import GRU from keras.regularizers import l1 self.num_tasks = num_tasks self.num_epochs = num_epochs self.verbose = verbose self.train_metrics = [] self.valid_metrics = [] if keras_model is not None and seq_length is None: self.model = keras_model self.num_tasks = keras_model.layers[-1].output_shape[-1] elif seq_length is not None and keras_model is None: self.model = Sequential() assert len(num_filters) == len(conv_width) for i, (nb_filter, nb_col) in enumerate(zip(num_filters, conv_width)): conv_height = 4 if i == 0 else 1 self.model.add(Convolution2D( nb_filter=nb_filter, nb_row=conv_height, nb_col=nb_col, activation='linear', init='he_normal', input_shape=(1, 4, seq_length), W_regularizer=l1(L1), b_regularizer=l1(L1))) self.model.add(Activation('relu')) self.model.add(Dropout(dropout)) self.model.add(MaxPooling2D(pool_size=(1, pool_width))) if use_RNN: num_max_pool_outputs = self.model.layers[-1].output_shape[-1] self.model.add(Reshape((num_filters[-1], num_max_pool_outputs))) self.model.add(Permute((2, 1))) self.model.add(GRU(GRU_size, return_sequences=True)) self.model.add(TimeDistributedDense(TDD_size, activation='relu')) self.model.add(Flatten()) self.model.add(Dense(output_dim=self.num_tasks)) self.model.add(Activation('sigmoid')) self.model.compile(optimizer='adam', loss='binary_crossentropy') else: raise ValueError("Exactly one of seq_length or keras_model must be specified!") def train(self, X, y, validation_data, early_stopping_metric='Loss', early_stopping_patience=5, save_best_model_to_prefix=None): if y.dtype != bool: assert set(np.unique(y)) == {0, 1} y = y.astype(bool) multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives if self.verbose >= 1: print('Training model (* indicates new best result)...') X_valid, y_valid = validation_data early_stopping_wait = 0 best_metric = np.inf if early_stopping_metric == 'Loss' else -np.inf for epoch in range(1, self.num_epochs + 1): self.model.fit(X, y, batch_size=128, nb_epoch=1, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, verbose=self.verbose >= 2) epoch_train_metrics = self.test(X, y) epoch_valid_metrics = self.test(X_valid, y_valid) self.train_metrics.append(epoch_train_metrics) self.valid_metrics.append(epoch_valid_metrics) if self.verbose >= 1: print('Epoch {}:'.format(epoch)) print('Train {}'.format(epoch_train_metrics)) print('Valid {}'.format(epoch_valid_metrics), end='') current_metric = epoch_valid_metrics[early_stopping_metric].mean() if (early_stopping_metric == 'Loss') == (current_metric <= best_metric): if self.verbose >= 1: print(' *') best_metric = current_metric best_epoch = epoch early_stopping_wait = 0 if save_best_model_to_prefix is not None: self.save(save_best_model_to_prefix) else: if self.verbose >= 1: print() if early_stopping_wait >= early_stopping_patience: break early_stopping_wait += 1 if self.verbose >= 1: print('Finished training after {} epochs.'.format(epoch)) if save_best_model_to_prefix is not None: print("The best model's architecture and weights (from epoch {0}) " 'were saved to {1}.arch.json and {1}.weights.h5'.format( best_epoch, save_best_model_to_prefix)) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) def get_sequence_filters(self): """ Returns 3D array of 2D sequence filters. """ return self.model.layers[0].get_weights()[0].squeeze(axis=1) @staticmethod def _plot_scores(X, output_directory, peak_width, score_func, score_name): from dragonn.plot import plot_bases_on_ax scores = score_func(X).squeeze(axis=2) # (num_task, num_samples, num_bases, sequence_length) try: os.makedirs(output_directory) except OSError: pass num_tasks = len(scores) for task_index, task_scores in enumerate(scores): for sequence_index, sequence_scores in enumerate(task_scores): # sequence_scores is num_bases x sequence_length basewise_max_sequence_scores = sequence_scores.max(axis=0) plt.clf() figure, (top_axis, bottom_axis) = plt.subplots(2) top_axis.plot(range(1, len(basewise_max_sequence_scores) + 1), basewise_max_sequence_scores) top_axis.set_title('{} scores (motif highlighted)'.format(score_name)) peak_position = basewise_max_sequence_scores.argmax() top_axis.axvspan(peak_position - peak_width, peak_position + peak_width, color='grey', alpha=0.1) peak_sequence_scores = sequence_scores[:, peak_position - peak_width : peak_position + peak_width].T # Set non-max letter_heights to zero letter_heights = np.zeros_like(peak_sequence_scores) letter_heights[np.arange(len(letter_heights)), peak_sequence_scores.argmax(axis=1)] = \ basewise_max_sequence_scores[peak_position - peak_width : peak_position + peak_width] plot_bases_on_ax(letter_heights, bottom_axis) bottom_axis.set_xticklabels(tuple(map( str, np.arange(peak_position - peak_width, peak_position + peak_width + 1)))) bottom_axis.tick_params(axis='x', labelsize='small') plt.xlabel('Position') plt.ylabel('Score') plt.savefig(os.path.join(output_directory, 'sequence_{}{}'.format( sequence_index, '_task_{}'.format(task_index) if num_tasks > 1 else ''))) plt.close() def plot_deeplift(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.deeplift, score_name='DeepLift') def plot_in_silico_mutagenesis(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.in_silico_mutagenesis, score_name='ISM') def plot_architecture(self, output_file): from dragonn.visualize_util import plot as plot_keras_model plot_keras_model(self.model, output_file, show_shape=True) def save(self, save_best_model_to_prefix): arch_fname = save_best_model_to_prefix + '.arch.json' weights_fname = save_best_model_to_prefix + '.weights.h5' open(arch_fname, 'w').write(self.model.to_json()) self.model.save_weights(weights_fname, overwrite=True) @staticmethod def load(model_hdf5_fname=None, arch_fname=None, weights_fname=None): if model_hdf5_fname!=None: from keras.models import load_model sequence_dnn=SequenceDNN(keras_model=load_model(model_hdf5_fname)) else: from keras.models import model_from_json model_json_string = open(arch_fname).read() sequence_dnn = SequenceDNN(keras_model=model_from_json(model_json_string)) if weights_fname is not None: sequence_dnn.model.load_weights(weights_fname) return sequence_dnn class MotifScoreRNN(Model): def __init__(self, input_shape, gru_size=10, tdd_size=4): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Flatten, TimeDistributedDense ) from keras.layers.recurrent import GRU self.model = Sequential() self.model.add(GRU(gru_size, return_sequences=True, input_shape=input_shape)) if tdd_size is not None: self.model.add(TimeDistributedDense(tdd_size)) self.model.add(Flatten()) self.model.add(Dense(1)) self.model.add(Activation('sigmoid')) print('Compiling model...') self.model.compile(optimizer='adam', loss='binary_crossentropy') def train(self, X, y, validation_data): from keras.callbacks import EarlyStopping print('Training model...') multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives self.model.fit( X, y, batch_size=128, nb_epoch=100, validation_data=validation_data, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, callbacks=[EarlyStopping(monitor='val_loss', patience=10)], verbose=True) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) class gkmSVM(Model): def __init__(self, prefix='./gkmSVM', word_length=11, mismatches=3, C=1, threads=1, cache_memory=100, verbosity=4): self.word_length = word_length self.mismatches = mismatches self.C = C self.threads = threads self.prefix = '_'.join(map(str, (prefix, word_length, mismatches, C))) options_list = zip( ['-l', '-d', '-c', '-T', '-m', '-v'], map(str, (word_length, mismatches, C, threads, cache_memory, verbosity))) self.options = ' '.join([' '.join(option) for option in options_list]) @property def model_file(self): model_fname = '{}.model.txt'.format(self.prefix) return model_fname if os.path.isfile(model_fname) else None @staticmethod def encode_sequence_into_fasta_file(sequence_iterator, ofname): """writes sequences into fasta file """ with open(ofname, "w") as wf: for i, seq in enumerate(sequence_iterator): print('>{}'.format(i), file=wf) print(seq, file=wf) def train(self, X, y, validation_data=None): """ Trains gkm-svm, saves model file. """ y = y.squeeze() pos_sequence = X[y] neg_sequence = X[~y] pos_fname = "%s.pos_seq.fa" % self.prefix neg_fname = "%s.neg_seq.fa" % self.prefix # create temporary fasta files self.encode_sequence_into_fasta_file(pos_sequence, pos_fname) self.encode_sequence_into_fasta_file(neg_sequence, neg_fname) # run command command = ' '.join( ('gkmtrain', self.options, pos_fname, neg_fname, self.prefix)) process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) process.wait() # wait for it to finish # remove fasta files os.system("rm %s" % pos_fname) os.system("rm %s" % neg_fname) def predict(self, X): if self.model_file is None: raise RuntimeError("GkmSvm hasn't been trained!") # write test fasta file test_fname = "%s.test.fa" % self.prefix self.encode_sequence_into_fasta_file(X, test_fname) # test gkmsvm temp_ofp = tempfile.NamedTemporaryFile() threads_option = '-T %s' % (str(self.threads)) command = ' '.join(['gkmpredict', test_fname, self.model_file, temp_ofp.name, threads_option]) process = subprocess.Popen(command, shell=True) process.wait() # wait for it to finish os.system("rm %s" % test_fname) # remove fasta file # get classification results temp_ofp.seek(0) y = np.array([line.split()[-1] for line in temp_ofp], dtype=float) temp_ofp.close() return np.expand_dims(y, 1) class SVC(Model): def __init__(self): self.classifier = scikit_SVC(probability=True, kernel='linear') def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): return self.classifier.predict_proba(X)[:, 1:] class DecisionTree(Model): def __init__(self): self.classifier = scikit_DecisionTree() def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): predictions = np.asarray(self.classifier.predict_proba(X))[..., 1] if len(predictions.shape) == 2: # multitask predictions = predictions.T else: # single-task predictions = np.expand_dims(predictions, 1) return predictions class RandomForest(DecisionTree): def __init__(self): self.classifier = RandomForestClassifier(n_estimators=100)
from __future__ import absolute_import, division, print_function import matplotlib import numpy as np import os import subprocess import sys import tempfile matplotlib.use('pdf') import matplotlib.pyplot as plt from abc import abstractmethod, ABCMeta from dragonn.metrics import ClassificationResult from sklearn.svm import SVC as scikit_SVC from sklearn.tree import DecisionTreeClassifier as scikit_DecisionTree from sklearn.ensemble import RandomForestClassifier from keras.models import load_model from dragonn.runtime_metrics import * from dragonn.custom_losses import * import warnings warnings.filterwarnings('ignore') def load_dragonn_model(model_string): custom_objects={"recall":recall, "sensitivity":recall, "specificity":specificity, "fpr":fpr, "fnr":fnr, "fdr":fdr, "precision":precision, "f1":f1, "spearman_corr":spearman_corr, "ambig_binary_crossentropy":ambig_binary_crossentropy, "ambig_mean_squared_error":ambig_mean_squared_error} model=load_model(model_string,custom_objects=custom_objects) return model class Model(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, **hyperparameters): pass @abstractmethod def train(self, X, y, validation_data): pass @abstractmethod def predict(self, X): pass def test(self, X, y): return ClassificationResult(y, self.predict(X)) def score(self, X, y, metric): return self.test(X, y)[metric] class SequenceDNN(Model): """ Sequence DNN models. Parameters ---------- seq_length : int, optional length of input sequence. keras_model : instance of keras.models.Sequential, optional seq_length or keras_model must be specified. num_tasks : int, optional number of tasks. Default: 1. num_filters : list[int] | tuple[int] number of convolutional filters in each layer. Default: (15,). conv_width : list[int] | tuple[int] width of each layer's convolutional filters. Default: (15,). pool_width : int width of max pooling after the last layer. Default: 35. L1 : float strength of L1 penalty. dropout : float dropout probability in every convolutional layer. Default: 0. verbose: int Verbosity level during training. Valida values: 0, 1, 2. Returns ------- Compiled DNN model. """ def __init__(self, seq_length=None, keras_model=None, use_RNN=False, num_tasks=1, num_filters=(15, 15, 15), conv_width=(15, 15, 15), pool_width=35, GRU_size=35, TDD_size=15, L1=0, dropout=0.0, num_epochs=100, verbose=1): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Dropout, Flatten, Permute, Reshape ) from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.layers.recurrent import GRU from keras.regularizers import l1 self.num_tasks = num_tasks self.num_epochs = num_epochs self.verbose = verbose self.train_metrics = [] self.valid_metrics = [] if keras_model is not None and seq_length is None: self.model = keras_model self.num_tasks = keras_model.layers[-1].output_shape[-1] elif seq_length is not None and keras_model is None: self.model = Sequential() assert len(num_filters) == len(conv_width) for i, (nb_filter, nb_col) in enumerate(zip(num_filters, conv_width)): conv_height = 4 if i == 0 else 1 self.model.add(Convolution2D( nb_filter=nb_filter, nb_row=conv_height, nb_col=nb_col, activation='linear', init='he_normal', input_shape=(1, 4, seq_length), W_regularizer=l1(L1), b_regularizer=l1(L1))) self.model.add(Activation('relu')) self.model.add(Dropout(dropout)) self.model.add(MaxPooling2D(pool_size=(1, pool_width))) if use_RNN: num_max_pool_outputs = self.model.layers[-1].output_shape[-1] self.model.add(Reshape((num_filters[-1], num_max_pool_outputs))) self.model.add(Permute((2, 1))) self.model.add(GRU(GRU_size, return_sequences=True)) self.model.add(TimeDistributedDense(TDD_size, activation='relu')) self.model.add(Flatten()) self.model.add(Dense(output_dim=self.num_tasks)) self.model.add(Activation('sigmoid')) self.model.compile(optimizer='adam', loss='binary_crossentropy') else: raise ValueError("Exactly one of seq_length or keras_model must be specified!") def train(self, X, y, validation_data, early_stopping_metric='Loss', early_stopping_patience=5, save_best_model_to_prefix=None): if y.dtype != bool: assert set(np.unique(y)) == {0, 1} y = y.astype(bool) multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives if self.verbose >= 1: print('Training model (* indicates new best result)...') X_valid, y_valid = validation_data early_stopping_wait = 0 best_metric = np.inf if early_stopping_metric == 'Loss' else -np.inf for epoch in range(1, self.num_epochs + 1): self.model.fit(X, y, batch_size=128, nb_epoch=1, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, verbose=self.verbose >= 2) epoch_train_metrics = self.test(X, y) epoch_valid_metrics = self.test(X_valid, y_valid) self.train_metrics.append(epoch_train_metrics) self.valid_metrics.append(epoch_valid_metrics) if self.verbose >= 1: print('Epoch {}:'.format(epoch)) print('Train {}'.format(epoch_train_metrics)) print('Valid {}'.format(epoch_valid_metrics), end='') current_metric = epoch_valid_metrics[early_stopping_metric].mean() if (early_stopping_metric == 'Loss') == (current_metric <= best_metric): if self.verbose >= 1: print(' *') best_metric = current_metric best_epoch = epoch early_stopping_wait = 0 if save_best_model_to_prefix is not None: self.save(save_best_model_to_prefix) else: if self.verbose >= 1: print() if early_stopping_wait >= early_stopping_patience: break early_stopping_wait += 1 if self.verbose >= 1: print('Finished training after {} epochs.'.format(epoch)) if save_best_model_to_prefix is not None: print("The best model's architecture and weights (from epoch {0}) " 'were saved to {1}.arch.json and {1}.weights.h5'.format( best_epoch, save_best_model_to_prefix)) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) def get_sequence_filters(self): """ Returns 3D array of 2D sequence filters. """ return self.model.layers[0].get_weights()[0].squeeze(axis=1) @staticmethod def _plot_scores(X, output_directory, peak_width, score_func, score_name): from dragonn.plot import plot_bases_on_ax scores = score_func(X).squeeze(axis=2) # (num_task, num_samples, num_bases, sequence_length) try: os.makedirs(output_directory) except OSError: pass num_tasks = len(scores) for task_index, task_scores in enumerate(scores): for sequence_index, sequence_scores in enumerate(task_scores): # sequence_scores is num_bases x sequence_length basewise_max_sequence_scores = sequence_scores.max(axis=0) plt.clf() figure, (top_axis, bottom_axis) = plt.subplots(2) top_axis.plot(range(1, len(basewise_max_sequence_scores) + 1), basewise_max_sequence_scores) top_axis.set_title('{} scores (motif highlighted)'.format(score_name)) peak_position = basewise_max_sequence_scores.argmax() top_axis.axvspan(peak_position - peak_width, peak_position + peak_width, color='grey', alpha=0.1) peak_sequence_scores = sequence_scores[:, peak_position - peak_width : peak_position + peak_width].T # Set non-max letter_heights to zero letter_heights = np.zeros_like(peak_sequence_scores) letter_heights[np.arange(len(letter_heights)), peak_sequence_scores.argmax(axis=1)] = \ basewise_max_sequence_scores[peak_position - peak_width : peak_position + peak_width] plot_bases_on_ax(letter_heights, bottom_axis) bottom_axis.set_xticklabels(tuple(map( str, np.arange(peak_position - peak_width, peak_position + peak_width + 1)))) bottom_axis.tick_params(axis='x', labelsize='small') plt.xlabel('Position') plt.ylabel('Score') plt.savefig(os.path.join(output_directory, 'sequence_{}{}'.format( sequence_index, '_task_{}'.format(task_index) if num_tasks > 1 else ''))) plt.close() def plot_deeplift(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.deeplift, score_name='DeepLift') def plot_in_silico_mutagenesis(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.in_silico_mutagenesis, score_name='ISM') def plot_architecture(self, output_file): from dragonn.visualize_util import plot as plot_keras_model plot_keras_model(self.model, output_file, show_shape=True) def save(self, save_best_model_to_prefix): arch_fname = save_best_model_to_prefix + '.arch.json' weights_fname = save_best_model_to_prefix + '.weights.h5' open(arch_fname, 'w').write(self.model.to_json()) self.model.save_weights(weights_fname, overwrite=True) @staticmethod def load(model_hdf5_fname=None, arch_fname=None, weights_fname=None): if model_hdf5_fname!=None: from keras.models import load_model sequence_dnn=SequenceDNN(keras_model=load_model(model_hdf5_fname)) else: from keras.models import model_from_json model_json_string = open(arch_fname).read() sequence_dnn = SequenceDNN(keras_model=model_from_json(model_json_string)) if weights_fname is not None: sequence_dnn.model.load_weights(weights_fname) return sequence_dnn class MotifScoreRNN(Model): def __init__(self, input_shape, gru_size=10, tdd_size=4): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Flatten, TimeDistributedDense ) from keras.layers.recurrent import GRU self.model = Sequential() self.model.add(GRU(gru_size, return_sequences=True, input_shape=input_shape)) if tdd_size is not None: self.model.add(TimeDistributedDense(tdd_size)) self.model.add(Flatten()) self.model.add(Dense(1)) self.model.add(Activation('sigmoid')) print('Compiling model...') self.model.compile(optimizer='adam', loss='binary_crossentropy') def train(self, X, y, validation_data): from keras.callbacks import EarlyStopping print('Training model...') multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives self.model.fit( X, y, batch_size=128, nb_epoch=100, validation_data=validation_data, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, callbacks=[EarlyStopping(monitor='val_loss', patience=10)], verbose=True) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) class gkmSVM(Model): def __init__(self, prefix='./gkmSVM', word_length=11, mismatches=3, C=1, threads=1, cache_memory=100, verbosity=4): self.word_length = word_length self.mismatches = mismatches self.C = C self.threads = threads self.prefix = '_'.join(map(str, (prefix, word_length, mismatches, C))) options_list = zip( ['-l', '-d', '-c', '-T', '-m', '-v'], map(str, (word_length, mismatches, C, threads, cache_memory, verbosity))) self.options = ' '.join([' '.join(option) for option in options_list]) @property def model_file(self): model_fname = '{}.model.txt'.format(self.prefix) return model_fname if os.path.isfile(model_fname) else None @staticmethod def encode_sequence_into_fasta_file(sequence_iterator, ofname): """writes sequences into fasta file """ with open(ofname, "w") as wf: for i, seq in enumerate(sequence_iterator): print('>{}'.format(i), file=wf) print(seq, file=wf) def train(self, X, y, validation_data=None): """ Trains gkm-svm, saves model file. """ y = y.squeeze() pos_sequence = X[y] neg_sequence = X[~y] pos_fname = "%s.pos_seq.fa" % self.prefix neg_fname = "%s.neg_seq.fa" % self.prefix # create temporary fasta files self.encode_sequence_into_fasta_file(pos_sequence, pos_fname) self.encode_sequence_into_fasta_file(neg_sequence, neg_fname) # run command command = ' '.join( ('gkmtrain', self.options, pos_fname, neg_fname, self.prefix)) process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) process.wait() # wait for it to finish # remove fasta files os.system("rm %s" % pos_fname) os.system("rm %s" % neg_fname) def predict(self, X): if self.model_file is None: raise RuntimeError("GkmSvm hasn't been trained!") # write test fasta file test_fname = "%s.test.fa" % self.prefix self.encode_sequence_into_fasta_file(X, test_fname) # test gkmsvm temp_ofp = tempfile.NamedTemporaryFile() threads_option = '-T %s' % (str(self.threads)) command = ' '.join(['gkmpredict', test_fname, self.model_file, temp_ofp.name, threads_option]) process = subprocess.Popen(command, shell=True) process.wait() # wait for it to finish os.system("rm %s" % test_fname) # remove fasta file # get classification results temp_ofp.seek(0) y = np.array([line.split()[-1] for line in temp_ofp], dtype=float) temp_ofp.close() return np.expand_dims(y, 1) class SVC(Model): def __init__(self): self.classifier = scikit_SVC(probability=True, kernel='linear') def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): return self.classifier.predict_proba(X)[:, 1:] class DecisionTree(Model): def __init__(self): self.classifier = scikit_DecisionTree() def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): predictions = np.asarray(self.classifier.predict_proba(X))[..., 1] if len(predictions.shape) == 2: # multitask predictions = predictions.T else: # single-task predictions = np.expand_dims(predictions, 1) return predictions class RandomForest(DecisionTree): def __init__(self): self.classifier = RandomForestClassifier(n_estimators=100)
en
0.628045
Sequence DNN models. Parameters ---------- seq_length : int, optional length of input sequence. keras_model : instance of keras.models.Sequential, optional seq_length or keras_model must be specified. num_tasks : int, optional number of tasks. Default: 1. num_filters : list[int] | tuple[int] number of convolutional filters in each layer. Default: (15,). conv_width : list[int] | tuple[int] width of each layer's convolutional filters. Default: (15,). pool_width : int width of max pooling after the last layer. Default: 35. L1 : float strength of L1 penalty. dropout : float dropout probability in every convolutional layer. Default: 0. verbose: int Verbosity level during training. Valida values: 0, 1, 2. Returns ------- Compiled DNN model. Returns 3D array of 2D sequence filters. # (num_task, num_samples, num_bases, sequence_length) # sequence_scores is num_bases x sequence_length # Set non-max letter_heights to zero writes sequences into fasta file Trains gkm-svm, saves model file. # create temporary fasta files # run command # wait for it to finish # remove fasta files # write test fasta file # test gkmsvm # wait for it to finish # remove fasta file # get classification results # multitask # single-task
2.406397
2
src/mpass/mpass/migrations/0001_initial.py
haltu/velmu-mpass-demo
0
8351
<reponame>haltu/velmu-mpass-demo<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-03-20 08:34 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import parler.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AuthenticationSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('auth_id', models.CharField(max_length=128)), ('icon_url', models.CharField(blank=True, max_length=2048, null=True)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationSourceTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationSource')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationsource_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication source Translation', }, ), migrations.CreateModel( name='AuthenticationTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('tag_id', models.CharField(max_length=128)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationTagTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationTag')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationtag_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication tag Translation', }, ), migrations.AddField( model_name='authenticationsource', name='tags', field=models.ManyToManyField(blank=True, to='mpass.AuthenticationTag'), ), migrations.AlterUniqueTogether( name='authenticationtagtranslation', unique_together=set([('language_code', 'master')]), ), migrations.AlterUniqueTogether( name='authenticationsourcetranslation', unique_together=set([('language_code', 'master')]), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-03-20 08:34 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import parler.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AuthenticationSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('auth_id', models.CharField(max_length=128)), ('icon_url', models.CharField(blank=True, max_length=2048, null=True)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationSourceTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationSource')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationsource_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication source Translation', }, ), migrations.CreateModel( name='AuthenticationTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('tag_id', models.CharField(max_length=128)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationTagTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationTag')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationtag_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication tag Translation', }, ), migrations.AddField( model_name='authenticationsource', name='tags', field=models.ManyToManyField(blank=True, to='mpass.AuthenticationTag'), ), migrations.AlterUniqueTogether( name='authenticationtagtranslation', unique_together=set([('language_code', 'master')]), ), migrations.AlterUniqueTogether( name='authenticationsourcetranslation', unique_together=set([('language_code', 'master')]), ), ]
en
0.636876
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-03-20 08:34
1.648677
2
dgt/inference/forward_inference.py
fractalego/dgt
3
8352
<filename>dgt/inference/forward_inference.py import logging import random from dgt.graph.graph_matcher import GraphWeightedMatch from dgt.utils import graph_iterations _logger = logging.getLogger(__name__) def find_weight_between(s, first, last): try: start = s.index(first) + len(first) end = s.index(last, start) return s[start:end] except ValueError: return 1 def clean_between(s, first, last): try: start = s.index(first) + len(first) end = s.index(last, start) new_s = s[:start - 1] + s[end + 1:] return new_s except ValueError: return s def eliminate_spaces(line): line = line.replace(' ', '') line = line.replace('\t', '') line = line.replace('\n', '') return line class UniqueNamesModifier: def apply(self, g): from ..auxiliary import get_random_name substitution_dict = {} for v in g.vs: random_name = get_random_name() old_name = v['name'] new_name = old_name + random_name v['name'] = new_name substitution_dict[old_name] = new_name try: for v in g.vs: referring_name = v['refers_to'] if referring_name: v['refers_to'] = substitution_dict[referring_name] except Exception as e: _logger.warning("Exception while substituting refers_to ID: " + str(e)) for e in g.es: e['name'] += get_random_name() class BaseForwardInference: def compute(self): return None class ForwardInference(BaseForwardInference): _unique = UniqueNamesModifier() def __init__(self, data, knowledge, permutation_shift, max_depth=1): self.permutations = permutation_shift self.data = data self.knowledge = knowledge self._max_depth = max_depth self.permutation_shift = permutation_shift def __apply_clause_to_graph(self, rule, data, i): drs = data.copy() drs.visit(self._unique) w = 1 iterations = graph_iterations(drs._g) if not iterations: return drs, 0 drs._g = iterations[self.permutations[i] % len(iterations)] if not rule.gradient: weighted_match = GraphWeightedMatch(rule.get_hypothesis(), self.knowledge._metric, self.knowledge._relations_metric) w = drs.visit(weighted_match) is_match = drs.visit(rule) if not is_match: return drs, 0 return drs, w def _compute_step(self, data_tuple, i): """ Applies all the rules to a drs :return: all the variants of the drs after a rule match as a pair (<NEW_DRS>, <WEIGHT>) """ data = data_tuple[0] prior_w = data_tuple[1] clauses = self.knowledge.ask_rule(data) results = [] for clause_tuple in clauses: rule = clause_tuple[0] rule_weight = rule.weight prior_rules = list(data_tuple[2]) if rule in prior_rules: # A rule can be used only once per path continue drs, w = self.__apply_clause_to_graph(rule, data, i) if w > 0: prior_rules.append(rule) prior_rules.append(drs) results.append((drs, prior_w * w * rule_weight, prior_rules)) return results def compute(self): results = [] to_process = [(self.data, 1, [self.data])] for i in range(self._max_depth): new_results = [] for data_tuple in to_process: new_results += self._compute_step(data_tuple, i) if not new_results: break to_process = sorted(new_results, key=lambda x: -x[1]) results += to_process results = sorted(results, key=lambda x: -x[1]) return results
<filename>dgt/inference/forward_inference.py import logging import random from dgt.graph.graph_matcher import GraphWeightedMatch from dgt.utils import graph_iterations _logger = logging.getLogger(__name__) def find_weight_between(s, first, last): try: start = s.index(first) + len(first) end = s.index(last, start) return s[start:end] except ValueError: return 1 def clean_between(s, first, last): try: start = s.index(first) + len(first) end = s.index(last, start) new_s = s[:start - 1] + s[end + 1:] return new_s except ValueError: return s def eliminate_spaces(line): line = line.replace(' ', '') line = line.replace('\t', '') line = line.replace('\n', '') return line class UniqueNamesModifier: def apply(self, g): from ..auxiliary import get_random_name substitution_dict = {} for v in g.vs: random_name = get_random_name() old_name = v['name'] new_name = old_name + random_name v['name'] = new_name substitution_dict[old_name] = new_name try: for v in g.vs: referring_name = v['refers_to'] if referring_name: v['refers_to'] = substitution_dict[referring_name] except Exception as e: _logger.warning("Exception while substituting refers_to ID: " + str(e)) for e in g.es: e['name'] += get_random_name() class BaseForwardInference: def compute(self): return None class ForwardInference(BaseForwardInference): _unique = UniqueNamesModifier() def __init__(self, data, knowledge, permutation_shift, max_depth=1): self.permutations = permutation_shift self.data = data self.knowledge = knowledge self._max_depth = max_depth self.permutation_shift = permutation_shift def __apply_clause_to_graph(self, rule, data, i): drs = data.copy() drs.visit(self._unique) w = 1 iterations = graph_iterations(drs._g) if not iterations: return drs, 0 drs._g = iterations[self.permutations[i] % len(iterations)] if not rule.gradient: weighted_match = GraphWeightedMatch(rule.get_hypothesis(), self.knowledge._metric, self.knowledge._relations_metric) w = drs.visit(weighted_match) is_match = drs.visit(rule) if not is_match: return drs, 0 return drs, w def _compute_step(self, data_tuple, i): """ Applies all the rules to a drs :return: all the variants of the drs after a rule match as a pair (<NEW_DRS>, <WEIGHT>) """ data = data_tuple[0] prior_w = data_tuple[1] clauses = self.knowledge.ask_rule(data) results = [] for clause_tuple in clauses: rule = clause_tuple[0] rule_weight = rule.weight prior_rules = list(data_tuple[2]) if rule in prior_rules: # A rule can be used only once per path continue drs, w = self.__apply_clause_to_graph(rule, data, i) if w > 0: prior_rules.append(rule) prior_rules.append(drs) results.append((drs, prior_w * w * rule_weight, prior_rules)) return results def compute(self): results = [] to_process = [(self.data, 1, [self.data])] for i in range(self._max_depth): new_results = [] for data_tuple in to_process: new_results += self._compute_step(data_tuple, i) if not new_results: break to_process = sorted(new_results, key=lambda x: -x[1]) results += to_process results = sorted(results, key=lambda x: -x[1]) return results
en
0.851442
Applies all the rules to a drs :return: all the variants of the drs after a rule match as a pair (<NEW_DRS>, <WEIGHT>) # A rule can be used only once per path
2.255202
2
serverPythonClient/client.py
ikekilinc/dnnSuperBinoculars
0
8353
<filename>serverPythonClient/client.py import argparse import cv2 import common # from .utils.cropAtCenter import cropImageCenter # from cropAtCenter import cropImageCenter from gabriel_client.websocket_client import WebsocketClient from gabriel_client.opencv_adapter import OpencvAdapter DEFAULT_SERVER_HOST = '172.16.31.10' DEFAULT_ZOOM_FACTOR = 10 def preprocess(frame): # return frame print(type(frame), frame.shape) width, height = frame.shape[1], frame.shape[0] left = int(width/2 * (1 - 1/DEFAULT_ZOOM_FACTOR)) top = int(height/2 * (1 - 1/DEFAULT_ZOOM_FACTOR)) right = int(width/2 * (1 + 1/DEFAULT_ZOOM_FACTOR)) bottom = int(height/2 * (1 + 1/DEFAULT_ZOOM_FACTOR)) cropped_frame = frame[top:bottom, left:right] return cropped_frame def produce_extras(): return None def consume_frame(frame, _): cv2.imshow('Image from server', frame) cv2.waitKey(1) def main(): common.configure_logging() parser = argparse.ArgumentParser() parser.add_argument( 'source_name', nargs='?', default=common.DEFAULT_SOURCE_NAME) parser.add_argument('server_host', nargs='?', default=DEFAULT_SERVER_HOST) args = parser.parse_args() capture = cv2.VideoCapture(0) opencv_adapter = OpencvAdapter( preprocess, produce_extras, consume_frame, capture, args.source_name) client = WebsocketClient( args.server_host, common.WEBSOCKET_PORT, opencv_adapter.get_producer_wrappers(), opencv_adapter.consumer) client.launch() if __name__ == '__main__': main()
<filename>serverPythonClient/client.py import argparse import cv2 import common # from .utils.cropAtCenter import cropImageCenter # from cropAtCenter import cropImageCenter from gabriel_client.websocket_client import WebsocketClient from gabriel_client.opencv_adapter import OpencvAdapter DEFAULT_SERVER_HOST = '172.16.31.10' DEFAULT_ZOOM_FACTOR = 10 def preprocess(frame): # return frame print(type(frame), frame.shape) width, height = frame.shape[1], frame.shape[0] left = int(width/2 * (1 - 1/DEFAULT_ZOOM_FACTOR)) top = int(height/2 * (1 - 1/DEFAULT_ZOOM_FACTOR)) right = int(width/2 * (1 + 1/DEFAULT_ZOOM_FACTOR)) bottom = int(height/2 * (1 + 1/DEFAULT_ZOOM_FACTOR)) cropped_frame = frame[top:bottom, left:right] return cropped_frame def produce_extras(): return None def consume_frame(frame, _): cv2.imshow('Image from server', frame) cv2.waitKey(1) def main(): common.configure_logging() parser = argparse.ArgumentParser() parser.add_argument( 'source_name', nargs='?', default=common.DEFAULT_SOURCE_NAME) parser.add_argument('server_host', nargs='?', default=DEFAULT_SERVER_HOST) args = parser.parse_args() capture = cv2.VideoCapture(0) opencv_adapter = OpencvAdapter( preprocess, produce_extras, consume_frame, capture, args.source_name) client = WebsocketClient( args.server_host, common.WEBSOCKET_PORT, opencv_adapter.get_producer_wrappers(), opencv_adapter.consumer) client.launch() if __name__ == '__main__': main()
en
0.361131
# from .utils.cropAtCenter import cropImageCenter # from cropAtCenter import cropImageCenter # return frame
2.635863
3
src/DeepCard.API/batch.py
SharsDela/BankCardRecognize
7
8354
from api import get_result import os import shutil from glob import glob from PIL import Image if __name__ == '__main__': image_files = glob('./test_images/*.*') result_dir = './test_results' if os.path.exists(result_dir): shutil.rmtree(result_dir) os.mkdir(result_dir) txt_file = os.path.join(result_dir, 'result.txt') txt_f = open(txt_file, 'w') for image_file in sorted(image_files): if ".gitkeep" in image_files: continue print("Finded file", image_file, end=" ") result = get_result(Image.open(image_file)) print(":", result) txt_f.write(image_file.split('/')[-1].split('.')[0] + ':' + result + '\n') txt_f.close()
from api import get_result import os import shutil from glob import glob from PIL import Image if __name__ == '__main__': image_files = glob('./test_images/*.*') result_dir = './test_results' if os.path.exists(result_dir): shutil.rmtree(result_dir) os.mkdir(result_dir) txt_file = os.path.join(result_dir, 'result.txt') txt_f = open(txt_file, 'w') for image_file in sorted(image_files): if ".gitkeep" in image_files: continue print("Finded file", image_file, end=" ") result = get_result(Image.open(image_file)) print(":", result) txt_f.write(image_file.split('/')[-1].split('.')[0] + ':' + result + '\n') txt_f.close()
none
1
2.666684
3
CIM14/ENTSOE/Equipment/Core/Curve.py
MaximeBaudette/PyCIM
58
8355
# Copyright (C) 2010-2011 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM14.ENTSOE.Equipment.Core.IdentifiedObject import IdentifiedObject class Curve(IdentifiedObject): """A multi-purpose curve or functional relationship between an independent variable (X-axis) and dependent (Y-axis) variables. """ def __init__(self, y1Unit="A", curveStyle="straightLineYValues", xUnit="A", CurveDatas=None, *args, **kw_args): """Initialises a new 'Curve' instance. @param y1Unit: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param curveStyle: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" @param xUnit: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param CurveDatas: The point data values that define a curve """ #: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" self.y1Unit = y1Unit #: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" self.curveStyle = curveStyle #: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" self.xUnit = xUnit self._CurveDatas = [] self.CurveDatas = [] if CurveDatas is None else CurveDatas super(Curve, self).__init__(*args, **kw_args) _attrs = ["y1Unit", "curveStyle", "xUnit"] _attr_types = {"y1Unit": str, "curveStyle": str, "xUnit": str} _defaults = {"y1Unit": "A", "curveStyle": "straightLineYValues", "xUnit": "A"} _enums = {"y1Unit": "UnitSymbol", "curveStyle": "CurveStyle", "xUnit": "UnitSymbol"} _refs = ["CurveDatas"] _many_refs = ["CurveDatas"] def getCurveDatas(self): """The point data values that define a curve """ return self._CurveDatas def setCurveDatas(self, value): for x in self._CurveDatas: x.Curve = None for y in value: y._Curve = self self._CurveDatas = value CurveDatas = property(getCurveDatas, setCurveDatas) def addCurveDatas(self, *CurveDatas): for obj in CurveDatas: obj.Curve = self def removeCurveDatas(self, *CurveDatas): for obj in CurveDatas: obj.Curve = None
# Copyright (C) 2010-2011 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM14.ENTSOE.Equipment.Core.IdentifiedObject import IdentifiedObject class Curve(IdentifiedObject): """A multi-purpose curve or functional relationship between an independent variable (X-axis) and dependent (Y-axis) variables. """ def __init__(self, y1Unit="A", curveStyle="straightLineYValues", xUnit="A", CurveDatas=None, *args, **kw_args): """Initialises a new 'Curve' instance. @param y1Unit: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param curveStyle: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" @param xUnit: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param CurveDatas: The point data values that define a curve """ #: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" self.y1Unit = y1Unit #: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" self.curveStyle = curveStyle #: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" self.xUnit = xUnit self._CurveDatas = [] self.CurveDatas = [] if CurveDatas is None else CurveDatas super(Curve, self).__init__(*args, **kw_args) _attrs = ["y1Unit", "curveStyle", "xUnit"] _attr_types = {"y1Unit": str, "curveStyle": str, "xUnit": str} _defaults = {"y1Unit": "A", "curveStyle": "straightLineYValues", "xUnit": "A"} _enums = {"y1Unit": "UnitSymbol", "curveStyle": "CurveStyle", "xUnit": "UnitSymbol"} _refs = ["CurveDatas"] _many_refs = ["CurveDatas"] def getCurveDatas(self): """The point data values that define a curve """ return self._CurveDatas def setCurveDatas(self, value): for x in self._CurveDatas: x.Curve = None for y in value: y._Curve = self self._CurveDatas = value CurveDatas = property(getCurveDatas, setCurveDatas) def addCurveDatas(self, *CurveDatas): for obj in CurveDatas: obj.Curve = self def removeCurveDatas(self, *CurveDatas): for obj in CurveDatas: obj.Curve = None
en
0.534452
# Copyright (C) 2010-2011 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. A multi-purpose curve or functional relationship between an independent variable (X-axis) and dependent (Y-axis) variables. Initialises a new 'Curve' instance. @param y1Unit: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param curveStyle: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" @param xUnit: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" @param CurveDatas: The point data values that define a curve #: The Y1-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" #: The style or shape of the curve. Values are: "straightLineYValues", "rampYValue", "constantYValue", "formula" #: The X-axis units of measure. Values are: "A", "rad", "none", "g", "W/Hz", "V", "m2", "VA", "VArh", "N", "Pa", "VAh", "F", "H", "Hz-1", "W/s", "J", "m", "S", "min", "deg", "J/s", "s", "Wh", "m3", "oC", "V/VAr", "s-1", "h", "W", "ohm", "Hz", "VAr", "kg/J" The point data values that define a curve
1.839324
2
fluent/syntax/errors.py
unclenachoduh/python-fluent
0
8356
from __future__ import unicode_literals class ParseError(Exception): def __init__(self, code, *args): self.code = code self.args = args self.message = get_error_message(code, args) def get_error_message(code, args): if code == 'E00001': return 'Generic error' if code == 'E0002': return 'Expected an entry start' if code == 'E0003': return 'Expected token: "{}"'.format(args[0]) if code == 'E0004': return 'Expected a character from range: "{}"'.format(args[0]) if code == 'E0005': msg = 'Expected message "{}" to have a value or attributes' return msg.format(args[0]) if code == 'E0006': msg = 'Expected term "{}" to have a value' return msg.format(args[0]) if code == 'E0007': return 'Keyword cannot end with a whitespace' if code == 'E0008': return 'The callee has to be a simple, upper-case identifier' if code == 'E0009': return 'The key has to be a simple identifier' if code == 'E0010': return 'Expected one of the variants to be marked as default (*)' if code == 'E0011': return 'Expected at least one variant after "->"' if code == 'E0012': return 'Expected value' if code == 'E0013': return 'Expected variant key' if code == 'E0014': return 'Expected literal' if code == 'E0015': return 'Only one variant can be marked as default (*)' if code == 'E0016': return 'Message references cannot be used as selectors' if code == 'E0017': return 'Variants cannot be used as selectors' if code == 'E0018': return 'Attributes of messages cannot be used as selectors' if code == 'E0019': return 'Attributes of terms cannot be used as placeables' if code == 'E0020': return 'Unterminated string expression' if code == 'E0021': return 'Positional arguments must not follow named arguments' if code == 'E0022': return 'Named arguments must be unique' if code == 'E0023': return 'VariantLists are only allowed inside of other VariantLists.' if code == 'E0024': return 'Cannot access variants of a message.' if code == 'E0025': return 'Unknown escape sequence: {}'.format(args[0]) if code == 'E0026': return 'Invalid Unicode escape sequence: {}'.format(args[0]) return code
from __future__ import unicode_literals class ParseError(Exception): def __init__(self, code, *args): self.code = code self.args = args self.message = get_error_message(code, args) def get_error_message(code, args): if code == 'E00001': return 'Generic error' if code == 'E0002': return 'Expected an entry start' if code == 'E0003': return 'Expected token: "{}"'.format(args[0]) if code == 'E0004': return 'Expected a character from range: "{}"'.format(args[0]) if code == 'E0005': msg = 'Expected message "{}" to have a value or attributes' return msg.format(args[0]) if code == 'E0006': msg = 'Expected term "{}" to have a value' return msg.format(args[0]) if code == 'E0007': return 'Keyword cannot end with a whitespace' if code == 'E0008': return 'The callee has to be a simple, upper-case identifier' if code == 'E0009': return 'The key has to be a simple identifier' if code == 'E0010': return 'Expected one of the variants to be marked as default (*)' if code == 'E0011': return 'Expected at least one variant after "->"' if code == 'E0012': return 'Expected value' if code == 'E0013': return 'Expected variant key' if code == 'E0014': return 'Expected literal' if code == 'E0015': return 'Only one variant can be marked as default (*)' if code == 'E0016': return 'Message references cannot be used as selectors' if code == 'E0017': return 'Variants cannot be used as selectors' if code == 'E0018': return 'Attributes of messages cannot be used as selectors' if code == 'E0019': return 'Attributes of terms cannot be used as placeables' if code == 'E0020': return 'Unterminated string expression' if code == 'E0021': return 'Positional arguments must not follow named arguments' if code == 'E0022': return 'Named arguments must be unique' if code == 'E0023': return 'VariantLists are only allowed inside of other VariantLists.' if code == 'E0024': return 'Cannot access variants of a message.' if code == 'E0025': return 'Unknown escape sequence: {}'.format(args[0]) if code == 'E0026': return 'Invalid Unicode escape sequence: {}'.format(args[0]) return code
none
1
2.960001
3
tests/test_mag.py
jdddog/mag-archiver
0
8357
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> import os import unittest from unittest.mock import patch import pendulum from azure.common import AzureMissingResourceHttpError from azure.cosmosdb.table.tableservice import TableService from azure.storage.blob import ContainerProperties from mag_archiver.azure import create_table from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, \ hide_if_not_none class TestMag(unittest.TestCase): def test_hide_if_not_none(self): # Test that None is returned for None value = hide_if_not_none(None) self.assertEqual(value, None) # Test that 'hidden' is returned: string value = hide_if_not_none('hello world') self.assertEqual(value, 'hidden') # Test that 'hidden' is returned: integer value = hide_if_not_none(123) self.assertEqual(value, 'hidden') def test_make_mag_query(self): start_date = pendulum.datetime(year=2020, month=4, day=1) end_date = pendulum.datetime(year=2020, month=5, day=1) # No parameters query = make_mag_query() self.assertEqual(query, '') # State parameter query = make_mag_query(state=MagState.discovered) self.assertEqual(query, "State eq 'discovered'") query = make_mag_query(state=MagState.archived) self.assertEqual(query, "State eq 'archived'") query = make_mag_query(state=MagState.done) self.assertEqual(query, "State eq 'done'") # Start date parameter query = make_mag_query(start_date=start_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z'") # End date parameter query = make_mag_query(end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate lt datetime'2020-05-01T00:00Z'") # Start date, end date and date type query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z' and ReleaseDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z' and DiscoveredDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z' and ArchivedDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z' and DoneDate lt " "datetime'2020-05-01T00:00Z'") # State, start date, end date and date type query = make_mag_query(state=MagState.discovered, start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "State eq 'discovered' and DiscoveredDate ge datetime'2020-04-01T00:00Z' " "and DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.archived, start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "State eq 'archived' and ArchivedDate ge datetime'2020-04-01T00:00Z' " "and ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.done, start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "State eq 'done' and DoneDate ge datetime'2020-04-01T00:00Z' " "and DoneDate lt datetime'2020-05-01T00:00Z'") def make_mag_release(account_name: str, account_key: str, year: int, month: int, day: int): min_date = pendulum.datetime(1601, 1, 1) partition_key_ = 'mag' row_key_ = f'mag-{year:0>4d}-{month:0>2d}-{day:0>2d}' state_ = MagState.discovered task_ = MagTask.not_started release_date_ = pendulum.datetime(year=year, month=month, day=day) source_container_ = row_key_ source_container_last_modified_ = pendulum.datetime(year=year, month=month, day=day, hour=1) release_container_ = '' release_path_ = '' discovered_date_ = pendulum.datetime(year=year, month=month, day=day, hour=2) archived_date_ = min_date done_date_ = min_date return MagRelease(partition_key_, row_key_, state_, task_, release_date_, source_container_, source_container_last_modified_, release_container_, release_path_, discovered_date_, archived_date_, done_date_, account_name=account_name, account_key=account_key) class TestMagRelease(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagRelease, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden release = make_mag_release(account_name, secret, 2020, 1, 1) self.assertIn('account_key=hidden', release.__repr__()) self.assertNotIn(secret, release.__str__()) self.assertNotIn(secret, release.__repr__()) # Check that account_key is None release = make_mag_release(account_name, None, 2020, 1, 1) self.assertIn('account_key=None', release.__repr__()) def test_create(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: success = release.create() self.assertTrue(success) finally: release.delete() def test_delete(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) # Check that we can create and then delete release.create() release.delete() # Check that second delete fails with self.assertRaises(AzureMissingResourceHttpError): release.delete() def test_update(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: release.create() # Update release release.state = MagState.archived release.archived_date = pendulum.utcnow().microsecond_(0) release.update() # Verify that release is updated service = TableService(account_name=self.account_name, account_key=self.account_key) entity = service.get_entity(MagRelease.TABLE_NAME, release.partition_key, release.row_key) updated_release = MagRelease.from_entity(entity) self.assertEqual(release.state, updated_release.state) self.assertEqual(release.archived_date, updated_release.archived_date) finally: release.delete() def make_containers(): containers = [] cp1 = ContainerProperties() cp1.name = 'mag-2020-04-17' cp1.last_modified = pendulum.datetime(year=2020, month=4, day=18) containers.append(cp1) cp3 = ContainerProperties() cp3.name = 'mag-2020-05-01' cp3.last_modified = pendulum.datetime(year=2020, month=5, day=1) containers.append(cp3) cp2 = ContainerProperties() cp2.name = 'mag-2020-04-24' cp2.last_modified = pendulum.datetime(year=2020, month=4, day=25) containers.append(cp2) return containers class TestMagArchiverClient(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagArchiverClient, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden client = MagArchiverClient(account_name=account_name, account_key=secret, sas_token=secret) expected = f'MagArchiverClient(account_name={account_name}, account_key=hidden, sas_token=hidden)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) self.assertNotIn(secret, client.__str__()) self.assertNotIn(secret, client.__repr__()) # Check that account_key and sas_token are None client = MagArchiverClient(account_name=account_name) expected = f'MagArchiverClient(account_name={account_name}, account_key=None, sas_token=None)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_containers(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Test that 2 containers are returned when last_modified_thresh=1 client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers_out = client.list_containers(last_modified_thresh=1) self.assertEqual(len(containers_out), 2) # Test that 3 containers are returned when last_modified_thresh=0 containers_out = client.list_containers(last_modified_thresh=0) self.assertEqual(len(containers_out), 3) # Test sort order reverse=False self.assertEqual(containers_in[0].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[1].name, containers_out[2].name) # Test sort order reverse=True containers_out = client.list_containers(last_modified_thresh=0, reverse=True) self.assertEqual(len(containers_out), 3) self.assertEqual(containers_in[1].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[0].name, containers_out[2].name) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_update_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 2) self.assertEqual(num_errors, 0) finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", "")) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, hour=1) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 3) self.assertEqual(num_errors, 0) # Two releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 2) # 1 release start_date = pendulum.datetime(year=2020, month=4, day=17, minute=1) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 1) # Three releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1, minute=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=False) self.assertEqual(len(releases), 3) # Sorting reverse=False self.assertEqual(releases[0].row_key, '2020-04-17') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-05-01') # Sorting reverse=True releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=True) self.assertEqual(releases[0].row_key, '2020-05-01') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-04-17') finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", ""))
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> import os import unittest from unittest.mock import patch import pendulum from azure.common import AzureMissingResourceHttpError from azure.cosmosdb.table.tableservice import TableService from azure.storage.blob import ContainerProperties from mag_archiver.azure import create_table from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, \ hide_if_not_none class TestMag(unittest.TestCase): def test_hide_if_not_none(self): # Test that None is returned for None value = hide_if_not_none(None) self.assertEqual(value, None) # Test that 'hidden' is returned: string value = hide_if_not_none('hello world') self.assertEqual(value, 'hidden') # Test that 'hidden' is returned: integer value = hide_if_not_none(123) self.assertEqual(value, 'hidden') def test_make_mag_query(self): start_date = pendulum.datetime(year=2020, month=4, day=1) end_date = pendulum.datetime(year=2020, month=5, day=1) # No parameters query = make_mag_query() self.assertEqual(query, '') # State parameter query = make_mag_query(state=MagState.discovered) self.assertEqual(query, "State eq 'discovered'") query = make_mag_query(state=MagState.archived) self.assertEqual(query, "State eq 'archived'") query = make_mag_query(state=MagState.done) self.assertEqual(query, "State eq 'done'") # Start date parameter query = make_mag_query(start_date=start_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z'") # End date parameter query = make_mag_query(end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate lt datetime'2020-05-01T00:00Z'") # Start date, end date and date type query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z' and ReleaseDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z' and DiscoveredDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z' and ArchivedDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z' and DoneDate lt " "datetime'2020-05-01T00:00Z'") # State, start date, end date and date type query = make_mag_query(state=MagState.discovered, start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "State eq 'discovered' and DiscoveredDate ge datetime'2020-04-01T00:00Z' " "and DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.archived, start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "State eq 'archived' and ArchivedDate ge datetime'2020-04-01T00:00Z' " "and ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.done, start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "State eq 'done' and DoneDate ge datetime'2020-04-01T00:00Z' " "and DoneDate lt datetime'2020-05-01T00:00Z'") def make_mag_release(account_name: str, account_key: str, year: int, month: int, day: int): min_date = pendulum.datetime(1601, 1, 1) partition_key_ = 'mag' row_key_ = f'mag-{year:0>4d}-{month:0>2d}-{day:0>2d}' state_ = MagState.discovered task_ = MagTask.not_started release_date_ = pendulum.datetime(year=year, month=month, day=day) source_container_ = row_key_ source_container_last_modified_ = pendulum.datetime(year=year, month=month, day=day, hour=1) release_container_ = '' release_path_ = '' discovered_date_ = pendulum.datetime(year=year, month=month, day=day, hour=2) archived_date_ = min_date done_date_ = min_date return MagRelease(partition_key_, row_key_, state_, task_, release_date_, source_container_, source_container_last_modified_, release_container_, release_path_, discovered_date_, archived_date_, done_date_, account_name=account_name, account_key=account_key) class TestMagRelease(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagRelease, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden release = make_mag_release(account_name, secret, 2020, 1, 1) self.assertIn('account_key=hidden', release.__repr__()) self.assertNotIn(secret, release.__str__()) self.assertNotIn(secret, release.__repr__()) # Check that account_key is None release = make_mag_release(account_name, None, 2020, 1, 1) self.assertIn('account_key=None', release.__repr__()) def test_create(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: success = release.create() self.assertTrue(success) finally: release.delete() def test_delete(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) # Check that we can create and then delete release.create() release.delete() # Check that second delete fails with self.assertRaises(AzureMissingResourceHttpError): release.delete() def test_update(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: release.create() # Update release release.state = MagState.archived release.archived_date = pendulum.utcnow().microsecond_(0) release.update() # Verify that release is updated service = TableService(account_name=self.account_name, account_key=self.account_key) entity = service.get_entity(MagRelease.TABLE_NAME, release.partition_key, release.row_key) updated_release = MagRelease.from_entity(entity) self.assertEqual(release.state, updated_release.state) self.assertEqual(release.archived_date, updated_release.archived_date) finally: release.delete() def make_containers(): containers = [] cp1 = ContainerProperties() cp1.name = 'mag-2020-04-17' cp1.last_modified = pendulum.datetime(year=2020, month=4, day=18) containers.append(cp1) cp3 = ContainerProperties() cp3.name = 'mag-2020-05-01' cp3.last_modified = pendulum.datetime(year=2020, month=5, day=1) containers.append(cp3) cp2 = ContainerProperties() cp2.name = 'mag-2020-04-24' cp2.last_modified = pendulum.datetime(year=2020, month=4, day=25) containers.append(cp2) return containers class TestMagArchiverClient(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagArchiverClient, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden client = MagArchiverClient(account_name=account_name, account_key=secret, sas_token=secret) expected = f'MagArchiverClient(account_name={account_name}, account_key=hidden, sas_token=hidden)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) self.assertNotIn(secret, client.__str__()) self.assertNotIn(secret, client.__repr__()) # Check that account_key and sas_token are None client = MagArchiverClient(account_name=account_name) expected = f'MagArchiverClient(account_name={account_name}, account_key=None, sas_token=None)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_containers(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Test that 2 containers are returned when last_modified_thresh=1 client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers_out = client.list_containers(last_modified_thresh=1) self.assertEqual(len(containers_out), 2) # Test that 3 containers are returned when last_modified_thresh=0 containers_out = client.list_containers(last_modified_thresh=0) self.assertEqual(len(containers_out), 3) # Test sort order reverse=False self.assertEqual(containers_in[0].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[1].name, containers_out[2].name) # Test sort order reverse=True containers_out = client.list_containers(last_modified_thresh=0, reverse=True) self.assertEqual(len(containers_out), 3) self.assertEqual(containers_in[1].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[0].name, containers_out[2].name) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_update_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 2) self.assertEqual(num_errors, 0) finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", "")) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, hour=1) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 3) self.assertEqual(num_errors, 0) # Two releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 2) # 1 release start_date = pendulum.datetime(year=2020, month=4, day=17, minute=1) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 1) # Three releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1, minute=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=False) self.assertEqual(len(releases), 3) # Sorting reverse=False self.assertEqual(releases[0].row_key, '2020-04-17') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-05-01') # Sorting reverse=True releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=True) self.assertEqual(releases[0].row_key, '2020-05-01') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-04-17') finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", ""))
en
0.833932
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> # Test that None is returned for None # Test that 'hidden' is returned: string # Test that 'hidden' is returned: integer # No parameters # State parameter # Start date parameter # End date parameter # Start date, end date and date type # State, start date, end date and date type # Check that account key is hidden # Check that account_key and sas_token are hidden # Check that account_key is None # Check that we can create and then delete # Check that second delete fails # Update release # Verify that release is updated # Check that account key is hidden # Check that account_key and sas_token are hidden # Check that account_key and sas_token are None # Mock time # Mock containers # Test that 2 containers are returned when last_modified_thresh=1 # Test that 3 containers are returned when last_modified_thresh=0 # Test sort order reverse=False # Test sort order reverse=True # Mock time # Mock containers # Mock fetching of containers # Update releases based on containers # Clean up # Mock time # Mock containers # Mock fetching of containers # Update releases based on containers # Two releases # 1 release # Three releases # Sorting reverse=False # Sorting reverse=True # Clean up
2.071854
2
twitterinfrastructure/CH-Data-Public.py
jacob-heglund/socialsensing-jh
0
8358
''' Created on Mar 22, 2018 Edited on Jan 11, 2019 @author: npvance2 @author: curtisd2 Variables that will need to be edited/personalized: monitorID in Variables() (line 27) projectStartDate in Variables() (line 28) projectEndDate in Variables() (line 29) authToken in getAuthToken() (line 49) consumer_key in twitterAPI() (line 62) consumer_secret in twitterAPI() (line 63) access_token in twitterAPI() (line 64) access_secret in twitterAPI() (line 65) ''' from datetime import date, timedelta import urllib.request import json import csv import tweepy from tweepy import OAuthHandler def Variables(): monitorID = "9926183772" # The numerical ID for your Crimson Hexagon monitor startDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format endDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format variableMap = {} variableMap['monitorID'] = monitorID variableMap['startDate'] = startDate variableMap['endDate'] = endDate return variableMap def getURL(): #provides URL for Crimson API urlStart = "https://api.crimsonhexagon.com/api" return urlStart ########### # # You'll need to generate your own Crimson API key/token from here: # https://apidocs.crimsonhexagon.com/reference # ########### def getAuthToken(): #provides auth token needed to access Crimson API authToken = '' authToken = "&auth="+authToken return authToken ########### # # You'll need to add your own Twitter API keys here. # Instructions on generating API keys: https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html # API reference guide: https://developer.twitter.com/en/docs/api-reference-index.html # ########### def twitterAPI(): #Provides access keys for Twitter API consumer_key = '2S1Z7Giq0oOf3w0R0sJUPnLFx' consumer_secret = '<KEY>' access_token = '<KEY>' access_secret = '<KEY>' if (consumer_key == '') or (consumer_secret =='') or (access_token =='') or (access_secret ==''): print("Not all Twitter keys have been entered, please add them to the script and try again") auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api def getTwitterURL(): #provides URL for Twitter api urlStart = "https://api.twitter.com/1.1/statuses/lookup.json?id=" return urlStart def DatePull(startdate, enddate): listArray = [] startdate = date(int(startdate[0:4]), int(startdate[5:7]), int(startdate[8:10])) enddate = date(int(enddate[0:4]), int(enddate[5:7]), int(enddate[8:10])) while startdate <= enddate: listArray.append(str(startdate)) startdate += timedelta(days=1) return listArray def main(): monitorID = Variables()['monitorID'] projectStartDate = Variables()['startDate'] projectEndDate = Variables()['endDate'] fPath = "Monitor-"+monitorID+'-from-'+projectStartDate+'-to-'+projectEndDate+'.csv' lineArray = DatePull(projectStartDate, projectEndDate) print("------------------------------") print("MonitorID is "+monitorID) print(lineArray[0],lineArray[-1]) with open(fPath, 'w', newline = '', encoding = 'utf-8') as f: writer = csv.writer(f) header = ["PostType","PostDate","PostTime","URL","TweetID","Contents","RetweetCount","FavoriteCount","Location","Language","Sentiment","NeutralScore","PositiveScore","NegativeScore","Followers","Friends","Author","AuthorGender","AuthorTweets"] writer.writerow(header) for i in range(len(lineArray)-1): print(lineArray[i]) startDate = lineArray[i] endDate = lineArray[i+1] dates = "&start="+startDate+"&end="+endDate #Combines start and end date into format needed for API call urlStart = getURL() #Gets URL authToken = getAuthToken() #Gets auth token endpoint = "/monitor/posts?id="; #endpoint needed for this query extendLimit = "&extendLimit=true" #extends call number from 500 to 10,000 fullContents = "&fullContents=true" #Brings back full contents for Blog and Tumblr posts which are usually truncated around search keywords. This can occasionally disrupt CSV formatting. urlData = urlStart+endpoint+monitorID+authToken+dates+extendLimit+fullContents #Combines all API calls parts into full URL webURL = urllib.request.urlopen(urlData) if (webURL.getcode() == 200): with open(fPath, 'a', newline='', encoding='utf-8') as f: writer = csv.writer(f) data = webURL.read().decode('utf8') theJSON = json.loads(data) postDates = [] #These initialize the attributes of the final output postTimes = [] urls = [] contents = [] authors = [] authorGenders = [] locations = [] languages = [] postTypes = [] sentiments = [] neutralScore = [] positiveScore = [] negativeScore = [] tweetIDs = [] followers = [] friends = [] retweetCounts = [] favoritesCount = [] statusesCount = [] tweetCount = 0 tempTweetIDs = [] api = twitterAPI() c = 0 for i in theJSON["posts"]: postDates.append("") postTimes.append("") if ('date' in i): #identifies date posted tempDate = str(i["date"]) dateTime = tempDate.split("T") postDates[c] = dateTime[0] postTimes[c] = dateTime[1] urls.append(i["url"]) contents.append("") if ('contents' in i): #identifies post contents contents[c] = i["contents"].replace(",","").replace("\n"," ") #replaces commas and new lines to facilitate CSV formatting, this occasionally missed new lines in some blog posts which I'm working to fix authors.append("") if ('author' in i): #identifies author authors[c] = i["author"].replace(",","") authorGenders.append("") if ('authorGender' in i): #identifies author gender authorGenders[c] = i["authorGender"] locations.append("") if ('location' in i): #identifies location locations[c] = i["location"].replace(",","") languages.append("") if ('language' in i): #identifies language specified in the author's profile languages[c] = i["language"] postTypes.append(i["type"]) #identifies the type of post, i.e. Twitter, Tumblr, Blog tweetIDs.append("") followers.append("") friends.append("") retweetCounts.append("") favoritesCount.append("") statusesCount.append("") if postTypes[c] == "Twitter": #if the post type is Twitter it goes through more processing tweetCount = tweetCount + 1 #counts number of tweets tweetSplit = urls[c].split("status/") #splits URL to get tweetID tweetIDs[c] = tweetSplit[1] tempTweetIDs.append(tweetIDs[c]) if tweetCount == 100: #the max number of TweetIDs in one API call is 100 so a call is run every 100 tweets identified tweepys = api.statuses_lookup(id_=tempTweetIDs) #call to Twitter API for tweet in tweepys: tempID = tweet.id_str #finds tweetsID postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: #matches tweetID in Twitter API call to tweetID stored from Crimson API tempDate = str(tweet.created_at).replace(" "," ") #These all fill the matching Crimson attributes to those found in the Twitter API dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 #clears tweet count for a new 100 tempTweetIDs = [] #clears tweetIDs for next call sentiments.append("") neutralScore.append("") positiveScore.append("") negativeScore.append("") if ('categoryScores' in i): #finds sentiment value and matching attribute for l in i["categoryScores"]: catName = l["categoryName"] if catName == "Basic Neutral": neutralScore[c] = l["score"] elif catName =="Basic Positive": positiveScore[c] = l["score"] elif catName == "Basic Negative": negativeScore[c] = l["score"] if neutralScore[c] > positiveScore[c] and neutralScore[c] > negativeScore[c]: sentiments[c] = "Basic Neutral" if positiveScore[c] > neutralScore[c] and positiveScore[c] > negativeScore[c]: sentiments[c] = "Basic Positive" if negativeScore[c] > positiveScore[c] and negativeScore[c] > neutralScore[c]: sentiments[c] = "Basic Negative" c = c + 1 if len(tempTweetIDs) != 0: #after loop the Twitter API call must run one more time to clean up all the tweets since the last 100 try: tweepys = api.statuses_lookup(id_=tempTweetIDs) for tweet in tweepys: tempID = tweet.id_str postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: tempDate = str(tweet.created_at).replace(" "," ") dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 except: print("Tweepy error: skipping cleanup") pC = 0 for pDate in postDates: #iterates through the word lists and prints matching posts to CSV csvRow=[postTypes[pC], pDate, postTimes[pC], urls[pC], str(tweetIDs[pC]), contents[pC].replace("\n"," "), retweetCounts[pC], favoritesCount[pC], locations[pC], languages[pC], sentiments[pC], str(neutralScore[pC]), str(positiveScore[pC]), str(negativeScore[pC]), followers[pC], friends[pC], authors[pC], authorGenders[pC], statusesCount[pC]] writer.writerow(csvRow) pC = pC + 1 else: print("Server Error, No Data" + str(webURL.getcode())) #displays error if Crimson URL fails if __name__ == '__main__': main()
''' Created on Mar 22, 2018 Edited on Jan 11, 2019 @author: npvance2 @author: curtisd2 Variables that will need to be edited/personalized: monitorID in Variables() (line 27) projectStartDate in Variables() (line 28) projectEndDate in Variables() (line 29) authToken in getAuthToken() (line 49) consumer_key in twitterAPI() (line 62) consumer_secret in twitterAPI() (line 63) access_token in twitterAPI() (line 64) access_secret in twitterAPI() (line 65) ''' from datetime import date, timedelta import urllib.request import json import csv import tweepy from tweepy import OAuthHandler def Variables(): monitorID = "9926183772" # The numerical ID for your Crimson Hexagon monitor startDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format endDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format variableMap = {} variableMap['monitorID'] = monitorID variableMap['startDate'] = startDate variableMap['endDate'] = endDate return variableMap def getURL(): #provides URL for Crimson API urlStart = "https://api.crimsonhexagon.com/api" return urlStart ########### # # You'll need to generate your own Crimson API key/token from here: # https://apidocs.crimsonhexagon.com/reference # ########### def getAuthToken(): #provides auth token needed to access Crimson API authToken = '' authToken = "&auth="+authToken return authToken ########### # # You'll need to add your own Twitter API keys here. # Instructions on generating API keys: https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html # API reference guide: https://developer.twitter.com/en/docs/api-reference-index.html # ########### def twitterAPI(): #Provides access keys for Twitter API consumer_key = '2S1Z7Giq0oOf3w0R0sJUPnLFx' consumer_secret = '<KEY>' access_token = '<KEY>' access_secret = '<KEY>' if (consumer_key == '') or (consumer_secret =='') or (access_token =='') or (access_secret ==''): print("Not all Twitter keys have been entered, please add them to the script and try again") auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api def getTwitterURL(): #provides URL for Twitter api urlStart = "https://api.twitter.com/1.1/statuses/lookup.json?id=" return urlStart def DatePull(startdate, enddate): listArray = [] startdate = date(int(startdate[0:4]), int(startdate[5:7]), int(startdate[8:10])) enddate = date(int(enddate[0:4]), int(enddate[5:7]), int(enddate[8:10])) while startdate <= enddate: listArray.append(str(startdate)) startdate += timedelta(days=1) return listArray def main(): monitorID = Variables()['monitorID'] projectStartDate = Variables()['startDate'] projectEndDate = Variables()['endDate'] fPath = "Monitor-"+monitorID+'-from-'+projectStartDate+'-to-'+projectEndDate+'.csv' lineArray = DatePull(projectStartDate, projectEndDate) print("------------------------------") print("MonitorID is "+monitorID) print(lineArray[0],lineArray[-1]) with open(fPath, 'w', newline = '', encoding = 'utf-8') as f: writer = csv.writer(f) header = ["PostType","PostDate","PostTime","URL","TweetID","Contents","RetweetCount","FavoriteCount","Location","Language","Sentiment","NeutralScore","PositiveScore","NegativeScore","Followers","Friends","Author","AuthorGender","AuthorTweets"] writer.writerow(header) for i in range(len(lineArray)-1): print(lineArray[i]) startDate = lineArray[i] endDate = lineArray[i+1] dates = "&start="+startDate+"&end="+endDate #Combines start and end date into format needed for API call urlStart = getURL() #Gets URL authToken = getAuthToken() #Gets auth token endpoint = "/monitor/posts?id="; #endpoint needed for this query extendLimit = "&extendLimit=true" #extends call number from 500 to 10,000 fullContents = "&fullContents=true" #Brings back full contents for Blog and Tumblr posts which are usually truncated around search keywords. This can occasionally disrupt CSV formatting. urlData = urlStart+endpoint+monitorID+authToken+dates+extendLimit+fullContents #Combines all API calls parts into full URL webURL = urllib.request.urlopen(urlData) if (webURL.getcode() == 200): with open(fPath, 'a', newline='', encoding='utf-8') as f: writer = csv.writer(f) data = webURL.read().decode('utf8') theJSON = json.loads(data) postDates = [] #These initialize the attributes of the final output postTimes = [] urls = [] contents = [] authors = [] authorGenders = [] locations = [] languages = [] postTypes = [] sentiments = [] neutralScore = [] positiveScore = [] negativeScore = [] tweetIDs = [] followers = [] friends = [] retweetCounts = [] favoritesCount = [] statusesCount = [] tweetCount = 0 tempTweetIDs = [] api = twitterAPI() c = 0 for i in theJSON["posts"]: postDates.append("") postTimes.append("") if ('date' in i): #identifies date posted tempDate = str(i["date"]) dateTime = tempDate.split("T") postDates[c] = dateTime[0] postTimes[c] = dateTime[1] urls.append(i["url"]) contents.append("") if ('contents' in i): #identifies post contents contents[c] = i["contents"].replace(",","").replace("\n"," ") #replaces commas and new lines to facilitate CSV formatting, this occasionally missed new lines in some blog posts which I'm working to fix authors.append("") if ('author' in i): #identifies author authors[c] = i["author"].replace(",","") authorGenders.append("") if ('authorGender' in i): #identifies author gender authorGenders[c] = i["authorGender"] locations.append("") if ('location' in i): #identifies location locations[c] = i["location"].replace(",","") languages.append("") if ('language' in i): #identifies language specified in the author's profile languages[c] = i["language"] postTypes.append(i["type"]) #identifies the type of post, i.e. Twitter, Tumblr, Blog tweetIDs.append("") followers.append("") friends.append("") retweetCounts.append("") favoritesCount.append("") statusesCount.append("") if postTypes[c] == "Twitter": #if the post type is Twitter it goes through more processing tweetCount = tweetCount + 1 #counts number of tweets tweetSplit = urls[c].split("status/") #splits URL to get tweetID tweetIDs[c] = tweetSplit[1] tempTweetIDs.append(tweetIDs[c]) if tweetCount == 100: #the max number of TweetIDs in one API call is 100 so a call is run every 100 tweets identified tweepys = api.statuses_lookup(id_=tempTweetIDs) #call to Twitter API for tweet in tweepys: tempID = tweet.id_str #finds tweetsID postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: #matches tweetID in Twitter API call to tweetID stored from Crimson API tempDate = str(tweet.created_at).replace(" "," ") #These all fill the matching Crimson attributes to those found in the Twitter API dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 #clears tweet count for a new 100 tempTweetIDs = [] #clears tweetIDs for next call sentiments.append("") neutralScore.append("") positiveScore.append("") negativeScore.append("") if ('categoryScores' in i): #finds sentiment value and matching attribute for l in i["categoryScores"]: catName = l["categoryName"] if catName == "Basic Neutral": neutralScore[c] = l["score"] elif catName =="Basic Positive": positiveScore[c] = l["score"] elif catName == "Basic Negative": negativeScore[c] = l["score"] if neutralScore[c] > positiveScore[c] and neutralScore[c] > negativeScore[c]: sentiments[c] = "Basic Neutral" if positiveScore[c] > neutralScore[c] and positiveScore[c] > negativeScore[c]: sentiments[c] = "Basic Positive" if negativeScore[c] > positiveScore[c] and negativeScore[c] > neutralScore[c]: sentiments[c] = "Basic Negative" c = c + 1 if len(tempTweetIDs) != 0: #after loop the Twitter API call must run one more time to clean up all the tweets since the last 100 try: tweepys = api.statuses_lookup(id_=tempTweetIDs) for tweet in tweepys: tempID = tweet.id_str postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: tempDate = str(tweet.created_at).replace(" "," ") dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 except: print("Tweepy error: skipping cleanup") pC = 0 for pDate in postDates: #iterates through the word lists and prints matching posts to CSV csvRow=[postTypes[pC], pDate, postTimes[pC], urls[pC], str(tweetIDs[pC]), contents[pC].replace("\n"," "), retweetCounts[pC], favoritesCount[pC], locations[pC], languages[pC], sentiments[pC], str(neutralScore[pC]), str(positiveScore[pC]), str(negativeScore[pC]), followers[pC], friends[pC], authors[pC], authorGenders[pC], statusesCount[pC]] writer.writerow(csvRow) pC = pC + 1 else: print("Server Error, No Data" + str(webURL.getcode())) #displays error if Crimson URL fails if __name__ == '__main__': main()
en
0.659623
Created on Mar 22, 2018 Edited on Jan 11, 2019 @author: npvance2 @author: curtisd2 Variables that will need to be edited/personalized: monitorID in Variables() (line 27) projectStartDate in Variables() (line 28) projectEndDate in Variables() (line 29) authToken in getAuthToken() (line 49) consumer_key in twitterAPI() (line 62) consumer_secret in twitterAPI() (line 63) access_token in twitterAPI() (line 64) access_secret in twitterAPI() (line 65) # The numerical ID for your Crimson Hexagon monitor # Date must be in yyyy-mm-dd format # Date must be in yyyy-mm-dd format #provides URL for Crimson API ########### # # You'll need to generate your own Crimson API key/token from here: # https://apidocs.crimsonhexagon.com/reference # ########### #provides auth token needed to access Crimson API ########### # # You'll need to add your own Twitter API keys here. # Instructions on generating API keys: https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html # API reference guide: https://developer.twitter.com/en/docs/api-reference-index.html # ########### #Provides access keys for Twitter API #provides URL for Twitter api #Combines start and end date into format needed for API call #Gets URL #Gets auth token #endpoint needed for this query #extends call number from 500 to 10,000 #Brings back full contents for Blog and Tumblr posts which are usually truncated around search keywords. This can occasionally disrupt CSV formatting. #Combines all API calls parts into full URL #These initialize the attributes of the final output #identifies date posted #identifies post contents #replaces commas and new lines to facilitate CSV formatting, this occasionally missed new lines in some blog posts which I'm working to fix #identifies author #identifies author gender #identifies location #identifies language specified in the author's profile #identifies the type of post, i.e. Twitter, Tumblr, Blog #if the post type is Twitter it goes through more processing #counts number of tweets #splits URL to get tweetID #the max number of TweetIDs in one API call is 100 so a call is run every 100 tweets identified #call to Twitter API #finds tweetsID #matches tweetID in Twitter API call to tweetID stored from Crimson API #These all fill the matching Crimson attributes to those found in the Twitter API #clears tweet count for a new 100 #clears tweetIDs for next call #finds sentiment value and matching attribute #after loop the Twitter API call must run one more time to clean up all the tweets since the last 100 #iterates through the word lists and prints matching posts to CSV #displays error if Crimson URL fails
2.607501
3
roles/slurm/files/startnode.py
danhnguyen48/slurm-elastic-computing
0
8359
#! /opt/cloud_sdk/bin/python import asyncio import logging import subprocess import sys import citc_cloud def handle_exception(exc_type, exc_value, exc_traceback): if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return log.critical("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) async def main() -> None: nodespace = citc_cloud.get_nodespace() keys_file = "/home/slurm/opc_authorized_keys" with open(keys_file) as kf: ssh_keys = kf.read() hosts = subprocess.run(["scontrol", "show", "hostnames", sys.argv[1]], stdout=subprocess.PIPE).stdout.decode().split() await asyncio.gather(*( citc_cloud.start_node( log, host, nodespace, ssh_keys) for host in hosts )) sys.excepthook = handle_exception if __name__ == "__main__": log = logging.getLogger("startnode") log.setLevel(logging.INFO) handler = logging.FileHandler('/var/log/slurm/elastic.log') formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-8s %(message)s') handler.setFormatter(formatter) log.addHandler(handler) loop = asyncio.get_event_loop() try: loop.run_until_complete(main()) finally: loop.close()
#! /opt/cloud_sdk/bin/python import asyncio import logging import subprocess import sys import citc_cloud def handle_exception(exc_type, exc_value, exc_traceback): if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return log.critical("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) async def main() -> None: nodespace = citc_cloud.get_nodespace() keys_file = "/home/slurm/opc_authorized_keys" with open(keys_file) as kf: ssh_keys = kf.read() hosts = subprocess.run(["scontrol", "show", "hostnames", sys.argv[1]], stdout=subprocess.PIPE).stdout.decode().split() await asyncio.gather(*( citc_cloud.start_node( log, host, nodespace, ssh_keys) for host in hosts )) sys.excepthook = handle_exception if __name__ == "__main__": log = logging.getLogger("startnode") log.setLevel(logging.INFO) handler = logging.FileHandler('/var/log/slurm/elastic.log') formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-8s %(message)s') handler.setFormatter(formatter) log.addHandler(handler) loop = asyncio.get_event_loop() try: loop.run_until_complete(main()) finally: loop.close()
en
0.235294
#! /opt/cloud_sdk/bin/python
1.878928
2
tests/pyre/components/component_class_registration_model.py
BryanRiel/pyre
0
8360
<filename>tests/pyre/components/component_class_registration_model.py<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME> # orthologue # (c) 1998-2018 all rights reserved # """ Verify that component registration interacts correctly with the pyre configurator model """ # access # print(" -- importing pyre") import pyre # print(" -- done") def declare(): # declare a protocol class protocol(pyre.protocol): """a protocol""" # properties p1 = pyre.properties.str() p2 = pyre.properties.str() # behavior @pyre.provides def do(self): """behave""" # declare a component class component(pyre.component, family="test", implements=protocol): """a component""" # traits p1 = pyre.properties.str(default="p1") p2 = pyre.properties.str(default="p2") @pyre.export def do(self): """behave""" return "component" return component def test(): # and the model model = pyre.executive.nameserver # model.dump(pattern='test') # print(" -- making some configuration changes") # add an assignment model['test.p1'] = 'step 1' # an alias model.alias(alias='p1', target='test.p1') # and a reference to the alias model['ref'] = '{p1}' # check that they point to the same slot assert model.retrieve(name='p1') == model.retrieve(name='test.p1') # save the nodes ref = model.retrieve(name='ref') step_0 = model.retrieve(name='test.p1') # now declare the component and its protocol # print(" -- declaring components") component = declare() # print(" -- done") # model.dump(pattern='') assert component.p1 == 'step 1' assert component.p2 == 'p2' # check that the model is as we expect # model.dump() assert model['test.p1'] == component.p1 assert model['test.p2'] == component.p2 # how about the alias and the reference? assert model['ref'] == component.p1 assert model['p1'] == component.p1 # make a late registration to what is now the component trait model['test.p2'] = 'step 2' # model.dump(pattern='test') # and check assert component.p1 == 'step 1' assert component.p2 == 'step 2' return # main if __name__ == "__main__": test() # end of file
<filename>tests/pyre/components/component_class_registration_model.py<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME> # orthologue # (c) 1998-2018 all rights reserved # """ Verify that component registration interacts correctly with the pyre configurator model """ # access # print(" -- importing pyre") import pyre # print(" -- done") def declare(): # declare a protocol class protocol(pyre.protocol): """a protocol""" # properties p1 = pyre.properties.str() p2 = pyre.properties.str() # behavior @pyre.provides def do(self): """behave""" # declare a component class component(pyre.component, family="test", implements=protocol): """a component""" # traits p1 = pyre.properties.str(default="p1") p2 = pyre.properties.str(default="p2") @pyre.export def do(self): """behave""" return "component" return component def test(): # and the model model = pyre.executive.nameserver # model.dump(pattern='test') # print(" -- making some configuration changes") # add an assignment model['test.p1'] = 'step 1' # an alias model.alias(alias='p1', target='test.p1') # and a reference to the alias model['ref'] = '{p1}' # check that they point to the same slot assert model.retrieve(name='p1') == model.retrieve(name='test.p1') # save the nodes ref = model.retrieve(name='ref') step_0 = model.retrieve(name='test.p1') # now declare the component and its protocol # print(" -- declaring components") component = declare() # print(" -- done") # model.dump(pattern='') assert component.p1 == 'step 1' assert component.p2 == 'p2' # check that the model is as we expect # model.dump() assert model['test.p1'] == component.p1 assert model['test.p2'] == component.p2 # how about the alias and the reference? assert model['ref'] == component.p1 assert model['p1'] == component.p1 # make a late registration to what is now the component trait model['test.p2'] = 'step 2' # model.dump(pattern='test') # and check assert component.p1 == 'step 1' assert component.p2 == 'step 2' return # main if __name__ == "__main__": test() # end of file
en
0.704659
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME> # orthologue # (c) 1998-2018 all rights reserved # Verify that component registration interacts correctly with the pyre configurator model # access # print(" -- importing pyre") # print(" -- done") # declare a protocol a protocol # properties # behavior behave # declare a component a component # traits behave # and the model # model.dump(pattern='test') # print(" -- making some configuration changes") # add an assignment # an alias # and a reference to the alias # check that they point to the same slot # save the nodes # now declare the component and its protocol # print(" -- declaring components") # print(" -- done") # model.dump(pattern='') # check that the model is as we expect # model.dump() # how about the alias and the reference? # make a late registration to what is now the component trait # model.dump(pattern='test') # and check # main # end of file
2.340419
2
tests/unit/transport/plugins/asyncssh/test_asyncssh_transport.py
carlmontanari/nssh
1
8361
import asyncio from io import BytesIO import pytest from asyncssh.connection import SSHClientConnection from asyncssh.stream import SSHReader from scrapli.exceptions import ScrapliConnectionNotOpened, ScrapliTimeout class DumbContainer: def __init__(self): self.preferred_auth = () def __getattr__(self, item): # options has a billion attributes, just return None, doesnt matter for this test return None def test_close(monkeypatch, asyncssh_transport): def _close(cls): pass monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_close_catch_brokenpipe(monkeypatch, asyncssh_transport): def _close(cls): raise BrokenPipeError monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_isalive_no_session(asyncssh_transport): assert asyncssh_transport.isalive() is False def test_isalive(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True # also have to lie and create a transport and have it return False when is_closing is called asyncssh_transport.session._transport = DumbContainer() asyncssh_transport.session._transport.is_closing = lambda: False assert asyncssh_transport.isalive() is True def test_isalive_attribute_error(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True assert asyncssh_transport.isalive() is False async def test_read(monkeypatch, asyncssh_transport): async def _read(cls, _): return b"somebytes" monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") assert await asyncssh_transport.read() == b"somebytes" async def test_read_exception_not_open(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): await asyncssh_transport.read() async def test_read_exception_timeout(monkeypatch, asyncssh_transport): async def _read(cls, _): await asyncio.sleep(0.5) monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") asyncssh_transport._base_transport_args.timeout_transport = 0.1 with pytest.raises(ScrapliTimeout): await asyncssh_transport.read() def test_write(asyncssh_transport): asyncssh_transport.stdin = BytesIO() asyncssh_transport.write(b"blah") asyncssh_transport.stdin.seek(0) assert asyncssh_transport.stdin.read() == b"blah" def test_write_exception(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): asyncssh_transport.write("blah")
import asyncio from io import BytesIO import pytest from asyncssh.connection import SSHClientConnection from asyncssh.stream import SSHReader from scrapli.exceptions import ScrapliConnectionNotOpened, ScrapliTimeout class DumbContainer: def __init__(self): self.preferred_auth = () def __getattr__(self, item): # options has a billion attributes, just return None, doesnt matter for this test return None def test_close(monkeypatch, asyncssh_transport): def _close(cls): pass monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_close_catch_brokenpipe(monkeypatch, asyncssh_transport): def _close(cls): raise BrokenPipeError monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_isalive_no_session(asyncssh_transport): assert asyncssh_transport.isalive() is False def test_isalive(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True # also have to lie and create a transport and have it return False when is_closing is called asyncssh_transport.session._transport = DumbContainer() asyncssh_transport.session._transport.is_closing = lambda: False assert asyncssh_transport.isalive() is True def test_isalive_attribute_error(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True assert asyncssh_transport.isalive() is False async def test_read(monkeypatch, asyncssh_transport): async def _read(cls, _): return b"somebytes" monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") assert await asyncssh_transport.read() == b"somebytes" async def test_read_exception_not_open(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): await asyncssh_transport.read() async def test_read_exception_timeout(monkeypatch, asyncssh_transport): async def _read(cls, _): await asyncio.sleep(0.5) monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") asyncssh_transport._base_transport_args.timeout_transport = 0.1 with pytest.raises(ScrapliTimeout): await asyncssh_transport.read() def test_write(asyncssh_transport): asyncssh_transport.stdin = BytesIO() asyncssh_transport.write(b"blah") asyncssh_transport.stdin.seek(0) assert asyncssh_transport.stdin.read() == b"blah" def test_write_exception(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): asyncssh_transport.write("blah")
en
0.940067
# options has a billion attributes, just return None, doesnt matter for this test # lie and pretend the session is already assigned # lie and pretend the session is already assigned # lie and pretend the session is already assigned # lie and tell asyncssh auth is done # also have to lie and create a transport and have it return False when is_closing is called # lie and pretend the session is already assigned # lie and tell asyncssh auth is done # lie and pretend the session is already assigned/stdout is already a thing # lie and pretend the session is already assigned/stdout is already a thing
1.981328
2
apps/ignite/views.py
Mozilla-GitHub-Standards/93f18f14efcf5fdfc0e04f9bf247f66baf46663f37b1d2087ab8d850abc90803
2
8362
<filename>apps/ignite/views.py from django.shortcuts import get_object_or_404 import jingo import waffle from django.contrib.auth.models import User from challenges.models import Submission, Category from projects.models import Project from blogs.models import BlogEntry from events.models import Event def splash(request, project, slug, template_name='ignite/splash.html'): """Show an individual project challenge.""" project = get_object_or_404(Project, slug=project) challenge = get_object_or_404(project.challenge_set, slug=slug) num_blogs = 3 # have we announced the winners yet - switch template if waffle.switch_is_active('announce_winners'): template_name = 'ignite/homepage-winners.html' num_blogs = 5 blogs = BlogEntry.objects.filter( page='splash' ).order_by("-updated",)[:num_blogs] # if the dev challenge is open we want to only show dev entries if request.development.is_open: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Development") .order_by("?")) num_entries = len(entries) entries_from = 'apps' if num_entries < 5: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Ideation") .order_by("?")) entries_from = 'ideas' else: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Ideation") .order_by("?")) entries_from = 'ideas' event_list = Event.objects.get_featured()[:5] return jingo.render(request, template_name, { 'challenge': challenge, 'project': project, 'phases': list(enumerate(challenge.phases.all(), start=1)), 'entries': entries[:5], 'categories': Category.objects.all(), 'blogs': blogs, 'event_list': event_list, 'entries_from': entries_from, }) def about(request, project, slug, template_name='ignite/about.html'): if waffle.switch_is_active('announce_winners'): template_name = 'ignite/about-winners.html' return jingo.render(request, template_name) def judges(request, project, slug, template_name='challenges/all_judges.html'): """ List all judges we have in the system """ profiles = [] for judge in User.objects.filter(groups__name='Judges'): profile = judge.get_profile() # we only want to show featured profiles if profile.featured == True: profiles.append(profile) return jingo.render(request, 'ignite/judges.html', { 'profiles': profiles }) def terms(request, project, slug, template_name='static/terms_conditions.html'): return jingo.render(request, template_name, {}) def terms_development(request, project, slug, template_name='static/terms_conditions_development.html'): return jingo.render(request, template_name, {}) def fail(request, template_name='404.html'): return jingo.render(request, template_name, {}, status=404) def app_fail(request, template_name='500.html'): return jingo.render(request, template_name, {}, status=500) def action_unavailable_response(request, message=None, template_name="action_unavailable.html"): """Generic page for unavailable actions""" context = {'message': message} return jingo.render(request, template_name, context, status=403)
<filename>apps/ignite/views.py from django.shortcuts import get_object_or_404 import jingo import waffle from django.contrib.auth.models import User from challenges.models import Submission, Category from projects.models import Project from blogs.models import BlogEntry from events.models import Event def splash(request, project, slug, template_name='ignite/splash.html'): """Show an individual project challenge.""" project = get_object_or_404(Project, slug=project) challenge = get_object_or_404(project.challenge_set, slug=slug) num_blogs = 3 # have we announced the winners yet - switch template if waffle.switch_is_active('announce_winners'): template_name = 'ignite/homepage-winners.html' num_blogs = 5 blogs = BlogEntry.objects.filter( page='splash' ).order_by("-updated",)[:num_blogs] # if the dev challenge is open we want to only show dev entries if request.development.is_open: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Development") .order_by("?")) num_entries = len(entries) entries_from = 'apps' if num_entries < 5: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Ideation") .order_by("?")) entries_from = 'ideas' else: entries = (Submission.objects.visible() .filter(phase__challenge=challenge) .filter(phase__name="Ideation") .order_by("?")) entries_from = 'ideas' event_list = Event.objects.get_featured()[:5] return jingo.render(request, template_name, { 'challenge': challenge, 'project': project, 'phases': list(enumerate(challenge.phases.all(), start=1)), 'entries': entries[:5], 'categories': Category.objects.all(), 'blogs': blogs, 'event_list': event_list, 'entries_from': entries_from, }) def about(request, project, slug, template_name='ignite/about.html'): if waffle.switch_is_active('announce_winners'): template_name = 'ignite/about-winners.html' return jingo.render(request, template_name) def judges(request, project, slug, template_name='challenges/all_judges.html'): """ List all judges we have in the system """ profiles = [] for judge in User.objects.filter(groups__name='Judges'): profile = judge.get_profile() # we only want to show featured profiles if profile.featured == True: profiles.append(profile) return jingo.render(request, 'ignite/judges.html', { 'profiles': profiles }) def terms(request, project, slug, template_name='static/terms_conditions.html'): return jingo.render(request, template_name, {}) def terms_development(request, project, slug, template_name='static/terms_conditions_development.html'): return jingo.render(request, template_name, {}) def fail(request, template_name='404.html'): return jingo.render(request, template_name, {}, status=404) def app_fail(request, template_name='500.html'): return jingo.render(request, template_name, {}, status=500) def action_unavailable_response(request, message=None, template_name="action_unavailable.html"): """Generic page for unavailable actions""" context = {'message': message} return jingo.render(request, template_name, context, status=403)
en
0.910673
Show an individual project challenge. # have we announced the winners yet - switch template # if the dev challenge is open we want to only show dev entries List all judges we have in the system # we only want to show featured profiles Generic page for unavailable actions
1.904672
2
dataPresenter.py
thebouv/IUS-Hacktoberfest
3
8363
from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly.io as pio from dataProcessor import parseLabels, parseLangs import plotly.io as pio import os years = parseLabels() langs = parseLangs() #make the plotly results fig = make_subplots( rows=1, cols=2, specs=[[{"type": "xy"}, {"type": "domain"}]], ) fig.add_trace(go.Bar(y = list(langs.values()), x = list(langs.keys()), showlegend=False), row=1, col=1) fig.add_trace(go.Pie(values = list(years.values()), labels = list(years.keys())), row=1, col=2) fig.update_layout(height=600) pio.write_html(fig, 'index.html', auto_open=True)
from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly.io as pio from dataProcessor import parseLabels, parseLangs import plotly.io as pio import os years = parseLabels() langs = parseLangs() #make the plotly results fig = make_subplots( rows=1, cols=2, specs=[[{"type": "xy"}, {"type": "domain"}]], ) fig.add_trace(go.Bar(y = list(langs.values()), x = list(langs.keys()), showlegend=False), row=1, col=1) fig.add_trace(go.Pie(values = list(years.values()), labels = list(years.keys())), row=1, col=2) fig.update_layout(height=600) pio.write_html(fig, 'index.html', auto_open=True)
en
0.915831
#make the plotly results
2.750517
3
bdlb/diabetic_retinopathy_diagnosis/benchmark.py
Sairam954/bdl-benchmarks
666
8364
# Copyright 2019 BDL Benchmarks Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Diabetic retinopathy diagnosis BDL Benchmark.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os from typing import Callable from typing import Dict from typing import Optional from typing import Sequence from typing import Text from typing import Tuple from typing import Union import numpy as np import pandas as pd import tensorflow as tf from absl import logging from ..core import transforms from ..core.benchmark import Benchmark from ..core.benchmark import BenchmarkInfo from ..core.benchmark import DataSplits from ..core.constants import DATA_DIR from ..core.levels import Level tfk = tf.keras _DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR = os.path.join( DATA_DIR, "downloads", "manual", "diabetic_retinopathy_diagnosis") class DiabeticRetinopathyDiagnosisBecnhmark(Benchmark): """Diabetic retinopathy diagnosis benchmark class.""" def __init__( self, level: Union[Text, Level], batch_size: int = 64, data_dir: Optional[Text] = None, download_and_prepare: bool = False, ): """Constructs a benchmark object. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. download_and_prepare: (optional) `bool`, if the data is not available it downloads and preprocesses it. """ self.__level = level if isinstance(level, Level) else Level.from_str(level) try: self.__ds = self.load(level=level, batch_size=batch_size, data_dir=data_dir or DATA_DIR) except AssertionError: if not download_and_prepare: raise else: logging.info( "Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()`" " is now running...") self.download_and_prepare() @classmethod def evaluate( cls, estimator: Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]], dataset: tf.data.Dataset, output_dir: Optional[Text] = None, name: Optional[Text] = None, ) -> Dict[Text, float]: """Evaluates an `estimator` on the `mode` benchmark dataset. Args: estimator: `lambda x: mu_x, uncertainty_x`, an uncertainty estimation function, which returns `mean_x` and predictive `uncertainty_x`. dataset: `tf.data.Dataset`, on which dataset to performance evaluation. output_dir: (optional) `str`, directory to save figures. name: (optional) `str`, the name of the method. """ import inspect import tqdm import tensorflow_datasets as tfds from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # Containers used for caching performance evaluation y_true = list() y_pred = list() y_uncertainty = list() # Convert to NumPy iterator if necessary ds = dataset if inspect.isgenerator(dataset) else tfds.as_numpy(dataset) for x, y in tqdm.tqdm(ds): # Sample from probabilistic model mean, uncertainty = estimator(x) # Cache predictions y_true.append(y) y_pred.append(mean) y_uncertainty.append(uncertainty) # Use vectorized NumPy containers y_true = np.concatenate(y_true).flatten() y_pred = np.concatenate(y_pred).flatten() y_uncertainty = np.concatenate(y_uncertainty).flatten() fractions = np.asarray([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) # Metrics for evaluation metrics = zip(["accuracy", "auc"], cls.metrics()) return { metric: cls._evaluate_metric( y_true, y_pred, y_uncertainty, fractions, lambda y_true, y_pred: metric_fn(y_true, y_pred).numpy(), name, ) for (metric, metric_fn) in metrics } @staticmethod def _evaluate_metric( y_true: np.ndarray, y_pred: np.ndarray, y_uncertainty: np.ndarray, fractions: Sequence[float], metric_fn: Callable[[np.ndarray, np.ndarray], float], name=None, ) -> pd.DataFrame: """Evaluate model predictive distribution on `metric_fn` at data retain `fractions`. Args: y_true: `numpy.ndarray`, the ground truth labels, with shape [N]. y_pred: `numpy.ndarray`, the model predictions, with shape [N]. y_uncertainty: `numpy.ndarray`, the model uncertainties, with shape [N]. fractions: `iterable`, the percentages of data to retain for calculating `metric_fn`. metric_fn: `lambda(y_true, y_pred) -> float`, a metric function that provides a score given ground truths and predictions. name: (optional) `str`, the name of the method. Returns: A `pandas.DataFrame` with columns ["retained_data", "mean", "std"], that summarizes the scores at different data retained fractions. """ N = y_true.shape[0] # Sorts indexes by ascending uncertainty I_uncertainties = np.argsort(y_uncertainty) # Score containers mean = np.empty_like(fractions) # TODO(filangel): do bootstrap sampling and estimate standard error std = np.zeros_like(fractions) for i, frac in enumerate(fractions): # Keep only the %-frac of lowest uncertainties I = np.zeros(N, dtype=bool) I[I_uncertainties[:int(N * frac)]] = True mean[i] = metric_fn(y_true[I], y_pred[I]) # Store df = pd.DataFrame(dict(retained_data=fractions, mean=mean, std=std)) df.name = name return df @property def datasets(self) -> tf.data.Dataset: """Pointer to the processed datasets.""" return self.__ds @property def info(self) -> BenchmarkInfo: """Text description of the benchmark.""" return BenchmarkInfo(description="", urls="", setup="", citation="") @property def level(self) -> Level: """The downstream task level.""" return self.__level @staticmethod def loss() -> tfk.losses.Loss: """Loss used for training binary classifiers.""" return tfk.losses.BinaryCrossentropy() @staticmethod def metrics() -> tfk.metrics.Metric: """Evaluation metrics used for monitoring training.""" return [tfk.metrics.BinaryAccuracy(), tfk.metrics.AUC()] @staticmethod def class_weight() -> Sequence[float]: """Class weights used for rebalancing the dataset, by skewing the `loss` accordingly.""" return [1.0, 4.0] @classmethod def load( cls, level: Union[Text, Level] = "realworld", batch_size: int = 64, data_dir: Optional[Text] = None, as_numpy: bool = False, ) -> DataSplits: """Loads the datasets for the benchmark. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. as_numpy: (optional) `bool`, if True returns python generators with `numpy.ndarray` outputs. Returns: A namedtuple with properties: * train: `tf.data.Dataset`, train dataset. * validation: `tf.data.Dataset`, validation dataset. * test: `tf.data.Dataset`, test dataset. """ import tensorflow_datasets as tfds from .tfds_adapter import DiabeticRetinopathyDiagnosis # Fetch datasets try: ds_train, ds_validation, ds_test = DiabeticRetinopathyDiagnosis( data_dir=data_dir or DATA_DIR, config=level).as_dataset(split=["train", "validation", "test"], shuffle_files=True, batch_size=batch_size) except AssertionError as ae: raise AssertionError( str(ae) + " Run DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()" " first and then retry.") # Parse task level level = level if isinstance(level, Level) else Level.from_str(level) # Dataset tranformations transforms_train, transforms_eval = cls._preprocessors() # Apply transformations ds_train = ds_train.map(transforms_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.map( transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.map(transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Prefetches datasets to memory ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) if as_numpy: # Convert to NumPy iterators ds_train = tfds.as_numpy(ds_train) ds_validation = tfds.as_numpy(ds_validation) ds_test = tfds.as_numpy(ds_test) return DataSplits(ds_train, ds_validation, ds_test) @classmethod def download_and_prepare(cls, levels=None) -> None: """Downloads dataset from Kaggle, extracts zip files and processes it using `tensorflow_datasets`. Args: levels: (optional) `iterable` of `str`, specifies which levels from {'medium', 'realworld'} to prepare, if None it prepares all the levels. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ # Disable GPU for data download, extraction and preparation import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" cls._download() # cls._extract() #cls._prepare(levels) @staticmethod def _download() -> None: """Downloads data from Kaggle using `tensorflow_datasets`. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ import subprocess as sp import tensorflow_datasets as tfds # Append `/home/$USER/.local/bin` to path os.environ["PATH"] += ":/home/{}/.local/bin/".format(os.environ["USER"]) # Download all files from Kaggle drd = tfds.download.kaggle.KaggleCompetitionDownloader( "diabetic-retinopathy-detection") try: for dfile in drd.competition_files: drd.download_file(dfile, output_dir=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) except sp.CalledProcessError as cpe: raise OSError( str(cpe) + "." + " Make sure you have ~/.kaggle/kaggle.json setup, fetched from the Kaggle website" " https://www.kaggle.com/<username>/account -> 'Create New API Key'." " Also accept the dataset license by going to" " https://www.kaggle.com/c/diabetic-retinopathy-detection/rules" " and look for the button 'I Understand and Accept' (make sure when reloading the" " page that the button does not pop up again).") @staticmethod def _extract() -> None: """Extracts zip files downloaded from Kaggle.""" import glob import tqdm import zipfile import tempfile # Extract train and test original images for split in ["train", "test"]: # Extract "<split>.zip.00*"" files to "<split>" with tempfile.NamedTemporaryFile() as tmp: # Concatenate "<split>.zip.00*" to "<split>.zip" for fname in tqdm.tqdm( sorted( glob.glob( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{split}.zip.00*".format(split=split))))): # Unzip "<split>.zip" to "<split>" with open(fname, "rb") as ztmp: tmp.write(ztmp.read()) with zipfile.ZipFile(tmp) as zfile: for image in tqdm.tqdm(iterable=zfile.namelist(), total=len(zfile.namelist())): zfile.extract(member=image, path=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) # Delete "<split>.zip.00*" files for splitzip in os.listdir(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR): if "{split}.zip.00".format(split=split) in splitzip: os.remove( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, splitzip)) # Extract "sample.zip", "trainLabels.csv.zip" for fname in ["sample", "trainLabels.csv"]: zfname = os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{fname}.zip".format(fname=fname)) with zipfile.ZipFile(zfname) as zfile: zfile.extractall(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) os.remove(zfname) @staticmethod def _prepare(levels=None) -> None: """Generates the TFRecord objects for medium and realworld experiments.""" import multiprocessing from absl import logging from .tfds_adapter import DiabeticRetinopathyDiagnosis # Hangle each level individually for level in levels or ["medium", "realworld"]: dtask = DiabeticRetinopathyDiagnosis(data_dir=DATA_DIR, config=level) logging.debug("=== Preparing TFRecords for {} ===".format(level)) dtask.download_and_prepare() @classmethod def _preprocessors(cls) -> Tuple[transforms.Transform, transforms.Transform]: """Applies transformations to the raw data.""" import tensorflow_datasets as tfds # Transformation hyperparameters mean = np.asarray([0.42606387, 0.29752496, 0.21309826]) stddev = np.asarray([0.27662534, 0.20280295, 0.1687619]) class Parse(transforms.Transform): """Parses datapoints from raw `tf.data.Dataset`.""" def __call__(self, x, y=None): """Returns `as_supervised` tuple.""" return x["image"], x["label"] class CastX(transforms.Transform): """Casts image to `dtype`.""" def __init__(self, dtype): """Constructs a type caster.""" self.dtype = dtype def __call__(self, x, y): """Returns casted image (to `dtype`) and its (unchanged) label as tuple.""" return tf.cast(x, self.dtype), y class To01X(transforms.Transform): """Rescales image to [min, max]=[0, 1].""" def __call__(self, x, y): """Returns rescaled image and its (unchanged) label as tuple.""" return x / 255.0, y # Get augmentation schemes [augmentation_config, no_augmentation_config] = cls._ImageDataGenerator_config() # Transformations for train dataset transforms_train = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**augmentation_config), ]) # Transformations for validation/test dataset transforms_eval = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**no_augmentation_config), ]) return transforms_train, transforms_eval @staticmethod def _ImageDataGenerator_config(): """Returns the configs for the `tensorflow.keras.preprocessing.image.ImageDataGenerator`, used for the random augmentation of the dataset, following the implementation of https://github.com/chleibig/disease-detection/blob/f3401b26aa9b832ff77afe93 e3faa342f7d088e5/scripts/inspect_data_augmentation.py.""" augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=180.0, width_shift_range=0.05, height_shift_range=0.05, shear_range=0., zoom_range=0.10, channel_shift_range=0., fill_mode="constant", cval=0., horizontal_flip=True, vertical_flip=True, data_format="channels_last", ) no_augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0, shear_range=0., zoom_range=0.0, channel_shift_range=0., fill_mode="nearest", cval=0., horizontal_flip=False, vertical_flip=False, data_format="channels_last", ) return augmentation_config, no_augmentation_config
# Copyright 2019 BDL Benchmarks Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Diabetic retinopathy diagnosis BDL Benchmark.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os from typing import Callable from typing import Dict from typing import Optional from typing import Sequence from typing import Text from typing import Tuple from typing import Union import numpy as np import pandas as pd import tensorflow as tf from absl import logging from ..core import transforms from ..core.benchmark import Benchmark from ..core.benchmark import BenchmarkInfo from ..core.benchmark import DataSplits from ..core.constants import DATA_DIR from ..core.levels import Level tfk = tf.keras _DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR = os.path.join( DATA_DIR, "downloads", "manual", "diabetic_retinopathy_diagnosis") class DiabeticRetinopathyDiagnosisBecnhmark(Benchmark): """Diabetic retinopathy diagnosis benchmark class.""" def __init__( self, level: Union[Text, Level], batch_size: int = 64, data_dir: Optional[Text] = None, download_and_prepare: bool = False, ): """Constructs a benchmark object. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. download_and_prepare: (optional) `bool`, if the data is not available it downloads and preprocesses it. """ self.__level = level if isinstance(level, Level) else Level.from_str(level) try: self.__ds = self.load(level=level, batch_size=batch_size, data_dir=data_dir or DATA_DIR) except AssertionError: if not download_and_prepare: raise else: logging.info( "Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()`" " is now running...") self.download_and_prepare() @classmethod def evaluate( cls, estimator: Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]], dataset: tf.data.Dataset, output_dir: Optional[Text] = None, name: Optional[Text] = None, ) -> Dict[Text, float]: """Evaluates an `estimator` on the `mode` benchmark dataset. Args: estimator: `lambda x: mu_x, uncertainty_x`, an uncertainty estimation function, which returns `mean_x` and predictive `uncertainty_x`. dataset: `tf.data.Dataset`, on which dataset to performance evaluation. output_dir: (optional) `str`, directory to save figures. name: (optional) `str`, the name of the method. """ import inspect import tqdm import tensorflow_datasets as tfds from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # Containers used for caching performance evaluation y_true = list() y_pred = list() y_uncertainty = list() # Convert to NumPy iterator if necessary ds = dataset if inspect.isgenerator(dataset) else tfds.as_numpy(dataset) for x, y in tqdm.tqdm(ds): # Sample from probabilistic model mean, uncertainty = estimator(x) # Cache predictions y_true.append(y) y_pred.append(mean) y_uncertainty.append(uncertainty) # Use vectorized NumPy containers y_true = np.concatenate(y_true).flatten() y_pred = np.concatenate(y_pred).flatten() y_uncertainty = np.concatenate(y_uncertainty).flatten() fractions = np.asarray([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) # Metrics for evaluation metrics = zip(["accuracy", "auc"], cls.metrics()) return { metric: cls._evaluate_metric( y_true, y_pred, y_uncertainty, fractions, lambda y_true, y_pred: metric_fn(y_true, y_pred).numpy(), name, ) for (metric, metric_fn) in metrics } @staticmethod def _evaluate_metric( y_true: np.ndarray, y_pred: np.ndarray, y_uncertainty: np.ndarray, fractions: Sequence[float], metric_fn: Callable[[np.ndarray, np.ndarray], float], name=None, ) -> pd.DataFrame: """Evaluate model predictive distribution on `metric_fn` at data retain `fractions`. Args: y_true: `numpy.ndarray`, the ground truth labels, with shape [N]. y_pred: `numpy.ndarray`, the model predictions, with shape [N]. y_uncertainty: `numpy.ndarray`, the model uncertainties, with shape [N]. fractions: `iterable`, the percentages of data to retain for calculating `metric_fn`. metric_fn: `lambda(y_true, y_pred) -> float`, a metric function that provides a score given ground truths and predictions. name: (optional) `str`, the name of the method. Returns: A `pandas.DataFrame` with columns ["retained_data", "mean", "std"], that summarizes the scores at different data retained fractions. """ N = y_true.shape[0] # Sorts indexes by ascending uncertainty I_uncertainties = np.argsort(y_uncertainty) # Score containers mean = np.empty_like(fractions) # TODO(filangel): do bootstrap sampling and estimate standard error std = np.zeros_like(fractions) for i, frac in enumerate(fractions): # Keep only the %-frac of lowest uncertainties I = np.zeros(N, dtype=bool) I[I_uncertainties[:int(N * frac)]] = True mean[i] = metric_fn(y_true[I], y_pred[I]) # Store df = pd.DataFrame(dict(retained_data=fractions, mean=mean, std=std)) df.name = name return df @property def datasets(self) -> tf.data.Dataset: """Pointer to the processed datasets.""" return self.__ds @property def info(self) -> BenchmarkInfo: """Text description of the benchmark.""" return BenchmarkInfo(description="", urls="", setup="", citation="") @property def level(self) -> Level: """The downstream task level.""" return self.__level @staticmethod def loss() -> tfk.losses.Loss: """Loss used for training binary classifiers.""" return tfk.losses.BinaryCrossentropy() @staticmethod def metrics() -> tfk.metrics.Metric: """Evaluation metrics used for monitoring training.""" return [tfk.metrics.BinaryAccuracy(), tfk.metrics.AUC()] @staticmethod def class_weight() -> Sequence[float]: """Class weights used for rebalancing the dataset, by skewing the `loss` accordingly.""" return [1.0, 4.0] @classmethod def load( cls, level: Union[Text, Level] = "realworld", batch_size: int = 64, data_dir: Optional[Text] = None, as_numpy: bool = False, ) -> DataSplits: """Loads the datasets for the benchmark. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. as_numpy: (optional) `bool`, if True returns python generators with `numpy.ndarray` outputs. Returns: A namedtuple with properties: * train: `tf.data.Dataset`, train dataset. * validation: `tf.data.Dataset`, validation dataset. * test: `tf.data.Dataset`, test dataset. """ import tensorflow_datasets as tfds from .tfds_adapter import DiabeticRetinopathyDiagnosis # Fetch datasets try: ds_train, ds_validation, ds_test = DiabeticRetinopathyDiagnosis( data_dir=data_dir or DATA_DIR, config=level).as_dataset(split=["train", "validation", "test"], shuffle_files=True, batch_size=batch_size) except AssertionError as ae: raise AssertionError( str(ae) + " Run DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()" " first and then retry.") # Parse task level level = level if isinstance(level, Level) else Level.from_str(level) # Dataset tranformations transforms_train, transforms_eval = cls._preprocessors() # Apply transformations ds_train = ds_train.map(transforms_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.map( transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.map(transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Prefetches datasets to memory ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) if as_numpy: # Convert to NumPy iterators ds_train = tfds.as_numpy(ds_train) ds_validation = tfds.as_numpy(ds_validation) ds_test = tfds.as_numpy(ds_test) return DataSplits(ds_train, ds_validation, ds_test) @classmethod def download_and_prepare(cls, levels=None) -> None: """Downloads dataset from Kaggle, extracts zip files and processes it using `tensorflow_datasets`. Args: levels: (optional) `iterable` of `str`, specifies which levels from {'medium', 'realworld'} to prepare, if None it prepares all the levels. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ # Disable GPU for data download, extraction and preparation import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" cls._download() # cls._extract() #cls._prepare(levels) @staticmethod def _download() -> None: """Downloads data from Kaggle using `tensorflow_datasets`. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ import subprocess as sp import tensorflow_datasets as tfds # Append `/home/$USER/.local/bin` to path os.environ["PATH"] += ":/home/{}/.local/bin/".format(os.environ["USER"]) # Download all files from Kaggle drd = tfds.download.kaggle.KaggleCompetitionDownloader( "diabetic-retinopathy-detection") try: for dfile in drd.competition_files: drd.download_file(dfile, output_dir=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) except sp.CalledProcessError as cpe: raise OSError( str(cpe) + "." + " Make sure you have ~/.kaggle/kaggle.json setup, fetched from the Kaggle website" " https://www.kaggle.com/<username>/account -> 'Create New API Key'." " Also accept the dataset license by going to" " https://www.kaggle.com/c/diabetic-retinopathy-detection/rules" " and look for the button 'I Understand and Accept' (make sure when reloading the" " page that the button does not pop up again).") @staticmethod def _extract() -> None: """Extracts zip files downloaded from Kaggle.""" import glob import tqdm import zipfile import tempfile # Extract train and test original images for split in ["train", "test"]: # Extract "<split>.zip.00*"" files to "<split>" with tempfile.NamedTemporaryFile() as tmp: # Concatenate "<split>.zip.00*" to "<split>.zip" for fname in tqdm.tqdm( sorted( glob.glob( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{split}.zip.00*".format(split=split))))): # Unzip "<split>.zip" to "<split>" with open(fname, "rb") as ztmp: tmp.write(ztmp.read()) with zipfile.ZipFile(tmp) as zfile: for image in tqdm.tqdm(iterable=zfile.namelist(), total=len(zfile.namelist())): zfile.extract(member=image, path=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) # Delete "<split>.zip.00*" files for splitzip in os.listdir(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR): if "{split}.zip.00".format(split=split) in splitzip: os.remove( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, splitzip)) # Extract "sample.zip", "trainLabels.csv.zip" for fname in ["sample", "trainLabels.csv"]: zfname = os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{fname}.zip".format(fname=fname)) with zipfile.ZipFile(zfname) as zfile: zfile.extractall(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) os.remove(zfname) @staticmethod def _prepare(levels=None) -> None: """Generates the TFRecord objects for medium and realworld experiments.""" import multiprocessing from absl import logging from .tfds_adapter import DiabeticRetinopathyDiagnosis # Hangle each level individually for level in levels or ["medium", "realworld"]: dtask = DiabeticRetinopathyDiagnosis(data_dir=DATA_DIR, config=level) logging.debug("=== Preparing TFRecords for {} ===".format(level)) dtask.download_and_prepare() @classmethod def _preprocessors(cls) -> Tuple[transforms.Transform, transforms.Transform]: """Applies transformations to the raw data.""" import tensorflow_datasets as tfds # Transformation hyperparameters mean = np.asarray([0.42606387, 0.29752496, 0.21309826]) stddev = np.asarray([0.27662534, 0.20280295, 0.1687619]) class Parse(transforms.Transform): """Parses datapoints from raw `tf.data.Dataset`.""" def __call__(self, x, y=None): """Returns `as_supervised` tuple.""" return x["image"], x["label"] class CastX(transforms.Transform): """Casts image to `dtype`.""" def __init__(self, dtype): """Constructs a type caster.""" self.dtype = dtype def __call__(self, x, y): """Returns casted image (to `dtype`) and its (unchanged) label as tuple.""" return tf.cast(x, self.dtype), y class To01X(transforms.Transform): """Rescales image to [min, max]=[0, 1].""" def __call__(self, x, y): """Returns rescaled image and its (unchanged) label as tuple.""" return x / 255.0, y # Get augmentation schemes [augmentation_config, no_augmentation_config] = cls._ImageDataGenerator_config() # Transformations for train dataset transforms_train = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**augmentation_config), ]) # Transformations for validation/test dataset transforms_eval = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**no_augmentation_config), ]) return transforms_train, transforms_eval @staticmethod def _ImageDataGenerator_config(): """Returns the configs for the `tensorflow.keras.preprocessing.image.ImageDataGenerator`, used for the random augmentation of the dataset, following the implementation of https://github.com/chleibig/disease-detection/blob/f3401b26aa9b832ff77afe93 e3faa342f7d088e5/scripts/inspect_data_augmentation.py.""" augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=180.0, width_shift_range=0.05, height_shift_range=0.05, shear_range=0., zoom_range=0.10, channel_shift_range=0., fill_mode="constant", cval=0., horizontal_flip=True, vertical_flip=True, data_format="channels_last", ) no_augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0, shear_range=0., zoom_range=0.0, channel_shift_range=0., fill_mode="nearest", cval=0., horizontal_flip=False, vertical_flip=False, data_format="channels_last", ) return augmentation_config, no_augmentation_config
en
0.651296
# Copyright 2019 BDL Benchmarks Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== Diabetic retinopathy diagnosis BDL Benchmark. Diabetic retinopathy diagnosis benchmark class. Constructs a benchmark object. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. download_and_prepare: (optional) `bool`, if the data is not available it downloads and preprocesses it. Evaluates an `estimator` on the `mode` benchmark dataset. Args: estimator: `lambda x: mu_x, uncertainty_x`, an uncertainty estimation function, which returns `mean_x` and predictive `uncertainty_x`. dataset: `tf.data.Dataset`, on which dataset to performance evaluation. output_dir: (optional) `str`, directory to save figures. name: (optional) `str`, the name of the method. # Containers used for caching performance evaluation # Convert to NumPy iterator if necessary # Sample from probabilistic model # Cache predictions # Use vectorized NumPy containers # Metrics for evaluation Evaluate model predictive distribution on `metric_fn` at data retain `fractions`. Args: y_true: `numpy.ndarray`, the ground truth labels, with shape [N]. y_pred: `numpy.ndarray`, the model predictions, with shape [N]. y_uncertainty: `numpy.ndarray`, the model uncertainties, with shape [N]. fractions: `iterable`, the percentages of data to retain for calculating `metric_fn`. metric_fn: `lambda(y_true, y_pred) -> float`, a metric function that provides a score given ground truths and predictions. name: (optional) `str`, the name of the method. Returns: A `pandas.DataFrame` with columns ["retained_data", "mean", "std"], that summarizes the scores at different data retained fractions. # Sorts indexes by ascending uncertainty # Score containers # TODO(filangel): do bootstrap sampling and estimate standard error # Keep only the %-frac of lowest uncertainties # Store Pointer to the processed datasets. Text description of the benchmark. The downstream task level. Loss used for training binary classifiers. Evaluation metrics used for monitoring training. Class weights used for rebalancing the dataset, by skewing the `loss` accordingly. Loads the datasets for the benchmark. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. as_numpy: (optional) `bool`, if True returns python generators with `numpy.ndarray` outputs. Returns: A namedtuple with properties: * train: `tf.data.Dataset`, train dataset. * validation: `tf.data.Dataset`, validation dataset. * test: `tf.data.Dataset`, test dataset. # Fetch datasets # Parse task level # Dataset tranformations # Apply transformations # Prefetches datasets to memory # Convert to NumPy iterators Downloads dataset from Kaggle, extracts zip files and processes it using `tensorflow_datasets`. Args: levels: (optional) `iterable` of `str`, specifies which levels from {'medium', 'realworld'} to prepare, if None it prepares all the levels. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. # Disable GPU for data download, extraction and preparation # cls._extract() #cls._prepare(levels) Downloads data from Kaggle using `tensorflow_datasets`. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. # Append `/home/$USER/.local/bin` to path # Download all files from Kaggle Extracts zip files downloaded from Kaggle. # Extract train and test original images # Extract "<split>.zip.00*"" files to "<split>" # Concatenate "<split>.zip.00*" to "<split>.zip" # Unzip "<split>.zip" to "<split>" # Delete "<split>.zip.00*" files # Extract "sample.zip", "trainLabels.csv.zip" Generates the TFRecord objects for medium and realworld experiments. # Hangle each level individually Applies transformations to the raw data. # Transformation hyperparameters Parses datapoints from raw `tf.data.Dataset`. Returns `as_supervised` tuple. Casts image to `dtype`. Constructs a type caster. Returns casted image (to `dtype`) and its (unchanged) label as tuple. Rescales image to [min, max]=[0, 1]. Returns rescaled image and its (unchanged) label as tuple. # Get augmentation schemes # Transformations for train dataset # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**augmentation_config), # Transformations for validation/test dataset # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**no_augmentation_config), Returns the configs for the `tensorflow.keras.preprocessing.image.ImageDataGenerator`, used for the random augmentation of the dataset, following the implementation of https://github.com/chleibig/disease-detection/blob/f3401b26aa9b832ff77afe93 e3faa342f7d088e5/scripts/inspect_data_augmentation.py.
1.848437
2
db/redis_db.py
Lifeistrange/WeiboSpider
1
8365
<reponame>Lifeistrange/WeiboSpider # coding:utf-8 import datetime import json import re import redis from config.conf import get_redis_args redis_args = get_redis_args() class Cookies(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('cookies')) rd_con_broker = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('broker')) @classmethod def store_cookies(cls, name, cookies): pickled_cookies = json.dumps( {'cookies': cookies, 'loginTime': datetime.datetime.now().timestamp()}) cls.rd_con.hset('account', name, pickled_cookies) cls.rd_con.lpush('account_queue', name) @classmethod def fetch_cookies(cls): for i in range(cls.rd_con.llen('account_queue')): name = cls.rd_con.rpop('account_queue').decode('utf-8') if name: j_account = cls.rd_con.hget('account', name).decode('utf-8') if j_account: cls.rd_con.lpush('account_queue', name) # 当账号不存在时,这个name也会清除,并取下一个name account = json.loads(j_account) login_time = datetime.datetime.fromtimestamp(account['loginTime']) if datetime.datetime.now() - login_time > datetime.timedelta(hours=20): cls.rd_con.hdel('account', name) continue # 丢弃这个过期账号,account_queue会在下次访问的时候被清除,这里不清除是因为分布式的关系 return name, account['cookies'] else: return None @classmethod def delete_cookies(cls, name): cls.rd_con.hdel('account', name) return True @classmethod def check_login_task(cls): if cls.rd_con_broker.llen('login_queue') > 0: cls.rd_con_broker.delete('login_queue') class Urls(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('urls')) @classmethod def store_crawl_url(cls, url, result): cls.rd_con.set(url, result) class IdNames(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('id_name')) @classmethod def store_id_name(cls, user_name, user_id): cls.rd_con.set(user_name, user_id) @classmethod def fetch_uid_by_name(cls, user_name): user_id = cls.rd_con.get(user_name) if user_id: return user_id.decode('utf-8') return ''
# coding:utf-8 import datetime import json import re import redis from config.conf import get_redis_args redis_args = get_redis_args() class Cookies(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('cookies')) rd_con_broker = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('broker')) @classmethod def store_cookies(cls, name, cookies): pickled_cookies = json.dumps( {'cookies': cookies, 'loginTime': datetime.datetime.now().timestamp()}) cls.rd_con.hset('account', name, pickled_cookies) cls.rd_con.lpush('account_queue', name) @classmethod def fetch_cookies(cls): for i in range(cls.rd_con.llen('account_queue')): name = cls.rd_con.rpop('account_queue').decode('utf-8') if name: j_account = cls.rd_con.hget('account', name).decode('utf-8') if j_account: cls.rd_con.lpush('account_queue', name) # 当账号不存在时,这个name也会清除,并取下一个name account = json.loads(j_account) login_time = datetime.datetime.fromtimestamp(account['loginTime']) if datetime.datetime.now() - login_time > datetime.timedelta(hours=20): cls.rd_con.hdel('account', name) continue # 丢弃这个过期账号,account_queue会在下次访问的时候被清除,这里不清除是因为分布式的关系 return name, account['cookies'] else: return None @classmethod def delete_cookies(cls, name): cls.rd_con.hdel('account', name) return True @classmethod def check_login_task(cls): if cls.rd_con_broker.llen('login_queue') > 0: cls.rd_con_broker.delete('login_queue') class Urls(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('urls')) @classmethod def store_crawl_url(cls, url, result): cls.rd_con.set(url, result) class IdNames(object): rd_con = redis.StrictRedis(host=redis_args.get('host'), port=redis_args.get('port'), password=redis_args.get('password'), db=redis_args.get('id_name')) @classmethod def store_id_name(cls, user_name, user_id): cls.rd_con.set(user_name, user_id) @classmethod def fetch_uid_by_name(cls, user_name): user_id = cls.rd_con.get(user_name) if user_id: return user_id.decode('utf-8') return ''
zh
0.9377
# coding:utf-8 # 当账号不存在时,这个name也会清除,并取下一个name # 丢弃这个过期账号,account_queue会在下次访问的时候被清除,这里不清除是因为分布式的关系
2.378766
2
vivisect/storage/mpfile.py
vEpiphyte/vivisect
0
8366
import base64 import logging import msgpack logger = logging.getLogger(__name__) loadargs = {'use_list': False, 'raw': False} if msgpack.version < (1, 0, 0): loadargs['encoding'] = 'utf-8' else: loadargs['strict_map_key'] = False VSIG = b'MSGVIV'.ljust(8, b'\x00') def vivEventsAppendFile(filename, events): with open(filename, 'ab') as f: for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspaceChanges(vw, filename): events = vw.exportWorkspaceChanges() vivEventsAppendFile(filename, events) def vivEventsToFile(filename, events): with open(filename, 'wb') as f: msgpack.pack(VSIG, f, use_bin_type=False) for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspace(vw, filename): events = vw.exportWorkspace() vivEventsToFile(filename, events) def vivEventsFromFile(filename): events = [] with open(filename, 'rb') as f: unpacker = msgpack.Unpacker(f, **loadargs) siggy = next(unpacker) if siggy.encode('utf-8') != VSIG: logger.warning('Invalid file signature of %s', str(siggy)) return for event in unpacker: if event[0] == 20: mape = base64.b64decode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) events.append(event) return events def loadWorkspace(vw, filename): events = vivEventsFromFile(filename) vw.importWorkspace(events)
import base64 import logging import msgpack logger = logging.getLogger(__name__) loadargs = {'use_list': False, 'raw': False} if msgpack.version < (1, 0, 0): loadargs['encoding'] = 'utf-8' else: loadargs['strict_map_key'] = False VSIG = b'MSGVIV'.ljust(8, b'\x00') def vivEventsAppendFile(filename, events): with open(filename, 'ab') as f: for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspaceChanges(vw, filename): events = vw.exportWorkspaceChanges() vivEventsAppendFile(filename, events) def vivEventsToFile(filename, events): with open(filename, 'wb') as f: msgpack.pack(VSIG, f, use_bin_type=False) for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspace(vw, filename): events = vw.exportWorkspace() vivEventsToFile(filename, events) def vivEventsFromFile(filename): events = [] with open(filename, 'rb') as f: unpacker = msgpack.Unpacker(f, **loadargs) siggy = next(unpacker) if siggy.encode('utf-8') != VSIG: logger.warning('Invalid file signature of %s', str(siggy)) return for event in unpacker: if event[0] == 20: mape = base64.b64decode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) events.append(event) return events def loadWorkspace(vw, filename): events = vivEventsFromFile(filename) vw.importWorkspace(events)
none
1
2.140899
2
pytest_pgsql/plugin.py
mathiasose/pytest-pgsql
0
8367
<filename>pytest_pgsql/plugin.py """This forms the core of the pytest plugin.""" import pytest import testing.postgresql from pytest_pgsql import database from pytest_pgsql import ext def pytest_addoption(parser): """Add configuration options for pytest_pgsql.""" parser.addoption( '--pg-extensions', action='store', default='', help="A comma-separated list of PostgreSQL extensions to install at " "the beginning of the session for use by all tests. Example: " "--pg-extensions=uuid-ossp,pg_tgrm,pgcrypto") parser.addoption( '--pg-work-mem', type=int, default=32, help='Set the value of the `work_mem` setting, in megabytes. ' '`pytest_pgsql` defaults to 32. Adjusting this up or down can ' 'help performance; see the Postgres documentation for more details.') parser.addoption( '--pg-conf-opt', action='append', help='Add a key=value line that will be appended to postgresql.conf') @pytest.fixture(scope='session') def database_uri(request): """A fixture giving the connection URI of the session-wide test database.""" # Note: due to the nature of the variable configs, the command line options # must be tested manually. work_mem = request.config.getoption('--pg-work-mem') if work_mem < 0: # pragma: no cover pytest.exit('ERROR: --pg-work-mem value must be >= 0. Got: %d' % work_mem) return elif work_mem == 0: # pragma: no cover # Disable memory tweak and use the server default. work_mem_setting = '' else: # User wants to change the working memory setting. work_mem_setting = '-c work_mem=%dMB ' % work_mem conf_opts = request.config.getoption('--pg-conf-opt') if conf_opts: conf_opts_string = ' -c ' + ' -c '.join(conf_opts) else: conf_opts_string = '' # pylint: disable=bad-continuation,deprecated-method with testing.postgresql.Postgresql( postgres_args='-c TimeZone=UTC ' '-c fsync=off ' '-c synchronous_commit=off ' '-c full_page_writes=off ' + work_mem_setting + '-c checkpoint_timeout=30min ' '-c bgwriter_delay=10000ms' + conf_opts_string) as pgdb: yield pgdb.url() #: A SQLAlchemy engine shared by the transacted and non-transacted database fixtures. #: #: .. seealso:: `pytest_pgsql.ext.create_engine_fixture` # pylint: disable=invalid-name pg_engine = ext.create_engine_fixture('pg_engine', scope='session') # pylint: enable=invalid-name @pytest.fixture(scope='session') def database_snapshot(pg_engine): """Create one database snapshot for the session. The database will be restored to this state after each test. .. note :: This is an implementation detail and should not be used directly except by derived fixtures. """ return database.create_database_snapshot(pg_engine) # pylint: disable=invalid-name #: Create a test database instance and cleans up after each test finishes. #: #: You should prefer the `transacted_postgresql_db` fixture unless your test #: cannot be run in a single transaction. The `transacted_postgresql_db` fixture #: leads to faster tests since it doesn't tear down the entire database between #: each test. postgresql_db = \ database.PostgreSQLTestDB.create_fixture('postgresql_db') #: Create a test database instance that rolls back the current transaction after #: each test finishes, verifying its integrity before returning. #: #: Read the warning in the main documentation page before using this fixture. transacted_postgresql_db = \ database.TransactedPostgreSQLTestDB.create_fixture('transacted_postgresql_db') # pylint: enable=invalid-name
<filename>pytest_pgsql/plugin.py """This forms the core of the pytest plugin.""" import pytest import testing.postgresql from pytest_pgsql import database from pytest_pgsql import ext def pytest_addoption(parser): """Add configuration options for pytest_pgsql.""" parser.addoption( '--pg-extensions', action='store', default='', help="A comma-separated list of PostgreSQL extensions to install at " "the beginning of the session for use by all tests. Example: " "--pg-extensions=uuid-ossp,pg_tgrm,pgcrypto") parser.addoption( '--pg-work-mem', type=int, default=32, help='Set the value of the `work_mem` setting, in megabytes. ' '`pytest_pgsql` defaults to 32. Adjusting this up or down can ' 'help performance; see the Postgres documentation for more details.') parser.addoption( '--pg-conf-opt', action='append', help='Add a key=value line that will be appended to postgresql.conf') @pytest.fixture(scope='session') def database_uri(request): """A fixture giving the connection URI of the session-wide test database.""" # Note: due to the nature of the variable configs, the command line options # must be tested manually. work_mem = request.config.getoption('--pg-work-mem') if work_mem < 0: # pragma: no cover pytest.exit('ERROR: --pg-work-mem value must be >= 0. Got: %d' % work_mem) return elif work_mem == 0: # pragma: no cover # Disable memory tweak and use the server default. work_mem_setting = '' else: # User wants to change the working memory setting. work_mem_setting = '-c work_mem=%dMB ' % work_mem conf_opts = request.config.getoption('--pg-conf-opt') if conf_opts: conf_opts_string = ' -c ' + ' -c '.join(conf_opts) else: conf_opts_string = '' # pylint: disable=bad-continuation,deprecated-method with testing.postgresql.Postgresql( postgres_args='-c TimeZone=UTC ' '-c fsync=off ' '-c synchronous_commit=off ' '-c full_page_writes=off ' + work_mem_setting + '-c checkpoint_timeout=30min ' '-c bgwriter_delay=10000ms' + conf_opts_string) as pgdb: yield pgdb.url() #: A SQLAlchemy engine shared by the transacted and non-transacted database fixtures. #: #: .. seealso:: `pytest_pgsql.ext.create_engine_fixture` # pylint: disable=invalid-name pg_engine = ext.create_engine_fixture('pg_engine', scope='session') # pylint: enable=invalid-name @pytest.fixture(scope='session') def database_snapshot(pg_engine): """Create one database snapshot for the session. The database will be restored to this state after each test. .. note :: This is an implementation detail and should not be used directly except by derived fixtures. """ return database.create_database_snapshot(pg_engine) # pylint: disable=invalid-name #: Create a test database instance and cleans up after each test finishes. #: #: You should prefer the `transacted_postgresql_db` fixture unless your test #: cannot be run in a single transaction. The `transacted_postgresql_db` fixture #: leads to faster tests since it doesn't tear down the entire database between #: each test. postgresql_db = \ database.PostgreSQLTestDB.create_fixture('postgresql_db') #: Create a test database instance that rolls back the current transaction after #: each test finishes, verifying its integrity before returning. #: #: Read the warning in the main documentation page before using this fixture. transacted_postgresql_db = \ database.TransactedPostgreSQLTestDB.create_fixture('transacted_postgresql_db') # pylint: enable=invalid-name
en
0.777745
This forms the core of the pytest plugin. Add configuration options for pytest_pgsql. A fixture giving the connection URI of the session-wide test database. # Note: due to the nature of the variable configs, the command line options # must be tested manually. # pragma: no cover # pragma: no cover # Disable memory tweak and use the server default. # User wants to change the working memory setting. # pylint: disable=bad-continuation,deprecated-method #: A SQLAlchemy engine shared by the transacted and non-transacted database fixtures. #: #: .. seealso:: `pytest_pgsql.ext.create_engine_fixture` # pylint: disable=invalid-name # pylint: enable=invalid-name Create one database snapshot for the session. The database will be restored to this state after each test. .. note :: This is an implementation detail and should not be used directly except by derived fixtures. # pylint: disable=invalid-name #: Create a test database instance and cleans up after each test finishes. #: #: You should prefer the `transacted_postgresql_db` fixture unless your test #: cannot be run in a single transaction. The `transacted_postgresql_db` fixture #: leads to faster tests since it doesn't tear down the entire database between #: each test. #: Create a test database instance that rolls back the current transaction after #: each test finishes, verifying its integrity before returning. #: #: Read the warning in the main documentation page before using this fixture. # pylint: enable=invalid-name
2.270895
2
power_data_to_sat_passes/date_utils.py
abrahamneben/orbcomm_beam_mapping
1
8368
# written by abraham on aug 24 def dyear2date(dyear): year = int(dyear) month_lengths = [31,28,31,30,31,30,31,31,30,31,30,31] days_before_months = [0,31,59,90,120,151,181,212,243,273,304,334] days_into_year_f = (dyear-year)*365 days_into_year_i = int(days_into_year_f) for i in range(12): if days_before_months[i] < days_into_year_f < (days_before_months[i]+month_lengths[i]): month = i+1 break date = days_into_year_i - days_before_months[month-1] hours_f = (days_into_year_f-days_into_year_i)*24 hours_i = int(hours_f) minutes_f = (hours_f-hours_i)*60 minutes_i = int(minutes_f) seconds_i = int((minutes_f-minutes_i)*60) return "%02d/%02d/%d %02d:%02d:%02d" % (month,date,year,hours_i,minutes_i,seconds_i)
# written by abraham on aug 24 def dyear2date(dyear): year = int(dyear) month_lengths = [31,28,31,30,31,30,31,31,30,31,30,31] days_before_months = [0,31,59,90,120,151,181,212,243,273,304,334] days_into_year_f = (dyear-year)*365 days_into_year_i = int(days_into_year_f) for i in range(12): if days_before_months[i] < days_into_year_f < (days_before_months[i]+month_lengths[i]): month = i+1 break date = days_into_year_i - days_before_months[month-1] hours_f = (days_into_year_f-days_into_year_i)*24 hours_i = int(hours_f) minutes_f = (hours_f-hours_i)*60 minutes_i = int(minutes_f) seconds_i = int((minutes_f-minutes_i)*60) return "%02d/%02d/%d %02d:%02d:%02d" % (month,date,year,hours_i,minutes_i,seconds_i)
en
0.985122
# written by abraham on aug 24
3.633322
4
app/base/count_lines.py
sourcery-ai-bot/personal-expenses-accounting
5
8369
import glob from os import walk exclude_folders = [ 'node_modules', 'ios', 'android', '__pycache__' ] exclude_files = [ 'json', 'txt', 'traineddata', 'lstmf', 'yml', 'md' 'log', 'env', 'gitignore', 'dockerignore' ] # get all files in directory dirr = '/home/viktor/Documents/personal-expenses-accounting/app/services/web_service/' folders = glob.glob(dirr + '/**/', recursive=True) # only app related directories directories = [] for folder in folders: current_folder = folder.split('/')[-2] if current_folder not in exclude_folders: files = glob.glob(folder + '*') print(files) directories.append(folder) # num_lines = sum(1 for line in open('myfile.txt'))
import glob from os import walk exclude_folders = [ 'node_modules', 'ios', 'android', '__pycache__' ] exclude_files = [ 'json', 'txt', 'traineddata', 'lstmf', 'yml', 'md' 'log', 'env', 'gitignore', 'dockerignore' ] # get all files in directory dirr = '/home/viktor/Documents/personal-expenses-accounting/app/services/web_service/' folders = glob.glob(dirr + '/**/', recursive=True) # only app related directories directories = [] for folder in folders: current_folder = folder.split('/')[-2] if current_folder not in exclude_folders: files = glob.glob(folder + '*') print(files) directories.append(folder) # num_lines = sum(1 for line in open('myfile.txt'))
en
0.809791
# get all files in directory # only app related directories # num_lines = sum(1 for line in open('myfile.txt'))
3.018135
3
data/contacts.py
rgurevych/python_for_testers
0
8370
from models.contact import Contact testdata = [Contact(first_name="Firstname", last_name="Lastname", mobile_phone="+12345678", work_phone="12345", home_phone="67890", fax="55443322", email_1="<EMAIL>", email_2="<EMAIL>", email_3="<EMAIL>", address="Street, 15 \n 12345 New-York")]
from models.contact import Contact testdata = [Contact(first_name="Firstname", last_name="Lastname", mobile_phone="+12345678", work_phone="12345", home_phone="67890", fax="55443322", email_1="<EMAIL>", email_2="<EMAIL>", email_3="<EMAIL>", address="Street, 15 \n 12345 New-York")]
none
1
2.021627
2
charmhelpers/contrib/charmsupport/nrpe.py
nobuto-m/charm-helpers
0
8371
<filename>charmhelpers/contrib/charmsupport/nrpe.py<gh_stars>0 # Copyright 2014-2015 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compatibility with the nrpe-external-master charm""" # Copyright 2012 Canonical Ltd. # # Authors: # <NAME> <<EMAIL>> import subprocess import pwd import grp import os import glob import shutil import re import shlex import yaml from charmhelpers.core.hookenv import ( config, hook_name, local_unit, log, relation_get, relation_ids, relation_set, relations_of_type, ) from charmhelpers.core.host import service from charmhelpers.core import host # This module adds compatibility with the nrpe-external-master and plain nrpe # subordinate charms. To use it in your charm: # # 1. Update metadata.yaml # # provides: # (...) # nrpe-external-master: # interface: nrpe-external-master # scope: container # # and/or # # provides: # (...) # local-monitors: # interface: local-monitors # scope: container # # 2. Add the following to config.yaml # # nagios_context: # default: "juju" # type: string # description: | # Used by the nrpe subordinate charms. # A string that will be prepended to instance name to set the host name # in nagios. So for instance the hostname would be something like: # juju-myservice-0 # If you're running multiple environments with the same services in them # this allows you to differentiate between them. # nagios_servicegroups: # default: "" # type: string # description: | # A comma-separated list of nagios servicegroups. # If left empty, the nagios_context will be used as the servicegroup # # 3. Add custom checks (Nagios plugins) to files/nrpe-external-master # # 4. Update your hooks.py with something like this: # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE() # nrpe_compat.add_check( # shortname = "myservice", # description = "Check MyService", # check_cmd = "check_http -w 2 -c 10 http://localhost" # ) # nrpe_compat.add_check( # "myservice_other", # "Check for widget failures", # check_cmd = "/srv/myapp/scripts/widget_check" # ) # nrpe_compat.write() # # def config_changed(): # (...) # update_nrpe_config() # # def nrpe_external_master_relation_changed(): # update_nrpe_config() # # def local_monitors_relation_changed(): # update_nrpe_config() # # 4.a If your charm is a subordinate charm set primary=False # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE(primary=False) # # 5. ln -s hooks.py nrpe-external-master-relation-changed # ln -s hooks.py local-monitors-relation-changed class CheckException(Exception): pass class Check(object): shortname_re = '[A-Za-z0-9-_.@]+$' service_template = (""" #--------------------------------------------------- # This file is Juju managed #--------------------------------------------------- define service {{ use active-service host_name {nagios_hostname} service_description {nagios_hostname}[{shortname}] """ """{description} check_command check_nrpe!{command} servicegroups {nagios_servicegroup} }} """) def __init__(self, shortname, description, check_cmd): super(Check, self).__init__() # XXX: could be better to calculate this from the service name if not re.match(self.shortname_re, shortname): raise CheckException("shortname must match {}".format( Check.shortname_re)) self.shortname = shortname self.command = "check_{}".format(shortname) # Note: a set of invalid characters is defined by the # Nagios server config # The default is: illegal_object_name_chars=`~!$%^&*"|'<>?,()= self.description = description self.check_cmd = self._locate_cmd(check_cmd) def _get_check_filename(self): return os.path.join(NRPE.nrpe_confdir, '{}.cfg'.format(self.command)) def _get_service_filename(self, hostname): return os.path.join(NRPE.nagios_exportdir, 'service__{}_{}.cfg'.format(hostname, self.command)) def _locate_cmd(self, check_cmd): search_path = ( '/usr/lib/nagios/plugins', '/usr/local/lib/nagios/plugins', ) parts = shlex.split(check_cmd) for path in search_path: if os.path.exists(os.path.join(path, parts[0])): command = os.path.join(path, parts[0]) if len(parts) > 1: command += " " + " ".join(parts[1:]) return command log('Check command not found: {}'.format(parts[0])) return '' def _remove_service_files(self): if not os.path.exists(NRPE.nagios_exportdir): return for f in os.listdir(NRPE.nagios_exportdir): if f.endswith('_{}.cfg'.format(self.command)): os.remove(os.path.join(NRPE.nagios_exportdir, f)) def remove(self, hostname): nrpe_check_file = self._get_check_filename() if os.path.exists(nrpe_check_file): os.remove(nrpe_check_file) self._remove_service_files() def write(self, nagios_context, hostname, nagios_servicegroups): nrpe_check_file = self._get_check_filename() with open(nrpe_check_file, 'w') as nrpe_check_config: nrpe_check_config.write("# check {}\n".format(self.shortname)) if nagios_servicegroups: nrpe_check_config.write( "# The following header was added automatically by juju\n") nrpe_check_config.write( "# Modifying it will affect nagios monitoring and alerting\n") nrpe_check_config.write( "# servicegroups: {}\n".format(nagios_servicegroups)) nrpe_check_config.write("command[{}]={}\n".format( self.command, self.check_cmd)) if not os.path.exists(NRPE.nagios_exportdir): log('Not writing service config as {} is not accessible'.format( NRPE.nagios_exportdir)) else: self.write_service_config(nagios_context, hostname, nagios_servicegroups) def write_service_config(self, nagios_context, hostname, nagios_servicegroups): self._remove_service_files() templ_vars = { 'nagios_hostname': hostname, 'nagios_servicegroup': nagios_servicegroups, 'description': self.description, 'shortname': self.shortname, 'command': self.command, } nrpe_service_text = Check.service_template.format(**templ_vars) nrpe_service_file = self._get_service_filename(hostname) with open(nrpe_service_file, 'w') as nrpe_service_config: nrpe_service_config.write(str(nrpe_service_text)) def run(self): subprocess.call(self.check_cmd) class NRPE(object): nagios_logdir = '/var/log/nagios' nagios_exportdir = '/var/lib/nagios/export' nrpe_confdir = '/etc/nagios/nrpe.d' homedir = '/var/lib/nagios' # home dir provided by nagios-nrpe-server def __init__(self, hostname=None, primary=True): super(NRPE, self).__init__() self.config = config() self.primary = primary self.nagios_context = self.config['nagios_context'] if 'nagios_servicegroups' in self.config and self.config['nagios_servicegroups']: self.nagios_servicegroups = self.config['nagios_servicegroups'] else: self.nagios_servicegroups = self.nagios_context self.unit_name = local_unit().replace('/', '-') if hostname: self.hostname = hostname else: nagios_hostname = get_nagios_hostname() if nagios_hostname: self.hostname = nagios_hostname else: self.hostname = "{}-{}".format(self.nagios_context, self.unit_name) self.checks = [] # Iff in an nrpe-external-master relation hook, set primary status relation = relation_ids('nrpe-external-master') if relation: log("Setting charm primary status {}".format(primary)) for rid in relation: relation_set(relation_id=rid, relation_settings={'primary': self.primary}) self.remove_check_queue = set() def add_check(self, *args, **kwargs): shortname = None if kwargs.get('shortname') is None: if len(args) > 0: shortname = args[0] else: shortname = kwargs['shortname'] self.checks.append(Check(*args, **kwargs)) try: self.remove_check_queue.remove(shortname) except KeyError: pass def remove_check(self, *args, **kwargs): if kwargs.get('shortname') is None: raise ValueError('shortname of check must be specified') # Use sensible defaults if they're not specified - these are not # actually used during removal, but they're required for constructing # the Check object; check_disk is chosen because it's part of the # nagios-plugins-basic package. if kwargs.get('check_cmd') is None: kwargs['check_cmd'] = 'check_disk' if kwargs.get('description') is None: kwargs['description'] = '' check = Check(*args, **kwargs) check.remove(self.hostname) self.remove_check_queue.add(kwargs['shortname']) def write(self): try: nagios_uid = pwd.getpwnam('nagios').pw_uid nagios_gid = grp.getgrnam('nagios').gr_gid except Exception: log("Nagios user not set up, nrpe checks not updated") return if not os.path.exists(NRPE.nagios_logdir): os.mkdir(NRPE.nagios_logdir) os.chown(NRPE.nagios_logdir, nagios_uid, nagios_gid) nrpe_monitors = {} monitors = {"monitors": {"remote": {"nrpe": nrpe_monitors}}} for nrpecheck in self.checks: nrpecheck.write(self.nagios_context, self.hostname, self.nagios_servicegroups) nrpe_monitors[nrpecheck.shortname] = { "command": nrpecheck.command, } # update-status hooks are configured to firing every 5 minutes by # default. When nagios-nrpe-server is restarted, the nagios server # reports checks failing causing unnecessary alerts. Let's not restart # on update-status hooks. if not hook_name() == 'update-status': service('restart', 'nagios-nrpe-server') monitor_ids = relation_ids("local-monitors") + \ relation_ids("nrpe-external-master") for rid in monitor_ids: reldata = relation_get(unit=local_unit(), rid=rid) if 'monitors' in reldata: # update the existing set of monitors with the new data old_monitors = yaml.safe_load(reldata['monitors']) old_nrpe_monitors = old_monitors['monitors']['remote']['nrpe'] # remove keys that are in the remove_check_queue old_nrpe_monitors = {k: v for k, v in old_nrpe_monitors.items() if k not in self.remove_check_queue} # update/add nrpe_monitors old_nrpe_monitors.update(nrpe_monitors) old_monitors['monitors']['remote']['nrpe'] = old_nrpe_monitors # write back to the relation relation_set(relation_id=rid, monitors=yaml.dump(old_monitors)) else: # write a brand new set of monitors, as no existing ones. relation_set(relation_id=rid, monitors=yaml.dump(monitors)) self.remove_check_queue.clear() def get_nagios_hostcontext(relation_name='nrpe-external-master'): """ Query relation with nrpe subordinate, return the nagios_host_context :param str relation_name: Name of relation nrpe sub joined to """ for rel in relations_of_type(relation_name): if 'nagios_host_context' in rel: return rel['nagios_host_context'] def get_nagios_hostname(relation_name='nrpe-external-master'): """ Query relation with nrpe subordinate, return the nagios_hostname :param str relation_name: Name of relation nrpe sub joined to """ for rel in relations_of_type(relation_name): if 'nagios_hostname' in rel: return rel['nagios_hostname'] def get_nagios_unit_name(relation_name='nrpe-external-master'): """ Return the nagios unit name prepended with host_context if needed :param str relation_name: Name of relation nrpe sub joined to """ host_context = get_nagios_hostcontext(relation_name) if host_context: unit = "%s:%s" % (host_context, local_unit()) else: unit = local_unit() return unit def add_init_service_checks(nrpe, services, unit_name, immediate_check=True): """ Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param list services: List of services to check :param str unit_name: Unit name to use in check description :param bool immediate_check: For sysv init, run the service check immediately """ for svc in services: # Don't add a check for these services from neutron-gateway if svc in ['ext-port', 'os-charm-phy-nic-mtu']: next upstart_init = '/etc/init/%s.conf' % svc sysv_init = '/etc/init.d/%s' % svc if host.init_is_systemd(): nrpe.add_check( shortname=svc, description='process check {%s}' % unit_name, check_cmd='check_systemd.py %s' % svc ) elif os.path.exists(upstart_init): nrpe.add_check( shortname=svc, description='process check {%s}' % unit_name, check_cmd='check_upstart_job %s' % svc ) elif os.path.exists(sysv_init): cronpath = '/etc/cron.d/nagios-service-check-%s' % svc checkpath = '%s/service-check-%s.txt' % (nrpe.homedir, svc) croncmd = ( '/usr/local/lib/nagios/plugins/check_exit_status.pl ' '-e -s /etc/init.d/%s status' % svc ) cron_file = '*/5 * * * * root %s > %s\n' % (croncmd, checkpath) f = open(cronpath, 'w') f.write(cron_file) f.close() nrpe.add_check( shortname=svc, description='service check {%s}' % unit_name, check_cmd='check_status_file.py -f %s' % checkpath, ) # if /var/lib/nagios doesn't exist open(checkpath, 'w') will fail # (LP: #1670223). if immediate_check and os.path.isdir(nrpe.homedir): f = open(checkpath, 'w') subprocess.call( croncmd.split(), stdout=f, stderr=subprocess.STDOUT ) f.close() os.chmod(checkpath, 0o644) def copy_nrpe_checks(nrpe_files_dir=None): """ Copy the nrpe checks into place """ NAGIOS_PLUGINS = '/usr/local/lib/nagios/plugins' if nrpe_files_dir is None: # determine if "charmhelpers" is in CHARMDIR or CHARMDIR/hooks for segment in ['.', 'hooks']: nrpe_files_dir = os.path.abspath(os.path.join( os.getenv('CHARM_DIR'), segment, 'charmhelpers', 'contrib', 'openstack', 'files')) if os.path.isdir(nrpe_files_dir): break else: raise RuntimeError("Couldn't find charmhelpers directory") if not os.path.exists(NAGIOS_PLUGINS): os.makedirs(NAGIOS_PLUGINS) for fname in glob.glob(os.path.join(nrpe_files_dir, "check_*")): if os.path.isfile(fname): shutil.copy2(fname, os.path.join(NAGIOS_PLUGINS, os.path.basename(fname))) def add_haproxy_checks(nrpe, unit_name): """ Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param str unit_name: Unit name to use in check description """ nrpe.add_check( shortname='haproxy_servers', description='Check HAProxy {%s}' % unit_name, check_cmd='check_haproxy.sh') nrpe.add_check( shortname='haproxy_queue', description='Check HAProxy queue depth {%s}' % unit_name, check_cmd='check_haproxy_queue_depth.sh')
<filename>charmhelpers/contrib/charmsupport/nrpe.py<gh_stars>0 # Copyright 2014-2015 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compatibility with the nrpe-external-master charm""" # Copyright 2012 Canonical Ltd. # # Authors: # <NAME> <<EMAIL>> import subprocess import pwd import grp import os import glob import shutil import re import shlex import yaml from charmhelpers.core.hookenv import ( config, hook_name, local_unit, log, relation_get, relation_ids, relation_set, relations_of_type, ) from charmhelpers.core.host import service from charmhelpers.core import host # This module adds compatibility with the nrpe-external-master and plain nrpe # subordinate charms. To use it in your charm: # # 1. Update metadata.yaml # # provides: # (...) # nrpe-external-master: # interface: nrpe-external-master # scope: container # # and/or # # provides: # (...) # local-monitors: # interface: local-monitors # scope: container # # 2. Add the following to config.yaml # # nagios_context: # default: "juju" # type: string # description: | # Used by the nrpe subordinate charms. # A string that will be prepended to instance name to set the host name # in nagios. So for instance the hostname would be something like: # juju-myservice-0 # If you're running multiple environments with the same services in them # this allows you to differentiate between them. # nagios_servicegroups: # default: "" # type: string # description: | # A comma-separated list of nagios servicegroups. # If left empty, the nagios_context will be used as the servicegroup # # 3. Add custom checks (Nagios plugins) to files/nrpe-external-master # # 4. Update your hooks.py with something like this: # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE() # nrpe_compat.add_check( # shortname = "myservice", # description = "Check MyService", # check_cmd = "check_http -w 2 -c 10 http://localhost" # ) # nrpe_compat.add_check( # "myservice_other", # "Check for widget failures", # check_cmd = "/srv/myapp/scripts/widget_check" # ) # nrpe_compat.write() # # def config_changed(): # (...) # update_nrpe_config() # # def nrpe_external_master_relation_changed(): # update_nrpe_config() # # def local_monitors_relation_changed(): # update_nrpe_config() # # 4.a If your charm is a subordinate charm set primary=False # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE(primary=False) # # 5. ln -s hooks.py nrpe-external-master-relation-changed # ln -s hooks.py local-monitors-relation-changed class CheckException(Exception): pass class Check(object): shortname_re = '[A-Za-z0-9-_.@]+$' service_template = (""" #--------------------------------------------------- # This file is Juju managed #--------------------------------------------------- define service {{ use active-service host_name {nagios_hostname} service_description {nagios_hostname}[{shortname}] """ """{description} check_command check_nrpe!{command} servicegroups {nagios_servicegroup} }} """) def __init__(self, shortname, description, check_cmd): super(Check, self).__init__() # XXX: could be better to calculate this from the service name if not re.match(self.shortname_re, shortname): raise CheckException("shortname must match {}".format( Check.shortname_re)) self.shortname = shortname self.command = "check_{}".format(shortname) # Note: a set of invalid characters is defined by the # Nagios server config # The default is: illegal_object_name_chars=`~!$%^&*"|'<>?,()= self.description = description self.check_cmd = self._locate_cmd(check_cmd) def _get_check_filename(self): return os.path.join(NRPE.nrpe_confdir, '{}.cfg'.format(self.command)) def _get_service_filename(self, hostname): return os.path.join(NRPE.nagios_exportdir, 'service__{}_{}.cfg'.format(hostname, self.command)) def _locate_cmd(self, check_cmd): search_path = ( '/usr/lib/nagios/plugins', '/usr/local/lib/nagios/plugins', ) parts = shlex.split(check_cmd) for path in search_path: if os.path.exists(os.path.join(path, parts[0])): command = os.path.join(path, parts[0]) if len(parts) > 1: command += " " + " ".join(parts[1:]) return command log('Check command not found: {}'.format(parts[0])) return '' def _remove_service_files(self): if not os.path.exists(NRPE.nagios_exportdir): return for f in os.listdir(NRPE.nagios_exportdir): if f.endswith('_{}.cfg'.format(self.command)): os.remove(os.path.join(NRPE.nagios_exportdir, f)) def remove(self, hostname): nrpe_check_file = self._get_check_filename() if os.path.exists(nrpe_check_file): os.remove(nrpe_check_file) self._remove_service_files() def write(self, nagios_context, hostname, nagios_servicegroups): nrpe_check_file = self._get_check_filename() with open(nrpe_check_file, 'w') as nrpe_check_config: nrpe_check_config.write("# check {}\n".format(self.shortname)) if nagios_servicegroups: nrpe_check_config.write( "# The following header was added automatically by juju\n") nrpe_check_config.write( "# Modifying it will affect nagios monitoring and alerting\n") nrpe_check_config.write( "# servicegroups: {}\n".format(nagios_servicegroups)) nrpe_check_config.write("command[{}]={}\n".format( self.command, self.check_cmd)) if not os.path.exists(NRPE.nagios_exportdir): log('Not writing service config as {} is not accessible'.format( NRPE.nagios_exportdir)) else: self.write_service_config(nagios_context, hostname, nagios_servicegroups) def write_service_config(self, nagios_context, hostname, nagios_servicegroups): self._remove_service_files() templ_vars = { 'nagios_hostname': hostname, 'nagios_servicegroup': nagios_servicegroups, 'description': self.description, 'shortname': self.shortname, 'command': self.command, } nrpe_service_text = Check.service_template.format(**templ_vars) nrpe_service_file = self._get_service_filename(hostname) with open(nrpe_service_file, 'w') as nrpe_service_config: nrpe_service_config.write(str(nrpe_service_text)) def run(self): subprocess.call(self.check_cmd) class NRPE(object): nagios_logdir = '/var/log/nagios' nagios_exportdir = '/var/lib/nagios/export' nrpe_confdir = '/etc/nagios/nrpe.d' homedir = '/var/lib/nagios' # home dir provided by nagios-nrpe-server def __init__(self, hostname=None, primary=True): super(NRPE, self).__init__() self.config = config() self.primary = primary self.nagios_context = self.config['nagios_context'] if 'nagios_servicegroups' in self.config and self.config['nagios_servicegroups']: self.nagios_servicegroups = self.config['nagios_servicegroups'] else: self.nagios_servicegroups = self.nagios_context self.unit_name = local_unit().replace('/', '-') if hostname: self.hostname = hostname else: nagios_hostname = get_nagios_hostname() if nagios_hostname: self.hostname = nagios_hostname else: self.hostname = "{}-{}".format(self.nagios_context, self.unit_name) self.checks = [] # Iff in an nrpe-external-master relation hook, set primary status relation = relation_ids('nrpe-external-master') if relation: log("Setting charm primary status {}".format(primary)) for rid in relation: relation_set(relation_id=rid, relation_settings={'primary': self.primary}) self.remove_check_queue = set() def add_check(self, *args, **kwargs): shortname = None if kwargs.get('shortname') is None: if len(args) > 0: shortname = args[0] else: shortname = kwargs['shortname'] self.checks.append(Check(*args, **kwargs)) try: self.remove_check_queue.remove(shortname) except KeyError: pass def remove_check(self, *args, **kwargs): if kwargs.get('shortname') is None: raise ValueError('shortname of check must be specified') # Use sensible defaults if they're not specified - these are not # actually used during removal, but they're required for constructing # the Check object; check_disk is chosen because it's part of the # nagios-plugins-basic package. if kwargs.get('check_cmd') is None: kwargs['check_cmd'] = 'check_disk' if kwargs.get('description') is None: kwargs['description'] = '' check = Check(*args, **kwargs) check.remove(self.hostname) self.remove_check_queue.add(kwargs['shortname']) def write(self): try: nagios_uid = pwd.getpwnam('nagios').pw_uid nagios_gid = grp.getgrnam('nagios').gr_gid except Exception: log("Nagios user not set up, nrpe checks not updated") return if not os.path.exists(NRPE.nagios_logdir): os.mkdir(NRPE.nagios_logdir) os.chown(NRPE.nagios_logdir, nagios_uid, nagios_gid) nrpe_monitors = {} monitors = {"monitors": {"remote": {"nrpe": nrpe_monitors}}} for nrpecheck in self.checks: nrpecheck.write(self.nagios_context, self.hostname, self.nagios_servicegroups) nrpe_monitors[nrpecheck.shortname] = { "command": nrpecheck.command, } # update-status hooks are configured to firing every 5 minutes by # default. When nagios-nrpe-server is restarted, the nagios server # reports checks failing causing unnecessary alerts. Let's not restart # on update-status hooks. if not hook_name() == 'update-status': service('restart', 'nagios-nrpe-server') monitor_ids = relation_ids("local-monitors") + \ relation_ids("nrpe-external-master") for rid in monitor_ids: reldata = relation_get(unit=local_unit(), rid=rid) if 'monitors' in reldata: # update the existing set of monitors with the new data old_monitors = yaml.safe_load(reldata['monitors']) old_nrpe_monitors = old_monitors['monitors']['remote']['nrpe'] # remove keys that are in the remove_check_queue old_nrpe_monitors = {k: v for k, v in old_nrpe_monitors.items() if k not in self.remove_check_queue} # update/add nrpe_monitors old_nrpe_monitors.update(nrpe_monitors) old_monitors['monitors']['remote']['nrpe'] = old_nrpe_monitors # write back to the relation relation_set(relation_id=rid, monitors=yaml.dump(old_monitors)) else: # write a brand new set of monitors, as no existing ones. relation_set(relation_id=rid, monitors=yaml.dump(monitors)) self.remove_check_queue.clear() def get_nagios_hostcontext(relation_name='nrpe-external-master'): """ Query relation with nrpe subordinate, return the nagios_host_context :param str relation_name: Name of relation nrpe sub joined to """ for rel in relations_of_type(relation_name): if 'nagios_host_context' in rel: return rel['nagios_host_context'] def get_nagios_hostname(relation_name='nrpe-external-master'): """ Query relation with nrpe subordinate, return the nagios_hostname :param str relation_name: Name of relation nrpe sub joined to """ for rel in relations_of_type(relation_name): if 'nagios_hostname' in rel: return rel['nagios_hostname'] def get_nagios_unit_name(relation_name='nrpe-external-master'): """ Return the nagios unit name prepended with host_context if needed :param str relation_name: Name of relation nrpe sub joined to """ host_context = get_nagios_hostcontext(relation_name) if host_context: unit = "%s:%s" % (host_context, local_unit()) else: unit = local_unit() return unit def add_init_service_checks(nrpe, services, unit_name, immediate_check=True): """ Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param list services: List of services to check :param str unit_name: Unit name to use in check description :param bool immediate_check: For sysv init, run the service check immediately """ for svc in services: # Don't add a check for these services from neutron-gateway if svc in ['ext-port', 'os-charm-phy-nic-mtu']: next upstart_init = '/etc/init/%s.conf' % svc sysv_init = '/etc/init.d/%s' % svc if host.init_is_systemd(): nrpe.add_check( shortname=svc, description='process check {%s}' % unit_name, check_cmd='check_systemd.py %s' % svc ) elif os.path.exists(upstart_init): nrpe.add_check( shortname=svc, description='process check {%s}' % unit_name, check_cmd='check_upstart_job %s' % svc ) elif os.path.exists(sysv_init): cronpath = '/etc/cron.d/nagios-service-check-%s' % svc checkpath = '%s/service-check-%s.txt' % (nrpe.homedir, svc) croncmd = ( '/usr/local/lib/nagios/plugins/check_exit_status.pl ' '-e -s /etc/init.d/%s status' % svc ) cron_file = '*/5 * * * * root %s > %s\n' % (croncmd, checkpath) f = open(cronpath, 'w') f.write(cron_file) f.close() nrpe.add_check( shortname=svc, description='service check {%s}' % unit_name, check_cmd='check_status_file.py -f %s' % checkpath, ) # if /var/lib/nagios doesn't exist open(checkpath, 'w') will fail # (LP: #1670223). if immediate_check and os.path.isdir(nrpe.homedir): f = open(checkpath, 'w') subprocess.call( croncmd.split(), stdout=f, stderr=subprocess.STDOUT ) f.close() os.chmod(checkpath, 0o644) def copy_nrpe_checks(nrpe_files_dir=None): """ Copy the nrpe checks into place """ NAGIOS_PLUGINS = '/usr/local/lib/nagios/plugins' if nrpe_files_dir is None: # determine if "charmhelpers" is in CHARMDIR or CHARMDIR/hooks for segment in ['.', 'hooks']: nrpe_files_dir = os.path.abspath(os.path.join( os.getenv('CHARM_DIR'), segment, 'charmhelpers', 'contrib', 'openstack', 'files')) if os.path.isdir(nrpe_files_dir): break else: raise RuntimeError("Couldn't find charmhelpers directory") if not os.path.exists(NAGIOS_PLUGINS): os.makedirs(NAGIOS_PLUGINS) for fname in glob.glob(os.path.join(nrpe_files_dir, "check_*")): if os.path.isfile(fname): shutil.copy2(fname, os.path.join(NAGIOS_PLUGINS, os.path.basename(fname))) def add_haproxy_checks(nrpe, unit_name): """ Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param str unit_name: Unit name to use in check description """ nrpe.add_check( shortname='haproxy_servers', description='Check HAProxy {%s}' % unit_name, check_cmd='check_haproxy.sh') nrpe.add_check( shortname='haproxy_queue', description='Check HAProxy queue depth {%s}' % unit_name, check_cmd='check_haproxy_queue_depth.sh')
en
0.69985
# Copyright 2014-2015 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Compatibility with the nrpe-external-master charm # Copyright 2012 Canonical Ltd. # # Authors: # <NAME> <<EMAIL>> # This module adds compatibility with the nrpe-external-master and plain nrpe # subordinate charms. To use it in your charm: # # 1. Update metadata.yaml # # provides: # (...) # nrpe-external-master: # interface: nrpe-external-master # scope: container # # and/or # # provides: # (...) # local-monitors: # interface: local-monitors # scope: container # # 2. Add the following to config.yaml # # nagios_context: # default: "juju" # type: string # description: | # Used by the nrpe subordinate charms. # A string that will be prepended to instance name to set the host name # in nagios. So for instance the hostname would be something like: # juju-myservice-0 # If you're running multiple environments with the same services in them # this allows you to differentiate between them. # nagios_servicegroups: # default: "" # type: string # description: | # A comma-separated list of nagios servicegroups. # If left empty, the nagios_context will be used as the servicegroup # # 3. Add custom checks (Nagios plugins) to files/nrpe-external-master # # 4. Update your hooks.py with something like this: # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE() # nrpe_compat.add_check( # shortname = "myservice", # description = "Check MyService", # check_cmd = "check_http -w 2 -c 10 http://localhost" # ) # nrpe_compat.add_check( # "myservice_other", # "Check for widget failures", # check_cmd = "/srv/myapp/scripts/widget_check" # ) # nrpe_compat.write() # # def config_changed(): # (...) # update_nrpe_config() # # def nrpe_external_master_relation_changed(): # update_nrpe_config() # # def local_monitors_relation_changed(): # update_nrpe_config() # # 4.a If your charm is a subordinate charm set primary=False # # from charmsupport.nrpe import NRPE # (...) # def update_nrpe_config(): # nrpe_compat = NRPE(primary=False) # # 5. ln -s hooks.py nrpe-external-master-relation-changed # ln -s hooks.py local-monitors-relation-changed #--------------------------------------------------- # This file is Juju managed #--------------------------------------------------- define service {{ use active-service host_name {nagios_hostname} service_description {nagios_hostname}[{shortname}] {description} check_command check_nrpe!{command} servicegroups {nagios_servicegroup} }} # XXX: could be better to calculate this from the service name # Note: a set of invalid characters is defined by the # Nagios server config # The default is: illegal_object_name_chars=`~!$%^&*"|'<>?,()= # home dir provided by nagios-nrpe-server # Iff in an nrpe-external-master relation hook, set primary status # Use sensible defaults if they're not specified - these are not # actually used during removal, but they're required for constructing # the Check object; check_disk is chosen because it's part of the # nagios-plugins-basic package. # update-status hooks are configured to firing every 5 minutes by # default. When nagios-nrpe-server is restarted, the nagios server # reports checks failing causing unnecessary alerts. Let's not restart # on update-status hooks. # update the existing set of monitors with the new data # remove keys that are in the remove_check_queue # update/add nrpe_monitors # write back to the relation # write a brand new set of monitors, as no existing ones. Query relation with nrpe subordinate, return the nagios_host_context :param str relation_name: Name of relation nrpe sub joined to Query relation with nrpe subordinate, return the nagios_hostname :param str relation_name: Name of relation nrpe sub joined to Return the nagios unit name prepended with host_context if needed :param str relation_name: Name of relation nrpe sub joined to Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param list services: List of services to check :param str unit_name: Unit name to use in check description :param bool immediate_check: For sysv init, run the service check immediately # Don't add a check for these services from neutron-gateway # if /var/lib/nagios doesn't exist open(checkpath, 'w') will fail # (LP: #1670223). Copy the nrpe checks into place # determine if "charmhelpers" is in CHARMDIR or CHARMDIR/hooks Add checks for each service in list :param NRPE nrpe: NRPE object to add check to :param str unit_name: Unit name to use in check description
1.68381
2
venv/Lib/site-packages/proglog/proglog.py
mintzer/pupillometry-rf-back
83
8372
"""Implements the generic progress logger class, and the ProgressBar class. """ from tqdm import tqdm, tqdm_notebook from collections import OrderedDict import time SETTINGS = { 'notebook': False } def notebook(turn='on'): SETTINGS['notebook'] = True if (turn == 'on') else False def troncate_string(s, max_length=25): return s if (len(s) < max_length) else (s[:max_length] + "...") class ProgressLogger: """Generic class for progress loggers. A progress logger contains a "state" dictionnary. Parameters ---------- init_state Dictionnary representing the initial state. """ def __init__(self, init_state=None): self.state = {} self.stored = {} self.logs = [] self.log_indent = 0 if init_state is not None: self.state.update(init_state) def log(self, message): self.logs.append((' ' * self.log_indent) + message) def dump_logs(self, filepath=None): if filepath is not None: with open(filepath, 'a') as f: f.write("\n".join(self.logs)) else: return "\n".join(self.logs) def callback(self, **kw): """Execute something after the state has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def store(self, **kw): """Store objects in the logger and trigger ``self.store_callback``. This works exactly like ``logger()``, but the later is meant for simple data objects (text, numbers) that will be sent over the network or written to a file. The ``store`` method expects rather large objects which are not necessarily serializable, and will be used eg to draw plots on the fly. """ self.stored.update(kw) self.store_callback(**kw) def store_callback(self, **kw): """Execute something after the store has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def iter(self, **kw): """Iterate through a list while updating the state. Examples -------- >>> for username in logger.iter(user=['tom', 'tim', 'lea']: >>> # At every loop, logger.state['user'] is updated >>> print (username) """ for field, iterable in kw.items(): for it in iterable: self(**{field: it}) yield it def __call__(self, **kw): self.state.update(kw) self.callback(**kw) class ProgressBarLogger(ProgressLogger): """Generic class for progress loggers. A progress logger contains a "state" dictionnary Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. """ bar_indent = 2 def __init__(self, init_state=None, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): ProgressLogger.__init__(self, init_state) if bars is None: bars = OrderedDict() elif isinstance(bars, (list, tuple)): bars = OrderedDict([ (b, dict(title=b, index=-1, total=None, message=None, indent=0)) for b in bars ]) if isinstance(ignored_bars, (list, tuple)): ignored_bars = set(ignored_bars) self.ignored_bars = ignored_bars self.logged_bars = logged_bars self.state['bars'] = bars self.min_time_interval = min_time_interval self.ignore_bars_under = ignore_bars_under @property def bars(self): """Return ``self.state['bars'].``""" return self.state['bars'] def bar_is_ignored(self, bar): if self.ignored_bars is None: return False elif self.ignored_bars == 'all_others': return (bar not in self.bars) else: return bar in self.ignored_bars def bar_is_logged(self, bar): if (not self.logged_bars): return False elif self.logged_bars == 'all': return True else: return bar in self.logged_bars def iterable_is_too_short(self, iterable): length = len(iterable) if hasattr(iterable, '__len__') else None return (length is not None) and (length < self.ignore_bars_under) def iter_bar(self, bar_prefix='', **kw): """Iterate through a list while updating a state bar. Examples -------- >>> for username in logger.iter_bar(user=['tom', 'tim', 'lea']): >>> # At every loop, logger.state['bars']['user'] is updated >>> # to {index: i, total: 3, title:'user'} >>> print (username) """ if 'bar_message' in kw: bar_message = kw.pop('bar_message') else: bar_message = None bar, iterable = kw.popitem() if self.bar_is_ignored(bar) or self.iterable_is_too_short(iterable): return iterable bar = bar_prefix + bar if hasattr(iterable, '__len__'): self(**{bar + '__total': len(iterable)}) def new_iterable(): last_time = time.time() i = 0 # necessary in case the iterator is empty for i, it in enumerate(iterable): now_time = time.time() if (i == 0) or (now_time - last_time > self.min_time_interval): if bar_message is not None: self(**{bar + '__message': bar_message(it)}) self(**{bar + '__index': i}) last_time = now_time yield it if self.bars[bar]['index'] != i: self(**{bar + '__index': i}) self(**{bar + '__index': i + 1}) return new_iterable() def bars_callback(self, bar, attr, value, old_value=None): """Execute a custom action after the progress bars are updated. Parameters ---------- bar Name/ID of the bar to be modified. attr Attribute of the bar attribute to be modified value New value of the attribute old_value Previous value of this bar's attribute. This default callback does nothing, overwrite it by subclassing. """ pass def __call__(self, **kw): items = sorted(kw.items(), key=lambda kv: not kv[0].endswith('total')) for key, value in items: if '__' in key: bar, attr = key.split('__') if self.bar_is_ignored(bar): continue kw.pop(key) if bar not in self.bars: self.bars[bar] = dict(title=bar, index=-1, total=None, message=None) old_value = self.bars[bar][attr] if self.bar_is_logged(bar): new_bar = (attr == 'index') and (value < old_value) if (attr == 'total') or (new_bar): self.bars[bar]['indent'] = self.log_indent else: self.log_indent = self.bars[bar]['indent'] self.log("[%s] %s: %s" % (bar, attr, value)) self.log_indent += self.bar_indent self.bars[bar][attr] = value self.bars_callback(bar, attr, value, old_value) self.state.update(kw) self.callback(**kw) class TqdmProgressBarLogger(ProgressBarLogger): """Tqdm-powered progress bar for console or Notebooks. Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. leave_bars notebook True will make the bars look nice (HTML) in the jupyter notebook. It is advised to leave to 'default' as the default can be globally set from inside a notebook with ``import proglog; proglog.notebook_mode()``. print_messages If True, every ``logger(message='something')`` will print a message in the console / notebook """ def __init__(self, init_state=None, bars=None, leave_bars=False, ignored_bars=None, logged_bars='all', notebook='default', print_messages=True, min_time_interval=0, ignore_bars_under=0): ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, ignore_bars_under=ignore_bars_under, min_time_interval=min_time_interval) self.leave_bars = leave_bars self.tqdm_bars = OrderedDict([ (bar, None) for bar in self.bars ]) if notebook == 'default': notebook = SETTINGS['notebook'] self.notebook = notebook self.print_messages = print_messages self.tqdm = (tqdm_notebook if self.notebook else tqdm) def new_tqdm_bar(self, bar): """Create a new tqdm bar, possibly replacing an existing one.""" if (bar in self.tqdm_bars) and (self.tqdm_bars[bar] is not None): self.close_tqdm_bar(bar) infos = self.bars[bar] self.tqdm_bars[bar] = self.tqdm( total=infos['total'], desc=infos['title'], postfix=dict(now=troncate_string(str(infos['message']))), leave=self.leave_bars ) def close_tqdm_bar(self, bar): """Close and erase the tqdm bar""" self.tqdm_bars[bar].close() if not self.notebook: self.tqdm_bars[bar] = None def bars_callback(self, bar, attr, value, old_value): if (bar not in self.tqdm_bars) or (self.tqdm_bars[bar] is None): self.new_tqdm_bar(bar) if attr == 'index': if value >= old_value: total = self.bars[bar]['total'] if total and (value >= total): self.close_tqdm_bar(bar) else: self.tqdm_bars[bar].update(value - old_value) else: self.new_tqdm_bar(bar) self.tqdm_bars[bar].update(value + 1) elif attr == 'message': self.tqdm_bars[bar].set_postfix(now=troncate_string(str(value))) self.tqdm_bars[bar].update(0) def callback(self, **kw): if self.print_messages and ('message' in kw) and kw['message']: if self.notebook: print(kw['message']) else: self.tqdm.write(kw['message']) class RqWorkerProgressLogger: def __init__(self, job): self.job = job if 'progress_data' not in self.job.meta: self.job.meta['progress_data'] = {} self.job.save() def callback(self, **kw): self.job.meta['progress_data'] = self.state self.job.save() class RqWorkerBarLogger(RqWorkerProgressLogger, ProgressBarLogger): def __init__(self, job, init_state=None, bars=None, ignored_bars=(), logged_bars='all', min_time_interval=0): RqWorkerProgressLogger.__init__(self, job) ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval) class MuteProgressBarLogger(ProgressBarLogger): def bar_is_ignored(self, bar): return True def default_bar_logger(logger, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): if logger == 'bar': return TqdmProgressBarLogger( bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval, ignore_bars_under=ignore_bars_under ) elif logger is None: return MuteProgressBarLogger() else: return logger
"""Implements the generic progress logger class, and the ProgressBar class. """ from tqdm import tqdm, tqdm_notebook from collections import OrderedDict import time SETTINGS = { 'notebook': False } def notebook(turn='on'): SETTINGS['notebook'] = True if (turn == 'on') else False def troncate_string(s, max_length=25): return s if (len(s) < max_length) else (s[:max_length] + "...") class ProgressLogger: """Generic class for progress loggers. A progress logger contains a "state" dictionnary. Parameters ---------- init_state Dictionnary representing the initial state. """ def __init__(self, init_state=None): self.state = {} self.stored = {} self.logs = [] self.log_indent = 0 if init_state is not None: self.state.update(init_state) def log(self, message): self.logs.append((' ' * self.log_indent) + message) def dump_logs(self, filepath=None): if filepath is not None: with open(filepath, 'a') as f: f.write("\n".join(self.logs)) else: return "\n".join(self.logs) def callback(self, **kw): """Execute something after the state has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def store(self, **kw): """Store objects in the logger and trigger ``self.store_callback``. This works exactly like ``logger()``, but the later is meant for simple data objects (text, numbers) that will be sent over the network or written to a file. The ``store`` method expects rather large objects which are not necessarily serializable, and will be used eg to draw plots on the fly. """ self.stored.update(kw) self.store_callback(**kw) def store_callback(self, **kw): """Execute something after the store has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def iter(self, **kw): """Iterate through a list while updating the state. Examples -------- >>> for username in logger.iter(user=['tom', 'tim', 'lea']: >>> # At every loop, logger.state['user'] is updated >>> print (username) """ for field, iterable in kw.items(): for it in iterable: self(**{field: it}) yield it def __call__(self, **kw): self.state.update(kw) self.callback(**kw) class ProgressBarLogger(ProgressLogger): """Generic class for progress loggers. A progress logger contains a "state" dictionnary Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. """ bar_indent = 2 def __init__(self, init_state=None, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): ProgressLogger.__init__(self, init_state) if bars is None: bars = OrderedDict() elif isinstance(bars, (list, tuple)): bars = OrderedDict([ (b, dict(title=b, index=-1, total=None, message=None, indent=0)) for b in bars ]) if isinstance(ignored_bars, (list, tuple)): ignored_bars = set(ignored_bars) self.ignored_bars = ignored_bars self.logged_bars = logged_bars self.state['bars'] = bars self.min_time_interval = min_time_interval self.ignore_bars_under = ignore_bars_under @property def bars(self): """Return ``self.state['bars'].``""" return self.state['bars'] def bar_is_ignored(self, bar): if self.ignored_bars is None: return False elif self.ignored_bars == 'all_others': return (bar not in self.bars) else: return bar in self.ignored_bars def bar_is_logged(self, bar): if (not self.logged_bars): return False elif self.logged_bars == 'all': return True else: return bar in self.logged_bars def iterable_is_too_short(self, iterable): length = len(iterable) if hasattr(iterable, '__len__') else None return (length is not None) and (length < self.ignore_bars_under) def iter_bar(self, bar_prefix='', **kw): """Iterate through a list while updating a state bar. Examples -------- >>> for username in logger.iter_bar(user=['tom', 'tim', 'lea']): >>> # At every loop, logger.state['bars']['user'] is updated >>> # to {index: i, total: 3, title:'user'} >>> print (username) """ if 'bar_message' in kw: bar_message = kw.pop('bar_message') else: bar_message = None bar, iterable = kw.popitem() if self.bar_is_ignored(bar) or self.iterable_is_too_short(iterable): return iterable bar = bar_prefix + bar if hasattr(iterable, '__len__'): self(**{bar + '__total': len(iterable)}) def new_iterable(): last_time = time.time() i = 0 # necessary in case the iterator is empty for i, it in enumerate(iterable): now_time = time.time() if (i == 0) or (now_time - last_time > self.min_time_interval): if bar_message is not None: self(**{bar + '__message': bar_message(it)}) self(**{bar + '__index': i}) last_time = now_time yield it if self.bars[bar]['index'] != i: self(**{bar + '__index': i}) self(**{bar + '__index': i + 1}) return new_iterable() def bars_callback(self, bar, attr, value, old_value=None): """Execute a custom action after the progress bars are updated. Parameters ---------- bar Name/ID of the bar to be modified. attr Attribute of the bar attribute to be modified value New value of the attribute old_value Previous value of this bar's attribute. This default callback does nothing, overwrite it by subclassing. """ pass def __call__(self, **kw): items = sorted(kw.items(), key=lambda kv: not kv[0].endswith('total')) for key, value in items: if '__' in key: bar, attr = key.split('__') if self.bar_is_ignored(bar): continue kw.pop(key) if bar not in self.bars: self.bars[bar] = dict(title=bar, index=-1, total=None, message=None) old_value = self.bars[bar][attr] if self.bar_is_logged(bar): new_bar = (attr == 'index') and (value < old_value) if (attr == 'total') or (new_bar): self.bars[bar]['indent'] = self.log_indent else: self.log_indent = self.bars[bar]['indent'] self.log("[%s] %s: %s" % (bar, attr, value)) self.log_indent += self.bar_indent self.bars[bar][attr] = value self.bars_callback(bar, attr, value, old_value) self.state.update(kw) self.callback(**kw) class TqdmProgressBarLogger(ProgressBarLogger): """Tqdm-powered progress bar for console or Notebooks. Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. leave_bars notebook True will make the bars look nice (HTML) in the jupyter notebook. It is advised to leave to 'default' as the default can be globally set from inside a notebook with ``import proglog; proglog.notebook_mode()``. print_messages If True, every ``logger(message='something')`` will print a message in the console / notebook """ def __init__(self, init_state=None, bars=None, leave_bars=False, ignored_bars=None, logged_bars='all', notebook='default', print_messages=True, min_time_interval=0, ignore_bars_under=0): ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, ignore_bars_under=ignore_bars_under, min_time_interval=min_time_interval) self.leave_bars = leave_bars self.tqdm_bars = OrderedDict([ (bar, None) for bar in self.bars ]) if notebook == 'default': notebook = SETTINGS['notebook'] self.notebook = notebook self.print_messages = print_messages self.tqdm = (tqdm_notebook if self.notebook else tqdm) def new_tqdm_bar(self, bar): """Create a new tqdm bar, possibly replacing an existing one.""" if (bar in self.tqdm_bars) and (self.tqdm_bars[bar] is not None): self.close_tqdm_bar(bar) infos = self.bars[bar] self.tqdm_bars[bar] = self.tqdm( total=infos['total'], desc=infos['title'], postfix=dict(now=troncate_string(str(infos['message']))), leave=self.leave_bars ) def close_tqdm_bar(self, bar): """Close and erase the tqdm bar""" self.tqdm_bars[bar].close() if not self.notebook: self.tqdm_bars[bar] = None def bars_callback(self, bar, attr, value, old_value): if (bar not in self.tqdm_bars) or (self.tqdm_bars[bar] is None): self.new_tqdm_bar(bar) if attr == 'index': if value >= old_value: total = self.bars[bar]['total'] if total and (value >= total): self.close_tqdm_bar(bar) else: self.tqdm_bars[bar].update(value - old_value) else: self.new_tqdm_bar(bar) self.tqdm_bars[bar].update(value + 1) elif attr == 'message': self.tqdm_bars[bar].set_postfix(now=troncate_string(str(value))) self.tqdm_bars[bar].update(0) def callback(self, **kw): if self.print_messages and ('message' in kw) and kw['message']: if self.notebook: print(kw['message']) else: self.tqdm.write(kw['message']) class RqWorkerProgressLogger: def __init__(self, job): self.job = job if 'progress_data' not in self.job.meta: self.job.meta['progress_data'] = {} self.job.save() def callback(self, **kw): self.job.meta['progress_data'] = self.state self.job.save() class RqWorkerBarLogger(RqWorkerProgressLogger, ProgressBarLogger): def __init__(self, job, init_state=None, bars=None, ignored_bars=(), logged_bars='all', min_time_interval=0): RqWorkerProgressLogger.__init__(self, job) ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval) class MuteProgressBarLogger(ProgressBarLogger): def bar_is_ignored(self, bar): return True def default_bar_logger(logger, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): if logger == 'bar': return TqdmProgressBarLogger( bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval, ignore_bars_under=ignore_bars_under ) elif logger is None: return MuteProgressBarLogger() else: return logger
en
0.757778
Implements the generic progress logger class, and the ProgressBar class. Generic class for progress loggers. A progress logger contains a "state" dictionnary. Parameters ---------- init_state Dictionnary representing the initial state. Execute something after the state has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing Store objects in the logger and trigger ``self.store_callback``. This works exactly like ``logger()``, but the later is meant for simple data objects (text, numbers) that will be sent over the network or written to a file. The ``store`` method expects rather large objects which are not necessarily serializable, and will be used eg to draw plots on the fly. Execute something after the store has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing Iterate through a list while updating the state. Examples -------- >>> for username in logger.iter(user=['tom', 'tim', 'lea']: >>> # At every loop, logger.state['user'] is updated >>> print (username) Generic class for progress loggers. A progress logger contains a "state" dictionnary Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. Return ``self.state['bars'].`` Iterate through a list while updating a state bar. Examples -------- >>> for username in logger.iter_bar(user=['tom', 'tim', 'lea']): >>> # At every loop, logger.state['bars']['user'] is updated >>> # to {index: i, total: 3, title:'user'} >>> print (username) # necessary in case the iterator is empty Execute a custom action after the progress bars are updated. Parameters ---------- bar Name/ID of the bar to be modified. attr Attribute of the bar attribute to be modified value New value of the attribute old_value Previous value of this bar's attribute. This default callback does nothing, overwrite it by subclassing. Tqdm-powered progress bar for console or Notebooks. Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. leave_bars notebook True will make the bars look nice (HTML) in the jupyter notebook. It is advised to leave to 'default' as the default can be globally set from inside a notebook with ``import proglog; proglog.notebook_mode()``. print_messages If True, every ``logger(message='something')`` will print a message in the console / notebook Create a new tqdm bar, possibly replacing an existing one. Close and erase the tqdm bar
3.17138
3
gdsfactory/tests/test_component_from_yaml_bezier.py
jorgepadilla19/gdsfactory
42
8373
<reponame>jorgepadilla19/gdsfactory import gdsfactory as gf from gdsfactory.component import Component yaml = """ name: test_component_yaml_without_cell instances: mmi: component: mmi1x2 bend: component: bend_s connections: bend,o1: mmi,o2 """ def test_component_from_yaml_without_cell() -> Component: """bezier does not have cell""" c = gf.read.from_yaml(yaml) assert c.name == "test_component_yaml_without_cell", c.name assert len(c.get_dependencies()) == 2, len(c.get_dependencies()) assert len(c.ports) == 0, len(c.ports) return c if __name__ == "__main__": c = test_component_from_yaml_without_cell() print(c.name) c.show()
import gdsfactory as gf from gdsfactory.component import Component yaml = """ name: test_component_yaml_without_cell instances: mmi: component: mmi1x2 bend: component: bend_s connections: bend,o1: mmi,o2 """ def test_component_from_yaml_without_cell() -> Component: """bezier does not have cell""" c = gf.read.from_yaml(yaml) assert c.name == "test_component_yaml_without_cell", c.name assert len(c.get_dependencies()) == 2, len(c.get_dependencies()) assert len(c.ports) == 0, len(c.ports) return c if __name__ == "__main__": c = test_component_from_yaml_without_cell() print(c.name) c.show()
en
0.640118
name: test_component_yaml_without_cell instances: mmi: component: mmi1x2 bend: component: bend_s connections: bend,o1: mmi,o2 bezier does not have cell
2.438397
2
cats/types.py
AdamBrianBright/cats-python
2
8374
<filename>cats/types.py from pathlib import Path from types import GeneratorType from typing import AsyncIterable, Iterable, TypeAlias import ujson from cats.errors import MalformedHeadersError try: from django.db.models import QuerySet, Model except ImportError: QuerySet = type('QuerySet', (list,), {}) Model = type('Model', (list,), {}) __all__ = [ 'Bytes', 'BytesGen', 'BytesAsyncGen', 'BytesAnyGen', 'Byte', 'Json', 'File', 'List', 'Missing', 'MISSING', 'QuerySet', 'Model', 'T_Headers', 'Headers', ] Bytes: TypeAlias = bytes | bytearray | memoryview BytesGen: TypeAlias = Iterable[Bytes] BytesAsyncGen: TypeAlias = AsyncIterable[Bytes] BytesAnyGen: TypeAlias = BytesGen | BytesAsyncGen Byte: TypeAlias = Bytes Json: TypeAlias = str | int | float | dict | list | bool | None File: TypeAlias = Path | str List = list | tuple | set | GeneratorType | QuerySet class Missing(str): """ Custom Missing type is required for Pydantic to work properly. IDK """ __slots__ = () def __init__(self): super().__init__() def __eq__(self, other): return isinstance(other, Missing) def __bool__(self): return False MISSING = Missing() class Headers(dict): __slots__ = () def __init__(self, *args, **kwargs): v = self._convert(*args, **kwargs) if (offset := v.get('offset', None)) and (not isinstance(offset, int) or offset < 0): raise MalformedHeadersError('Invalid offset header', headers=v) super().__init__(v) @classmethod def _key(cls, key: str) -> str: return key.replace(' ', '-').title() def __getitem__(self, item): return super().__getitem__(self._key(item)) def __setitem__(self, key, value): return super().__setitem__(self._key(key), value) def __delitem__(self, key): return super().__delitem__(self._key(key)) def __contains__(self, item): return super().__contains__(self._key(item)) @classmethod def _convert(cls, *args, **kwargs): return {cls._key(k): v for k, v in dict(*args, **kwargs).items() if isinstance(k, str)} def update(self, *args, **kwargs) -> None: super().update(self._convert(*args, **kwargs)) def encode(self) -> bytes: return ujson.dumps(self, ensure_ascii=False, escape_forward_slashes=False).encode('utf-8') @classmethod def decode(cls, headers: Bytes) -> 'Headers': try: headers = ujson.loads(headers) except ValueError: # + UnicodeDecodeError headers = None return cls(headers or {}) T_Headers: TypeAlias = Headers | dict[str]
<filename>cats/types.py from pathlib import Path from types import GeneratorType from typing import AsyncIterable, Iterable, TypeAlias import ujson from cats.errors import MalformedHeadersError try: from django.db.models import QuerySet, Model except ImportError: QuerySet = type('QuerySet', (list,), {}) Model = type('Model', (list,), {}) __all__ = [ 'Bytes', 'BytesGen', 'BytesAsyncGen', 'BytesAnyGen', 'Byte', 'Json', 'File', 'List', 'Missing', 'MISSING', 'QuerySet', 'Model', 'T_Headers', 'Headers', ] Bytes: TypeAlias = bytes | bytearray | memoryview BytesGen: TypeAlias = Iterable[Bytes] BytesAsyncGen: TypeAlias = AsyncIterable[Bytes] BytesAnyGen: TypeAlias = BytesGen | BytesAsyncGen Byte: TypeAlias = Bytes Json: TypeAlias = str | int | float | dict | list | bool | None File: TypeAlias = Path | str List = list | tuple | set | GeneratorType | QuerySet class Missing(str): """ Custom Missing type is required for Pydantic to work properly. IDK """ __slots__ = () def __init__(self): super().__init__() def __eq__(self, other): return isinstance(other, Missing) def __bool__(self): return False MISSING = Missing() class Headers(dict): __slots__ = () def __init__(self, *args, **kwargs): v = self._convert(*args, **kwargs) if (offset := v.get('offset', None)) and (not isinstance(offset, int) or offset < 0): raise MalformedHeadersError('Invalid offset header', headers=v) super().__init__(v) @classmethod def _key(cls, key: str) -> str: return key.replace(' ', '-').title() def __getitem__(self, item): return super().__getitem__(self._key(item)) def __setitem__(self, key, value): return super().__setitem__(self._key(key), value) def __delitem__(self, key): return super().__delitem__(self._key(key)) def __contains__(self, item): return super().__contains__(self._key(item)) @classmethod def _convert(cls, *args, **kwargs): return {cls._key(k): v for k, v in dict(*args, **kwargs).items() if isinstance(k, str)} def update(self, *args, **kwargs) -> None: super().update(self._convert(*args, **kwargs)) def encode(self) -> bytes: return ujson.dumps(self, ensure_ascii=False, escape_forward_slashes=False).encode('utf-8') @classmethod def decode(cls, headers: Bytes) -> 'Headers': try: headers = ujson.loads(headers) except ValueError: # + UnicodeDecodeError headers = None return cls(headers or {}) T_Headers: TypeAlias = Headers | dict[str]
en
0.776727
Custom Missing type is required for Pydantic to work properly. IDK # + UnicodeDecodeError
2.392644
2
raven/utils/urlparse.py
MyCollege/raven
0
8375
<gh_stars>0 from __future__ import absolute_import try: import urlparse as _urlparse except ImportError: from urllib import parse as _urlparse def register_scheme(scheme): for method in filter(lambda s: s.startswith('uses_'), dir(_urlparse)): uses = getattr(_urlparse, method) if scheme not in uses: uses.append(scheme) urlparse = _urlparse.urlparse
from __future__ import absolute_import try: import urlparse as _urlparse except ImportError: from urllib import parse as _urlparse def register_scheme(scheme): for method in filter(lambda s: s.startswith('uses_'), dir(_urlparse)): uses = getattr(_urlparse, method) if scheme not in uses: uses.append(scheme) urlparse = _urlparse.urlparse
none
1
2.277474
2
setup.py
stjordanis/MONeT-1
161
8376
<filename>setup.py import setuptools setuptools.setup( name="monet_memory_optimized_training", version="0.0.1", description="Memory Optimized Network Training Framework", url="https://github.com/philkr/lowrank_conv", packages=setuptools.find_packages(include = ['monet', 'monet.*', 'models', 'checkmate', 'gist']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
<filename>setup.py import setuptools setuptools.setup( name="monet_memory_optimized_training", version="0.0.1", description="Memory Optimized Network Training Framework", url="https://github.com/philkr/lowrank_conv", packages=setuptools.find_packages(include = ['monet', 'monet.*', 'models', 'checkmate', 'gist']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
none
1
1.227586
1
Tests/Methods/Machine/test_Magnet_Type_11_meth.py
Superomeg4/pyleecan
2
8377
# -*- coding: utf-8 -*- """ @date Created on Thu Dec 18 13:56:33 2014 @copyright (C) 2014-2015 EOMYS ENGINEERING. @author pierre_b """ from unittest import TestCase from ddt import ddt, data from pyleecan.Classes.Arc1 import Arc1 from pyleecan.Classes.Segment import Segment from pyleecan.Classes.MagnetType11 import MagnetType11 from pyleecan.Classes.LamSlotMag import LamSlotMag from pyleecan.Classes.SlotMPolar import SlotMPolar from numpy import pi, exp, angle, array from pyleecan.Methods.Machine.Magnet.comp_surface import comp_surface Mag11_test = list() # Internal Slot surface lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=0, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=1, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 0.78539616, "Ao": pi / 4, "H_exp": 1}) # Internal Slot inset lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=40e-3, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=20e-3, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 7.3827e-3, "Ao": pi / 4, "H_exp": 20e-3}) # Outward Slot inset lam = LamSlotMag(is_internal=False, Rext=0.1325) lam.slot = SlotMPolar(H0=5e-3, W0=pi / 10, Zs=8) lam.slot.magnet = [MagnetType11(Hmag=8e-3, Wmag=pi / 12)] Mag11_test.append({"test_obj": lam, "S_exp": 2.09439e-6, "Ao": pi / 12, "H_exp": 8e-3}) # For AlmostEqual DELTA = 1e-4 @ddt class test_Magnet_Type_11_meth(TestCase): """unittest for MagnetType11 methods """ @data(*Mag11_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) # Compare numerical and analytical results b = comp_surface(test_obj.slot.magnet[0]) msg = "Analytical: " + str(a) + " Numerical " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_height(self, test_dict): """Check that the computation of the height is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_height() a = result b = test_dict["H_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_angle_op(self, test_dict): """Check that the computation of the opening angle is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_angle_opening() a = result b = test_dict["Ao"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) def test_build_geometry_out(self): """check that curve_list is correct (outwards magnet)""" lam = LamSlotMag( Rint=40e-3, Rext=90e-3, is_internal=False, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (40e-3 + 0.2) * exp(-1j * pi / 10 / 2) Z2 = (40e-3 + 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z - 0.2) * exp(1j * angle(Z1)) Z4 = (Z - 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) def test_build_geometry_in(self): """check that curve_list is correct (inwards magnet)""" lam = LamSlotMag( Rint=40e-1, Rext=90e-1, is_internal=True, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (90e-1 - 0.2) * exp(-1j * pi / 10 / 2) Z2 = (90e-1 - 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z + 0.2) * exp(1j * angle(Z1)) Z4 = (Z + 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA)
# -*- coding: utf-8 -*- """ @date Created on Thu Dec 18 13:56:33 2014 @copyright (C) 2014-2015 EOMYS ENGINEERING. @author pierre_b """ from unittest import TestCase from ddt import ddt, data from pyleecan.Classes.Arc1 import Arc1 from pyleecan.Classes.Segment import Segment from pyleecan.Classes.MagnetType11 import MagnetType11 from pyleecan.Classes.LamSlotMag import LamSlotMag from pyleecan.Classes.SlotMPolar import SlotMPolar from numpy import pi, exp, angle, array from pyleecan.Methods.Machine.Magnet.comp_surface import comp_surface Mag11_test = list() # Internal Slot surface lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=0, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=1, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 0.78539616, "Ao": pi / 4, "H_exp": 1}) # Internal Slot inset lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=40e-3, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=20e-3, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 7.3827e-3, "Ao": pi / 4, "H_exp": 20e-3}) # Outward Slot inset lam = LamSlotMag(is_internal=False, Rext=0.1325) lam.slot = SlotMPolar(H0=5e-3, W0=pi / 10, Zs=8) lam.slot.magnet = [MagnetType11(Hmag=8e-3, Wmag=pi / 12)] Mag11_test.append({"test_obj": lam, "S_exp": 2.09439e-6, "Ao": pi / 12, "H_exp": 8e-3}) # For AlmostEqual DELTA = 1e-4 @ddt class test_Magnet_Type_11_meth(TestCase): """unittest for MagnetType11 methods """ @data(*Mag11_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) # Compare numerical and analytical results b = comp_surface(test_obj.slot.magnet[0]) msg = "Analytical: " + str(a) + " Numerical " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_height(self, test_dict): """Check that the computation of the height is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_height() a = result b = test_dict["H_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_angle_op(self, test_dict): """Check that the computation of the opening angle is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_angle_opening() a = result b = test_dict["Ao"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) def test_build_geometry_out(self): """check that curve_list is correct (outwards magnet)""" lam = LamSlotMag( Rint=40e-3, Rext=90e-3, is_internal=False, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (40e-3 + 0.2) * exp(-1j * pi / 10 / 2) Z2 = (40e-3 + 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z - 0.2) * exp(1j * angle(Z1)) Z4 = (Z - 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) def test_build_geometry_in(self): """check that curve_list is correct (inwards magnet)""" lam = LamSlotMag( Rint=40e-1, Rext=90e-1, is_internal=True, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (90e-1 - 0.2) * exp(-1j * pi / 10 / 2) Z2 = (90e-1 - 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z + 0.2) * exp(1j * angle(Z1)) Z4 = (Z + 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA)
en
0.817221
# -*- coding: utf-8 -*- @date Created on Thu Dec 18 13:56:33 2014 @copyright (C) 2014-2015 EOMYS ENGINEERING. @author pierre_b # Internal Slot surface # Internal Slot inset # Outward Slot inset # For AlmostEqual unittest for MagnetType11 methods Check that the computation of the surface is correct # Compare numerical and analytical results Check that the computation of the height is correct Check that the computation of the opening angle is correct check that curve_list is correct (outwards magnet) # # Creation of curve check that curve_list is correct (inwards magnet) # # Creation of curve
2.012276
2
tomo_encoders/tasks/void_mapping.py
arshadzahangirchowdhury/TomoEncoders
0
8378
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from operator import mod from tomo_encoders.misc.voxel_processing import modified_autocontrast, TimerGPU from tomo_encoders.reconstruction.recon import recon_patches_3d import cupy as cp import numpy as np from skimage.filters import threshold_otsu from tomo_encoders import Grid def get_values_cyl_mask(vol, mask_fac): vol_shape = vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) return vol[cyl > 0] def cylindrical_mask(out_vol, mask_fac, mask_val = 0): vol_shape = out_vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) out_vol[cyl == 0] = mask_val return def segment_otsu(vol, s = 0.05): '''segment volume with otsu''' timer = TimerGPU() timer.tic() tmp_values = vol[::4,::4,::4].get() # rec_min_max = modified_autocontrast(tmp_values, s = s, normalize_sampling_factor=1) thresh = cp.float32(threshold_otsu(tmp_values.reshape(-1))) vol = (vol < thresh).astype(cp.uint8) timer.toc("otsu thresholding") return vol def edge_map(Y): ''' this algorithm was inspired by: https://github.com/tomochallenge/tomochallenge_utils/blob/master/foam_phantom_utils.py ''' msk = cp.zeros_like(Y) tmp = Y[:-1]!=Y[1:] msk[:-1][tmp] = 1 msk[1:][tmp] = 1 tmp = Y[:,:-1]!=Y[:,1:] msk[:,:-1][tmp] = 1 msk[:,1:][tmp] = 1 tmp = Y[:,:,:-1]!=Y[:,:,1:] msk[:,:,:-1][tmp] = 1 msk[:,:,1:][tmp] = 1 return msk > 0 def guess_surface(V_bin, b, wd): # find patches on surface wdb = int(wd//b) p3d = Grid(V_bin.shape, width = wdb) x = p3d.extract(V_bin) is_surf = (np.std(x, axis = (1,2,3)) > 0.0) is_ones = (np.sum(x, axis = (1,2,3))/(wdb**3) == 1) is_zeros = (np.sum(x, axis = (1,2,3))/(wdb**3) == 0) p3d = p3d.rescale(b) p3d_surf = p3d.filter_by_condition(is_surf) p3d_ones = p3d.filter_by_condition(is_ones) p3d_zeros = p3d.filter_by_condition(is_zeros) eff = len(p3d_surf)*(wd**3)/np.prod(p3d_surf.vol_shape) print(f"\tSTAT: r value: {eff*100.0:.2f}") return p3d_surf, p3d_ones, p3d_zeros def process_patches(projs, theta, center, fe, p_surf, min_max, TIMEIT = False): # SCHEME 1: integrate reconstruction and segmention (segments data on gpu itself) # st_proc = cp.cuda.Event(); end_proc = cp.cuda.Event(); st_proc.record() # x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ # apply_fbp = True, segmenter = fe, \ # segmenter_batch_size = 256) # end_proc.record(); end_proc.synchronize(); t_surf = cp.cuda.get_elapsed_time(st_proc,end_proc) # SCHEME 2: reconstruct and segment separately (copies rec data from gpu to cpu) st_rec = cp.cuda.Event(); end_rec = cp.cuda.Event(); st_rec.record() x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ apply_fbp =True) end_rec.record(); end_rec.synchronize(); t_rec = cp.cuda.get_elapsed_time(st_rec,end_rec) st_seg = cp.cuda.Event(); end_seg = cp.cuda.Event(); st_seg.record() x_surf = np.clip(x_surf, *min_max) x_surf = fe.predict_patches("segmenter", x_surf[...,np.newaxis], 256, None, min_max = min_max)[...,0] end_seg.record(); end_seg.synchronize(); t_seg = cp.cuda.get_elapsed_time(st_seg,end_seg) print(f'\tTIME: local reconstruction - {t_rec/1000.0:.2f} secs') print(f'\tTIME: local segmentation - {t_seg/1000.0:.2f} secs') print(f'\tSTAT: total patches in neighborhood: {len(p_surf)}') if TIMEIT: return x_surf, p_surf, t_rec, t_seg else: return x_surf, p_surf
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from operator import mod from tomo_encoders.misc.voxel_processing import modified_autocontrast, TimerGPU from tomo_encoders.reconstruction.recon import recon_patches_3d import cupy as cp import numpy as np from skimage.filters import threshold_otsu from tomo_encoders import Grid def get_values_cyl_mask(vol, mask_fac): vol_shape = vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) return vol[cyl > 0] def cylindrical_mask(out_vol, mask_fac, mask_val = 0): vol_shape = out_vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) out_vol[cyl == 0] = mask_val return def segment_otsu(vol, s = 0.05): '''segment volume with otsu''' timer = TimerGPU() timer.tic() tmp_values = vol[::4,::4,::4].get() # rec_min_max = modified_autocontrast(tmp_values, s = s, normalize_sampling_factor=1) thresh = cp.float32(threshold_otsu(tmp_values.reshape(-1))) vol = (vol < thresh).astype(cp.uint8) timer.toc("otsu thresholding") return vol def edge_map(Y): ''' this algorithm was inspired by: https://github.com/tomochallenge/tomochallenge_utils/blob/master/foam_phantom_utils.py ''' msk = cp.zeros_like(Y) tmp = Y[:-1]!=Y[1:] msk[:-1][tmp] = 1 msk[1:][tmp] = 1 tmp = Y[:,:-1]!=Y[:,1:] msk[:,:-1][tmp] = 1 msk[:,1:][tmp] = 1 tmp = Y[:,:,:-1]!=Y[:,:,1:] msk[:,:,:-1][tmp] = 1 msk[:,:,1:][tmp] = 1 return msk > 0 def guess_surface(V_bin, b, wd): # find patches on surface wdb = int(wd//b) p3d = Grid(V_bin.shape, width = wdb) x = p3d.extract(V_bin) is_surf = (np.std(x, axis = (1,2,3)) > 0.0) is_ones = (np.sum(x, axis = (1,2,3))/(wdb**3) == 1) is_zeros = (np.sum(x, axis = (1,2,3))/(wdb**3) == 0) p3d = p3d.rescale(b) p3d_surf = p3d.filter_by_condition(is_surf) p3d_ones = p3d.filter_by_condition(is_ones) p3d_zeros = p3d.filter_by_condition(is_zeros) eff = len(p3d_surf)*(wd**3)/np.prod(p3d_surf.vol_shape) print(f"\tSTAT: r value: {eff*100.0:.2f}") return p3d_surf, p3d_ones, p3d_zeros def process_patches(projs, theta, center, fe, p_surf, min_max, TIMEIT = False): # SCHEME 1: integrate reconstruction and segmention (segments data on gpu itself) # st_proc = cp.cuda.Event(); end_proc = cp.cuda.Event(); st_proc.record() # x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ # apply_fbp = True, segmenter = fe, \ # segmenter_batch_size = 256) # end_proc.record(); end_proc.synchronize(); t_surf = cp.cuda.get_elapsed_time(st_proc,end_proc) # SCHEME 2: reconstruct and segment separately (copies rec data from gpu to cpu) st_rec = cp.cuda.Event(); end_rec = cp.cuda.Event(); st_rec.record() x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ apply_fbp =True) end_rec.record(); end_rec.synchronize(); t_rec = cp.cuda.get_elapsed_time(st_rec,end_rec) st_seg = cp.cuda.Event(); end_seg = cp.cuda.Event(); st_seg.record() x_surf = np.clip(x_surf, *min_max) x_surf = fe.predict_patches("segmenter", x_surf[...,np.newaxis], 256, None, min_max = min_max)[...,0] end_seg.record(); end_seg.synchronize(); t_seg = cp.cuda.get_elapsed_time(st_seg,end_seg) print(f'\tTIME: local reconstruction - {t_rec/1000.0:.2f} secs') print(f'\tTIME: local segmentation - {t_seg/1000.0:.2f} secs') print(f'\tSTAT: total patches in neighborhood: {len(p_surf)}') if TIMEIT: return x_surf, p_surf, t_rec, t_seg else: return x_surf, p_surf
en
0.515202
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # inside is positive # inside is positive segment volume with otsu # rec_min_max = modified_autocontrast(tmp_values, s = s, normalize_sampling_factor=1) this algorithm was inspired by: https://github.com/tomochallenge/tomochallenge_utils/blob/master/foam_phantom_utils.py # find patches on surface # SCHEME 1: integrate reconstruction and segmention (segments data on gpu itself) # st_proc = cp.cuda.Event(); end_proc = cp.cuda.Event(); st_proc.record() # x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ # apply_fbp = True, segmenter = fe, \ # segmenter_batch_size = 256) # end_proc.record(); end_proc.synchronize(); t_surf = cp.cuda.get_elapsed_time(st_proc,end_proc) # SCHEME 2: reconstruct and segment separately (copies rec data from gpu to cpu)
2.089592
2
handypackages/subscribe/migrations/0001_initial.py
roundium/handypackages
1
8379
# Generated by Django 2.2.1 on 2019-06-22 11:03 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='SubscribeModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(db_index=True, max_length=255, unique=True, verbose_name='Email')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='Subscribe Time')), ], options={ 'verbose_name': 'Subscribe Email', 'verbose_name_plural': 'Subscribe Emails', 'abstract': False, }, ), ]
# Generated by Django 2.2.1 on 2019-06-22 11:03 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='SubscribeModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(db_index=True, max_length=255, unique=True, verbose_name='Email')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='Subscribe Time')), ], options={ 'verbose_name': 'Subscribe Email', 'verbose_name_plural': 'Subscribe Emails', 'abstract': False, }, ), ]
en
0.746472
# Generated by Django 2.2.1 on 2019-06-22 11:03
1.806068
2
TuShare/view/sh_margins.py
lwh2015/TuShare
1
8380
# -*- coding: UTF-8 -*- import json from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt import tushare as ts from .publiceClass import DateEncoder @csrf_exempt def sh_margins(request): try: start = request.POST.get('start','')#选填 end = request.POST.get('end','')#选填 data = ts.sh_margins(start,end) res = {'columns':[ '信用交易日期', '本日融资余额(元)', '本日融资买入额(元)', '本日融券余量', '本日融券余量金额(元)', '本日融券卖出量', '本日融资融券余额(元)' ],'data':json.loads(json.dumps(data.values,cls=DateEncoder))} except(BaseException): return HttpResponse(BaseException) else: return HttpResponse(json.dumps(res),content_type="application/json")
# -*- coding: UTF-8 -*- import json from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt import tushare as ts from .publiceClass import DateEncoder @csrf_exempt def sh_margins(request): try: start = request.POST.get('start','')#选填 end = request.POST.get('end','')#选填 data = ts.sh_margins(start,end) res = {'columns':[ '信用交易日期', '本日融资余额(元)', '本日融资买入额(元)', '本日融券余量', '本日融券余量金额(元)', '本日融券卖出量', '本日融资融券余额(元)' ],'data':json.loads(json.dumps(data.values,cls=DateEncoder))} except(BaseException): return HttpResponse(BaseException) else: return HttpResponse(json.dumps(res),content_type="application/json")
zh
0.266282
# -*- coding: UTF-8 -*- #选填 #选填
2.05571
2
intermediate/classes/camera.py
robertob45/learning-python
0
8381
class Camera: """docstring for .""" def __init__(self, brand, sensor, lens, battery): self.brand = brand self.sensor = sensor self.lens = lens self.battery = battery def __str__(self): return self.brand + ' ' + self.sensor + ' ' + self.lens + ' ' + self.battery def focus(self): print('Focusing using', self.lens, '...') print('') def frame(self): print('Move until your subject is in the desired position') print('.') print('.') print('.') def flash(self, flash_use): if flash_use == 's': print('Shooting with flash...') else: print('Shooting without flash...') print('') def format(self, save_format): if save_format == 'jpg': print('Saving in: ' + save_format) elif save_format == 'raw': print('Saving in: ' + save_format) else: print('No valid format to save') def take_picture(self, save_format, flash_use): print('Say cheese!') self.focus() self.frame() self.flash(flash_use) self.format(save_format)
class Camera: """docstring for .""" def __init__(self, brand, sensor, lens, battery): self.brand = brand self.sensor = sensor self.lens = lens self.battery = battery def __str__(self): return self.brand + ' ' + self.sensor + ' ' + self.lens + ' ' + self.battery def focus(self): print('Focusing using', self.lens, '...') print('') def frame(self): print('Move until your subject is in the desired position') print('.') print('.') print('.') def flash(self, flash_use): if flash_use == 's': print('Shooting with flash...') else: print('Shooting without flash...') print('') def format(self, save_format): if save_format == 'jpg': print('Saving in: ' + save_format) elif save_format == 'raw': print('Saving in: ' + save_format) else: print('No valid format to save') def take_picture(self, save_format, flash_use): print('Say cheese!') self.focus() self.frame() self.flash(flash_use) self.format(save_format)
en
0.659294
docstring for .
3.751097
4
dbaas/tsuru/tests/test_service_add.py
didindinn/database-as-a-service
0
8382
<filename>dbaas/tsuru/tests/test_service_add.py from mock import patch, MagicMock from django.contrib.auth.models import User from django.test import TestCase from django.core.urlresolvers import reverse from django.utils.datastructures import MultiValueDictKeyError from account.models import Role, Team, Organization from physical.tests.factory import EnvironmentFactory, PlanFactory from physical.models import Plan class ValidationTestCase(TestCase): """HTTP test cases for the tsuru Service Add. This class focuses on validations of POST """ USERNAME = "fake_user" PASSWORD = "<PASSWORD>" def setUp(self): self.role = Role.objects.get_or_create(name="fake_role")[0] self.organization = Organization.objects.get_or_create( name='fake_organization' )[0] self.team = Team.objects.get_or_create( name="fake_team", role=self.role, organization=self.organization)[0] self.superuser = User.objects.create_superuser( self.USERNAME, email="{}<EMAIL>".<EMAIL>(self.<EMAIL>), password=self.PASSWORD ) self.team.users.add(self.superuser) self.client.login(username=self.USERNAME, password=self.PASSWORD) self.env = 'dev' self.environment = EnvironmentFactory.create(name=self.env) self.url = reverse('tsuru:service-add', args=(self.env,)) self.name = 'fake_database' self.user = <EMAIL>(self.<EMAIL>) self.description = 'fake desc' self.plan = PlanFactory(name='fake_plan', provider=Plan.CLOUDSTACK) self.plan.environments.add(self.environment) self.plan_name = 'fake-plan-dev' def tearDown(self): self.client.logout() def _assert_resp(self, resp, msg): self.assertEqual(resp.status_code, 400) self.assertEqual(resp.content, msg) def test_name_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post(self.url, {}) def test_user_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post( self.url, {'name': self.name} ) def test_team_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post( self.url, {'name': self.name, 'user': self.user} ) def test_description_fail(self): resp = self.client.post( self.url, {'name': self.name, 'user': self.user, 'team': self.team} ) self._assert_resp(resp, '"A description must be provided."') def test_name_fail(self): resp = self.client.post( self.url, { 'name': '99invalid-name', 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"Your database name must match /^[a-z][a-z0-9_]+$/ ."' ) @patch('tsuru.views.Database.objects.get', new=MagicMock()) def test_database_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"There is already a database called fake_database in dev."' ) @patch( 'tsuru.views.database_name_evironment_constraint', new=MagicMock(return_value=True) ) def test_already_exist_database_with_name(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"fake_database already exists in env dev!"' ) def test_user_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': '<EMAIL>', 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"User does not exist."' ) def test_team_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': '<EMAIL>', 'description': self.description, 'team': 'team_not_found' } ) self._assert_resp( resp, '"User does not exist."' ) def test_env_not_found(self): self.url = self.url.replace( '/{}/'.format(self.env), '/env_not_found/' ) resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, '"Environment does not exist."' ) @patch( 'tsuru.views.Team.count_databases_in_use', new=MagicMock(return_value=99) ) def test_allocation_limit(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, ('"The database alocation limit of 2 has been exceeded for the ' 'selected team: fake_team"') ) def test_plan_not_on_payload(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, '"Plan was not found"' ) def test_plan_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name, 'plan': 'not found' } ) self._assert_resp( resp, '"Plan was not found"' ) @patch('notification.tasks.TaskRegister.create_task', new=MagicMock()) @patch('notification.tasks.create_database_with_retry') def test_call_database_create(self, create_database_mock): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name, 'plan': self.plan_name } ) self.assertTrue(create_database_mock.called) self.assertEqual(resp.status_code, 201)
<filename>dbaas/tsuru/tests/test_service_add.py from mock import patch, MagicMock from django.contrib.auth.models import User from django.test import TestCase from django.core.urlresolvers import reverse from django.utils.datastructures import MultiValueDictKeyError from account.models import Role, Team, Organization from physical.tests.factory import EnvironmentFactory, PlanFactory from physical.models import Plan class ValidationTestCase(TestCase): """HTTP test cases for the tsuru Service Add. This class focuses on validations of POST """ USERNAME = "fake_user" PASSWORD = "<PASSWORD>" def setUp(self): self.role = Role.objects.get_or_create(name="fake_role")[0] self.organization = Organization.objects.get_or_create( name='fake_organization' )[0] self.team = Team.objects.get_or_create( name="fake_team", role=self.role, organization=self.organization)[0] self.superuser = User.objects.create_superuser( self.USERNAME, email="{}<EMAIL>".<EMAIL>(self.<EMAIL>), password=self.PASSWORD ) self.team.users.add(self.superuser) self.client.login(username=self.USERNAME, password=self.PASSWORD) self.env = 'dev' self.environment = EnvironmentFactory.create(name=self.env) self.url = reverse('tsuru:service-add', args=(self.env,)) self.name = 'fake_database' self.user = <EMAIL>(self.<EMAIL>) self.description = 'fake desc' self.plan = PlanFactory(name='fake_plan', provider=Plan.CLOUDSTACK) self.plan.environments.add(self.environment) self.plan_name = 'fake-plan-dev' def tearDown(self): self.client.logout() def _assert_resp(self, resp, msg): self.assertEqual(resp.status_code, 400) self.assertEqual(resp.content, msg) def test_name_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post(self.url, {}) def test_user_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post( self.url, {'name': self.name} ) def test_team_not_in_payload(self): with self.assertRaises(MultiValueDictKeyError): self.client.post( self.url, {'name': self.name, 'user': self.user} ) def test_description_fail(self): resp = self.client.post( self.url, {'name': self.name, 'user': self.user, 'team': self.team} ) self._assert_resp(resp, '"A description must be provided."') def test_name_fail(self): resp = self.client.post( self.url, { 'name': '99invalid-name', 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"Your database name must match /^[a-z][a-z0-9_]+$/ ."' ) @patch('tsuru.views.Database.objects.get', new=MagicMock()) def test_database_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"There is already a database called fake_database in dev."' ) @patch( 'tsuru.views.database_name_evironment_constraint', new=MagicMock(return_value=True) ) def test_already_exist_database_with_name(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"fake_database already exists in env dev!"' ) def test_user_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': '<EMAIL>', 'description': self.description, 'team': self.team } ) self._assert_resp( resp, '"User does not exist."' ) def test_team_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': '<EMAIL>', 'description': self.description, 'team': 'team_not_found' } ) self._assert_resp( resp, '"User does not exist."' ) def test_env_not_found(self): self.url = self.url.replace( '/{}/'.format(self.env), '/env_not_found/' ) resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, '"Environment does not exist."' ) @patch( 'tsuru.views.Team.count_databases_in_use', new=MagicMock(return_value=99) ) def test_allocation_limit(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, ('"The database alocation limit of 2 has been exceeded for the ' 'selected team: fake_team"') ) def test_plan_not_on_payload(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name } ) self._assert_resp( resp, '"Plan was not found"' ) def test_plan_not_found(self): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name, 'plan': 'not found' } ) self._assert_resp( resp, '"Plan was not found"' ) @patch('notification.tasks.TaskRegister.create_task', new=MagicMock()) @patch('notification.tasks.create_database_with_retry') def test_call_database_create(self, create_database_mock): resp = self.client.post( self.url, { 'name': self.name, 'user': self.user, 'description': self.description, 'team': self.team.name, 'plan': self.plan_name } ) self.assertTrue(create_database_mock.called) self.assertEqual(resp.status_code, 201)
en
0.781346
HTTP test cases for the tsuru Service Add. This class focuses on validations of POST
2.301665
2
Main/migrations/0072_auto_20210506_0016.py
Muhammet-Yildiz/Ecommerce_Website-HepsiOrada
10
8383
# Generated by Django 3.1.4 on 2021-05-05 21:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Main', '0071_auto_20210506_0004'), ] operations = [ migrations.RemoveField( model_name='product', name='chooseColor', ), migrations.RemoveField( model_name='product', name='chooseSize', ), ]
# Generated by Django 3.1.4 on 2021-05-05 21:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Main', '0071_auto_20210506_0004'), ] operations = [ migrations.RemoveField( model_name='product', name='chooseColor', ), migrations.RemoveField( model_name='product', name='chooseSize', ), ]
en
0.805638
# Generated by Django 3.1.4 on 2021-05-05 21:16
1.531207
2
1.py
zweed4u/dailycodingproblem
0
8384
#!/usr/bin/python3 """ Good morning! Here's your coding interview problem for today. This problem was recently asked by Google. Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17. Bonus: Can you do this in one pass? """ def func(l, k): sums = [] for index, element in enumerate(l): print(f'Current element: {element}') if index == 0: # first element - need another print() continue for num in range(index): print(f'Appending {l[index]} + {l[num]}') sums.append(l[num] + l[index]) print() print(sums) return k in sums print(func([10, 15, 3, 7], 17))
#!/usr/bin/python3 """ Good morning! Here's your coding interview problem for today. This problem was recently asked by Google. Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17. Bonus: Can you do this in one pass? """ def func(l, k): sums = [] for index, element in enumerate(l): print(f'Current element: {element}') if index == 0: # first element - need another print() continue for num in range(index): print(f'Appending {l[index]} + {l[num]}') sums.append(l[num] + l[index]) print() print(sums) return k in sums print(func([10, 15, 3, 7], 17))
en
0.897816
#!/usr/bin/python3 Good morning! Here's your coding interview problem for today. This problem was recently asked by Google. Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17. Bonus: Can you do this in one pass? # first element - need another
3.883942
4
gryphon/data/template_scaffolding/template/setup.py
ow-gryphon/gryphon
0
8385
import json import setuptools with open("template/README.md", "r") as fh: long_description = fh.read() with open('requirements.txt') as fr: requirements = fr.read().strip().split('\n') with open('metadata.json') as fr: metadata = json.load(fr) setuptools.setup( name="", # Name of the repository version="0.0.1", author=metadata.get("author", ""), author_email=metadata.get("author_email", ""), description=metadata.get("description", ""), long_description=long_description, long_description_content_type="text/markdown", url="", # Repository URL or externally maintained page packages=setuptools.find_packages(), python_requires='>=3.6', install_requires=requirements, )
import json import setuptools with open("template/README.md", "r") as fh: long_description = fh.read() with open('requirements.txt') as fr: requirements = fr.read().strip().split('\n') with open('metadata.json') as fr: metadata = json.load(fr) setuptools.setup( name="", # Name of the repository version="0.0.1", author=metadata.get("author", ""), author_email=metadata.get("author_email", ""), description=metadata.get("description", ""), long_description=long_description, long_description_content_type="text/markdown", url="", # Repository URL or externally maintained page packages=setuptools.find_packages(), python_requires='>=3.6', install_requires=requirements, )
en
0.52538
# Name of the repository # Repository URL or externally maintained page
1.817157
2
train_base3.py
Mhaiyang/iccv
2
8386
""" @Time : 201/21/19 10:41 @Author : TaylorMei @Email : <EMAIL> @Project : iccv @File : train_base3.py @Function: """ import datetime import os import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.backends import cudnn from torch.utils.data import DataLoader from torchvision import transforms from tensorboardX import SummaryWriter from tqdm import tqdm import joint_transforms from config import msd_training_root from config import backbone_path from dataset import ImageFolder from misc import AvgMeter, check_mkdir from model.base3 import BASE3 import loss as L cudnn.benchmark = True device_ids = [2] ckpt_path = './ckpt' exp_name = 'BASE3' args = { 'epoch_num': 100, 'train_batch_size': 14, 'last_epoch': 0, 'lr': 5e-3, 'lr_decay': 0.9, 'weight_decay': 5e-4, 'momentum': 0.9, 'snapshot': '', 'scale': 384, 'save_point': [60, 80, 90], 'add_graph': True, 'poly_train': True, 'optimizer': 'SGD' } # Path. check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) vis_path = os.path.join(ckpt_path, exp_name, 'log') check_mkdir(vis_path) log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt') writer = SummaryWriter(log_dir=vis_path, comment=exp_name) # Transform Data. joint_transform = joint_transforms.Compose([ joint_transforms.RandomRotate(), joint_transforms.Resize((args['scale'], args['scale'])) ]) img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # maybe can optimized. ]) target_transform = transforms.ToTensor() # Prepare Data Set. train_set = ImageFolder(msd_training_root, joint_transform, img_transform, target_transform) print("Train set: {}".format(train_set.__len__())) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=0, shuffle=True) def main(): print(args) print(exp_name) net = BASE3(backbone_path).cuda(device_ids[0]).train() if args['add_graph']: writer.add_graph(net, input_to_model=torch.rand( args['train_batch_size'], 3, args['scale'], args['scale']).cuda(device_ids[0])) if args['optimizer'] == 'Adam': print("Adam") optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ]) else: print("SGD") optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum']) if len(args['snapshot']) > 0: print('Training Resumes From \'%s\'' % args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net = nn.DataParallel(net, device_ids=device_ids) print("Using {} GPU(s) to Train.".format(len(device_ids))) open(log_path, 'w').write(str(args) + '\n\n') train(net, optimizer) writer.close() def train(net, optimizer): curr_iter = 1 for epoch in range(args['last_epoch'] + 1, args['last_epoch'] + 1 + args['epoch_num']): loss_4_record, loss_3_record, loss_2_record, loss_1_record, \ loss_f_record, loss_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() train_iterator = tqdm(train_loader, total=len(train_loader)) for data in train_iterator: if args['poly_train']: base_lr = args['lr'] * (1 - float(curr_iter) / (args['epoch_num'] * len(train_loader))) ** args[ 'lr_decay'] optimizer.param_groups[0]['lr'] = 2 * base_lr optimizer.param_groups[1]['lr'] = 1 * base_lr inputs, labels = data batch_size = inputs.size(0) inputs = Variable(inputs).cuda(device_ids[0]) labels = Variable(labels).cuda(device_ids[0]) optimizer.zero_grad() predict_4, predict_3, predict_2, predict_1, predict_f = net(inputs) loss_4 = L.lovasz_hinge(predict_4, labels) loss_3 = L.lovasz_hinge(predict_3, labels) loss_2 = L.lovasz_hinge(predict_2, labels) loss_1 = L.lovasz_hinge(predict_1, labels) loss_f = L.lovasz_hinge(predict_f, labels) loss = loss_4 + loss_3 + loss_2 + loss_1 + loss_f loss.backward() optimizer.step() loss_record.update(loss.data, batch_size) loss_4_record.update(loss_4.data, batch_size) loss_3_record.update(loss_3.data, batch_size) loss_2_record.update(loss_2.data, batch_size) loss_1_record.update(loss_1.data, batch_size) loss_f_record.update(loss_f.data, batch_size) if curr_iter % 50 == 0: writer.add_scalar('loss', loss, curr_iter) writer.add_scalar('loss_4', loss_4, curr_iter) writer.add_scalar('loss_3', loss_3, curr_iter) writer.add_scalar('loss_2', loss_2, curr_iter) writer.add_scalar('loss_1', loss_1, curr_iter) writer.add_scalar('loss_f', loss_f, curr_iter) log = '[%3d], [%6d], [%.6f], [%.5f], [L4: %.5f], [L3: %.5f], [L2: %.5f], [L1: %.5f], [Lf: %.5f]' % \ (epoch, curr_iter, base_lr, loss_record.avg, loss_4_record.avg, loss_3_record.avg, loss_2_record.avg, loss_1_record.avg, loss_f_record.avg) train_iterator.set_description(log) open(log_path, 'a').write(log + '\n') curr_iter += 1 if epoch in args['save_point']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) net.cuda(device_ids[0]) if epoch >= args['epoch_num']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) print("Optimization Have Done!") return if __name__ == '__main__': main()
""" @Time : 201/21/19 10:41 @Author : TaylorMei @Email : <EMAIL> @Project : iccv @File : train_base3.py @Function: """ import datetime import os import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.backends import cudnn from torch.utils.data import DataLoader from torchvision import transforms from tensorboardX import SummaryWriter from tqdm import tqdm import joint_transforms from config import msd_training_root from config import backbone_path from dataset import ImageFolder from misc import AvgMeter, check_mkdir from model.base3 import BASE3 import loss as L cudnn.benchmark = True device_ids = [2] ckpt_path = './ckpt' exp_name = 'BASE3' args = { 'epoch_num': 100, 'train_batch_size': 14, 'last_epoch': 0, 'lr': 5e-3, 'lr_decay': 0.9, 'weight_decay': 5e-4, 'momentum': 0.9, 'snapshot': '', 'scale': 384, 'save_point': [60, 80, 90], 'add_graph': True, 'poly_train': True, 'optimizer': 'SGD' } # Path. check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) vis_path = os.path.join(ckpt_path, exp_name, 'log') check_mkdir(vis_path) log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt') writer = SummaryWriter(log_dir=vis_path, comment=exp_name) # Transform Data. joint_transform = joint_transforms.Compose([ joint_transforms.RandomRotate(), joint_transforms.Resize((args['scale'], args['scale'])) ]) img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # maybe can optimized. ]) target_transform = transforms.ToTensor() # Prepare Data Set. train_set = ImageFolder(msd_training_root, joint_transform, img_transform, target_transform) print("Train set: {}".format(train_set.__len__())) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=0, shuffle=True) def main(): print(args) print(exp_name) net = BASE3(backbone_path).cuda(device_ids[0]).train() if args['add_graph']: writer.add_graph(net, input_to_model=torch.rand( args['train_batch_size'], 3, args['scale'], args['scale']).cuda(device_ids[0])) if args['optimizer'] == 'Adam': print("Adam") optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ]) else: print("SGD") optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum']) if len(args['snapshot']) > 0: print('Training Resumes From \'%s\'' % args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net = nn.DataParallel(net, device_ids=device_ids) print("Using {} GPU(s) to Train.".format(len(device_ids))) open(log_path, 'w').write(str(args) + '\n\n') train(net, optimizer) writer.close() def train(net, optimizer): curr_iter = 1 for epoch in range(args['last_epoch'] + 1, args['last_epoch'] + 1 + args['epoch_num']): loss_4_record, loss_3_record, loss_2_record, loss_1_record, \ loss_f_record, loss_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() train_iterator = tqdm(train_loader, total=len(train_loader)) for data in train_iterator: if args['poly_train']: base_lr = args['lr'] * (1 - float(curr_iter) / (args['epoch_num'] * len(train_loader))) ** args[ 'lr_decay'] optimizer.param_groups[0]['lr'] = 2 * base_lr optimizer.param_groups[1]['lr'] = 1 * base_lr inputs, labels = data batch_size = inputs.size(0) inputs = Variable(inputs).cuda(device_ids[0]) labels = Variable(labels).cuda(device_ids[0]) optimizer.zero_grad() predict_4, predict_3, predict_2, predict_1, predict_f = net(inputs) loss_4 = L.lovasz_hinge(predict_4, labels) loss_3 = L.lovasz_hinge(predict_3, labels) loss_2 = L.lovasz_hinge(predict_2, labels) loss_1 = L.lovasz_hinge(predict_1, labels) loss_f = L.lovasz_hinge(predict_f, labels) loss = loss_4 + loss_3 + loss_2 + loss_1 + loss_f loss.backward() optimizer.step() loss_record.update(loss.data, batch_size) loss_4_record.update(loss_4.data, batch_size) loss_3_record.update(loss_3.data, batch_size) loss_2_record.update(loss_2.data, batch_size) loss_1_record.update(loss_1.data, batch_size) loss_f_record.update(loss_f.data, batch_size) if curr_iter % 50 == 0: writer.add_scalar('loss', loss, curr_iter) writer.add_scalar('loss_4', loss_4, curr_iter) writer.add_scalar('loss_3', loss_3, curr_iter) writer.add_scalar('loss_2', loss_2, curr_iter) writer.add_scalar('loss_1', loss_1, curr_iter) writer.add_scalar('loss_f', loss_f, curr_iter) log = '[%3d], [%6d], [%.6f], [%.5f], [L4: %.5f], [L3: %.5f], [L2: %.5f], [L1: %.5f], [Lf: %.5f]' % \ (epoch, curr_iter, base_lr, loss_record.avg, loss_4_record.avg, loss_3_record.avg, loss_2_record.avg, loss_1_record.avg, loss_f_record.avg) train_iterator.set_description(log) open(log_path, 'a').write(log + '\n') curr_iter += 1 if epoch in args['save_point']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) net.cuda(device_ids[0]) if epoch >= args['epoch_num']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) print("Optimization Have Done!") return if __name__ == '__main__': main()
en
0.484448
@Time : 201/21/19 10:41 @Author : TaylorMei @Email : <EMAIL> @Project : iccv @File : train_base3.py @Function: # Path. # Transform Data. # maybe can optimized. # Prepare Data Set.
1.749567
2
tests/test_comment.py
uwase-diane/min_pitch
1
8387
import unittest from app.models import Comment, Pitch from app import db class TestPitchComment(unittest.TestCase): def setUp(self): self.new_pitch = Pitch(post = "doit", category='Quotes') self.new_comment = Comment(comment = "good comment", pitch=self.new_pitch) def test_instance(self): self.assertTrue(isinstance(self.new_comment,Comment)) def test_check_instance_variables(self): self.assertEquals(self.new_comment.comment,"good comment") self.assertEquals(self.new_comment.pitch,self.new_pitch, 'do it')
import unittest from app.models import Comment, Pitch from app import db class TestPitchComment(unittest.TestCase): def setUp(self): self.new_pitch = Pitch(post = "doit", category='Quotes') self.new_comment = Comment(comment = "good comment", pitch=self.new_pitch) def test_instance(self): self.assertTrue(isinstance(self.new_comment,Comment)) def test_check_instance_variables(self): self.assertEquals(self.new_comment.comment,"good comment") self.assertEquals(self.new_comment.pitch,self.new_pitch, 'do it')
none
1
3.247295
3
teacher/views.py
itteamforslp/safelife_project
0
8388
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from django.template import loader from django.db import connection from django.http import HttpResponseRedirect import datetime from django.http import JsonResponse from administrator.models import Course, CourseTeacher, CourseStudent, Student from django.core.exceptions import PermissionDenied def teacher_only(function): #"""Limit view to teacher only.""" def _inner(request, *args, **kwargs): if not request.user.is_staff == False | request.user.is_superuser: raise PermissionDenied return function(request, *args, **kwargs) return _inner @login_required(login_url = '/users') @teacher_only def home(request): current_user = request.user.id teacher_current_courses = Course.objects.select_related().raw('SELECT * ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id AND C.is_complete = 0 ', [current_user]) currentdate = datetime.datetime.today().strftime('%Y-%m-%d') with connection.cursor() as cursor: cursor.execute('SELECT CL.course_id, CL.date ' 'FROM classes as CL, course_teachers as CT ' 'WHERE CT.teachers_id = %s AND CL.date >= %s ' 'AND CT.course_id = CL.course_id ' 'GROUP BY CL.course_id ', [current_user, currentdate]) next_class_date = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT CS.course_id, COUNT(CS.students_id) ' 'FROM course_teachers as CT, course_students as CS ' 'WHERE CT.teachers_id = %s AND CT.course_id = CS.course_id ' 'GROUP BY CS.course_id ', [current_user]) teacher_student_count = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT C.course_id, C.notes ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id ' 'GROUP BY CT.course_id ', [current_user]) teacher_course_notes = cursor.fetchall() template = loader.get_template('teacher/dashboard.html') context = { 'teacher_current_courses': teacher_current_courses, 'teacher_student_count': teacher_student_count, 'next_class_date': next_class_date, 'teacher_course_notes': teacher_course_notes } # Render the template to the user return HttpResponse(template.render(context, request)) @csrf_exempt def update_course_notes(request): # Get the student name that was passed from the web page courseNotes = request.POST.get('courseNotes') courseId = request.POST.get('courseId') # Create a cursor to execute raw SQL queries. with connection.cursor() as cursor: cursor.execute('UPDATE courses ' 'SET notes = %s ' 'WHERE course_id = %s', [courseNotes, courseId]) # Render the response to the user
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from django.template import loader from django.db import connection from django.http import HttpResponseRedirect import datetime from django.http import JsonResponse from administrator.models import Course, CourseTeacher, CourseStudent, Student from django.core.exceptions import PermissionDenied def teacher_only(function): #"""Limit view to teacher only.""" def _inner(request, *args, **kwargs): if not request.user.is_staff == False | request.user.is_superuser: raise PermissionDenied return function(request, *args, **kwargs) return _inner @login_required(login_url = '/users') @teacher_only def home(request): current_user = request.user.id teacher_current_courses = Course.objects.select_related().raw('SELECT * ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id AND C.is_complete = 0 ', [current_user]) currentdate = datetime.datetime.today().strftime('%Y-%m-%d') with connection.cursor() as cursor: cursor.execute('SELECT CL.course_id, CL.date ' 'FROM classes as CL, course_teachers as CT ' 'WHERE CT.teachers_id = %s AND CL.date >= %s ' 'AND CT.course_id = CL.course_id ' 'GROUP BY CL.course_id ', [current_user, currentdate]) next_class_date = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT CS.course_id, COUNT(CS.students_id) ' 'FROM course_teachers as CT, course_students as CS ' 'WHERE CT.teachers_id = %s AND CT.course_id = CS.course_id ' 'GROUP BY CS.course_id ', [current_user]) teacher_student_count = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT C.course_id, C.notes ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id ' 'GROUP BY CT.course_id ', [current_user]) teacher_course_notes = cursor.fetchall() template = loader.get_template('teacher/dashboard.html') context = { 'teacher_current_courses': teacher_current_courses, 'teacher_student_count': teacher_student_count, 'next_class_date': next_class_date, 'teacher_course_notes': teacher_course_notes } # Render the template to the user return HttpResponse(template.render(context, request)) @csrf_exempt def update_course_notes(request): # Get the student name that was passed from the web page courseNotes = request.POST.get('courseNotes') courseId = request.POST.get('courseId') # Create a cursor to execute raw SQL queries. with connection.cursor() as cursor: cursor.execute('UPDATE courses ' 'SET notes = %s ' 'WHERE course_id = %s', [courseNotes, courseId]) # Render the response to the user
en
0.91899
#"""Limit view to teacher only.""" # Render the template to the user # Get the student name that was passed from the web page # Create a cursor to execute raw SQL queries. # Render the response to the user
2.054544
2
botstory/middlewares/text/text_test.py
botstory/bot-story
5
8389
import logging import pytest import re from . import text from ... import matchers from ...utils import answer, SimpleTrigger logger = logging.getLogger(__name__) @pytest.mark.asyncio async def test_should_run_story_on_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_not_run_story_on_non_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('buy!') assert not trigger.is_triggered @pytest.mark.asyncio async def test_should_catch_any_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_ignore_any_non_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.location('some where') assert not trigger.is_triggered def test_serialize_text_any(): m_old = text.Any() m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Any) @pytest.mark.asyncio async def test_should_catch_equal_text_message(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Equal('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.Equal('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('see you!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_equal_handle_should_create_right_type(): assert isinstance(text.Equal.handle(''), text.Equal) def test_serialize_text_equal(): m_old = text.Equal('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Equal) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_equal_text_message_case_in_sensitive(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.EqualCaseIgnore('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.EqualCaseIgnore('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('See You!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_serialize_text_equal_case_ignore(): m_old = text.EqualCaseIgnore('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.EqualCaseIgnore) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex(): trigger_buy = SimpleTrigger() trigger_sell = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('buy (.*)btc')) def one_story(): @story.part() def then(ctx): trigger_buy.receive(text.get_text(ctx)['matches'][0]) @story.on(text.Match('sell (.*)btc')) def another_story(): @story.part() def then(ctx): trigger_sell.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('buy 700btc') await talk.pure_text('sell 600btc') assert trigger_buy.result() == '700' assert trigger_sell.result() == '600' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex_with_flags(): trigger_destination = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): logger.debug('ctx') logger.debug(ctx) trigger_destination.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('Going to Pripyat') assert trigger_destination.result() == 'Pripyat' @pytest.mark.asyncio async def test_should_not_fail_on_empty_message(): with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): pass await talk.ask(None) def test_serialize_text_match(): m_old = text.Match('hello (.*)', re.IGNORECASE) m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Match) assert m_new.matcher.match('Hello Piter!') def test_text_qual_should_handle_text(): assert isinstance(matchers.get_validator('just pure text'), text.Equal)
import logging import pytest import re from . import text from ... import matchers from ...utils import answer, SimpleTrigger logger = logging.getLogger(__name__) @pytest.mark.asyncio async def test_should_run_story_on_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_not_run_story_on_non_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('buy!') assert not trigger.is_triggered @pytest.mark.asyncio async def test_should_catch_any_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_ignore_any_non_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.location('some where') assert not trigger.is_triggered def test_serialize_text_any(): m_old = text.Any() m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Any) @pytest.mark.asyncio async def test_should_catch_equal_text_message(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Equal('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.Equal('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('see you!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_equal_handle_should_create_right_type(): assert isinstance(text.Equal.handle(''), text.Equal) def test_serialize_text_equal(): m_old = text.Equal('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Equal) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_equal_text_message_case_in_sensitive(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.EqualCaseIgnore('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.EqualCaseIgnore('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('See You!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_serialize_text_equal_case_ignore(): m_old = text.EqualCaseIgnore('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.EqualCaseIgnore) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex(): trigger_buy = SimpleTrigger() trigger_sell = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('buy (.*)btc')) def one_story(): @story.part() def then(ctx): trigger_buy.receive(text.get_text(ctx)['matches'][0]) @story.on(text.Match('sell (.*)btc')) def another_story(): @story.part() def then(ctx): trigger_sell.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('buy 700btc') await talk.pure_text('sell 600btc') assert trigger_buy.result() == '700' assert trigger_sell.result() == '600' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex_with_flags(): trigger_destination = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): logger.debug('ctx') logger.debug(ctx) trigger_destination.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('Going to Pripyat') assert trigger_destination.result() == 'Pripyat' @pytest.mark.asyncio async def test_should_not_fail_on_empty_message(): with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): pass await talk.ask(None) def test_serialize_text_match(): m_old = text.Match('hello (.*)', re.IGNORECASE) m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Match) assert m_new.matcher.match('Hello Piter!') def test_text_qual_should_handle_text(): assert isinstance(matchers.get_validator('just pure text'), text.Equal)
none
1
2.229999
2
pywikibot/site/_datasite.py
xqt/pwb
0
8390
<gh_stars>0 """Objects representing API interface to Wikibase site.""" # # (C) Pywikibot team, 2012-2022 # # Distributed under the terms of the MIT license. # import datetime import json import uuid from contextlib import suppress from typing import Optional from warnings import warn import pywikibot from pywikibot.data import api from pywikibot.exceptions import ( APIError, EntityTypeUnknownError, IsRedirectPageError, NoPageError, NoWikibaseEntityError, ) from pywikibot.site._apisite import APISite from pywikibot.site._decorators import need_extension, need_right, need_version from pywikibot.tools import itergroup, merge_unique_dicts, remove_last_args __all__ = ('DataSite', ) class DataSite(APISite): """Wikibase data capable site.""" def __init__(self, *args, **kwargs) -> None: """Initializer.""" super().__init__(*args, **kwargs) self._item_namespace = None self._property_namespace = None self._type_to_class = { 'item': pywikibot.ItemPage, 'property': pywikibot.PropertyPage, 'mediainfo': pywikibot.MediaInfo, 'lexeme': pywikibot.LexemePage, 'form': pywikibot.LexemeForm, 'sense': pywikibot.LexemeSense, } def _cache_entity_namespaces(self) -> None: """Find namespaces for each known wikibase entity type.""" self._entity_namespaces = {} for entity_type in self._type_to_class: for namespace in self.namespaces.values(): if not hasattr(namespace, 'defaultcontentmodel'): continue content_model = namespace.defaultcontentmodel if content_model == ('wikibase-' + entity_type): self._entity_namespaces[entity_type] = namespace break def get_namespace_for_entity_type(self, entity_type): """ Return namespace for given entity type. :return: corresponding namespace :rtype: Namespace """ if not hasattr(self, '_entity_namespaces'): self._cache_entity_namespaces() if entity_type in self._entity_namespaces: return self._entity_namespaces[entity_type] raise EntityTypeUnknownError( '{!r} does not support entity type "{}" ' "or it doesn't have its own namespace" .format(self, entity_type)) @property def item_namespace(self): """ Return namespace for items. :return: item namespace :rtype: Namespace """ if self._item_namespace is None: self._item_namespace = self.get_namespace_for_entity_type('item') return self._item_namespace @property def property_namespace(self): """ Return namespace for properties. :return: property namespace :rtype: Namespace """ if self._property_namespace is None: self._property_namespace = self.get_namespace_for_entity_type( 'property') return self._property_namespace def get_entity_for_entity_id(self, entity_id): """ Return a new instance for given entity id. :raises pywikibot.exceptions.NoWikibaseEntityError: there is no entity with the id :return: a WikibaseEntity subclass :rtype: WikibaseEntity """ for cls in self._type_to_class.values(): if cls.is_valid_id(entity_id): return cls(self, entity_id) entity = pywikibot.page.WikibaseEntity(self, entity_id) raise NoWikibaseEntityError(entity) @property @need_version('1.28-wmf.3') def sparql_endpoint(self): """ Return the sparql endpoint url, if any has been set. :return: sparql endpoint url :rtype: str|None """ return self.siteinfo['general'].get('wikibase-sparql') @property @need_version('1.28-wmf.23') def concept_base_uri(self): """ Return the base uri for concepts/entities. :return: concept base uri :rtype: str """ return self.siteinfo['general']['wikibase-conceptbaseuri'] def geo_shape_repository(self): """Return Site object for the geo-shapes repository e.g. commons.""" url = self.siteinfo['general'].get('wikibase-geoshapestoragebaseurl') if url: return pywikibot.Site(url=url, user=self.username()) return None def tabular_data_repository(self): """Return Site object for the tabular-datas repository e.g. commons.""" url = self.siteinfo['general'].get( 'wikibase-tabulardatastoragebaseurl') if url: return pywikibot.Site(url=url, user=self.username()) return None def loadcontent(self, identification, *props): """ Fetch the current content of a Wikibase item. This is called loadcontent since wbgetentities does not support fetching old revisions. Eventually this will get replaced by an actual loadrevisions. :param identification: Parameters used to identify the page(s) :type identification: dict :param props: the optional properties to fetch. """ params = merge_unique_dicts(identification, action='wbgetentities', # TODO: When props is empty it results in # an empty string ('&props=') but it should # result in a missing entry. props=props if props else False) req = self.simple_request(**params) data = req.submit() if 'success' not in data: raise APIError(data['errors'], '') return data['entities'] def preload_entities(self, pagelist, groupsize: int = 50): """ Yield subclasses of WikibaseEntity's with content prefilled. Note that pages will be iterated in a different order than in the underlying pagelist. :param pagelist: an iterable that yields either WikibaseEntity objects, or Page objects linked to an ItemPage. :param groupsize: how many pages to query at a time """ if not hasattr(self, '_entity_namespaces'): self._cache_entity_namespaces() for sublist in itergroup(pagelist, groupsize): req = {'ids': [], 'titles': [], 'sites': []} for p in sublist: if isinstance(p, pywikibot.page.WikibaseEntity): ident = p._defined_by() for key in ident: req[key].append(ident[key]) else: if p.site == self and p.namespace() in ( self._entity_namespaces.values()): req['ids'].append(p.title(with_ns=False)) else: assert p.site.has_data_repository, \ 'Site must have a data repository' req['sites'].append(p.site.dbName()) req['titles'].append(p._link._text) req = self.simple_request(action='wbgetentities', **req) data = req.submit() for entity in data['entities']: if 'missing' in data['entities'][entity]: continue cls = self._type_to_class[data['entities'][entity]['type']] page = cls(self, entity) # No api call is made because item._content is given page._content = data['entities'][entity] with suppress(IsRedirectPageError): page.get() # cannot provide get_redirect=True (T145971) yield page def getPropertyType(self, prop): """ Obtain the type of a property. This is used specifically because we can cache the value for a much longer time (near infinite). """ params = {'action': 'wbgetentities', 'ids': prop.getID(), 'props': 'datatype'} expiry = datetime.timedelta(days=365 * 100) # Store it for 100 years req = self._request(expiry=expiry, parameters=params) data = req.submit() # the IDs returned from the API can be upper or lowercase, depending # on the version. See bug T55894 for more information. try: dtype = data['entities'][prop.getID()]['datatype'] except KeyError: dtype = data['entities'][prop.getID().lower()]['datatype'] return dtype @need_right('edit') def editEntity(self, entity, data, bot: bool = True, **kwargs): """ Edit entity. Note: This method is unable to create entities other than 'item' if dict with API parameters was passed to 'entity' parameter. :param entity: Page to edit, or dict with API parameters to use for entity identification :type entity: WikibaseEntity or dict :param data: data updates :type data: dict :param bot: Whether to mark the edit as a bot edit :return: New entity data :rtype: dict """ # this changes the reference to a new object data = dict(data) if isinstance(entity, pywikibot.page.WikibaseEntity): params = entity._defined_by(singular=True) if 'id' in params and params['id'] == '-1': del params['id'] if not params: params['new'] = entity.entity_type data_for_new_entity = entity.get_data_for_new_entity() data.update(data_for_new_entity) else: if 'id' in entity and entity['id'] == '-1': del entity['id'] params = dict(entity) if not params: # If no identification was provided params['new'] = 'item' params['action'] = 'wbeditentity' if bot: params['bot'] = 1 if 'baserevid' in kwargs and kwargs['baserevid']: params['baserevid'] = kwargs['baserevid'] params['token'] = self.tokens['edit'] for arg in kwargs: if arg in ['clear', 'summary']: params[arg] = kwargs[arg] elif arg != 'baserevid': warn('Unknown wbeditentity parameter {} ignored'.format(arg), UserWarning, 2) params['data'] = json.dumps(data) req = self.simple_request(**params) return req.submit() @need_right('edit') def addClaim(self, entity, claim, bot: bool = True, summary=None) -> None: """ Add a claim. :param entity: Entity to modify :type entity: WikibaseEntity :param claim: Claim to be added :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ claim.snak = entity.getID() + '$' + str(uuid.uuid4()) params = {'action': 'wbsetclaim', 'claim': json.dumps(claim.toJSON()), 'baserevid': entity.latest_revision_id, 'summary': summary, 'token': self.tokens['edit'], 'bot': bot, } req = self.simple_request(**params) data = req.submit() # Update the item if claim.getID() in entity.claims: entity.claims[claim.getID()].append(claim) else: entity.claims[claim.getID()] = [claim] entity.latest_revision_id = data['pageinfo']['lastrevid'] @need_right('edit') def changeClaimTarget(self, claim, snaktype: str = 'value', bot: bool = True, summary=None): """ Set the claim target to the value of the provided claim target. :param claim: The source of the claim target value :type claim: pywikibot.Claim :param snaktype: An optional snaktype ('value', 'novalue' or 'somevalue'). Default: 'value' :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ if claim.isReference or claim.isQualifier: raise NotImplementedError if not claim.snak: # We need to already have the snak value raise NoPageError(claim) params = {'action': 'wbsetclaimvalue', 'claim': claim.snak, 'snaktype': snaktype, 'summary': summary, 'bot': bot, 'token': self.tokens['edit']} if snaktype == 'value': params['value'] = json.dumps(claim._formatValue()) params['baserevid'] = claim.on_item.latest_revision_id req = self.simple_request(**params) return req.submit() @need_right('edit') def save_claim(self, claim, summary=None, bot: bool = True): """ Save the whole claim to the wikibase site. :param claim: The claim to save :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ if claim.isReference or claim.isQualifier: raise NotImplementedError if not claim.snak: # We need to already have the snak value raise NoPageError(claim) params = {'action': 'wbsetclaim', 'claim': json.dumps(claim.toJSON()), 'token': self.tokens['edit'], 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, } req = self.simple_request(**params) data = req.submit() claim.on_item.latest_revision_id = data['pageinfo']['lastrevid'] return data @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def editSource(self, claim, source, new: bool = False, bot: bool = True, summary: Optional[str] = None): """Create/Edit a source. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the source to :type claim: pywikibot.Claim :param source: A Claim object to be used as a source :type source: pywikibot.Claim :param new: Whether to create a new one if the "source" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ if claim.isReference or claim.isQualifier: raise ValueError('The claim cannot have a source.') params = {'action': 'wbsetreference', 'statement': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'token': self.tokens['edit']} # build up the snak if isinstance(source, list): sources = source else: sources = [source] snak = {} for sourceclaim in sources: datavalue = sourceclaim._formatDataValue() valuesnaks = snak.get(sourceclaim.getID(), []) valuesnaks.append({ 'snaktype': 'value', 'property': sourceclaim.getID(), 'datavalue': datavalue, }) snak[sourceclaim.getID()] = valuesnaks # set the hash if the source should be changed. # if present, all claims of one source have the same hash if not new and hasattr(sourceclaim, 'hash'): params['reference'] = sourceclaim.hash params['snaks'] = json.dumps(snak) req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def editQualifier(self, claim, qualifier, new: bool = False, bot: bool = True, summary: Optional[str] = None): """Create/Edit a qualifier. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the qualifier to :type claim: pywikibot.Claim :param qualifier: A Claim object to be used as a qualifier :type qualifier: pywikibot.Claim :param new: Whether to create a new one if the "qualifier" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ if claim.isReference or claim.isQualifier: raise ValueError('The claim cannot have a qualifier.') params = {'action': 'wbsetqualifier', 'claim': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot} if (not new and hasattr(qualifier, 'hash') and qualifier.hash is not None): params['snakhash'] = qualifier.hash params['token'] = self.tokens['edit'] # build up the snak if qualifier.getSnakType() == 'value': params['value'] = json.dumps(qualifier._formatValue()) params['snaktype'] = qualifier.getSnakType() params['property'] = qualifier.getID() req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def removeClaims(self, claims, bot: bool = True, summary: Optional[str] = None): """Remove claims. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claims: Claims to be removed :type claims: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :type bot: bool :param summary: Edit summary :type summary: str """ # Check on_item for all additional claims items = {claim.on_item for claim in claims if claim.on_item} assert len(items) == 1 baserevid = items.pop().latest_revision_id params = { 'action': 'wbremoveclaims', 'baserevid': baserevid, 'summary': summary, 'bot': bot, 'claim': '|'.join(claim.snak for claim in claims), 'token': self.tokens['edit'], } req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def removeSources(self, claim, sources, bot: bool = True, summary: Optional[str] = None): """Remove sources. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the sources from :type claim: pywikibot.Claim :param sources: A list of Claim objects that are sources :type sources: list :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ params = { 'action': 'wbremovereferences', 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'statement': claim.snak, 'references': '|'.join(source.hash for source in sources), 'token': self.tokens['edit'], } req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def remove_qualifiers(self, claim, qualifiers, bot: bool = True, summary: Optional[str] = None): """Remove qualifiers. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the qualifier from :type claim: pywikibot.Claim :param qualifiers: Claim objects currently used as a qualifiers :type qualifiers: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ params = { 'action': 'wbremovequalifiers', 'claim': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'qualifiers': [qualifier.hash for qualifier in qualifiers], 'token': self.tokens['edit'] } req = self.simple_request(**params) return req.submit() @need_right('edit') def linkTitles(self, page1, page2, bot: bool = True): """ Link two pages together. :param page1: First page to link :type page1: pywikibot.Page :param page2: Second page to link :type page2: pywikibot.Page :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict """ params = { 'action': 'wblinktitles', 'tosite': page1.site.dbName(), 'totitle': page1.title(), 'fromsite': page2.site.dbName(), 'fromtitle': page2.title(), 'token': self.tokens['edit'] } if bot: params['bot'] = 1 req = self.simple_request(**params) return req.submit() @need_right('item-merge') def mergeItems(self, from_item, to_item, ignore_conflicts=None, summary=None, bot: bool = True): """ Merge two items together. :param from_item: Item to merge from :type from_item: pywikibot.ItemPage :param to_item: Item to merge into :type to_item: pywikibot.ItemPage :param ignore_conflicts: Which type of conflicts ('description', 'sitelink', and 'statement') should be ignored :type ignore_conflicts: list of str :param summary: Edit summary :type summary: str :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict """ params = { 'action': 'wbmergeitems', 'fromid': from_item.getID(), 'toid': to_item.getID(), 'ignoreconflicts': ignore_conflicts, 'token': self.tokens['edit'], 'summary': summary, } if bot: params['bot'] = 1 req = self.simple_request(**params) return req.submit() @need_right('item-merge') @need_extension('WikibaseLexeme') def mergeLexemes(self, from_lexeme, to_lexeme, summary=None, *, bot: bool = True) -> dict: """ Merge two lexemes together. :param from_lexeme: Lexeme to merge from :type from_lexeme: pywikibot.LexemePage :param to_lexeme: Lexeme to merge into :type to_lexeme: pywikibot.LexemePage :param summary: Edit summary :type summary: str :keyword bot: Whether to mark the edit as a bot edit :return: dict API output """ params = { 'action': 'wblmergelexemes', 'source': from_lexeme.getID(), 'target': to_lexeme.getID(), 'token': self.tokens['edit'], 'summary': summary, } if bot: params['bot'] = 1 req = self.simple_request(**params) data = req.submit() return data @need_right('item-redirect') def set_redirect_target(self, from_item, to_item, bot: bool = True): """ Make a redirect to another item. :param to_item: title of target item. :type to_item: pywikibot.ItemPage :param from_item: Title of the item to be redirected. :type from_item: pywikibot.ItemPage :param bot: Whether to mark the edit as a bot edit """ params = { 'action': 'wbcreateredirect', 'from': from_item.getID(), 'to': to_item.getID(), 'token': self.tokens['edit'], 'bot': bot, } req = self.simple_request(**params) return req.submit() def search_entities(self, search: str, language: str, total: Optional[int] = None, **kwargs): """ Search for pages or properties that contain the given text. :param search: Text to find. :param language: Language to search in. :param total: Maximum number of pages to retrieve in total, or None in case of no limit. :return: 'search' list from API output. :rtype: Generator """ lang_codes = self._paraminfo.parameter('wbsearchentities', 'language')['type'] if language not in lang_codes: raise ValueError('Data site used does not support provided ' 'language.') if 'site' in kwargs: if kwargs['site'].sitename != self.sitename: raise ValueError('The site given in the kwargs is different.') warn('search_entities should not get a site via kwargs.', UserWarning, 2) del kwargs['site'] parameters = dict(search=search, language=language, **kwargs) gen = self._generator(api.APIGenerator, type_arg='wbsearchentities', data_name='search', total=total, parameters=parameters) return gen @need_right('edit') def _wbset_action(self, itemdef, action: str, action_data, **kwargs) -> dict: """ Execute wbset{action} on a Wikibase entity. Supported actions are: wbsetaliases, wbsetdescription, wbsetlabel and wbsetsitelink :param itemdef: Entity to modify or create :type itemdef: str, WikibaseEntity or Page connected to such item :param action: wbset{action} to perform: 'wbsetaliases', 'wbsetdescription', 'wbsetlabel', 'wbsetsitelink' :param action_data: data to be used in API request, see API help :type action_data: SiteLink or dict wbsetaliases: dict shall have the following structure: {'language': value (str), 'add': list of language codes (str), 'remove': list of language codes (str), 'set' list of language codes (str) } 'add' and 'remove' are alternative to 'set' wbsetdescription and wbsetlabel: dict shall have keys 'language', 'value' wbsetsitelink: dict shall have keys 'linksite', 'linktitle' and optionally 'badges' :keyword bot: Whether to mark the edit as a bot edit, default is True :type bot: bool :keyword tags: Change tags to apply with the edit :type tags: list of str :return: query result :raises AssertionError, TypeError """ def format_sitelink(sitelink): """Convert SiteLink to a dict accepted by wbsetsitelink API.""" if isinstance(sitelink, pywikibot.page.SiteLink): _dict = { 'linksite': sitelink._sitekey, 'linktitle': sitelink._rawtitle, 'badges': '|'.join([b.title() for b in sitelink.badges]), } else: _dict = sitelink return _dict def prepare_data(action, data): """Prepare data as expected by API.""" if action == 'wbsetaliases': res = data keys = set(res) assert keys < {'language', 'add', 'remove', 'set'} assert 'language' in keys assert ({'add', 'remove', 'set'} & keys) assert ({'add', 'set'} >= keys) assert ({'remove', 'set'} >= keys) elif action in ('wbsetlabel', 'wbsetdescription'): res = data keys = set(res) assert keys == {'language', 'value'} elif action == 'wbsetsitelink': res = format_sitelink(data) keys = set(res) assert keys >= {'linksite'} assert keys <= {'linksite', 'linktitle', 'badges'} else: raise ValueError('Something has gone wrong ...') return res # Supported actions assert action in ('wbsetaliases', 'wbsetdescription', 'wbsetlabel', 'wbsetsitelink'), \ 'action {} not supported.'.format(action) # prefer ID over (site, title) if isinstance(itemdef, str): itemdef = self.get_entity_for_entity_id(itemdef) elif isinstance(itemdef, pywikibot.Page): itemdef = pywikibot.ItemPage.fromPage(itemdef, lazy_load=True) elif not isinstance(itemdef, pywikibot.page.WikibaseEntity): raise TypeError('itemdef shall be str, WikibaseEntity or Page') params = itemdef._defined_by(singular=True) # TODO: support 'new' baserevid = kwargs.pop( 'baserevid', itemdef.latest_revision_id if 'id' in params else 0 ) params.update( {'baserevid': baserevid, 'action': action, 'token': self.tokens['edit'], 'bot': kwargs.pop('bot', True), }) params.update(prepare_data(action, action_data)) for arg in kwargs: if arg in ['summary', 'tags']: params[arg] = kwargs[arg] else: warn('Unknown parameter {} for action {}, ignored' .format(arg, action), UserWarning, 2) req = self.simple_request(**params) data = req.submit() return data def wbsetaliases(self, itemdef, aliases, **kwargs): """ Set aliases for a single Wikibase entity. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetaliases', aliases, **kwargs) def wbsetdescription(self, itemdef, description, **kwargs): """ Set description for a single Wikibase entity. See self._wbset_action() """ return self._wbset_action(itemdef, 'wbsetdescription', description, **kwargs) def wbsetlabel(self, itemdef, label, **kwargs): """ Set label for a single Wikibase entity. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetlabel', label, **kwargs) def wbsetsitelink(self, itemdef, sitelink, **kwargs): """ Set, remove or modify a sitelink on a Wikibase item. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetsitelink', sitelink, **kwargs) @need_right('edit') @need_extension('WikibaseLexeme') def add_form(self, lexeme, form, *, bot: bool = True, baserevid=None) -> dict: """ Add a form. :param lexeme: Lexeme to modify :type lexeme: pywikibot.LexemePage :param form: Form to be added :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long """ params = { 'action': 'wbladdform', 'lexemeId': lexeme.getID(), 'data': json.dumps(form.toJSON()), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data @need_right('edit') @need_extension('WikibaseLexeme') def remove_form(self, form, *, bot: bool = True, baserevid=None) -> dict: """ Remove a form. :param form: Form to be removed :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long """ params = { 'action': 'wblremoveform', 'id': form.getID(), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data @need_right('edit') @need_extension('WikibaseLexeme') def edit_form_elements(self, form, data, *, bot: bool = True, baserevid=None) -> dict: """ Edit lexeme form elements. :param form: Form :type form: pywikibot.LexemeForm :param data: data updates :type data: dict :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long :return: New form data """ params = { 'action': 'wbleditformelements', 'formId': form.getID(), 'data': json.dumps(data), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data
"""Objects representing API interface to Wikibase site.""" # # (C) Pywikibot team, 2012-2022 # # Distributed under the terms of the MIT license. # import datetime import json import uuid from contextlib import suppress from typing import Optional from warnings import warn import pywikibot from pywikibot.data import api from pywikibot.exceptions import ( APIError, EntityTypeUnknownError, IsRedirectPageError, NoPageError, NoWikibaseEntityError, ) from pywikibot.site._apisite import APISite from pywikibot.site._decorators import need_extension, need_right, need_version from pywikibot.tools import itergroup, merge_unique_dicts, remove_last_args __all__ = ('DataSite', ) class DataSite(APISite): """Wikibase data capable site.""" def __init__(self, *args, **kwargs) -> None: """Initializer.""" super().__init__(*args, **kwargs) self._item_namespace = None self._property_namespace = None self._type_to_class = { 'item': pywikibot.ItemPage, 'property': pywikibot.PropertyPage, 'mediainfo': pywikibot.MediaInfo, 'lexeme': pywikibot.LexemePage, 'form': pywikibot.LexemeForm, 'sense': pywikibot.LexemeSense, } def _cache_entity_namespaces(self) -> None: """Find namespaces for each known wikibase entity type.""" self._entity_namespaces = {} for entity_type in self._type_to_class: for namespace in self.namespaces.values(): if not hasattr(namespace, 'defaultcontentmodel'): continue content_model = namespace.defaultcontentmodel if content_model == ('wikibase-' + entity_type): self._entity_namespaces[entity_type] = namespace break def get_namespace_for_entity_type(self, entity_type): """ Return namespace for given entity type. :return: corresponding namespace :rtype: Namespace """ if not hasattr(self, '_entity_namespaces'): self._cache_entity_namespaces() if entity_type in self._entity_namespaces: return self._entity_namespaces[entity_type] raise EntityTypeUnknownError( '{!r} does not support entity type "{}" ' "or it doesn't have its own namespace" .format(self, entity_type)) @property def item_namespace(self): """ Return namespace for items. :return: item namespace :rtype: Namespace """ if self._item_namespace is None: self._item_namespace = self.get_namespace_for_entity_type('item') return self._item_namespace @property def property_namespace(self): """ Return namespace for properties. :return: property namespace :rtype: Namespace """ if self._property_namespace is None: self._property_namespace = self.get_namespace_for_entity_type( 'property') return self._property_namespace def get_entity_for_entity_id(self, entity_id): """ Return a new instance for given entity id. :raises pywikibot.exceptions.NoWikibaseEntityError: there is no entity with the id :return: a WikibaseEntity subclass :rtype: WikibaseEntity """ for cls in self._type_to_class.values(): if cls.is_valid_id(entity_id): return cls(self, entity_id) entity = pywikibot.page.WikibaseEntity(self, entity_id) raise NoWikibaseEntityError(entity) @property @need_version('1.28-wmf.3') def sparql_endpoint(self): """ Return the sparql endpoint url, if any has been set. :return: sparql endpoint url :rtype: str|None """ return self.siteinfo['general'].get('wikibase-sparql') @property @need_version('1.28-wmf.23') def concept_base_uri(self): """ Return the base uri for concepts/entities. :return: concept base uri :rtype: str """ return self.siteinfo['general']['wikibase-conceptbaseuri'] def geo_shape_repository(self): """Return Site object for the geo-shapes repository e.g. commons.""" url = self.siteinfo['general'].get('wikibase-geoshapestoragebaseurl') if url: return pywikibot.Site(url=url, user=self.username()) return None def tabular_data_repository(self): """Return Site object for the tabular-datas repository e.g. commons.""" url = self.siteinfo['general'].get( 'wikibase-tabulardatastoragebaseurl') if url: return pywikibot.Site(url=url, user=self.username()) return None def loadcontent(self, identification, *props): """ Fetch the current content of a Wikibase item. This is called loadcontent since wbgetentities does not support fetching old revisions. Eventually this will get replaced by an actual loadrevisions. :param identification: Parameters used to identify the page(s) :type identification: dict :param props: the optional properties to fetch. """ params = merge_unique_dicts(identification, action='wbgetentities', # TODO: When props is empty it results in # an empty string ('&props=') but it should # result in a missing entry. props=props if props else False) req = self.simple_request(**params) data = req.submit() if 'success' not in data: raise APIError(data['errors'], '') return data['entities'] def preload_entities(self, pagelist, groupsize: int = 50): """ Yield subclasses of WikibaseEntity's with content prefilled. Note that pages will be iterated in a different order than in the underlying pagelist. :param pagelist: an iterable that yields either WikibaseEntity objects, or Page objects linked to an ItemPage. :param groupsize: how many pages to query at a time """ if not hasattr(self, '_entity_namespaces'): self._cache_entity_namespaces() for sublist in itergroup(pagelist, groupsize): req = {'ids': [], 'titles': [], 'sites': []} for p in sublist: if isinstance(p, pywikibot.page.WikibaseEntity): ident = p._defined_by() for key in ident: req[key].append(ident[key]) else: if p.site == self and p.namespace() in ( self._entity_namespaces.values()): req['ids'].append(p.title(with_ns=False)) else: assert p.site.has_data_repository, \ 'Site must have a data repository' req['sites'].append(p.site.dbName()) req['titles'].append(p._link._text) req = self.simple_request(action='wbgetentities', **req) data = req.submit() for entity in data['entities']: if 'missing' in data['entities'][entity]: continue cls = self._type_to_class[data['entities'][entity]['type']] page = cls(self, entity) # No api call is made because item._content is given page._content = data['entities'][entity] with suppress(IsRedirectPageError): page.get() # cannot provide get_redirect=True (T145971) yield page def getPropertyType(self, prop): """ Obtain the type of a property. This is used specifically because we can cache the value for a much longer time (near infinite). """ params = {'action': 'wbgetentities', 'ids': prop.getID(), 'props': 'datatype'} expiry = datetime.timedelta(days=365 * 100) # Store it for 100 years req = self._request(expiry=expiry, parameters=params) data = req.submit() # the IDs returned from the API can be upper or lowercase, depending # on the version. See bug T55894 for more information. try: dtype = data['entities'][prop.getID()]['datatype'] except KeyError: dtype = data['entities'][prop.getID().lower()]['datatype'] return dtype @need_right('edit') def editEntity(self, entity, data, bot: bool = True, **kwargs): """ Edit entity. Note: This method is unable to create entities other than 'item' if dict with API parameters was passed to 'entity' parameter. :param entity: Page to edit, or dict with API parameters to use for entity identification :type entity: WikibaseEntity or dict :param data: data updates :type data: dict :param bot: Whether to mark the edit as a bot edit :return: New entity data :rtype: dict """ # this changes the reference to a new object data = dict(data) if isinstance(entity, pywikibot.page.WikibaseEntity): params = entity._defined_by(singular=True) if 'id' in params and params['id'] == '-1': del params['id'] if not params: params['new'] = entity.entity_type data_for_new_entity = entity.get_data_for_new_entity() data.update(data_for_new_entity) else: if 'id' in entity and entity['id'] == '-1': del entity['id'] params = dict(entity) if not params: # If no identification was provided params['new'] = 'item' params['action'] = 'wbeditentity' if bot: params['bot'] = 1 if 'baserevid' in kwargs and kwargs['baserevid']: params['baserevid'] = kwargs['baserevid'] params['token'] = self.tokens['edit'] for arg in kwargs: if arg in ['clear', 'summary']: params[arg] = kwargs[arg] elif arg != 'baserevid': warn('Unknown wbeditentity parameter {} ignored'.format(arg), UserWarning, 2) params['data'] = json.dumps(data) req = self.simple_request(**params) return req.submit() @need_right('edit') def addClaim(self, entity, claim, bot: bool = True, summary=None) -> None: """ Add a claim. :param entity: Entity to modify :type entity: WikibaseEntity :param claim: Claim to be added :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ claim.snak = entity.getID() + '$' + str(uuid.uuid4()) params = {'action': 'wbsetclaim', 'claim': json.dumps(claim.toJSON()), 'baserevid': entity.latest_revision_id, 'summary': summary, 'token': self.tokens['edit'], 'bot': bot, } req = self.simple_request(**params) data = req.submit() # Update the item if claim.getID() in entity.claims: entity.claims[claim.getID()].append(claim) else: entity.claims[claim.getID()] = [claim] entity.latest_revision_id = data['pageinfo']['lastrevid'] @need_right('edit') def changeClaimTarget(self, claim, snaktype: str = 'value', bot: bool = True, summary=None): """ Set the claim target to the value of the provided claim target. :param claim: The source of the claim target value :type claim: pywikibot.Claim :param snaktype: An optional snaktype ('value', 'novalue' or 'somevalue'). Default: 'value' :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ if claim.isReference or claim.isQualifier: raise NotImplementedError if not claim.snak: # We need to already have the snak value raise NoPageError(claim) params = {'action': 'wbsetclaimvalue', 'claim': claim.snak, 'snaktype': snaktype, 'summary': summary, 'bot': bot, 'token': self.tokens['edit']} if snaktype == 'value': params['value'] = json.dumps(claim._formatValue()) params['baserevid'] = claim.on_item.latest_revision_id req = self.simple_request(**params) return req.submit() @need_right('edit') def save_claim(self, claim, summary=None, bot: bool = True): """ Save the whole claim to the wikibase site. :param claim: The claim to save :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str """ if claim.isReference or claim.isQualifier: raise NotImplementedError if not claim.snak: # We need to already have the snak value raise NoPageError(claim) params = {'action': 'wbsetclaim', 'claim': json.dumps(claim.toJSON()), 'token': self.tokens['edit'], 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, } req = self.simple_request(**params) data = req.submit() claim.on_item.latest_revision_id = data['pageinfo']['lastrevid'] return data @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def editSource(self, claim, source, new: bool = False, bot: bool = True, summary: Optional[str] = None): """Create/Edit a source. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the source to :type claim: pywikibot.Claim :param source: A Claim object to be used as a source :type source: pywikibot.Claim :param new: Whether to create a new one if the "source" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ if claim.isReference or claim.isQualifier: raise ValueError('The claim cannot have a source.') params = {'action': 'wbsetreference', 'statement': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'token': self.tokens['edit']} # build up the snak if isinstance(source, list): sources = source else: sources = [source] snak = {} for sourceclaim in sources: datavalue = sourceclaim._formatDataValue() valuesnaks = snak.get(sourceclaim.getID(), []) valuesnaks.append({ 'snaktype': 'value', 'property': sourceclaim.getID(), 'datavalue': datavalue, }) snak[sourceclaim.getID()] = valuesnaks # set the hash if the source should be changed. # if present, all claims of one source have the same hash if not new and hasattr(sourceclaim, 'hash'): params['reference'] = sourceclaim.hash params['snaks'] = json.dumps(snak) req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def editQualifier(self, claim, qualifier, new: bool = False, bot: bool = True, summary: Optional[str] = None): """Create/Edit a qualifier. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the qualifier to :type claim: pywikibot.Claim :param qualifier: A Claim object to be used as a qualifier :type qualifier: pywikibot.Claim :param new: Whether to create a new one if the "qualifier" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ if claim.isReference or claim.isQualifier: raise ValueError('The claim cannot have a qualifier.') params = {'action': 'wbsetqualifier', 'claim': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot} if (not new and hasattr(qualifier, 'hash') and qualifier.hash is not None): params['snakhash'] = qualifier.hash params['token'] = self.tokens['edit'] # build up the snak if qualifier.getSnakType() == 'value': params['value'] = json.dumps(qualifier._formatValue()) params['snaktype'] = qualifier.getSnakType() params['property'] = qualifier.getID() req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def removeClaims(self, claims, bot: bool = True, summary: Optional[str] = None): """Remove claims. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claims: Claims to be removed :type claims: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :type bot: bool :param summary: Edit summary :type summary: str """ # Check on_item for all additional claims items = {claim.on_item for claim in claims if claim.on_item} assert len(items) == 1 baserevid = items.pop().latest_revision_id params = { 'action': 'wbremoveclaims', 'baserevid': baserevid, 'summary': summary, 'bot': bot, 'claim': '|'.join(claim.snak for claim in claims), 'token': self.tokens['edit'], } req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def removeSources(self, claim, sources, bot: bool = True, summary: Optional[str] = None): """Remove sources. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the sources from :type claim: pywikibot.Claim :param sources: A list of Claim objects that are sources :type sources: list :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ params = { 'action': 'wbremovereferences', 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'statement': claim.snak, 'references': '|'.join(source.hash for source in sources), 'token': self.tokens['edit'], } req = self.simple_request(**params) return req.submit() @need_right('edit') @remove_last_args(['baserevid']) # since 7.0.0 def remove_qualifiers(self, claim, qualifiers, bot: bool = True, summary: Optional[str] = None): """Remove qualifiers. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the qualifier from :type claim: pywikibot.Claim :param qualifiers: Claim objects currently used as a qualifiers :type qualifiers: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary """ params = { 'action': 'wbremovequalifiers', 'claim': claim.snak, 'baserevid': claim.on_item.latest_revision_id, 'summary': summary, 'bot': bot, 'qualifiers': [qualifier.hash for qualifier in qualifiers], 'token': self.tokens['edit'] } req = self.simple_request(**params) return req.submit() @need_right('edit') def linkTitles(self, page1, page2, bot: bool = True): """ Link two pages together. :param page1: First page to link :type page1: pywikibot.Page :param page2: Second page to link :type page2: pywikibot.Page :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict """ params = { 'action': 'wblinktitles', 'tosite': page1.site.dbName(), 'totitle': page1.title(), 'fromsite': page2.site.dbName(), 'fromtitle': page2.title(), 'token': self.tokens['edit'] } if bot: params['bot'] = 1 req = self.simple_request(**params) return req.submit() @need_right('item-merge') def mergeItems(self, from_item, to_item, ignore_conflicts=None, summary=None, bot: bool = True): """ Merge two items together. :param from_item: Item to merge from :type from_item: pywikibot.ItemPage :param to_item: Item to merge into :type to_item: pywikibot.ItemPage :param ignore_conflicts: Which type of conflicts ('description', 'sitelink', and 'statement') should be ignored :type ignore_conflicts: list of str :param summary: Edit summary :type summary: str :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict """ params = { 'action': 'wbmergeitems', 'fromid': from_item.getID(), 'toid': to_item.getID(), 'ignoreconflicts': ignore_conflicts, 'token': self.tokens['edit'], 'summary': summary, } if bot: params['bot'] = 1 req = self.simple_request(**params) return req.submit() @need_right('item-merge') @need_extension('WikibaseLexeme') def mergeLexemes(self, from_lexeme, to_lexeme, summary=None, *, bot: bool = True) -> dict: """ Merge two lexemes together. :param from_lexeme: Lexeme to merge from :type from_lexeme: pywikibot.LexemePage :param to_lexeme: Lexeme to merge into :type to_lexeme: pywikibot.LexemePage :param summary: Edit summary :type summary: str :keyword bot: Whether to mark the edit as a bot edit :return: dict API output """ params = { 'action': 'wblmergelexemes', 'source': from_lexeme.getID(), 'target': to_lexeme.getID(), 'token': self.tokens['edit'], 'summary': summary, } if bot: params['bot'] = 1 req = self.simple_request(**params) data = req.submit() return data @need_right('item-redirect') def set_redirect_target(self, from_item, to_item, bot: bool = True): """ Make a redirect to another item. :param to_item: title of target item. :type to_item: pywikibot.ItemPage :param from_item: Title of the item to be redirected. :type from_item: pywikibot.ItemPage :param bot: Whether to mark the edit as a bot edit """ params = { 'action': 'wbcreateredirect', 'from': from_item.getID(), 'to': to_item.getID(), 'token': self.tokens['edit'], 'bot': bot, } req = self.simple_request(**params) return req.submit() def search_entities(self, search: str, language: str, total: Optional[int] = None, **kwargs): """ Search for pages or properties that contain the given text. :param search: Text to find. :param language: Language to search in. :param total: Maximum number of pages to retrieve in total, or None in case of no limit. :return: 'search' list from API output. :rtype: Generator """ lang_codes = self._paraminfo.parameter('wbsearchentities', 'language')['type'] if language not in lang_codes: raise ValueError('Data site used does not support provided ' 'language.') if 'site' in kwargs: if kwargs['site'].sitename != self.sitename: raise ValueError('The site given in the kwargs is different.') warn('search_entities should not get a site via kwargs.', UserWarning, 2) del kwargs['site'] parameters = dict(search=search, language=language, **kwargs) gen = self._generator(api.APIGenerator, type_arg='wbsearchentities', data_name='search', total=total, parameters=parameters) return gen @need_right('edit') def _wbset_action(self, itemdef, action: str, action_data, **kwargs) -> dict: """ Execute wbset{action} on a Wikibase entity. Supported actions are: wbsetaliases, wbsetdescription, wbsetlabel and wbsetsitelink :param itemdef: Entity to modify or create :type itemdef: str, WikibaseEntity or Page connected to such item :param action: wbset{action} to perform: 'wbsetaliases', 'wbsetdescription', 'wbsetlabel', 'wbsetsitelink' :param action_data: data to be used in API request, see API help :type action_data: SiteLink or dict wbsetaliases: dict shall have the following structure: {'language': value (str), 'add': list of language codes (str), 'remove': list of language codes (str), 'set' list of language codes (str) } 'add' and 'remove' are alternative to 'set' wbsetdescription and wbsetlabel: dict shall have keys 'language', 'value' wbsetsitelink: dict shall have keys 'linksite', 'linktitle' and optionally 'badges' :keyword bot: Whether to mark the edit as a bot edit, default is True :type bot: bool :keyword tags: Change tags to apply with the edit :type tags: list of str :return: query result :raises AssertionError, TypeError """ def format_sitelink(sitelink): """Convert SiteLink to a dict accepted by wbsetsitelink API.""" if isinstance(sitelink, pywikibot.page.SiteLink): _dict = { 'linksite': sitelink._sitekey, 'linktitle': sitelink._rawtitle, 'badges': '|'.join([b.title() for b in sitelink.badges]), } else: _dict = sitelink return _dict def prepare_data(action, data): """Prepare data as expected by API.""" if action == 'wbsetaliases': res = data keys = set(res) assert keys < {'language', 'add', 'remove', 'set'} assert 'language' in keys assert ({'add', 'remove', 'set'} & keys) assert ({'add', 'set'} >= keys) assert ({'remove', 'set'} >= keys) elif action in ('wbsetlabel', 'wbsetdescription'): res = data keys = set(res) assert keys == {'language', 'value'} elif action == 'wbsetsitelink': res = format_sitelink(data) keys = set(res) assert keys >= {'linksite'} assert keys <= {'linksite', 'linktitle', 'badges'} else: raise ValueError('Something has gone wrong ...') return res # Supported actions assert action in ('wbsetaliases', 'wbsetdescription', 'wbsetlabel', 'wbsetsitelink'), \ 'action {} not supported.'.format(action) # prefer ID over (site, title) if isinstance(itemdef, str): itemdef = self.get_entity_for_entity_id(itemdef) elif isinstance(itemdef, pywikibot.Page): itemdef = pywikibot.ItemPage.fromPage(itemdef, lazy_load=True) elif not isinstance(itemdef, pywikibot.page.WikibaseEntity): raise TypeError('itemdef shall be str, WikibaseEntity or Page') params = itemdef._defined_by(singular=True) # TODO: support 'new' baserevid = kwargs.pop( 'baserevid', itemdef.latest_revision_id if 'id' in params else 0 ) params.update( {'baserevid': baserevid, 'action': action, 'token': self.tokens['edit'], 'bot': kwargs.pop('bot', True), }) params.update(prepare_data(action, action_data)) for arg in kwargs: if arg in ['summary', 'tags']: params[arg] = kwargs[arg] else: warn('Unknown parameter {} for action {}, ignored' .format(arg, action), UserWarning, 2) req = self.simple_request(**params) data = req.submit() return data def wbsetaliases(self, itemdef, aliases, **kwargs): """ Set aliases for a single Wikibase entity. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetaliases', aliases, **kwargs) def wbsetdescription(self, itemdef, description, **kwargs): """ Set description for a single Wikibase entity. See self._wbset_action() """ return self._wbset_action(itemdef, 'wbsetdescription', description, **kwargs) def wbsetlabel(self, itemdef, label, **kwargs): """ Set label for a single Wikibase entity. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetlabel', label, **kwargs) def wbsetsitelink(self, itemdef, sitelink, **kwargs): """ Set, remove or modify a sitelink on a Wikibase item. See self._wbset_action() for parameters """ return self._wbset_action(itemdef, 'wbsetsitelink', sitelink, **kwargs) @need_right('edit') @need_extension('WikibaseLexeme') def add_form(self, lexeme, form, *, bot: bool = True, baserevid=None) -> dict: """ Add a form. :param lexeme: Lexeme to modify :type lexeme: pywikibot.LexemePage :param form: Form to be added :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long """ params = { 'action': 'wbladdform', 'lexemeId': lexeme.getID(), 'data': json.dumps(form.toJSON()), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data @need_right('edit') @need_extension('WikibaseLexeme') def remove_form(self, form, *, bot: bool = True, baserevid=None) -> dict: """ Remove a form. :param form: Form to be removed :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long """ params = { 'action': 'wblremoveform', 'id': form.getID(), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data @need_right('edit') @need_extension('WikibaseLexeme') def edit_form_elements(self, form, data, *, bot: bool = True, baserevid=None) -> dict: """ Edit lexeme form elements. :param form: Form :type form: pywikibot.LexemeForm :param data: data updates :type data: dict :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long :return: New form data """ params = { 'action': 'wbleditformelements', 'formId': form.getID(), 'data': json.dumps(data), 'bot': bot, 'token': self.tokens['edit'], } if baserevid: params['baserevid'] = baserevid req = self.simple_request(**params) data = req.submit() return data
en
0.549509
Objects representing API interface to Wikibase site. # # (C) Pywikibot team, 2012-2022 # # Distributed under the terms of the MIT license. # Wikibase data capable site. Initializer. Find namespaces for each known wikibase entity type. Return namespace for given entity type. :return: corresponding namespace :rtype: Namespace Return namespace for items. :return: item namespace :rtype: Namespace Return namespace for properties. :return: property namespace :rtype: Namespace Return a new instance for given entity id. :raises pywikibot.exceptions.NoWikibaseEntityError: there is no entity with the id :return: a WikibaseEntity subclass :rtype: WikibaseEntity Return the sparql endpoint url, if any has been set. :return: sparql endpoint url :rtype: str|None Return the base uri for concepts/entities. :return: concept base uri :rtype: str Return Site object for the geo-shapes repository e.g. commons. Return Site object for the tabular-datas repository e.g. commons. Fetch the current content of a Wikibase item. This is called loadcontent since wbgetentities does not support fetching old revisions. Eventually this will get replaced by an actual loadrevisions. :param identification: Parameters used to identify the page(s) :type identification: dict :param props: the optional properties to fetch. # TODO: When props is empty it results in # an empty string ('&props=') but it should # result in a missing entry. Yield subclasses of WikibaseEntity's with content prefilled. Note that pages will be iterated in a different order than in the underlying pagelist. :param pagelist: an iterable that yields either WikibaseEntity objects, or Page objects linked to an ItemPage. :param groupsize: how many pages to query at a time # No api call is made because item._content is given # cannot provide get_redirect=True (T145971) Obtain the type of a property. This is used specifically because we can cache the value for a much longer time (near infinite). # Store it for 100 years # the IDs returned from the API can be upper or lowercase, depending # on the version. See bug T55894 for more information. Edit entity. Note: This method is unable to create entities other than 'item' if dict with API parameters was passed to 'entity' parameter. :param entity: Page to edit, or dict with API parameters to use for entity identification :type entity: WikibaseEntity or dict :param data: data updates :type data: dict :param bot: Whether to mark the edit as a bot edit :return: New entity data :rtype: dict # this changes the reference to a new object # If no identification was provided Add a claim. :param entity: Entity to modify :type entity: WikibaseEntity :param claim: Claim to be added :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str # Update the item Set the claim target to the value of the provided claim target. :param claim: The source of the claim target value :type claim: pywikibot.Claim :param snaktype: An optional snaktype ('value', 'novalue' or 'somevalue'). Default: 'value' :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str # We need to already have the snak value Save the whole claim to the wikibase site. :param claim: The claim to save :type claim: pywikibot.Claim :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary :type summary: str # We need to already have the snak value # since 7.0.0 Create/Edit a source. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the source to :type claim: pywikibot.Claim :param source: A Claim object to be used as a source :type source: pywikibot.Claim :param new: Whether to create a new one if the "source" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary # build up the snak # set the hash if the source should be changed. # if present, all claims of one source have the same hash # since 7.0.0 Create/Edit a qualifier. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to add the qualifier to :type claim: pywikibot.Claim :param qualifier: A Claim object to be used as a qualifier :type qualifier: pywikibot.Claim :param new: Whether to create a new one if the "qualifier" already exists :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary # build up the snak # since 7.0.0 Remove claims. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claims: Claims to be removed :type claims: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :type bot: bool :param summary: Edit summary :type summary: str # Check on_item for all additional claims # since 7.0.0 Remove sources. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the sources from :type claim: pywikibot.Claim :param sources: A list of Claim objects that are sources :type sources: list :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary # since 7.0.0 Remove qualifiers. .. versionchanged:: 7.0 deprecated `baserevid` parameter was removed :param claim: A Claim object to remove the qualifier from :type claim: pywikibot.Claim :param qualifiers: Claim objects currently used as a qualifiers :type qualifiers: List[pywikibot.Claim] :param bot: Whether to mark the edit as a bot edit :param summary: Edit summary Link two pages together. :param page1: First page to link :type page1: pywikibot.Page :param page2: Second page to link :type page2: pywikibot.Page :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict Merge two items together. :param from_item: Item to merge from :type from_item: pywikibot.ItemPage :param to_item: Item to merge into :type to_item: pywikibot.ItemPage :param ignore_conflicts: Which type of conflicts ('description', 'sitelink', and 'statement') should be ignored :type ignore_conflicts: list of str :param summary: Edit summary :type summary: str :param bot: Whether to mark the edit as a bot edit :return: dict API output :rtype: dict Merge two lexemes together. :param from_lexeme: Lexeme to merge from :type from_lexeme: pywikibot.LexemePage :param to_lexeme: Lexeme to merge into :type to_lexeme: pywikibot.LexemePage :param summary: Edit summary :type summary: str :keyword bot: Whether to mark the edit as a bot edit :return: dict API output Make a redirect to another item. :param to_item: title of target item. :type to_item: pywikibot.ItemPage :param from_item: Title of the item to be redirected. :type from_item: pywikibot.ItemPage :param bot: Whether to mark the edit as a bot edit Search for pages or properties that contain the given text. :param search: Text to find. :param language: Language to search in. :param total: Maximum number of pages to retrieve in total, or None in case of no limit. :return: 'search' list from API output. :rtype: Generator Execute wbset{action} on a Wikibase entity. Supported actions are: wbsetaliases, wbsetdescription, wbsetlabel and wbsetsitelink :param itemdef: Entity to modify or create :type itemdef: str, WikibaseEntity or Page connected to such item :param action: wbset{action} to perform: 'wbsetaliases', 'wbsetdescription', 'wbsetlabel', 'wbsetsitelink' :param action_data: data to be used in API request, see API help :type action_data: SiteLink or dict wbsetaliases: dict shall have the following structure: {'language': value (str), 'add': list of language codes (str), 'remove': list of language codes (str), 'set' list of language codes (str) } 'add' and 'remove' are alternative to 'set' wbsetdescription and wbsetlabel: dict shall have keys 'language', 'value' wbsetsitelink: dict shall have keys 'linksite', 'linktitle' and optionally 'badges' :keyword bot: Whether to mark the edit as a bot edit, default is True :type bot: bool :keyword tags: Change tags to apply with the edit :type tags: list of str :return: query result :raises AssertionError, TypeError Convert SiteLink to a dict accepted by wbsetsitelink API. Prepare data as expected by API. # Supported actions # prefer ID over (site, title) # TODO: support 'new' Set aliases for a single Wikibase entity. See self._wbset_action() for parameters Set description for a single Wikibase entity. See self._wbset_action() Set label for a single Wikibase entity. See self._wbset_action() for parameters Set, remove or modify a sitelink on a Wikibase item. See self._wbset_action() for parameters Add a form. :param lexeme: Lexeme to modify :type lexeme: pywikibot.LexemePage :param form: Form to be added :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long Remove a form. :param form: Form to be removed :type form: pywikibot.LexemeForm :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long Edit lexeme form elements. :param form: Form :type form: pywikibot.LexemeForm :param data: data updates :type data: dict :keyword bot: Whether to mark the edit as a bot edit :keyword baserevid: Base revision id override, used to detect conflicts. :type baserevid: long :return: New form data
2.240608
2
app.py
MisaelVillaverde/fourier-calculator
0
8391
from flask import Flask from flask import render_template, request from flask import jsonify import requests import json app = Flask(__name__) @app.route("/symbo",methods=['POST']) def symbo(): #import pdb; pdb.set_trace() session = requests.session() token = session.get("https://es.symbolab.com/solver/step-by-step/x%5E%7B2%7D?or=input").cookies.get_dict()["sy2.pub.token"] query = request.json["expression"] #response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query=%5Cint+tcos%5Cleft(nt%5Cright)dt+&referer=https%3A%2F%2Fes.symbolab.com%2Fsolver%2Fstep-by-step%2F%255Cint_%257B%2520%257Dtcos%255Cleft(nt%255Cright)dt%2520%3For%3Dinput&plotRequest=PlotOptional&page=step-by-step",headers={ response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query={query}",headers={ "x-requested-with":"XMLHttpRequest", "authorization":f"Bearer {token}" }).content) return { "dym":response["dym"], "solutions":response["solutions"] } @app.route('/') def hello(): return render_template('index.html') app.run(debug=True)
from flask import Flask from flask import render_template, request from flask import jsonify import requests import json app = Flask(__name__) @app.route("/symbo",methods=['POST']) def symbo(): #import pdb; pdb.set_trace() session = requests.session() token = session.get("https://es.symbolab.com/solver/step-by-step/x%5E%7B2%7D?or=input").cookies.get_dict()["sy2.pub.token"] query = request.json["expression"] #response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query=%5Cint+tcos%5Cleft(nt%5Cright)dt+&referer=https%3A%2F%2Fes.symbolab.com%2Fsolver%2Fstep-by-step%2F%255Cint_%257B%2520%257Dtcos%255Cleft(nt%255Cright)dt%2520%3For%3Dinput&plotRequest=PlotOptional&page=step-by-step",headers={ response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query={query}",headers={ "x-requested-with":"XMLHttpRequest", "authorization":f"Bearer {token}" }).content) return { "dym":response["dym"], "solutions":response["solutions"] } @app.route('/') def hello(): return render_template('index.html') app.run(debug=True)
en
0.354839
#import pdb; pdb.set_trace() #response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query=%5Cint+tcos%5Cleft(nt%5Cright)dt+&referer=https%3A%2F%2Fes.symbolab.com%2Fsolver%2Fstep-by-step%2F%255Cint_%257B%2520%257Dtcos%255Cleft(nt%255Cright)dt%2520%3For%3Dinput&plotRequest=PlotOptional&page=step-by-step",headers={
2.918962
3
my_code/Chapter_2.py
kalona/Spark-The-Definitive-Guide
2
8392
from pyspark.sql import SparkSession # spark = SparkSession.builder.master("local[*]").getOrCreate() spark = SparkSession.builder.getOrCreate() file_path = "C:\home_work\local_github\Spark-The-Definitive-Guide\data\/flight-data\csv\/2015-summary.csv" # COMMAND ---------- # COMMAND ---------- flightData2015 = spark\ .read\ .option("inferSchema", "true")\ .option("header", "true")\ .csv("./data/flight-data/csv/2015-summary.csv") # COMMAND ---------- flightData2015.createOrReplaceTempView("flight_data_2015") # COMMAND ---------- sqlWay = spark.sql(""" SELECT DEST_COUNTRY_NAME, count(1) FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME """) dataFrameWay = flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .count() sqlWay.explain() dataFrameWay.explain() # COMMAND ---------- from pyspark.sql.functions import max, col # flightData2015.select(max(col("count"))).show(1) # COMMAND ---------- maxSql = spark.sql(""" SELECT DEST_COUNTRY_NAME, sum(count) as destination_total FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME ORDER BY sum(count) DESC LIMIT 5 """) maxSql.show() # COMMAND ---------- from pyspark.sql.functions import desc flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .show() # COMMAND ---------- flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .explain() # COMMAND ----------
from pyspark.sql import SparkSession # spark = SparkSession.builder.master("local[*]").getOrCreate() spark = SparkSession.builder.getOrCreate() file_path = "C:\home_work\local_github\Spark-The-Definitive-Guide\data\/flight-data\csv\/2015-summary.csv" # COMMAND ---------- # COMMAND ---------- flightData2015 = spark\ .read\ .option("inferSchema", "true")\ .option("header", "true")\ .csv("./data/flight-data/csv/2015-summary.csv") # COMMAND ---------- flightData2015.createOrReplaceTempView("flight_data_2015") # COMMAND ---------- sqlWay = spark.sql(""" SELECT DEST_COUNTRY_NAME, count(1) FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME """) dataFrameWay = flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .count() sqlWay.explain() dataFrameWay.explain() # COMMAND ---------- from pyspark.sql.functions import max, col # flightData2015.select(max(col("count"))).show(1) # COMMAND ---------- maxSql = spark.sql(""" SELECT DEST_COUNTRY_NAME, sum(count) as destination_total FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME ORDER BY sum(count) DESC LIMIT 5 """) maxSql.show() # COMMAND ---------- from pyspark.sql.functions import desc flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .show() # COMMAND ---------- flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .explain() # COMMAND ----------
en
0.294691
# spark = SparkSession.builder.master("local[*]").getOrCreate() # COMMAND ---------- # COMMAND ---------- # COMMAND ---------- # COMMAND ---------- SELECT DEST_COUNTRY_NAME, count(1) FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME # COMMAND ---------- # # COMMAND ---------- SELECT DEST_COUNTRY_NAME, sum(count) as destination_total FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME ORDER BY sum(count) DESC LIMIT 5 # COMMAND ---------- # COMMAND ---------- # COMMAND ----------
3.209193
3
tests/test_intake_postgres.py
ContinuumIO/intake-postgres
2
8393
import os import pickle import pytest import pandas as pd from shapely import wkt from intake_postgres import PostgresSource from intake import open_catalog from .util import verify_datasource_interface TEST_DATA_DIR = 'tests' TEST_DATA = [ ('sample1', 'sample1.csv'), ('sample2_1', 'sample2_1.csv'), ('sample2_2', 'sample2_2.csv'), ] TEST_GIS_DATA = [ ('points', 'sample_points.psql'), ('multipoints', 'sample_multipoints.psql'), ('lines', 'sample_lines.psql'), ('multilines', 'sample_multilines.psql'), ('polygons', 'sample_polygons.psql'), ('multipolygons', 'sample_multipolygons.psql'), # ('triangles', 'sample_triangles.psql'), ] TEST_TEMPLATE_DATA = [ 'jinja2_params_with_env', ] @pytest.fixture(scope='module') def engine(): """Start docker container for PostgreSQL database, yield a tuple (engine, metadata), and cleanup connection afterward.""" from .util import start_postgres, stop_postgres from sqlalchemy import create_engine stop_postgres(let_fail=True) local_port = start_postgres() uri = 'postgresql://postgres@localhost:{}/postgres'.format(local_port) engine = create_engine(uri) for table_name, csv_fname in TEST_DATA: csv_fpath = os.path.join(TEST_DATA_DIR, csv_fname) df = pd.read_csv(csv_fpath) df.to_sql(table_name, engine, index=False) for table_name, psql_fname in TEST_GIS_DATA: psql_fpath = os.path.join(TEST_DATA_DIR, psql_fname) with engine.connect() as conn: with open(psql_fpath, 'r') as fp: cmds = fp.read().strip().split(';') for cmd in cmds: if cmd.strip(): conn.execute(' '.join(cmd.split())) try: yield engine finally: stop_postgres() @pytest.mark.parametrize('table_name,_', TEST_DATA) def test_open(engine, table_name, _): d = PostgresSource(str(engine.url), 'select * from '+table_name) assert d.container == 'dataframe' assert d.description is None verify_datasource_interface(d) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_read(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover_after_read(engine, table_name, csv_fpath): """Assert that after reading the dataframe, discover() shows more accurate information. """ expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 df = source.read() assert expected_df.equals(df) info = source.discover() assert info['dtype'] == dt assert info['shape'] == (4, 3) assert info['npartitions'] == 1 assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_close(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) source.close() # Can reopen after close df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_pickle(engine, table_name, csv_fpath): source = PostgresSource(str(engine.url), 'select * from '+table_name) pickled_source = pickle.dumps(source) source_clone = pickle.loads(pickled_source) expected_df = source.read() df = source_clone.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,_1', TEST_DATA) def test_catalog(engine, table_name, _1): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name.rsplit('_idx', 1)[0] src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() def test_catalog_join(engine): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = 'sample2' src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('table_name,_1', TEST_GIS_DATA) def test_postgis_data(engine, table_name, _1): from sqlalchemy import MetaData catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 meta = MetaData() meta.reflect(bind=engine) col_exprs = ['ST_AsText({0}) as {0}'.format(col.name) for col in meta.tables[table_name].columns] _query = pgsrc._sql_expr.replace('*', ', '.join(col_exprs)) expected_df = pd.read_sql_query(_query, engine).applymap( lambda geom: str(wkt.loads(geom)) ) df = pgsrc.read().applymap(lambda geom: str(wkt.loads(geom))) assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('ds_name', TEST_TEMPLATE_DATA) def test_jinja2(engine, ds_name): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close()
import os import pickle import pytest import pandas as pd from shapely import wkt from intake_postgres import PostgresSource from intake import open_catalog from .util import verify_datasource_interface TEST_DATA_DIR = 'tests' TEST_DATA = [ ('sample1', 'sample1.csv'), ('sample2_1', 'sample2_1.csv'), ('sample2_2', 'sample2_2.csv'), ] TEST_GIS_DATA = [ ('points', 'sample_points.psql'), ('multipoints', 'sample_multipoints.psql'), ('lines', 'sample_lines.psql'), ('multilines', 'sample_multilines.psql'), ('polygons', 'sample_polygons.psql'), ('multipolygons', 'sample_multipolygons.psql'), # ('triangles', 'sample_triangles.psql'), ] TEST_TEMPLATE_DATA = [ 'jinja2_params_with_env', ] @pytest.fixture(scope='module') def engine(): """Start docker container for PostgreSQL database, yield a tuple (engine, metadata), and cleanup connection afterward.""" from .util import start_postgres, stop_postgres from sqlalchemy import create_engine stop_postgres(let_fail=True) local_port = start_postgres() uri = 'postgresql://postgres@localhost:{}/postgres'.format(local_port) engine = create_engine(uri) for table_name, csv_fname in TEST_DATA: csv_fpath = os.path.join(TEST_DATA_DIR, csv_fname) df = pd.read_csv(csv_fpath) df.to_sql(table_name, engine, index=False) for table_name, psql_fname in TEST_GIS_DATA: psql_fpath = os.path.join(TEST_DATA_DIR, psql_fname) with engine.connect() as conn: with open(psql_fpath, 'r') as fp: cmds = fp.read().strip().split(';') for cmd in cmds: if cmd.strip(): conn.execute(' '.join(cmd.split())) try: yield engine finally: stop_postgres() @pytest.mark.parametrize('table_name,_', TEST_DATA) def test_open(engine, table_name, _): d = PostgresSource(str(engine.url), 'select * from '+table_name) assert d.container == 'dataframe' assert d.description is None verify_datasource_interface(d) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_read(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover_after_read(engine, table_name, csv_fpath): """Assert that after reading the dataframe, discover() shows more accurate information. """ expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 df = source.read() assert expected_df.equals(df) info = source.discover() assert info['dtype'] == dt assert info['shape'] == (4, 3) assert info['npartitions'] == 1 assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_close(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) source.close() # Can reopen after close df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_pickle(engine, table_name, csv_fpath): source = PostgresSource(str(engine.url), 'select * from '+table_name) pickled_source = pickle.dumps(source) source_clone = pickle.loads(pickled_source) expected_df = source.read() df = source_clone.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,_1', TEST_DATA) def test_catalog(engine, table_name, _1): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name.rsplit('_idx', 1)[0] src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() def test_catalog_join(engine): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = 'sample2' src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('table_name,_1', TEST_GIS_DATA) def test_postgis_data(engine, table_name, _1): from sqlalchemy import MetaData catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 meta = MetaData() meta.reflect(bind=engine) col_exprs = ['ST_AsText({0}) as {0}'.format(col.name) for col in meta.tables[table_name].columns] _query = pgsrc._sql_expr.replace('*', ', '.join(col_exprs)) expected_df = pd.read_sql_query(_query, engine).applymap( lambda geom: str(wkt.loads(geom)) ) df = pgsrc.read().applymap(lambda geom: str(wkt.loads(geom))) assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('ds_name', TEST_TEMPLATE_DATA) def test_jinja2(engine, ds_name): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close()
en
0.687163
# ('triangles', 'sample_triangles.psql'), Start docker container for PostgreSQL database, yield a tuple (engine, metadata), and cleanup connection afterward. Assert that after reading the dataframe, discover() shows more accurate information. # Can reopen after close
2.065835
2
Module_3/testImage.py
dks1018/CoffeeShopCoding
0
8394
# file = open('C:\\Users\\dks10\\OneDrive\\Desktop\\Projects\\Code\\Python\\PythonCrypto\\Module_3\\eye.png', 'rb') file = open('encrypt_eye.png', 'rb') image = file.read() file.close() image = bytearray(image) key = 48 for index, value in enumerate(image): image[index] = value^key file = open('2eye.png','wb') file.write(image) file.close()
# file = open('C:\\Users\\dks10\\OneDrive\\Desktop\\Projects\\Code\\Python\\PythonCrypto\\Module_3\\eye.png', 'rb') file = open('encrypt_eye.png', 'rb') image = file.read() file.close() image = bytearray(image) key = 48 for index, value in enumerate(image): image[index] = value^key file = open('2eye.png','wb') file.write(image) file.close()
en
0.293972
# file = open('C:\\Users\\dks10\\OneDrive\\Desktop\\Projects\\Code\\Python\\PythonCrypto\\Module_3\\eye.png', 'rb')
2.911926
3
ledfxcontroller/effects/temporal.py
Aircoookie/LedFx
17
8395
<reponame>Aircoookie/LedFx import time import logging from ledfxcontroller.effects import Effect from threading import Thread import voluptuous as vol _LOGGER = logging.getLogger(__name__) DEFAULT_RATE = 1.0 / 60.0 @Effect.no_registration class TemporalEffect(Effect): _thread_active = False _thread = None CONFIG_SCHEMA = vol.Schema({ vol.Required('speed', default = 1.0): float }) def thread_function(self): while self._thread_active: startTime = time.time() # Treat the return value of the effect loop as a speed modifier # such that effects that are nartually faster or slower can have # a consistent feel. sleepInterval = self.effect_loop() if sleepInterval is None: sleepInterval = 1.0 sleepInterval = sleepInterval * DEFAULT_RATE # Calculate the time to sleep accounting for potential heavy # frame assembly operations timeToSleep = (sleepInterval / self._config['speed']) - (time.time() - startTime) if timeToSleep > 0: time.sleep(timeToSleep) def effect_loop(self): """ Triggered periodically based on the effect speed and any additional effect modifiers """ pass def activate(self, pixel_count): super().activate(pixel_count) self._thread_active = True self._thread = Thread(target = self.thread_function) self._thread.start() def deactivate(self): if self._thread_active: self._thread_active = False self._thread.join() self._thread = None super().deactivate()
import time import logging from ledfxcontroller.effects import Effect from threading import Thread import voluptuous as vol _LOGGER = logging.getLogger(__name__) DEFAULT_RATE = 1.0 / 60.0 @Effect.no_registration class TemporalEffect(Effect): _thread_active = False _thread = None CONFIG_SCHEMA = vol.Schema({ vol.Required('speed', default = 1.0): float }) def thread_function(self): while self._thread_active: startTime = time.time() # Treat the return value of the effect loop as a speed modifier # such that effects that are nartually faster or slower can have # a consistent feel. sleepInterval = self.effect_loop() if sleepInterval is None: sleepInterval = 1.0 sleepInterval = sleepInterval * DEFAULT_RATE # Calculate the time to sleep accounting for potential heavy # frame assembly operations timeToSleep = (sleepInterval / self._config['speed']) - (time.time() - startTime) if timeToSleep > 0: time.sleep(timeToSleep) def effect_loop(self): """ Triggered periodically based on the effect speed and any additional effect modifiers """ pass def activate(self, pixel_count): super().activate(pixel_count) self._thread_active = True self._thread = Thread(target = self.thread_function) self._thread.start() def deactivate(self): if self._thread_active: self._thread_active = False self._thread.join() self._thread = None super().deactivate()
en
0.91278
# Treat the return value of the effect loop as a speed modifier # such that effects that are nartually faster or slower can have # a consistent feel. # Calculate the time to sleep accounting for potential heavy # frame assembly operations Triggered periodically based on the effect speed and any additional effect modifiers
2.667645
3
07/c/3 - Square Census.py
Surferlul/csc-python-solutions
0
8396
<gh_stars>0 n=int(input()) c = 1 while c**2 < n: print(c**2) c += 1
n=int(input()) c = 1 while c**2 < n: print(c**2) c += 1
none
1
3.463962
3
utils.py
LuChang-CS/sherbet
2
8397
import numpy as np class DataGenerator: def __init__(self, inputs, shuffle=True, batch_size=32): assert len(inputs) > 0 self.inputs = inputs self.idx = np.arange(len(inputs[0])) self.shuffle = shuffle self.batch_size = batch_size self.on_epoch_end() def data_length(self): return len(self.idx) def __len__(self): n = self.data_length() len_ = n // self.batch_size return len_ if n % self.batch_size == 0 else len_ + 1 def __getitem__(self, index): start = index * self.batch_size end = start + self.batch_size index = self.idx[start:end] data = [] for x in self.inputs: data.append(x[index]) return data def on_epoch_end(self): if self.shuffle: np.random.shuffle(self.idx) def set_batch_size(self, batch_size): self.batch_size = batch_size def lr_decay(total_epoch, init_lr, split_val): lr_map = [init_lr] * total_epoch if len(split_val) > 0: assert split_val[0][0] > 1 assert split_val[-1][0] <= total_epoch current_split_index = 0 current_lr = init_lr next_epoch, next_lr = split_val[current_split_index] for i in range(total_epoch): if i < next_epoch - 1: lr_map[i] = current_lr else: current_lr = next_lr lr_map[i] = current_lr current_split_index += 1 if current_split_index >= len(split_val): next_epoch = total_epoch + 1 else: next_epoch, next_lr = split_val[current_split_index] def lr_schedule_fn(epoch, lr): return lr_map[epoch] return lr_schedule_fn
import numpy as np class DataGenerator: def __init__(self, inputs, shuffle=True, batch_size=32): assert len(inputs) > 0 self.inputs = inputs self.idx = np.arange(len(inputs[0])) self.shuffle = shuffle self.batch_size = batch_size self.on_epoch_end() def data_length(self): return len(self.idx) def __len__(self): n = self.data_length() len_ = n // self.batch_size return len_ if n % self.batch_size == 0 else len_ + 1 def __getitem__(self, index): start = index * self.batch_size end = start + self.batch_size index = self.idx[start:end] data = [] for x in self.inputs: data.append(x[index]) return data def on_epoch_end(self): if self.shuffle: np.random.shuffle(self.idx) def set_batch_size(self, batch_size): self.batch_size = batch_size def lr_decay(total_epoch, init_lr, split_val): lr_map = [init_lr] * total_epoch if len(split_val) > 0: assert split_val[0][0] > 1 assert split_val[-1][0] <= total_epoch current_split_index = 0 current_lr = init_lr next_epoch, next_lr = split_val[current_split_index] for i in range(total_epoch): if i < next_epoch - 1: lr_map[i] = current_lr else: current_lr = next_lr lr_map[i] = current_lr current_split_index += 1 if current_split_index >= len(split_val): next_epoch = total_epoch + 1 else: next_epoch, next_lr = split_val[current_split_index] def lr_schedule_fn(epoch, lr): return lr_map[epoch] return lr_schedule_fn
none
1
2.748842
3
Version1_STI.py
sudhanshu55/Speech_to_Image
0
8398
from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords import speech_recognition as sr import nltk from google_images_download import google_images_download response = google_images_download.googleimagesdownload() r = sr.Recognizer() with sr.Microphone() as source: print("Say something!") audio = r.listen(source) data = r.recognize_google(audio).encode("utf-8") print (data) stopWords = set(stopwords.words('english')) words = word_tokenize(data) wordsFiltered = [] for w in words: if w not in stopWords: wordsFiltered.append(w) into_string = str(wordsFiltered) print(into_string) arguments = {"keywords":into_string,"limit":2,"print_urls":True} #creating list of arguments response.download(arguments) #passing the arguments to the function
from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords import speech_recognition as sr import nltk from google_images_download import google_images_download response = google_images_download.googleimagesdownload() r = sr.Recognizer() with sr.Microphone() as source: print("Say something!") audio = r.listen(source) data = r.recognize_google(audio).encode("utf-8") print (data) stopWords = set(stopwords.words('english')) words = word_tokenize(data) wordsFiltered = [] for w in words: if w not in stopWords: wordsFiltered.append(w) into_string = str(wordsFiltered) print(into_string) arguments = {"keywords":into_string,"limit":2,"print_urls":True} #creating list of arguments response.download(arguments) #passing the arguments to the function
en
0.177993
#creating list of arguments #passing the arguments to the function
3.290518
3
src/models.py
jonathanlloyd/scratchstack-httpserver
0
8399
<gh_stars>0 from dataclasses import dataclass @dataclass class Request: method: str path: str headers: dict body: bytes @dataclass class Response: status_code: int reason_phrase: str headers: dict body: bytes
from dataclasses import dataclass @dataclass class Request: method: str path: str headers: dict body: bytes @dataclass class Response: status_code: int reason_phrase: str headers: dict body: bytes
none
1
2.44192
2