max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
PytorchRouting/Examples/run_experiments.py
oleksost/RoutingNetworks
63
8700
<filename>PytorchRouting/Examples/run_experiments.py """ This file defines some simple experiments to illustrate how Pytorch-Routing functions. """ import numpy as np import tqdm import torch from PytorchRouting.DecisionLayers import REINFORCE, QLearning, SARSA, ActorCritic, GumbelSoftmax, PerTaskAssignment, \ WPL, AAC, AdvantageLearning, RELAX, EGreedyREINFORCE, EGreedyAAC from PytorchRouting.Examples.Models import PerTask_all_fc, RoutedAllFC, PerTask_1_fc, PerDecisionSingleAgent, \ Dispatched from PytorchRouting.Examples.Datasets import CIFAR100MTL def compute_batch(model, batch): samples, labels, tasks = batch out, meta = model(samples, tasks=tasks) correct_predictions = (out.max(dim=1)[1].squeeze() == labels.squeeze()).cpu().numpy() accuracy = correct_predictions.sum() oh_labels = one_hot(labels, out.size()[-1]) module_loss, decision_loss = model.loss(out, meta, oh_labels) return module_loss, decision_loss, accuracy def one_hot(indices, width): indices = indices.squeeze().unsqueeze(1) oh = torch.zeros(indices.size()[0], width).to(indices.device) oh.scatter_(1, indices, 1) return oh def run_experiment(model, dataset, learning_rates, routing_module_learning_rate_ratio): print('Loaded dataset and constructed model. Starting Training ...') for epoch in range(50): optimizers = [] parameters = [] if epoch in learning_rates: try: optimizers.append(torch.optim.SGD(model.routing_parameters(), lr=routing_module_learning_rate_ratio*learning_rates[epoch])) optimizers.append(torch.optim.SGD(model.module_parameters(), lr=learning_rates[epoch])) parameters = model.module_parameters() + model.module_parameters() except AttributeError: optimizers.append(torch.optim.SGD(model.parameters(), lr=learning_rates[epoch])) parameters = model.parameters() train_log, test_log = np.zeros((3,)), np.zeros((3,)) train_samples_seen, test_samples_seen = 0, 0 dataset.enter_train_mode() model.train() # while True: pbar = tqdm.tqdm(unit=' samples') while True: try: batch = dataset.get_batch() except StopIteration: break train_samples_seen += len(batch[0]) pbar.update(len(batch[0])) module_loss, decision_loss, accuracy = compute_batch(model, batch) (module_loss + decision_loss).backward() torch.nn.utils.clip_grad_norm_(parameters, 40., norm_type=2) for opt in optimizers: opt.step() model.zero_grad() train_log += np.array([module_loss.tolist(), decision_loss.tolist(), accuracy]) pbar.close() dataset.enter_test_mode() model.eval() model.start_logging_selections() while True: try: batch = dataset.get_batch() except StopIteration: break test_samples_seen += len(batch[0]) module_loss, decision_loss, accuracy = compute_batch(model, batch) test_log += np.array([module_loss.tolist(), decision_loss.tolist(), accuracy]) print('Epoch {} finished after {} train and {} test samples..\n' ' Training averages: Model loss: {}, Routing loss: {}, Accuracy: {}\n' ' Testing averages: Model loss: {}, Routing loss: {}, Accuracy: {}'.format( epoch + 1, train_samples_seen, test_samples_seen, *(train_log/train_samples_seen).round(3), *(test_log/test_samples_seen).round(3))) model.stop_logging_selections_and_report() if __name__ == '__main__': # MNIST # dataset = MNIST_MTL(64, data_files=['./Datasets/mnist.pkl.gz']) # model = PerTask_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) # model = WPL_routed_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) cuda = False # cuda = True # CIFAR dataset = CIFAR100MTL(10, data_files=['./Datasets/cifar-100-py/train', './Datasets/cifar-100-py/test'], cuda=cuda) model = RoutedAllFC(WPL, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(RELAX, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(EGreedyREINFORCE, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = PerDecisionSingleAgent(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = Dispatched(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) learning_rates = {0: 3e-3, 5: 1e-3, 10: 3e-4} routing_module_learning_rate_ratio = 0.3 if cuda: model.cuda() run_experiment(model, dataset, learning_rates, routing_module_learning_rate_ratio) ''' WPL_routed_all_fc(3, 512, 5, dataset.num_tasks, dataset.num_tasks) Training averages: Model loss: 0.427, Routing loss: 8.864, Accuracy: 0.711 Testing averages: Model loss: 0.459, Routing loss: 9.446, Accuracy: 0.674 '''
<filename>PytorchRouting/Examples/run_experiments.py """ This file defines some simple experiments to illustrate how Pytorch-Routing functions. """ import numpy as np import tqdm import torch from PytorchRouting.DecisionLayers import REINFORCE, QLearning, SARSA, ActorCritic, GumbelSoftmax, PerTaskAssignment, \ WPL, AAC, AdvantageLearning, RELAX, EGreedyREINFORCE, EGreedyAAC from PytorchRouting.Examples.Models import PerTask_all_fc, RoutedAllFC, PerTask_1_fc, PerDecisionSingleAgent, \ Dispatched from PytorchRouting.Examples.Datasets import CIFAR100MTL def compute_batch(model, batch): samples, labels, tasks = batch out, meta = model(samples, tasks=tasks) correct_predictions = (out.max(dim=1)[1].squeeze() == labels.squeeze()).cpu().numpy() accuracy = correct_predictions.sum() oh_labels = one_hot(labels, out.size()[-1]) module_loss, decision_loss = model.loss(out, meta, oh_labels) return module_loss, decision_loss, accuracy def one_hot(indices, width): indices = indices.squeeze().unsqueeze(1) oh = torch.zeros(indices.size()[0], width).to(indices.device) oh.scatter_(1, indices, 1) return oh def run_experiment(model, dataset, learning_rates, routing_module_learning_rate_ratio): print('Loaded dataset and constructed model. Starting Training ...') for epoch in range(50): optimizers = [] parameters = [] if epoch in learning_rates: try: optimizers.append(torch.optim.SGD(model.routing_parameters(), lr=routing_module_learning_rate_ratio*learning_rates[epoch])) optimizers.append(torch.optim.SGD(model.module_parameters(), lr=learning_rates[epoch])) parameters = model.module_parameters() + model.module_parameters() except AttributeError: optimizers.append(torch.optim.SGD(model.parameters(), lr=learning_rates[epoch])) parameters = model.parameters() train_log, test_log = np.zeros((3,)), np.zeros((3,)) train_samples_seen, test_samples_seen = 0, 0 dataset.enter_train_mode() model.train() # while True: pbar = tqdm.tqdm(unit=' samples') while True: try: batch = dataset.get_batch() except StopIteration: break train_samples_seen += len(batch[0]) pbar.update(len(batch[0])) module_loss, decision_loss, accuracy = compute_batch(model, batch) (module_loss + decision_loss).backward() torch.nn.utils.clip_grad_norm_(parameters, 40., norm_type=2) for opt in optimizers: opt.step() model.zero_grad() train_log += np.array([module_loss.tolist(), decision_loss.tolist(), accuracy]) pbar.close() dataset.enter_test_mode() model.eval() model.start_logging_selections() while True: try: batch = dataset.get_batch() except StopIteration: break test_samples_seen += len(batch[0]) module_loss, decision_loss, accuracy = compute_batch(model, batch) test_log += np.array([module_loss.tolist(), decision_loss.tolist(), accuracy]) print('Epoch {} finished after {} train and {} test samples..\n' ' Training averages: Model loss: {}, Routing loss: {}, Accuracy: {}\n' ' Testing averages: Model loss: {}, Routing loss: {}, Accuracy: {}'.format( epoch + 1, train_samples_seen, test_samples_seen, *(train_log/train_samples_seen).round(3), *(test_log/test_samples_seen).round(3))) model.stop_logging_selections_and_report() if __name__ == '__main__': # MNIST # dataset = MNIST_MTL(64, data_files=['./Datasets/mnist.pkl.gz']) # model = PerTask_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) # model = WPL_routed_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) cuda = False # cuda = True # CIFAR dataset = CIFAR100MTL(10, data_files=['./Datasets/cifar-100-py/train', './Datasets/cifar-100-py/test'], cuda=cuda) model = RoutedAllFC(WPL, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(RELAX, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(EGreedyREINFORCE, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = PerDecisionSingleAgent(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = Dispatched(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) learning_rates = {0: 3e-3, 5: 1e-3, 10: 3e-4} routing_module_learning_rate_ratio = 0.3 if cuda: model.cuda() run_experiment(model, dataset, learning_rates, routing_module_learning_rate_ratio) ''' WPL_routed_all_fc(3, 512, 5, dataset.num_tasks, dataset.num_tasks) Training averages: Model loss: 0.427, Routing loss: 8.864, Accuracy: 0.711 Testing averages: Model loss: 0.459, Routing loss: 9.446, Accuracy: 0.674 '''
en
0.528215
This file defines some simple experiments to illustrate how Pytorch-Routing functions. # while True: # MNIST # dataset = MNIST_MTL(64, data_files=['./Datasets/mnist.pkl.gz']) # model = PerTask_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) # model = WPL_routed_all_fc(1, 288, 2, dataset.num_tasks, dataset.num_tasks) # cuda = True # CIFAR # model = RoutedAllFC(RELAX, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(EGreedyREINFORCE, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = RoutedAllFC(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = PerDecisionSingleAgent(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) # model = Dispatched(AdvantageLearning, 3, 128, 5, dataset.num_tasks, dataset.num_tasks) WPL_routed_all_fc(3, 512, 5, dataset.num_tasks, dataset.num_tasks) Training averages: Model loss: 0.427, Routing loss: 8.864, Accuracy: 0.711 Testing averages: Model loss: 0.459, Routing loss: 9.446, Accuracy: 0.674
3.020533
3
output/models/ms_data/regex/re_g22_xsd/__init__.py
tefra/xsdata-w3c-tests
1
8701
from output.models.ms_data.regex.re_g22_xsd.re_g22 import ( Regex, Doc, ) __all__ = [ "Regex", "Doc", ]
from output.models.ms_data.regex.re_g22_xsd.re_g22 import ( Regex, Doc, ) __all__ = [ "Regex", "Doc", ]
none
1
1.167351
1
code/image-manipulation.py
rgeirhos/object-recognition
33
8702
#!/usr/bin/env python from skimage.color import rgb2gray from skimage.io import imread, imsave from scipy.misc import toimage import numpy as np import wrapper as wr ########################################################### # IMAGE IO ########################################################### def imload_rgb(path): """Load and return an RGB image in the range [0, 1].""" return imread(path) / 255.0 def save_img(image, imgname, use_JPEG=False): """Save image as either .jpeg or .png""" if use_JPEG: imsave(imgname+".JPEG", image) else: toimage(image, cmin=0.0, cmax=1.0).save(imgname+".png") ########################################################### # IMAGE MANIPULATION ########################################################### def adjust_contrast(image, contrast_level): """Return the image scaled to a certain contrast level in [0, 1]. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast """ assert(contrast_level >= 0.0), "contrast_level too low." assert(contrast_level <= 1.0), "contrast_level too high." return (1-contrast_level)/2.0 + image.dot(contrast_level) def grayscale_contrast(image, contrast_level): """Convert to grayscale. Adjust contrast. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast """ return adjust_contrast(rgb2gray(image), contrast_level) def uniform_noise(image, width, contrast_level, rng): """Convert to grayscale. Adjust contrast. Apply uniform noise. parameters: - image: a numpy.ndarray - width: a scalar indicating width of additive uniform noise -> then noise will be in range [-width, width] - contrast_level: a scalar in [0, 1]; with 1 -> full contrast - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ image = grayscale_contrast(image, contrast_level) return apply_uniform_noise(image, -width, width, rng) ########################################################### # HELPER FUNCTIONS ########################################################### def apply_uniform_noise(image, low, high, rng=None): """Apply uniform noise to an image, clip outside values to 0 and 1. parameters: - image: a numpy.ndarray - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ nrow = image.shape[0] ncol = image.shape[1] image = image + get_uniform_noise(low, high, nrow, ncol, rng) #clip values image = np.where(image < 0, 0, image) image = np.where(image > 1, 1, image) assert is_in_bounds(image, 0, 1), "values <0 or >1 occurred" return image def get_uniform_noise(low, high, nrow, ncol, rng=None): """Return uniform noise within [low, high) of size (nrow, ncol). parameters: - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - nrow: number of rows of desired noise - ncol: number of columns of desired noise - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ if rng is None: return np.random.uniform(low=low, high=high, size=(nrow, ncol)) else: return rng.uniform(low=low, high=high, size=(nrow, ncol)) def is_in_bounds(mat, low, high): """Return wether all values in 'mat' fall between low and high. parameters: - mat: a numpy.ndarray - low: lower bound (inclusive) - high: upper bound (inclusive) """ return np.all(np.logical_and(mat >= 0, mat <= 1)) def eidolon_partially_coherent_disarray(image, reach, coherence, grain): """Return parametrically distorted images (produced by Eidolon factory. For more information on the effect of different distortions, please have a look at the paper: Koenderink et al., JoV 2017, Eidolons: Novel stimuli for vision research). - image: a numpy.ndarray - reach: float, controlling the strength of the manipulation - coherence: a float within [0, 1] with 1 = full coherence - grain: float, controlling how fine-grained the distortion is """ return wr.partially_coherent_disarray(wr.data_to_pic(image), reach, coherence, grain) ########################################################### # MAIN METHOD FOR TESTING & DEMONSTRATION PURPOSES ########################################################### if __name__ == "__main__": print("""This main method should generate manipulated images in the directory where it was executed.""") use_JPEG = False # either JPEG or PNG img = imload_rgb("test_image.JPEG") ################################################### # A) Example for color-experiment: # - convert to grayscale ################################################### img_grayscale = rgb2gray(img) save_img(img_grayscale, "test_image_grayscale", use_JPEG) ################################################### # B) Example for contrast-experiment: # - convert to grayscale and # - reduce contrast to nominal contrast of 10% ################################################### contrast_level_1 = 0.1 img_low_contrast = grayscale_contrast(image=img, contrast_level=contrast_level_1) save_img(img_low_contrast, "test_image_low_contrast", use_JPEG) ################################################### # C) Example for noise-experiment: # - convert to graycale and # - reduce contrast to 30% and # - apply uniform noise with width 0.1 ################################################### noise_width = 0.1 contrast_level_2 = 0.3 rng = np.random.RandomState(seed=42) img_noisy = uniform_noise(image=img, width=noise_width, contrast_level=contrast_level_2, rng=rng) save_img(img_noisy, "test_image_noisy", use_JPEG) ################################################### # D) Example for eidolon-experiment: # - use partially_coherent_disarray ################################################### grain = 10.0 coherence = 1.0 reach = 8.0 img_eidolon = eidolon_partially_coherent_disarray(img, reach, coherence, grain) save_img(img_eidolon, "test_image_eidolon", use_JPEG)
#!/usr/bin/env python from skimage.color import rgb2gray from skimage.io import imread, imsave from scipy.misc import toimage import numpy as np import wrapper as wr ########################################################### # IMAGE IO ########################################################### def imload_rgb(path): """Load and return an RGB image in the range [0, 1].""" return imread(path) / 255.0 def save_img(image, imgname, use_JPEG=False): """Save image as either .jpeg or .png""" if use_JPEG: imsave(imgname+".JPEG", image) else: toimage(image, cmin=0.0, cmax=1.0).save(imgname+".png") ########################################################### # IMAGE MANIPULATION ########################################################### def adjust_contrast(image, contrast_level): """Return the image scaled to a certain contrast level in [0, 1]. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast """ assert(contrast_level >= 0.0), "contrast_level too low." assert(contrast_level <= 1.0), "contrast_level too high." return (1-contrast_level)/2.0 + image.dot(contrast_level) def grayscale_contrast(image, contrast_level): """Convert to grayscale. Adjust contrast. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast """ return adjust_contrast(rgb2gray(image), contrast_level) def uniform_noise(image, width, contrast_level, rng): """Convert to grayscale. Adjust contrast. Apply uniform noise. parameters: - image: a numpy.ndarray - width: a scalar indicating width of additive uniform noise -> then noise will be in range [-width, width] - contrast_level: a scalar in [0, 1]; with 1 -> full contrast - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ image = grayscale_contrast(image, contrast_level) return apply_uniform_noise(image, -width, width, rng) ########################################################### # HELPER FUNCTIONS ########################################################### def apply_uniform_noise(image, low, high, rng=None): """Apply uniform noise to an image, clip outside values to 0 and 1. parameters: - image: a numpy.ndarray - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ nrow = image.shape[0] ncol = image.shape[1] image = image + get_uniform_noise(low, high, nrow, ncol, rng) #clip values image = np.where(image < 0, 0, image) image = np.where(image > 1, 1, image) assert is_in_bounds(image, 0, 1), "values <0 or >1 occurred" return image def get_uniform_noise(low, high, nrow, ncol, rng=None): """Return uniform noise within [low, high) of size (nrow, ncol). parameters: - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - nrow: number of rows of desired noise - ncol: number of columns of desired noise - rng: a np.random.RandomState(seed=XYZ) to make it reproducible """ if rng is None: return np.random.uniform(low=low, high=high, size=(nrow, ncol)) else: return rng.uniform(low=low, high=high, size=(nrow, ncol)) def is_in_bounds(mat, low, high): """Return wether all values in 'mat' fall between low and high. parameters: - mat: a numpy.ndarray - low: lower bound (inclusive) - high: upper bound (inclusive) """ return np.all(np.logical_and(mat >= 0, mat <= 1)) def eidolon_partially_coherent_disarray(image, reach, coherence, grain): """Return parametrically distorted images (produced by Eidolon factory. For more information on the effect of different distortions, please have a look at the paper: Koenderink et al., JoV 2017, Eidolons: Novel stimuli for vision research). - image: a numpy.ndarray - reach: float, controlling the strength of the manipulation - coherence: a float within [0, 1] with 1 = full coherence - grain: float, controlling how fine-grained the distortion is """ return wr.partially_coherent_disarray(wr.data_to_pic(image), reach, coherence, grain) ########################################################### # MAIN METHOD FOR TESTING & DEMONSTRATION PURPOSES ########################################################### if __name__ == "__main__": print("""This main method should generate manipulated images in the directory where it was executed.""") use_JPEG = False # either JPEG or PNG img = imload_rgb("test_image.JPEG") ################################################### # A) Example for color-experiment: # - convert to grayscale ################################################### img_grayscale = rgb2gray(img) save_img(img_grayscale, "test_image_grayscale", use_JPEG) ################################################### # B) Example for contrast-experiment: # - convert to grayscale and # - reduce contrast to nominal contrast of 10% ################################################### contrast_level_1 = 0.1 img_low_contrast = grayscale_contrast(image=img, contrast_level=contrast_level_1) save_img(img_low_contrast, "test_image_low_contrast", use_JPEG) ################################################### # C) Example for noise-experiment: # - convert to graycale and # - reduce contrast to 30% and # - apply uniform noise with width 0.1 ################################################### noise_width = 0.1 contrast_level_2 = 0.3 rng = np.random.RandomState(seed=42) img_noisy = uniform_noise(image=img, width=noise_width, contrast_level=contrast_level_2, rng=rng) save_img(img_noisy, "test_image_noisy", use_JPEG) ################################################### # D) Example for eidolon-experiment: # - use partially_coherent_disarray ################################################### grain = 10.0 coherence = 1.0 reach = 8.0 img_eidolon = eidolon_partially_coherent_disarray(img, reach, coherence, grain) save_img(img_eidolon, "test_image_eidolon", use_JPEG)
en
0.358418
#!/usr/bin/env python ########################################################### # IMAGE IO ########################################################### Load and return an RGB image in the range [0, 1]. Save image as either .jpeg or .png ########################################################### # IMAGE MANIPULATION ########################################################### Return the image scaled to a certain contrast level in [0, 1]. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast Convert to grayscale. Adjust contrast. parameters: - image: a numpy.ndarray - contrast_level: a scalar in [0, 1]; with 1 -> full contrast Convert to grayscale. Adjust contrast. Apply uniform noise. parameters: - image: a numpy.ndarray - width: a scalar indicating width of additive uniform noise -> then noise will be in range [-width, width] - contrast_level: a scalar in [0, 1]; with 1 -> full contrast - rng: a np.random.RandomState(seed=XYZ) to make it reproducible ########################################################### # HELPER FUNCTIONS ########################################################### Apply uniform noise to an image, clip outside values to 0 and 1. parameters: - image: a numpy.ndarray - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - rng: a np.random.RandomState(seed=XYZ) to make it reproducible #clip values Return uniform noise within [low, high) of size (nrow, ncol). parameters: - low: lower bound of noise within [low, high) - high: upper bound of noise within [low, high) - nrow: number of rows of desired noise - ncol: number of columns of desired noise - rng: a np.random.RandomState(seed=XYZ) to make it reproducible Return wether all values in 'mat' fall between low and high. parameters: - mat: a numpy.ndarray - low: lower bound (inclusive) - high: upper bound (inclusive) Return parametrically distorted images (produced by Eidolon factory. For more information on the effect of different distortions, please have a look at the paper: Koenderink et al., JoV 2017, Eidolons: Novel stimuli for vision research). - image: a numpy.ndarray - reach: float, controlling the strength of the manipulation - coherence: a float within [0, 1] with 1 = full coherence - grain: float, controlling how fine-grained the distortion is ########################################################### # MAIN METHOD FOR TESTING & DEMONSTRATION PURPOSES ########################################################### This main method should generate manipulated images in the directory where it was executed. # either JPEG or PNG ################################################### # A) Example for color-experiment: # - convert to grayscale ################################################### ################################################### # B) Example for contrast-experiment: # - convert to grayscale and # - reduce contrast to nominal contrast of 10% ################################################### ################################################### # C) Example for noise-experiment: # - convert to graycale and # - reduce contrast to 30% and # - apply uniform noise with width 0.1 ################################################### ################################################### # D) Example for eidolon-experiment: # - use partially_coherent_disarray ###################################################
2.657595
3
students/K33402/Akhmetzhanov Alisher/lr2/main/forms.py
AlishKZ/ITMO_ICT_WebDevelopment_2020-2021
0
8703
from django.db.models import fields from main.models import RoomReservation, UserRoom from django import forms from django.core.exceptions import ValidationError from django.contrib.auth import authenticate, login from django.contrib.auth import get_user_model class ReservateRoomForm(forms.Form): begin_date = forms.DateField() end_date = forms.DateField() class AddCommentForm(forms.Form): text = forms.CharField(max_length=410) accommodation = forms.ModelChoiceField(queryset=UserRoom.objects.all()) class EditReservationForm(forms.ModelForm): class Meta: model = RoomReservation fields = ['begin_date', 'end_date']
from django.db.models import fields from main.models import RoomReservation, UserRoom from django import forms from django.core.exceptions import ValidationError from django.contrib.auth import authenticate, login from django.contrib.auth import get_user_model class ReservateRoomForm(forms.Form): begin_date = forms.DateField() end_date = forms.DateField() class AddCommentForm(forms.Form): text = forms.CharField(max_length=410) accommodation = forms.ModelChoiceField(queryset=UserRoom.objects.all()) class EditReservationForm(forms.ModelForm): class Meta: model = RoomReservation fields = ['begin_date', 'end_date']
none
1
2.055691
2
emmet-core/emmet/core/vasp/calc_types.py
espottesmith/emmet
0
8704
<filename>emmet-core/emmet/core/vasp/calc_types.py<gh_stars>0 """ Module to define various calculation types as Enums for VASP """ import datetime from itertools import groupby, product from pathlib import Path from typing import Dict, Iterator, List import bson import numpy as np from monty.json import MSONable from monty.serialization import loadfn from pydantic import BaseModel from pymatgen.analysis.structure_matcher import ElementComparator, StructureMatcher from pymatgen.core.structure import Structure from typing_extensions import Literal from emmet.core import SETTINGS from emmet.core.utils import ValueEnum _RUN_TYPE_DATA = loadfn(str(Path(__file__).parent.joinpath("run_types.yaml").resolve())) _TASK_TYPES = [ "NSCF Line", "NSCF Uniform", "Dielectric", "DFPT", "DFPT Dielectric", "NMR Nuclear Shielding", "NMR Electric Field Gradient", "Static", "Structure Optimization", "Deformation", ] _RUN_TYPES = ( [ rt for functional_class in _RUN_TYPE_DATA for rt in _RUN_TYPE_DATA[functional_class] ] + [ f"{rt}+U" for functional_class in _RUN_TYPE_DATA for rt in _RUN_TYPE_DATA[functional_class] ] + ["LDA", "LDA+U"] ) RunType = ValueEnum( # type: ignore "RunType", dict({"_".join(rt.split()).replace("+", "_"): rt for rt in _RUN_TYPES}) ) RunType.__doc__ = "VASP calculation run types" TaskType = ValueEnum("TaskType", {"_".join(tt.split()): tt for tt in _TASK_TYPES}) # type: ignore TaskType.__doc__ = "VASP calculation task types" CalcType = ValueEnum( # type: ignore "CalcType", { f"{'_'.join(rt.split()).replace('+','_')}_{'_'.join(tt.split())}": f"{rt} {tt}" for rt, tt in product(_RUN_TYPES, _TASK_TYPES) }, ) CalcType.__doc__ = "VASP calculation types" def run_type(parameters: Dict) -> RunType: """ Determines the run_type from the VASP parameters dict This is adapted from pymatgen to be far less unstable Args: parameters: Dictionary of VASP parameters from Vasprun.xml """ if parameters.get("LDAU", False): is_hubbard = "+U" else: is_hubbard = "" def _variant_equal(v1, v2) -> bool: """ helper function to deal with strings """ if isinstance(v1, str) and isinstance(v2, str): return v1.strip().upper() == v2.strip().upper() else: return v1 == v2 # This is to force an order of evaluation for functional_class in ["HF", "VDW", "METAGGA", "GGA"]: for special_type, params in _RUN_TYPE_DATA[functional_class].items(): if all( [ _variant_equal(parameters.get(param, None), value) for param, value in params.items() ] ): return RunType(f"{special_type}{is_hubbard}") return RunType(f"LDA{is_hubbard}") def task_type( inputs: Dict[Literal["incar", "poscar", "kpoints", "potcar"], Dict] ) -> TaskType: """ Determines the task type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries """ calc_type = [] incar = inputs.get("incar", {}) if incar.get("ICHARG", 0) > 10: try: kpts = inputs.get("kpoints") or {} kpt_labels = kpts.get("labels") or [] num_kpt_labels = len(list(filter(None.__ne__, kpt_labels))) except Exception as e: raise Exception( "Couldn't identify total number of kpt labels: {}".format(e) ) if num_kpt_labels > 0: calc_type.append("NSCF Line") else: calc_type.append("NSCF Uniform") elif incar.get("LEPSILON", False): if incar.get("IBRION", 0) > 6: calc_type.append("DFPT") calc_type.append("Dielectric") elif incar.get("IBRION", 0) > 6: calc_type.append("DFPT") elif incar.get("LCHIMAG", False): calc_type.append("NMR Nuclear Shielding") elif incar.get("LEFG", False): calc_type.append("NMR Electric Field Gradient") elif incar.get("NSW", 1) == 0: calc_type.append("Static") elif incar.get("ISIF", 2) == 3 and incar.get("IBRION", 0) > 0: calc_type.append("Structure Optimization") elif incar.get("ISIF", 3) == 2 and incar.get("IBRION", 0) > 0: calc_type.append("Deformation") return TaskType(" ".join(calc_type)) def calc_type( inputs: Dict[Literal["incar", "poscar", "kpoints", "potcar"], Dict], parameters: Dict, ) -> CalcType: """ Determines the calc type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries parameters: Dictionary of VASP parameters from Vasprun.xml """ rt = run_type(parameters).value tt = task_type(inputs).value return CalcType(f"{rt} {tt}")
<filename>emmet-core/emmet/core/vasp/calc_types.py<gh_stars>0 """ Module to define various calculation types as Enums for VASP """ import datetime from itertools import groupby, product from pathlib import Path from typing import Dict, Iterator, List import bson import numpy as np from monty.json import MSONable from monty.serialization import loadfn from pydantic import BaseModel from pymatgen.analysis.structure_matcher import ElementComparator, StructureMatcher from pymatgen.core.structure import Structure from typing_extensions import Literal from emmet.core import SETTINGS from emmet.core.utils import ValueEnum _RUN_TYPE_DATA = loadfn(str(Path(__file__).parent.joinpath("run_types.yaml").resolve())) _TASK_TYPES = [ "NSCF Line", "NSCF Uniform", "Dielectric", "DFPT", "DFPT Dielectric", "NMR Nuclear Shielding", "NMR Electric Field Gradient", "Static", "Structure Optimization", "Deformation", ] _RUN_TYPES = ( [ rt for functional_class in _RUN_TYPE_DATA for rt in _RUN_TYPE_DATA[functional_class] ] + [ f"{rt}+U" for functional_class in _RUN_TYPE_DATA for rt in _RUN_TYPE_DATA[functional_class] ] + ["LDA", "LDA+U"] ) RunType = ValueEnum( # type: ignore "RunType", dict({"_".join(rt.split()).replace("+", "_"): rt for rt in _RUN_TYPES}) ) RunType.__doc__ = "VASP calculation run types" TaskType = ValueEnum("TaskType", {"_".join(tt.split()): tt for tt in _TASK_TYPES}) # type: ignore TaskType.__doc__ = "VASP calculation task types" CalcType = ValueEnum( # type: ignore "CalcType", { f"{'_'.join(rt.split()).replace('+','_')}_{'_'.join(tt.split())}": f"{rt} {tt}" for rt, tt in product(_RUN_TYPES, _TASK_TYPES) }, ) CalcType.__doc__ = "VASP calculation types" def run_type(parameters: Dict) -> RunType: """ Determines the run_type from the VASP parameters dict This is adapted from pymatgen to be far less unstable Args: parameters: Dictionary of VASP parameters from Vasprun.xml """ if parameters.get("LDAU", False): is_hubbard = "+U" else: is_hubbard = "" def _variant_equal(v1, v2) -> bool: """ helper function to deal with strings """ if isinstance(v1, str) and isinstance(v2, str): return v1.strip().upper() == v2.strip().upper() else: return v1 == v2 # This is to force an order of evaluation for functional_class in ["HF", "VDW", "METAGGA", "GGA"]: for special_type, params in _RUN_TYPE_DATA[functional_class].items(): if all( [ _variant_equal(parameters.get(param, None), value) for param, value in params.items() ] ): return RunType(f"{special_type}{is_hubbard}") return RunType(f"LDA{is_hubbard}") def task_type( inputs: Dict[Literal["incar", "poscar", "kpoints", "potcar"], Dict] ) -> TaskType: """ Determines the task type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries """ calc_type = [] incar = inputs.get("incar", {}) if incar.get("ICHARG", 0) > 10: try: kpts = inputs.get("kpoints") or {} kpt_labels = kpts.get("labels") or [] num_kpt_labels = len(list(filter(None.__ne__, kpt_labels))) except Exception as e: raise Exception( "Couldn't identify total number of kpt labels: {}".format(e) ) if num_kpt_labels > 0: calc_type.append("NSCF Line") else: calc_type.append("NSCF Uniform") elif incar.get("LEPSILON", False): if incar.get("IBRION", 0) > 6: calc_type.append("DFPT") calc_type.append("Dielectric") elif incar.get("IBRION", 0) > 6: calc_type.append("DFPT") elif incar.get("LCHIMAG", False): calc_type.append("NMR Nuclear Shielding") elif incar.get("LEFG", False): calc_type.append("NMR Electric Field Gradient") elif incar.get("NSW", 1) == 0: calc_type.append("Static") elif incar.get("ISIF", 2) == 3 and incar.get("IBRION", 0) > 0: calc_type.append("Structure Optimization") elif incar.get("ISIF", 3) == 2 and incar.get("IBRION", 0) > 0: calc_type.append("Deformation") return TaskType(" ".join(calc_type)) def calc_type( inputs: Dict[Literal["incar", "poscar", "kpoints", "potcar"], Dict], parameters: Dict, ) -> CalcType: """ Determines the calc type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries parameters: Dictionary of VASP parameters from Vasprun.xml """ rt = run_type(parameters).value tt = task_type(inputs).value return CalcType(f"{rt} {tt}")
en
0.646212
Module to define various calculation types as Enums for VASP # type: ignore # type: ignore # type: ignore Determines the run_type from the VASP parameters dict This is adapted from pymatgen to be far less unstable Args: parameters: Dictionary of VASP parameters from Vasprun.xml helper function to deal with strings # This is to force an order of evaluation Determines the task type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries Determines the calc type Args: inputs: inputs dict with an incar, kpoints, potcar, and poscar dictionaries parameters: Dictionary of VASP parameters from Vasprun.xml
2.044944
2
sensors/__init__.py
dawnos/robotcar-to-rosbag
0
8705
from mono_left import MonoLeft from mono_right import MonoRight from mono_rear import MonoRear from stereo_left import StereoLeft from stereo_right import StereoRight from stereo_centre import StereoCentre
from mono_left import MonoLeft from mono_right import MonoRight from mono_rear import MonoRear from stereo_left import StereoLeft from stereo_right import StereoRight from stereo_centre import StereoCentre
none
1
1.139627
1
models/train_classifier.py
YiWang-Evonne/disaster_response
0
8706
<filename>models/train_classifier.py import sys import pandas as pd from sqlalchemy import create_engine import nltk nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger']) import re from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer import pickle from sklearn.model_selection import GridSearchCV def load_data(database_filepath): """ load data from sql db :param database_filepath: sql db path :return: pandas dataframe """ engine = create_engine("sqlite:///"+database_filepath) df = pd.read_sql_table('modeling_data', engine) yvar = [item for item in list(df) if item not in ['message', 'original', 'genre', 'id']] X = df['message'] Y = df[yvar] return X.values, Y.values, list(Y) def tokenize(text): """ processing the text input :param text: text inputs :return: """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ build model pipeline :return: model pipeline """ model_pipeline = Pipeline([ ('features', Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()) ])), ('clf', RandomForestClassifier()) ]) return model_pipeline def model_gridsearch(model, parameters): cv = GridSearchCV(model, param_grid=parameters, verbose=3) return cv def evaluate_model(model, X_test, Y_test, category_names): """ evaluate model performances :param model: model obj :param X_test: test x :param Y_test: test y :param category_names: y names :return: """ y_pred = model.predict(X_test) print(classification_report(Y_test, y_pred, target_names=category_names)) def save_model(model, model_filepath): """ save model to local path :param model: model obj :param model_filepath: saving path :return: """ with open(model_filepath, 'wb') as f: pickle.dump(model, f) def main(): """ CLI to fit the model :return: """ if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') # model.fit(X_train, Y_train) parameters = { 'clf__n_estimators': [100, 400, 800], # 'clf__criterion':["gini", "entropy"] } cv = model_gridsearch(model, parameters) best_model_pipeline = cv.best_estimator_ print('Evaluating model...') evaluate_model(best_model_pipeline, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(best_model_pipeline, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
<filename>models/train_classifier.py import sys import pandas as pd from sqlalchemy import create_engine import nltk nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger']) import re from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer import pickle from sklearn.model_selection import GridSearchCV def load_data(database_filepath): """ load data from sql db :param database_filepath: sql db path :return: pandas dataframe """ engine = create_engine("sqlite:///"+database_filepath) df = pd.read_sql_table('modeling_data', engine) yvar = [item for item in list(df) if item not in ['message', 'original', 'genre', 'id']] X = df['message'] Y = df[yvar] return X.values, Y.values, list(Y) def tokenize(text): """ processing the text input :param text: text inputs :return: """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ build model pipeline :return: model pipeline """ model_pipeline = Pipeline([ ('features', Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()) ])), ('clf', RandomForestClassifier()) ]) return model_pipeline def model_gridsearch(model, parameters): cv = GridSearchCV(model, param_grid=parameters, verbose=3) return cv def evaluate_model(model, X_test, Y_test, category_names): """ evaluate model performances :param model: model obj :param X_test: test x :param Y_test: test y :param category_names: y names :return: """ y_pred = model.predict(X_test) print(classification_report(Y_test, y_pred, target_names=category_names)) def save_model(model, model_filepath): """ save model to local path :param model: model obj :param model_filepath: saving path :return: """ with open(model_filepath, 'wb') as f: pickle.dump(model, f) def main(): """ CLI to fit the model :return: """ if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') # model.fit(X_train, Y_train) parameters = { 'clf__n_estimators': [100, 400, 800], # 'clf__criterion':["gini", "entropy"] } cv = model_gridsearch(model, parameters) best_model_pipeline = cv.best_estimator_ print('Evaluating model...') evaluate_model(best_model_pipeline, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(best_model_pipeline, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
en
0.493456
load data from sql db :param database_filepath: sql db path :return: pandas dataframe processing the text input :param text: text inputs :return: build model pipeline :return: model pipeline evaluate model performances :param model: model obj :param X_test: test x :param Y_test: test y :param category_names: y names :return: save model to local path :param model: model obj :param model_filepath: saving path :return: CLI to fit the model :return: # model.fit(X_train, Y_train) # 'clf__criterion':["gini", "entropy"]
2.671436
3
terra/terra/emails.py
dymaxionlabs/platform
0
8707
<reponame>dymaxionlabs/platform import os from datetime import date from django.conf import settings from django.core.mail import send_mail from django.template.loader import render_to_string from django.utils import translation from django.utils.translation import ugettext as _ from mailchimp3 import MailChimp class Email: from_email = settings.DEFAULT_FROM_EMAIL subject = None template_name = 'basic' preview_text = '' templates_basedir = os.path.join(settings.BASE_DIR, 'templates') def __init__(self, recipients, language_code='en'): self.recipients = recipients self.language_code = language_code def send_mail(self): send_mail(self.subject, self.body, self.from_email, self.recipients, html_message=self.html_body) @property def body(self): return render_to_string(self.body_template, self.template_params) @property def html_body(self): return self._reformat_mailchimp_template( render_to_string(self.htmlbody_template, self.template_params)) @property def body_template(self): return os.path.join( self.templates_basedir, '{name}.{lc}.txt'.format(name=self.template_name, lc=self.language_code)) @property def htmlbody_template(self): return os.path.join( self.templates_basedir, '{name}.{lc}.html'.format(name=self.template_name, lc=self.language_code)) @property def template_params(self): return {} def _reformat_mailchimp_template(self, html): """ Replaces MailChimp variables for Django template variables, and do some post-processing. """ for var, newvar in self.mc_variables.items(): html = html.replace(str(var), str(newvar)) return html @property def mc_variables(self): return { '*|MC:SUBJECT|*': self.subject, '*|MC_PREVIEW_TEXT|*': self.preview_text, '*|CURRENT_YEAR|*': date.today().year, '*|LIST:COMPANY|*': settings.COMPANY_NAME, '*|HTML:LIST_ADDRESS_HTML|*': settings.LIST_ADDRESS_HTML, '*|UNSUB|*': '%unsubscribe_url%', # Unused variables (for now): '*|IFNOT:ARCHIVE_PAGE|*': '', '*|LIST:DESCRIPTION|*': '', '*|END:IF|*': '', } class EarlyAccessBetaEmail(Email): template_name = 'early_access_beta' @property def signup_url(self): return '{base_url}/signup?beta=1&email={email}'.format( base_url=settings.WEBCLIENT_URL, email= self.recipients[0]) @property def subject(self): with translation.override(self.language_code): return _('validate your email') @property def template_params(self): return {**super().template_params, 'signup_url': self.signup_url} @property def mc_variables(self): return {**super().mc_variables, '*|SIGNUP_URL|*': self.signup_url} class WelcomeEmail(Email): template_name = 'welcome' link = '{base_url}/login'.format(base_url=settings.WEBCLIENT_URL) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) self.user = user @property def subject(self): with translation.override(self.language_code): return _('your account is ready') % {'name': self.first_name} @property def template_params(self): return { **super().template_params, 'first_name': self.first_name, 'link': self.link, } @property def mc_variables(self): return { **super().mc_variables, '*|FNAME|*': self.first_name, '*|TEXT:LINK|*': self.link, } @property def first_name(self): return self.user.first_name or self.user.username class TrainingCompletedEmail(Email): template_name = 'training_completed' def __init__(self, estimator, *args, **kwargs): super().__init__(*args, **kwargs) self.estimator = estimator self.link = '{web_client_url}/models/new/od/select?id={uuid}'.format( web_client_url = settings.WEBCLIENT_URL, uuid = estimator.uuid ) @property def subject(self): with translation.override(self.language_code): return _('training of your model completed') @property def template_params(self): return { **super().template_params, 'name': self.estimator_name, 'num_classes': self.num_classes, 'link': self.link, } @property def mc_variables(self): return { **super().mc_variables, '*|NAME|*': self.estimator_name, '*|NUM_CLASSES|*': self.num_classes, '*|LINK|*': self.link, } @property def estimator_name(self): return self.estimator.name @property def num_classes(self): return len(self.estimator.classes) class PredictionCompletedEmail(Email): template_name = 'prediction_completed' def __init__(self, estimator, *args, **kwargs): super().__init__(*args, **kwargs) self.estimator = estimator @property def subject(self): with translation.override(self.language_code): return _('prediction of your model completed') @property def template_params(self): return { **super().template_params, 'name': self.estimator_name, 'num_classes': self.num_classes, } @property def mc_variables(self): return { **super().mc_variables, '*|NAME|*': self.estimator_name, '*|NUM_CLASSES|*': self.num_classes, } @property def estimator_name(self): return self.estimator.name @property def num_classes(self): return len(self.estimator.classes) def notify(subject, body='.'): send_mail(subject, body, '<EMAIL>', ['<EMAIL>'])
import os from datetime import date from django.conf import settings from django.core.mail import send_mail from django.template.loader import render_to_string from django.utils import translation from django.utils.translation import ugettext as _ from mailchimp3 import MailChimp class Email: from_email = settings.DEFAULT_FROM_EMAIL subject = None template_name = 'basic' preview_text = '' templates_basedir = os.path.join(settings.BASE_DIR, 'templates') def __init__(self, recipients, language_code='en'): self.recipients = recipients self.language_code = language_code def send_mail(self): send_mail(self.subject, self.body, self.from_email, self.recipients, html_message=self.html_body) @property def body(self): return render_to_string(self.body_template, self.template_params) @property def html_body(self): return self._reformat_mailchimp_template( render_to_string(self.htmlbody_template, self.template_params)) @property def body_template(self): return os.path.join( self.templates_basedir, '{name}.{lc}.txt'.format(name=self.template_name, lc=self.language_code)) @property def htmlbody_template(self): return os.path.join( self.templates_basedir, '{name}.{lc}.html'.format(name=self.template_name, lc=self.language_code)) @property def template_params(self): return {} def _reformat_mailchimp_template(self, html): """ Replaces MailChimp variables for Django template variables, and do some post-processing. """ for var, newvar in self.mc_variables.items(): html = html.replace(str(var), str(newvar)) return html @property def mc_variables(self): return { '*|MC:SUBJECT|*': self.subject, '*|MC_PREVIEW_TEXT|*': self.preview_text, '*|CURRENT_YEAR|*': date.today().year, '*|LIST:COMPANY|*': settings.COMPANY_NAME, '*|HTML:LIST_ADDRESS_HTML|*': settings.LIST_ADDRESS_HTML, '*|UNSUB|*': '%unsubscribe_url%', # Unused variables (for now): '*|IFNOT:ARCHIVE_PAGE|*': '', '*|LIST:DESCRIPTION|*': '', '*|END:IF|*': '', } class EarlyAccessBetaEmail(Email): template_name = 'early_access_beta' @property def signup_url(self): return '{base_url}/signup?beta=1&email={email}'.format( base_url=settings.WEBCLIENT_URL, email= self.recipients[0]) @property def subject(self): with translation.override(self.language_code): return _('validate your email') @property def template_params(self): return {**super().template_params, 'signup_url': self.signup_url} @property def mc_variables(self): return {**super().mc_variables, '*|SIGNUP_URL|*': self.signup_url} class WelcomeEmail(Email): template_name = 'welcome' link = '{base_url}/login'.format(base_url=settings.WEBCLIENT_URL) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) self.user = user @property def subject(self): with translation.override(self.language_code): return _('your account is ready') % {'name': self.first_name} @property def template_params(self): return { **super().template_params, 'first_name': self.first_name, 'link': self.link, } @property def mc_variables(self): return { **super().mc_variables, '*|FNAME|*': self.first_name, '*|TEXT:LINK|*': self.link, } @property def first_name(self): return self.user.first_name or self.user.username class TrainingCompletedEmail(Email): template_name = 'training_completed' def __init__(self, estimator, *args, **kwargs): super().__init__(*args, **kwargs) self.estimator = estimator self.link = '{web_client_url}/models/new/od/select?id={uuid}'.format( web_client_url = settings.WEBCLIENT_URL, uuid = estimator.uuid ) @property def subject(self): with translation.override(self.language_code): return _('training of your model completed') @property def template_params(self): return { **super().template_params, 'name': self.estimator_name, 'num_classes': self.num_classes, 'link': self.link, } @property def mc_variables(self): return { **super().mc_variables, '*|NAME|*': self.estimator_name, '*|NUM_CLASSES|*': self.num_classes, '*|LINK|*': self.link, } @property def estimator_name(self): return self.estimator.name @property def num_classes(self): return len(self.estimator.classes) class PredictionCompletedEmail(Email): template_name = 'prediction_completed' def __init__(self, estimator, *args, **kwargs): super().__init__(*args, **kwargs) self.estimator = estimator @property def subject(self): with translation.override(self.language_code): return _('prediction of your model completed') @property def template_params(self): return { **super().template_params, 'name': self.estimator_name, 'num_classes': self.num_classes, } @property def mc_variables(self): return { **super().mc_variables, '*|NAME|*': self.estimator_name, '*|NUM_CLASSES|*': self.num_classes, } @property def estimator_name(self): return self.estimator.name @property def num_classes(self): return len(self.estimator.classes) def notify(subject, body='.'): send_mail(subject, body, '<EMAIL>', ['<EMAIL>'])
en
0.588827
Replaces MailChimp variables for Django template variables, and do some post-processing. # Unused variables (for now):
2.300007
2
experimental/attentive_uncertainty/toy_regression/datasets.py
miksu/edward2
0
8708
# coding=utf-8 # Copyright 2019 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parses real and synthetic datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function import collections import tensorflow as tf NPRegressionDescription = collections.namedtuple( "NPRegressionDescription", ("context_x", "context_y", "target_x", "target_y")) class GPCurvesReader(object): """Generates curves using a Gaussian Process (GP). Supports vector inputs (x) and vector outputs (y). Kernel is mean-squared exponential, using the x-value l2 coordinate distance scaled by some factor chosen randomly in a range. Outputs are independent gaussian processes. """ def __init__(self, batch_size, max_num_context, x_size=1, y_size=1, l1_scale=0.6, sigma_scale=1.0, random_kernel_parameters=False, testing=False): """Creates a regression dataset of functions sampled from a GP. Args: batch_size: An integer. max_num_context: The max number of observations in the context. x_size: Integer >= 1 for length of "x values" vector. y_size: Integer >= 1 for length of "y values" vector. l1_scale: Float; typical scale for kernel distance function. sigma_scale: Float; typical scale for variance. random_kernel_parameters: If `True`, the kernel parameters (l1 and sigma) are sampled uniformly within [0.1, l1_scale] and [0.1, sigma_scale]. testing: Boolean that indicates whether we are testing. If so there are more targets for visualization. """ self._batch_size = batch_size self._max_num_context = max_num_context self._x_size = x_size self._y_size = y_size self._l1_scale = l1_scale self._sigma_scale = sigma_scale self._random_kernel_parameters = random_kernel_parameters self._testing = testing def _gaussian_kernel(self, xdata, l1, sigma_f, sigma_noise=2e-2): """Applies the Gaussian kernel to generate curve data. Args: xdata: Tensor of shape [B, num_total_points, x_size] with the values of the x-axis data. l1: Tensor of shape [B, y_size, x_size], the scale parameter of the Gaussian kernel. sigma_f: Tensor of shape [B, y_size], the magnitude of the std. sigma_noise: Float, std of the noise that we add for stability. Returns: The kernel, a float tensor of shape [B, y_size, num_total_points, num_total_points]. """ num_total_points = tf.shape(xdata)[1] # Expand and take the difference xdata1 = tf.expand_dims(xdata, axis=1) # [B, 1, num_total_points, x_size] xdata2 = tf.expand_dims(xdata, axis=2) # [B, num_total_points, 1, x_size] diff = xdata1 - xdata2 # [B, num_total_points, num_total_points, x_size] # [B, y_size, num_total_points, num_total_points, x_size] norm = tf.square(diff[:, None, :, :, :] / l1[:, :, None, None, :]) norm = tf.reduce_sum( norm, -1) # [B, data_size, num_total_points, num_total_points] # [B, y_size, num_total_points, num_total_points] kernel = tf.square(sigma_f)[:, :, None, None] * tf.exp(-0.5 * norm) # Add some noise to the diagonal to make the cholesky work. kernel += (sigma_noise**2) * tf.eye(num_total_points) return kernel def generate_curves(self, num_context=None): """Builds the op delivering the data. Generated functions are `float32` with x values between -2 and 2. Args: num_context: Number of context points. If None, chosen randomly. Returns: A `CNPRegressionDescription` namedtuple. """ if num_context is None: num_context = tf.random_uniform( shape=[], minval=3, maxval=self._max_num_context, dtype=tf.int32) # If we are testing we want to have more targets and have them evenly # distributed in order to plot the function. if self._testing: num_target = 400 num_total_points = num_target x_values = tf.tile( tf.expand_dims(tf.range(-2., 2., 1. / 100, dtype=tf.float32), axis=0), [self._batch_size, 1]) x_values = tf.expand_dims(x_values, axis=-1) # During training the number of target points and their x-positions are # selected at random else: num_target = tf.random_uniform(shape=(), minval=0, maxval=self._max_num_context - num_context, dtype=tf.int32) num_total_points = num_context + num_target x_values = tf.random_uniform( [self._batch_size, num_total_points, self._x_size], -2, 2) # Set kernel parameters # Either choose a set of random parameters for the mini-batch if self._random_kernel_parameters: l1 = tf.random_uniform([self._batch_size, self._y_size, self._x_size], 0.1, self._l1_scale) sigma_f = tf.random_uniform([self._batch_size, self._y_size], 0.1, self._sigma_scale) # Or use the same fixed parameters for all mini-batches else: l1 = tf.ones(shape=[self._batch_size, self._y_size, self._x_size]) * self._l1_scale sigma_f = tf.ones(shape=[self._batch_size, self._y_size]) * self._sigma_scale # Pass the x_values through the Gaussian kernel # [batch_size, y_size, num_total_points, num_total_points] kernel = self._gaussian_kernel(x_values, l1, sigma_f) # Calculate Cholesky, using double precision for better stability: cholesky = tf.cast(tf.cholesky(tf.cast(kernel, tf.float64)), tf.float32) # Sample a curve # [batch_size, y_size, num_total_points, 1] y_values = tf.matmul( cholesky, tf.random_normal([self._batch_size, self._y_size, num_total_points, 1])) # [batch_size, num_total_points, y_size] y_values = tf.transpose(tf.squeeze(y_values, 3), [0, 2, 1]) if self._testing: # Select the targets target_x = x_values target_y = y_values # Select the observations idx = tf.random_shuffle(tf.range(num_target)) context_x = tf.gather(x_values, idx[:num_context], axis=1) context_y = tf.gather(y_values, idx[:num_context], axis=1) else: # Select the targets which will consist of the context points as well as # some new target points target_x = x_values[:, :num_target + num_context, :] target_y = y_values[:, :num_target + num_context, :] # Select the observations context_x = x_values[:, :num_context, :] context_y = y_values[:, :num_context, :] return NPRegressionDescription( context_x=context_x, context_y=context_y, target_x=target_x, target_y=target_y)
# coding=utf-8 # Copyright 2019 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parses real and synthetic datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function import collections import tensorflow as tf NPRegressionDescription = collections.namedtuple( "NPRegressionDescription", ("context_x", "context_y", "target_x", "target_y")) class GPCurvesReader(object): """Generates curves using a Gaussian Process (GP). Supports vector inputs (x) and vector outputs (y). Kernel is mean-squared exponential, using the x-value l2 coordinate distance scaled by some factor chosen randomly in a range. Outputs are independent gaussian processes. """ def __init__(self, batch_size, max_num_context, x_size=1, y_size=1, l1_scale=0.6, sigma_scale=1.0, random_kernel_parameters=False, testing=False): """Creates a regression dataset of functions sampled from a GP. Args: batch_size: An integer. max_num_context: The max number of observations in the context. x_size: Integer >= 1 for length of "x values" vector. y_size: Integer >= 1 for length of "y values" vector. l1_scale: Float; typical scale for kernel distance function. sigma_scale: Float; typical scale for variance. random_kernel_parameters: If `True`, the kernel parameters (l1 and sigma) are sampled uniformly within [0.1, l1_scale] and [0.1, sigma_scale]. testing: Boolean that indicates whether we are testing. If so there are more targets for visualization. """ self._batch_size = batch_size self._max_num_context = max_num_context self._x_size = x_size self._y_size = y_size self._l1_scale = l1_scale self._sigma_scale = sigma_scale self._random_kernel_parameters = random_kernel_parameters self._testing = testing def _gaussian_kernel(self, xdata, l1, sigma_f, sigma_noise=2e-2): """Applies the Gaussian kernel to generate curve data. Args: xdata: Tensor of shape [B, num_total_points, x_size] with the values of the x-axis data. l1: Tensor of shape [B, y_size, x_size], the scale parameter of the Gaussian kernel. sigma_f: Tensor of shape [B, y_size], the magnitude of the std. sigma_noise: Float, std of the noise that we add for stability. Returns: The kernel, a float tensor of shape [B, y_size, num_total_points, num_total_points]. """ num_total_points = tf.shape(xdata)[1] # Expand and take the difference xdata1 = tf.expand_dims(xdata, axis=1) # [B, 1, num_total_points, x_size] xdata2 = tf.expand_dims(xdata, axis=2) # [B, num_total_points, 1, x_size] diff = xdata1 - xdata2 # [B, num_total_points, num_total_points, x_size] # [B, y_size, num_total_points, num_total_points, x_size] norm = tf.square(diff[:, None, :, :, :] / l1[:, :, None, None, :]) norm = tf.reduce_sum( norm, -1) # [B, data_size, num_total_points, num_total_points] # [B, y_size, num_total_points, num_total_points] kernel = tf.square(sigma_f)[:, :, None, None] * tf.exp(-0.5 * norm) # Add some noise to the diagonal to make the cholesky work. kernel += (sigma_noise**2) * tf.eye(num_total_points) return kernel def generate_curves(self, num_context=None): """Builds the op delivering the data. Generated functions are `float32` with x values between -2 and 2. Args: num_context: Number of context points. If None, chosen randomly. Returns: A `CNPRegressionDescription` namedtuple. """ if num_context is None: num_context = tf.random_uniform( shape=[], minval=3, maxval=self._max_num_context, dtype=tf.int32) # If we are testing we want to have more targets and have them evenly # distributed in order to plot the function. if self._testing: num_target = 400 num_total_points = num_target x_values = tf.tile( tf.expand_dims(tf.range(-2., 2., 1. / 100, dtype=tf.float32), axis=0), [self._batch_size, 1]) x_values = tf.expand_dims(x_values, axis=-1) # During training the number of target points and their x-positions are # selected at random else: num_target = tf.random_uniform(shape=(), minval=0, maxval=self._max_num_context - num_context, dtype=tf.int32) num_total_points = num_context + num_target x_values = tf.random_uniform( [self._batch_size, num_total_points, self._x_size], -2, 2) # Set kernel parameters # Either choose a set of random parameters for the mini-batch if self._random_kernel_parameters: l1 = tf.random_uniform([self._batch_size, self._y_size, self._x_size], 0.1, self._l1_scale) sigma_f = tf.random_uniform([self._batch_size, self._y_size], 0.1, self._sigma_scale) # Or use the same fixed parameters for all mini-batches else: l1 = tf.ones(shape=[self._batch_size, self._y_size, self._x_size]) * self._l1_scale sigma_f = tf.ones(shape=[self._batch_size, self._y_size]) * self._sigma_scale # Pass the x_values through the Gaussian kernel # [batch_size, y_size, num_total_points, num_total_points] kernel = self._gaussian_kernel(x_values, l1, sigma_f) # Calculate Cholesky, using double precision for better stability: cholesky = tf.cast(tf.cholesky(tf.cast(kernel, tf.float64)), tf.float32) # Sample a curve # [batch_size, y_size, num_total_points, 1] y_values = tf.matmul( cholesky, tf.random_normal([self._batch_size, self._y_size, num_total_points, 1])) # [batch_size, num_total_points, y_size] y_values = tf.transpose(tf.squeeze(y_values, 3), [0, 2, 1]) if self._testing: # Select the targets target_x = x_values target_y = y_values # Select the observations idx = tf.random_shuffle(tf.range(num_target)) context_x = tf.gather(x_values, idx[:num_context], axis=1) context_y = tf.gather(y_values, idx[:num_context], axis=1) else: # Select the targets which will consist of the context points as well as # some new target points target_x = x_values[:, :num_target + num_context, :] target_y = y_values[:, :num_target + num_context, :] # Select the observations context_x = x_values[:, :num_context, :] context_y = y_values[:, :num_context, :] return NPRegressionDescription( context_x=context_x, context_y=context_y, target_x=target_x, target_y=target_y)
en
0.777681
# coding=utf-8 # Copyright 2019 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Parses real and synthetic datasets. Generates curves using a Gaussian Process (GP). Supports vector inputs (x) and vector outputs (y). Kernel is mean-squared exponential, using the x-value l2 coordinate distance scaled by some factor chosen randomly in a range. Outputs are independent gaussian processes. Creates a regression dataset of functions sampled from a GP. Args: batch_size: An integer. max_num_context: The max number of observations in the context. x_size: Integer >= 1 for length of "x values" vector. y_size: Integer >= 1 for length of "y values" vector. l1_scale: Float; typical scale for kernel distance function. sigma_scale: Float; typical scale for variance. random_kernel_parameters: If `True`, the kernel parameters (l1 and sigma) are sampled uniformly within [0.1, l1_scale] and [0.1, sigma_scale]. testing: Boolean that indicates whether we are testing. If so there are more targets for visualization. Applies the Gaussian kernel to generate curve data. Args: xdata: Tensor of shape [B, num_total_points, x_size] with the values of the x-axis data. l1: Tensor of shape [B, y_size, x_size], the scale parameter of the Gaussian kernel. sigma_f: Tensor of shape [B, y_size], the magnitude of the std. sigma_noise: Float, std of the noise that we add for stability. Returns: The kernel, a float tensor of shape [B, y_size, num_total_points, num_total_points]. # Expand and take the difference # [B, 1, num_total_points, x_size] # [B, num_total_points, 1, x_size] # [B, num_total_points, num_total_points, x_size] # [B, y_size, num_total_points, num_total_points, x_size] # [B, data_size, num_total_points, num_total_points] # [B, y_size, num_total_points, num_total_points] # Add some noise to the diagonal to make the cholesky work. Builds the op delivering the data. Generated functions are `float32` with x values between -2 and 2. Args: num_context: Number of context points. If None, chosen randomly. Returns: A `CNPRegressionDescription` namedtuple. # If we are testing we want to have more targets and have them evenly # distributed in order to plot the function. # During training the number of target points and their x-positions are # selected at random # Set kernel parameters # Either choose a set of random parameters for the mini-batch # Or use the same fixed parameters for all mini-batches # Pass the x_values through the Gaussian kernel # [batch_size, y_size, num_total_points, num_total_points] # Calculate Cholesky, using double precision for better stability: # Sample a curve # [batch_size, y_size, num_total_points, 1] # [batch_size, num_total_points, y_size] # Select the targets # Select the observations # Select the targets which will consist of the context points as well as # some new target points # Select the observations
2.537671
3
critiquebrainz/frontend/views/index.py
shagun6/critiquebrainz
0
8709
<filename>critiquebrainz/frontend/views/index.py from flask import Blueprint, render_template from flask_babel import format_number import critiquebrainz.db.users as db_users import critiquebrainz.db.review as db_review from bs4 import BeautifulSoup from markdown import markdown DEFAULT_CACHE_EXPIRATION = 10 * 60 # seconds frontend_bp = Blueprint('frontend', __name__) @frontend_bp.route('/') def index(): # Popular reviews popular_reviews = db_review.get_popular(6) for review in popular_reviews: # Preparing text for preview preview = markdown(review['text'], safe_mode="escape") review['preview'] = ''.join(BeautifulSoup(preview, "html.parser").findAll(text=True)) # Recent reviews recent_reviews, _ = db_review.list_reviews(sort='created', limit=9) # Statistics review_count = format_number(db_review.get_count(is_draft=False)) user_count = format_number(db_users.total_count()) return render_template('index/index.html', popular_reviews=popular_reviews, recent_reviews=recent_reviews, reviews_total=review_count, users_total=user_count) @frontend_bp.route('/about') def about(): return render_template('index/about.html') @frontend_bp.route('/guidelines') def guidelines(): return render_template('index/guidelines.html')
<filename>critiquebrainz/frontend/views/index.py from flask import Blueprint, render_template from flask_babel import format_number import critiquebrainz.db.users as db_users import critiquebrainz.db.review as db_review from bs4 import BeautifulSoup from markdown import markdown DEFAULT_CACHE_EXPIRATION = 10 * 60 # seconds frontend_bp = Blueprint('frontend', __name__) @frontend_bp.route('/') def index(): # Popular reviews popular_reviews = db_review.get_popular(6) for review in popular_reviews: # Preparing text for preview preview = markdown(review['text'], safe_mode="escape") review['preview'] = ''.join(BeautifulSoup(preview, "html.parser").findAll(text=True)) # Recent reviews recent_reviews, _ = db_review.list_reviews(sort='created', limit=9) # Statistics review_count = format_number(db_review.get_count(is_draft=False)) user_count = format_number(db_users.total_count()) return render_template('index/index.html', popular_reviews=popular_reviews, recent_reviews=recent_reviews, reviews_total=review_count, users_total=user_count) @frontend_bp.route('/about') def about(): return render_template('index/about.html') @frontend_bp.route('/guidelines') def guidelines(): return render_template('index/guidelines.html')
en
0.69376
# seconds # Popular reviews # Preparing text for preview # Recent reviews # Statistics
2.165501
2
Enigma/Enigma-master/GBS/gbsHelper.py
Q-Alpha/Hackathon2020
12
8710
import strawberryfields as sf from strawberryfields import ops from strawberryfields.utils import random_interferometer from strawberryfields.apps import data, sample, subgraph, plot import plotly import networkx as nx import numpy as np class GBS: def __init__(self, samples =[], min_pho = 16, max_pho = 30, subgraph_size = 8, max_count = 2000): self.samples = samples self.min_pho = min_pho self.max_pho = max_pho self.subgraph_size = subgraph_size self.max_count = max_count def graphDensity(self, samples, min_pho, max_pho, subgraph_size, max_count): dense = subgraph.search(samples, pl_graph, subgraph_size, min_pho, max_count=max_count) dense_freq = [] for k in range(subgraph_size, min_pho+1): dense_freq.append([k,len(dense[k])]) return dense, dense_freq def graphFreqScore(self, d_freqs, max_freq): x,y = [], [] for i in range(len(d_freqs)): for j in range(len(d_freqs[i])): n,f = d_freqs[i][j][0],d_freqs[i][j][1] x.append(n*f) N = len(d_freq[i]) y.append((1/max_freq)*(np.sum(x)/N)) x = [] min_y = np.min(y) y = [min_y/x for x in y] return y, y.index(max(y)) def runJob(self, eng): num_subsystem = 8 prog = sf.Program(num_subsystem, name="remote_job") U = random_interferometer(4) with prog.context as q: # Initial squeezed states # Allowed values are r=1.0 or r=0.0 ops.S2gate(1.0) | (q[0], q[4]) ops.S2gate(1.0) | (q[1], q[5]) ops.S2gate(1.0) | (q[3], q[7]) # Interferometer on the signal modes (0-3) ops.Interferometer(U) | (q[0], q[1], q[2], q[3]) ops.BSgate(0.543, 0.123) | (q[2], q[0]) ops.Rgate(0.453) | q[1] ops.MZgate(0.65, -0.54) | (q[2], q[3]) # *Same* interferometer on the idler modes (4-7) ops.Interferometer(U) | (q[4], q[5], q[6], q[7]) ops.BSgate(0.543, 0.123) | (q[6], q[4]) ops.Rgate(0.453) | q[5] ops.MZgate(0.65, -0.54) | (q[6], q[7]) ops.MeasureFock() | q eng = eng results =eng.run(prog, shots=10) # state = results.state # measurements = results.samples return results.samples
import strawberryfields as sf from strawberryfields import ops from strawberryfields.utils import random_interferometer from strawberryfields.apps import data, sample, subgraph, plot import plotly import networkx as nx import numpy as np class GBS: def __init__(self, samples =[], min_pho = 16, max_pho = 30, subgraph_size = 8, max_count = 2000): self.samples = samples self.min_pho = min_pho self.max_pho = max_pho self.subgraph_size = subgraph_size self.max_count = max_count def graphDensity(self, samples, min_pho, max_pho, subgraph_size, max_count): dense = subgraph.search(samples, pl_graph, subgraph_size, min_pho, max_count=max_count) dense_freq = [] for k in range(subgraph_size, min_pho+1): dense_freq.append([k,len(dense[k])]) return dense, dense_freq def graphFreqScore(self, d_freqs, max_freq): x,y = [], [] for i in range(len(d_freqs)): for j in range(len(d_freqs[i])): n,f = d_freqs[i][j][0],d_freqs[i][j][1] x.append(n*f) N = len(d_freq[i]) y.append((1/max_freq)*(np.sum(x)/N)) x = [] min_y = np.min(y) y = [min_y/x for x in y] return y, y.index(max(y)) def runJob(self, eng): num_subsystem = 8 prog = sf.Program(num_subsystem, name="remote_job") U = random_interferometer(4) with prog.context as q: # Initial squeezed states # Allowed values are r=1.0 or r=0.0 ops.S2gate(1.0) | (q[0], q[4]) ops.S2gate(1.0) | (q[1], q[5]) ops.S2gate(1.0) | (q[3], q[7]) # Interferometer on the signal modes (0-3) ops.Interferometer(U) | (q[0], q[1], q[2], q[3]) ops.BSgate(0.543, 0.123) | (q[2], q[0]) ops.Rgate(0.453) | q[1] ops.MZgate(0.65, -0.54) | (q[2], q[3]) # *Same* interferometer on the idler modes (4-7) ops.Interferometer(U) | (q[4], q[5], q[6], q[7]) ops.BSgate(0.543, 0.123) | (q[6], q[4]) ops.Rgate(0.453) | q[5] ops.MZgate(0.65, -0.54) | (q[6], q[7]) ops.MeasureFock() | q eng = eng results =eng.run(prog, shots=10) # state = results.state # measurements = results.samples return results.samples
en
0.697348
# Initial squeezed states # Allowed values are r=1.0 or r=0.0 # Interferometer on the signal modes (0-3) # *Same* interferometer on the idler modes (4-7) # state = results.state # measurements = results.samples
2.302253
2
happy/HappyNodeJoin.py
jenniexie/happy
0
8711
<reponame>jenniexie/happy #!/usr/bin/env python # # Copyright (c) 2015-2017 Nest Labs, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ## # @file # Implements HappyNodeJoin class through which a virtual node join a network. # # When a node joins a network, an TAP interface is created in the node and in # the network. Then TUN is setup on the node. # import os import sys from happy.ReturnMsg import ReturnMsg from happy.Utils import * from happy.utils.IP import IP from happy.HappyLink import HappyLink from happy.HappyNetwork import HappyNetwork from happy.HappyNode import HappyNode import happy.HappyLinkAdd import happy.HappyNodeAddress import happy.HappyNodeRoute options = {} options["quiet"] = False options["node_id"] = None options["tap"] = False options["network_id"] = None options["fix_hw_addr"] = None options["customized_eui64"] = None def option(): return options.copy() class HappyNodeJoin(HappyLink, HappyNode, HappyNetwork): """ Assigns a virtual node to a specific network. happy-node-join [-h --help] [-q --quiet] [-i --id <NODE_NAME>] [-n --network <NETWORK_NAME>] [-m --mac <HW_ADDR>] [-c --customizedeui64 <CUST_EUI64>] [-p --tap] -i --id Required. Node to be added to a network. Find using happy-node-list or happy-state. -n --network Required. Network to add the node to. Find using happy-network-list or happy-state. -m --mac The MAC hardware address for the node. -c --customizedeui64 The EUI64 address for the node. -p --tap Configure the link between the node and the network as an L2 TAP device with a virtual bridge. Omit this parameter to default to an L3 TUN configuration for normal IP routing. Example: $ happy-node-join ThreadNode HomeThread Adds the ThreadNode node to the HomeThread network. $ happy-node-join -i onhub -n HomeWiFi -m 5 Adds the onhub node to the HomeWiFi network with a MAC hardware address of 00:00:00:00:00:05. $ happy-node-join -i onhub -n HomeWiFi -c 00:00:00:00:00:00:00:05 Adds the onhub node to the HomeWiFi network with an EUI64 address of fc00:db20:35b:7399::5. return: 0 success 1 fail """ def __init__(self, opts=options): HappyNetwork.__init__(self) HappyNode.__init__(self) HappyLink.__init__(self) self.quiet = opts["quiet"] self.node_id = opts["node_id"] self.tap = opts["tap"] self.network_id = opts["network_id"] self.fix_hw_addr = opts["fix_hw_addr"] self.customized_eui64 = opts["customized_eui64"] if not self.fix_hw_addr and opts["customized_eui64"]: self.fix_hw_addr = self.customized_eui64[6:] self.customized_eui64 = self.customized_eui64.replace(':', '-') def __pre_check(self): # Check if the name of the node is given if not self.node_id: emsg = "Missing name of the virtual node that should join a network." self.logger.error("[localhost] HappyNodeJoin: %s" % (emsg)) self.exit() # Check if the name of the network is given if not self.network_id: emsg = "Missing name of the virtual network that be joined by a virtual node." self.logger.error("[localhost] HappyNodeJoin: %s" % (emsg)) self.exit() # Check if node exists if not self._nodeExists(): emsg = "virtual node %s does not exist." % (self.node_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() # Check if network exists if not self._networkExists(): emsg = "virtual network %s does not exist." % (self.network_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() # Check if node already joined that network if self.network_id in self.getNodeNetworkIds(): emsg = "virtual node %s is already part of %s network." % (self.node_id, self.network_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() self.fix_hw_addr = self.fixHwAddr(self.fix_hw_addr) # Check if HW MAC address is valid if self.fix_hw_addr is not None and self.fix_hw_addr.count(":") != 5: emsg = "virtual node %s get invalid MAC HW address %s." % (self.node_id, self.fix_hw_addr) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() def __create_link(self): options = happy.HappyLinkAdd.option() options["quiet"] = self.quiet options["type"] = self.getNetworkType() options["tap"] = self.tap link = happy.HappyLinkAdd.HappyLinkAdd(options) ret = link.run() self.link_id = ret.Data() self.readState() def __post_check_1(self): # Ensure that the link is saved in the state if self.link_id not in self.getLinkIds(): emsg = "Link %s does not exist." % (self.link_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() def __get_node_interface_info(self): self.link_type = self.getLinkType(self.link_id) self.link_network_end = self.getLinkNetworkEnd(self.link_id) self.link_node_end = self.getLinkNodeEnd(self.link_id) self.node_interface_name = self.getNodeInterfaceName(self.node_id, self.link_type) def __connect_to_network(self): self.moveInterfaceToNamespace(self.link_network_end, self.network_id) # Attach to bridge cmd = "brctl addif " + self.uniquePrefix(self.network_id) + " " + self.link_network_end cmd = self.runAsRoot(cmd) ret = self.CallAtNetwork(self.network_id, cmd) def __connect_to_node(self): if not self.isNodeLocal(self.node_id): if self.getLinkTap(self.link_id): self.moveLwipInterfaceToNamespace(self.link_id, self.node_id) else: self.moveInterfaceToNamespace(self.link_node_end, self.node_id) cmd = "ip link set " + self.link_node_end cmd += " name " + self.node_interface_name if self.fix_hw_addr is not None: cmd += " address " + self.fix_hw_addr cmd = self.runAsRoot(cmd) ret = self.CallAtNode(self.node_id, cmd) def __nmconf(self): if not self.isNodeLocal(self.node_id): return if not self.tap: cmd = "nmcli dev disconnect iface " + self.node_interface_name cmd = self.runAsRoot(cmd) ret = self.CallAtHost(cmd) def __check_node_hw_addr(self): hw_addr = self.getHwAddress(self.node_interface_name, self.node_id) hw_addr_int = IP.mac48_string_to_int(hw_addr) if (hw_addr_int & (1 << 41)): hw_addr_int = hw_addr_int & ~(1 << 41) new_hw_addr = IP.mac48_string_to_int(hw_addr_int) cmd = "ip link set " + self.node_interface_name + " address " + str(new_hw_addr) cmd = self.runAsRoot(cmd) r = self.CallAtNode(self.node_id, cmd) def __post_check_2(self): return def __bring_up_interface(self): self.bringLinkUp(self.link_id, self.node_interface_name, self.node_id, self.network_id) def __add_new_interface_state(self): self.setLinkNetworkNodeHw(self.link_id, self.network_id, self.node_id, self.fix_hw_addr) new_network_interface = {} self.setNetworkLink(self.network_id, self.link_id, new_network_interface) new_node_interface = {} new_node_interface["link"] = self.link_id new_node_interface["type"] = self.link_type new_node_interface["ip"] = {} if self.customized_eui64: new_node_interface["customized_eui64"] = self.customized_eui64 self.setNodeInterface(self.node_id, self.node_interface_name, new_node_interface) def __assign_network_addresses(self): network_prefixes = self.getNetworkPrefixes(self.network_id) for prefix in network_prefixes: options = happy.HappyNodeAddress.option() options["quiet"] = self.quiet options["node_id"] = self.node_id options["interface"] = self.node_interface_name if IP.isIpv6(prefix): nid = self.getInterfaceId(self.node_interface_name, self.node_id) else: nid = self.getNextNetworkIPv4Id(prefix, self.network_id) options["address"] = self.getNodeAddressOnPrefix(prefix, nid) options["add"] = True addrctrl = happy.HappyNodeAddress.HappyNodeAddress(options) ret = addrctrl.run() def __load_network_routes(self): routes = self.getNetworkRoutes(self.network_id) for route_to in routes.keys(): route_record = self.getNetworkRoute(route_to, self.network_id) options = happy.HappyNodeRoute.option() options["quiet"] = self.quiet options["add"] = True options["node_id"] = self.node_id options["to"] = route_to options["via"] = route_record["via"] options["prefix"] = route_record["prefix"] noder = happy.HappyNodeRoute.HappyNodeRoute(options) ret = noder.run() def run(self): with self.getStateLockManager(): self.__pre_check() self.__create_link() self.__post_check_1() self.__get_node_interface_info() self.__connect_to_network() self.__connect_to_node() self.__nmconf() self.__check_node_hw_addr() self.__bring_up_interface() self.__post_check_2() self.__add_new_interface_state() self.writeState() self.__assign_network_addresses() self.__load_network_routes() return ReturnMsg(0)
#!/usr/bin/env python # # Copyright (c) 2015-2017 Nest Labs, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ## # @file # Implements HappyNodeJoin class through which a virtual node join a network. # # When a node joins a network, an TAP interface is created in the node and in # the network. Then TUN is setup on the node. # import os import sys from happy.ReturnMsg import ReturnMsg from happy.Utils import * from happy.utils.IP import IP from happy.HappyLink import HappyLink from happy.HappyNetwork import HappyNetwork from happy.HappyNode import HappyNode import happy.HappyLinkAdd import happy.HappyNodeAddress import happy.HappyNodeRoute options = {} options["quiet"] = False options["node_id"] = None options["tap"] = False options["network_id"] = None options["fix_hw_addr"] = None options["customized_eui64"] = None def option(): return options.copy() class HappyNodeJoin(HappyLink, HappyNode, HappyNetwork): """ Assigns a virtual node to a specific network. happy-node-join [-h --help] [-q --quiet] [-i --id <NODE_NAME>] [-n --network <NETWORK_NAME>] [-m --mac <HW_ADDR>] [-c --customizedeui64 <CUST_EUI64>] [-p --tap] -i --id Required. Node to be added to a network. Find using happy-node-list or happy-state. -n --network Required. Network to add the node to. Find using happy-network-list or happy-state. -m --mac The MAC hardware address for the node. -c --customizedeui64 The EUI64 address for the node. -p --tap Configure the link between the node and the network as an L2 TAP device with a virtual bridge. Omit this parameter to default to an L3 TUN configuration for normal IP routing. Example: $ happy-node-join ThreadNode HomeThread Adds the ThreadNode node to the HomeThread network. $ happy-node-join -i onhub -n HomeWiFi -m 5 Adds the onhub node to the HomeWiFi network with a MAC hardware address of 00:00:00:00:00:05. $ happy-node-join -i onhub -n HomeWiFi -c 00:00:00:00:00:00:00:05 Adds the onhub node to the HomeWiFi network with an EUI64 address of fc00:db20:35b:7399::5. return: 0 success 1 fail """ def __init__(self, opts=options): HappyNetwork.__init__(self) HappyNode.__init__(self) HappyLink.__init__(self) self.quiet = opts["quiet"] self.node_id = opts["node_id"] self.tap = opts["tap"] self.network_id = opts["network_id"] self.fix_hw_addr = opts["fix_hw_addr"] self.customized_eui64 = opts["customized_eui64"] if not self.fix_hw_addr and opts["customized_eui64"]: self.fix_hw_addr = self.customized_eui64[6:] self.customized_eui64 = self.customized_eui64.replace(':', '-') def __pre_check(self): # Check if the name of the node is given if not self.node_id: emsg = "Missing name of the virtual node that should join a network." self.logger.error("[localhost] HappyNodeJoin: %s" % (emsg)) self.exit() # Check if the name of the network is given if not self.network_id: emsg = "Missing name of the virtual network that be joined by a virtual node." self.logger.error("[localhost] HappyNodeJoin: %s" % (emsg)) self.exit() # Check if node exists if not self._nodeExists(): emsg = "virtual node %s does not exist." % (self.node_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() # Check if network exists if not self._networkExists(): emsg = "virtual network %s does not exist." % (self.network_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() # Check if node already joined that network if self.network_id in self.getNodeNetworkIds(): emsg = "virtual node %s is already part of %s network." % (self.node_id, self.network_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() self.fix_hw_addr = self.fixHwAddr(self.fix_hw_addr) # Check if HW MAC address is valid if self.fix_hw_addr is not None and self.fix_hw_addr.count(":") != 5: emsg = "virtual node %s get invalid MAC HW address %s." % (self.node_id, self.fix_hw_addr) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() def __create_link(self): options = happy.HappyLinkAdd.option() options["quiet"] = self.quiet options["type"] = self.getNetworkType() options["tap"] = self.tap link = happy.HappyLinkAdd.HappyLinkAdd(options) ret = link.run() self.link_id = ret.Data() self.readState() def __post_check_1(self): # Ensure that the link is saved in the state if self.link_id not in self.getLinkIds(): emsg = "Link %s does not exist." % (self.link_id) self.logger.error("[%s] HappyNodeJoin: %s" % (self.node_id, emsg)) self.exit() def __get_node_interface_info(self): self.link_type = self.getLinkType(self.link_id) self.link_network_end = self.getLinkNetworkEnd(self.link_id) self.link_node_end = self.getLinkNodeEnd(self.link_id) self.node_interface_name = self.getNodeInterfaceName(self.node_id, self.link_type) def __connect_to_network(self): self.moveInterfaceToNamespace(self.link_network_end, self.network_id) # Attach to bridge cmd = "brctl addif " + self.uniquePrefix(self.network_id) + " " + self.link_network_end cmd = self.runAsRoot(cmd) ret = self.CallAtNetwork(self.network_id, cmd) def __connect_to_node(self): if not self.isNodeLocal(self.node_id): if self.getLinkTap(self.link_id): self.moveLwipInterfaceToNamespace(self.link_id, self.node_id) else: self.moveInterfaceToNamespace(self.link_node_end, self.node_id) cmd = "ip link set " + self.link_node_end cmd += " name " + self.node_interface_name if self.fix_hw_addr is not None: cmd += " address " + self.fix_hw_addr cmd = self.runAsRoot(cmd) ret = self.CallAtNode(self.node_id, cmd) def __nmconf(self): if not self.isNodeLocal(self.node_id): return if not self.tap: cmd = "nmcli dev disconnect iface " + self.node_interface_name cmd = self.runAsRoot(cmd) ret = self.CallAtHost(cmd) def __check_node_hw_addr(self): hw_addr = self.getHwAddress(self.node_interface_name, self.node_id) hw_addr_int = IP.mac48_string_to_int(hw_addr) if (hw_addr_int & (1 << 41)): hw_addr_int = hw_addr_int & ~(1 << 41) new_hw_addr = IP.mac48_string_to_int(hw_addr_int) cmd = "ip link set " + self.node_interface_name + " address " + str(new_hw_addr) cmd = self.runAsRoot(cmd) r = self.CallAtNode(self.node_id, cmd) def __post_check_2(self): return def __bring_up_interface(self): self.bringLinkUp(self.link_id, self.node_interface_name, self.node_id, self.network_id) def __add_new_interface_state(self): self.setLinkNetworkNodeHw(self.link_id, self.network_id, self.node_id, self.fix_hw_addr) new_network_interface = {} self.setNetworkLink(self.network_id, self.link_id, new_network_interface) new_node_interface = {} new_node_interface["link"] = self.link_id new_node_interface["type"] = self.link_type new_node_interface["ip"] = {} if self.customized_eui64: new_node_interface["customized_eui64"] = self.customized_eui64 self.setNodeInterface(self.node_id, self.node_interface_name, new_node_interface) def __assign_network_addresses(self): network_prefixes = self.getNetworkPrefixes(self.network_id) for prefix in network_prefixes: options = happy.HappyNodeAddress.option() options["quiet"] = self.quiet options["node_id"] = self.node_id options["interface"] = self.node_interface_name if IP.isIpv6(prefix): nid = self.getInterfaceId(self.node_interface_name, self.node_id) else: nid = self.getNextNetworkIPv4Id(prefix, self.network_id) options["address"] = self.getNodeAddressOnPrefix(prefix, nid) options["add"] = True addrctrl = happy.HappyNodeAddress.HappyNodeAddress(options) ret = addrctrl.run() def __load_network_routes(self): routes = self.getNetworkRoutes(self.network_id) for route_to in routes.keys(): route_record = self.getNetworkRoute(route_to, self.network_id) options = happy.HappyNodeRoute.option() options["quiet"] = self.quiet options["add"] = True options["node_id"] = self.node_id options["to"] = route_to options["via"] = route_record["via"] options["prefix"] = route_record["prefix"] noder = happy.HappyNodeRoute.HappyNodeRoute(options) ret = noder.run() def run(self): with self.getStateLockManager(): self.__pre_check() self.__create_link() self.__post_check_1() self.__get_node_interface_info() self.__connect_to_network() self.__connect_to_node() self.__nmconf() self.__check_node_hw_addr() self.__bring_up_interface() self.__post_check_2() self.__add_new_interface_state() self.writeState() self.__assign_network_addresses() self.__load_network_routes() return ReturnMsg(0)
en
0.760091
#!/usr/bin/env python # # Copyright (c) 2015-2017 Nest Labs, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ## # @file # Implements HappyNodeJoin class through which a virtual node join a network. # # When a node joins a network, an TAP interface is created in the node and in # the network. Then TUN is setup on the node. # Assigns a virtual node to a specific network. happy-node-join [-h --help] [-q --quiet] [-i --id <NODE_NAME>] [-n --network <NETWORK_NAME>] [-m --mac <HW_ADDR>] [-c --customizedeui64 <CUST_EUI64>] [-p --tap] -i --id Required. Node to be added to a network. Find using happy-node-list or happy-state. -n --network Required. Network to add the node to. Find using happy-network-list or happy-state. -m --mac The MAC hardware address for the node. -c --customizedeui64 The EUI64 address for the node. -p --tap Configure the link between the node and the network as an L2 TAP device with a virtual bridge. Omit this parameter to default to an L3 TUN configuration for normal IP routing. Example: $ happy-node-join ThreadNode HomeThread Adds the ThreadNode node to the HomeThread network. $ happy-node-join -i onhub -n HomeWiFi -m 5 Adds the onhub node to the HomeWiFi network with a MAC hardware address of 00:00:00:00:00:05. $ happy-node-join -i onhub -n HomeWiFi -c 00:00:00:00:00:00:00:05 Adds the onhub node to the HomeWiFi network with an EUI64 address of fc00:db20:35b:7399::5. return: 0 success 1 fail # Check if the name of the node is given # Check if the name of the network is given # Check if node exists # Check if network exists # Check if node already joined that network # Check if HW MAC address is valid # Ensure that the link is saved in the state # Attach to bridge
2.234889
2
__init__.py
SDRAST/Data_Reduction
0
8712
# -*- coding: utf-8 -*- """ Modules to support data reduction in Python. The main purpose of the base module ``Data_Reduction`` is to provide a suplerclass with a good set of attributes and methods to cover all common needs. The base module is also able to read data from a text file as a ``numpy`` structured array. This is done with a class called ``DataGetterMixin`` which must be invoked after the base class has been initiated. The module function ``examine_text_data_file()`` reveals the structure of the file(s) that provide the data.. Examples ======== Here we initiate a base class after mixing in the data getter. The first line o the file has column names but the first three columns are all under one name ``UTC`` so we specify column widths to consider the first three columns to be one column. We use the names from the first line of the file, which could have been done with an ``open()``, ``readline()``, and ``close()``:: mixIn(Observation, DataGetterMixin) obs = Observation(dss=28, date="2012/127", project="SolarPatrol") obs.open_datafile('t12127.10', delimiter=[17,16,3,11,7,9,8,2,6], skip_header=1, names="UTC Epoch Chan Tsys Int Az El Diode Level".split()) Now the data getter is already mixed in to Observation so we don't need to do it again. In this case we specify the names of the columns, changing ``Int`` to ``Integr``:: obs2 = Observation(dss=28, date="2012/127", project="SolarPatrol") obs2.open_datafile('t12127.10', skip_header=1, names="Year DOY UTC Epoch Chan Tsys Integr Az El Diode Level".split()) The class Map inherits from DataGetterMixin, so no explicit mixin required:: obsmap = Map(dss=84, date="2020/163", project="SolarPatrol") obsmap.initialize('sim-venus.dat', source="Venus") Let's examine ``obsmap``. We have only one signal column:: In [3]: obsmap.channel.keys() Out[3]: dict_keys(['xl']) In [4]: obsmap.channel['xl'].keys() Out[4]: dict_keys(['freq', 'bw', 'pol', 'ifmode', 'atten', 'power']) """ # standard Python modules import datetime import glob import h5py import logging import math import matplotlib.dates as MPLd import numpy as NP import os import re import readline import scipy.interpolate import scipy.fftpack import Astronomy as A import Astronomy.DSN_coordinates as coords import Astronomy.Ephem as AE import DatesTimes as DT import local_dirs import Math.clusters as VQ # vector quantization import support # enable raw_input Tab completion readline.parse_and_bind("tab: complete") logger = logging.getLogger(__name__) # module logger class Observation(object): """ superclass for a data structure and methods Attributes ========== aliases - (dict) data keys to replace those in original data channel - (dict) signal paths, e.g., different freqs and pols data - (dict) original data, e.g., read from file or database DOY - (int) day of year of observation end - (float) UNIX time at the end latitude - (float) from obs logger - (logging.Logger) longitude - (float) from obs name - (str) user assigned, defaults to YEAR/DOY numdata - (int) number of data samples obs - (AE.DSS) observatory session - (Session) set of observations, parent to Observation session_path - (str) directory for session files start - (float) UNIX time at the beginning year - (int) year of observation **Reserved Column Names** These column names are recognized. They are also the keys for attribute ``data``. These quantities must be present in some form:: unixtime (float) UNIX time in sec chan_name (str) channel name integr (float) integration (exposure) in sec azel (float,float) azimuth and elevation in decimal deg power (float) power level if only a single channel Optional:: diode (float) 0 or power in K (integers OK) level (float) (unidentified -- in ``tlog`` table) cryotemp (float) cryostat temp in K windspeed (float) km/hr winddir (float) deg ambtemp (float) deg C pressure (float) mbar Columns to be computed:: mpldatenum (float) matplotlib ``datenum`` Alternative for ``power``:: tsys (float) system temperature (calibrated power) top (float) alternative for ``tsys`` (used in DSN) vfc_counts (int) VFC counts (rate times ``integr``) Any column with a name which is not a reserved name is assumed to be power-like data from the channel with that name, unless that name is in a list provided to the argument ``ignore`` in the method ``get_data_channels`` of the class ``DataGetterMixin``. Alternative for ``unixtime``:: year (int) year of observation doy (int) day of year utc (str) HH:MM:SS timestr (str) something like 2020/06/14/14:22:21.00 Alternative for ``chan_name``:: chan (int) index in receiver channel names Alternative for ``azel``:: radec (float,float) precessed right ascension in decimal hours and precessed declination in decimal deg radec1950 (float,float) mean right ascension in decimal hours and mean declination in decimal deg at epoch radec2000 (float,float) mean right ascension in decimal hours and mean declination at epoch in decimal deg az (float) azimuth in decimal deg el (float) elevation in decimal deg ra (float) precessed right ascension in decimal hours dec (float) precessed declination in decimal deg ra1950 (float) mean right ascension in decimal hours at epoch dec1950 (float) mean declination in decimal deg at epoch ra2000 (float) mean right ascension in decimal hours at epoch dec2000 (float) mean declination in decimal deg at epoch Notes ===== * The ``data`` structure is a dict. * The value of a ``data`` item is either a numpy array or a object like ``float``, ``int``, or ``str``. * The keys have reserved words defined above and will be lowercase. * Items with other keys may be added, typically by a child class. * Coordinates shall be in pairs, `e.g. ``azel``, ``radec``. (This way you never get one without the other.) """ reserved = ['unixtime','chan_name','integr','az','el','year','doy','utc', 'timestr','chan','tsys','top','diode','level','cryotemp', 'windspeed','winddir','ambtemp','pressure', 'ra','dec','ra1950','dec1950','ra2000','dec2000'] power_keys = ['tsys', 'top', 'vfc_counts', 'power'] def __init__(self, parent=None, name=None, dss=None, date=None, project=None): """ Create a base Observation object. This is not meant to be initialized by itself. A subclass generally determines how data are read in. However, method ``initialize()`` provides a basic data read capability using ``numpy.genfromtxt()`` and creates the object's data structure. Args: parent (Session): session to which this observation belongs name (str): an identifier; default is station ID + "obs" dss (int): station number date (str): "YEAR/DOY" project (str): directory under /usr/local/projects """ self.logger = logging.getLogger(logger.name+".Observation") self.session = parent # observatory must be specified if dss: self.obs = coords.DSS(dss) self.longitude = self.obs.long*180/math.pi # deg self.latitude = self.obs.lat*180/math.pi # deg else: self.logger.error("__init__: requires observatory location") raise Exception("Where were the data taken?") # give the object a name if name: self.name = name else: self.name = "DSS"+str(dss)+"obs" self.logger = logging.getLogger(logger.name+".Observation") # the observation was part of some project if project: self.project = project else: self.logger.error("__init__: requires a project") raise Exception("Where are the session's working files?") # the observation was done on some date if date: y,d = date.split('/') self.year = int(y); self.DOY = int(d) projdatapath, self.sessionpath, rawdatapath = \ get_obs_dirs(project, dss, self.year, self.DOY, datafmt=None) self.logger.debug("__init__: session path: %s", self.sessionpath) else: self.logger.error("__init__: requires a date") raise Exception("When were the date taken?") # accomodate subclass arguments self.aliases = {} # what I really want to do here is see if this was called by a subclass, # in which case I do not try to get the channel info until this # initialization has finished. # #if hasattr(self, "get_data_channels"): # channels = self, get_data_channels() # self.make_channels(channels) #else: # self.logger.info("__init__: initialize() may now be called") def splitkey(self, longlat): """ Checks for presence of coordinates in pairs or singles @param longlat : "azel", or "radec", or "radecEPOC" @type longlat : str """ longitude = longlat[:2] # 'az' or 'ra' if len(longlat) > 5: # has epoch epoch = longlat[-4:] longitude += epoch latitude = longlat[2:-4]+epoch else: # date of observation latitude = longlat[2:] epoch = None return longitude, latitude, epoch def check_for(self, data, longlat): """ Checks for separate coordinates and splits if coord pairs Args: data (dict): attribute ``data`` longlat (str): "azel", or "radec", or "radecEPOC" """ longitude, latitude, epoch = self.splitkey(longlat) if longitude in data.dtype.names and \ latitude in data.dtype.names: self.logger.debug("check_for: data has %s and %s", longitude, latitude) self.data[longitude] = data[longitude] self.data[latitude] = data[latitude] return True elif longlat in data.dtype.names: self.logger.debug("check_for: data has %s", longlat) self.data[longitude],self.data[latitude] = map(None, *data[longlat]) self.logger.debug("check_for: added %s and %s to data", longitude, latitude) return True else: # coords need to be computed from other coords return False def unpack_to_complex(self, rawdata): """ Converts a sequence of alternating real/imag samples to complex @param rawdata : alternating real and imaginary bytes @type rawdata : numpy array of signed int8 @return: numpy array of complex """ datalen = len(rawdata) real = rawdata[0:datalen:2] imag = rawdata[1:datalen:2] data = real + 1j*imag return data def sideband_separate(self, data): """ Converts a complex spectrum array and returns two reals with USB and LSB This applies a Hilbert transform to the complex data. """ usb = (data.real + scipy.fftpack.hilbert(data).imag) lsb = (scipy.fftpack.hilbert(data).real + data.imag) return lsb,usb class Channel(support.PropertiedClass): """ Class for a signal path """ def __init__(self, parent, name, freq=None, bw=None, pol=None, IFtype=None, atten=None): """ Notes ===== The properties can be accessed as if the class were a dict. Arguments ========= freq:float or int: center frequency in MHz bw:float or int: bandwidth in MHz pol:str: polarization code """ support.PropertiedClass.__init__(self) self.parent = parent self.logger = logging.getLogger(self.parent.name+".Channel") self.logger.debug("__init__: created %s", self.logger.name) self.logger.debug("__init__: parent is %s", self.parent) self.name = name self.data['freq'] = freq self.data['bw'] = bw self.data['pol'] = pol self.data['ifmode'] = IFtype self.data['atten'] = atten class DataGetterMixin(object): """ Class for getting data from a CSV file. """ def initialize(self, filename, delimiter=" ", names=True, skip_header=0, source=None): """ Get the data and make a data structure for the observations. This is not included by default in ``__init__()`` to keep it simple for subclasses. Args: filename (str): name only, required; the path is provided delimiter (str): what separates the columns names (bool): the first line has column names skip_header (int) : number of rows to skip """ # get the data data = self.open_datafile(filename, delimiter=delimiter, names=names, skip_header=skip_header) # get the signal columns and names metadata, signals = self.get_data_channels(data) # create Channel objects for the signal properties self.make_channels(signals) # create the data structure self.make_data_struct(data, metadata, signals) # compute the offsets from the source center for each data point if source: self.get_offsets(source=source) else: self.logger.warning("initialize: no source specified; no offsets") def open_datafile(self, filename, delimiter=" ", names=True, skip_header=0): """ Opens and reads a data file This is used by ``Malargue`` (one data files) and ``GAVRT`` (one data file for each signal). Args: filename (str): text data file name delimiter (str): separator between columns (default: whitespace) names (bool): file row has column names (default: True) skip_header (int): number of rows to skip at beginning of file Returns: ndarray: """ data = NP.genfromtxt(self.sessionpath+filename, delimiter=delimiter, dtype=None, names=names, case_sensitive='lower', skip_header=skip_header, encoding=None) return data def get_data_channels(self, data, ignore=None): """ Gets or sets the names of the signal columns Column names are separated into metadata and signals. Names in ``ignore`` re ignored. Names in ``aliases`` are replaced. Args: data (ndarray): data read from text file ignore (list of str): columns to ignore; default None Returns: (list of str, list of str): metadata, signals """ names = data.dtype.names metadata = [] signals = [] for name in names: if ignore: if name in ignore: pass if name.casefold() in map(str.casefold, self.aliases): key = self.aliases[name].lower() # we use only lower case names else: key = name.lower() self.logger.debug("get_data_channels: doing %s for %s", key, name) if key in map(str.casefold, Observation.reserved): if key.casefold() in ['top', 'tsys']: signals.append(key) else: metadata.append(key) else: signals.append(key) self.logger.debug("get_data_channels: signals: %s", signals) self.logger.debug("get_data_channels: metadata: %s", metadata) return metadata, signals def make_data_struct(self, data, metadata, signals): """ Takes a text table with headers and converts it into a numpy ``ndarray``. That means that a column can be extracted using `data[label]`. Args ==== data: (ndarray) the data from the text file metadata: (list of str) the column names for metadata signals: (list of str) the column names for power-like data """ # get the known columns: self.data = {} self.numdata = len(data) #self.logger.debug("make_data_struct: using aliases: %s", self.aliases) # get columns that are not metadata; each has power for a channel for signal in signals: #self.logger.debug("make_data_struct: for signal: %s", signal) #if signal in self.aliases.items(): # get the key in 'data' which matches 'value' in 'aliases' # power = data[next(key for key, value in self.aliases.items() # if value == signal)][idx] #else: # power = data[signal] #self.channel[signal]['power'] = power self.channel[signal]['power'] = data[signal] # get UNIX time if 'unixtime' in metadata: if 'unixtime' in data.dtype.names: self.data['unixtime'] = data['unixtime'] else: # look up the equivalent of UNIX time in the data table self.data['unixtime'] = data[next(key for key, value in self.aliases.items() if value == 'unixtime')] # compute other convenient forms of time self.data['datetime'] = [] # Python datetime.date self.data['date_num'] = [] # matplotlib.dates date number for idx in list(range(self.numdata)): if 'unixtime' in data.dtype.names: tm = data['unixtime'][idx] else: tm = data[next(key for key, value in self.aliases.items() if value == 'unixtime')][idx] dt = datetime.datetime.utcfromtimestamp(tm) self.data['datetime'].append(dt) self.data['date_num'].append(MPLd.date2num(dt)) self.start = self.data['unixtime'][0] self.end = self.data['unixtime'][-1] else: # figure out how to process the time data columns pass # compute alternate coordinates if self.check_for(data, 'azel'): # azel exists; compute radec if needed; then radec2000 if needed if self.check_for(data, 'radec'): pass else: self.radec_from_azel() if self.check_for(data, 'radec2000'): # ra2000 and dec2000 already exist pass else: self.radec2000_from_radec() elif self.check_for(data, 'radec2000'): # coordinates exist; compute back to azimuth and elevation if self.check_for(data, 'radec'): pass else: # compute observed RA and dec self.radec_from_radec2000() if self.check_for(data, 'azel'): pass else: self.azel_from_radec() # in here check for 'radec' else: self.logger.error("no coordinates found in data") raise Exception("check INFO logging for columns found") self.start = self.data['unixtime'].min() self.end = self.data['unixtime'].max() def make_channels(self, signals, props=None): """ Assign properties to the channels. The prop keys are "freq", "pol", and "IFtype". Args: props (dict of dicts): signal channel properties. """ self.channel = {} for ch in signals: chindex = signals.index(ch) if props: self.channel[ch] = self.Channel(self, ch, freq =props[ch]['freq'], bw =props[ch]['bw'], pol =props[ch]['pol'], IFtype=props[ch]['IFtype'], atten =props[ch]['atten']) else: self.channel[ch] = self.Channel(self, ch) class GriddingMixin(object): """ Class for all the data and methods associated with a raster scan map It is expected that the parent class is a subclass of ``Observation`` already by virtue of it being a superclass of subclass which inherits these methods. Attrs: cfg (dict): data (numpy array): from ``Observation`` logger (logging.Logger): replaces ``Observation`` logger name (str): replaces ``Observation`` name session (Session): source (str): step (float): map step size """ def get_grid_stepsize(self, xy=None): """ Determine the stepsize of gridded data This assumes xdec and dec data increase incrementally by 'stepsize'. The sequences may repeat in a sawtooth-like series. The number of 'xdec' and 'dec' points is multiple times the gridsize. Arguments: xy (tuple or list) - X-array and Y-array (default Map.data) """ # get the absolute value of coordinate intervals if xy: dxdecs = abs(xy[0][1:] - xy[0][:-1]) ddecs = abs(xy[1][1:] - xy[1][:-1]) else: dxdecs = abs(self.data['xdec_offset'][1:]-self.data['xdec_offset'][:-1]) ddecs = abs(self.data['dec_offset'][1:] -self.data['dec_offset'][:-1]) # form array of X,Y pairs coords = NP.array(list(zip(dxdecs,ddecs))) # expect two clusters (default) cluster_pos = VQ.find_clusters(coords).round(4) # tenths of mdeg # return the non-zero intervals return cluster_pos[0].max(), cluster_pos[1].max() def regrid(self, width=1.0, height=1.0, step=None, power_key=None): """ converts a map from observed coordinates to map coordinates If ``step`` is not given then the step size will be the average step size in X and the average step in Y. In this case, the effect is to make a regular grid if the original positions were not exact, i.e., pointing error. @param width : map width in deg @type width : float @param height : map height in deg @type height : float @param step : map step size in X and Y in deg @type step : (float, float) @param power_key : dict key of Z-value @type power_key : str """ # what is the power-like quantity? if power_key: pass else: # take the first that matches for key in Observation.power_keys: if key in self.data: power_key = key self.logger.info("regrid: using '%s'", power_key) break else: continue if power_key: pass else: self.logger.error("regrid: no power data key found") return None if step == None: # use the original stepsize self.xstep, self.ystep = self.get_grid_stepsize() else: self.xstep, self.ystep = step self.data['grid_x'] = NP.arange( -width/2, width/2+self.xstep/2, self.xstep/2) self.data['grid_y'] = NP.arange( -height/2,height/2+self.ystep/2, self.ystep/2) self.logger.debug("regrid: grid shape is %dx%d", len(self.data['grid_x']), len(self.data['grid_y'])) self.data['grid_z'] = {} for chnl in self.channel: self.logger.debug("regrid: processing %s", chnl) points = list(zip(self.data['xdec_offset'],self.data['dec_offset'])) self.logger.debug("regrid: %d positions", len(points)) values = self.data[power_key][chnl] self.logger.debug("regrid: %d values", len(values)) xi, yi = NP.meshgrid(self.data['grid_x'], self.data['grid_y']) try: self.data['grid_z'][chnl] = scipy.interpolate.griddata(points, values, (xi, yi), method='nearest') except ValueError as details: self.logger.error("regrid: gridding failed: %s", str(details)) self.logger.debug("regrid: channel %s length of points is %d", chnl, len(points)) self.logger.debug("regrid: channel %s length of values is %d", chnl, len(values)) continue def radec_from_azel(self): """ compute RA and dec from az and el """ RA = []; decs = []; RAdecs = [] for idx in list(range(self.numdata)): # setup dt = self.data['datetime'][idx] # format time as (YEAR, DOY.fff) time_tuple = (dt.year, DT.day_of_year(dt.year,dt.month,dt.day) + ( dt.hour + dt.minute/60. + dt.second/3600. + dt.microsecond/3600./1e6)/24.) azimuth = self.data['az'][idx] elevation = self.data['el'][idx] # compute ra,dec = A.AzEl_to_RaDec(azimuth, elevation, self.latitude, -self.longitude, time_tuple) RA.append(ra) decs.append(dec) RAdecs.append((RA,decs)) self.data['ra'] = RA self.data['dec'] = decs self.data['radec'] = RAdecs def radec2000_from_radec(self): """ compute RA2000 and dec2000 from observed RA and dec """ RA2000 = []; decs2000 = []; RAdec2000 = [] for idx in list(range(self.numdata)): # setup tm = self.data['unixtime'][idx] mjd = DT.UnixTime_to_MJD(tm) MJD = int(mjd) UT = 24*(mjd-MJD) ra = self.data['ra'] dec = self.data['dec'] # compute ra2000,dec2000 = A.apparent_to_J2000(MJD,UT, ra, dec, self.longitude, self.latitude) RA2000.append(ra2000) decs2000.append(dec2000) RAdec2000.append((ra2000,dec2000)) self.data['ra2000'] = RA2000 self.data['dec2000'] = dec2000 self.data['radec2000'] = RAdec2000 def radec_from_radec2000(self): """ compute apparent RA and dec. from J2000 RA and dec """ RA = []; decs = []; RAdecs = [] for idx in list(range(self.numdata)): # setup tm = self.data['unixtime'][idx] mjd = DT.UnixTime_to_MJD(tm) MJD = int(mjd) UT = 24*(mjd-MJD) ra2000 = self.data['ra2000'][idx] dec2000 = self.data['dec2000'][idx] # compute ra, dec = A.J2000_to_apparent(MJD, UT, ra2000*math.pi/12, dec2000*math.pi/180) RA.append(ra) decs.append(dec) RAdecs.append((ra,dec)) self.data['ra'] = RA self.data['dec'] = decs self.data['radec'] = RAdecs def azel_from_radec(self): """ compute azimuth and elevation from apparent right ascension and declination """ azs = []; els = []; azels = [] for idx in list(range(self.numdata)): # setup ra = self.data['ra'][idx] dec = self.data['dec'][idx] timetuple = self.data['datetime'][idx].timetuple() year = timetuple.tm_year doy = timetuple.tm_yday + (timetuple.tm_hour +(timetuple.tm_min+timetuple.tm_sec/60)/60)/24 # compute az, el = A.RaDec_to_AzEl(ra, dec, self.latitude, self.longitude, (year,doy)) azs.append(az) els.append(el) azels.append((az,el)) self.data['az'] = azs self.data['el'] = els self.data['azel'] = azels def get_offsets(self, source="Sun", xdec_ofst=0., dec_ofst=0.): """ Generates a map in coordinates relative to a source If the source is the default, the position of the Sun will be computed for the time of each sample. IT SEEMS LIKE A GOOD IDEA TO DO THIS FOR PLANETS ALSO. This adds elements with keys ``xdec_offset`` and ``dec_offset`` to the attribute ``data``. @param source : source at map center @type source : ephem source instance @param xdec_ofst : relative X-dec position of sample @type xdec_ofst : float @param dec_ofst : relative dec position of sample @type dec_ofst : float @return: (dxdecs,ddecs) in degrees """ if source.lower() == "sun": src = AE.ephem.Sun() else: src = AE.calibrator(source) self.data['dec_offset'] = [] self.data['xdec_offset'] = [] for count in range(len(self.data['unixtime'])): dt = datetime.datetime.utcfromtimestamp( self.data['unixtime'][count]) if type(src) == AE.Quasar: pass else: src.compute(dt) ra_center = src.ra*12/math.pi # hours dec_center = src.dec*180/math.pi # degrees decrad = src.dec # right ascension increases to the left, cross-dec to the right self.data['xdec_offset'].append(xdec_ofst - (self.data['ra'][count] - ra_center)*15*math.cos(decrad) ) self.data['dec_offset'].append( dec_ofst + self.data['dec'][count] - dec_center) # change list to NP.array self.data['xdec_offset'] = NP.array(self.data['xdec_offset']) self.data['dec_offset'] = NP.array(self.data['dec_offset']) class Map(Observation, GriddingMixin): """ Map class without special features for GAVRT and Malargue Most of the methods are mixed in to avoid conflicting with subclasses """ def __init__(self, parent=None, name=None, dss=None, date=None, project=None): """ Create a Map object Args: parent (Session): an observing session to which this belongs name (str): an identifier, like a scan number dss (int): station where the data were taken date (str): date of observation as "YEAR/DOY" project (str): project for which this observation was made """ Observation.__init__(self, parent=parent, name=name, dss=dss, date=date, project=project) class Recording(h5py.File): """ Class for raw data This is typically the contents of a data file transcribed into a standard format. It may be the data of one Observation object, or data for multiple Observation objects, or contain part of the data for an Observation object. If the data being curated are not in a standard project, and they are not in a standard place, """ def __init__(self, session=None, path=None, date=None, dss=None, name=None): """ Initialize a metadata container and data directory Args ==== session (Session): required, unless: path (str) : location of raw data files date """ self.logger = logging.getLogger(logger.name+".Recording") if session: self.session = session if not name: name = session.project + "-" + str(session.year) + "-" + \ ('%03d' % session.doy) + "-dss" + str(session.dss)+".info" self.year = session.year self.doy = session.doy self.dss = session.dss self.project = session.project self.session_dir = session.session_dir elif path and name: self.session = Session() # for its methods and attributes self.session_dir = path self.name = name else: raise RuntimeError("either a session or a path and filename required") h5py.File.__init__(self, name, 'w') self.attrs['project'] = self.project self.attrs['dss'] = self.dss self.attrs['year'] = self.year self.attrs['doy'] = self.doy class Session(object): """ Base class for an observing session on a given year and DOY Public Attributes:: doy (int) - day of year for session logger (logging.Logger) - logging.Logger object parent (object) - a data reduction session (mult. observ. sessions) year (int) - doy (int) - project (str) - session_dir (str) - path to results from this session A session usually refers to a telescope, date and project. This will normally define a path to the session directory. """ def __init__(self, parent=None, date=None, project=None, dss=None, path=None): """ initialize data reduction for one observing session Args ==== parent: (object) optional class for a data reduction tool date: (str) required, format YEAR/DOY project: (str) required dss (int) required path (str) optional If `path` is given for a non-standard observing files location, and it does not exist, it will be created. Then the Recording and Observation instances must be directed to where the files are. """ self.logger = logging.getLogger(logger.name+".Session") if parent: self.session = parent if date and project and dss: y,d = date.split('/') self.year = int(y); self.doy = int(d) self.project = project self.dss = dss self.name = "'%s %4d/%03d'" % (self.project, self.year, self.doy) else: self.logger.error("__init__: missing DSS or year or DOY or project") raise Exception("Where and when and for what project were the data taken?") self.find_session_dir(path=path) def find_session_dir(self, path=None): """ find or make the sessions directory Args: path (str) - explicit path to files """ self.logger.debug("find_session_dir: entered for path=%s", path) if path: self.session_dir = path else: obs_dir = local_dirs.projects_dir + self.project \ +"/Observations/dss"+str(self.dss)+"/" self.session_dir = obs_dir+ "%4d" % self.year +"/"+ "%03d" % self.doy +"/" if not os.path.exists(self.session_dir): os.makedirs(self.session_dir, mode=0o775) def select_data_files(self, datapath=None, name_pattern="", auto=True, load_hdf=False): """ Provide the user with menu to select data files. Finding the right data store is complicated as there are many kinds of data files * If datapath is ...RA_data/HDF5/... then the files could be .h5 (Ashish) or .hdf5 (Dean). * If datapath is ...RA_data/FITS/... then the extent is .fits. * If datapath is ...project_data/... then the extent is .pkl * If datapath is ...projects/... (default) then the extent is probably .csv or .dat or .prd. @param datapath : path to top of the tree where the DSS subdirectories are @type datapath : str @param name_pattern : pattern for selecting file names, e.g. source @type name_pattern : str @param load_hdf : use RA_data/HDF5 directory if True @type load_hdf : bool @para auto : take all files found @type auto : bool @return: list of str """ # Get the data files to be processed self.logger.debug("select_data_files: looking in %s", datapath) if name_pattern: name,extent = os.path.splitext(name_pattern) if extent.isalpha(): # a proper extent with no wildcards # take name pattern as is pass else: # only one * at front and back of pattern name_pattern = "*"+name_pattern.rstrip('*')+"*" else: # no pattern specified. All files. name_pattern = "*" self.logger.debug("select_data_files: for pattern %s", name_pattern) if datapath: if re.search('HDF5', datapath): load_hdf = True elif re.search('project_data', datapath): load_hdf = False datafiles = support.text.select_files(datapath+name_pattern+"[0-9].pkl") elif re.search('FITS', datapath): datafiles = support.text.select_files(datapath+name_pattern+".fits") if load_hdf: full = datapath+name_pattern+".h*5" else: full = datapath+name_pattern else: full = self.session_dir + name_pattern self.logger.debug("select_data_files: from: %s", full) if auto: datafiles = glob.glob(full) else: datafiles = support.text.select_files(full) self.logger.debug("select_data_files: found %s", datafiles) if datafiles == []: self.logger.error( "select_data_files: None found. Is the data directory mounted?") raise RuntimeError('No data files found.') if type(datafiles) == str: datafiles = [datafiles] self.logger.info("select_data_files: to be processed: %s", datafiles) return datafiles class Spectrum(Observation): """ Class for spectra """ def __init__(self): """ needs a spectrum attribute """ self.logger = logging.getLogger(logger.name+".Spectrum") def get_num_chans(self, linefreq, bandwidth, max_vel_width): """ compute the base 2 number of output channels for the specified resolution """ kmpspMHz = 300000./linefreq BW_kmps = bandwidth*kmpspMHz est_num_chan_out = BW_kmps/max_vel_width self.logger.debug("get_num_chans: estimated num chans out = %d", est_num_chan_out) return 2**int(math.ceil(math.log(est_num_chan_out,2))) def reduce_spectrum_channels(self, refval, refpix, delta, num_chan=1024, axis=0): """ Reduce the number of channels in the spectrum. The default option is to reduce the spectrum to a specified number of channels with a default of 1024. The input spectrum is presumed to have 2**N channels so that num_chan/num_chan_in is an integer. If 'spectrum' is an N-D array, then the spectrum axis is given by 'axis' which defaults to 0. 'delta' is negative for lower sideband or reversed double sideband spectra. @param spectrum : spectrum values @type spectrum : list or nparray @param refval : X-axis value at the reference pixel of 'spectrum' @type refval : float @param refpix : reference pixel for 'spectrum' @type refpix : int @param delta : interval between pixels on the X-axis @type delta : float @param num_chan : optional number of channels to be returned (default: 2^10) @type num_chan : int @return: numpy.array """ if math.log(num_chan,2) % 1: raise RuntimeError("num_chan = %d is not a power of 2", num_chan) if type(self.spectrum) == NP.ndarray: num_chans_in = self.spectrum.shape[axis] else: num_chans_in = len(self.spectrum) if math.log(num_chans_in,2) % 1: raise RuntimeError("input spectrum length = %d is not a power of 2", num_chans_in) self.logger.debug("reduce_spectrum_channels: %d channels in", num_chans_in) num_chan_avg = num_chans_in/num_chan newrefpix = refpix/num_chan_avg self.logger.debug("reduce_spectrum_channels: refpix from %d to %d", refpix, newrefpix) newdelta = delta*num_chan_avg self.logger.debug("reduce_spectrum_channels: delta from %.3f to %.3f", delta, newdelta) newrefval = refval + delta*(num_chan_avg/2 - 1) self.logger.debug("reduce_spectrum_channels: refval from %.3f to %.3f", refval, newrefval) self.logger.debug("reduce_spectrum_channels: averaging %d channels", num_chan_avg) specout = NP.array([spectrum[index*num_chan_avg:(index+1)*num_chan_avg].mean() for index in range(num_chan)]) self.logger.debug("reduce_spectrum_channels: %d channels out", num_chan) return specout, newrefval, newrefpix, newdelta def get_freq_array(self, bandwidth, n_chans): """ Create an array of frequencies for the channels of a backend @param bandwidth : bandwidth @type bandwidth : float @param n_chans : number of channels @type n_chans : int @return: frequency of each channel in same units as bandwidth """ return NP.arange(n_chans)*float(bandwidth)/n_chans def freq_to_chan(frequency,bandwidth,n_chans): """ Returns the channel number where a given frequency is to be found. @param frequency : frequency of channel in sane units as bandwidth. @type frequency : float @param bandwidth : upper limit of spectrometer passband @type bandwidth : float @param n_chans : number of channels in the spectrometer @type n_chans : int @return: channel number (int) """ if frequency < 0: frequency = bandwidth + frequency if frequency > bandwidth: raise RuntimeError("that frequency is too high.") return round(float(frequency)/bandwidth*n_chans) % n_chans def get_smoothed_bandshape(self, degree = None, poly_order=15): """ Do a Gaussian smoothing of the spectrum and then fit a polynomial. Optionally, the raw and smoothed data and the fitted polynomial can be plotted. Note ==== ``numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)`` Least squares polynomial fit. Fit a polynomial:: p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a vector of coefficients p that minimises the squared error. @param spectrum : input data @type spectrum : list of float @param degree : number of samples to smoothed (Gaussian FWHM) @type degree : int @param poly_order : order of the polynomial @type poly_order : int @param plot : plotting option @type plot : boolean @return: (polynomial_coefficient, smoothed_spectrum) """ if degree == None: degree = len(self.spectrum)/100 # normalize the spectrum so max is 1 and convert to dB. max_lev = NP.max(self.spectrum) norm_spec = NP.array(self.spectrum)/float(max_lev) norm_spec_db = 10*NP.log10(norm_spec) # do a Gaussian smoothing norm_spec_db_smoothed = smoothListGaussian(norm_spec_db, degree=degree) # deal with the edges by making them equal to the smoothed end points norm_spec_db_smoothed_resized = NP.ones(len(self.spectrum)) # left end norm_spec_db_smoothed_resized[0:degree] = norm_spec_db_smoothed[0] # middle norm_spec_db_smoothed_resized[degree:degree+len(norm_spec_db_smoothed)] = \ norm_spec_db_smoothed # right end norm_spec_db_smoothed_resized[degree+len(norm_spec_db_smoothed):] = \ norm_spec_db_smoothed[-1] return poly, norm_spec_db_smoothed_resized # ------------------------ module functions ------------------------------- def examine_text_data_file(filename): """ Examine a file to guide ``genfromtxt()`` Things to look for:: * Is there a header line with column names? If not, use argument ``names``. * Is the number of names equal to the number of columns? If not:: - use argument ``names`` and ``skip_header=1``, or - use argument ``delimiter`` with a list of column widths and ``skip_header=1``. """ print(examine_text_data_file.__doc__) fd = open(filename, "r") lines = fd.readlines() fd.close() topline = lines[0].strip().split() print(" 1 2 3 4 5 6 7") print("01234567890123456789012345678901234567890123456789012345678901234567890123456789") print(lines[0].strip()) print(lines[1].strip()) print(" ...") print(lines[-1].strip()) data = NP.genfromtxt(filename, dtype=None, names=None, skip_header=1, encoding=None) print("%d datatypes:" % len(data.dtype.fields)) for item in data.dtype.fields: print(item, data.dtype.fields[item]) def get_obs_dirs(project, station, year, DOY, datafmt=None): """ Returns the directories where data and working files are kept @param project : project code string, e.g., RRL @type project : str @param station : DSN station number @type station : int @param year : year of observation @type year : int @param DOY : day of year of observations @type DOY : int @param datafmt : raw data format @type datafmt : str """ #logger.debug("get_obs_dirs: type %s for %s, DSS%d, %4d/%03d", # datafmt, project, station, year, DOY) obspath = "dss%2d/%4d/%03d/" % (station,year,DOY) if project: projdatapath = "/usr/local/project_data/"+project+"/"+obspath projworkpath = "/usr/local/projects/"+project+"/Observations/"+obspath else: projdatapath = "" projworkpath = "" if datafmt: rawdatapath = "/usr/local/RA_data/"+datafmt+"/"+obspath else: rawdatapath = "" return projdatapath, projworkpath, rawdatapath # --------- old stuff to be discarded still needed for now --------------- def old_get_obs_session(project=None, dss=None, date=None, path='proj'): """ Provides project, station, year and DOY, asking as needed. It follows one of several possible paths to get to the session:: proj - path through /usr/local/projects/<project> hdf5 - path through /usr/local/RA_data/HDF5 fits - path through /usr/local/RA_data/FITS wvsr - path through /data @param project : optional name as defined in /usr/local/projects @type project : str @param dss : optional station number @type dss : int @param date : optional YYYY/DDD @type date : str @return: project, DSS, year, DOY. """ def get_directory(path): """ """ # only one trailing / path = path.rstrip('/')+"/*" logger.debug("get_obs_session:get_directory: from %s", path) names = glob.glob(path) if names: dirs = [] for name in names: if os.path.isdir(name): dirs.append(os.path.basename(name)) dirs.sort() for name in dirs: print((name), end=' ') return input('\n>') else: return [] def from_wvsr_dir(): """ this needs to be completed and tested on crab14 or an auto host """ session = get_directory(local_dirs.wvsr_dir) return session cwd = os.getcwd() # get the project if project: pass else: os.chdir(local_dirs.projects_dir) project = get_directory(local_dirs.projects_dir) logger.debug("from_wvsr_dir: project is %s", project) projectpath = local_dirs.projects_dir+project # get the station if path[:4].lower() == 'wvsr': # special call print("from_wvsr_dir()") if path[:4].lower() == 'proj': os.chdir(projectpath+"/Observations/") elif path[:4].lower() == 'hdf5': os.chdir(local_dirs.hdf5_dir) elif path[:4].lower() == 'fits': os.chdir(local_dirs.fits_dir) # get the station if dss: pass else: # This seems odd but get_directory() needs '/' and int does not station = get_directory(os.getcwd()+"/").rstrip('/') dss = int(station[-2:]) stationpath = os.getcwd()+"/dss"+str(dss) # get the date if date: items = date.split('/') year = int(items[0]) DOY = int(items[1]) else: year = int(get_directory(stationpath)) yearpath = stationpath+"/"+str(year) DOY = int(get_directory(yearpath)) os.chdir(cwd) return project, dss, year, DOY
# -*- coding: utf-8 -*- """ Modules to support data reduction in Python. The main purpose of the base module ``Data_Reduction`` is to provide a suplerclass with a good set of attributes and methods to cover all common needs. The base module is also able to read data from a text file as a ``numpy`` structured array. This is done with a class called ``DataGetterMixin`` which must be invoked after the base class has been initiated. The module function ``examine_text_data_file()`` reveals the structure of the file(s) that provide the data.. Examples ======== Here we initiate a base class after mixing in the data getter. The first line o the file has column names but the first three columns are all under one name ``UTC`` so we specify column widths to consider the first three columns to be one column. We use the names from the first line of the file, which could have been done with an ``open()``, ``readline()``, and ``close()``:: mixIn(Observation, DataGetterMixin) obs = Observation(dss=28, date="2012/127", project="SolarPatrol") obs.open_datafile('t12127.10', delimiter=[17,16,3,11,7,9,8,2,6], skip_header=1, names="UTC Epoch Chan Tsys Int Az El Diode Level".split()) Now the data getter is already mixed in to Observation so we don't need to do it again. In this case we specify the names of the columns, changing ``Int`` to ``Integr``:: obs2 = Observation(dss=28, date="2012/127", project="SolarPatrol") obs2.open_datafile('t12127.10', skip_header=1, names="Year DOY UTC Epoch Chan Tsys Integr Az El Diode Level".split()) The class Map inherits from DataGetterMixin, so no explicit mixin required:: obsmap = Map(dss=84, date="2020/163", project="SolarPatrol") obsmap.initialize('sim-venus.dat', source="Venus") Let's examine ``obsmap``. We have only one signal column:: In [3]: obsmap.channel.keys() Out[3]: dict_keys(['xl']) In [4]: obsmap.channel['xl'].keys() Out[4]: dict_keys(['freq', 'bw', 'pol', 'ifmode', 'atten', 'power']) """ # standard Python modules import datetime import glob import h5py import logging import math import matplotlib.dates as MPLd import numpy as NP import os import re import readline import scipy.interpolate import scipy.fftpack import Astronomy as A import Astronomy.DSN_coordinates as coords import Astronomy.Ephem as AE import DatesTimes as DT import local_dirs import Math.clusters as VQ # vector quantization import support # enable raw_input Tab completion readline.parse_and_bind("tab: complete") logger = logging.getLogger(__name__) # module logger class Observation(object): """ superclass for a data structure and methods Attributes ========== aliases - (dict) data keys to replace those in original data channel - (dict) signal paths, e.g., different freqs and pols data - (dict) original data, e.g., read from file or database DOY - (int) day of year of observation end - (float) UNIX time at the end latitude - (float) from obs logger - (logging.Logger) longitude - (float) from obs name - (str) user assigned, defaults to YEAR/DOY numdata - (int) number of data samples obs - (AE.DSS) observatory session - (Session) set of observations, parent to Observation session_path - (str) directory for session files start - (float) UNIX time at the beginning year - (int) year of observation **Reserved Column Names** These column names are recognized. They are also the keys for attribute ``data``. These quantities must be present in some form:: unixtime (float) UNIX time in sec chan_name (str) channel name integr (float) integration (exposure) in sec azel (float,float) azimuth and elevation in decimal deg power (float) power level if only a single channel Optional:: diode (float) 0 or power in K (integers OK) level (float) (unidentified -- in ``tlog`` table) cryotemp (float) cryostat temp in K windspeed (float) km/hr winddir (float) deg ambtemp (float) deg C pressure (float) mbar Columns to be computed:: mpldatenum (float) matplotlib ``datenum`` Alternative for ``power``:: tsys (float) system temperature (calibrated power) top (float) alternative for ``tsys`` (used in DSN) vfc_counts (int) VFC counts (rate times ``integr``) Any column with a name which is not a reserved name is assumed to be power-like data from the channel with that name, unless that name is in a list provided to the argument ``ignore`` in the method ``get_data_channels`` of the class ``DataGetterMixin``. Alternative for ``unixtime``:: year (int) year of observation doy (int) day of year utc (str) HH:MM:SS timestr (str) something like 2020/06/14/14:22:21.00 Alternative for ``chan_name``:: chan (int) index in receiver channel names Alternative for ``azel``:: radec (float,float) precessed right ascension in decimal hours and precessed declination in decimal deg radec1950 (float,float) mean right ascension in decimal hours and mean declination in decimal deg at epoch radec2000 (float,float) mean right ascension in decimal hours and mean declination at epoch in decimal deg az (float) azimuth in decimal deg el (float) elevation in decimal deg ra (float) precessed right ascension in decimal hours dec (float) precessed declination in decimal deg ra1950 (float) mean right ascension in decimal hours at epoch dec1950 (float) mean declination in decimal deg at epoch ra2000 (float) mean right ascension in decimal hours at epoch dec2000 (float) mean declination in decimal deg at epoch Notes ===== * The ``data`` structure is a dict. * The value of a ``data`` item is either a numpy array or a object like ``float``, ``int``, or ``str``. * The keys have reserved words defined above and will be lowercase. * Items with other keys may be added, typically by a child class. * Coordinates shall be in pairs, `e.g. ``azel``, ``radec``. (This way you never get one without the other.) """ reserved = ['unixtime','chan_name','integr','az','el','year','doy','utc', 'timestr','chan','tsys','top','diode','level','cryotemp', 'windspeed','winddir','ambtemp','pressure', 'ra','dec','ra1950','dec1950','ra2000','dec2000'] power_keys = ['tsys', 'top', 'vfc_counts', 'power'] def __init__(self, parent=None, name=None, dss=None, date=None, project=None): """ Create a base Observation object. This is not meant to be initialized by itself. A subclass generally determines how data are read in. However, method ``initialize()`` provides a basic data read capability using ``numpy.genfromtxt()`` and creates the object's data structure. Args: parent (Session): session to which this observation belongs name (str): an identifier; default is station ID + "obs" dss (int): station number date (str): "YEAR/DOY" project (str): directory under /usr/local/projects """ self.logger = logging.getLogger(logger.name+".Observation") self.session = parent # observatory must be specified if dss: self.obs = coords.DSS(dss) self.longitude = self.obs.long*180/math.pi # deg self.latitude = self.obs.lat*180/math.pi # deg else: self.logger.error("__init__: requires observatory location") raise Exception("Where were the data taken?") # give the object a name if name: self.name = name else: self.name = "DSS"+str(dss)+"obs" self.logger = logging.getLogger(logger.name+".Observation") # the observation was part of some project if project: self.project = project else: self.logger.error("__init__: requires a project") raise Exception("Where are the session's working files?") # the observation was done on some date if date: y,d = date.split('/') self.year = int(y); self.DOY = int(d) projdatapath, self.sessionpath, rawdatapath = \ get_obs_dirs(project, dss, self.year, self.DOY, datafmt=None) self.logger.debug("__init__: session path: %s", self.sessionpath) else: self.logger.error("__init__: requires a date") raise Exception("When were the date taken?") # accomodate subclass arguments self.aliases = {} # what I really want to do here is see if this was called by a subclass, # in which case I do not try to get the channel info until this # initialization has finished. # #if hasattr(self, "get_data_channels"): # channels = self, get_data_channels() # self.make_channels(channels) #else: # self.logger.info("__init__: initialize() may now be called") def splitkey(self, longlat): """ Checks for presence of coordinates in pairs or singles @param longlat : "azel", or "radec", or "radecEPOC" @type longlat : str """ longitude = longlat[:2] # 'az' or 'ra' if len(longlat) > 5: # has epoch epoch = longlat[-4:] longitude += epoch latitude = longlat[2:-4]+epoch else: # date of observation latitude = longlat[2:] epoch = None return longitude, latitude, epoch def check_for(self, data, longlat): """ Checks for separate coordinates and splits if coord pairs Args: data (dict): attribute ``data`` longlat (str): "azel", or "radec", or "radecEPOC" """ longitude, latitude, epoch = self.splitkey(longlat) if longitude in data.dtype.names and \ latitude in data.dtype.names: self.logger.debug("check_for: data has %s and %s", longitude, latitude) self.data[longitude] = data[longitude] self.data[latitude] = data[latitude] return True elif longlat in data.dtype.names: self.logger.debug("check_for: data has %s", longlat) self.data[longitude],self.data[latitude] = map(None, *data[longlat]) self.logger.debug("check_for: added %s and %s to data", longitude, latitude) return True else: # coords need to be computed from other coords return False def unpack_to_complex(self, rawdata): """ Converts a sequence of alternating real/imag samples to complex @param rawdata : alternating real and imaginary bytes @type rawdata : numpy array of signed int8 @return: numpy array of complex """ datalen = len(rawdata) real = rawdata[0:datalen:2] imag = rawdata[1:datalen:2] data = real + 1j*imag return data def sideband_separate(self, data): """ Converts a complex spectrum array and returns two reals with USB and LSB This applies a Hilbert transform to the complex data. """ usb = (data.real + scipy.fftpack.hilbert(data).imag) lsb = (scipy.fftpack.hilbert(data).real + data.imag) return lsb,usb class Channel(support.PropertiedClass): """ Class for a signal path """ def __init__(self, parent, name, freq=None, bw=None, pol=None, IFtype=None, atten=None): """ Notes ===== The properties can be accessed as if the class were a dict. Arguments ========= freq:float or int: center frequency in MHz bw:float or int: bandwidth in MHz pol:str: polarization code """ support.PropertiedClass.__init__(self) self.parent = parent self.logger = logging.getLogger(self.parent.name+".Channel") self.logger.debug("__init__: created %s", self.logger.name) self.logger.debug("__init__: parent is %s", self.parent) self.name = name self.data['freq'] = freq self.data['bw'] = bw self.data['pol'] = pol self.data['ifmode'] = IFtype self.data['atten'] = atten class DataGetterMixin(object): """ Class for getting data from a CSV file. """ def initialize(self, filename, delimiter=" ", names=True, skip_header=0, source=None): """ Get the data and make a data structure for the observations. This is not included by default in ``__init__()`` to keep it simple for subclasses. Args: filename (str): name only, required; the path is provided delimiter (str): what separates the columns names (bool): the first line has column names skip_header (int) : number of rows to skip """ # get the data data = self.open_datafile(filename, delimiter=delimiter, names=names, skip_header=skip_header) # get the signal columns and names metadata, signals = self.get_data_channels(data) # create Channel objects for the signal properties self.make_channels(signals) # create the data structure self.make_data_struct(data, metadata, signals) # compute the offsets from the source center for each data point if source: self.get_offsets(source=source) else: self.logger.warning("initialize: no source specified; no offsets") def open_datafile(self, filename, delimiter=" ", names=True, skip_header=0): """ Opens and reads a data file This is used by ``Malargue`` (one data files) and ``GAVRT`` (one data file for each signal). Args: filename (str): text data file name delimiter (str): separator between columns (default: whitespace) names (bool): file row has column names (default: True) skip_header (int): number of rows to skip at beginning of file Returns: ndarray: """ data = NP.genfromtxt(self.sessionpath+filename, delimiter=delimiter, dtype=None, names=names, case_sensitive='lower', skip_header=skip_header, encoding=None) return data def get_data_channels(self, data, ignore=None): """ Gets or sets the names of the signal columns Column names are separated into metadata and signals. Names in ``ignore`` re ignored. Names in ``aliases`` are replaced. Args: data (ndarray): data read from text file ignore (list of str): columns to ignore; default None Returns: (list of str, list of str): metadata, signals """ names = data.dtype.names metadata = [] signals = [] for name in names: if ignore: if name in ignore: pass if name.casefold() in map(str.casefold, self.aliases): key = self.aliases[name].lower() # we use only lower case names else: key = name.lower() self.logger.debug("get_data_channels: doing %s for %s", key, name) if key in map(str.casefold, Observation.reserved): if key.casefold() in ['top', 'tsys']: signals.append(key) else: metadata.append(key) else: signals.append(key) self.logger.debug("get_data_channels: signals: %s", signals) self.logger.debug("get_data_channels: metadata: %s", metadata) return metadata, signals def make_data_struct(self, data, metadata, signals): """ Takes a text table with headers and converts it into a numpy ``ndarray``. That means that a column can be extracted using `data[label]`. Args ==== data: (ndarray) the data from the text file metadata: (list of str) the column names for metadata signals: (list of str) the column names for power-like data """ # get the known columns: self.data = {} self.numdata = len(data) #self.logger.debug("make_data_struct: using aliases: %s", self.aliases) # get columns that are not metadata; each has power for a channel for signal in signals: #self.logger.debug("make_data_struct: for signal: %s", signal) #if signal in self.aliases.items(): # get the key in 'data' which matches 'value' in 'aliases' # power = data[next(key for key, value in self.aliases.items() # if value == signal)][idx] #else: # power = data[signal] #self.channel[signal]['power'] = power self.channel[signal]['power'] = data[signal] # get UNIX time if 'unixtime' in metadata: if 'unixtime' in data.dtype.names: self.data['unixtime'] = data['unixtime'] else: # look up the equivalent of UNIX time in the data table self.data['unixtime'] = data[next(key for key, value in self.aliases.items() if value == 'unixtime')] # compute other convenient forms of time self.data['datetime'] = [] # Python datetime.date self.data['date_num'] = [] # matplotlib.dates date number for idx in list(range(self.numdata)): if 'unixtime' in data.dtype.names: tm = data['unixtime'][idx] else: tm = data[next(key for key, value in self.aliases.items() if value == 'unixtime')][idx] dt = datetime.datetime.utcfromtimestamp(tm) self.data['datetime'].append(dt) self.data['date_num'].append(MPLd.date2num(dt)) self.start = self.data['unixtime'][0] self.end = self.data['unixtime'][-1] else: # figure out how to process the time data columns pass # compute alternate coordinates if self.check_for(data, 'azel'): # azel exists; compute radec if needed; then radec2000 if needed if self.check_for(data, 'radec'): pass else: self.radec_from_azel() if self.check_for(data, 'radec2000'): # ra2000 and dec2000 already exist pass else: self.radec2000_from_radec() elif self.check_for(data, 'radec2000'): # coordinates exist; compute back to azimuth and elevation if self.check_for(data, 'radec'): pass else: # compute observed RA and dec self.radec_from_radec2000() if self.check_for(data, 'azel'): pass else: self.azel_from_radec() # in here check for 'radec' else: self.logger.error("no coordinates found in data") raise Exception("check INFO logging for columns found") self.start = self.data['unixtime'].min() self.end = self.data['unixtime'].max() def make_channels(self, signals, props=None): """ Assign properties to the channels. The prop keys are "freq", "pol", and "IFtype". Args: props (dict of dicts): signal channel properties. """ self.channel = {} for ch in signals: chindex = signals.index(ch) if props: self.channel[ch] = self.Channel(self, ch, freq =props[ch]['freq'], bw =props[ch]['bw'], pol =props[ch]['pol'], IFtype=props[ch]['IFtype'], atten =props[ch]['atten']) else: self.channel[ch] = self.Channel(self, ch) class GriddingMixin(object): """ Class for all the data and methods associated with a raster scan map It is expected that the parent class is a subclass of ``Observation`` already by virtue of it being a superclass of subclass which inherits these methods. Attrs: cfg (dict): data (numpy array): from ``Observation`` logger (logging.Logger): replaces ``Observation`` logger name (str): replaces ``Observation`` name session (Session): source (str): step (float): map step size """ def get_grid_stepsize(self, xy=None): """ Determine the stepsize of gridded data This assumes xdec and dec data increase incrementally by 'stepsize'. The sequences may repeat in a sawtooth-like series. The number of 'xdec' and 'dec' points is multiple times the gridsize. Arguments: xy (tuple or list) - X-array and Y-array (default Map.data) """ # get the absolute value of coordinate intervals if xy: dxdecs = abs(xy[0][1:] - xy[0][:-1]) ddecs = abs(xy[1][1:] - xy[1][:-1]) else: dxdecs = abs(self.data['xdec_offset'][1:]-self.data['xdec_offset'][:-1]) ddecs = abs(self.data['dec_offset'][1:] -self.data['dec_offset'][:-1]) # form array of X,Y pairs coords = NP.array(list(zip(dxdecs,ddecs))) # expect two clusters (default) cluster_pos = VQ.find_clusters(coords).round(4) # tenths of mdeg # return the non-zero intervals return cluster_pos[0].max(), cluster_pos[1].max() def regrid(self, width=1.0, height=1.0, step=None, power_key=None): """ converts a map from observed coordinates to map coordinates If ``step`` is not given then the step size will be the average step size in X and the average step in Y. In this case, the effect is to make a regular grid if the original positions were not exact, i.e., pointing error. @param width : map width in deg @type width : float @param height : map height in deg @type height : float @param step : map step size in X and Y in deg @type step : (float, float) @param power_key : dict key of Z-value @type power_key : str """ # what is the power-like quantity? if power_key: pass else: # take the first that matches for key in Observation.power_keys: if key in self.data: power_key = key self.logger.info("regrid: using '%s'", power_key) break else: continue if power_key: pass else: self.logger.error("regrid: no power data key found") return None if step == None: # use the original stepsize self.xstep, self.ystep = self.get_grid_stepsize() else: self.xstep, self.ystep = step self.data['grid_x'] = NP.arange( -width/2, width/2+self.xstep/2, self.xstep/2) self.data['grid_y'] = NP.arange( -height/2,height/2+self.ystep/2, self.ystep/2) self.logger.debug("regrid: grid shape is %dx%d", len(self.data['grid_x']), len(self.data['grid_y'])) self.data['grid_z'] = {} for chnl in self.channel: self.logger.debug("regrid: processing %s", chnl) points = list(zip(self.data['xdec_offset'],self.data['dec_offset'])) self.logger.debug("regrid: %d positions", len(points)) values = self.data[power_key][chnl] self.logger.debug("regrid: %d values", len(values)) xi, yi = NP.meshgrid(self.data['grid_x'], self.data['grid_y']) try: self.data['grid_z'][chnl] = scipy.interpolate.griddata(points, values, (xi, yi), method='nearest') except ValueError as details: self.logger.error("regrid: gridding failed: %s", str(details)) self.logger.debug("regrid: channel %s length of points is %d", chnl, len(points)) self.logger.debug("regrid: channel %s length of values is %d", chnl, len(values)) continue def radec_from_azel(self): """ compute RA and dec from az and el """ RA = []; decs = []; RAdecs = [] for idx in list(range(self.numdata)): # setup dt = self.data['datetime'][idx] # format time as (YEAR, DOY.fff) time_tuple = (dt.year, DT.day_of_year(dt.year,dt.month,dt.day) + ( dt.hour + dt.minute/60. + dt.second/3600. + dt.microsecond/3600./1e6)/24.) azimuth = self.data['az'][idx] elevation = self.data['el'][idx] # compute ra,dec = A.AzEl_to_RaDec(azimuth, elevation, self.latitude, -self.longitude, time_tuple) RA.append(ra) decs.append(dec) RAdecs.append((RA,decs)) self.data['ra'] = RA self.data['dec'] = decs self.data['radec'] = RAdecs def radec2000_from_radec(self): """ compute RA2000 and dec2000 from observed RA and dec """ RA2000 = []; decs2000 = []; RAdec2000 = [] for idx in list(range(self.numdata)): # setup tm = self.data['unixtime'][idx] mjd = DT.UnixTime_to_MJD(tm) MJD = int(mjd) UT = 24*(mjd-MJD) ra = self.data['ra'] dec = self.data['dec'] # compute ra2000,dec2000 = A.apparent_to_J2000(MJD,UT, ra, dec, self.longitude, self.latitude) RA2000.append(ra2000) decs2000.append(dec2000) RAdec2000.append((ra2000,dec2000)) self.data['ra2000'] = RA2000 self.data['dec2000'] = dec2000 self.data['radec2000'] = RAdec2000 def radec_from_radec2000(self): """ compute apparent RA and dec. from J2000 RA and dec """ RA = []; decs = []; RAdecs = [] for idx in list(range(self.numdata)): # setup tm = self.data['unixtime'][idx] mjd = DT.UnixTime_to_MJD(tm) MJD = int(mjd) UT = 24*(mjd-MJD) ra2000 = self.data['ra2000'][idx] dec2000 = self.data['dec2000'][idx] # compute ra, dec = A.J2000_to_apparent(MJD, UT, ra2000*math.pi/12, dec2000*math.pi/180) RA.append(ra) decs.append(dec) RAdecs.append((ra,dec)) self.data['ra'] = RA self.data['dec'] = decs self.data['radec'] = RAdecs def azel_from_radec(self): """ compute azimuth and elevation from apparent right ascension and declination """ azs = []; els = []; azels = [] for idx in list(range(self.numdata)): # setup ra = self.data['ra'][idx] dec = self.data['dec'][idx] timetuple = self.data['datetime'][idx].timetuple() year = timetuple.tm_year doy = timetuple.tm_yday + (timetuple.tm_hour +(timetuple.tm_min+timetuple.tm_sec/60)/60)/24 # compute az, el = A.RaDec_to_AzEl(ra, dec, self.latitude, self.longitude, (year,doy)) azs.append(az) els.append(el) azels.append((az,el)) self.data['az'] = azs self.data['el'] = els self.data['azel'] = azels def get_offsets(self, source="Sun", xdec_ofst=0., dec_ofst=0.): """ Generates a map in coordinates relative to a source If the source is the default, the position of the Sun will be computed for the time of each sample. IT SEEMS LIKE A GOOD IDEA TO DO THIS FOR PLANETS ALSO. This adds elements with keys ``xdec_offset`` and ``dec_offset`` to the attribute ``data``. @param source : source at map center @type source : ephem source instance @param xdec_ofst : relative X-dec position of sample @type xdec_ofst : float @param dec_ofst : relative dec position of sample @type dec_ofst : float @return: (dxdecs,ddecs) in degrees """ if source.lower() == "sun": src = AE.ephem.Sun() else: src = AE.calibrator(source) self.data['dec_offset'] = [] self.data['xdec_offset'] = [] for count in range(len(self.data['unixtime'])): dt = datetime.datetime.utcfromtimestamp( self.data['unixtime'][count]) if type(src) == AE.Quasar: pass else: src.compute(dt) ra_center = src.ra*12/math.pi # hours dec_center = src.dec*180/math.pi # degrees decrad = src.dec # right ascension increases to the left, cross-dec to the right self.data['xdec_offset'].append(xdec_ofst - (self.data['ra'][count] - ra_center)*15*math.cos(decrad) ) self.data['dec_offset'].append( dec_ofst + self.data['dec'][count] - dec_center) # change list to NP.array self.data['xdec_offset'] = NP.array(self.data['xdec_offset']) self.data['dec_offset'] = NP.array(self.data['dec_offset']) class Map(Observation, GriddingMixin): """ Map class without special features for GAVRT and Malargue Most of the methods are mixed in to avoid conflicting with subclasses """ def __init__(self, parent=None, name=None, dss=None, date=None, project=None): """ Create a Map object Args: parent (Session): an observing session to which this belongs name (str): an identifier, like a scan number dss (int): station where the data were taken date (str): date of observation as "YEAR/DOY" project (str): project for which this observation was made """ Observation.__init__(self, parent=parent, name=name, dss=dss, date=date, project=project) class Recording(h5py.File): """ Class for raw data This is typically the contents of a data file transcribed into a standard format. It may be the data of one Observation object, or data for multiple Observation objects, or contain part of the data for an Observation object. If the data being curated are not in a standard project, and they are not in a standard place, """ def __init__(self, session=None, path=None, date=None, dss=None, name=None): """ Initialize a metadata container and data directory Args ==== session (Session): required, unless: path (str) : location of raw data files date """ self.logger = logging.getLogger(logger.name+".Recording") if session: self.session = session if not name: name = session.project + "-" + str(session.year) + "-" + \ ('%03d' % session.doy) + "-dss" + str(session.dss)+".info" self.year = session.year self.doy = session.doy self.dss = session.dss self.project = session.project self.session_dir = session.session_dir elif path and name: self.session = Session() # for its methods and attributes self.session_dir = path self.name = name else: raise RuntimeError("either a session or a path and filename required") h5py.File.__init__(self, name, 'w') self.attrs['project'] = self.project self.attrs['dss'] = self.dss self.attrs['year'] = self.year self.attrs['doy'] = self.doy class Session(object): """ Base class for an observing session on a given year and DOY Public Attributes:: doy (int) - day of year for session logger (logging.Logger) - logging.Logger object parent (object) - a data reduction session (mult. observ. sessions) year (int) - doy (int) - project (str) - session_dir (str) - path to results from this session A session usually refers to a telescope, date and project. This will normally define a path to the session directory. """ def __init__(self, parent=None, date=None, project=None, dss=None, path=None): """ initialize data reduction for one observing session Args ==== parent: (object) optional class for a data reduction tool date: (str) required, format YEAR/DOY project: (str) required dss (int) required path (str) optional If `path` is given for a non-standard observing files location, and it does not exist, it will be created. Then the Recording and Observation instances must be directed to where the files are. """ self.logger = logging.getLogger(logger.name+".Session") if parent: self.session = parent if date and project and dss: y,d = date.split('/') self.year = int(y); self.doy = int(d) self.project = project self.dss = dss self.name = "'%s %4d/%03d'" % (self.project, self.year, self.doy) else: self.logger.error("__init__: missing DSS or year or DOY or project") raise Exception("Where and when and for what project were the data taken?") self.find_session_dir(path=path) def find_session_dir(self, path=None): """ find or make the sessions directory Args: path (str) - explicit path to files """ self.logger.debug("find_session_dir: entered for path=%s", path) if path: self.session_dir = path else: obs_dir = local_dirs.projects_dir + self.project \ +"/Observations/dss"+str(self.dss)+"/" self.session_dir = obs_dir+ "%4d" % self.year +"/"+ "%03d" % self.doy +"/" if not os.path.exists(self.session_dir): os.makedirs(self.session_dir, mode=0o775) def select_data_files(self, datapath=None, name_pattern="", auto=True, load_hdf=False): """ Provide the user with menu to select data files. Finding the right data store is complicated as there are many kinds of data files * If datapath is ...RA_data/HDF5/... then the files could be .h5 (Ashish) or .hdf5 (Dean). * If datapath is ...RA_data/FITS/... then the extent is .fits. * If datapath is ...project_data/... then the extent is .pkl * If datapath is ...projects/... (default) then the extent is probably .csv or .dat or .prd. @param datapath : path to top of the tree where the DSS subdirectories are @type datapath : str @param name_pattern : pattern for selecting file names, e.g. source @type name_pattern : str @param load_hdf : use RA_data/HDF5 directory if True @type load_hdf : bool @para auto : take all files found @type auto : bool @return: list of str """ # Get the data files to be processed self.logger.debug("select_data_files: looking in %s", datapath) if name_pattern: name,extent = os.path.splitext(name_pattern) if extent.isalpha(): # a proper extent with no wildcards # take name pattern as is pass else: # only one * at front and back of pattern name_pattern = "*"+name_pattern.rstrip('*')+"*" else: # no pattern specified. All files. name_pattern = "*" self.logger.debug("select_data_files: for pattern %s", name_pattern) if datapath: if re.search('HDF5', datapath): load_hdf = True elif re.search('project_data', datapath): load_hdf = False datafiles = support.text.select_files(datapath+name_pattern+"[0-9].pkl") elif re.search('FITS', datapath): datafiles = support.text.select_files(datapath+name_pattern+".fits") if load_hdf: full = datapath+name_pattern+".h*5" else: full = datapath+name_pattern else: full = self.session_dir + name_pattern self.logger.debug("select_data_files: from: %s", full) if auto: datafiles = glob.glob(full) else: datafiles = support.text.select_files(full) self.logger.debug("select_data_files: found %s", datafiles) if datafiles == []: self.logger.error( "select_data_files: None found. Is the data directory mounted?") raise RuntimeError('No data files found.') if type(datafiles) == str: datafiles = [datafiles] self.logger.info("select_data_files: to be processed: %s", datafiles) return datafiles class Spectrum(Observation): """ Class for spectra """ def __init__(self): """ needs a spectrum attribute """ self.logger = logging.getLogger(logger.name+".Spectrum") def get_num_chans(self, linefreq, bandwidth, max_vel_width): """ compute the base 2 number of output channels for the specified resolution """ kmpspMHz = 300000./linefreq BW_kmps = bandwidth*kmpspMHz est_num_chan_out = BW_kmps/max_vel_width self.logger.debug("get_num_chans: estimated num chans out = %d", est_num_chan_out) return 2**int(math.ceil(math.log(est_num_chan_out,2))) def reduce_spectrum_channels(self, refval, refpix, delta, num_chan=1024, axis=0): """ Reduce the number of channels in the spectrum. The default option is to reduce the spectrum to a specified number of channels with a default of 1024. The input spectrum is presumed to have 2**N channels so that num_chan/num_chan_in is an integer. If 'spectrum' is an N-D array, then the spectrum axis is given by 'axis' which defaults to 0. 'delta' is negative for lower sideband or reversed double sideband spectra. @param spectrum : spectrum values @type spectrum : list or nparray @param refval : X-axis value at the reference pixel of 'spectrum' @type refval : float @param refpix : reference pixel for 'spectrum' @type refpix : int @param delta : interval between pixels on the X-axis @type delta : float @param num_chan : optional number of channels to be returned (default: 2^10) @type num_chan : int @return: numpy.array """ if math.log(num_chan,2) % 1: raise RuntimeError("num_chan = %d is not a power of 2", num_chan) if type(self.spectrum) == NP.ndarray: num_chans_in = self.spectrum.shape[axis] else: num_chans_in = len(self.spectrum) if math.log(num_chans_in,2) % 1: raise RuntimeError("input spectrum length = %d is not a power of 2", num_chans_in) self.logger.debug("reduce_spectrum_channels: %d channels in", num_chans_in) num_chan_avg = num_chans_in/num_chan newrefpix = refpix/num_chan_avg self.logger.debug("reduce_spectrum_channels: refpix from %d to %d", refpix, newrefpix) newdelta = delta*num_chan_avg self.logger.debug("reduce_spectrum_channels: delta from %.3f to %.3f", delta, newdelta) newrefval = refval + delta*(num_chan_avg/2 - 1) self.logger.debug("reduce_spectrum_channels: refval from %.3f to %.3f", refval, newrefval) self.logger.debug("reduce_spectrum_channels: averaging %d channels", num_chan_avg) specout = NP.array([spectrum[index*num_chan_avg:(index+1)*num_chan_avg].mean() for index in range(num_chan)]) self.logger.debug("reduce_spectrum_channels: %d channels out", num_chan) return specout, newrefval, newrefpix, newdelta def get_freq_array(self, bandwidth, n_chans): """ Create an array of frequencies for the channels of a backend @param bandwidth : bandwidth @type bandwidth : float @param n_chans : number of channels @type n_chans : int @return: frequency of each channel in same units as bandwidth """ return NP.arange(n_chans)*float(bandwidth)/n_chans def freq_to_chan(frequency,bandwidth,n_chans): """ Returns the channel number where a given frequency is to be found. @param frequency : frequency of channel in sane units as bandwidth. @type frequency : float @param bandwidth : upper limit of spectrometer passband @type bandwidth : float @param n_chans : number of channels in the spectrometer @type n_chans : int @return: channel number (int) """ if frequency < 0: frequency = bandwidth + frequency if frequency > bandwidth: raise RuntimeError("that frequency is too high.") return round(float(frequency)/bandwidth*n_chans) % n_chans def get_smoothed_bandshape(self, degree = None, poly_order=15): """ Do a Gaussian smoothing of the spectrum and then fit a polynomial. Optionally, the raw and smoothed data and the fitted polynomial can be plotted. Note ==== ``numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)`` Least squares polynomial fit. Fit a polynomial:: p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a vector of coefficients p that minimises the squared error. @param spectrum : input data @type spectrum : list of float @param degree : number of samples to smoothed (Gaussian FWHM) @type degree : int @param poly_order : order of the polynomial @type poly_order : int @param plot : plotting option @type plot : boolean @return: (polynomial_coefficient, smoothed_spectrum) """ if degree == None: degree = len(self.spectrum)/100 # normalize the spectrum so max is 1 and convert to dB. max_lev = NP.max(self.spectrum) norm_spec = NP.array(self.spectrum)/float(max_lev) norm_spec_db = 10*NP.log10(norm_spec) # do a Gaussian smoothing norm_spec_db_smoothed = smoothListGaussian(norm_spec_db, degree=degree) # deal with the edges by making them equal to the smoothed end points norm_spec_db_smoothed_resized = NP.ones(len(self.spectrum)) # left end norm_spec_db_smoothed_resized[0:degree] = norm_spec_db_smoothed[0] # middle norm_spec_db_smoothed_resized[degree:degree+len(norm_spec_db_smoothed)] = \ norm_spec_db_smoothed # right end norm_spec_db_smoothed_resized[degree+len(norm_spec_db_smoothed):] = \ norm_spec_db_smoothed[-1] return poly, norm_spec_db_smoothed_resized # ------------------------ module functions ------------------------------- def examine_text_data_file(filename): """ Examine a file to guide ``genfromtxt()`` Things to look for:: * Is there a header line with column names? If not, use argument ``names``. * Is the number of names equal to the number of columns? If not:: - use argument ``names`` and ``skip_header=1``, or - use argument ``delimiter`` with a list of column widths and ``skip_header=1``. """ print(examine_text_data_file.__doc__) fd = open(filename, "r") lines = fd.readlines() fd.close() topline = lines[0].strip().split() print(" 1 2 3 4 5 6 7") print("01234567890123456789012345678901234567890123456789012345678901234567890123456789") print(lines[0].strip()) print(lines[1].strip()) print(" ...") print(lines[-1].strip()) data = NP.genfromtxt(filename, dtype=None, names=None, skip_header=1, encoding=None) print("%d datatypes:" % len(data.dtype.fields)) for item in data.dtype.fields: print(item, data.dtype.fields[item]) def get_obs_dirs(project, station, year, DOY, datafmt=None): """ Returns the directories where data and working files are kept @param project : project code string, e.g., RRL @type project : str @param station : DSN station number @type station : int @param year : year of observation @type year : int @param DOY : day of year of observations @type DOY : int @param datafmt : raw data format @type datafmt : str """ #logger.debug("get_obs_dirs: type %s for %s, DSS%d, %4d/%03d", # datafmt, project, station, year, DOY) obspath = "dss%2d/%4d/%03d/" % (station,year,DOY) if project: projdatapath = "/usr/local/project_data/"+project+"/"+obspath projworkpath = "/usr/local/projects/"+project+"/Observations/"+obspath else: projdatapath = "" projworkpath = "" if datafmt: rawdatapath = "/usr/local/RA_data/"+datafmt+"/"+obspath else: rawdatapath = "" return projdatapath, projworkpath, rawdatapath # --------- old stuff to be discarded still needed for now --------------- def old_get_obs_session(project=None, dss=None, date=None, path='proj'): """ Provides project, station, year and DOY, asking as needed. It follows one of several possible paths to get to the session:: proj - path through /usr/local/projects/<project> hdf5 - path through /usr/local/RA_data/HDF5 fits - path through /usr/local/RA_data/FITS wvsr - path through /data @param project : optional name as defined in /usr/local/projects @type project : str @param dss : optional station number @type dss : int @param date : optional YYYY/DDD @type date : str @return: project, DSS, year, DOY. """ def get_directory(path): """ """ # only one trailing / path = path.rstrip('/')+"/*" logger.debug("get_obs_session:get_directory: from %s", path) names = glob.glob(path) if names: dirs = [] for name in names: if os.path.isdir(name): dirs.append(os.path.basename(name)) dirs.sort() for name in dirs: print((name), end=' ') return input('\n>') else: return [] def from_wvsr_dir(): """ this needs to be completed and tested on crab14 or an auto host """ session = get_directory(local_dirs.wvsr_dir) return session cwd = os.getcwd() # get the project if project: pass else: os.chdir(local_dirs.projects_dir) project = get_directory(local_dirs.projects_dir) logger.debug("from_wvsr_dir: project is %s", project) projectpath = local_dirs.projects_dir+project # get the station if path[:4].lower() == 'wvsr': # special call print("from_wvsr_dir()") if path[:4].lower() == 'proj': os.chdir(projectpath+"/Observations/") elif path[:4].lower() == 'hdf5': os.chdir(local_dirs.hdf5_dir) elif path[:4].lower() == 'fits': os.chdir(local_dirs.fits_dir) # get the station if dss: pass else: # This seems odd but get_directory() needs '/' and int does not station = get_directory(os.getcwd()+"/").rstrip('/') dss = int(station[-2:]) stationpath = os.getcwd()+"/dss"+str(dss) # get the date if date: items = date.split('/') year = int(items[0]) DOY = int(items[1]) else: year = int(get_directory(stationpath)) yearpath = stationpath+"/"+str(year) DOY = int(get_directory(yearpath)) os.chdir(cwd) return project, dss, year, DOY
en
0.713471
# -*- coding: utf-8 -*- Modules to support data reduction in Python. The main purpose of the base module ``Data_Reduction`` is to provide a suplerclass with a good set of attributes and methods to cover all common needs. The base module is also able to read data from a text file as a ``numpy`` structured array. This is done with a class called ``DataGetterMixin`` which must be invoked after the base class has been initiated. The module function ``examine_text_data_file()`` reveals the structure of the file(s) that provide the data.. Examples ======== Here we initiate a base class after mixing in the data getter. The first line o the file has column names but the first three columns are all under one name ``UTC`` so we specify column widths to consider the first three columns to be one column. We use the names from the first line of the file, which could have been done with an ``open()``, ``readline()``, and ``close()``:: mixIn(Observation, DataGetterMixin) obs = Observation(dss=28, date="2012/127", project="SolarPatrol") obs.open_datafile('t12127.10', delimiter=[17,16,3,11,7,9,8,2,6], skip_header=1, names="UTC Epoch Chan Tsys Int Az El Diode Level".split()) Now the data getter is already mixed in to Observation so we don't need to do it again. In this case we specify the names of the columns, changing ``Int`` to ``Integr``:: obs2 = Observation(dss=28, date="2012/127", project="SolarPatrol") obs2.open_datafile('t12127.10', skip_header=1, names="Year DOY UTC Epoch Chan Tsys Integr Az El Diode Level".split()) The class Map inherits from DataGetterMixin, so no explicit mixin required:: obsmap = Map(dss=84, date="2020/163", project="SolarPatrol") obsmap.initialize('sim-venus.dat', source="Venus") Let's examine ``obsmap``. We have only one signal column:: In [3]: obsmap.channel.keys() Out[3]: dict_keys(['xl']) In [4]: obsmap.channel['xl'].keys() Out[4]: dict_keys(['freq', 'bw', 'pol', 'ifmode', 'atten', 'power']) # standard Python modules # vector quantization # enable raw_input Tab completion # module logger superclass for a data structure and methods Attributes ========== aliases - (dict) data keys to replace those in original data channel - (dict) signal paths, e.g., different freqs and pols data - (dict) original data, e.g., read from file or database DOY - (int) day of year of observation end - (float) UNIX time at the end latitude - (float) from obs logger - (logging.Logger) longitude - (float) from obs name - (str) user assigned, defaults to YEAR/DOY numdata - (int) number of data samples obs - (AE.DSS) observatory session - (Session) set of observations, parent to Observation session_path - (str) directory for session files start - (float) UNIX time at the beginning year - (int) year of observation **Reserved Column Names** These column names are recognized. They are also the keys for attribute ``data``. These quantities must be present in some form:: unixtime (float) UNIX time in sec chan_name (str) channel name integr (float) integration (exposure) in sec azel (float,float) azimuth and elevation in decimal deg power (float) power level if only a single channel Optional:: diode (float) 0 or power in K (integers OK) level (float) (unidentified -- in ``tlog`` table) cryotemp (float) cryostat temp in K windspeed (float) km/hr winddir (float) deg ambtemp (float) deg C pressure (float) mbar Columns to be computed:: mpldatenum (float) matplotlib ``datenum`` Alternative for ``power``:: tsys (float) system temperature (calibrated power) top (float) alternative for ``tsys`` (used in DSN) vfc_counts (int) VFC counts (rate times ``integr``) Any column with a name which is not a reserved name is assumed to be power-like data from the channel with that name, unless that name is in a list provided to the argument ``ignore`` in the method ``get_data_channels`` of the class ``DataGetterMixin``. Alternative for ``unixtime``:: year (int) year of observation doy (int) day of year utc (str) HH:MM:SS timestr (str) something like 2020/06/14/14:22:21.00 Alternative for ``chan_name``:: chan (int) index in receiver channel names Alternative for ``azel``:: radec (float,float) precessed right ascension in decimal hours and precessed declination in decimal deg radec1950 (float,float) mean right ascension in decimal hours and mean declination in decimal deg at epoch radec2000 (float,float) mean right ascension in decimal hours and mean declination at epoch in decimal deg az (float) azimuth in decimal deg el (float) elevation in decimal deg ra (float) precessed right ascension in decimal hours dec (float) precessed declination in decimal deg ra1950 (float) mean right ascension in decimal hours at epoch dec1950 (float) mean declination in decimal deg at epoch ra2000 (float) mean right ascension in decimal hours at epoch dec2000 (float) mean declination in decimal deg at epoch Notes ===== * The ``data`` structure is a dict. * The value of a ``data`` item is either a numpy array or a object like ``float``, ``int``, or ``str``. * The keys have reserved words defined above and will be lowercase. * Items with other keys may be added, typically by a child class. * Coordinates shall be in pairs, `e.g. ``azel``, ``radec``. (This way you never get one without the other.) Create a base Observation object. This is not meant to be initialized by itself. A subclass generally determines how data are read in. However, method ``initialize()`` provides a basic data read capability using ``numpy.genfromtxt()`` and creates the object's data structure. Args: parent (Session): session to which this observation belongs name (str): an identifier; default is station ID + "obs" dss (int): station number date (str): "YEAR/DOY" project (str): directory under /usr/local/projects # observatory must be specified # deg # deg # give the object a name # the observation was part of some project # the observation was done on some date # accomodate subclass arguments # what I really want to do here is see if this was called by a subclass, # in which case I do not try to get the channel info until this # initialization has finished. # #if hasattr(self, "get_data_channels"): # channels = self, get_data_channels() # self.make_channels(channels) #else: # self.logger.info("__init__: initialize() may now be called") Checks for presence of coordinates in pairs or singles @param longlat : "azel", or "radec", or "radecEPOC" @type longlat : str # 'az' or 'ra' # has epoch # date of observation Checks for separate coordinates and splits if coord pairs Args: data (dict): attribute ``data`` longlat (str): "azel", or "radec", or "radecEPOC" # coords need to be computed from other coords Converts a sequence of alternating real/imag samples to complex @param rawdata : alternating real and imaginary bytes @type rawdata : numpy array of signed int8 @return: numpy array of complex Converts a complex spectrum array and returns two reals with USB and LSB This applies a Hilbert transform to the complex data. Class for a signal path Notes ===== The properties can be accessed as if the class were a dict. Arguments ========= freq:float or int: center frequency in MHz bw:float or int: bandwidth in MHz pol:str: polarization code Class for getting data from a CSV file. Get the data and make a data structure for the observations. This is not included by default in ``__init__()`` to keep it simple for subclasses. Args: filename (str): name only, required; the path is provided delimiter (str): what separates the columns names (bool): the first line has column names skip_header (int) : number of rows to skip # get the data # get the signal columns and names # create Channel objects for the signal properties # create the data structure # compute the offsets from the source center for each data point Opens and reads a data file This is used by ``Malargue`` (one data files) and ``GAVRT`` (one data file for each signal). Args: filename (str): text data file name delimiter (str): separator between columns (default: whitespace) names (bool): file row has column names (default: True) skip_header (int): number of rows to skip at beginning of file Returns: ndarray: Gets or sets the names of the signal columns Column names are separated into metadata and signals. Names in ``ignore`` re ignored. Names in ``aliases`` are replaced. Args: data (ndarray): data read from text file ignore (list of str): columns to ignore; default None Returns: (list of str, list of str): metadata, signals # we use only lower case names Takes a text table with headers and converts it into a numpy ``ndarray``. That means that a column can be extracted using `data[label]`. Args ==== data: (ndarray) the data from the text file metadata: (list of str) the column names for metadata signals: (list of str) the column names for power-like data # get the known columns: #self.logger.debug("make_data_struct: using aliases: %s", self.aliases) # get columns that are not metadata; each has power for a channel #self.logger.debug("make_data_struct: for signal: %s", signal) #if signal in self.aliases.items(): # get the key in 'data' which matches 'value' in 'aliases' # power = data[next(key for key, value in self.aliases.items() # if value == signal)][idx] #else: # power = data[signal] #self.channel[signal]['power'] = power # get UNIX time # look up the equivalent of UNIX time in the data table # compute other convenient forms of time # Python datetime.date # matplotlib.dates date number # figure out how to process the time data columns # compute alternate coordinates # azel exists; compute radec if needed; then radec2000 if needed # ra2000 and dec2000 already exist # coordinates exist; compute back to azimuth and elevation # compute observed RA and dec # in here check for 'radec' Assign properties to the channels. The prop keys are "freq", "pol", and "IFtype". Args: props (dict of dicts): signal channel properties. Class for all the data and methods associated with a raster scan map It is expected that the parent class is a subclass of ``Observation`` already by virtue of it being a superclass of subclass which inherits these methods. Attrs: cfg (dict): data (numpy array): from ``Observation`` logger (logging.Logger): replaces ``Observation`` logger name (str): replaces ``Observation`` name session (Session): source (str): step (float): map step size Determine the stepsize of gridded data This assumes xdec and dec data increase incrementally by 'stepsize'. The sequences may repeat in a sawtooth-like series. The number of 'xdec' and 'dec' points is multiple times the gridsize. Arguments: xy (tuple or list) - X-array and Y-array (default Map.data) # get the absolute value of coordinate intervals # form array of X,Y pairs # expect two clusters (default) # tenths of mdeg # return the non-zero intervals converts a map from observed coordinates to map coordinates If ``step`` is not given then the step size will be the average step size in X and the average step in Y. In this case, the effect is to make a regular grid if the original positions were not exact, i.e., pointing error. @param width : map width in deg @type width : float @param height : map height in deg @type height : float @param step : map step size in X and Y in deg @type step : (float, float) @param power_key : dict key of Z-value @type power_key : str # what is the power-like quantity? # take the first that matches # use the original stepsize compute RA and dec from az and el # setup # format time as (YEAR, DOY.fff) # compute compute RA2000 and dec2000 from observed RA and dec # setup # compute compute apparent RA and dec. from J2000 RA and dec # setup # compute compute azimuth and elevation from apparent right ascension and declination # setup # compute Generates a map in coordinates relative to a source If the source is the default, the position of the Sun will be computed for the time of each sample. IT SEEMS LIKE A GOOD IDEA TO DO THIS FOR PLANETS ALSO. This adds elements with keys ``xdec_offset`` and ``dec_offset`` to the attribute ``data``. @param source : source at map center @type source : ephem source instance @param xdec_ofst : relative X-dec position of sample @type xdec_ofst : float @param dec_ofst : relative dec position of sample @type dec_ofst : float @return: (dxdecs,ddecs) in degrees # hours # degrees # right ascension increases to the left, cross-dec to the right # change list to NP.array Map class without special features for GAVRT and Malargue Most of the methods are mixed in to avoid conflicting with subclasses Create a Map object Args: parent (Session): an observing session to which this belongs name (str): an identifier, like a scan number dss (int): station where the data were taken date (str): date of observation as "YEAR/DOY" project (str): project for which this observation was made Class for raw data This is typically the contents of a data file transcribed into a standard format. It may be the data of one Observation object, or data for multiple Observation objects, or contain part of the data for an Observation object. If the data being curated are not in a standard project, and they are not in a standard place, Initialize a metadata container and data directory Args ==== session (Session): required, unless: path (str) : location of raw data files date # for its methods and attributes Base class for an observing session on a given year and DOY Public Attributes:: doy (int) - day of year for session logger (logging.Logger) - logging.Logger object parent (object) - a data reduction session (mult. observ. sessions) year (int) - doy (int) - project (str) - session_dir (str) - path to results from this session A session usually refers to a telescope, date and project. This will normally define a path to the session directory. initialize data reduction for one observing session Args ==== parent: (object) optional class for a data reduction tool date: (str) required, format YEAR/DOY project: (str) required dss (int) required path (str) optional If `path` is given for a non-standard observing files location, and it does not exist, it will be created. Then the Recording and Observation instances must be directed to where the files are. find or make the sessions directory Args: path (str) - explicit path to files Provide the user with menu to select data files. Finding the right data store is complicated as there are many kinds of data files * If datapath is ...RA_data/HDF5/... then the files could be .h5 (Ashish) or .hdf5 (Dean). * If datapath is ...RA_data/FITS/... then the extent is .fits. * If datapath is ...project_data/... then the extent is .pkl * If datapath is ...projects/... (default) then the extent is probably .csv or .dat or .prd. @param datapath : path to top of the tree where the DSS subdirectories are @type datapath : str @param name_pattern : pattern for selecting file names, e.g. source @type name_pattern : str @param load_hdf : use RA_data/HDF5 directory if True @type load_hdf : bool @para auto : take all files found @type auto : bool @return: list of str # Get the data files to be processed # a proper extent with no wildcards # take name pattern as is # only one * at front and back of pattern # no pattern specified. All files. Class for spectra needs a spectrum attribute compute the base 2 number of output channels for the specified resolution Reduce the number of channels in the spectrum. The default option is to reduce the spectrum to a specified number of channels with a default of 1024. The input spectrum is presumed to have 2**N channels so that num_chan/num_chan_in is an integer. If 'spectrum' is an N-D array, then the spectrum axis is given by 'axis' which defaults to 0. 'delta' is negative for lower sideband or reversed double sideband spectra. @param spectrum : spectrum values @type spectrum : list or nparray @param refval : X-axis value at the reference pixel of 'spectrum' @type refval : float @param refpix : reference pixel for 'spectrum' @type refpix : int @param delta : interval between pixels on the X-axis @type delta : float @param num_chan : optional number of channels to be returned (default: 2^10) @type num_chan : int @return: numpy.array Create an array of frequencies for the channels of a backend @param bandwidth : bandwidth @type bandwidth : float @param n_chans : number of channels @type n_chans : int @return: frequency of each channel in same units as bandwidth Returns the channel number where a given frequency is to be found. @param frequency : frequency of channel in sane units as bandwidth. @type frequency : float @param bandwidth : upper limit of spectrometer passband @type bandwidth : float @param n_chans : number of channels in the spectrometer @type n_chans : int @return: channel number (int) Do a Gaussian smoothing of the spectrum and then fit a polynomial. Optionally, the raw and smoothed data and the fitted polynomial can be plotted. Note ==== ``numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)`` Least squares polynomial fit. Fit a polynomial:: p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a vector of coefficients p that minimises the squared error. @param spectrum : input data @type spectrum : list of float @param degree : number of samples to smoothed (Gaussian FWHM) @type degree : int @param poly_order : order of the polynomial @type poly_order : int @param plot : plotting option @type plot : boolean @return: (polynomial_coefficient, smoothed_spectrum) # normalize the spectrum so max is 1 and convert to dB. # do a Gaussian smoothing # deal with the edges by making them equal to the smoothed end points # left end # middle # right end # ------------------------ module functions ------------------------------- Examine a file to guide ``genfromtxt()`` Things to look for:: * Is there a header line with column names? If not, use argument ``names``. * Is the number of names equal to the number of columns? If not:: - use argument ``names`` and ``skip_header=1``, or - use argument ``delimiter`` with a list of column widths and ``skip_header=1``. Returns the directories where data and working files are kept @param project : project code string, e.g., RRL @type project : str @param station : DSN station number @type station : int @param year : year of observation @type year : int @param DOY : day of year of observations @type DOY : int @param datafmt : raw data format @type datafmt : str #logger.debug("get_obs_dirs: type %s for %s, DSS%d, %4d/%03d", # datafmt, project, station, year, DOY) # --------- old stuff to be discarded still needed for now --------------- Provides project, station, year and DOY, asking as needed. It follows one of several possible paths to get to the session:: proj - path through /usr/local/projects/<project> hdf5 - path through /usr/local/RA_data/HDF5 fits - path through /usr/local/RA_data/FITS wvsr - path through /data @param project : optional name as defined in /usr/local/projects @type project : str @param dss : optional station number @type dss : int @param date : optional YYYY/DDD @type date : str @return: project, DSS, year, DOY. # only one trailing / this needs to be completed and tested on crab14 or an auto host # get the project # get the station # special call # get the station # This seems odd but get_directory() needs '/' and int does not # get the date
3.493397
3
PyGRB/__init__.py
HughPaynter/PyGRB
0
8713
""" PyGRB. A GRB light-curve analysis package. """ __version__ = "0.0.5" __author__ = '<NAME>' from . import backend from . import fetch from . import main from . import postprocess from . import preprocess
""" PyGRB. A GRB light-curve analysis package. """ __version__ = "0.0.5" __author__ = '<NAME>' from . import backend from . import fetch from . import main from . import postprocess from . import preprocess
en
0.767558
PyGRB. A GRB light-curve analysis package.
0.715536
1
src/config.py
john9384/PyblogRestAPI
0
8714
import os from dotenv import load_dotenv load_dotenv() class Config: SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URI') MAIL_SERVER = 'smtp.gmail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get('EMAIL_USERNAME') MAIL_PASSWORD = <PASSWORD>('EMAIL_PASSWORD')
import os from dotenv import load_dotenv load_dotenv() class Config: SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URI') MAIL_SERVER = 'smtp.gmail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get('EMAIL_USERNAME') MAIL_PASSWORD = <PASSWORD>('EMAIL_PASSWORD')
none
1
1.83995
2
Context_Guided_RelRep/train.py
Huda-Hakami/Context-Guided-Relation-Embeddings
1
8715
import numpy as np from wordreps import WordReps from algebra import cosine, normalize import tensorflow as tf import random from dataset import DataSet import CGRE_Model from Eval import eval_SemEval import sklearn.preprocessing # ============ End Imports ============ class Training(): def __init__(self): # Compositional relation embeddings (G1) Hyperparameters self.batchSize=100 G1_HL=3 G1_Hdim=WR.dim G1_BN=True #boolean variable T/F for batch normalization on G1 MLP G1_l2_reg=0.001 # L2 regularization coefficient self.G1_pkeep=1.0 # 1.0 means no Dropout applied during training on G1 # LSTM pattern encoding (G2) Hyperparameters G2_HL=1 G2_Hdim=WR.dim self.G2_pkeep=1.0 # 1.0 means no Dropout applied during training on G2 activ='tanh' # Create relational model instance self.RelModel=CGRE_Model.CGRE(activ,self.batchSize) self.RelModel.G1_model(Ea,G1_BN,G1_HL,G1_Hdim,G1_l2_reg) self.RelModel.G2_rnn_model(DS.max_length,G2_HL,G2_Hdim) # -------------------------------------------------- def Train_Model(self): # Hyperparameters epochs=500 hist_loss=[] hist_acc=[] winn_loss=1e7 win_acc=-1 # Discriminator Hyperparameters (for Rel-Rep-alignment model) D_HL=0 D_Hdim=WR.dim D_BN=False # boolean variable T/F for batch normalization on D self.D_pkeep=1.0 # 1.0 means no Dropout applied during training on the Discriminator D D_l2_reg=0.001 # L2 regularization coefficient (to perform l2 regularized cross-entropy) Train = DS.Training_triplesIDs Train_Relations=set([rel for (a,b,p,w,rel) in Train]) Num_of_Classes=len(Train_Relations) print ("Number of relation labels for cross-entropy objective=",Num_of_Classes) # Assign ids to relations Rel2id={} i=0 for rel in Train_Relations: Rel2id[rel]=i i+=1 Train_dic={} for (a,b,p,w,rel) in Train: Train_dic.setdefault((a,b,rel),[]) Train_dic[(a,b,rel)].append((p,w)) Training_patterns=set([p for (_,_,p,_,_) in Train]) print ('Number of training patterns after removing test instances=',len(Training_patterns)) Train_list=list(Train_dic.keys()) print ("Number of training word-pairs (a,b,[(p,w)])",len(Train_list)) self.RelModel.define_loss(D_HL,D_Hdim,D_BN,D_l2_reg,Num_of_Classes) self.RelModel.optimize() self.sess=tf.Session() self.sess.run(tf.global_variables_initializer()) print ("==========================================================================") for epoch in range(epochs): # Randomly shuffle training instances for each epoch random.shuffle(Train_list) # performance every 20 steps if epoch%1==0: Pair_Embeddings=self.Gen_Pair_Embeddings() acc_1,corr_1=eval_SemEval(Pair_Embeddings,'Test') acc_2,corr_2=eval_SemEval(Pair_Embeddings,'Valid') acc_3,corr_3=eval_SemEval(Pair_Embeddings,'All') print ("Epoch:%d, Acc_Test:%f, Acc_Valid:%f, Acc_All:%f, Corr_Test:%f, Corr_Valid:%f, Corr_All:%f"%(epoch,acc_1,acc_2,acc_3,corr_1,corr_2,corr_3)) hist_acc.append(acc_2) # For early stopping if acc_2>win_acc: win_acc=acc_2 self.Save_Trained_Model() print ("Parameters and Pair-Embeddings are changed...") best_epoch=epoch patient_cnt=0 else: patient_cnt+=1 if patient_cnt>10: print ("early stopping ... epoch number %d"%epoch) print ("Winner acc:%f at epoch:%d"%(win_acc,best_epoch)) # break # Training for minibatch in next_batch(self.batchSize,Train_list): a_ids,b_ids,labels=shred_tuples(minibatch) Train_Y=np.zeros((len(minibatch),Num_of_Classes)) for i,rel in enumerate(labels): rel_id=Rel2id[rel] Train_Y[i,rel_id]=1.0 train_data={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:self.G1_pkeep,\ self.RelModel.is_training:True,self.RelModel.D_pkeep:self.D_pkeep} minibatch_patterns=[Train_dic[(a,b,rel)] for (a,b,rel) in minibatch] max_num_of_patterns,pattern_seq,early_stop,weights=Pattern_Sequences(a_ids,b_ids,minibatch_patterns) train_data[self.RelModel.max_num_of_patterns]=max_num_of_patterns train_data[self.RelModel.patterns_ids]=pattern_seq train_data[self.RelModel.early_stop]=early_stop train_data[self.RelModel.weights]=weights train_data[self.RelModel.G2_pkeep]=self.G2_pkeep # Loss options train_data[self.RelModel.Y_]=Train_Y self.sess.run(self.RelModel.train_step,feed_dict=train_data) # -------------------------------------------------- def Save_Trained_Model(self): Pair_Embeddings_dic=self.Gen_Pair_Embeddings() np.save("res/Pair_Embeddings.npy",Pair_Embeddings_dic) # -------------------------------------------------- def Gen_Pair_Embeddings(self): word_pairs_ids=[(DS.word2id[a],DS.word2id[b]) for (a,b) in DS.Test_Pairs] a_ids=[t[0] for t in word_pairs_ids] b_ids=[t[1] for t in word_pairs_ids] dic={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:1.0,self.RelModel.is_training:False} Pair_Embeddings1=self.sess.run(self.RelModel.Last_G1_output,feed_dict=dic) # Pair_Embeddings1=sklearn.preprocessing.normalize(Pair_Embeddings1,axis=1,norm='l2') #L2 norm of r(a,b) a_ids=[t[1] for t in word_pairs_ids] b_ids=[t[0] for t in word_pairs_ids] dic={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:1.0,self.RelModel.is_training:False} Pair_Embeddings2=self.sess.run(self.RelModel.Last_G1_output,feed_dict=dic) # Pair_Embeddings2=sklearn.preprocessing.normalize(Pair_Embeddings2,axis=1,norm='l2') #L2 norm of r(b,a) Pair_Embeddings=np.hstack((Pair_Embeddings1,Pair_Embeddings2)) Pair_Embeddings_dic={} for i,(a,b) in enumerate(DS.Test_Pairs): Pair_Embeddings_dic[(a,b)]=Pair_Embeddings[i] return Pair_Embeddings_dic # ============ End of the Evaluation class ============ def next_batch(batchSize,data): # loop over our dataset in mini-batches of size `batchSize` for i in np.arange(0, len(data), batchSize): # yield the current batched data yield data[i:i + batchSize] # ------------------------------------------------------- def shred_tuples(tuples): a_ids=[t[0] for t in tuples] b_ids=[t[1] for t in tuples] labels=[t[2] for t in tuples] return a_ids,b_ids,labels # ------------------------------------------------------- def Pattern_Sequences(a_ids,b_ids,minibatch_patterns): max_num_of_patterns=np.max([len(L) for L in minibatch_patterns]) min_num_of_patterns=np.min([len(L) for L in minibatch_patterns]) # print ("Max num of patterns:",max_num_of_patterns) # print ("Min num of patterns:",min_num_of_patterns) pattern_seq=np.zeros((len(a_ids)*max_num_of_patterns,DS.max_length+2),dtype=int) #+2 is for the targeted two entities a and b early_stop=[0 for i in range(len(a_ids)*max_num_of_patterns)] weights=[0.0 for i in range(len(a_ids)*max_num_of_patterns)] for i in range(len(a_ids)): set_of_patterns=minibatch_patterns[i] for j in range(max_num_of_patterns): if j<len(set_of_patterns): pattern_id,w=set_of_patterns[j][0],set_of_patterns[j][1] pattern=DS.id2Patterns[pattern_id] words=pattern.strip().split(' ') words.insert(0,DS.id2word[a_ids[i]]) words.append(DS.id2word[b_ids[i]]) early_stop[(i*max_num_of_patterns)+j]=len(words) weights[(i*max_num_of_patterns)+j]=w for k,word in enumerate(words): pattern_seq[(i*max_num_of_patterns)+j,k]=DS.word2id[word] return max_num_of_patterns,pattern_seq,early_stop,weights # ----------------------------------------------------------- if __name__=="__main__": ''' Word Embeddings ''' pretrained_glove_300=("../glove.6B.300d.zip","glove",300) WR=WordReps() norm=1 standardise=0 WR.Read_Embeddings_zip_file(pretrained_glove_300,norm,standardise) WR.vects['<PAD>']=np.zeros(WR.dim) # WR.vects['X']=np.random.rand(WR.dim) # WR.vects['Y']=np.random.rand(WR.dim) WR.vects['X']=np.random.normal(size=(WR.dim)).astype('float32') WR.vects['Y']=np.random.normal(size=(WR.dim)).astype('float32') ''' Dataset ''' corpus='Wikipedia_English' Train_dataset=('DiffVec',"DiffVec_Pairs") Test_dataset=('SemEval',"SemEval_Pairs.txt") labels_type='proxy' Reverse_pairs=True DS=DataSet(corpus,Train_dataset,Test_dataset,labels_type,Reverse_pairs) id2Patterns="../Relational_Patterns/Patterns_Xmid5Y" Patterns_per_pair="../Relational_Patterns/Patterns_Xmid5Y_PerPair" DS.Retrieve_Patterns(id2Patterns,Patterns_per_pair) Ea=DS.Generate_Embedding_Matrix(WR) ''' Training & Evaluation ''' Eval=Training() Eval.Train_Model()
import numpy as np from wordreps import WordReps from algebra import cosine, normalize import tensorflow as tf import random from dataset import DataSet import CGRE_Model from Eval import eval_SemEval import sklearn.preprocessing # ============ End Imports ============ class Training(): def __init__(self): # Compositional relation embeddings (G1) Hyperparameters self.batchSize=100 G1_HL=3 G1_Hdim=WR.dim G1_BN=True #boolean variable T/F for batch normalization on G1 MLP G1_l2_reg=0.001 # L2 regularization coefficient self.G1_pkeep=1.0 # 1.0 means no Dropout applied during training on G1 # LSTM pattern encoding (G2) Hyperparameters G2_HL=1 G2_Hdim=WR.dim self.G2_pkeep=1.0 # 1.0 means no Dropout applied during training on G2 activ='tanh' # Create relational model instance self.RelModel=CGRE_Model.CGRE(activ,self.batchSize) self.RelModel.G1_model(Ea,G1_BN,G1_HL,G1_Hdim,G1_l2_reg) self.RelModel.G2_rnn_model(DS.max_length,G2_HL,G2_Hdim) # -------------------------------------------------- def Train_Model(self): # Hyperparameters epochs=500 hist_loss=[] hist_acc=[] winn_loss=1e7 win_acc=-1 # Discriminator Hyperparameters (for Rel-Rep-alignment model) D_HL=0 D_Hdim=WR.dim D_BN=False # boolean variable T/F for batch normalization on D self.D_pkeep=1.0 # 1.0 means no Dropout applied during training on the Discriminator D D_l2_reg=0.001 # L2 regularization coefficient (to perform l2 regularized cross-entropy) Train = DS.Training_triplesIDs Train_Relations=set([rel for (a,b,p,w,rel) in Train]) Num_of_Classes=len(Train_Relations) print ("Number of relation labels for cross-entropy objective=",Num_of_Classes) # Assign ids to relations Rel2id={} i=0 for rel in Train_Relations: Rel2id[rel]=i i+=1 Train_dic={} for (a,b,p,w,rel) in Train: Train_dic.setdefault((a,b,rel),[]) Train_dic[(a,b,rel)].append((p,w)) Training_patterns=set([p for (_,_,p,_,_) in Train]) print ('Number of training patterns after removing test instances=',len(Training_patterns)) Train_list=list(Train_dic.keys()) print ("Number of training word-pairs (a,b,[(p,w)])",len(Train_list)) self.RelModel.define_loss(D_HL,D_Hdim,D_BN,D_l2_reg,Num_of_Classes) self.RelModel.optimize() self.sess=tf.Session() self.sess.run(tf.global_variables_initializer()) print ("==========================================================================") for epoch in range(epochs): # Randomly shuffle training instances for each epoch random.shuffle(Train_list) # performance every 20 steps if epoch%1==0: Pair_Embeddings=self.Gen_Pair_Embeddings() acc_1,corr_1=eval_SemEval(Pair_Embeddings,'Test') acc_2,corr_2=eval_SemEval(Pair_Embeddings,'Valid') acc_3,corr_3=eval_SemEval(Pair_Embeddings,'All') print ("Epoch:%d, Acc_Test:%f, Acc_Valid:%f, Acc_All:%f, Corr_Test:%f, Corr_Valid:%f, Corr_All:%f"%(epoch,acc_1,acc_2,acc_3,corr_1,corr_2,corr_3)) hist_acc.append(acc_2) # For early stopping if acc_2>win_acc: win_acc=acc_2 self.Save_Trained_Model() print ("Parameters and Pair-Embeddings are changed...") best_epoch=epoch patient_cnt=0 else: patient_cnt+=1 if patient_cnt>10: print ("early stopping ... epoch number %d"%epoch) print ("Winner acc:%f at epoch:%d"%(win_acc,best_epoch)) # break # Training for minibatch in next_batch(self.batchSize,Train_list): a_ids,b_ids,labels=shred_tuples(minibatch) Train_Y=np.zeros((len(minibatch),Num_of_Classes)) for i,rel in enumerate(labels): rel_id=Rel2id[rel] Train_Y[i,rel_id]=1.0 train_data={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:self.G1_pkeep,\ self.RelModel.is_training:True,self.RelModel.D_pkeep:self.D_pkeep} minibatch_patterns=[Train_dic[(a,b,rel)] for (a,b,rel) in minibatch] max_num_of_patterns,pattern_seq,early_stop,weights=Pattern_Sequences(a_ids,b_ids,minibatch_patterns) train_data[self.RelModel.max_num_of_patterns]=max_num_of_patterns train_data[self.RelModel.patterns_ids]=pattern_seq train_data[self.RelModel.early_stop]=early_stop train_data[self.RelModel.weights]=weights train_data[self.RelModel.G2_pkeep]=self.G2_pkeep # Loss options train_data[self.RelModel.Y_]=Train_Y self.sess.run(self.RelModel.train_step,feed_dict=train_data) # -------------------------------------------------- def Save_Trained_Model(self): Pair_Embeddings_dic=self.Gen_Pair_Embeddings() np.save("res/Pair_Embeddings.npy",Pair_Embeddings_dic) # -------------------------------------------------- def Gen_Pair_Embeddings(self): word_pairs_ids=[(DS.word2id[a],DS.word2id[b]) for (a,b) in DS.Test_Pairs] a_ids=[t[0] for t in word_pairs_ids] b_ids=[t[1] for t in word_pairs_ids] dic={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:1.0,self.RelModel.is_training:False} Pair_Embeddings1=self.sess.run(self.RelModel.Last_G1_output,feed_dict=dic) # Pair_Embeddings1=sklearn.preprocessing.normalize(Pair_Embeddings1,axis=1,norm='l2') #L2 norm of r(a,b) a_ids=[t[1] for t in word_pairs_ids] b_ids=[t[0] for t in word_pairs_ids] dic={self.RelModel.a_ids:a_ids,self.RelModel.b_ids:b_ids,self.RelModel.G1_pkeep:1.0,self.RelModel.is_training:False} Pair_Embeddings2=self.sess.run(self.RelModel.Last_G1_output,feed_dict=dic) # Pair_Embeddings2=sklearn.preprocessing.normalize(Pair_Embeddings2,axis=1,norm='l2') #L2 norm of r(b,a) Pair_Embeddings=np.hstack((Pair_Embeddings1,Pair_Embeddings2)) Pair_Embeddings_dic={} for i,(a,b) in enumerate(DS.Test_Pairs): Pair_Embeddings_dic[(a,b)]=Pair_Embeddings[i] return Pair_Embeddings_dic # ============ End of the Evaluation class ============ def next_batch(batchSize,data): # loop over our dataset in mini-batches of size `batchSize` for i in np.arange(0, len(data), batchSize): # yield the current batched data yield data[i:i + batchSize] # ------------------------------------------------------- def shred_tuples(tuples): a_ids=[t[0] for t in tuples] b_ids=[t[1] for t in tuples] labels=[t[2] for t in tuples] return a_ids,b_ids,labels # ------------------------------------------------------- def Pattern_Sequences(a_ids,b_ids,minibatch_patterns): max_num_of_patterns=np.max([len(L) for L in minibatch_patterns]) min_num_of_patterns=np.min([len(L) for L in minibatch_patterns]) # print ("Max num of patterns:",max_num_of_patterns) # print ("Min num of patterns:",min_num_of_patterns) pattern_seq=np.zeros((len(a_ids)*max_num_of_patterns,DS.max_length+2),dtype=int) #+2 is for the targeted two entities a and b early_stop=[0 for i in range(len(a_ids)*max_num_of_patterns)] weights=[0.0 for i in range(len(a_ids)*max_num_of_patterns)] for i in range(len(a_ids)): set_of_patterns=minibatch_patterns[i] for j in range(max_num_of_patterns): if j<len(set_of_patterns): pattern_id,w=set_of_patterns[j][0],set_of_patterns[j][1] pattern=DS.id2Patterns[pattern_id] words=pattern.strip().split(' ') words.insert(0,DS.id2word[a_ids[i]]) words.append(DS.id2word[b_ids[i]]) early_stop[(i*max_num_of_patterns)+j]=len(words) weights[(i*max_num_of_patterns)+j]=w for k,word in enumerate(words): pattern_seq[(i*max_num_of_patterns)+j,k]=DS.word2id[word] return max_num_of_patterns,pattern_seq,early_stop,weights # ----------------------------------------------------------- if __name__=="__main__": ''' Word Embeddings ''' pretrained_glove_300=("../glove.6B.300d.zip","glove",300) WR=WordReps() norm=1 standardise=0 WR.Read_Embeddings_zip_file(pretrained_glove_300,norm,standardise) WR.vects['<PAD>']=np.zeros(WR.dim) # WR.vects['X']=np.random.rand(WR.dim) # WR.vects['Y']=np.random.rand(WR.dim) WR.vects['X']=np.random.normal(size=(WR.dim)).astype('float32') WR.vects['Y']=np.random.normal(size=(WR.dim)).astype('float32') ''' Dataset ''' corpus='Wikipedia_English' Train_dataset=('DiffVec',"DiffVec_Pairs") Test_dataset=('SemEval',"SemEval_Pairs.txt") labels_type='proxy' Reverse_pairs=True DS=DataSet(corpus,Train_dataset,Test_dataset,labels_type,Reverse_pairs) id2Patterns="../Relational_Patterns/Patterns_Xmid5Y" Patterns_per_pair="../Relational_Patterns/Patterns_Xmid5Y_PerPair" DS.Retrieve_Patterns(id2Patterns,Patterns_per_pair) Ea=DS.Generate_Embedding_Matrix(WR) ''' Training & Evaluation ''' Eval=Training() Eval.Train_Model()
en
0.62083
# ============ End Imports ============ # Compositional relation embeddings (G1) Hyperparameters #boolean variable T/F for batch normalization on G1 MLP # L2 regularization coefficient # 1.0 means no Dropout applied during training on G1 # LSTM pattern encoding (G2) Hyperparameters # 1.0 means no Dropout applied during training on G2 # Create relational model instance # -------------------------------------------------- # Hyperparameters # Discriminator Hyperparameters (for Rel-Rep-alignment model) # boolean variable T/F for batch normalization on D # 1.0 means no Dropout applied during training on the Discriminator D # L2 regularization coefficient (to perform l2 regularized cross-entropy) # Assign ids to relations # Randomly shuffle training instances for each epoch # performance every 20 steps # For early stopping # break # Training # Loss options # -------------------------------------------------- # -------------------------------------------------- # Pair_Embeddings1=sklearn.preprocessing.normalize(Pair_Embeddings1,axis=1,norm='l2') #L2 norm of r(a,b) # Pair_Embeddings2=sklearn.preprocessing.normalize(Pair_Embeddings2,axis=1,norm='l2') #L2 norm of r(b,a) # ============ End of the Evaluation class ============ # loop over our dataset in mini-batches of size `batchSize` # yield the current batched data # ------------------------------------------------------- # ------------------------------------------------------- # print ("Max num of patterns:",max_num_of_patterns) # print ("Min num of patterns:",min_num_of_patterns) #+2 is for the targeted two entities a and b # ----------------------------------------------------------- Word Embeddings # WR.vects['X']=np.random.rand(WR.dim) # WR.vects['Y']=np.random.rand(WR.dim) Dataset Training & Evaluation
2.436919
2
synch_integrate.py
HerculesJack/grtrans
25
8716
<filename>synch_integrate.py from radtrans_integrate import radtrans_integrate from polsynchemis import polsynchemis import numpy as np import scipy.integrate # calculate synchrotron emissivity for given coefficients def synch_jarho(nu,n,B,T,theta): if ((np.isscalar(nu)==False) & (np.isscalar(n)==True)): n = n + np.zeros(len(nu)) B = B + np.zeros(len(nu)) T = T + np.zeros(len(nu)) theta = theta + np.zeros(len(nu)) e = polsynchemis.polsynchth(nu,n,B,T,theta) j = e[:,:4]; a = e[:,4:8]; rho = e[:,8:] return j,a,rho def run(x,jarr,aarr,rhoarr,sphstokes=-1,atol=1e-8,rtol=1e-6,max_tau=10): if sphstokes==-1: method=0 else: method=3 radtrans_integrate.init_radtrans_integrate_data(method,4,len(x),len(x),max_tau,0.1,atol,rtol,1e-2,100000) Karr = (np.append(aarr,rhoarr,axis=1)) tau = np.append(0.,scipy.integrate.cumtrapz(Karr[:,0],x)) radtrans_integrate.integrate(x[::-1],jarr[:,:],Karr[:,:],tau,4) i = radtrans_integrate.intensity.copy() radtrans_integrate.del_radtrans_integrate_data() return i
<filename>synch_integrate.py from radtrans_integrate import radtrans_integrate from polsynchemis import polsynchemis import numpy as np import scipy.integrate # calculate synchrotron emissivity for given coefficients def synch_jarho(nu,n,B,T,theta): if ((np.isscalar(nu)==False) & (np.isscalar(n)==True)): n = n + np.zeros(len(nu)) B = B + np.zeros(len(nu)) T = T + np.zeros(len(nu)) theta = theta + np.zeros(len(nu)) e = polsynchemis.polsynchth(nu,n,B,T,theta) j = e[:,:4]; a = e[:,4:8]; rho = e[:,8:] return j,a,rho def run(x,jarr,aarr,rhoarr,sphstokes=-1,atol=1e-8,rtol=1e-6,max_tau=10): if sphstokes==-1: method=0 else: method=3 radtrans_integrate.init_radtrans_integrate_data(method,4,len(x),len(x),max_tau,0.1,atol,rtol,1e-2,100000) Karr = (np.append(aarr,rhoarr,axis=1)) tau = np.append(0.,scipy.integrate.cumtrapz(Karr[:,0],x)) radtrans_integrate.integrate(x[::-1],jarr[:,:],Karr[:,:],tau,4) i = radtrans_integrate.intensity.copy() radtrans_integrate.del_radtrans_integrate_data() return i
en
0.650102
# calculate synchrotron emissivity for given coefficients
2.194252
2
actions/lib/Template_Parser.py
pjimmybrcd/campus_ztp_nps
0
8717
<gh_stars>0 """ Copyright 2016 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from jinja2 import Template, Environment, StrictUndefined, UndefinedError, meta class Template_Parser(object): def __init__(self, configuration_template_file, variables={}): ''' Loads the configuration file ''' self.profile = "" self.variables = variables try: with open(configuration_template_file, 'r') as f: self.profile = "".join(line for line in f) except: raise IOError("Template file '%s' not found!", configuration_template_file) def set_variables(self, variables): ''' Sets the variables ''' self.variables = variables def get_required_variables(self): ''' Returns a set of the required variables in the template ''' return meta.find_undeclared_variables(Environment().parse(self.profile)) def get_parsed_lines(self): ''' Returns a set of lines with all variables filed in ''' try: return Template(self.profile, undefined=StrictUndefined).render(self.variables) except UndefinedError as e: raise Exception(e)
""" Copyright 2016 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from jinja2 import Template, Environment, StrictUndefined, UndefinedError, meta class Template_Parser(object): def __init__(self, configuration_template_file, variables={}): ''' Loads the configuration file ''' self.profile = "" self.variables = variables try: with open(configuration_template_file, 'r') as f: self.profile = "".join(line for line in f) except: raise IOError("Template file '%s' not found!", configuration_template_file) def set_variables(self, variables): ''' Sets the variables ''' self.variables = variables def get_required_variables(self): ''' Returns a set of the required variables in the template ''' return meta.find_undeclared_variables(Environment().parse(self.profile)) def get_parsed_lines(self): ''' Returns a set of lines with all variables filed in ''' try: return Template(self.profile, undefined=StrictUndefined).render(self.variables) except UndefinedError as e: raise Exception(e)
en
0.836286
Copyright 2016 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Loads the configuration file Sets the variables Returns a set of the required variables in the template Returns a set of lines with all variables filed in
2.116847
2
lca_writer/data/loader.py
line-mind/lca_writer
1
8718
<reponame>line-mind/lca_writer import os __all__ = ['DATA_FOLDER', 'load_data'] DATA_FOLDER = os.path.dirname(os.path.abspath(__file__)) def load_data(name): """ Loads an Excel form from the data folder with the specified name. Parameters ---------- name : str The name of the form without file extension. """ from ..lca_writer import LCAWriter # to prevent recursive import p = os.path.join(DATA_FOLDER, name + '.xlsx') return LCAWriter(p)
import os __all__ = ['DATA_FOLDER', 'load_data'] DATA_FOLDER = os.path.dirname(os.path.abspath(__file__)) def load_data(name): """ Loads an Excel form from the data folder with the specified name. Parameters ---------- name : str The name of the form without file extension. """ from ..lca_writer import LCAWriter # to prevent recursive import p = os.path.join(DATA_FOLDER, name + '.xlsx') return LCAWriter(p)
en
0.622142
Loads an Excel form from the data folder with the specified name. Parameters ---------- name : str The name of the form without file extension. # to prevent recursive import
2.94347
3
main.py
Dephilia/pipenv-docker-development
0
8719
var = "Docker" print(f"Hello {var} world!")
var = "Docker" print(f"Hello {var} world!")
none
1
1.312097
1
app/v1/utils/mixins.py
pndemo/yummy-recipes-api
0
8720
<gh_stars>0 """ Model mixin classes for auth, category and recipe modules """ from app import db # pylint: disable=C0103 # pylint: disable=E1101 class BaseMixin(object): """ Define the 'BaseModel' mapped to all database tables. """ id = db.Column(db.Integer, primary_key=True, autoincrement=True) def save(self): """Save to database table""" db.session.add(self) db.session.commit() def delete(self): """Delete from database table""" db.session.delete(self) db.session.commit() class TimestampMixin(object): """ Database logging of data manipulation timestamps. """ date_created = db.Column(db.DateTime, default=db.func.current_timestamp()) date_modified = db.Column(db.DateTime, default=db.func.current_timestamp(), \ onupdate=db.func.current_timestamp())
""" Model mixin classes for auth, category and recipe modules """ from app import db # pylint: disable=C0103 # pylint: disable=E1101 class BaseMixin(object): """ Define the 'BaseModel' mapped to all database tables. """ id = db.Column(db.Integer, primary_key=True, autoincrement=True) def save(self): """Save to database table""" db.session.add(self) db.session.commit() def delete(self): """Delete from database table""" db.session.delete(self) db.session.commit() class TimestampMixin(object): """ Database logging of data manipulation timestamps. """ date_created = db.Column(db.DateTime, default=db.func.current_timestamp()) date_modified = db.Column(db.DateTime, default=db.func.current_timestamp(), \ onupdate=db.func.current_timestamp())
en
0.629719
Model mixin classes for auth, category and recipe modules # pylint: disable=C0103 # pylint: disable=E1101 Define the 'BaseModel' mapped to all database tables. Save to database table Delete from database table Database logging of data manipulation timestamps.
2.540699
3
apps/dash-port-analytics/app/ui/tab_map_controls.py
JeroenvdSande/dash-sample-apps
2,332
8721
<reponame>JeroenvdSande/dash-sample-apps import dash_core_components as dcc import dash_html_components as html from config import strings def make_tab_port_map_controls( port_arr: list, port_val: str, vessel_types_arr: list, vessel_type_val: str, year_arr: list, year_val: int, month_arr: list, month_val: int, ) -> html.Div: """ Returns a HTML div of user controls found on top of the map tab. :param port_arr: list, all possible ports :param port_val: str, current port value :param vessel_types_arr: list, all possible vessel types :param vessel_type_val: str, current vessel type value :param year_arr: list, all possible years :param year_val: str, current year value :param month_arr: list, all possible months :param month_val: str, current month value :return: HTML div """ return html.Div( className="tab-port-map-controls", children=[ html.Div( className="tab-port-map-single-control-container area-a", children=[ html.Label( className="control-label", children=[strings.LABEL_PORT] ), dcc.Dropdown( id="port-map-dropdown-port", clearable=False, options=[{"label": port, "value": port} for port in port_arr], value=port_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-b"), html.Div( className="tab-port-map-single-control-container area-c", children=[ html.Label( className="control-label", children=[strings.LABEL_VESSEL] ), dcc.Dropdown( id="port-map-dropdown-vessel-type", clearable=False, options=[ {"label": vessel_type, "value": vessel_type} for vessel_type in vessel_types_arr ], value=vessel_type_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-d"), html.Div( className="tab-port-map-single-control-container date-grid area-e", children=[ html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_YEAR] ), dcc.Dropdown( id="port-map-dropdown-year", clearable=False, options=[ {"label": year, "value": year} for year in year_arr ], value=year_val, ), ], ), html.Div( className="tab-port-map-single-control-separator smaller-line" ), html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_MONTH], ), dcc.Dropdown( id="port-map-dropdown-month", clearable=False, options=[ {"label": month, "value": month} for month in month_arr ], value=month_val, ), ], ), ], ), ], )
import dash_core_components as dcc import dash_html_components as html from config import strings def make_tab_port_map_controls( port_arr: list, port_val: str, vessel_types_arr: list, vessel_type_val: str, year_arr: list, year_val: int, month_arr: list, month_val: int, ) -> html.Div: """ Returns a HTML div of user controls found on top of the map tab. :param port_arr: list, all possible ports :param port_val: str, current port value :param vessel_types_arr: list, all possible vessel types :param vessel_type_val: str, current vessel type value :param year_arr: list, all possible years :param year_val: str, current year value :param month_arr: list, all possible months :param month_val: str, current month value :return: HTML div """ return html.Div( className="tab-port-map-controls", children=[ html.Div( className="tab-port-map-single-control-container area-a", children=[ html.Label( className="control-label", children=[strings.LABEL_PORT] ), dcc.Dropdown( id="port-map-dropdown-port", clearable=False, options=[{"label": port, "value": port} for port in port_arr], value=port_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-b"), html.Div( className="tab-port-map-single-control-container area-c", children=[ html.Label( className="control-label", children=[strings.LABEL_VESSEL] ), dcc.Dropdown( id="port-map-dropdown-vessel-type", clearable=False, options=[ {"label": vessel_type, "value": vessel_type} for vessel_type in vessel_types_arr ], value=vessel_type_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-d"), html.Div( className="tab-port-map-single-control-container date-grid area-e", children=[ html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_YEAR] ), dcc.Dropdown( id="port-map-dropdown-year", clearable=False, options=[ {"label": year, "value": year} for year in year_arr ], value=year_val, ), ], ), html.Div( className="tab-port-map-single-control-separator smaller-line" ), html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_MONTH], ), dcc.Dropdown( id="port-map-dropdown-month", clearable=False, options=[ {"label": month, "value": month} for month in month_arr ], value=month_val, ), ], ), ], ), ], )
en
0.404029
Returns a HTML div of user controls found on top of the map tab. :param port_arr: list, all possible ports :param port_val: str, current port value :param vessel_types_arr: list, all possible vessel types :param vessel_type_val: str, current vessel type value :param year_arr: list, all possible years :param year_val: str, current year value :param month_arr: list, all possible months :param month_val: str, current month value :return: HTML div
2.771475
3
subs2srs/gui/state.py
TFarla/subs2srs-cross-platform
3
8722
<filename>subs2srs/gui/state.py from typing import List from subs2srs.core.preview_item import PreviewItem class StatePreview: items: List[PreviewItem] = [] inactive_items = set() def __init__(self): super().__init__() self.items = [] self.inactive_items = set() self.audio = None class State: deck_name = None sub1_file = "/Users/thomasfarla/Documents/subs2srs-cross-platform/tests/fixtures/in.srt" sub2_file = None video_file = "/Users/thomasfarla/Documents/subs2srs-cross-platform/tests/fixtures/in.mkv" output_file = "/Users/thomasfarla/Documents/test-subs" preview = StatePreview()
<filename>subs2srs/gui/state.py from typing import List from subs2srs.core.preview_item import PreviewItem class StatePreview: items: List[PreviewItem] = [] inactive_items = set() def __init__(self): super().__init__() self.items = [] self.inactive_items = set() self.audio = None class State: deck_name = None sub1_file = "/Users/thomasfarla/Documents/subs2srs-cross-platform/tests/fixtures/in.srt" sub2_file = None video_file = "/Users/thomasfarla/Documents/subs2srs-cross-platform/tests/fixtures/in.mkv" output_file = "/Users/thomasfarla/Documents/test-subs" preview = StatePreview()
none
1
2.324013
2
sync_ends/main.py
nirav1997/sync_ends
0
8723
<reponame>nirav1997/sync_ends import sys sys.path.append("..") from src.sync_ends_service import SyncEnd from src.parser import Parser def main(): # get the arguments from commadn line parser = Parser() collection_name, api_key, trigger_interval, slack_channel, slack_token = parser.get_argumenets() sync_end = SyncEnd(api_key, collection_name, trigger_interval, slack_channel, slack_token) try: sync_end.start() except Exception as e: print(e) if __name__ == "__main__": main()
import sys sys.path.append("..") from src.sync_ends_service import SyncEnd from src.parser import Parser def main(): # get the arguments from commadn line parser = Parser() collection_name, api_key, trigger_interval, slack_channel, slack_token = parser.get_argumenets() sync_end = SyncEnd(api_key, collection_name, trigger_interval, slack_channel, slack_token) try: sync_end.start() except Exception as e: print(e) if __name__ == "__main__": main()
en
0.637058
# get the arguments from commadn line
2.144802
2
graphql_compiler/compiler/workarounds/orientdb_query_execution.py
0xflotus/graphql-compiler
0
8724
# Copyright 2018-present Kensho Technologies, LLC. """Workarounds for OrientDB scheduler issue that causes poor query planning for certain queries. For purposes of query planning, the OrientDB query planner ignores "where:" clauses that hit indexes but do not use the "=" operator. For example, "CONTAINS" can be used to check that a field covered by an index is in a specified list of values, and can therefore be covered by an index, but OrientDB will ignore this. When no equality ("=") checks on indexed columns are present, OrientDB will generate a query plan that starts execution at the class with lowest cardinality, which can lead to excessive numbers of scanned and discarded records. Assuming the query planner creates a query plan where a location with CONTAINS is the first in the execution order, the execution system will apply indexes to speed up this operation. Therefore, it's sufficient to trick the query planner into always creating such a query plan, even though it thinks indexes cannot be used in the query. Valid query execution start points for the OrientDB query planner must satisfy the following: - Must not be "optional: true". - Must not have a "while:" clause nor follow a location that has one. - Must have a "class:" defined. This class is used for cardinality estimation, and to look for available indexes that may cover any "where:" clause that may be present. The optimizations in this file improve performance by enabling execution start points according to the following assumptions: 1. Start points with "where:" clauses that reference only local fields (i.e. not tagged values from other query locations) are always better than start points without a "where:". This is because the filter will have to be applied one way or the other, so we might as well apply it early. 2. If no such start points are available, we'd like to make available as many start points as possible, since we'd like OrientDB to start at the start point whose class has the lowest possible cardinality. The process of applying the optimizations is as follows: - Exclude and ignore all query steps that are inside a fold, optional, or recursion scope, or have a "where:" clause that references a non-local (i.e. tagged) field. - Find all remaining query steps with "where:" clauses that reference only local fields. - If any are found, we guide our actions from assumption 1 above: - Ensure they have a defined "class:" -- i.e. the OrientDB scheduler will consider them valid start points. - Then, prune all other query steps (ones without such "where:" clauses) by removing their "class:" clause, making them invalid as query start points for OrientDB's scheduler. - If none are found, we guide our actions from assumption 2 above: - Ensure that all query points not inside fold, optional, or recursion scope contain a "class:" clause. That increases the number of available query start points, so OrientDB can choose the start point of lowest cardinality. """ from ..blocks import CoerceType, QueryRoot, Recurse, Traverse from ..expressions import ContextField, ContextFieldExistence from ..helpers import get_only_element_from_collection from ..ir_lowering_match.utils import convert_coerce_type_and_add_to_where_block def _is_local_filter(filter_block): """Return True if the Filter block references no non-local fields, and False otherwise.""" # We need the "result" value of this function to be mutated within the "visitor_fn". # Since we support both Python 2 and Python 3, we can't use the "nonlocal" keyword here: # https://www.python.org/dev/peps/pep-3104/ # Instead, we use a dict to store the value we need mutated, since the "visitor_fn" # can mutate state in the parent scope, but not rebind variables in it without "nonlocal". # TODO(predrag): Revisit this if we drop support for Python 2. result = { 'is_local_filter': True } filter_predicate = filter_block.predicate def visitor_fn(expression): """Expression visitor function that looks for uses of non-local fields.""" non_local_expression_types = (ContextField, ContextFieldExistence) if isinstance(expression, non_local_expression_types): result['is_local_filter'] = False # Don't change the expression. return expression filter_predicate.visit_and_update(visitor_fn) return result['is_local_filter'] def _classify_query_locations(match_query): """Classify query locations into three groups: preferred, eligible, ineligible. - Ineligible locations are ones that cannot be the starting point of query execution. These include locations within recursions, locations that are the target of an optional traversal, and locations with an associated "where:" clause with non-local filter. - Preferred locations are ones that are eligible to be the starting point, and also have an associated "where:" clause that references no non-local fields -- only local fields, literals, and variables. - Eligible locations are all locations that do not fall into either of these two categories. Args: match_query: MatchQuery object describing the query being analyzed for optimization Returns: tuple (preferred, eligible, ineligible) where each element is a set of Location objects. The three sets are disjoint. """ preferred_locations = set() eligible_locations = set() ineligible_locations = set() # Any query must have at least one traversal with at least one step. # The first step in this traversal must be a QueryRoot. first_match_step = match_query.match_traversals[0][0] if not isinstance(first_match_step.root_block, QueryRoot): raise AssertionError(u'First step of first traversal unexpectedly was not QueryRoot: ' u'{} {}'.format(first_match_step, match_query)) # The first step in the first traversal cannot possibly be inside an optional, recursion, # or fold. Its location is always an eligible start location for a query. # We need to determine whether it is merely eligible, or actually a preferred location. if first_match_step.where_block is not None: if _is_local_filter(first_match_step.where_block): preferred_locations.add(first_match_step.as_block.location) else: # TODO(predrag): Fix once we have a proper fix for tag-and-filter in the same scope. # Either the locally-scoped tag will have to generate a LocalField # instead of a ContextField, or we'll have to rework the local filter # detection code in this module. raise AssertionError(u'The first step of the first traversal somehow had a non-local ' u'filter. This should not be possible, since there is nowhere ' u'for the tagged value to have come from. Values: {} {}' .format(first_match_step, match_query)) else: eligible_locations.add(first_match_step.as_block.location) # This loop will repeat the analysis of the first step of the first traversal. # QueryRoots other than the first are required to always be at a location whose status # (preferred / eligible / ineligible) is already known. Since we already processed # the first QueryRoot above, the rest of the loop can assume all QueryRoots are like that. for current_traversal in match_query.match_traversals: for match_step in current_traversal: current_step_location = match_step.as_block.location if isinstance(match_step.root_block, QueryRoot): already_encountered_location = any(( current_step_location in preferred_locations, current_step_location in eligible_locations, current_step_location in ineligible_locations, )) if not already_encountered_location: raise AssertionError(u'Unexpectedly encountered a location in QueryRoot whose ' u'status has not been determined: {} {} {}' .format(current_step_location, match_step, match_query)) at_eligible_or_preferred_location = ( current_step_location in preferred_locations or current_step_location in eligible_locations) # This location has already been encountered and processed. # Other than setting the "at_eligible_or_preferred_location" state for the sake of # the following MATCH steps, there is nothing further to be done. continue elif isinstance(match_step.root_block, Recurse): # All Recurse blocks cause locations within to be ineligible. at_eligible_or_preferred_location = False elif isinstance(match_step.root_block, Traverse): # Optional Traverse blocks cause locations within to be ineligible. # Non-optional Traverse blocks do not change the eligibility of locations within: # if the pre-Traverse location was eligible, so will the location within, # and if it was not eligible, neither will the location within. if match_step.root_block.optional: at_eligible_or_preferred_location = False else: raise AssertionError(u'Unreachable condition reached: {} {} {}' .format(match_step.root_block, match_step, match_query)) if not at_eligible_or_preferred_location: ineligible_locations.add(current_step_location) elif match_step.where_block is not None: if _is_local_filter(match_step.where_block): # This location has a local filter, and is not otherwise ineligible (it's not # in a recursion etc.). Therefore, it's a preferred query start location. preferred_locations.add(current_step_location) else: # Locations with non-local filters are never eligible locations, since they # depend on another location being executed before them. ineligible_locations.add(current_step_location) else: # No local filtering (i.e. not preferred), but also not ineligible. Eligible it is. eligible_locations.add(current_step_location) return preferred_locations, eligible_locations, ineligible_locations def _calculate_type_bound_at_step(match_step): """Return the GraphQL type bound at the given step, or None if no bound is given.""" current_type_bounds = [] if isinstance(match_step.root_block, QueryRoot): # The QueryRoot start class is a type bound. current_type_bounds.extend(match_step.root_block.start_class) if match_step.coerce_type_block is not None: # The CoerceType target class is also a type bound. current_type_bounds.extend(match_step.coerce_type_block.target_class) if current_type_bounds: # A type bound exists. Assert that there is exactly one bound, defined in precisely one way. return get_only_element_from_collection(current_type_bounds) else: # No type bound exists at this MATCH step. return None def _assert_type_bounds_are_not_conflicting(current_type_bound, previous_type_bound, location, match_query): """Ensure that the two bounds either are an exact match, or one of them is None.""" if all((current_type_bound is not None, previous_type_bound is not None, current_type_bound != previous_type_bound)): raise AssertionError( u'Conflicting type bounds calculated at location {}: {} vs {} ' u'for query {}'.format(location, previous_type_bound, current_type_bound, match_query)) def _expose_only_preferred_locations(match_query, location_types, coerced_locations, preferred_locations, eligible_locations): """Return a MATCH query where only preferred locations are valid as query start locations.""" preferred_location_types = dict() eligible_location_types = dict() new_match_traversals = [] for current_traversal in match_query.match_traversals: new_traversal = [] for match_step in current_traversal: new_step = match_step current_step_location = match_step.as_block.location if current_step_location in preferred_locations: # This location is preferred. We have to make sure that at least one occurrence # of this location in the MATCH query has an associated "class:" clause, # which would be generated by a type bound at the corresponding MATCH step. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = preferred_location_types.get(current_step_location, None) if previous_type_bound is not None: # The location is already valid. If so, make sure that this step either does # not have any type bounds (e.g. via QueryRoot or CoerceType blocks), # or has type bounds that match the previously-decided type bound. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) else: # The location is not yet known to be valid. If it does not have # a type bound in this MATCH step, add a type coercion to the type # registered in "location_types". if current_type_bound is None: current_type_bound = location_types[current_step_location].name new_step = match_step._replace( coerce_type_block=CoerceType({current_type_bound})) preferred_location_types[current_step_location] = current_type_bound elif current_step_location in eligible_locations: # This location is eligible, but not preferred. We have not make sure # none of the MATCH steps with this location have type bounds, and therefore # will not produce a corresponding "class:" clause in the resulting MATCH query. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = eligible_location_types.get(current_step_location, None) if current_type_bound is not None: # There is a type bound here that we need to neutralize. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. eligible_location_types[current_step_location] = current_type_bound if (current_step_location not in coerced_locations or previous_type_bound is not None): # The type bound here is already implied by the GraphQL query structure, # or has already been applied at a previous occurrence of this location. # We can simply delete the QueryRoot / CoerceType blocks that impart it. if isinstance(match_step.root_block, QueryRoot): new_root_block = None else: new_root_block = match_step.root_block new_step = match_step._replace( root_block=new_root_block, coerce_type_block=None) else: # The type bound here is not already implied by the GraphQL query structure. # This should only be possible via a CoerceType block. Lower this CoerceType # block into a Filter with INSTANCEOF to ensure the resulting query has the # same semantics, while making the location invalid as a query start point. if (isinstance(match_step.root_block, QueryRoot) or match_step.coerce_type_block is None): raise AssertionError(u'Unexpected MATCH step applying a type bound not ' u'already implied by the GraphQL query structure: ' u'{} {}'.format(match_step, match_query)) new_where_block = convert_coerce_type_and_add_to_where_block( match_step.coerce_type_block, match_step.where_block) new_step = match_step._replace( coerce_type_block=None, where_block=new_where_block) else: # There is no type bound that OrientDB can find defined at this location. # No action is necessary. pass else: # This location is neither preferred nor eligible. # No action is necessary at this location. pass new_traversal.append(new_step) new_match_traversals.append(new_traversal) return match_query._replace(match_traversals=new_match_traversals) def _expose_all_eligible_locations(match_query, location_types, eligible_locations): """Return a MATCH query where all eligible locations are valid as query start locations.""" eligible_location_types = dict() new_match_traversals = [] for current_traversal in match_query.match_traversals: new_traversal = [] for match_step in current_traversal: new_step = match_step current_step_location = match_step.as_block.location if current_step_location in eligible_locations: # This location is eligible. We need to make sure it has an associated type bound, # so that it produces a "class:" clause that will make it a valid query start # location. It either already has such a type bound, or we can use the type # implied by the GraphQL query structure to add one. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = eligible_location_types.get(current_step_location, None) if current_type_bound is None: current_type_bound = location_types[current_step_location].name new_coerce_type_block = CoerceType({current_type_bound}) new_step = match_step._replace(coerce_type_block=new_coerce_type_block) else: # There is a type bound here. We simply ensure that the bound is not conflicting # with any other type bound at a different MATCH step with the same location. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. eligible_location_types[current_step_location] = current_type_bound else: # This function may only be called if there are no preferred locations. Since this # location cannot be preferred, and is not eligible, it must be ineligible. # No action is necessary in this case. pass new_traversal.append(new_step) new_match_traversals.append(new_traversal) return match_query._replace(match_traversals=new_match_traversals) def expose_ideal_query_execution_start_points(compound_match_query, location_types, coerced_locations): """Ensure that OrientDB only considers desirable query start points in query planning.""" new_queries = [] for match_query in compound_match_query.match_queries: location_classification = _classify_query_locations(match_query) preferred_locations, eligible_locations, _ = location_classification if preferred_locations: # Convert all eligible locations into non-eligible ones, by removing # their "class:" clause. The "class:" clause is provided either by having # a QueryRoot block or a CoerceType block in the MatchStep corresponding # to the location. We remove it by converting the class check into # an "INSTANCEOF" Filter block, which OrientDB is unable to optimize away. new_query = _expose_only_preferred_locations( match_query, location_types, coerced_locations, preferred_locations, eligible_locations) elif eligible_locations: # Make sure that all eligible locations have a "class:" clause by adding # a CoerceType block that is a no-op as guaranteed by the schema. This merely # ensures that OrientDB is able to use each of these locations as a query start point, # and will choose the one whose class is of lowest cardinality. new_query = _expose_all_eligible_locations( match_query, location_types, eligible_locations) else: raise AssertionError(u'This query has no preferred or eligible query start locations. ' u'This is almost certainly a bug: {}'.format(match_query)) new_queries.append(new_query) return compound_match_query._replace(match_queries=new_queries)
# Copyright 2018-present Kensho Technologies, LLC. """Workarounds for OrientDB scheduler issue that causes poor query planning for certain queries. For purposes of query planning, the OrientDB query planner ignores "where:" clauses that hit indexes but do not use the "=" operator. For example, "CONTAINS" can be used to check that a field covered by an index is in a specified list of values, and can therefore be covered by an index, but OrientDB will ignore this. When no equality ("=") checks on indexed columns are present, OrientDB will generate a query plan that starts execution at the class with lowest cardinality, which can lead to excessive numbers of scanned and discarded records. Assuming the query planner creates a query plan where a location with CONTAINS is the first in the execution order, the execution system will apply indexes to speed up this operation. Therefore, it's sufficient to trick the query planner into always creating such a query plan, even though it thinks indexes cannot be used in the query. Valid query execution start points for the OrientDB query planner must satisfy the following: - Must not be "optional: true". - Must not have a "while:" clause nor follow a location that has one. - Must have a "class:" defined. This class is used for cardinality estimation, and to look for available indexes that may cover any "where:" clause that may be present. The optimizations in this file improve performance by enabling execution start points according to the following assumptions: 1. Start points with "where:" clauses that reference only local fields (i.e. not tagged values from other query locations) are always better than start points without a "where:". This is because the filter will have to be applied one way or the other, so we might as well apply it early. 2. If no such start points are available, we'd like to make available as many start points as possible, since we'd like OrientDB to start at the start point whose class has the lowest possible cardinality. The process of applying the optimizations is as follows: - Exclude and ignore all query steps that are inside a fold, optional, or recursion scope, or have a "where:" clause that references a non-local (i.e. tagged) field. - Find all remaining query steps with "where:" clauses that reference only local fields. - If any are found, we guide our actions from assumption 1 above: - Ensure they have a defined "class:" -- i.e. the OrientDB scheduler will consider them valid start points. - Then, prune all other query steps (ones without such "where:" clauses) by removing their "class:" clause, making them invalid as query start points for OrientDB's scheduler. - If none are found, we guide our actions from assumption 2 above: - Ensure that all query points not inside fold, optional, or recursion scope contain a "class:" clause. That increases the number of available query start points, so OrientDB can choose the start point of lowest cardinality. """ from ..blocks import CoerceType, QueryRoot, Recurse, Traverse from ..expressions import ContextField, ContextFieldExistence from ..helpers import get_only_element_from_collection from ..ir_lowering_match.utils import convert_coerce_type_and_add_to_where_block def _is_local_filter(filter_block): """Return True if the Filter block references no non-local fields, and False otherwise.""" # We need the "result" value of this function to be mutated within the "visitor_fn". # Since we support both Python 2 and Python 3, we can't use the "nonlocal" keyword here: # https://www.python.org/dev/peps/pep-3104/ # Instead, we use a dict to store the value we need mutated, since the "visitor_fn" # can mutate state in the parent scope, but not rebind variables in it without "nonlocal". # TODO(predrag): Revisit this if we drop support for Python 2. result = { 'is_local_filter': True } filter_predicate = filter_block.predicate def visitor_fn(expression): """Expression visitor function that looks for uses of non-local fields.""" non_local_expression_types = (ContextField, ContextFieldExistence) if isinstance(expression, non_local_expression_types): result['is_local_filter'] = False # Don't change the expression. return expression filter_predicate.visit_and_update(visitor_fn) return result['is_local_filter'] def _classify_query_locations(match_query): """Classify query locations into three groups: preferred, eligible, ineligible. - Ineligible locations are ones that cannot be the starting point of query execution. These include locations within recursions, locations that are the target of an optional traversal, and locations with an associated "where:" clause with non-local filter. - Preferred locations are ones that are eligible to be the starting point, and also have an associated "where:" clause that references no non-local fields -- only local fields, literals, and variables. - Eligible locations are all locations that do not fall into either of these two categories. Args: match_query: MatchQuery object describing the query being analyzed for optimization Returns: tuple (preferred, eligible, ineligible) where each element is a set of Location objects. The three sets are disjoint. """ preferred_locations = set() eligible_locations = set() ineligible_locations = set() # Any query must have at least one traversal with at least one step. # The first step in this traversal must be a QueryRoot. first_match_step = match_query.match_traversals[0][0] if not isinstance(first_match_step.root_block, QueryRoot): raise AssertionError(u'First step of first traversal unexpectedly was not QueryRoot: ' u'{} {}'.format(first_match_step, match_query)) # The first step in the first traversal cannot possibly be inside an optional, recursion, # or fold. Its location is always an eligible start location for a query. # We need to determine whether it is merely eligible, or actually a preferred location. if first_match_step.where_block is not None: if _is_local_filter(first_match_step.where_block): preferred_locations.add(first_match_step.as_block.location) else: # TODO(predrag): Fix once we have a proper fix for tag-and-filter in the same scope. # Either the locally-scoped tag will have to generate a LocalField # instead of a ContextField, or we'll have to rework the local filter # detection code in this module. raise AssertionError(u'The first step of the first traversal somehow had a non-local ' u'filter. This should not be possible, since there is nowhere ' u'for the tagged value to have come from. Values: {} {}' .format(first_match_step, match_query)) else: eligible_locations.add(first_match_step.as_block.location) # This loop will repeat the analysis of the first step of the first traversal. # QueryRoots other than the first are required to always be at a location whose status # (preferred / eligible / ineligible) is already known. Since we already processed # the first QueryRoot above, the rest of the loop can assume all QueryRoots are like that. for current_traversal in match_query.match_traversals: for match_step in current_traversal: current_step_location = match_step.as_block.location if isinstance(match_step.root_block, QueryRoot): already_encountered_location = any(( current_step_location in preferred_locations, current_step_location in eligible_locations, current_step_location in ineligible_locations, )) if not already_encountered_location: raise AssertionError(u'Unexpectedly encountered a location in QueryRoot whose ' u'status has not been determined: {} {} {}' .format(current_step_location, match_step, match_query)) at_eligible_or_preferred_location = ( current_step_location in preferred_locations or current_step_location in eligible_locations) # This location has already been encountered and processed. # Other than setting the "at_eligible_or_preferred_location" state for the sake of # the following MATCH steps, there is nothing further to be done. continue elif isinstance(match_step.root_block, Recurse): # All Recurse blocks cause locations within to be ineligible. at_eligible_or_preferred_location = False elif isinstance(match_step.root_block, Traverse): # Optional Traverse blocks cause locations within to be ineligible. # Non-optional Traverse blocks do not change the eligibility of locations within: # if the pre-Traverse location was eligible, so will the location within, # and if it was not eligible, neither will the location within. if match_step.root_block.optional: at_eligible_or_preferred_location = False else: raise AssertionError(u'Unreachable condition reached: {} {} {}' .format(match_step.root_block, match_step, match_query)) if not at_eligible_or_preferred_location: ineligible_locations.add(current_step_location) elif match_step.where_block is not None: if _is_local_filter(match_step.where_block): # This location has a local filter, and is not otherwise ineligible (it's not # in a recursion etc.). Therefore, it's a preferred query start location. preferred_locations.add(current_step_location) else: # Locations with non-local filters are never eligible locations, since they # depend on another location being executed before them. ineligible_locations.add(current_step_location) else: # No local filtering (i.e. not preferred), but also not ineligible. Eligible it is. eligible_locations.add(current_step_location) return preferred_locations, eligible_locations, ineligible_locations def _calculate_type_bound_at_step(match_step): """Return the GraphQL type bound at the given step, or None if no bound is given.""" current_type_bounds = [] if isinstance(match_step.root_block, QueryRoot): # The QueryRoot start class is a type bound. current_type_bounds.extend(match_step.root_block.start_class) if match_step.coerce_type_block is not None: # The CoerceType target class is also a type bound. current_type_bounds.extend(match_step.coerce_type_block.target_class) if current_type_bounds: # A type bound exists. Assert that there is exactly one bound, defined in precisely one way. return get_only_element_from_collection(current_type_bounds) else: # No type bound exists at this MATCH step. return None def _assert_type_bounds_are_not_conflicting(current_type_bound, previous_type_bound, location, match_query): """Ensure that the two bounds either are an exact match, or one of them is None.""" if all((current_type_bound is not None, previous_type_bound is not None, current_type_bound != previous_type_bound)): raise AssertionError( u'Conflicting type bounds calculated at location {}: {} vs {} ' u'for query {}'.format(location, previous_type_bound, current_type_bound, match_query)) def _expose_only_preferred_locations(match_query, location_types, coerced_locations, preferred_locations, eligible_locations): """Return a MATCH query where only preferred locations are valid as query start locations.""" preferred_location_types = dict() eligible_location_types = dict() new_match_traversals = [] for current_traversal in match_query.match_traversals: new_traversal = [] for match_step in current_traversal: new_step = match_step current_step_location = match_step.as_block.location if current_step_location in preferred_locations: # This location is preferred. We have to make sure that at least one occurrence # of this location in the MATCH query has an associated "class:" clause, # which would be generated by a type bound at the corresponding MATCH step. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = preferred_location_types.get(current_step_location, None) if previous_type_bound is not None: # The location is already valid. If so, make sure that this step either does # not have any type bounds (e.g. via QueryRoot or CoerceType blocks), # or has type bounds that match the previously-decided type bound. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) else: # The location is not yet known to be valid. If it does not have # a type bound in this MATCH step, add a type coercion to the type # registered in "location_types". if current_type_bound is None: current_type_bound = location_types[current_step_location].name new_step = match_step._replace( coerce_type_block=CoerceType({current_type_bound})) preferred_location_types[current_step_location] = current_type_bound elif current_step_location in eligible_locations: # This location is eligible, but not preferred. We have not make sure # none of the MATCH steps with this location have type bounds, and therefore # will not produce a corresponding "class:" clause in the resulting MATCH query. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = eligible_location_types.get(current_step_location, None) if current_type_bound is not None: # There is a type bound here that we need to neutralize. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. eligible_location_types[current_step_location] = current_type_bound if (current_step_location not in coerced_locations or previous_type_bound is not None): # The type bound here is already implied by the GraphQL query structure, # or has already been applied at a previous occurrence of this location. # We can simply delete the QueryRoot / CoerceType blocks that impart it. if isinstance(match_step.root_block, QueryRoot): new_root_block = None else: new_root_block = match_step.root_block new_step = match_step._replace( root_block=new_root_block, coerce_type_block=None) else: # The type bound here is not already implied by the GraphQL query structure. # This should only be possible via a CoerceType block. Lower this CoerceType # block into a Filter with INSTANCEOF to ensure the resulting query has the # same semantics, while making the location invalid as a query start point. if (isinstance(match_step.root_block, QueryRoot) or match_step.coerce_type_block is None): raise AssertionError(u'Unexpected MATCH step applying a type bound not ' u'already implied by the GraphQL query structure: ' u'{} {}'.format(match_step, match_query)) new_where_block = convert_coerce_type_and_add_to_where_block( match_step.coerce_type_block, match_step.where_block) new_step = match_step._replace( coerce_type_block=None, where_block=new_where_block) else: # There is no type bound that OrientDB can find defined at this location. # No action is necessary. pass else: # This location is neither preferred nor eligible. # No action is necessary at this location. pass new_traversal.append(new_step) new_match_traversals.append(new_traversal) return match_query._replace(match_traversals=new_match_traversals) def _expose_all_eligible_locations(match_query, location_types, eligible_locations): """Return a MATCH query where all eligible locations are valid as query start locations.""" eligible_location_types = dict() new_match_traversals = [] for current_traversal in match_query.match_traversals: new_traversal = [] for match_step in current_traversal: new_step = match_step current_step_location = match_step.as_block.location if current_step_location in eligible_locations: # This location is eligible. We need to make sure it has an associated type bound, # so that it produces a "class:" clause that will make it a valid query start # location. It either already has such a type bound, or we can use the type # implied by the GraphQL query structure to add one. current_type_bound = _calculate_type_bound_at_step(match_step) previous_type_bound = eligible_location_types.get(current_step_location, None) if current_type_bound is None: current_type_bound = location_types[current_step_location].name new_coerce_type_block = CoerceType({current_type_bound}) new_step = match_step._replace(coerce_type_block=new_coerce_type_block) else: # There is a type bound here. We simply ensure that the bound is not conflicting # with any other type bound at a different MATCH step with the same location. _assert_type_bounds_are_not_conflicting( current_type_bound, previous_type_bound, current_step_location, match_query) # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. eligible_location_types[current_step_location] = current_type_bound else: # This function may only be called if there are no preferred locations. Since this # location cannot be preferred, and is not eligible, it must be ineligible. # No action is necessary in this case. pass new_traversal.append(new_step) new_match_traversals.append(new_traversal) return match_query._replace(match_traversals=new_match_traversals) def expose_ideal_query_execution_start_points(compound_match_query, location_types, coerced_locations): """Ensure that OrientDB only considers desirable query start points in query planning.""" new_queries = [] for match_query in compound_match_query.match_queries: location_classification = _classify_query_locations(match_query) preferred_locations, eligible_locations, _ = location_classification if preferred_locations: # Convert all eligible locations into non-eligible ones, by removing # their "class:" clause. The "class:" clause is provided either by having # a QueryRoot block or a CoerceType block in the MatchStep corresponding # to the location. We remove it by converting the class check into # an "INSTANCEOF" Filter block, which OrientDB is unable to optimize away. new_query = _expose_only_preferred_locations( match_query, location_types, coerced_locations, preferred_locations, eligible_locations) elif eligible_locations: # Make sure that all eligible locations have a "class:" clause by adding # a CoerceType block that is a no-op as guaranteed by the schema. This merely # ensures that OrientDB is able to use each of these locations as a query start point, # and will choose the one whose class is of lowest cardinality. new_query = _expose_all_eligible_locations( match_query, location_types, eligible_locations) else: raise AssertionError(u'This query has no preferred or eligible query start locations. ' u'This is almost certainly a bug: {}'.format(match_query)) new_queries.append(new_query) return compound_match_query._replace(match_queries=new_queries)
en
0.914852
# Copyright 2018-present Kensho Technologies, LLC. Workarounds for OrientDB scheduler issue that causes poor query planning for certain queries. For purposes of query planning, the OrientDB query planner ignores "where:" clauses that hit indexes but do not use the "=" operator. For example, "CONTAINS" can be used to check that a field covered by an index is in a specified list of values, and can therefore be covered by an index, but OrientDB will ignore this. When no equality ("=") checks on indexed columns are present, OrientDB will generate a query plan that starts execution at the class with lowest cardinality, which can lead to excessive numbers of scanned and discarded records. Assuming the query planner creates a query plan where a location with CONTAINS is the first in the execution order, the execution system will apply indexes to speed up this operation. Therefore, it's sufficient to trick the query planner into always creating such a query plan, even though it thinks indexes cannot be used in the query. Valid query execution start points for the OrientDB query planner must satisfy the following: - Must not be "optional: true". - Must not have a "while:" clause nor follow a location that has one. - Must have a "class:" defined. This class is used for cardinality estimation, and to look for available indexes that may cover any "where:" clause that may be present. The optimizations in this file improve performance by enabling execution start points according to the following assumptions: 1. Start points with "where:" clauses that reference only local fields (i.e. not tagged values from other query locations) are always better than start points without a "where:". This is because the filter will have to be applied one way or the other, so we might as well apply it early. 2. If no such start points are available, we'd like to make available as many start points as possible, since we'd like OrientDB to start at the start point whose class has the lowest possible cardinality. The process of applying the optimizations is as follows: - Exclude and ignore all query steps that are inside a fold, optional, or recursion scope, or have a "where:" clause that references a non-local (i.e. tagged) field. - Find all remaining query steps with "where:" clauses that reference only local fields. - If any are found, we guide our actions from assumption 1 above: - Ensure they have a defined "class:" -- i.e. the OrientDB scheduler will consider them valid start points. - Then, prune all other query steps (ones without such "where:" clauses) by removing their "class:" clause, making them invalid as query start points for OrientDB's scheduler. - If none are found, we guide our actions from assumption 2 above: - Ensure that all query points not inside fold, optional, or recursion scope contain a "class:" clause. That increases the number of available query start points, so OrientDB can choose the start point of lowest cardinality. Return True if the Filter block references no non-local fields, and False otherwise. # We need the "result" value of this function to be mutated within the "visitor_fn". # Since we support both Python 2 and Python 3, we can't use the "nonlocal" keyword here: # https://www.python.org/dev/peps/pep-3104/ # Instead, we use a dict to store the value we need mutated, since the "visitor_fn" # can mutate state in the parent scope, but not rebind variables in it without "nonlocal". # TODO(predrag): Revisit this if we drop support for Python 2. Expression visitor function that looks for uses of non-local fields. # Don't change the expression. Classify query locations into three groups: preferred, eligible, ineligible. - Ineligible locations are ones that cannot be the starting point of query execution. These include locations within recursions, locations that are the target of an optional traversal, and locations with an associated "where:" clause with non-local filter. - Preferred locations are ones that are eligible to be the starting point, and also have an associated "where:" clause that references no non-local fields -- only local fields, literals, and variables. - Eligible locations are all locations that do not fall into either of these two categories. Args: match_query: MatchQuery object describing the query being analyzed for optimization Returns: tuple (preferred, eligible, ineligible) where each element is a set of Location objects. The three sets are disjoint. # Any query must have at least one traversal with at least one step. # The first step in this traversal must be a QueryRoot. # The first step in the first traversal cannot possibly be inside an optional, recursion, # or fold. Its location is always an eligible start location for a query. # We need to determine whether it is merely eligible, or actually a preferred location. # TODO(predrag): Fix once we have a proper fix for tag-and-filter in the same scope. # Either the locally-scoped tag will have to generate a LocalField # instead of a ContextField, or we'll have to rework the local filter # detection code in this module. # This loop will repeat the analysis of the first step of the first traversal. # QueryRoots other than the first are required to always be at a location whose status # (preferred / eligible / ineligible) is already known. Since we already processed # the first QueryRoot above, the rest of the loop can assume all QueryRoots are like that. # This location has already been encountered and processed. # Other than setting the "at_eligible_or_preferred_location" state for the sake of # the following MATCH steps, there is nothing further to be done. # All Recurse blocks cause locations within to be ineligible. # Optional Traverse blocks cause locations within to be ineligible. # Non-optional Traverse blocks do not change the eligibility of locations within: # if the pre-Traverse location was eligible, so will the location within, # and if it was not eligible, neither will the location within. # This location has a local filter, and is not otherwise ineligible (it's not # in a recursion etc.). Therefore, it's a preferred query start location. # Locations with non-local filters are never eligible locations, since they # depend on another location being executed before them. # No local filtering (i.e. not preferred), but also not ineligible. Eligible it is. Return the GraphQL type bound at the given step, or None if no bound is given. # The QueryRoot start class is a type bound. # The CoerceType target class is also a type bound. # A type bound exists. Assert that there is exactly one bound, defined in precisely one way. # No type bound exists at this MATCH step. Ensure that the two bounds either are an exact match, or one of them is None. Return a MATCH query where only preferred locations are valid as query start locations. # This location is preferred. We have to make sure that at least one occurrence # of this location in the MATCH query has an associated "class:" clause, # which would be generated by a type bound at the corresponding MATCH step. # The location is already valid. If so, make sure that this step either does # not have any type bounds (e.g. via QueryRoot or CoerceType blocks), # or has type bounds that match the previously-decided type bound. # The location is not yet known to be valid. If it does not have # a type bound in this MATCH step, add a type coercion to the type # registered in "location_types". # This location is eligible, but not preferred. We have not make sure # none of the MATCH steps with this location have type bounds, and therefore # will not produce a corresponding "class:" clause in the resulting MATCH query. # There is a type bound here that we need to neutralize. # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. # The type bound here is already implied by the GraphQL query structure, # or has already been applied at a previous occurrence of this location. # We can simply delete the QueryRoot / CoerceType blocks that impart it. # The type bound here is not already implied by the GraphQL query structure. # This should only be possible via a CoerceType block. Lower this CoerceType # block into a Filter with INSTANCEOF to ensure the resulting query has the # same semantics, while making the location invalid as a query start point. # There is no type bound that OrientDB can find defined at this location. # No action is necessary. # This location is neither preferred nor eligible. # No action is necessary at this location. Return a MATCH query where all eligible locations are valid as query start locations. # This location is eligible. We need to make sure it has an associated type bound, # so that it produces a "class:" clause that will make it a valid query start # location. It either already has such a type bound, or we can use the type # implied by the GraphQL query structure to add one. # There is a type bound here. We simply ensure that the bound is not conflicting # with any other type bound at a different MATCH step with the same location. # Record the deduced type bound, so that if we encounter this location again, # we ensure that we again infer the same type bound. # This function may only be called if there are no preferred locations. Since this # location cannot be preferred, and is not eligible, it must be ineligible. # No action is necessary in this case. Ensure that OrientDB only considers desirable query start points in query planning. # Convert all eligible locations into non-eligible ones, by removing # their "class:" clause. The "class:" clause is provided either by having # a QueryRoot block or a CoerceType block in the MatchStep corresponding # to the location. We remove it by converting the class check into # an "INSTANCEOF" Filter block, which OrientDB is unable to optimize away. # Make sure that all eligible locations have a "class:" clause by adding # a CoerceType block that is a no-op as guaranteed by the schema. This merely # ensures that OrientDB is able to use each of these locations as a query start point, # and will choose the one whose class is of lowest cardinality.
2.010179
2
traffic_light/core.py
ofalk/cleware-traffic-light
0
8725
from enum import IntEnum import functools import usb.core import usb.util from traffic_light.error import TrafficLightError, MultipleTrafficLightsError BM_REQUEST_TYPE = 0x21 B_REQUEST = 0x09 W_VALUE = 0x200 W_INDEX = 0x00 ID_VENDOR = 0x0d50 ID_PRODUCT = 0x0008 INTERFACE = 0 class Color(IntEnum): RED = 0x10 YELLOW = 0x11 GREEN = 0x12 class State(IntEnum): OFF = 0x0 ON = 0x1 class ClewareTrafficLight: def __init__(self, address=None): if address: self.address = address self.device = usb.core.find( address=address, idVendor=ID_VENDOR, idProduct=ID_PRODUCT) elif len(list(ClewareTrafficLight.find_devices())) > 1: raise MultipleTrafficLightsError( "No address is given and there are multiple devices conected! " "Use 'print_devices' to see a list of connected devices." ) else: self.device = usb.core.find( idVendor=ID_VENDOR, idProduct=ID_PRODUCT) if self.device is None: raise TrafficLightError('Cleware traffic light not found!') self.reattach = False def attach(self): """Attaches the device back to the kernel""" usb.util.dispose_resources(self.device) if self.reattach: self.device.attach_kernel_driver(INTERFACE) def detach(self): """Detaches the device from to kernel so it can be used""" if self.device.is_kernel_driver_active(INTERFACE): self.device.detach_kernel_driver(INTERFACE) self.reattach = True @staticmethod def find_devices(): """Returns the raw iterator of all found traffic lights""" devices = usb.core.find(find_all=True, idVendor=ID_VENDOR, idProduct=ID_PRODUCT) if devices: return devices return [] @staticmethod def print_devices(): """Prints a list of all connected traffic lights""" devices = ClewareTrafficLight.get_devices() for device in devices: print(device) @staticmethod def get_devices(): """Returns a list of ClewareTrafficLight instances""" usb_devices = ClewareTrafficLight.find_devices() return [ClewareTrafficLight(d.address) for d in usb_devices] def set_led(self, color, value, timeout=1000): """Sets the given state and color of the attached traffic light Attribute: color -- the to set color as the enum. E.g. Color.RED state -- the state to which it should be set. E.g. State.ON address -- the usb address of a specific traffic light """ try: self.detach() self.device.ctrl_transfer(BM_REQUEST_TYPE, B_REQUEST, W_VALUE, W_INDEX, [0x00, color, value], timeout=timeout) except Exception as exc: raise TrafficLightError(str(exc)) from exc finally: self.attach() def __getattr__(self, name): """Parses attribut calls in function""" args = name.split('_') try: color = Color[args[0].upper()] state = State[args[1].upper()] except Exception as exc: raise TrafficLightError("Either the given color or state could not be parsed! Exc: {}" .format(exc)) return functools.partial(self.set_led, color, state) def __str__(self): """Converts instance into string with important imformations""" return ("== Cleware Traffic Light ==\n" "Address: {} \n" "IdVendor: {} \n" "IdProduct: {}".format(self.address, ID_VENDOR, ID_PRODUCT))
from enum import IntEnum import functools import usb.core import usb.util from traffic_light.error import TrafficLightError, MultipleTrafficLightsError BM_REQUEST_TYPE = 0x21 B_REQUEST = 0x09 W_VALUE = 0x200 W_INDEX = 0x00 ID_VENDOR = 0x0d50 ID_PRODUCT = 0x0008 INTERFACE = 0 class Color(IntEnum): RED = 0x10 YELLOW = 0x11 GREEN = 0x12 class State(IntEnum): OFF = 0x0 ON = 0x1 class ClewareTrafficLight: def __init__(self, address=None): if address: self.address = address self.device = usb.core.find( address=address, idVendor=ID_VENDOR, idProduct=ID_PRODUCT) elif len(list(ClewareTrafficLight.find_devices())) > 1: raise MultipleTrafficLightsError( "No address is given and there are multiple devices conected! " "Use 'print_devices' to see a list of connected devices." ) else: self.device = usb.core.find( idVendor=ID_VENDOR, idProduct=ID_PRODUCT) if self.device is None: raise TrafficLightError('Cleware traffic light not found!') self.reattach = False def attach(self): """Attaches the device back to the kernel""" usb.util.dispose_resources(self.device) if self.reattach: self.device.attach_kernel_driver(INTERFACE) def detach(self): """Detaches the device from to kernel so it can be used""" if self.device.is_kernel_driver_active(INTERFACE): self.device.detach_kernel_driver(INTERFACE) self.reattach = True @staticmethod def find_devices(): """Returns the raw iterator of all found traffic lights""" devices = usb.core.find(find_all=True, idVendor=ID_VENDOR, idProduct=ID_PRODUCT) if devices: return devices return [] @staticmethod def print_devices(): """Prints a list of all connected traffic lights""" devices = ClewareTrafficLight.get_devices() for device in devices: print(device) @staticmethod def get_devices(): """Returns a list of ClewareTrafficLight instances""" usb_devices = ClewareTrafficLight.find_devices() return [ClewareTrafficLight(d.address) for d in usb_devices] def set_led(self, color, value, timeout=1000): """Sets the given state and color of the attached traffic light Attribute: color -- the to set color as the enum. E.g. Color.RED state -- the state to which it should be set. E.g. State.ON address -- the usb address of a specific traffic light """ try: self.detach() self.device.ctrl_transfer(BM_REQUEST_TYPE, B_REQUEST, W_VALUE, W_INDEX, [0x00, color, value], timeout=timeout) except Exception as exc: raise TrafficLightError(str(exc)) from exc finally: self.attach() def __getattr__(self, name): """Parses attribut calls in function""" args = name.split('_') try: color = Color[args[0].upper()] state = State[args[1].upper()] except Exception as exc: raise TrafficLightError("Either the given color or state could not be parsed! Exc: {}" .format(exc)) return functools.partial(self.set_led, color, state) def __str__(self): """Converts instance into string with important imformations""" return ("== Cleware Traffic Light ==\n" "Address: {} \n" "IdVendor: {} \n" "IdProduct: {}".format(self.address, ID_VENDOR, ID_PRODUCT))
en
0.79782
Attaches the device back to the kernel Detaches the device from to kernel so it can be used Returns the raw iterator of all found traffic lights Prints a list of all connected traffic lights Returns a list of ClewareTrafficLight instances Sets the given state and color of the attached traffic light Attribute: color -- the to set color as the enum. E.g. Color.RED state -- the state to which it should be set. E.g. State.ON address -- the usb address of a specific traffic light Parses attribut calls in function Converts instance into string with important imformations
2.919528
3
sdk/cognitivelanguage/azure-ai-language-conversations/samples/async/sample_analyze_orchestration_app_luis_response_async.py
dubiety/azure-sdk-for-python
1
8726
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ FILE: sample_analyze_orchestration_app_luis_response_async.py DESCRIPTION: This sample demonstrates how to analyze user query using an orchestration project. In this sample, orchestration project's top intent will map to a LUIS project. For more info about how to setup a CLU orchestration project, see the README. USAGE: python sample_analyze_orchestration_app_luis_response_async.py Set the environment variables with your own values before running the sample: 1) AZURE_CONVERSATIONS_ENDPOINT - endpoint for your CLU resource. 2) AZURE_CONVERSATIONS_KEY - API key for your CLU resource. 3) AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME - project name for your CLU orchestration project. 4) AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME - deployment name for your CLU orchestration project. """ import asyncio async def sample_analyze_orchestration_app_luis_response_async(): # [START analyze_orchestration_app_luis_response] # import libraries import os from azure.core.credentials import AzureKeyCredential from azure.ai.language.conversations.aio import ConversationAnalysisClient # get secrets clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"] clu_key = os.environ["AZURE_CONVERSATIONS_KEY"] project_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME"] deployment_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME"] # analyze query client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key)) async with client: query = "Reserve a table for 2 at the Italian restaurant" result = await client.analyze_conversation( task={ "kind": "Conversation", "analysisInput": { "conversationItem": { "participantId": "1", "id": "1", "modality": "text", "language": "en", "text": query }, "isLoggingEnabled": False }, "parameters": { "projectName": project_name, "deploymentName": deployment_name, "verbose": True } } ) # view result print("query: {}".format(result["result"]["query"])) print("project kind: {}\n".format(result["result"]["prediction"]["projectKind"])) # top intent top_intent = result["result"]["prediction"]["topIntent"] print("top intent: {}".format(top_intent)) top_intent_object = result["result"]["prediction"]["intents"][top_intent] print("confidence score: {}".format(top_intent_object["confidenceScore"])) print("project kind: {}".format(top_intent_object["targetProjectKind"])) if top_intent_object["targetProjectKind"] == "Luis": print("\nluis response:") luis_response = top_intent_object["result"]["prediction"] print("top intent: {}".format(luis_response["topIntent"])) print("\nentities:") for entity in luis_response["entities"]: print("\n{}".format(entity)) # [END analyze_orchestration_app_luis_response] async def main(): await sample_analyze_orchestration_app_luis_response_async() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ FILE: sample_analyze_orchestration_app_luis_response_async.py DESCRIPTION: This sample demonstrates how to analyze user query using an orchestration project. In this sample, orchestration project's top intent will map to a LUIS project. For more info about how to setup a CLU orchestration project, see the README. USAGE: python sample_analyze_orchestration_app_luis_response_async.py Set the environment variables with your own values before running the sample: 1) AZURE_CONVERSATIONS_ENDPOINT - endpoint for your CLU resource. 2) AZURE_CONVERSATIONS_KEY - API key for your CLU resource. 3) AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME - project name for your CLU orchestration project. 4) AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME - deployment name for your CLU orchestration project. """ import asyncio async def sample_analyze_orchestration_app_luis_response_async(): # [START analyze_orchestration_app_luis_response] # import libraries import os from azure.core.credentials import AzureKeyCredential from azure.ai.language.conversations.aio import ConversationAnalysisClient # get secrets clu_endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"] clu_key = os.environ["AZURE_CONVERSATIONS_KEY"] project_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME"] deployment_name = os.environ["AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME"] # analyze query client = ConversationAnalysisClient(clu_endpoint, AzureKeyCredential(clu_key)) async with client: query = "Reserve a table for 2 at the Italian restaurant" result = await client.analyze_conversation( task={ "kind": "Conversation", "analysisInput": { "conversationItem": { "participantId": "1", "id": "1", "modality": "text", "language": "en", "text": query }, "isLoggingEnabled": False }, "parameters": { "projectName": project_name, "deploymentName": deployment_name, "verbose": True } } ) # view result print("query: {}".format(result["result"]["query"])) print("project kind: {}\n".format(result["result"]["prediction"]["projectKind"])) # top intent top_intent = result["result"]["prediction"]["topIntent"] print("top intent: {}".format(top_intent)) top_intent_object = result["result"]["prediction"]["intents"][top_intent] print("confidence score: {}".format(top_intent_object["confidenceScore"])) print("project kind: {}".format(top_intent_object["targetProjectKind"])) if top_intent_object["targetProjectKind"] == "Luis": print("\nluis response:") luis_response = top_intent_object["result"]["prediction"] print("top intent: {}".format(luis_response["topIntent"])) print("\nentities:") for entity in luis_response["entities"]: print("\n{}".format(entity)) # [END analyze_orchestration_app_luis_response] async def main(): await sample_analyze_orchestration_app_luis_response_async() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
en
0.659231
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ FILE: sample_analyze_orchestration_app_luis_response_async.py DESCRIPTION: This sample demonstrates how to analyze user query using an orchestration project. In this sample, orchestration project's top intent will map to a LUIS project. For more info about how to setup a CLU orchestration project, see the README. USAGE: python sample_analyze_orchestration_app_luis_response_async.py Set the environment variables with your own values before running the sample: 1) AZURE_CONVERSATIONS_ENDPOINT - endpoint for your CLU resource. 2) AZURE_CONVERSATIONS_KEY - API key for your CLU resource. 3) AZURE_CONVERSATIONS_WORKFLOW_PROJECT_NAME - project name for your CLU orchestration project. 4) AZURE_CONVERSATIONS_WORKFLOW_DEPLOYMENT_NAME - deployment name for your CLU orchestration project. # [START analyze_orchestration_app_luis_response] # import libraries # get secrets # analyze query # view result # top intent # [END analyze_orchestration_app_luis_response]
1.953416
2
src/sunstruck/schemas/__init__.py
la-mar/sunstruck-api
3
8727
# flake8: noqa from schemas.client_credentials import * from schemas.message import * from schemas.token import * from schemas.user import *
# flake8: noqa from schemas.client_credentials import * from schemas.message import * from schemas.token import * from schemas.user import *
it
0.238973
# flake8: noqa
1.094032
1
intro/deploy.py
terziev-viktor/SolidityCourse
0
8728
<gh_stars>0 import json from web3 import Web3 from solcx import compile_standard, install_solc with open("./SimpleStorage.sol", "r") as file: simple_storage_src = file.read() # install solcx install_solc("0.8.0") # compile the source compiled_sol = compile_standard( { "language": "Solidity", "sources": {"SimpleStorage.sol": {"content": simple_storage_src}}, "settings": { "outputSelection": { "*": { "*": ["abi", "metadata", "evm.bytecode", "evm.sourceMap"] } } }, }, solc_version = "0.8.0" ) with open("./out.json", "w") as file: json.dump(compiled_sol, file) # getting the bytecode bytecode = compiled_sol["contracts"]["SimpleStorage.sol"]["SimpleStorage"]["evm"]["bytecode"]["object"] # getting the abi abi = compiled_sol["contracts"]["SimpleStorage.sol"]["SimpleStorage"]["abi"] # connecting to ganache w3 = Web3(Web3.HTTPProvider("HTTP://127.0.0.1:7545")) chain_id = 1337 my_address = "0x02ECDdb09504C4d4B2ba2c7Ec80d77d44f6e631c" private_key = "0xa9ddbecce894fdad11cd9864d9c58f794d23bd5f0d78d1c2eea204b284edfefc" # Create the contract in python SimpleStorage = w3.eth.contract(abi=abi, bytecode=bytecode) # Get the latest test transaction nonce = w3.eth.getTransactionCount(my_address) # 1. Build a transaction # 2. Sing the transaction # 3. Send the transaction transaction = SimpleStorage.constructor().buildTransaction({"gasPrice": w3.eth.gas_price, "chainId": chain_id, "from": my_address, "nonce": nonce}) signed_txn = w3.eth.account.sign_transaction(transaction, private_key) tx_hash = w3.eth.send_raw_transaction(signed_txn.rawTransaction) # confirm transaction is received tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash) print("tx_hash=", tx_hash) print("receipt=", tx_receipt) # working on-chain simple_storage = w3.eth.contract(address=tx_receipt.contractAddress, abi=abi) print(simple_storage.functions.retrieve().call()) store_transaction = simple_storage.functions.store(15).buildTransaction({ "gasPrice": w3.eth.gas_price, "chainId": chain_id, "from": my_address, "nonce": nonce + 1 } ) singed_store_transaction = w3.eth.account.sign_transaction(store_transaction, private_key) store_transaction_hash = w3.eth.send_raw_transaction(singed_store_transaction.rawTransaction) store_transaction_receipt = w3.eth.wait_for_transaction_receipt(store_transaction_hash)
import json from web3 import Web3 from solcx import compile_standard, install_solc with open("./SimpleStorage.sol", "r") as file: simple_storage_src = file.read() # install solcx install_solc("0.8.0") # compile the source compiled_sol = compile_standard( { "language": "Solidity", "sources": {"SimpleStorage.sol": {"content": simple_storage_src}}, "settings": { "outputSelection": { "*": { "*": ["abi", "metadata", "evm.bytecode", "evm.sourceMap"] } } }, }, solc_version = "0.8.0" ) with open("./out.json", "w") as file: json.dump(compiled_sol, file) # getting the bytecode bytecode = compiled_sol["contracts"]["SimpleStorage.sol"]["SimpleStorage"]["evm"]["bytecode"]["object"] # getting the abi abi = compiled_sol["contracts"]["SimpleStorage.sol"]["SimpleStorage"]["abi"] # connecting to ganache w3 = Web3(Web3.HTTPProvider("HTTP://127.0.0.1:7545")) chain_id = 1337 my_address = "0x02ECDdb09504C4d4B2ba2c7Ec80d77d44f6e631c" private_key = "0xa9ddbecce894fdad11cd9864d9c58f794d23bd5f0d78d1c2eea204b284edfefc" # Create the contract in python SimpleStorage = w3.eth.contract(abi=abi, bytecode=bytecode) # Get the latest test transaction nonce = w3.eth.getTransactionCount(my_address) # 1. Build a transaction # 2. Sing the transaction # 3. Send the transaction transaction = SimpleStorage.constructor().buildTransaction({"gasPrice": w3.eth.gas_price, "chainId": chain_id, "from": my_address, "nonce": nonce}) signed_txn = w3.eth.account.sign_transaction(transaction, private_key) tx_hash = w3.eth.send_raw_transaction(signed_txn.rawTransaction) # confirm transaction is received tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash) print("tx_hash=", tx_hash) print("receipt=", tx_receipt) # working on-chain simple_storage = w3.eth.contract(address=tx_receipt.contractAddress, abi=abi) print(simple_storage.functions.retrieve().call()) store_transaction = simple_storage.functions.store(15).buildTransaction({ "gasPrice": w3.eth.gas_price, "chainId": chain_id, "from": my_address, "nonce": nonce + 1 } ) singed_store_transaction = w3.eth.account.sign_transaction(store_transaction, private_key) store_transaction_hash = w3.eth.send_raw_transaction(singed_store_transaction.rawTransaction) store_transaction_receipt = w3.eth.wait_for_transaction_receipt(store_transaction_hash)
en
0.791989
# install solcx # compile the source # getting the bytecode # getting the abi # connecting to ganache # Create the contract in python # Get the latest test transaction # 1. Build a transaction # 2. Sing the transaction # 3. Send the transaction # confirm transaction is received # working on-chain
2.215618
2
noise/extras/meta/protocol/protocol.py
mgp25/noise
6
8729
<reponame>mgp25/noise from noise.dh.dh import DH from noise.cipher.cipher import Cipher from noise.hash.hash import Hash from noise.processing.handshakepatterns.handshakepattern import HandshakePattern from noise.processing.impl.handshakestate import HandshakeState from noise.processing.impl.symmetricstate import SymmetricState from noise.processing.impl.cipherstate import CipherState class NoiseProtocol(object): def __init__(self, pattern, dh, cipher, hash): """ :param pattern: :type pattern: :param dh: :type dh: :param cipher: :type cipher: :param hash: :type hash: """ self._pattern = pattern # type: HandshakePattern self._dh = dh # type: DH self._cipher = cipher # type: Cipher self._hash = hash # type: Hash self._oneway = len(HandshakePattern.parse_handshakepattern(pattern.name)[0]) == 1 # type: bool @property def oneway(self): return self._oneway @property def pattern(self): return self._pattern @property def dh(self): return self._dh @property def cipher(self): return self._cipher @property def hash(self): return self._hash def create_cipherstate(self, cipher=None): """ :param cipher: :type cipher: Cipher :return: :rtype: CipherState """ return CipherState(cipher or self._cipher) def create_symmetricstate(self, cipherstate=None, hash=None): """ :param cipherstate: :type cipherstate: CipherState :param hash: :type hash: Hash :return: :rtype: SymmetricState """ return SymmetricState(cipherstate or self.create_cipherstate(), hash or self._hash) def create_handshakestate(self, symmetricstate=None, dh=None): """ :param symmetricstate: :type symmetricstate: SymmetricState :param dh: :type dh: DH :return: :rtype: HandshakeState """ return HandshakeState(symmetricstate or self.create_symmetricstate(), dh or self._dh)
from noise.dh.dh import DH from noise.cipher.cipher import Cipher from noise.hash.hash import Hash from noise.processing.handshakepatterns.handshakepattern import HandshakePattern from noise.processing.impl.handshakestate import HandshakeState from noise.processing.impl.symmetricstate import SymmetricState from noise.processing.impl.cipherstate import CipherState class NoiseProtocol(object): def __init__(self, pattern, dh, cipher, hash): """ :param pattern: :type pattern: :param dh: :type dh: :param cipher: :type cipher: :param hash: :type hash: """ self._pattern = pattern # type: HandshakePattern self._dh = dh # type: DH self._cipher = cipher # type: Cipher self._hash = hash # type: Hash self._oneway = len(HandshakePattern.parse_handshakepattern(pattern.name)[0]) == 1 # type: bool @property def oneway(self): return self._oneway @property def pattern(self): return self._pattern @property def dh(self): return self._dh @property def cipher(self): return self._cipher @property def hash(self): return self._hash def create_cipherstate(self, cipher=None): """ :param cipher: :type cipher: Cipher :return: :rtype: CipherState """ return CipherState(cipher or self._cipher) def create_symmetricstate(self, cipherstate=None, hash=None): """ :param cipherstate: :type cipherstate: CipherState :param hash: :type hash: Hash :return: :rtype: SymmetricState """ return SymmetricState(cipherstate or self.create_cipherstate(), hash or self._hash) def create_handshakestate(self, symmetricstate=None, dh=None): """ :param symmetricstate: :type symmetricstate: SymmetricState :param dh: :type dh: DH :return: :rtype: HandshakeState """ return HandshakeState(symmetricstate or self.create_symmetricstate(), dh or self._dh)
en
0.576752
:param pattern: :type pattern: :param dh: :type dh: :param cipher: :type cipher: :param hash: :type hash: # type: HandshakePattern # type: DH # type: Cipher # type: Hash # type: bool :param cipher: :type cipher: Cipher :return: :rtype: CipherState :param cipherstate: :type cipherstate: CipherState :param hash: :type hash: Hash :return: :rtype: SymmetricState :param symmetricstate: :type symmetricstate: SymmetricState :param dh: :type dh: DH :return: :rtype: HandshakeState
2.33459
2
info_popup.py
cartazio/SublimeHaskell
2
8730
import urllib.parse import webbrowser import json from xml.etree import ElementTree import sublime import SublimeHaskell.sublime_haskell_common as Common import SublimeHaskell.internals.utils as Utils import SublimeHaskell.internals.unicode_opers as UnicodeOpers import SublimeHaskell.symbols as symbols import SublimeHaskell.internals.backend_mgr as BackendManager import SublimeHaskell.parseoutput as ParseOutput import SublimeHaskell.types as types # Unused module variable: # style_header = "<style>" \ # "a { text-decoration: underline; }" \ # ".type { color: red; }" \ # ".tyvar { color: blue; }" \ # ".operator { color: green; }" \ # ".comment { color: gray; font-style: italic; }" \ # ".docs { color: gray; }" \ # "</style>" class Styles(object): """ Loads and holds cache of scheme styles Also generates style header """ def __init__(self): self.schemes = {} CSS_CLASSES = { 'comment': 'comment', 'function': 'entity.name.function', 'type': 'entity.name.type', 'operator': 'keyword.operator', 'keyword': 'keyword.declaration', 'tyvar': 'variable.generic', 'error': 'sublimehaskell.mark.error', 'warning': 'sublimehaskell.mark.warning', 'hint': 'sublimehaskell.mark.hint' } def load_scheme(self, scheme_path): if scheme_path not in self.schemes: scheme_res = sublime.load_resource(scheme_path) if scheme_res: # Go through all styles and collect scope/foreground/fontStyle etc. # Prefer ST3 'sublime-color-scheme' JSON over older TextMate XML. self.schemes[scheme_path] = self.collect_sublime_scheme(json.loads(scheme_res)) \ if scheme_path.endswith('.sublime-color-scheme') \ else self.collect_textmate_scheme(ElementTree.fromstring(scheme_res)) return self.schemes.get(scheme_path, {}) def collect_textmate_scheme(self, scheme_tree): scheme = {} for style in scheme_tree.findall(".//dict[key='scope']"): try: cur_style = {} cur_tag = None for elem in style.iter(): if elem.tag == 'key': cur_tag = elem.text # We are going to fill it next time elif elem.tag == 'string' and cur_tag is not None: cur_style[cur_tag] = elem.text cur_tag = None if 'scope' in cur_style: scheme[cur_style['scope']] = cur_style except ValueError: pass return scheme def collect_sublime_scheme(self, scheme_dict): scheme = {} for rule in scheme_dict.get('rules', []): scope = rule.get('scope', '') if scope: scheme[scope] = rule return scheme def gen_style(self, scheme_path): scheme = self.load_scheme(scheme_path) parts = [] parts.append("<style>") parts.append("a { text-decoration: underline; }") # generate CSS style for each class for cls, scope in self.CSS_CLASSES.items(): # find scope or its parent in scheme scope_parts = scope.split('.') for css_scope in reversed(['.'.join(scope_parts[0:i+1]) for i in range(0, len(scope_parts))]): if css_scope in scheme: # Found some scope, fill style class style_parts = [] if 'foreground' in scheme[css_scope]: style_parts.append("color: {0}".format(scheme[css_scope]['foreground'])) # Prefer ST3 'sublime-color-scheme' JSON attribute over the older TextMate-ish name font_style = scheme[css_scope].get('font_style', scheme[css_scope].get('fontStyle', '')) if font_style: style_parts.append("font-style: {0}".format(font_style)) parts.append(".{0} {{ {1} }}".format(cls, "; ".join(style_parts))) break parts.append("</style>") return "".join(parts) class SublimeHaskellHoverPopup(object): # HTML style formatting STYLES = Styles() def __init__(self, view, filename, point, hover_zone): super().__init__() self.view = view self.filename = filename self.point = point self.hover_zone = hover_zone self.line = view.rowcol(point)[0] self.shown = False def do_hover(self): if self.hover_zone == sublime.HOVER_TEXT: qsymbol = Common.get_qualified_symbol_at_point(self.view, self.point) ## print('hover: qualified symbol {0}'.format(qsymbol)) module_word = qsymbol.module ident = qsymbol.name if module_word is not None and ident is None: # TODO: Any ideas for popup about module? pass elif ident is not None: whois_name = qsymbol.qualified_name() full_name = qsymbol.full_name() # Try get type of hovered symbol typed_expr = None if types.SourceHaskellTypeCache().has(self.filename): typed_expr = self.get_type(types.SourceHaskellTypeCache().get(self.filename), whois_name) else: project_name = Common.locate_cabal_project_from_view(self.view)[1] point_rgn = sublime.Region(self.point, self.point) typed_expr = self.get_type(types.get_type_view(self.view, project_name, point_rgn), whois_name) # Try whois suggest_import = False decl = Utils.head_of(BackendManager.active_backend().whois(whois_name, self.filename)) if not decl: suggest_import = True decl = Utils.head_of(BackendManager.active_backend().lookup(full_name, self.filename)) self.create_symbol_popup(typed_expr, decl, suggest_import) elif self.hover_zone == sublime.HOVER_GUTTER: errs = [err for err in ParseOutput.MARKER_MANAGER.marks_for_view(self.view) if err.region.start.line == self.line] if errs: popup_parts = [self.STYLES.gen_style(self.view.settings().get('color_scheme'))] for err in errs: msg = UnicodeOpers.use_unicode_operators(symbols.escape_text(err.message)) # Decorate first word with style decors = { 'Error': 'error', 'Warning': 'warning', 'Hint': 'hint' } for dec, dec_style in decors.items(): msg = msg.replace(dec, u'<span class="{0}">{1}</span>'.format(dec_style, dec)) popup_parts.append(u'<p>{0}</p>'.format(msg)) if err.correction is not None: popup_parts.append(err.correction.popup()) popup_text = u''.join(popup_parts) self.shown = True self.view.show_popup(popup_text, sublime.HIDE_ON_MOUSE_MOVE_AWAY, self.point, 600, 600, self.on_navigate, self.on_hide) def create_symbol_popup(self, typed_expr, decl, suggest_import): if typed_expr or decl: popup_parts = [self.STYLES.gen_style(self.view.settings().get('color_scheme'))] if typed_expr: popup_parts.append(u'<p><span class="function">{0}</span>{1}</p>'.format( typed_expr.substr(self.view), symbols.format_type(UnicodeOpers.use_unicode_operators(' :: {0}'.format(typed_expr.typename))))) if decl: popup_msg = [u'<a href="import:{0}">Add import</a>'.format(urllib.parse.quote_plus(decl.name))] \ if suggest_import else [] popup_parts.append(decl.popup(popup_msg)) popup_text = u''.join(popup_parts) if not self.shown: self.shown = True self.view.show_popup(popup_text, sublime.HIDE_ON_MOUSE_MOVE_AWAY, self.point, 600, 600, self.on_navigate, self.on_hide) else: self.view.update_popup(popup_text) def get_type(self, type_list, qual_name): filt_types = [t for t in type_list if t.substr(self.view) == qual_name and t.region(self.view).contains(self.point)] return Utils.head_of(filt_types) def on_navigate(self, url): if self.view.is_popup_visible(): self.view.hide_popup() if url[0:4] == 'http': webbrowser.open(url) elif url[0:8] == 'autofix:': rgn = symbols.Region.from_str(url[8:]) ParseOutput.MARKER_MANAGER.apply_autocorrect(self.view, rgn) elif url[0:7] == "import:": decl_name = urllib.parse.unquote(url[7:]) self.view.run_command('sublime_haskell_insert_import_for_symbol', {'filename': self.view.file_name(), 'decl': decl_name}) else: self.view.window().open_file(url, sublime.ENCODED_POSITION | sublime.TRANSIENT) def on_hide(self): self.shown = False
import urllib.parse import webbrowser import json from xml.etree import ElementTree import sublime import SublimeHaskell.sublime_haskell_common as Common import SublimeHaskell.internals.utils as Utils import SublimeHaskell.internals.unicode_opers as UnicodeOpers import SublimeHaskell.symbols as symbols import SublimeHaskell.internals.backend_mgr as BackendManager import SublimeHaskell.parseoutput as ParseOutput import SublimeHaskell.types as types # Unused module variable: # style_header = "<style>" \ # "a { text-decoration: underline; }" \ # ".type { color: red; }" \ # ".tyvar { color: blue; }" \ # ".operator { color: green; }" \ # ".comment { color: gray; font-style: italic; }" \ # ".docs { color: gray; }" \ # "</style>" class Styles(object): """ Loads and holds cache of scheme styles Also generates style header """ def __init__(self): self.schemes = {} CSS_CLASSES = { 'comment': 'comment', 'function': 'entity.name.function', 'type': 'entity.name.type', 'operator': 'keyword.operator', 'keyword': 'keyword.declaration', 'tyvar': 'variable.generic', 'error': 'sublimehaskell.mark.error', 'warning': 'sublimehaskell.mark.warning', 'hint': 'sublimehaskell.mark.hint' } def load_scheme(self, scheme_path): if scheme_path not in self.schemes: scheme_res = sublime.load_resource(scheme_path) if scheme_res: # Go through all styles and collect scope/foreground/fontStyle etc. # Prefer ST3 'sublime-color-scheme' JSON over older TextMate XML. self.schemes[scheme_path] = self.collect_sublime_scheme(json.loads(scheme_res)) \ if scheme_path.endswith('.sublime-color-scheme') \ else self.collect_textmate_scheme(ElementTree.fromstring(scheme_res)) return self.schemes.get(scheme_path, {}) def collect_textmate_scheme(self, scheme_tree): scheme = {} for style in scheme_tree.findall(".//dict[key='scope']"): try: cur_style = {} cur_tag = None for elem in style.iter(): if elem.tag == 'key': cur_tag = elem.text # We are going to fill it next time elif elem.tag == 'string' and cur_tag is not None: cur_style[cur_tag] = elem.text cur_tag = None if 'scope' in cur_style: scheme[cur_style['scope']] = cur_style except ValueError: pass return scheme def collect_sublime_scheme(self, scheme_dict): scheme = {} for rule in scheme_dict.get('rules', []): scope = rule.get('scope', '') if scope: scheme[scope] = rule return scheme def gen_style(self, scheme_path): scheme = self.load_scheme(scheme_path) parts = [] parts.append("<style>") parts.append("a { text-decoration: underline; }") # generate CSS style for each class for cls, scope in self.CSS_CLASSES.items(): # find scope or its parent in scheme scope_parts = scope.split('.') for css_scope in reversed(['.'.join(scope_parts[0:i+1]) for i in range(0, len(scope_parts))]): if css_scope in scheme: # Found some scope, fill style class style_parts = [] if 'foreground' in scheme[css_scope]: style_parts.append("color: {0}".format(scheme[css_scope]['foreground'])) # Prefer ST3 'sublime-color-scheme' JSON attribute over the older TextMate-ish name font_style = scheme[css_scope].get('font_style', scheme[css_scope].get('fontStyle', '')) if font_style: style_parts.append("font-style: {0}".format(font_style)) parts.append(".{0} {{ {1} }}".format(cls, "; ".join(style_parts))) break parts.append("</style>") return "".join(parts) class SublimeHaskellHoverPopup(object): # HTML style formatting STYLES = Styles() def __init__(self, view, filename, point, hover_zone): super().__init__() self.view = view self.filename = filename self.point = point self.hover_zone = hover_zone self.line = view.rowcol(point)[0] self.shown = False def do_hover(self): if self.hover_zone == sublime.HOVER_TEXT: qsymbol = Common.get_qualified_symbol_at_point(self.view, self.point) ## print('hover: qualified symbol {0}'.format(qsymbol)) module_word = qsymbol.module ident = qsymbol.name if module_word is not None and ident is None: # TODO: Any ideas for popup about module? pass elif ident is not None: whois_name = qsymbol.qualified_name() full_name = qsymbol.full_name() # Try get type of hovered symbol typed_expr = None if types.SourceHaskellTypeCache().has(self.filename): typed_expr = self.get_type(types.SourceHaskellTypeCache().get(self.filename), whois_name) else: project_name = Common.locate_cabal_project_from_view(self.view)[1] point_rgn = sublime.Region(self.point, self.point) typed_expr = self.get_type(types.get_type_view(self.view, project_name, point_rgn), whois_name) # Try whois suggest_import = False decl = Utils.head_of(BackendManager.active_backend().whois(whois_name, self.filename)) if not decl: suggest_import = True decl = Utils.head_of(BackendManager.active_backend().lookup(full_name, self.filename)) self.create_symbol_popup(typed_expr, decl, suggest_import) elif self.hover_zone == sublime.HOVER_GUTTER: errs = [err for err in ParseOutput.MARKER_MANAGER.marks_for_view(self.view) if err.region.start.line == self.line] if errs: popup_parts = [self.STYLES.gen_style(self.view.settings().get('color_scheme'))] for err in errs: msg = UnicodeOpers.use_unicode_operators(symbols.escape_text(err.message)) # Decorate first word with style decors = { 'Error': 'error', 'Warning': 'warning', 'Hint': 'hint' } for dec, dec_style in decors.items(): msg = msg.replace(dec, u'<span class="{0}">{1}</span>'.format(dec_style, dec)) popup_parts.append(u'<p>{0}</p>'.format(msg)) if err.correction is not None: popup_parts.append(err.correction.popup()) popup_text = u''.join(popup_parts) self.shown = True self.view.show_popup(popup_text, sublime.HIDE_ON_MOUSE_MOVE_AWAY, self.point, 600, 600, self.on_navigate, self.on_hide) def create_symbol_popup(self, typed_expr, decl, suggest_import): if typed_expr or decl: popup_parts = [self.STYLES.gen_style(self.view.settings().get('color_scheme'))] if typed_expr: popup_parts.append(u'<p><span class="function">{0}</span>{1}</p>'.format( typed_expr.substr(self.view), symbols.format_type(UnicodeOpers.use_unicode_operators(' :: {0}'.format(typed_expr.typename))))) if decl: popup_msg = [u'<a href="import:{0}">Add import</a>'.format(urllib.parse.quote_plus(decl.name))] \ if suggest_import else [] popup_parts.append(decl.popup(popup_msg)) popup_text = u''.join(popup_parts) if not self.shown: self.shown = True self.view.show_popup(popup_text, sublime.HIDE_ON_MOUSE_MOVE_AWAY, self.point, 600, 600, self.on_navigate, self.on_hide) else: self.view.update_popup(popup_text) def get_type(self, type_list, qual_name): filt_types = [t for t in type_list if t.substr(self.view) == qual_name and t.region(self.view).contains(self.point)] return Utils.head_of(filt_types) def on_navigate(self, url): if self.view.is_popup_visible(): self.view.hide_popup() if url[0:4] == 'http': webbrowser.open(url) elif url[0:8] == 'autofix:': rgn = symbols.Region.from_str(url[8:]) ParseOutput.MARKER_MANAGER.apply_autocorrect(self.view, rgn) elif url[0:7] == "import:": decl_name = urllib.parse.unquote(url[7:]) self.view.run_command('sublime_haskell_insert_import_for_symbol', {'filename': self.view.file_name(), 'decl': decl_name}) else: self.view.window().open_file(url, sublime.ENCODED_POSITION | sublime.TRANSIENT) def on_hide(self): self.shown = False
en
0.54856
# Unused module variable: # style_header = "<style>" \ # "a { text-decoration: underline; }" \ # ".type { color: red; }" \ # ".tyvar { color: blue; }" \ # ".operator { color: green; }" \ # ".comment { color: gray; font-style: italic; }" \ # ".docs { color: gray; }" \ # "</style>" Loads and holds cache of scheme styles Also generates style header # Go through all styles and collect scope/foreground/fontStyle etc. # Prefer ST3 'sublime-color-scheme' JSON over older TextMate XML. # We are going to fill it next time # generate CSS style for each class # find scope or its parent in scheme # Found some scope, fill style class # Prefer ST3 'sublime-color-scheme' JSON attribute over the older TextMate-ish name # HTML style formatting ## print('hover: qualified symbol {0}'.format(qsymbol)) # TODO: Any ideas for popup about module? # Try get type of hovered symbol # Try whois # Decorate first word with style
2.177699
2
modules/google_home_lights.py
artizanatweb/ghome-assistant
0
8731
<reponame>artizanatweb/ghome-assistant #!/usr/bin/env python # Copyright (C) 2017 Seeed Technology Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modules.pixel_ring import pixel_ring import numpy import time import threading try: import queue as Queue except ImportError: import Queue as Queue class GoogleHomeLights: def __init__(self): self.basis = numpy.array([0] * 4 * 12) self.basis[0 * 4 + 0] = 2 self.basis[3 * 4 + 2] = 2 self.basis[6 * 4 + 1] = 1 self.basis[6 * 4 + 2] = 1 self.basis[9 * 4 + 1] = 2 self.pixels = self.basis * 0 self.write(self.pixels) pixel_ring.write(0, [6, 0, 0, 0]) self.next = threading.Event() self.queue = Queue.Queue() self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() def wakeup(self, direction=0): def f(): self._wakeup(direction) self.queue.put(f) def listen(self): self.next.set() self.queue.put(self._listen) def think(self): self.next.set() self.queue.put(self._think) def speak(self): self.next.set() self.queue.put(self._speak) def off(self): self.next.set() self.queue.put(self._off) def _run(self): while True: func = self.queue.get() func() def _wakeup(self, direction=0): position = int((direction + 15) / 30) % 12 basis = numpy.roll(self.basis, position * 4) for i in range(1, 25): pixels = basis * i self.write(pixels) time.sleep(0.005) pixels = numpy.roll(pixels, 4) self.write(pixels) time.sleep(0.1) for i in range(2): new_pixels = numpy.roll(pixels, 4) self.write(new_pixels * 0.5 + pixels) pixels = new_pixels time.sleep(0.1) self.write(pixels) self.pixels = pixels def _listen(self): pixels = self.pixels for i in range(1, 25): self.write(pixels * i / 24) time.sleep(0.01) def _think(self): pixels = self.pixels self.next.clear() while not self.next.is_set(): pixels = numpy.roll(pixels, 4) self.write(pixels) time.sleep(0.2) t = 0.1 for i in range(0, 5): pixels = numpy.roll(pixels, 4) self.write(pixels * (4 - i) / 4) time.sleep(t) t /= 2 # time.sleep(0.5) self.pixels = pixels def _speak(self): pixels = self.pixels self.next.clear() while not self.next.is_set(): for i in range(5, 25): self.write(pixels * i / 24) time.sleep(0.01) time.sleep(0.3) for i in range(24, 4, -1): self.write(pixels * i / 24) time.sleep(0.01) time.sleep(0.3) self._off() def _off(self): self.write([0] * 4 * 12) def write(self, data): if type(data) is list: pixel_ring.write(3, data) else: pixel_ring.write(3, data.astype('uint8').tostring()) lights = GoogleHomeLights() if __name__ == '__main__': while True: try: lights.wakeup() time.sleep(3) lights.think() time.sleep(3) lights.speak() time.sleep(3) lights.off() time.sleep(3) except KeyboardInterrupt: break pixel_ring.off()
#!/usr/bin/env python # Copyright (C) 2017 Seeed Technology Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modules.pixel_ring import pixel_ring import numpy import time import threading try: import queue as Queue except ImportError: import Queue as Queue class GoogleHomeLights: def __init__(self): self.basis = numpy.array([0] * 4 * 12) self.basis[0 * 4 + 0] = 2 self.basis[3 * 4 + 2] = 2 self.basis[6 * 4 + 1] = 1 self.basis[6 * 4 + 2] = 1 self.basis[9 * 4 + 1] = 2 self.pixels = self.basis * 0 self.write(self.pixels) pixel_ring.write(0, [6, 0, 0, 0]) self.next = threading.Event() self.queue = Queue.Queue() self.thread = threading.Thread(target=self._run) self.thread.daemon = True self.thread.start() def wakeup(self, direction=0): def f(): self._wakeup(direction) self.queue.put(f) def listen(self): self.next.set() self.queue.put(self._listen) def think(self): self.next.set() self.queue.put(self._think) def speak(self): self.next.set() self.queue.put(self._speak) def off(self): self.next.set() self.queue.put(self._off) def _run(self): while True: func = self.queue.get() func() def _wakeup(self, direction=0): position = int((direction + 15) / 30) % 12 basis = numpy.roll(self.basis, position * 4) for i in range(1, 25): pixels = basis * i self.write(pixels) time.sleep(0.005) pixels = numpy.roll(pixels, 4) self.write(pixels) time.sleep(0.1) for i in range(2): new_pixels = numpy.roll(pixels, 4) self.write(new_pixels * 0.5 + pixels) pixels = new_pixels time.sleep(0.1) self.write(pixels) self.pixels = pixels def _listen(self): pixels = self.pixels for i in range(1, 25): self.write(pixels * i / 24) time.sleep(0.01) def _think(self): pixels = self.pixels self.next.clear() while not self.next.is_set(): pixels = numpy.roll(pixels, 4) self.write(pixels) time.sleep(0.2) t = 0.1 for i in range(0, 5): pixels = numpy.roll(pixels, 4) self.write(pixels * (4 - i) / 4) time.sleep(t) t /= 2 # time.sleep(0.5) self.pixels = pixels def _speak(self): pixels = self.pixels self.next.clear() while not self.next.is_set(): for i in range(5, 25): self.write(pixels * i / 24) time.sleep(0.01) time.sleep(0.3) for i in range(24, 4, -1): self.write(pixels * i / 24) time.sleep(0.01) time.sleep(0.3) self._off() def _off(self): self.write([0] * 4 * 12) def write(self, data): if type(data) is list: pixel_ring.write(3, data) else: pixel_ring.write(3, data.astype('uint8').tostring()) lights = GoogleHomeLights() if __name__ == '__main__': while True: try: lights.wakeup() time.sleep(3) lights.think() time.sleep(3) lights.speak() time.sleep(3) lights.off() time.sleep(3) except KeyboardInterrupt: break pixel_ring.off()
en
0.832492
#!/usr/bin/env python # Copyright (C) 2017 Seeed Technology Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # time.sleep(0.5)
2.753712
3
python/modules_packages_libraries/models/animal_kigdom/animals.py
aloa04/practice
0
8732
class Animal(): edad:int patas:int ruido:str nombre: str kgComida: float = 0 def __init__(self, edad, patas, ruido, nombre): self.edad =edad self.patas = patas self.ruido = ruido self.nombre = nombre def comer(self, alimento): self.kgComida += alimento print('Hola,', self.nombre, 'comes', self.kgComida) def hacerRuido(self): print('Hola', self.nombre, 'haces' , self.ruido)
class Animal(): edad:int patas:int ruido:str nombre: str kgComida: float = 0 def __init__(self, edad, patas, ruido, nombre): self.edad =edad self.patas = patas self.ruido = ruido self.nombre = nombre def comer(self, alimento): self.kgComida += alimento print('Hola,', self.nombre, 'comes', self.kgComida) def hacerRuido(self): print('Hola', self.nombre, 'haces' , self.ruido)
none
1
3.424185
3
tensortools/optimize/mncp_hals.py
klmcguir/tensortools
0
8733
""" Nonnegative CP decomposition by Hierarchical alternating least squares (HALS). With support for missing data. """ import numpy as np import scipy as sci from scipy import linalg from tensortools.operations import unfold, khatri_rao from tensortools.tensors import KTensor from tensortools.optimize import FitResult, optim_utils from .._hals_update import _hals_update def mncp_hals(X, rank, mask, random_state=None, init='rand', **options): """ Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Supports missing data. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. mask : (I_1, ..., I_N) array_like A binary tensor with the same shape as ``X``. All entries equal to zero correspond to held out or missing data in ``X``. All entries equal to one correspond to observed entries in ``X`` and the decomposition is fit to these datapoints. random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and <NAME>. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- """ # Mask missing elements. X = np.copy(X) X[~mask] = np.linalg.norm(X[mask]) # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = linalg.norm(X[mask].ravel()) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: # First, HALS update. for n in range(X.ndim): # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot(kr) # iii) Update component U_n _hals_update(U[n], grams, p) # Then, update masked elements. pred = U.full() X[~mask] = pred[~mask] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX resid = X - pred result.update(linalg.norm(resid.ravel()) / normX) # end optimization loop, return result. return result.finalize()
""" Nonnegative CP decomposition by Hierarchical alternating least squares (HALS). With support for missing data. """ import numpy as np import scipy as sci from scipy import linalg from tensortools.operations import unfold, khatri_rao from tensortools.tensors import KTensor from tensortools.optimize import FitResult, optim_utils from .._hals_update import _hals_update def mncp_hals(X, rank, mask, random_state=None, init='rand', **options): """ Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Supports missing data. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. mask : (I_1, ..., I_N) array_like A binary tensor with the same shape as ``X``. All entries equal to zero correspond to held out or missing data in ``X``. All entries equal to one correspond to observed entries in ``X`` and the decomposition is fit to these datapoints. random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and <NAME>. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- """ # Mask missing elements. X = np.copy(X) X[~mask] = np.linalg.norm(X[mask]) # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = linalg.norm(X[mask].ravel()) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: # First, HALS update. for n in range(X.ndim): # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot(kr) # iii) Update component U_n _hals_update(U[n], grams, p) # Then, update masked elements. pred = U.full() X[~mask] = pred[~mask] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX resid = X - pred result.update(linalg.norm(resid.ravel()) / normX) # end optimization loop, return result. return result.finalize()
en
0.530111
Nonnegative CP decomposition by Hierarchical alternating least squares (HALS). With support for missing data. Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Supports missing data. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. mask : (I_1, ..., I_N) array_like A binary tensor with the same shape as ``X``. All entries equal to zero correspond to held out or missing data in ``X``. All entries equal to one correspond to observed entries in ``X`` and the decomposition is fit to these datapoints. random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and <NAME>. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- # Mask missing elements. # Check inputs. # Initialize problem. # Store problem dimensions. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # First, HALS update. # Select all components, but U_n # i) compute the N-1 gram matrices # ii) Compute Khatri-Rao product # iii) Update component U_n # Then, update masked elements. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX # end optimization loop, return result.
2.508288
3
raredecay/tools/data_tools.py
jonas-eschle/raredecay
7
8734
""" @author: <NAME> "Mayou36" DEPRECEATED! USE OTHER MODULES LIKE rd.data, rd.ml, rd.reweight, rd.score and rd.stat DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED! Contains several tools to convert, load, save and plot data """ import warnings import os import copy import pandas as pd import numpy as np import uproot import pickle from . import dev_tool # both produce error (27.07.2016) when importing them if run from main.py. # No problem when run as main... # from raredecay.tools import dev_tool from .. import meta_config as meta_cfg def apply_cuts(signal_data, bkg_data, percent_sig_to_keep=100, bkg_length=None): """Search for best cut on value to still keep percent_sig_to_keep of signal Parameters ---------- signal_data : 1-D numpy array The signal bkg_data : 1-D numpy array The background data percent_sig_to_keep : 0 < float <= 100 What percentage of the data to keep in order to apply the cuts. """ # if percent_sig_to_keep < 100: # raise NotImplementedError("percentage of < 100 not yet imlemented") percentile = [0, percent_sig_to_keep] # TODO: modify for percent_sig_to_keep bkg_length_before = len(bkg_data) bkg_length = len(bkg_data) if bkg_length in (None, 0) else bkg_length lower_cut, upper_cut = np.percentile(signal_data, percentile) cut_bkg = np.count_nonzero( np.logical_or(bkg_data < lower_cut, bkg_data > upper_cut) ) rejected_bkg = (bkg_length_before - cut_bkg) / bkg_length return [lower_cut, upper_cut], rejected_bkg def make_root_dict(path_to_rootfile, tree_name, branches): """Returns a root_numpy compatible "root-dict" of a root-tree. Parameters ---------- path_to_rootfile : str The exact path to the root-tree including the filename. Example: /home/user1/data/myRootTree1.root tree_name : str The name of the tree branches : str or list[str, str, str,... ] The branches of the tree to use """ output = dict(filenames=path_to_rootfile, treename=tree_name, branches=branches) output = dev_tool.entries_to_str(output) return output def add_to_rootfile(rootfile, new_branch, branch_name=None, overwrite=True): """Adds a new branch to a given root file. .. warning:: Overwrite not working currently! Parameters ---------- rootfile : root-dict The ROOT-file where the data should be added new_branch : numpy.array 1-D, list, root-dict A one-dimensional numpy array that contains the data. branch_name : str The name of the branche resp. the name in the dtype of the array. """ from root_numpy import array2root from rootpy.io import root_open rootfile = dev_tool.entries_to_str(rootfile) new_branch = dev_tool.entries_to_str(new_branch) branch_name = dev_tool.entries_to_str(branch_name) # get the right parameters # TODO: what does that if there? an assertion maybe? write_mode = "update" branch_name = "new_branch1" if branch_name is None else branch_name if isinstance(rootfile, dict): filename = rootfile.get("filenames") treename = rootfile.get("treename") new_branch = to_ndarray(new_branch) # new_branch.dtype = [(branch_name, 'f8')] # write to ROOT-file write_to_root = False if os.path.isfile(filename): with root_open(filename, mode="a") as root_file: tree = getattr(root_file, treename) # test if not tree.has_branch(branch_name): write_to_root = True # array2tree(new_branch, tree=tree) # f.write("", TObject.kOverwrite) # overwrite, does not create friends else: write_mode = "recreate" write_to_root = True if write_to_root: arr = np.core.records.fromarrays([new_branch], names=branch_name) array2root(arr=arr, filename=filename, treename=treename, mode=write_mode) return 0 else: return 1 # TODO: remove? outdated def format_data_weights(data_to_shape, weights): """Format the data and the weights perfectly. Same length and more. Change the data to pandas.DataFrame and fill the weights with ones where nothing or None is specified. Returns both in lists. Very useful to loop over several data and weights. Parameters ---------- data_to_shape : (root_dict, numpy.array, pandas.DataFrame) The data for which we apply the weights. Usual 2-D shape. weights : (list, numpy.array, pandas.DataFrame, None) The weights to be reshaped *Best format* : [array(weights),array(weights), None, array(weights),...] *None* can be used if no special weights are specified. If weights contains less "weight-containing array-like objects" then data_to_shape does, the difference will be filled with *1* Return ------ out : list(pandas.DataFrame(data), pandas.DataFrame(data),...) Return a list containing data out : list(numpy.array(weight), numpy.array(weight),...) Return a list with the weights, converted and filled. """ # conver the data if not isinstance(data_to_shape, list): data_to_shape = [data_to_shape] data_to_shape = list(map(to_pandas, data_to_shape)) # convert the weights if not isinstance(weights, list): weights = [weights] if weights[0] is not None: if len(weights[0]) == 1: weights = [weights] # convert to pandas assert isinstance(weights, list), "weights could not be converted to list" for data_id, data in enumerate(data_to_shape): if data_id >= len(weights): weights.append(None) if weights[data_id] is None: weights[data_id] = np.array([1] * len(data)) weights[data_id] = to_pandas(weights[data_id]).squeeze().values return data_to_shape, weights def obj_to_string(objects, separator=None): """Return a string containing all objects as strings, separated by the separator. Useful for automatic conversion for different types. The following objects will automatically be converted: - None will be omitted Parameters ---------- objects : any object or list(obj, obj, ...) with a string representation The objects will be converted to a string and concatenated, separated by the separator. separator : str The separator between the objects. Default is " - ". """ objects = dev_tool.entries_to_str(objects) if isinstance(objects, str): # no need to change things return objects separator = " - " if separator is None else separator assert isinstance(separator, str), "Separator not a str" objects = to_list(objects) objects = [str(obj) for obj in objects if obj not in (None, "")] # remove Nones string_out = "" for word in objects: string_out += word + separator if word != objects[-1] else word return string_out def is_root(data_to_check): """Check whether a given data is a root file. Needs dicts to be True.""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, dict): path_name = data_to_check.get("filenames") # assert isinstance(path_name, str), ("'filenames' of the dictionary " + # str(data_to_check) + "is not a string") if path_name.endswith(meta_cfg.ROOT_DATATYPE): flag = True return flag def is_list(data_to_check): """Check whether the given data is a list.""" flag = False if isinstance(data_to_check, list): flag = True return flag def is_ndarray(data_to_check): """Check whether a given data is an ndarray.""" flag = False if isinstance(data_to_check, np.ndarray): flag = True return flag def is_pickle(data_to_check): """Check if the file is a pickled file (checks the ending).""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, str): if data_to_check.endswith(meta_cfg.PICKLE_DATATYPE): flag = True return flag def to_list(data_in): """Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. """ if isinstance(data_in, (str, int, float)): data_in = [data_in] data_in = list(data_in) return data_in def to_ndarray(data_in, float_array=False): """Convert data to numpy array (containing only floats). Parameters ---------- data_in : any reasonable data The data to be converted """ import uproot if is_root(data_in): with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] branches = to_list(data_in["branches"]) loaded = tree.arrays(branches, library="np") loaded = np.stack([loaded[branch] for branch in branches]) if len(branches) == 1: loaded = loaded[0] data_in = loaded # change numpy.void to normal floats if isinstance(data_in, (pd.Series, pd.DataFrame)): test_sample = data_in.iloc[0] else: test_sample = data_in[0] if isinstance(test_sample, np.void): data_in = np.array([val[0] for val in data_in]) if isinstance(data_in, (np.recarray, np.ndarray)): data_in = data_in.tolist() if is_list(data_in) or isinstance(data_in, pd.Series): data_in = np.array(data_in) if not isinstance(data_in[0], (int, float, str, bool)): if float_array: iter_data = copy.deepcopy(data_in) # HACK data_in = np.ndarray(shape=len(data_in), dtype=data_in.dtype) # HACK END for i, element in enumerate(iter_data): if not isinstance(element, (int, float, str, bool)): # does that work or should we iterate over copy? try: element_len = len(element) except TypeError: element_len = 1 if element_len > 1: data_in[i] = to_ndarray(element) float_array = False elif element_len == 1: data_in[i] = float(element) warnings.warn("Could not force float array") if float_array: data_in = np.asfarray(data_in) assert is_ndarray(data_in), "Error, could not convert data to numpy array" return data_in def to_pandas_old(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ # TODO: generalize root_index_name = "__index__" data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): root_index = None import root_numpy if root_index_name in root_numpy.list_branches( filename=data_in["filenames"], treename=data_in.get("treename") ): root_index = root_numpy.root2array( filenames=data_in["filenames"], treename=data_in.get("treename"), selection=data_in.get("selection"), branches=root_index_name, ) data_in = root_numpy.root2array(**data_in) # why **? it's a root dict if is_list(data_in): data_in = np.array(data_in) if is_ndarray(data_in): if (isinstance(columns, (list, tuple)) and len(columns) == 1) or isinstance( columns, str ): data_in = to_ndarray(data_in) data_in = pd.DataFrame(data_in, columns=columns, index=root_index) if index is not None: data_in = data_in.loc[index] elif isinstance(data_in, pd.DataFrame): pass else: raise TypeError("Could not convert data to pandas. Data: " + data_in) return data_in def to_pandas(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): if columns is None: columns = data_in["branches"] with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] if "__index__" in tree.keys(): # legacy, we can also convert this return to_pandas_old(data_in=data_in, index=index, columns=columns) branches = to_list(columns) loaded = tree.arrays(branches, library="pd") if index is not None: loaded = loaded.loc[index] return loaded else: # HACK START return to_pandas_old(data_in=data_in, index=index, columns=columns) # HACK END # from root_pandas import read_root # # root_pandas_numpy_map = dict(filenames='paths', treename='key', branches='columns', # selection='where') # # if is_root(data_in): # is_root2array = False # for key, val in copy.deepcopy(list(data_in.items())): # if key in root_pandas_numpy_map: # is_root2array = True # del data_in[key] # data_in[root_pandas_numpy_map[key]] = val # data_in['columns'] = to_list(data_in['columns']) # if is_root2array: # data_in['columns'] = ['noexpand:'+col for col in data_in['columns'] if not col.startswith('noexpand:')] # remove the noexpand: # data_in = read_root(**data_in) # why **? it's a root dict # if is_list(data_in): # data_in = np.array(data_in) # if is_ndarray(data_in): # if ((isinstance(columns, (list, tuple)) and len(columns) == 1) or # isinstance(columns, string)): # # data_in = to_ndarray(data_in) # data_in = pd.DataFrame(data_in, columns=columns) # if index is not None: # data_in = data_in.loc[index] # elif isinstance(data_in, pd.DataFrame): # pass # else: # raise TypeError("Could not convert data to pandas. Data: " + data_in) # return data_in def adv_return(return_value, save_name=None): """Save the value if save_name specified, otherwise just return input. Can be wrapped around the return value. Without any arguments, the return of your function will be exactly the same. With arguments, the value can be saved (**pickled**) before it is returned. Parameters ---------- return_value : any python object The python object which should be pickled. save_name : str, None | The (file-)name for the pickled file. File-extension will be added \ automatically if specified in *raredecay.meta_config*. | If *None* is passed, the object won't be pickled. Return ------ out : python object Return return_value without changes. **Usage**: Instead of a simple return statement >>> return my_variable/my_object one can use the **completely equivalent** statement >>> return adv_return(my_variable/my_object) If the return value should be saved in addition to be returned, use >>> return adv_return(my_variable/my_object, save_name='my_object.pickle') (*the .pickle ending is not required but added automatically if omitted*) which returns the value and saves it. """ save_name = dev_tool.entries_to_str(save_name) if save_name not in (None, False): if isinstance(save_name, str): save_name = meta_cfg.PICKLE_PATH + save_name if not is_pickle(save_name): save_name += "." + meta_cfg.PICKLE_DATATYPE with open(str(save_name), "wb") as f: pickle.dump(return_value, f, meta_cfg.PICKLE_PROTOCOL) print(str(return_value) + " pickled to " + save_name) else: pass # HACK how to solve logger problem? # logger.error("Could not pickle data, name for file (" + # str(save_name) + ") is not a string!" + # "\n Therefore, the following data was only returned" + # " but not saved! \n Data:" + str(return_value)) return return_value def try_unpickle(file_to_unpickle, use_metapath_bkwcomp=False): """Try to unpickle a file and return, otherwise just return input.""" file_to_unpickle = dev_tool.entries_to_str(file_to_unpickle) if is_pickle(file_to_unpickle): extra_path = meta_cfg.PICKLE_PATH if use_metapath_bkwcomp else "" with open(extra_path + file_to_unpickle, "rb") as f: file_to_unpickle = pickle.load(f) return file_to_unpickle
""" @author: <NAME> "Mayou36" DEPRECEATED! USE OTHER MODULES LIKE rd.data, rd.ml, rd.reweight, rd.score and rd.stat DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED! Contains several tools to convert, load, save and plot data """ import warnings import os import copy import pandas as pd import numpy as np import uproot import pickle from . import dev_tool # both produce error (27.07.2016) when importing them if run from main.py. # No problem when run as main... # from raredecay.tools import dev_tool from .. import meta_config as meta_cfg def apply_cuts(signal_data, bkg_data, percent_sig_to_keep=100, bkg_length=None): """Search for best cut on value to still keep percent_sig_to_keep of signal Parameters ---------- signal_data : 1-D numpy array The signal bkg_data : 1-D numpy array The background data percent_sig_to_keep : 0 < float <= 100 What percentage of the data to keep in order to apply the cuts. """ # if percent_sig_to_keep < 100: # raise NotImplementedError("percentage of < 100 not yet imlemented") percentile = [0, percent_sig_to_keep] # TODO: modify for percent_sig_to_keep bkg_length_before = len(bkg_data) bkg_length = len(bkg_data) if bkg_length in (None, 0) else bkg_length lower_cut, upper_cut = np.percentile(signal_data, percentile) cut_bkg = np.count_nonzero( np.logical_or(bkg_data < lower_cut, bkg_data > upper_cut) ) rejected_bkg = (bkg_length_before - cut_bkg) / bkg_length return [lower_cut, upper_cut], rejected_bkg def make_root_dict(path_to_rootfile, tree_name, branches): """Returns a root_numpy compatible "root-dict" of a root-tree. Parameters ---------- path_to_rootfile : str The exact path to the root-tree including the filename. Example: /home/user1/data/myRootTree1.root tree_name : str The name of the tree branches : str or list[str, str, str,... ] The branches of the tree to use """ output = dict(filenames=path_to_rootfile, treename=tree_name, branches=branches) output = dev_tool.entries_to_str(output) return output def add_to_rootfile(rootfile, new_branch, branch_name=None, overwrite=True): """Adds a new branch to a given root file. .. warning:: Overwrite not working currently! Parameters ---------- rootfile : root-dict The ROOT-file where the data should be added new_branch : numpy.array 1-D, list, root-dict A one-dimensional numpy array that contains the data. branch_name : str The name of the branche resp. the name in the dtype of the array. """ from root_numpy import array2root from rootpy.io import root_open rootfile = dev_tool.entries_to_str(rootfile) new_branch = dev_tool.entries_to_str(new_branch) branch_name = dev_tool.entries_to_str(branch_name) # get the right parameters # TODO: what does that if there? an assertion maybe? write_mode = "update" branch_name = "new_branch1" if branch_name is None else branch_name if isinstance(rootfile, dict): filename = rootfile.get("filenames") treename = rootfile.get("treename") new_branch = to_ndarray(new_branch) # new_branch.dtype = [(branch_name, 'f8')] # write to ROOT-file write_to_root = False if os.path.isfile(filename): with root_open(filename, mode="a") as root_file: tree = getattr(root_file, treename) # test if not tree.has_branch(branch_name): write_to_root = True # array2tree(new_branch, tree=tree) # f.write("", TObject.kOverwrite) # overwrite, does not create friends else: write_mode = "recreate" write_to_root = True if write_to_root: arr = np.core.records.fromarrays([new_branch], names=branch_name) array2root(arr=arr, filename=filename, treename=treename, mode=write_mode) return 0 else: return 1 # TODO: remove? outdated def format_data_weights(data_to_shape, weights): """Format the data and the weights perfectly. Same length and more. Change the data to pandas.DataFrame and fill the weights with ones where nothing or None is specified. Returns both in lists. Very useful to loop over several data and weights. Parameters ---------- data_to_shape : (root_dict, numpy.array, pandas.DataFrame) The data for which we apply the weights. Usual 2-D shape. weights : (list, numpy.array, pandas.DataFrame, None) The weights to be reshaped *Best format* : [array(weights),array(weights), None, array(weights),...] *None* can be used if no special weights are specified. If weights contains less "weight-containing array-like objects" then data_to_shape does, the difference will be filled with *1* Return ------ out : list(pandas.DataFrame(data), pandas.DataFrame(data),...) Return a list containing data out : list(numpy.array(weight), numpy.array(weight),...) Return a list with the weights, converted and filled. """ # conver the data if not isinstance(data_to_shape, list): data_to_shape = [data_to_shape] data_to_shape = list(map(to_pandas, data_to_shape)) # convert the weights if not isinstance(weights, list): weights = [weights] if weights[0] is not None: if len(weights[0]) == 1: weights = [weights] # convert to pandas assert isinstance(weights, list), "weights could not be converted to list" for data_id, data in enumerate(data_to_shape): if data_id >= len(weights): weights.append(None) if weights[data_id] is None: weights[data_id] = np.array([1] * len(data)) weights[data_id] = to_pandas(weights[data_id]).squeeze().values return data_to_shape, weights def obj_to_string(objects, separator=None): """Return a string containing all objects as strings, separated by the separator. Useful for automatic conversion for different types. The following objects will automatically be converted: - None will be omitted Parameters ---------- objects : any object or list(obj, obj, ...) with a string representation The objects will be converted to a string and concatenated, separated by the separator. separator : str The separator between the objects. Default is " - ". """ objects = dev_tool.entries_to_str(objects) if isinstance(objects, str): # no need to change things return objects separator = " - " if separator is None else separator assert isinstance(separator, str), "Separator not a str" objects = to_list(objects) objects = [str(obj) for obj in objects if obj not in (None, "")] # remove Nones string_out = "" for word in objects: string_out += word + separator if word != objects[-1] else word return string_out def is_root(data_to_check): """Check whether a given data is a root file. Needs dicts to be True.""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, dict): path_name = data_to_check.get("filenames") # assert isinstance(path_name, str), ("'filenames' of the dictionary " + # str(data_to_check) + "is not a string") if path_name.endswith(meta_cfg.ROOT_DATATYPE): flag = True return flag def is_list(data_to_check): """Check whether the given data is a list.""" flag = False if isinstance(data_to_check, list): flag = True return flag def is_ndarray(data_to_check): """Check whether a given data is an ndarray.""" flag = False if isinstance(data_to_check, np.ndarray): flag = True return flag def is_pickle(data_to_check): """Check if the file is a pickled file (checks the ending).""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, str): if data_to_check.endswith(meta_cfg.PICKLE_DATATYPE): flag = True return flag def to_list(data_in): """Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. """ if isinstance(data_in, (str, int, float)): data_in = [data_in] data_in = list(data_in) return data_in def to_ndarray(data_in, float_array=False): """Convert data to numpy array (containing only floats). Parameters ---------- data_in : any reasonable data The data to be converted """ import uproot if is_root(data_in): with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] branches = to_list(data_in["branches"]) loaded = tree.arrays(branches, library="np") loaded = np.stack([loaded[branch] for branch in branches]) if len(branches) == 1: loaded = loaded[0] data_in = loaded # change numpy.void to normal floats if isinstance(data_in, (pd.Series, pd.DataFrame)): test_sample = data_in.iloc[0] else: test_sample = data_in[0] if isinstance(test_sample, np.void): data_in = np.array([val[0] for val in data_in]) if isinstance(data_in, (np.recarray, np.ndarray)): data_in = data_in.tolist() if is_list(data_in) or isinstance(data_in, pd.Series): data_in = np.array(data_in) if not isinstance(data_in[0], (int, float, str, bool)): if float_array: iter_data = copy.deepcopy(data_in) # HACK data_in = np.ndarray(shape=len(data_in), dtype=data_in.dtype) # HACK END for i, element in enumerate(iter_data): if not isinstance(element, (int, float, str, bool)): # does that work or should we iterate over copy? try: element_len = len(element) except TypeError: element_len = 1 if element_len > 1: data_in[i] = to_ndarray(element) float_array = False elif element_len == 1: data_in[i] = float(element) warnings.warn("Could not force float array") if float_array: data_in = np.asfarray(data_in) assert is_ndarray(data_in), "Error, could not convert data to numpy array" return data_in def to_pandas_old(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ # TODO: generalize root_index_name = "__index__" data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): root_index = None import root_numpy if root_index_name in root_numpy.list_branches( filename=data_in["filenames"], treename=data_in.get("treename") ): root_index = root_numpy.root2array( filenames=data_in["filenames"], treename=data_in.get("treename"), selection=data_in.get("selection"), branches=root_index_name, ) data_in = root_numpy.root2array(**data_in) # why **? it's a root dict if is_list(data_in): data_in = np.array(data_in) if is_ndarray(data_in): if (isinstance(columns, (list, tuple)) and len(columns) == 1) or isinstance( columns, str ): data_in = to_ndarray(data_in) data_in = pd.DataFrame(data_in, columns=columns, index=root_index) if index is not None: data_in = data_in.loc[index] elif isinstance(data_in, pd.DataFrame): pass else: raise TypeError("Could not convert data to pandas. Data: " + data_in) return data_in def to_pandas(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): if columns is None: columns = data_in["branches"] with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] if "__index__" in tree.keys(): # legacy, we can also convert this return to_pandas_old(data_in=data_in, index=index, columns=columns) branches = to_list(columns) loaded = tree.arrays(branches, library="pd") if index is not None: loaded = loaded.loc[index] return loaded else: # HACK START return to_pandas_old(data_in=data_in, index=index, columns=columns) # HACK END # from root_pandas import read_root # # root_pandas_numpy_map = dict(filenames='paths', treename='key', branches='columns', # selection='where') # # if is_root(data_in): # is_root2array = False # for key, val in copy.deepcopy(list(data_in.items())): # if key in root_pandas_numpy_map: # is_root2array = True # del data_in[key] # data_in[root_pandas_numpy_map[key]] = val # data_in['columns'] = to_list(data_in['columns']) # if is_root2array: # data_in['columns'] = ['noexpand:'+col for col in data_in['columns'] if not col.startswith('noexpand:')] # remove the noexpand: # data_in = read_root(**data_in) # why **? it's a root dict # if is_list(data_in): # data_in = np.array(data_in) # if is_ndarray(data_in): # if ((isinstance(columns, (list, tuple)) and len(columns) == 1) or # isinstance(columns, string)): # # data_in = to_ndarray(data_in) # data_in = pd.DataFrame(data_in, columns=columns) # if index is not None: # data_in = data_in.loc[index] # elif isinstance(data_in, pd.DataFrame): # pass # else: # raise TypeError("Could not convert data to pandas. Data: " + data_in) # return data_in def adv_return(return_value, save_name=None): """Save the value if save_name specified, otherwise just return input. Can be wrapped around the return value. Without any arguments, the return of your function will be exactly the same. With arguments, the value can be saved (**pickled**) before it is returned. Parameters ---------- return_value : any python object The python object which should be pickled. save_name : str, None | The (file-)name for the pickled file. File-extension will be added \ automatically if specified in *raredecay.meta_config*. | If *None* is passed, the object won't be pickled. Return ------ out : python object Return return_value without changes. **Usage**: Instead of a simple return statement >>> return my_variable/my_object one can use the **completely equivalent** statement >>> return adv_return(my_variable/my_object) If the return value should be saved in addition to be returned, use >>> return adv_return(my_variable/my_object, save_name='my_object.pickle') (*the .pickle ending is not required but added automatically if omitted*) which returns the value and saves it. """ save_name = dev_tool.entries_to_str(save_name) if save_name not in (None, False): if isinstance(save_name, str): save_name = meta_cfg.PICKLE_PATH + save_name if not is_pickle(save_name): save_name += "." + meta_cfg.PICKLE_DATATYPE with open(str(save_name), "wb") as f: pickle.dump(return_value, f, meta_cfg.PICKLE_PROTOCOL) print(str(return_value) + " pickled to " + save_name) else: pass # HACK how to solve logger problem? # logger.error("Could not pickle data, name for file (" + # str(save_name) + ") is not a string!" + # "\n Therefore, the following data was only returned" + # " but not saved! \n Data:" + str(return_value)) return return_value def try_unpickle(file_to_unpickle, use_metapath_bkwcomp=False): """Try to unpickle a file and return, otherwise just return input.""" file_to_unpickle = dev_tool.entries_to_str(file_to_unpickle) if is_pickle(file_to_unpickle): extra_path = meta_cfg.PICKLE_PATH if use_metapath_bkwcomp else "" with open(extra_path + file_to_unpickle, "rb") as f: file_to_unpickle = pickle.load(f) return file_to_unpickle
en
0.643366
@author: <NAME> "Mayou36" DEPRECEATED! USE OTHER MODULES LIKE rd.data, rd.ml, rd.reweight, rd.score and rd.stat DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED! Contains several tools to convert, load, save and plot data # both produce error (27.07.2016) when importing them if run from main.py. # No problem when run as main... # from raredecay.tools import dev_tool Search for best cut on value to still keep percent_sig_to_keep of signal Parameters ---------- signal_data : 1-D numpy array The signal bkg_data : 1-D numpy array The background data percent_sig_to_keep : 0 < float <= 100 What percentage of the data to keep in order to apply the cuts. # if percent_sig_to_keep < 100: # raise NotImplementedError("percentage of < 100 not yet imlemented") # TODO: modify for percent_sig_to_keep Returns a root_numpy compatible "root-dict" of a root-tree. Parameters ---------- path_to_rootfile : str The exact path to the root-tree including the filename. Example: /home/user1/data/myRootTree1.root tree_name : str The name of the tree branches : str or list[str, str, str,... ] The branches of the tree to use Adds a new branch to a given root file. .. warning:: Overwrite not working currently! Parameters ---------- rootfile : root-dict The ROOT-file where the data should be added new_branch : numpy.array 1-D, list, root-dict A one-dimensional numpy array that contains the data. branch_name : str The name of the branche resp. the name in the dtype of the array. # get the right parameters # TODO: what does that if there? an assertion maybe? # new_branch.dtype = [(branch_name, 'f8')] # write to ROOT-file # test # array2tree(new_branch, tree=tree) # f.write("", TObject.kOverwrite) # overwrite, does not create friends # TODO: remove? outdated Format the data and the weights perfectly. Same length and more. Change the data to pandas.DataFrame and fill the weights with ones where nothing or None is specified. Returns both in lists. Very useful to loop over several data and weights. Parameters ---------- data_to_shape : (root_dict, numpy.array, pandas.DataFrame) The data for which we apply the weights. Usual 2-D shape. weights : (list, numpy.array, pandas.DataFrame, None) The weights to be reshaped *Best format* : [array(weights),array(weights), None, array(weights),...] *None* can be used if no special weights are specified. If weights contains less "weight-containing array-like objects" then data_to_shape does, the difference will be filled with *1* Return ------ out : list(pandas.DataFrame(data), pandas.DataFrame(data),...) Return a list containing data out : list(numpy.array(weight), numpy.array(weight),...) Return a list with the weights, converted and filled. # conver the data # convert the weights # convert to pandas Return a string containing all objects as strings, separated by the separator. Useful for automatic conversion for different types. The following objects will automatically be converted: - None will be omitted Parameters ---------- objects : any object or list(obj, obj, ...) with a string representation The objects will be converted to a string and concatenated, separated by the separator. separator : str The separator between the objects. Default is " - ". # no need to change things # remove Nones Check whether a given data is a root file. Needs dicts to be True. # assert isinstance(path_name, str), ("'filenames' of the dictionary " + # str(data_to_check) + "is not a string") Check whether the given data is a list. Check whether a given data is an ndarray. Check if the file is a pickled file (checks the ending). Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. Convert data to numpy array (containing only floats). Parameters ---------- data_in : any reasonable data The data to be converted # change numpy.void to normal floats # HACK # HACK END # does that work or should we iterate over copy? Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted # TODO: generalize # why **? it's a root dict Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted # legacy, we can also convert this # HACK START # HACK END # from root_pandas import read_root # # root_pandas_numpy_map = dict(filenames='paths', treename='key', branches='columns', # selection='where') # # if is_root(data_in): # is_root2array = False # for key, val in copy.deepcopy(list(data_in.items())): # if key in root_pandas_numpy_map: # is_root2array = True # del data_in[key] # data_in[root_pandas_numpy_map[key]] = val # data_in['columns'] = to_list(data_in['columns']) # if is_root2array: # data_in['columns'] = ['noexpand:'+col for col in data_in['columns'] if not col.startswith('noexpand:')] # remove the noexpand: # data_in = read_root(**data_in) # why **? it's a root dict # if is_list(data_in): # data_in = np.array(data_in) # if is_ndarray(data_in): # if ((isinstance(columns, (list, tuple)) and len(columns) == 1) or # isinstance(columns, string)): # # data_in = to_ndarray(data_in) # data_in = pd.DataFrame(data_in, columns=columns) # if index is not None: # data_in = data_in.loc[index] # elif isinstance(data_in, pd.DataFrame): # pass # else: # raise TypeError("Could not convert data to pandas. Data: " + data_in) # return data_in Save the value if save_name specified, otherwise just return input. Can be wrapped around the return value. Without any arguments, the return of your function will be exactly the same. With arguments, the value can be saved (**pickled**) before it is returned. Parameters ---------- return_value : any python object The python object which should be pickled. save_name : str, None | The (file-)name for the pickled file. File-extension will be added \ automatically if specified in *raredecay.meta_config*. | If *None* is passed, the object won't be pickled. Return ------ out : python object Return return_value without changes. **Usage**: Instead of a simple return statement >>> return my_variable/my_object one can use the **completely equivalent** statement >>> return adv_return(my_variable/my_object) If the return value should be saved in addition to be returned, use >>> return adv_return(my_variable/my_object, save_name='my_object.pickle') (*the .pickle ending is not required but added automatically if omitted*) which returns the value and saves it. # HACK how to solve logger problem? # logger.error("Could not pickle data, name for file (" + # str(save_name) + ") is not a string!" + # "\n Therefore, the following data was only returned" + # " but not saved! \n Data:" + str(return_value)) Try to unpickle a file and return, otherwise just return input.
1.916833
2
toontown/coghq/boardbothq/BoardOfficeManagerAI.py
LittleNed/toontown-stride
1
8735
<reponame>LittleNed/toontown-stride<filename>toontown/coghq/boardbothq/BoardOfficeManagerAI.py from direct.directnotify import DirectNotifyGlobal import DistributedBoardOfficeAI from toontown.toonbase import ToontownGlobals from toontown.coghq.boardbothq import BoardOfficeLayout from direct.showbase import DirectObject import random class BoardOfficeManagerAI(DirectObject.DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('BoardOfficeManagerAI') boardofficeId = None def __init__(self, air): DirectObject.DirectObject.__init__(self) self.air = air def getDoId(self): return 0 def createBoardOffice(self, boardofficeId, players): for avId in players: if bboard.has('boardofficeId-%s' % avId): boardofficeId = bboard.get('boardofficeId-%s' % avId) break numFloors = ToontownGlobals.BoardOfficeNumFloors[boardofficeId] floor = random.randrange(numFloors) for avId in players: if bboard.has('mintFloor-%s' % avId): floor = bboard.get('mintFloor-%s' % avId) floor = max(0, floor) floor = min(floor, numFloors - 1) break for avId in players: if bboard.has('mintRoom-%s' % avId): roomId = bboard.get('mintRoom-%s' % avId) for i in xrange(numFloors): layout = BoardOfficeLayout.BoardOfficeLayout(boardofficeId, i) if roomId in layout.getRoomIds(): floor = i else: from toontown.coghq.boardbothq import BoardOfficeRoomSpecs roomName = BoardOfficeRoomSpecs.BoardOfficeRoomId2RoomName[roomId] BoardOfficeManagerAI.notify.warning('room %s (%s) not found in any floor of mint %s' % (roomId, roomName, boardofficeId)) mintZone = self.air.allocateZone() mint = DistributedBoardOfficeAI.DistributedBoardOfficeAI(self.air, boardofficeId, mintZone, floor, players) mint.generateWithRequired(mintZone) return mintZone
from direct.directnotify import DirectNotifyGlobal import DistributedBoardOfficeAI from toontown.toonbase import ToontownGlobals from toontown.coghq.boardbothq import BoardOfficeLayout from direct.showbase import DirectObject import random class BoardOfficeManagerAI(DirectObject.DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('BoardOfficeManagerAI') boardofficeId = None def __init__(self, air): DirectObject.DirectObject.__init__(self) self.air = air def getDoId(self): return 0 def createBoardOffice(self, boardofficeId, players): for avId in players: if bboard.has('boardofficeId-%s' % avId): boardofficeId = bboard.get('boardofficeId-%s' % avId) break numFloors = ToontownGlobals.BoardOfficeNumFloors[boardofficeId] floor = random.randrange(numFloors) for avId in players: if bboard.has('mintFloor-%s' % avId): floor = bboard.get('mintFloor-%s' % avId) floor = max(0, floor) floor = min(floor, numFloors - 1) break for avId in players: if bboard.has('mintRoom-%s' % avId): roomId = bboard.get('mintRoom-%s' % avId) for i in xrange(numFloors): layout = BoardOfficeLayout.BoardOfficeLayout(boardofficeId, i) if roomId in layout.getRoomIds(): floor = i else: from toontown.coghq.boardbothq import BoardOfficeRoomSpecs roomName = BoardOfficeRoomSpecs.BoardOfficeRoomId2RoomName[roomId] BoardOfficeManagerAI.notify.warning('room %s (%s) not found in any floor of mint %s' % (roomId, roomName, boardofficeId)) mintZone = self.air.allocateZone() mint = DistributedBoardOfficeAI.DistributedBoardOfficeAI(self.air, boardofficeId, mintZone, floor, players) mint.generateWithRequired(mintZone) return mintZone
none
1
2.272752
2
ansiblemetrics/utils.py
radon-h2020/AnsibleMetrics
1
8736
<reponame>radon-h2020/AnsibleMetrics from typing import Union def key_value_list(d: Union[dict, list], key=None) -> list: """ This function iterates over all the key-value pairs of a dictionary and returns a list of tuple (key, value) where the key contain only primitive value (i.e., no list or dict), e.g., string, number etc. d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [] key_values = [] if isinstance(d, list): for entry in d: if isinstance(entry, dict): key_values.extend(key_value_list(entry)) else: key_values.append((key, entry)) else: for k, v in d.items(): if k is None or v is None: continue if not isinstance(v, dict) and type(v) != list: key_values.append((k, v)) elif isinstance(v, list): key_values.extend(key_value_list(v, k)) else: key_values.extend(key_value_list(v)) return key_values def all_keys(d: Union[dict, list]) -> list: """ Returns a list of all the keys of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if d is None or not isinstance(d, dict) and not isinstance(d, list): return [] keys = [] if isinstance(d, list): for entry in d: keys.extend(all_keys(entry)) else: for k, v in d.items(): keys.append(k) keys.extend(all_keys(v)) return keys def all_values(d: Union[dict, list]) -> list: """ Returns a list of all the primitive values of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [d] values = [] if isinstance(d, list): for entry in d: values.extend(all_values(entry)) else: for k, v in d.items(): values.extend(all_values(v)) return values
from typing import Union def key_value_list(d: Union[dict, list], key=None) -> list: """ This function iterates over all the key-value pairs of a dictionary and returns a list of tuple (key, value) where the key contain only primitive value (i.e., no list or dict), e.g., string, number etc. d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [] key_values = [] if isinstance(d, list): for entry in d: if isinstance(entry, dict): key_values.extend(key_value_list(entry)) else: key_values.append((key, entry)) else: for k, v in d.items(): if k is None or v is None: continue if not isinstance(v, dict) and type(v) != list: key_values.append((k, v)) elif isinstance(v, list): key_values.extend(key_value_list(v, k)) else: key_values.extend(key_value_list(v)) return key_values def all_keys(d: Union[dict, list]) -> list: """ Returns a list of all the keys of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if d is None or not isinstance(d, dict) and not isinstance(d, list): return [] keys = [] if isinstance(d, list): for entry in d: keys.extend(all_keys(entry)) else: for k, v in d.items(): keys.append(k) keys.extend(all_keys(v)) return keys def all_values(d: Union[dict, list]) -> list: """ Returns a list of all the primitive values of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [d] values = [] if isinstance(d, list): for entry in d: values.extend(all_values(entry)) else: for k, v in d.items(): values.extend(all_values(v)) return values
en
0.635071
This function iterates over all the key-value pairs of a dictionary and returns a list of tuple (key, value) where the key contain only primitive value (i.e., no list or dict), e.g., string, number etc. d -- a dictionary to iterate through Returns a list of all the keys of a dictionary (duplicates included) d -- a dictionary to iterate through Returns a list of all the primitive values of a dictionary (duplicates included) d -- a dictionary to iterate through
4.115702
4
yampy/apis/groups.py
Kunal-Shah-Bose/yam-python
0
8737
<reponame>Kunal-Shah-Bose/yam-python from yampy.apis.utils import ArgumentConverter, none_filter, stringify_booleans from yampy.models import extract_id class GroupsAPI(object): """ Provides an interface for accessing the groups related endpoints of the Yammer API. You should not instantiate this class directly; use the :meth:`yampy.Yammer.groups` method instead. """ def __init__(self, client): """ Initializes a new GroupsAPI that will use the given client object to make HTTP requests. """ self._client = client self._argument_converter = ArgumentConverter( none_filter, stringify_booleans, ) def all(self, mine=None, reverse=None): """ Returns all the groups in the current user's network. Customize the response using the keyword arguments: * mine -- Only return group of current user. * reverse -- return group in descending order by name. """ return self._client.get("/groups", **self._argument_converter( mine=mine, reverse=reverse, )) def find(self, group_id): """ Returns the group identified by the given group_id. """ return self._client.get(self._group_path(group_id)) def members(self, group_id, page=None, reverse=None): """ Returns the group identified by the given group_id. Customize the response using the keyword arguments: * page -- Enable pagination, and return the nth page of 50 users. """ path = "/group_memberships" return self._client.get(path, **self._argument_converter( page=page, reverse=reverse, )) def join(self, group_id): """ Join the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.post(path, **self._argument_converter( group_id=group_id, )) def leave(self, group_id): """ Leave the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.delete(path, **self._argument_converter( group_id=group_id, )) def create(self, name, private=False): """ Create a group. Return Group info """ path = "/groups" return self._client.post(path, **self._argument_converter( name=name, private=private, )) def delete(self, group_id): """ Delete a group. Return True if success """ return self._client.delete(self._group_path(group_id), delete="true") def _group_path(self, group_id): return "/groups/%d" % extract_id(group_id)
from yampy.apis.utils import ArgumentConverter, none_filter, stringify_booleans from yampy.models import extract_id class GroupsAPI(object): """ Provides an interface for accessing the groups related endpoints of the Yammer API. You should not instantiate this class directly; use the :meth:`yampy.Yammer.groups` method instead. """ def __init__(self, client): """ Initializes a new GroupsAPI that will use the given client object to make HTTP requests. """ self._client = client self._argument_converter = ArgumentConverter( none_filter, stringify_booleans, ) def all(self, mine=None, reverse=None): """ Returns all the groups in the current user's network. Customize the response using the keyword arguments: * mine -- Only return group of current user. * reverse -- return group in descending order by name. """ return self._client.get("/groups", **self._argument_converter( mine=mine, reverse=reverse, )) def find(self, group_id): """ Returns the group identified by the given group_id. """ return self._client.get(self._group_path(group_id)) def members(self, group_id, page=None, reverse=None): """ Returns the group identified by the given group_id. Customize the response using the keyword arguments: * page -- Enable pagination, and return the nth page of 50 users. """ path = "/group_memberships" return self._client.get(path, **self._argument_converter( page=page, reverse=reverse, )) def join(self, group_id): """ Join the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.post(path, **self._argument_converter( group_id=group_id, )) def leave(self, group_id): """ Leave the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.delete(path, **self._argument_converter( group_id=group_id, )) def create(self, name, private=False): """ Create a group. Return Group info """ path = "/groups" return self._client.post(path, **self._argument_converter( name=name, private=private, )) def delete(self, group_id): """ Delete a group. Return True if success """ return self._client.delete(self._group_path(group_id), delete="true") def _group_path(self, group_id): return "/groups/%d" % extract_id(group_id)
en
0.728803
Provides an interface for accessing the groups related endpoints of the Yammer API. You should not instantiate this class directly; use the :meth:`yampy.Yammer.groups` method instead. Initializes a new GroupsAPI that will use the given client object to make HTTP requests. Returns all the groups in the current user's network. Customize the response using the keyword arguments: * mine -- Only return group of current user. * reverse -- return group in descending order by name. Returns the group identified by the given group_id. Returns the group identified by the given group_id. Customize the response using the keyword arguments: * page -- Enable pagination, and return the nth page of 50 users. Join the group identified by the given group_id. Return True Leave the group identified by the given group_id. Return True Create a group. Return Group info Delete a group. Return True if success
2.824139
3
phy/gui/actions.py
ycanerol/phy
118
8738
<filename>phy/gui/actions.py # -*- coding: utf-8 -*- """Actions and snippets.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import inspect from functools import partial, wraps import logging import re import sys import traceback from .qt import QKeySequence, QAction, require_qt, input_dialog, busy_cursor, _get_icon from phylib.utils import Bunch logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # Snippet parsing utilities # ----------------------------------------------------------------------------- def _parse_arg(s): """Parse a number or string.""" try: return int(s) except ValueError: pass try: return float(s) except ValueError: pass return s def _parse_list(s): """Parse a comma-separated list of values (strings or numbers).""" # Range: 'x-y' if '-' in s: m, M = map(_parse_arg, s.split('-')) return list(range(m, M + 1)) # List of ids: 'x,y,z' elif ',' in s: return list(map(_parse_arg, s.split(','))) else: return _parse_arg(s) def _parse_snippet(s): """Parse an entire snippet command.""" return tuple(map(_parse_list, s.split(' '))) def _prompt_args(title, docstring, default=None): """Display a prompt dialog requesting function arguments. 'default' is a function returning the default value for the proposed input dialog. """ # There are args, need to display the dialog. # Extract Example: `...` in the docstring to put a predefined text # in the input dialog. logger.debug("Prompting arguments for %s", title) r = re.search('Example: `([^`]+)`', docstring) docstring_ = docstring[:r.start()].strip() if r else docstring try: text = str(default()) if default else (r.group(1) if r else None) except Exception as e: # pragma: no cover logger.error("Error while handling user input: %s", str(e)) return s, ok = input_dialog(title, docstring_, text) if not ok or not s: return # Parse user-supplied arguments and call the function. args = _parse_snippet(s) return args # ----------------------------------------------------------------------------- # Show shortcut utility functions # ----------------------------------------------------------------------------- def _get_shortcut_string(shortcut): """Return a string representation of a shortcut.""" if not shortcut: return '' if isinstance(shortcut, (tuple, list)): return ', '.join([_get_shortcut_string(s) for s in shortcut]) if isinstance(shortcut, str): if hasattr(QKeySequence, shortcut): shortcut = QKeySequence(getattr(QKeySequence, shortcut)) else: return shortcut.lower() assert isinstance(shortcut, QKeySequence) s = shortcut.toString() or '' return str(s).lower() def _get_qkeysequence(shortcut): """Return a QKeySequence or list of QKeySequence from a shortcut string.""" if shortcut is None: return [] if isinstance(shortcut, (tuple, list)): return [_get_qkeysequence(s) for s in shortcut] assert isinstance(shortcut, str) if hasattr(QKeySequence, shortcut): return QKeySequence(getattr(QKeySequence, shortcut)) sequence = QKeySequence.fromString(shortcut) assert not sequence.isEmpty() return sequence def _show_shortcuts(shortcuts): """Display shortcuts.""" out = [] for n in sorted(shortcuts): shortcut = _get_shortcut_string(shortcuts[n]) if not n.startswith('_') and not shortcut.startswith('-'): out.append('- {0:<40} {1:s}'.format(n, shortcut)) if out: print('Keyboard shortcuts') print('\n'.join(out)) print('') def _show_snippets(snippets): """Display snippets.""" out = [] for n in sorted(snippets): snippet = snippets[n] if not n.startswith('_'): out.append('- {0:<40} :{1:s}'.format(n, snippet)) if out: print('Snippets') print('\n'.join(out)) print('') def show_shortcuts_snippets(actions): """Show the shortcuts and snippets of an Actions instance.""" print(actions.name) print('-' * len(actions.name)) print() _show_shortcuts(actions.shortcuts) _show_snippets(actions._default_snippets) # ----------------------------------------------------------------------------- # Actions # ----------------------------------------------------------------------------- def _alias(name): # Get the alias from the character after & if it exists. alias = name[name.index('&') + 1] if '&' in name else name alias = alias.replace(' ', '_').lower() return alias def _expected_args(f): if isinstance(f, partial): argspec = inspect.getfullargspec(f.func) else: argspec = inspect.getfullargspec(f) f_args = argspec.args if 'self' in f_args: f_args.remove('self') # Remove arguments with defaults from the list. if len(argspec.defaults or ()): f_args = f_args[:-len(argspec.defaults)] # Remove arguments supplied in a partial. if isinstance(f, partial): f_args = f_args[len(f.args):] f_args = [arg for arg in f_args if arg not in f.keywords] return tuple(f_args) @require_qt def _create_qaction(gui, **kwargs): # Create the QAction instance. name = kwargs.get('name', '') name = name[0].upper() + name[1:].replace('_', ' ') action = QAction(name, gui) # Show an input dialog if there are args. callback = kwargs.get('callback', None) title = getattr(callback, '__name__', 'action') # Number of expected arguments. n_args = kwargs.get('n_args', None) or len(_expected_args(callback)) @wraps(callback) def wrapped(is_checked, *args): if kwargs.get('checkable', None): args = (is_checked,) + args if kwargs.get('prompt', None): args += _prompt_args( title, docstring, default=kwargs.get('prompt_default', None)) or () if not args: # pragma: no cover logger.debug("User cancelled input prompt, aborting.") return if len(args) < n_args: logger.warning( "Invalid function arguments: expecting %d but got %d", n_args, len(args)) return try: # Set a busy cursor if set_busy is True. with busy_cursor(kwargs.get('set_busy', None)): return callback(*args) except Exception: # pragma: no cover logger.warning("Error when executing action %s.", name) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) action.triggered.connect(wrapped) sequence = _get_qkeysequence(kwargs.get('shortcut', None)) if not isinstance(sequence, (tuple, list)): sequence = [sequence] action.setShortcuts(sequence) assert kwargs.get('docstring', None) docstring = re.sub(r'\s+', ' ', kwargs.get('docstring', None)) docstring += ' (alias: {})'.format(kwargs.get('alias', None)) action.setStatusTip(docstring) action.setWhatsThis(docstring) action.setCheckable(kwargs.get('checkable', None)) action.setChecked(kwargs.get('checked', None)) if kwargs.get('icon', None): action.setIcon(_get_icon(kwargs['icon'])) return action class Actions(object): """Group of actions bound to a GUI. This class attaches to a GUI and implements the following features: * Add and remove actions * Keyboard shortcuts for the actions * Display all shortcuts Constructor ----------- gui : GUI instance name : str Name of this group of actions. menu : str Name of the GUI menu that will contain the actions. submenu : str Name of the GUI submenu that will contain the actions. default_shortcuts : dict Map action names to keyboard shortcuts (regular strings). default_snippets : dict Map action names to snippets (regular strings). """ def __init__( self, gui, name=None, menu=None, submenu=None, view=None, insert_menu_before=None, default_shortcuts=None, default_snippets=None): self._actions_dict = {} self._aliases = {} self._default_shortcuts = default_shortcuts or {} self._default_snippets = default_snippets or {} assert name self.name = name self.menu = menu self.submenu = submenu self.view = view self.view_submenu = None self.insert_menu_before = insert_menu_before self._view_submenus = {} self.gui = gui gui.actions.append(self) # Create the menu when creating the Actions instance. if menu: gui.get_menu(menu, insert_menu_before) def _get_menu(self, menu=None, submenu=None, view=None, view_submenu=None): """Return the QMenu depending on a combination of keyword arguments.""" # Defaults. menu = menu or self.menu submenu = submenu or self.submenu view = view or self.view view_submenu = view_submenu or self.view_submenu # If the action is a view action, it should be added to the view's menu in the dock widget. if view: if view_submenu and view_submenu not in self._view_submenus: self._view_submenus[view_submenu] = view.dock._menu.addMenu(view_submenu) if view_submenu: return self._view_submenus[view_submenu] else: return view.dock._menu # Create the submenu if there is one. if submenu: # Create the submenu. self.gui.get_submenu(menu, submenu) # Make sure the action gets added to the submenu. menu = submenu if menu: return self.gui.get_menu(menu) def add(self, callback=None, name=None, shortcut=None, alias=None, prompt=False, n_args=None, docstring=None, menu=None, submenu=None, view=None, view_submenu=None, verbose=True, checkable=False, checked=False, set_busy=False, prompt_default=None, show_shortcut=True, icon=None, toolbar=False): """Add an action with a keyboard shortcut. Parameters ---------- callback : function Take no argument if checkable is False, or a boolean (checked) if it is True name : str Action name, the callback's name by default. shortcut : str The keyboard shortcut for this action. alias : str Snippet, the name by default. prompt : boolean Whether this action should display a dialog with an input box where the user can write arguments to the callback function. n_args : int If prompt is True, specify the number of expected arguments. set_busy : boolean Whether to use a busy cursor while performing the action. prompt_default : str The default text in the input text box, if prompt is True. docstring : str The action docstring, to be displayed in the status bar when hovering over the action item in the menu. By default, the function's docstring. menu : str The name of the menu where the action should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the action should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the actions are to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. checkable : boolean Whether the action is checkable (toggle on/off). checked : boolean Whether the checkable action is initially checked or not. show_shortcut : boolean Whether to show the shortcut in the Help action that displays all GUI shortcuts. icon : str Hexadecimal code of the font-awesome icon. toolbar : boolean Whether to add the action to the toolbar. """ param_names = sorted(inspect.signature(Actions.add).parameters) l = locals() kwargs = {param_name: l[param_name] for param_name in param_names if param_name != 'self'} if callback is None: # Allow to use either add(func) or @add or @add(...). kwargs.pop('callback', None) return partial(self.add, **kwargs) assert callback # Get the name from the callback function if needed. name = name or callback.__name__ alias = alias or self._default_snippets.get(name, _alias(name)).split(' ')[0] name = name.replace('&', '') shortcut = shortcut or self._default_shortcuts.get(name, None) # Skip existing action. if name in self._actions_dict: return # Set the status tip from the function's docstring. docstring = docstring or callback.__doc__ or name docstring = re.sub(r'[ \t\r\f\v]{2,}', ' ', docstring.strip()) # Create and register the action. kwargs.update(name=name, alias=alias, shortcut=shortcut, docstring=docstring) action = _create_qaction(self.gui, **kwargs) action_obj = Bunch(qaction=action, **kwargs) if verbose and not name.startswith('_'): logger.log(5, "Add action `%s` (%s).", name, _get_shortcut_string(action.shortcut())) self.gui.addAction(action) # Do not show private actions in the menu. if not name.startswith('_'): # Find the menu in which the action should be added. qmenu = self._get_menu( menu=menu, submenu=submenu, view=view, view_submenu=view_submenu) if qmenu: qmenu.addAction(action) # Add the action to the toolbar. if toolbar: self.gui._toolbar.show() self.gui._toolbar.addAction(action) self._actions_dict[name] = action_obj # Register the alias -> name mapping. self._aliases[alias] = name # Set the callback method. if callback: setattr(self, name.lower().replace(' ', '_').replace(':', ''), callback) def separator(self, **kwargs): """Add a separator. Parameters ---------- menu : str The name of the menu where the separator should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the separator should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the separator is to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. """ self._get_menu(**kwargs).addSeparator() def disable(self, name=None): """Disable all actions, or only one if a name is passed.""" if name is None: for name in self._actions_dict: self.disable(name) return self._actions_dict[name].qaction.setEnabled(False) def enable(self, name=None): """Enable all actions, or only one if a name is passed..""" if name is None: for name in self._actions_dict: self.enable(name) return self._actions_dict[name].qaction.setEnabled(True) def get(self, name): """Get a QAction instance from its name.""" return self._actions_dict[name].qaction if name in self._actions_dict else None def run(self, name, *args): """Run an action as specified by its name.""" assert isinstance(name, str) # Resolve the alias if it is an alias. name = self._aliases.get(name, name) # Get the action. action = self._actions_dict.get(name, None) if not action: raise ValueError("Action `{}` doesn't exist.".format(name)) if not name.startswith('_'): logger.debug("Execute action `%s`.", name) try: return action.callback(*args) except TypeError as e: logger.warning("Invalid action arguments: " + str(e)) return def remove(self, name): """Remove an action.""" self.gui.removeAction(self._actions_dict[name].qaction) del self._actions_dict[name] delattr(self, name) def remove_all(self): """Remove all actions.""" names = sorted(self._actions_dict.keys()) for name in names: self.remove(name) @property def shortcuts(self): """A dictionary mapping action names to keyboard shortcuts.""" out = {} for name in sorted(self._actions_dict): action = self._actions_dict[name] if not action.show_shortcut: continue # Discard actions without shortcut and without an alias. if not action.shortcut and not action.alias: continue # Only show alias for actions with no shortcut. alias_str = ' (:%s)' % action.alias if action.alias != name else '' shortcut = action.shortcut or '-' shortcut = shortcut if isinstance(action.shortcut, str) else ', '.join(shortcut) out[name] = '%s%s' % (shortcut, alias_str) return out def show_shortcuts(self): """Display all shortcuts in the console.""" show_shortcuts_snippets(self) def __contains__(self, name): """Whether the Actions group contains a specified action.""" return name in self._actions_dict def __repr__(self): return '<Actions {}>'.format(sorted(self._actions_dict)) # ----------------------------------------------------------------------------- # Snippets # ----------------------------------------------------------------------------- class Snippets(object): """Provide keyboard snippets to quickly execute actions from a GUI. This class attaches to a GUI and an `Actions` instance. To every command is associated a snippet with the same name, or with an alias as indicated in the action. The arguments of the action's callback functions can be provided in the snippet's command with a simple syntax. For example, the following command: ``` :my_action string 3-6 ``` corresponds to: ```python my_action('string', (3, 4, 5, 6)) ``` The snippet mode is activated with the `:` keyboard shortcut. A snippet command is activated with `Enter`, and one can leave the snippet mode with `Escape`. When the snippet mode is enabled (with `:`), this object adds a hidden Qt action for every keystroke. These actions are removed when the snippet mode is disabled. Constructor ----------- gui : GUI instance """ # HACK: Unicode characters do not seem to work on Python 2 cursor = '\u200A\u258C' # Allowed characters in snippet mode. # A Qt shortcut will be created for every character. _snippet_chars = r"abcdefghijklmnopqrstuvwxyz0123456789 ,.;?!_-+~=*/\(){}[]<>&|" def __init__(self, gui): self.gui = gui self._status_message = gui.status_message self.actions = Actions(gui, name='Snippets', menu='&File') # Register snippet mode shortcut. @self.actions.add(shortcut=':') def enable_snippet_mode(): """Enable the snippet mode (type action alias in the status bar).""" self.mode_on() self._create_snippet_actions() self.mode_off() @property def command(self): """This is used to write a snippet message in the status bar. A cursor is appended at the end.""" msg = self.gui.status_message n = len(msg) n_cur = len(self.cursor) return msg[:n - n_cur] @command.setter def command(self, value): value += self.cursor self.gui.unlock_status() self.gui.status_message = value self.gui.lock_status() def _backspace(self): """Erase the last character in the snippet command.""" if self.command == ':': return logger.log(5, "Snippet keystroke `Backspace`.") self.command = self.command[:-1] def _enter(self): """Disable the snippet mode and execute the command.""" command = self.command logger.log(5, "Snippet keystroke `Enter`.") # NOTE: we need to set back the actions (mode_off) before running # the command. self.mode_off() self.run(command) def _create_snippet_actions(self): """Add mock Qt actions for snippet keystrokes. Used to enable snippet mode. """ # One action per allowed character. for i, char in enumerate(self._snippet_chars): def _make_func(char): def callback(): logger.log(5, "Snippet keystroke `%s`.", char) self.command += char return callback # Lowercase letters. self.actions.add( name='_snippet_{}'.format(i), shortcut=char, callback=_make_func(char)) # Uppercase letters. if char in self._snippet_chars[:26]: self.actions.add( name='_snippet_{}_upper'.format(i), shortcut='shift+' + char, callback=_make_func(char.upper())) self.actions.add( name='_snippet_backspace', shortcut='backspace', callback=self._backspace) self.actions.add( name='_snippet_activate', shortcut=('enter', 'return'), callback=self._enter) self.actions.add( name='_snippet_disable', shortcut='escape', callback=self.mode_off) def run(self, snippet): """Execute a snippet command. May be overridden. """ assert snippet[0] == ':' snippet = snippet[1:] snippet_args = _parse_snippet(snippet) name = snippet_args[0] logger.debug("Processing snippet `%s`.", snippet) try: # Try to run the snippet on all attached Actions instances. for actions in self.gui.actions: try: actions.run(name, *snippet_args[1:]) return except ValueError: # This Actions instance doesn't contain the requested # snippet, trying the next attached Actions instance. pass logger.warning("Couldn't find action `%s`.", name) except Exception as e: logger.warning("Error when executing snippet: \"%s\".", str(e)) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) def is_mode_on(self): """Whether the snippet mode is enabled.""" return self.command.startswith(':') def mode_on(self): """Enable the snippet mode.""" logger.debug("Snippet mode enabled, press `escape` to leave this mode.") # Save the current status message. self._status_message = self.gui.status_message self.gui.lock_status() # Silent all actions except the Snippets actions. for actions in self.gui.actions: if actions != self.actions: actions.disable() self.actions.enable() self.command = ':' def mode_off(self): """Disable the snippet mode.""" self.gui.unlock_status() # Reset the GUI status message that was set before the mode was # activated. self.gui.status_message = self._status_message # Re-enable all actions except the Snippets actions. self.actions.disable() for actions in self.gui.actions: if actions != self.actions: actions.enable() # The `:` shortcut should always be enabled. self.actions.enable('enable_snippet_mode')
<filename>phy/gui/actions.py # -*- coding: utf-8 -*- """Actions and snippets.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import inspect from functools import partial, wraps import logging import re import sys import traceback from .qt import QKeySequence, QAction, require_qt, input_dialog, busy_cursor, _get_icon from phylib.utils import Bunch logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # Snippet parsing utilities # ----------------------------------------------------------------------------- def _parse_arg(s): """Parse a number or string.""" try: return int(s) except ValueError: pass try: return float(s) except ValueError: pass return s def _parse_list(s): """Parse a comma-separated list of values (strings or numbers).""" # Range: 'x-y' if '-' in s: m, M = map(_parse_arg, s.split('-')) return list(range(m, M + 1)) # List of ids: 'x,y,z' elif ',' in s: return list(map(_parse_arg, s.split(','))) else: return _parse_arg(s) def _parse_snippet(s): """Parse an entire snippet command.""" return tuple(map(_parse_list, s.split(' '))) def _prompt_args(title, docstring, default=None): """Display a prompt dialog requesting function arguments. 'default' is a function returning the default value for the proposed input dialog. """ # There are args, need to display the dialog. # Extract Example: `...` in the docstring to put a predefined text # in the input dialog. logger.debug("Prompting arguments for %s", title) r = re.search('Example: `([^`]+)`', docstring) docstring_ = docstring[:r.start()].strip() if r else docstring try: text = str(default()) if default else (r.group(1) if r else None) except Exception as e: # pragma: no cover logger.error("Error while handling user input: %s", str(e)) return s, ok = input_dialog(title, docstring_, text) if not ok or not s: return # Parse user-supplied arguments and call the function. args = _parse_snippet(s) return args # ----------------------------------------------------------------------------- # Show shortcut utility functions # ----------------------------------------------------------------------------- def _get_shortcut_string(shortcut): """Return a string representation of a shortcut.""" if not shortcut: return '' if isinstance(shortcut, (tuple, list)): return ', '.join([_get_shortcut_string(s) for s in shortcut]) if isinstance(shortcut, str): if hasattr(QKeySequence, shortcut): shortcut = QKeySequence(getattr(QKeySequence, shortcut)) else: return shortcut.lower() assert isinstance(shortcut, QKeySequence) s = shortcut.toString() or '' return str(s).lower() def _get_qkeysequence(shortcut): """Return a QKeySequence or list of QKeySequence from a shortcut string.""" if shortcut is None: return [] if isinstance(shortcut, (tuple, list)): return [_get_qkeysequence(s) for s in shortcut] assert isinstance(shortcut, str) if hasattr(QKeySequence, shortcut): return QKeySequence(getattr(QKeySequence, shortcut)) sequence = QKeySequence.fromString(shortcut) assert not sequence.isEmpty() return sequence def _show_shortcuts(shortcuts): """Display shortcuts.""" out = [] for n in sorted(shortcuts): shortcut = _get_shortcut_string(shortcuts[n]) if not n.startswith('_') and not shortcut.startswith('-'): out.append('- {0:<40} {1:s}'.format(n, shortcut)) if out: print('Keyboard shortcuts') print('\n'.join(out)) print('') def _show_snippets(snippets): """Display snippets.""" out = [] for n in sorted(snippets): snippet = snippets[n] if not n.startswith('_'): out.append('- {0:<40} :{1:s}'.format(n, snippet)) if out: print('Snippets') print('\n'.join(out)) print('') def show_shortcuts_snippets(actions): """Show the shortcuts and snippets of an Actions instance.""" print(actions.name) print('-' * len(actions.name)) print() _show_shortcuts(actions.shortcuts) _show_snippets(actions._default_snippets) # ----------------------------------------------------------------------------- # Actions # ----------------------------------------------------------------------------- def _alias(name): # Get the alias from the character after & if it exists. alias = name[name.index('&') + 1] if '&' in name else name alias = alias.replace(' ', '_').lower() return alias def _expected_args(f): if isinstance(f, partial): argspec = inspect.getfullargspec(f.func) else: argspec = inspect.getfullargspec(f) f_args = argspec.args if 'self' in f_args: f_args.remove('self') # Remove arguments with defaults from the list. if len(argspec.defaults or ()): f_args = f_args[:-len(argspec.defaults)] # Remove arguments supplied in a partial. if isinstance(f, partial): f_args = f_args[len(f.args):] f_args = [arg for arg in f_args if arg not in f.keywords] return tuple(f_args) @require_qt def _create_qaction(gui, **kwargs): # Create the QAction instance. name = kwargs.get('name', '') name = name[0].upper() + name[1:].replace('_', ' ') action = QAction(name, gui) # Show an input dialog if there are args. callback = kwargs.get('callback', None) title = getattr(callback, '__name__', 'action') # Number of expected arguments. n_args = kwargs.get('n_args', None) or len(_expected_args(callback)) @wraps(callback) def wrapped(is_checked, *args): if kwargs.get('checkable', None): args = (is_checked,) + args if kwargs.get('prompt', None): args += _prompt_args( title, docstring, default=kwargs.get('prompt_default', None)) or () if not args: # pragma: no cover logger.debug("User cancelled input prompt, aborting.") return if len(args) < n_args: logger.warning( "Invalid function arguments: expecting %d but got %d", n_args, len(args)) return try: # Set a busy cursor if set_busy is True. with busy_cursor(kwargs.get('set_busy', None)): return callback(*args) except Exception: # pragma: no cover logger.warning("Error when executing action %s.", name) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) action.triggered.connect(wrapped) sequence = _get_qkeysequence(kwargs.get('shortcut', None)) if not isinstance(sequence, (tuple, list)): sequence = [sequence] action.setShortcuts(sequence) assert kwargs.get('docstring', None) docstring = re.sub(r'\s+', ' ', kwargs.get('docstring', None)) docstring += ' (alias: {})'.format(kwargs.get('alias', None)) action.setStatusTip(docstring) action.setWhatsThis(docstring) action.setCheckable(kwargs.get('checkable', None)) action.setChecked(kwargs.get('checked', None)) if kwargs.get('icon', None): action.setIcon(_get_icon(kwargs['icon'])) return action class Actions(object): """Group of actions bound to a GUI. This class attaches to a GUI and implements the following features: * Add and remove actions * Keyboard shortcuts for the actions * Display all shortcuts Constructor ----------- gui : GUI instance name : str Name of this group of actions. menu : str Name of the GUI menu that will contain the actions. submenu : str Name of the GUI submenu that will contain the actions. default_shortcuts : dict Map action names to keyboard shortcuts (regular strings). default_snippets : dict Map action names to snippets (regular strings). """ def __init__( self, gui, name=None, menu=None, submenu=None, view=None, insert_menu_before=None, default_shortcuts=None, default_snippets=None): self._actions_dict = {} self._aliases = {} self._default_shortcuts = default_shortcuts or {} self._default_snippets = default_snippets or {} assert name self.name = name self.menu = menu self.submenu = submenu self.view = view self.view_submenu = None self.insert_menu_before = insert_menu_before self._view_submenus = {} self.gui = gui gui.actions.append(self) # Create the menu when creating the Actions instance. if menu: gui.get_menu(menu, insert_menu_before) def _get_menu(self, menu=None, submenu=None, view=None, view_submenu=None): """Return the QMenu depending on a combination of keyword arguments.""" # Defaults. menu = menu or self.menu submenu = submenu or self.submenu view = view or self.view view_submenu = view_submenu or self.view_submenu # If the action is a view action, it should be added to the view's menu in the dock widget. if view: if view_submenu and view_submenu not in self._view_submenus: self._view_submenus[view_submenu] = view.dock._menu.addMenu(view_submenu) if view_submenu: return self._view_submenus[view_submenu] else: return view.dock._menu # Create the submenu if there is one. if submenu: # Create the submenu. self.gui.get_submenu(menu, submenu) # Make sure the action gets added to the submenu. menu = submenu if menu: return self.gui.get_menu(menu) def add(self, callback=None, name=None, shortcut=None, alias=None, prompt=False, n_args=None, docstring=None, menu=None, submenu=None, view=None, view_submenu=None, verbose=True, checkable=False, checked=False, set_busy=False, prompt_default=None, show_shortcut=True, icon=None, toolbar=False): """Add an action with a keyboard shortcut. Parameters ---------- callback : function Take no argument if checkable is False, or a boolean (checked) if it is True name : str Action name, the callback's name by default. shortcut : str The keyboard shortcut for this action. alias : str Snippet, the name by default. prompt : boolean Whether this action should display a dialog with an input box where the user can write arguments to the callback function. n_args : int If prompt is True, specify the number of expected arguments. set_busy : boolean Whether to use a busy cursor while performing the action. prompt_default : str The default text in the input text box, if prompt is True. docstring : str The action docstring, to be displayed in the status bar when hovering over the action item in the menu. By default, the function's docstring. menu : str The name of the menu where the action should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the action should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the actions are to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. checkable : boolean Whether the action is checkable (toggle on/off). checked : boolean Whether the checkable action is initially checked or not. show_shortcut : boolean Whether to show the shortcut in the Help action that displays all GUI shortcuts. icon : str Hexadecimal code of the font-awesome icon. toolbar : boolean Whether to add the action to the toolbar. """ param_names = sorted(inspect.signature(Actions.add).parameters) l = locals() kwargs = {param_name: l[param_name] for param_name in param_names if param_name != 'self'} if callback is None: # Allow to use either add(func) or @add or @add(...). kwargs.pop('callback', None) return partial(self.add, **kwargs) assert callback # Get the name from the callback function if needed. name = name or callback.__name__ alias = alias or self._default_snippets.get(name, _alias(name)).split(' ')[0] name = name.replace('&', '') shortcut = shortcut or self._default_shortcuts.get(name, None) # Skip existing action. if name in self._actions_dict: return # Set the status tip from the function's docstring. docstring = docstring or callback.__doc__ or name docstring = re.sub(r'[ \t\r\f\v]{2,}', ' ', docstring.strip()) # Create and register the action. kwargs.update(name=name, alias=alias, shortcut=shortcut, docstring=docstring) action = _create_qaction(self.gui, **kwargs) action_obj = Bunch(qaction=action, **kwargs) if verbose and not name.startswith('_'): logger.log(5, "Add action `%s` (%s).", name, _get_shortcut_string(action.shortcut())) self.gui.addAction(action) # Do not show private actions in the menu. if not name.startswith('_'): # Find the menu in which the action should be added. qmenu = self._get_menu( menu=menu, submenu=submenu, view=view, view_submenu=view_submenu) if qmenu: qmenu.addAction(action) # Add the action to the toolbar. if toolbar: self.gui._toolbar.show() self.gui._toolbar.addAction(action) self._actions_dict[name] = action_obj # Register the alias -> name mapping. self._aliases[alias] = name # Set the callback method. if callback: setattr(self, name.lower().replace(' ', '_').replace(':', ''), callback) def separator(self, **kwargs): """Add a separator. Parameters ---------- menu : str The name of the menu where the separator should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the separator should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the separator is to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. """ self._get_menu(**kwargs).addSeparator() def disable(self, name=None): """Disable all actions, or only one if a name is passed.""" if name is None: for name in self._actions_dict: self.disable(name) return self._actions_dict[name].qaction.setEnabled(False) def enable(self, name=None): """Enable all actions, or only one if a name is passed..""" if name is None: for name in self._actions_dict: self.enable(name) return self._actions_dict[name].qaction.setEnabled(True) def get(self, name): """Get a QAction instance from its name.""" return self._actions_dict[name].qaction if name in self._actions_dict else None def run(self, name, *args): """Run an action as specified by its name.""" assert isinstance(name, str) # Resolve the alias if it is an alias. name = self._aliases.get(name, name) # Get the action. action = self._actions_dict.get(name, None) if not action: raise ValueError("Action `{}` doesn't exist.".format(name)) if not name.startswith('_'): logger.debug("Execute action `%s`.", name) try: return action.callback(*args) except TypeError as e: logger.warning("Invalid action arguments: " + str(e)) return def remove(self, name): """Remove an action.""" self.gui.removeAction(self._actions_dict[name].qaction) del self._actions_dict[name] delattr(self, name) def remove_all(self): """Remove all actions.""" names = sorted(self._actions_dict.keys()) for name in names: self.remove(name) @property def shortcuts(self): """A dictionary mapping action names to keyboard shortcuts.""" out = {} for name in sorted(self._actions_dict): action = self._actions_dict[name] if not action.show_shortcut: continue # Discard actions without shortcut and without an alias. if not action.shortcut and not action.alias: continue # Only show alias for actions with no shortcut. alias_str = ' (:%s)' % action.alias if action.alias != name else '' shortcut = action.shortcut or '-' shortcut = shortcut if isinstance(action.shortcut, str) else ', '.join(shortcut) out[name] = '%s%s' % (shortcut, alias_str) return out def show_shortcuts(self): """Display all shortcuts in the console.""" show_shortcuts_snippets(self) def __contains__(self, name): """Whether the Actions group contains a specified action.""" return name in self._actions_dict def __repr__(self): return '<Actions {}>'.format(sorted(self._actions_dict)) # ----------------------------------------------------------------------------- # Snippets # ----------------------------------------------------------------------------- class Snippets(object): """Provide keyboard snippets to quickly execute actions from a GUI. This class attaches to a GUI and an `Actions` instance. To every command is associated a snippet with the same name, or with an alias as indicated in the action. The arguments of the action's callback functions can be provided in the snippet's command with a simple syntax. For example, the following command: ``` :my_action string 3-6 ``` corresponds to: ```python my_action('string', (3, 4, 5, 6)) ``` The snippet mode is activated with the `:` keyboard shortcut. A snippet command is activated with `Enter`, and one can leave the snippet mode with `Escape`. When the snippet mode is enabled (with `:`), this object adds a hidden Qt action for every keystroke. These actions are removed when the snippet mode is disabled. Constructor ----------- gui : GUI instance """ # HACK: Unicode characters do not seem to work on Python 2 cursor = '\u200A\u258C' # Allowed characters in snippet mode. # A Qt shortcut will be created for every character. _snippet_chars = r"abcdefghijklmnopqrstuvwxyz0123456789 ,.;?!_-+~=*/\(){}[]<>&|" def __init__(self, gui): self.gui = gui self._status_message = gui.status_message self.actions = Actions(gui, name='Snippets', menu='&File') # Register snippet mode shortcut. @self.actions.add(shortcut=':') def enable_snippet_mode(): """Enable the snippet mode (type action alias in the status bar).""" self.mode_on() self._create_snippet_actions() self.mode_off() @property def command(self): """This is used to write a snippet message in the status bar. A cursor is appended at the end.""" msg = self.gui.status_message n = len(msg) n_cur = len(self.cursor) return msg[:n - n_cur] @command.setter def command(self, value): value += self.cursor self.gui.unlock_status() self.gui.status_message = value self.gui.lock_status() def _backspace(self): """Erase the last character in the snippet command.""" if self.command == ':': return logger.log(5, "Snippet keystroke `Backspace`.") self.command = self.command[:-1] def _enter(self): """Disable the snippet mode and execute the command.""" command = self.command logger.log(5, "Snippet keystroke `Enter`.") # NOTE: we need to set back the actions (mode_off) before running # the command. self.mode_off() self.run(command) def _create_snippet_actions(self): """Add mock Qt actions for snippet keystrokes. Used to enable snippet mode. """ # One action per allowed character. for i, char in enumerate(self._snippet_chars): def _make_func(char): def callback(): logger.log(5, "Snippet keystroke `%s`.", char) self.command += char return callback # Lowercase letters. self.actions.add( name='_snippet_{}'.format(i), shortcut=char, callback=_make_func(char)) # Uppercase letters. if char in self._snippet_chars[:26]: self.actions.add( name='_snippet_{}_upper'.format(i), shortcut='shift+' + char, callback=_make_func(char.upper())) self.actions.add( name='_snippet_backspace', shortcut='backspace', callback=self._backspace) self.actions.add( name='_snippet_activate', shortcut=('enter', 'return'), callback=self._enter) self.actions.add( name='_snippet_disable', shortcut='escape', callback=self.mode_off) def run(self, snippet): """Execute a snippet command. May be overridden. """ assert snippet[0] == ':' snippet = snippet[1:] snippet_args = _parse_snippet(snippet) name = snippet_args[0] logger.debug("Processing snippet `%s`.", snippet) try: # Try to run the snippet on all attached Actions instances. for actions in self.gui.actions: try: actions.run(name, *snippet_args[1:]) return except ValueError: # This Actions instance doesn't contain the requested # snippet, trying the next attached Actions instance. pass logger.warning("Couldn't find action `%s`.", name) except Exception as e: logger.warning("Error when executing snippet: \"%s\".", str(e)) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) def is_mode_on(self): """Whether the snippet mode is enabled.""" return self.command.startswith(':') def mode_on(self): """Enable the snippet mode.""" logger.debug("Snippet mode enabled, press `escape` to leave this mode.") # Save the current status message. self._status_message = self.gui.status_message self.gui.lock_status() # Silent all actions except the Snippets actions. for actions in self.gui.actions: if actions != self.actions: actions.disable() self.actions.enable() self.command = ':' def mode_off(self): """Disable the snippet mode.""" self.gui.unlock_status() # Reset the GUI status message that was set before the mode was # activated. self.gui.status_message = self._status_message # Re-enable all actions except the Snippets actions. self.actions.disable() for actions in self.gui.actions: if actions != self.actions: actions.enable() # The `:` shortcut should always be enabled. self.actions.enable('enable_snippet_mode')
en
0.681662
# -*- coding: utf-8 -*- Actions and snippets. # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Snippet parsing utilities # ----------------------------------------------------------------------------- Parse a number or string. Parse a comma-separated list of values (strings or numbers). # Range: 'x-y' # List of ids: 'x,y,z' Parse an entire snippet command. Display a prompt dialog requesting function arguments. 'default' is a function returning the default value for the proposed input dialog. # There are args, need to display the dialog. # Extract Example: `...` in the docstring to put a predefined text # in the input dialog. # pragma: no cover # Parse user-supplied arguments and call the function. # ----------------------------------------------------------------------------- # Show shortcut utility functions # ----------------------------------------------------------------------------- Return a string representation of a shortcut. Return a QKeySequence or list of QKeySequence from a shortcut string. Display shortcuts. Display snippets. Show the shortcuts and snippets of an Actions instance. # ----------------------------------------------------------------------------- # Actions # ----------------------------------------------------------------------------- # Get the alias from the character after & if it exists. # Remove arguments with defaults from the list. # Remove arguments supplied in a partial. # Create the QAction instance. # Show an input dialog if there are args. # Number of expected arguments. # pragma: no cover # Set a busy cursor if set_busy is True. # pragma: no cover Group of actions bound to a GUI. This class attaches to a GUI and implements the following features: * Add and remove actions * Keyboard shortcuts for the actions * Display all shortcuts Constructor ----------- gui : GUI instance name : str Name of this group of actions. menu : str Name of the GUI menu that will contain the actions. submenu : str Name of the GUI submenu that will contain the actions. default_shortcuts : dict Map action names to keyboard shortcuts (regular strings). default_snippets : dict Map action names to snippets (regular strings). # Create the menu when creating the Actions instance. Return the QMenu depending on a combination of keyword arguments. # Defaults. # If the action is a view action, it should be added to the view's menu in the dock widget. # Create the submenu if there is one. # Create the submenu. # Make sure the action gets added to the submenu. Add an action with a keyboard shortcut. Parameters ---------- callback : function Take no argument if checkable is False, or a boolean (checked) if it is True name : str Action name, the callback's name by default. shortcut : str The keyboard shortcut for this action. alias : str Snippet, the name by default. prompt : boolean Whether this action should display a dialog with an input box where the user can write arguments to the callback function. n_args : int If prompt is True, specify the number of expected arguments. set_busy : boolean Whether to use a busy cursor while performing the action. prompt_default : str The default text in the input text box, if prompt is True. docstring : str The action docstring, to be displayed in the status bar when hovering over the action item in the menu. By default, the function's docstring. menu : str The name of the menu where the action should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the action should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the actions are to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. checkable : boolean Whether the action is checkable (toggle on/off). checked : boolean Whether the checkable action is initially checked or not. show_shortcut : boolean Whether to show the shortcut in the Help action that displays all GUI shortcuts. icon : str Hexadecimal code of the font-awesome icon. toolbar : boolean Whether to add the action to the toolbar. # Allow to use either add(func) or @add or @add(...). # Get the name from the callback function if needed. # Skip existing action. # Set the status tip from the function's docstring. # Create and register the action. # Do not show private actions in the menu. # Find the menu in which the action should be added. # Add the action to the toolbar. # Register the alias -> name mapping. # Set the callback method. Add a separator. Parameters ---------- menu : str The name of the menu where the separator should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the separator should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the separator is to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. Disable all actions, or only one if a name is passed. Enable all actions, or only one if a name is passed.. Get a QAction instance from its name. Run an action as specified by its name. # Resolve the alias if it is an alias. # Get the action. Remove an action. Remove all actions. A dictionary mapping action names to keyboard shortcuts. # Discard actions without shortcut and without an alias. # Only show alias for actions with no shortcut. Display all shortcuts in the console. Whether the Actions group contains a specified action. # ----------------------------------------------------------------------------- # Snippets # ----------------------------------------------------------------------------- Provide keyboard snippets to quickly execute actions from a GUI. This class attaches to a GUI and an `Actions` instance. To every command is associated a snippet with the same name, or with an alias as indicated in the action. The arguments of the action's callback functions can be provided in the snippet's command with a simple syntax. For example, the following command: ``` :my_action string 3-6 ``` corresponds to: ```python my_action('string', (3, 4, 5, 6)) ``` The snippet mode is activated with the `:` keyboard shortcut. A snippet command is activated with `Enter`, and one can leave the snippet mode with `Escape`. When the snippet mode is enabled (with `:`), this object adds a hidden Qt action for every keystroke. These actions are removed when the snippet mode is disabled. Constructor ----------- gui : GUI instance # HACK: Unicode characters do not seem to work on Python 2 # Allowed characters in snippet mode. # A Qt shortcut will be created for every character. # Register snippet mode shortcut. Enable the snippet mode (type action alias in the status bar). This is used to write a snippet message in the status bar. A cursor is appended at the end. Erase the last character in the snippet command. Disable the snippet mode and execute the command. # NOTE: we need to set back the actions (mode_off) before running # the command. Add mock Qt actions for snippet keystrokes. Used to enable snippet mode. # One action per allowed character. # Lowercase letters. # Uppercase letters. Execute a snippet command. May be overridden. # Try to run the snippet on all attached Actions instances. # This Actions instance doesn't contain the requested # snippet, trying the next attached Actions instance. Whether the snippet mode is enabled. Enable the snippet mode. # Save the current status message. # Silent all actions except the Snippets actions. Disable the snippet mode. # Reset the GUI status message that was set before the mode was # activated. # Re-enable all actions except the Snippets actions. # The `:` shortcut should always be enabled.
2.36637
2
PP4E-Examples-1.4/Examples/PP4E/Tools/cleanpyc.py
AngelLiang/PP4E
0
8739
""" delete all .pyc bytecode files in a directory tree: use the command line arg as root if given, else current working dir """ import os, sys findonly = False rootdir = os.getcwd() if len(sys.argv) == 1 else sys.argv[1] found = removed = 0 for (thisDirLevel, subsHere, filesHere) in os.walk(rootdir): for filename in filesHere: if filename.endswith('.pyc'): fullname = os.path.join(thisDirLevel, filename) print('=>', fullname) if not findonly: try: os.remove(fullname) removed += 1 except: type, inst = sys.exc_info()[:2] print('*'*4, 'Failed:', filename, type, inst) found += 1 print('Found', found, 'files, removed', removed)
""" delete all .pyc bytecode files in a directory tree: use the command line arg as root if given, else current working dir """ import os, sys findonly = False rootdir = os.getcwd() if len(sys.argv) == 1 else sys.argv[1] found = removed = 0 for (thisDirLevel, subsHere, filesHere) in os.walk(rootdir): for filename in filesHere: if filename.endswith('.pyc'): fullname = os.path.join(thisDirLevel, filename) print('=>', fullname) if not findonly: try: os.remove(fullname) removed += 1 except: type, inst = sys.exc_info()[:2] print('*'*4, 'Failed:', filename, type, inst) found += 1 print('Found', found, 'files, removed', removed)
en
0.866688
delete all .pyc bytecode files in a directory tree: use the command line arg as root if given, else current working dir
2.971683
3
apps.py
louxfaure/sudoc_recouv
1
8740
<reponame>louxfaure/sudoc_recouv from django.apps import AppConfig class SudocRecouvConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'sudoc_recouv' verbose_name = 'Analyses de recouvrement SUDOC'
from django.apps import AppConfig class SudocRecouvConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'sudoc_recouv' verbose_name = 'Analyses de recouvrement SUDOC'
none
1
1.236604
1
src/states.py
amancevice/terraform-aws-slack-interactive-components
24
8741
import boto3 from logger import logger class States: def __init__(self, boto3_session=None): self.boto3_session = boto3_session or boto3.Session() self.client = self.boto3_session.client('stepfunctions') def fail(self, task_token, error, cause): params = dict(taskToken=task_token, error=error, cause=cause) logger.info('SEND TASK FAILURE %s', logger.json(params)) return self.client.send_task_failure(**params) def heartbeat(self, task_token): params = dict(taskToken=task_token) logger.info('SEND TASK HEARTBEAT %s', logger.json(params)) return self.client.send_task_heartbeat(**params) def succeed(self, task_token, output): params = dict(taskToken=task_token, output=output) logger.info('SEND TASK SUCCESS %s', logger.json(params)) return self.client.send_task_success(**params)
import boto3 from logger import logger class States: def __init__(self, boto3_session=None): self.boto3_session = boto3_session or boto3.Session() self.client = self.boto3_session.client('stepfunctions') def fail(self, task_token, error, cause): params = dict(taskToken=task_token, error=error, cause=cause) logger.info('SEND TASK FAILURE %s', logger.json(params)) return self.client.send_task_failure(**params) def heartbeat(self, task_token): params = dict(taskToken=task_token) logger.info('SEND TASK HEARTBEAT %s', logger.json(params)) return self.client.send_task_heartbeat(**params) def succeed(self, task_token, output): params = dict(taskToken=task_token, output=output) logger.info('SEND TASK SUCCESS %s', logger.json(params)) return self.client.send_task_success(**params)
none
1
2.467343
2
apps/controllerx/cx_core/type/light_controller.py
clach04/controllerx
0
8742
from typing import Any, Dict, Optional, Type, Union from cx_const import Light, PredefinedActionsMapping from cx_core.color_helper import get_color_wheel from cx_core.controller import action from cx_core.feature_support.light import LightSupport from cx_core.integration import EventData from cx_core.integration.deconz import DeCONZIntegration from cx_core.integration.z2m import Z2MIntegration from cx_core.release_hold_controller import ReleaseHoldController from cx_core.stepper import Stepper from cx_core.stepper.circular_stepper import CircularStepper from cx_core.stepper.minmax_stepper import MinMaxStepper from cx_core.type_controller import Entity, TypeController DEFAULT_MANUAL_STEPS = 10 DEFAULT_AUTOMATIC_STEPS = 10 DEFAULT_MIN_BRIGHTNESS = 1 DEFAULT_MAX_BRIGHTNESS = 255 DEFAULT_MIN_WHITE_VALUE = 1 DEFAULT_MAX_WHITE_VALUE = 255 DEFAULT_MIN_COLOR_TEMP = 153 DEFAULT_MAX_COLOR_TEMP = 500 DEFAULT_TRANSITION = 300 DEFAULT_ADD_TRANSITION = True DEFAULT_TRANSITION_TURN_TOGGLE = False ColorMode = str # Once the minimum supported version of Python is 3.8, # we can declare the ColorMode as a Literal # ColorMode = Literal["auto", "xy_color", "color_temp"] class LightEntity(Entity): color_mode: ColorMode def __init__(self, name: str, color_mode: ColorMode = "auto") -> None: super().__init__(name) self.color_mode = color_mode class LightController(TypeController[LightEntity], ReleaseHoldController): """ This is the main class that controls the lights for different devices. Type of actions: - On/Off/Toggle - Brightness click and hold - Color temperature click and hold - xy color click and hold If a light supports xy_color and color_temperature, then xy_color will be the default functionality. Parameters taken: - controller (required): Inherited from Controller - light (required): This is either the light entity name or a dictionary as {name: string, color_mode: auto | xy_color | color_temp} - delay (optional): Inherited from ReleaseHoldController - manual_steps (optional): Number of steps to go from min to max when clicking. - automatic_steps (optional): Number of steps to go from min to max when smoothing. """ ATTRIBUTE_BRIGHTNESS = "brightness" ATTRIBUTE_WHITE_VALUE = "white_value" # With the following attribute, it will select color_temp or xy_color, depending on the light. ATTRIBUTE_COLOR = "color" ATTRIBUTE_COLOR_TEMP = "color_temp" ATTRIBUTE_XY_COLOR = "xy_color" index_color = 0 value_attribute = None # These are intermediate variables to store the checked value smooth_power_on_check: bool remove_transition_check: bool domains = ["light"] entity_arg = "light" async def init(self) -> None: manual_steps = self.args.get("manual_steps", DEFAULT_MANUAL_STEPS) automatic_steps = self.args.get("automatic_steps", DEFAULT_AUTOMATIC_STEPS) self.min_brightness = self.args.get("min_brightness", DEFAULT_MIN_BRIGHTNESS) self.max_brightness = self.args.get("max_brightness", DEFAULT_MAX_BRIGHTNESS) self.min_white_value = self.args.get("min_white_value", DEFAULT_MIN_WHITE_VALUE) self.max_white_value = self.args.get("max_white_value", DEFAULT_MAX_WHITE_VALUE) self.min_color_temp = self.args.get("min_color_temp", DEFAULT_MIN_COLOR_TEMP) self.max_color_temp = self.args.get("max_color_temp", DEFAULT_MAX_COLOR_TEMP) self.transition = self.args.get("transition", DEFAULT_TRANSITION) self.color_wheel = get_color_wheel( self.args.get("color_wheel", "default_color_wheel") ) color_stepper = CircularStepper( 0, len(self.color_wheel) - 1, len(self.color_wheel) ) self.manual_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, manual_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, manual_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, manual_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.automatic_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, automatic_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, automatic_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, automatic_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.smooth_power_on = self.args.get( "smooth_power_on", self.supports_smooth_power_on() ) self.add_transition = self.args.get("add_transition", DEFAULT_ADD_TRANSITION) self.add_transition_turn_toggle = self.args.get( "add_transition_turn_toggle", DEFAULT_TRANSITION_TURN_TOGGLE ) await super().init() def _get_entity_type(self) -> Type[LightEntity]: return LightEntity def get_predefined_actions_mapping(self) -> PredefinedActionsMapping: return { Light.ON: self.on, Light.OFF: self.off, Light.TOGGLE: self.toggle, Light.TOGGLE_FULL_BRIGHTNESS: ( self.toggle_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_FULL_WHITE_VALUE: ( self.toggle_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_FULL_COLOR_TEMP: ( self.toggle_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.TOGGLE_MIN_BRIGHTNESS: ( self.toggle_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_MIN_WHITE_VALUE: ( self.toggle_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_MIN_COLOR_TEMP: ( self.toggle_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.RELEASE: self.release, Light.ON_FULL_BRIGHTNESS: ( self.on_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_FULL_WHITE_VALUE: ( self.on_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_FULL_COLOR_TEMP: ( self.on_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.ON_MIN_BRIGHTNESS: ( self.on_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_MIN_WHITE_VALUE: ( self.on_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_MIN_COLOR_TEMP: ( self.on_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.SET_HALF_BRIGHTNESS: ( self.set_value, ( LightController.ATTRIBUTE_BRIGHTNESS, 0.5, ), ), Light.SET_HALF_WHITE_VALUE: ( self.set_value, ( LightController.ATTRIBUTE_WHITE_VALUE, 0.5, ), ), Light.SET_HALF_COLOR_TEMP: ( self.set_value, ( LightController.ATTRIBUTE_COLOR_TEMP, 0.5, ), ), Light.SYNC: self.sync, Light.CLICK_BRIGHTNESS_UP: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.CLICK_BRIGHTNESS_DOWN: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.CLICK_WHITE_VALUE_UP: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.CLICK_WHITE_VALUE_DOWN: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.CLICK_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.CLICK_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.CLICK_COLOR_TEMP_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.CLICK_COLOR_TEMP_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.CLICK_XY_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.CLICK_XY_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_UP: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.HOLD_BRIGHTNESS_DOWN: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.TOGGLE, ), ), Light.HOLD_WHITE_VALUE_UP: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.HOLD_WHITE_VALUE_DOWN: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.HOLD_WHITE_VALUE_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.HOLD_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.HOLD_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_TEMP_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.HOLD_COLOR_TEMP_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.HOLD_COLOR_TEMP_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.TOGGLE, ), ), Light.HOLD_XY_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.HOLD_XY_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_XY_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.TOGGLE, ), ), Light.XYCOLOR_FROM_CONTROLLER: self.xycolor_from_controller, Light.COLORTEMP_FROM_CONTROLLER: self.colortemp_from_controller, } async def check_remove_transition(self, on_from_user: bool) -> bool: return ( not self.add_transition or (on_from_user and not self.add_transition_turn_toggle) or await self.feature_support.not_supported(LightSupport.TRANSITION) ) async def call_light_service(self, service: str, **attributes) -> None: if "transition" not in attributes: attributes["transition"] = self.transition / 1000 if self.remove_transition_check: del attributes["transition"] await self.call_service(service, entity_id=self.entity.name, **attributes) async def _on(self, **attributes) -> None: await self.call_light_service("light/turn_on", **attributes) @action async def on(self, **attributes) -> None: await self._on(**attributes) async def _off(self, **attributes) -> None: await self.call_light_service("light/turn_off", **attributes) @action async def off(self, **attributes) -> None: await self._off(**attributes) async def _toggle(self, **attributes) -> None: await self.call_light_service("light/toggle", **attributes) @action async def toggle(self, **attributes) -> None: await self._toggle(**attributes) async def _set_value(self, attribute: str, fraction: float) -> None: fraction = max(0, min(fraction, 1)) stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): min_ = stepper.minmax.min max_ = stepper.minmax.max value = (max_ - min_) * fraction + min_ await self._on(**{attribute: value}) @action async def set_value(self, attribute: str, fraction: float) -> None: await self._set_value(attribute, fraction) @action async def toggle_full(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.max}) @action async def toggle_min(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.min}) async def _on_full(self, attribute: str) -> None: await self._set_value(attribute, 1) @action async def on_full(self, attribute: str) -> None: await self._on_full(attribute) async def _on_min(self, attribute: str) -> None: await self._set_value(attribute, 0) @action async def on_min(self, attribute: str) -> None: await self._on_min(attribute) @action async def sync(self) -> None: attributes: Dict[Any, Any] = {} try: color_attribute = await self.get_attribute(LightController.ATTRIBUTE_COLOR) if color_attribute == LightController.ATTRIBUTE_COLOR_TEMP: attributes[color_attribute] = 370 # 2700K light else: attributes[color_attribute] = (0.323, 0.329) # white colour except ValueError: self.log( "⚠️ `sync` action will only change brightness", level="WARNING", ascii_encode=False, ) await self._on(**attributes, brightness=self.max_brightness) @action async def xycolor_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color" not in extra: self.log( "`action_color` is not present in the MQTT payload", level="WARNING" ) return xy_color = extra["action_color"] await self._on(xy_color=(xy_color["x"], xy_color["y"])) elif isinstance(self.integration, DeCONZIntegration): if "xy" not in extra: self.log("`xy` is not present in the deCONZ event", level="WARNING") return await self._on(xy_color=extra["xy"]) @action async def colortemp_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color_temperature" not in extra: self.log( "`action_color_temperature` is not present in the MQTT payload", level="WARNING", ) return await self._on(color_temp=extra["action_color_temperature"]) async def get_attribute(self, attribute: str) -> str: if attribute == LightController.ATTRIBUTE_COLOR: if self.entity.color_mode == "auto": if await self.feature_support.is_supported(LightSupport.COLOR): return LightController.ATTRIBUTE_XY_COLOR elif await self.feature_support.is_supported(LightSupport.COLOR_TEMP): return LightController.ATTRIBUTE_COLOR_TEMP else: raise ValueError( "This light does not support xy_color or color_temp" ) else: return self.entity.color_mode else: return attribute async def get_value_attribute(self, attribute: str) -> Union[float, int]: if self.smooth_power_on_check: return 0 if attribute == LightController.ATTRIBUTE_XY_COLOR: return 0 elif ( attribute == LightController.ATTRIBUTE_BRIGHTNESS or attribute == LightController.ATTRIBUTE_WHITE_VALUE or attribute == LightController.ATTRIBUTE_COLOR_TEMP ): value = await self.get_entity_state(self.entity.name, attribute) if value is None: raise ValueError( f"Value for `{attribute}` attribute could not be retrieved " f"from `{self.entity.name}`. " "Check the FAQ to know more about this error: " "https://xaviml.github.io/controllerx/faq" ) else: try: return float(value) except ValueError: raise ValueError( f"Attribute `{attribute}` with `{value}` as a value " "could not be converted to float" ) else: raise ValueError(f"Attribute `{attribute}` not expected") def check_smooth_power_on( self, attribute: str, direction: str, light_state: str ) -> bool: return ( direction != Stepper.DOWN and attribute == self.ATTRIBUTE_BRIGHTNESS and self.smooth_power_on and light_state == "off" ) async def before_action(self, action: str, *args, **kwargs) -> bool: to_return = True if action in ("click", "hold"): attribute, direction = args light_state: str = await self.get_entity_state(self.entity.name) self.smooth_power_on_check = self.check_smooth_power_on( attribute, direction, light_state ) self.remove_transition_check = await self.check_remove_transition( on_from_user=False ) to_return = (light_state == "on") or self.smooth_power_on_check else: self.remove_transition_check = await self.check_remove_transition( on_from_user=True ) self.smooth_power_on_check = False return await super().before_action(action, *args, **kwargs) and to_return @action async def click(self, attribute: str, direction: str) -> None: attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) await self.change_light_state( self.value_attribute, attribute, direction, self.manual_steppers[attribute], "click", ) @action async def hold(self, attribute: str, direction: str) -> None: # type: ignore attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) self.log( f"Attribute value before running the hold action: {self.value_attribute}", level="DEBUG", ) if direction == Stepper.TOGGLE: self.log( f"Previous direction: {self.automatic_steppers[attribute].previous_direction}", level="DEBUG", ) direction = self.automatic_steppers[attribute].get_direction( self.value_attribute, direction ) self.log(f"Going direction: {direction}", level="DEBUG") await super().hold(attribute, direction) async def hold_loop(self, attribute: str, direction: str) -> bool: # type: ignore if self.value_attribute is None: return True return await self.change_light_state( self.value_attribute, attribute, direction, self.automatic_steppers[attribute], "hold", ) async def change_light_state( self, old: float, attribute: str, direction: str, stepper: Stepper, action_type: str, ) -> bool: """ This functions changes the state of the light depending on the previous value and attribute. It returns True when no more changes will need to be done. Otherwise, it returns False. """ attributes: Dict[str, Any] if attribute == LightController.ATTRIBUTE_XY_COLOR: index_color, _ = stepper.step(self.index_color, direction) self.index_color = int(index_color) xy_color = self.color_wheel[self.index_color] attributes = {attribute: xy_color} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) # In case of xy_color mode it never finishes the loop, the hold loop # will only stop if the hold action is called when releasing the button. # I haven't experimented any problems with it, but a future implementation # would be to force the loop to stop after 4 or 5 loops as a safety measure. return False if self.smooth_power_on_check: await self._on_min(attribute) # # After smooth power on, the light should not brighten up. return True new_state_attribute, exceeded = stepper.step(old, direction) new_state_attribute = round(new_state_attribute, 3) attributes = {attribute: new_state_attribute} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) self.value_attribute = new_state_attribute return exceeded def supports_smooth_power_on(self) -> bool: """ This function can be overrided for each device to indicate the default behaviour of the controller when the associated light is off and an event for incrementing brightness is received. Returns True if the associated light should be turned on with minimum brightness if an event for incrementing brightness is received, while the lamp is off. The behaviour can be overridden by the user with the 'smooth_power_on' option in app configuration. """ return False
from typing import Any, Dict, Optional, Type, Union from cx_const import Light, PredefinedActionsMapping from cx_core.color_helper import get_color_wheel from cx_core.controller import action from cx_core.feature_support.light import LightSupport from cx_core.integration import EventData from cx_core.integration.deconz import DeCONZIntegration from cx_core.integration.z2m import Z2MIntegration from cx_core.release_hold_controller import ReleaseHoldController from cx_core.stepper import Stepper from cx_core.stepper.circular_stepper import CircularStepper from cx_core.stepper.minmax_stepper import MinMaxStepper from cx_core.type_controller import Entity, TypeController DEFAULT_MANUAL_STEPS = 10 DEFAULT_AUTOMATIC_STEPS = 10 DEFAULT_MIN_BRIGHTNESS = 1 DEFAULT_MAX_BRIGHTNESS = 255 DEFAULT_MIN_WHITE_VALUE = 1 DEFAULT_MAX_WHITE_VALUE = 255 DEFAULT_MIN_COLOR_TEMP = 153 DEFAULT_MAX_COLOR_TEMP = 500 DEFAULT_TRANSITION = 300 DEFAULT_ADD_TRANSITION = True DEFAULT_TRANSITION_TURN_TOGGLE = False ColorMode = str # Once the minimum supported version of Python is 3.8, # we can declare the ColorMode as a Literal # ColorMode = Literal["auto", "xy_color", "color_temp"] class LightEntity(Entity): color_mode: ColorMode def __init__(self, name: str, color_mode: ColorMode = "auto") -> None: super().__init__(name) self.color_mode = color_mode class LightController(TypeController[LightEntity], ReleaseHoldController): """ This is the main class that controls the lights for different devices. Type of actions: - On/Off/Toggle - Brightness click and hold - Color temperature click and hold - xy color click and hold If a light supports xy_color and color_temperature, then xy_color will be the default functionality. Parameters taken: - controller (required): Inherited from Controller - light (required): This is either the light entity name or a dictionary as {name: string, color_mode: auto | xy_color | color_temp} - delay (optional): Inherited from ReleaseHoldController - manual_steps (optional): Number of steps to go from min to max when clicking. - automatic_steps (optional): Number of steps to go from min to max when smoothing. """ ATTRIBUTE_BRIGHTNESS = "brightness" ATTRIBUTE_WHITE_VALUE = "white_value" # With the following attribute, it will select color_temp or xy_color, depending on the light. ATTRIBUTE_COLOR = "color" ATTRIBUTE_COLOR_TEMP = "color_temp" ATTRIBUTE_XY_COLOR = "xy_color" index_color = 0 value_attribute = None # These are intermediate variables to store the checked value smooth_power_on_check: bool remove_transition_check: bool domains = ["light"] entity_arg = "light" async def init(self) -> None: manual_steps = self.args.get("manual_steps", DEFAULT_MANUAL_STEPS) automatic_steps = self.args.get("automatic_steps", DEFAULT_AUTOMATIC_STEPS) self.min_brightness = self.args.get("min_brightness", DEFAULT_MIN_BRIGHTNESS) self.max_brightness = self.args.get("max_brightness", DEFAULT_MAX_BRIGHTNESS) self.min_white_value = self.args.get("min_white_value", DEFAULT_MIN_WHITE_VALUE) self.max_white_value = self.args.get("max_white_value", DEFAULT_MAX_WHITE_VALUE) self.min_color_temp = self.args.get("min_color_temp", DEFAULT_MIN_COLOR_TEMP) self.max_color_temp = self.args.get("max_color_temp", DEFAULT_MAX_COLOR_TEMP) self.transition = self.args.get("transition", DEFAULT_TRANSITION) self.color_wheel = get_color_wheel( self.args.get("color_wheel", "default_color_wheel") ) color_stepper = CircularStepper( 0, len(self.color_wheel) - 1, len(self.color_wheel) ) self.manual_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, manual_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, manual_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, manual_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.automatic_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, automatic_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, automatic_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, automatic_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.smooth_power_on = self.args.get( "smooth_power_on", self.supports_smooth_power_on() ) self.add_transition = self.args.get("add_transition", DEFAULT_ADD_TRANSITION) self.add_transition_turn_toggle = self.args.get( "add_transition_turn_toggle", DEFAULT_TRANSITION_TURN_TOGGLE ) await super().init() def _get_entity_type(self) -> Type[LightEntity]: return LightEntity def get_predefined_actions_mapping(self) -> PredefinedActionsMapping: return { Light.ON: self.on, Light.OFF: self.off, Light.TOGGLE: self.toggle, Light.TOGGLE_FULL_BRIGHTNESS: ( self.toggle_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_FULL_WHITE_VALUE: ( self.toggle_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_FULL_COLOR_TEMP: ( self.toggle_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.TOGGLE_MIN_BRIGHTNESS: ( self.toggle_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_MIN_WHITE_VALUE: ( self.toggle_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_MIN_COLOR_TEMP: ( self.toggle_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.RELEASE: self.release, Light.ON_FULL_BRIGHTNESS: ( self.on_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_FULL_WHITE_VALUE: ( self.on_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_FULL_COLOR_TEMP: ( self.on_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.ON_MIN_BRIGHTNESS: ( self.on_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_MIN_WHITE_VALUE: ( self.on_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_MIN_COLOR_TEMP: ( self.on_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.SET_HALF_BRIGHTNESS: ( self.set_value, ( LightController.ATTRIBUTE_BRIGHTNESS, 0.5, ), ), Light.SET_HALF_WHITE_VALUE: ( self.set_value, ( LightController.ATTRIBUTE_WHITE_VALUE, 0.5, ), ), Light.SET_HALF_COLOR_TEMP: ( self.set_value, ( LightController.ATTRIBUTE_COLOR_TEMP, 0.5, ), ), Light.SYNC: self.sync, Light.CLICK_BRIGHTNESS_UP: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.CLICK_BRIGHTNESS_DOWN: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.CLICK_WHITE_VALUE_UP: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.CLICK_WHITE_VALUE_DOWN: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.CLICK_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.CLICK_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.CLICK_COLOR_TEMP_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.CLICK_COLOR_TEMP_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.CLICK_XY_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.CLICK_XY_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_UP: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.HOLD_BRIGHTNESS_DOWN: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.TOGGLE, ), ), Light.HOLD_WHITE_VALUE_UP: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.HOLD_WHITE_VALUE_DOWN: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.HOLD_WHITE_VALUE_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.HOLD_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.HOLD_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_TEMP_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.HOLD_COLOR_TEMP_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.HOLD_COLOR_TEMP_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.TOGGLE, ), ), Light.HOLD_XY_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.HOLD_XY_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_XY_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.TOGGLE, ), ), Light.XYCOLOR_FROM_CONTROLLER: self.xycolor_from_controller, Light.COLORTEMP_FROM_CONTROLLER: self.colortemp_from_controller, } async def check_remove_transition(self, on_from_user: bool) -> bool: return ( not self.add_transition or (on_from_user and not self.add_transition_turn_toggle) or await self.feature_support.not_supported(LightSupport.TRANSITION) ) async def call_light_service(self, service: str, **attributes) -> None: if "transition" not in attributes: attributes["transition"] = self.transition / 1000 if self.remove_transition_check: del attributes["transition"] await self.call_service(service, entity_id=self.entity.name, **attributes) async def _on(self, **attributes) -> None: await self.call_light_service("light/turn_on", **attributes) @action async def on(self, **attributes) -> None: await self._on(**attributes) async def _off(self, **attributes) -> None: await self.call_light_service("light/turn_off", **attributes) @action async def off(self, **attributes) -> None: await self._off(**attributes) async def _toggle(self, **attributes) -> None: await self.call_light_service("light/toggle", **attributes) @action async def toggle(self, **attributes) -> None: await self._toggle(**attributes) async def _set_value(self, attribute: str, fraction: float) -> None: fraction = max(0, min(fraction, 1)) stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): min_ = stepper.minmax.min max_ = stepper.minmax.max value = (max_ - min_) * fraction + min_ await self._on(**{attribute: value}) @action async def set_value(self, attribute: str, fraction: float) -> None: await self._set_value(attribute, fraction) @action async def toggle_full(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.max}) @action async def toggle_min(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.min}) async def _on_full(self, attribute: str) -> None: await self._set_value(attribute, 1) @action async def on_full(self, attribute: str) -> None: await self._on_full(attribute) async def _on_min(self, attribute: str) -> None: await self._set_value(attribute, 0) @action async def on_min(self, attribute: str) -> None: await self._on_min(attribute) @action async def sync(self) -> None: attributes: Dict[Any, Any] = {} try: color_attribute = await self.get_attribute(LightController.ATTRIBUTE_COLOR) if color_attribute == LightController.ATTRIBUTE_COLOR_TEMP: attributes[color_attribute] = 370 # 2700K light else: attributes[color_attribute] = (0.323, 0.329) # white colour except ValueError: self.log( "⚠️ `sync` action will only change brightness", level="WARNING", ascii_encode=False, ) await self._on(**attributes, brightness=self.max_brightness) @action async def xycolor_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color" not in extra: self.log( "`action_color` is not present in the MQTT payload", level="WARNING" ) return xy_color = extra["action_color"] await self._on(xy_color=(xy_color["x"], xy_color["y"])) elif isinstance(self.integration, DeCONZIntegration): if "xy" not in extra: self.log("`xy` is not present in the deCONZ event", level="WARNING") return await self._on(xy_color=extra["xy"]) @action async def colortemp_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color_temperature" not in extra: self.log( "`action_color_temperature` is not present in the MQTT payload", level="WARNING", ) return await self._on(color_temp=extra["action_color_temperature"]) async def get_attribute(self, attribute: str) -> str: if attribute == LightController.ATTRIBUTE_COLOR: if self.entity.color_mode == "auto": if await self.feature_support.is_supported(LightSupport.COLOR): return LightController.ATTRIBUTE_XY_COLOR elif await self.feature_support.is_supported(LightSupport.COLOR_TEMP): return LightController.ATTRIBUTE_COLOR_TEMP else: raise ValueError( "This light does not support xy_color or color_temp" ) else: return self.entity.color_mode else: return attribute async def get_value_attribute(self, attribute: str) -> Union[float, int]: if self.smooth_power_on_check: return 0 if attribute == LightController.ATTRIBUTE_XY_COLOR: return 0 elif ( attribute == LightController.ATTRIBUTE_BRIGHTNESS or attribute == LightController.ATTRIBUTE_WHITE_VALUE or attribute == LightController.ATTRIBUTE_COLOR_TEMP ): value = await self.get_entity_state(self.entity.name, attribute) if value is None: raise ValueError( f"Value for `{attribute}` attribute could not be retrieved " f"from `{self.entity.name}`. " "Check the FAQ to know more about this error: " "https://xaviml.github.io/controllerx/faq" ) else: try: return float(value) except ValueError: raise ValueError( f"Attribute `{attribute}` with `{value}` as a value " "could not be converted to float" ) else: raise ValueError(f"Attribute `{attribute}` not expected") def check_smooth_power_on( self, attribute: str, direction: str, light_state: str ) -> bool: return ( direction != Stepper.DOWN and attribute == self.ATTRIBUTE_BRIGHTNESS and self.smooth_power_on and light_state == "off" ) async def before_action(self, action: str, *args, **kwargs) -> bool: to_return = True if action in ("click", "hold"): attribute, direction = args light_state: str = await self.get_entity_state(self.entity.name) self.smooth_power_on_check = self.check_smooth_power_on( attribute, direction, light_state ) self.remove_transition_check = await self.check_remove_transition( on_from_user=False ) to_return = (light_state == "on") or self.smooth_power_on_check else: self.remove_transition_check = await self.check_remove_transition( on_from_user=True ) self.smooth_power_on_check = False return await super().before_action(action, *args, **kwargs) and to_return @action async def click(self, attribute: str, direction: str) -> None: attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) await self.change_light_state( self.value_attribute, attribute, direction, self.manual_steppers[attribute], "click", ) @action async def hold(self, attribute: str, direction: str) -> None: # type: ignore attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) self.log( f"Attribute value before running the hold action: {self.value_attribute}", level="DEBUG", ) if direction == Stepper.TOGGLE: self.log( f"Previous direction: {self.automatic_steppers[attribute].previous_direction}", level="DEBUG", ) direction = self.automatic_steppers[attribute].get_direction( self.value_attribute, direction ) self.log(f"Going direction: {direction}", level="DEBUG") await super().hold(attribute, direction) async def hold_loop(self, attribute: str, direction: str) -> bool: # type: ignore if self.value_attribute is None: return True return await self.change_light_state( self.value_attribute, attribute, direction, self.automatic_steppers[attribute], "hold", ) async def change_light_state( self, old: float, attribute: str, direction: str, stepper: Stepper, action_type: str, ) -> bool: """ This functions changes the state of the light depending on the previous value and attribute. It returns True when no more changes will need to be done. Otherwise, it returns False. """ attributes: Dict[str, Any] if attribute == LightController.ATTRIBUTE_XY_COLOR: index_color, _ = stepper.step(self.index_color, direction) self.index_color = int(index_color) xy_color = self.color_wheel[self.index_color] attributes = {attribute: xy_color} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) # In case of xy_color mode it never finishes the loop, the hold loop # will only stop if the hold action is called when releasing the button. # I haven't experimented any problems with it, but a future implementation # would be to force the loop to stop after 4 or 5 loops as a safety measure. return False if self.smooth_power_on_check: await self._on_min(attribute) # # After smooth power on, the light should not brighten up. return True new_state_attribute, exceeded = stepper.step(old, direction) new_state_attribute = round(new_state_attribute, 3) attributes = {attribute: new_state_attribute} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) self.value_attribute = new_state_attribute return exceeded def supports_smooth_power_on(self) -> bool: """ This function can be overrided for each device to indicate the default behaviour of the controller when the associated light is off and an event for incrementing brightness is received. Returns True if the associated light should be turned on with minimum brightness if an event for incrementing brightness is received, while the lamp is off. The behaviour can be overridden by the user with the 'smooth_power_on' option in app configuration. """ return False
en
0.846925
# Once the minimum supported version of Python is 3.8, # we can declare the ColorMode as a Literal # ColorMode = Literal["auto", "xy_color", "color_temp"] This is the main class that controls the lights for different devices. Type of actions: - On/Off/Toggle - Brightness click and hold - Color temperature click and hold - xy color click and hold If a light supports xy_color and color_temperature, then xy_color will be the default functionality. Parameters taken: - controller (required): Inherited from Controller - light (required): This is either the light entity name or a dictionary as {name: string, color_mode: auto | xy_color | color_temp} - delay (optional): Inherited from ReleaseHoldController - manual_steps (optional): Number of steps to go from min to max when clicking. - automatic_steps (optional): Number of steps to go from min to max when smoothing. # With the following attribute, it will select color_temp or xy_color, depending on the light. # These are intermediate variables to store the checked value # 2700K light # white colour # type: ignore # type: ignore This functions changes the state of the light depending on the previous value and attribute. It returns True when no more changes will need to be done. Otherwise, it returns False. # In case of xy_color mode it never finishes the loop, the hold loop # will only stop if the hold action is called when releasing the button. # I haven't experimented any problems with it, but a future implementation # would be to force the loop to stop after 4 or 5 loops as a safety measure. # # After smooth power on, the light should not brighten up. This function can be overrided for each device to indicate the default behaviour of the controller when the associated light is off and an event for incrementing brightness is received. Returns True if the associated light should be turned on with minimum brightness if an event for incrementing brightness is received, while the lamp is off. The behaviour can be overridden by the user with the 'smooth_power_on' option in app configuration.
2.642417
3
kts/core/types.py
konodyuk/kts
18
8743
from typing import Union import pandas as pd from kts.core.frame import KTSFrame AnyFrame = Union[pd.DataFrame, KTSFrame]
from typing import Union import pandas as pd from kts.core.frame import KTSFrame AnyFrame = Union[pd.DataFrame, KTSFrame]
none
1
1.69837
2
krispy/mod_user/models.py
jlaura/krispy
2
8744
<filename>krispy/mod_user/models.py from app import db from flask.ext.login import UserMixin class User(UserMixin, db.Model): __tablename__ = 'oauth2users' id = db.Column(db.Integer, primary_key=True) social_id = db.Column(db.String(64), nullable=False, unique=True) nickname = db.Column(db.String(64), nullable=False) email = db.Column(db.String(64), nullable=True)
<filename>krispy/mod_user/models.py from app import db from flask.ext.login import UserMixin class User(UserMixin, db.Model): __tablename__ = 'oauth2users' id = db.Column(db.Integer, primary_key=True) social_id = db.Column(db.String(64), nullable=False, unique=True) nickname = db.Column(db.String(64), nullable=False) email = db.Column(db.String(64), nullable=True)
none
1
2.216953
2
blog_app/blog/views.py
flxj/Django_blog
1
8745
<gh_stars>1-10 import markdown from comments.forms import CommentForm,BookCommentForm,MovieCommentForm from django.shortcuts import render, get_object_or_404 from.models import Post,Category,Tag, Book,Movie #from django.http import HttpResponse from django.views.generic import ListView, DetailView from django.utils.text import slugify from markdown.extensions.toc import TocExtension from django.db.models import Q """ def index(request): #post_list = Post.objects.all().order_by('-created_time') post_list = Post.objects.all() return render(request, 'blog/index.html', context={'post_list': post_list}) """ class IndexView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' paginate_by = 10 def get_context_data(self, **kwargs): """ 在视图函数中将模板变量传递给模板是通过给 render 函数的 context 参数传递一个字典实现的, 例如 render(request, 'blog/index.html', context={'post_list': post_list}), 这里传递了一个 {'post_list': post_list} 字典给模板。 在类视图中,这个需要传递的模板变量字典是通过 get_context_data 获得的, 所以我们复写该方法,以便我们能够自己再插入一些我们自定义的模板变量进去。 """ # 首先获得父类生成的传递给模板的字典。 context = super().get_context_data(**kwargs) # 父类生成的字典中已有 paginator、page_obj、is_paginated 这三个模板变量, # paginator 是 Paginator 的一个实例, # page_obj 是 Page 的一个实例, # is_paginated 是一个布尔变量,用于指示是否已分页。 # 例如如果规定每页 10 个数据,而本身只有 5 个数据,其实就用不着分页,此时 is_paginated=False。 # 关于什么是 Paginator,Page 类在 Django Pagination 简单分页:http://zmrenwu.com/post/34/ 中已有详细说明。 # 由于 context 是一个字典,所以调用 get 方法从中取出某个键对应的值。 paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') # 调用自己写的 pagination_data 方法获得显示分页导航条需要的数据,见下方。 pagination_data = self.pagination_data(paginator, page, is_paginated) # 将分页导航条的模板变量更新到 context 中,注意 pagination_data 方法返回的也是一个字典。 context.update(pagination_data) # 将更新后的 context 返回,以便 ListView 使用这个字典中的模板变量去渲染模板。 # 注意此时 context 字典中已有了显示分页导航条所需的数据。 return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: # 如果没有分页,则无需显示分页导航条,不用任何分页导航条的数据,因此返回一个空的字典 return {} # 当前页左边连续的页码号,初始值为空 left = [] # 当前页右边连续的页码号,初始值为空 right = [] # 标示第 1 页页码后是否需要显示省略号 left_has_more = False # 标示最后一页页码前是否需要显示省略号 right_has_more = False # 标示是否需要显示第 1 页的页码号。 # 因为如果当前页左边的连续页码号中已经含有第 1 页的页码号,此时就无需再显示第 1 页的页码号, # 其它情况下第一页的页码是始终需要显示的。 # 初始值为 False first = False # 标示是否需要显示最后一页的页码号。 # 需要此指示变量的理由和上面相同。 last = False # 获得用户当前请求的页码号 page_number = page.number # 获得分页后的总页数 total_pages = paginator.num_pages # 获得整个分页页码列表,比如分了四页,那么就是 [1, 2, 3, 4] page_range = paginator.page_range if page_number == 1: # 如果用户请求的是第一页的数据,那么当前页左边的不需要数据,因此 left=[](已默认为空)。 # 此时只要获取当前页右边的连续页码号, # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 right = [2, 3]。 # 注意这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 right = page_range[page_number:page_number + 2] # 如果最右边的页码号比最后一页的页码号减去 1 还要小, # 说明最右边的页码号和最后一页的页码号之间还有其它页码,因此需要显示省略号,通过 right_has_more 来指示。 if right[-1] < total_pages - 1: right_has_more = True # 如果最右边的页码号比最后一页的页码号小,说明当前页右边的连续页码号中不包含最后一页的页码 # 所以需要显示最后一页的页码号,通过 last 来指示 if right[-1] < total_pages: last = True elif page_number == total_pages: # 如果用户请求的是最后一页的数据,那么当前页右边就不需要数据,因此 right=[](已默认为空), # 此时只要获取当前页左边的连续页码号。 # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 left = [2, 3] # 这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] # 如果最左边的页码号比第 2 页页码号还大, # 说明最左边的页码号和第 1 页的页码号之间还有其它页码,因此需要显示省略号,通过 left_has_more 来指示。 if left[0] > 2: left_has_more = True # 如果最左边的页码号比第 1 页的页码号大,说明当前页左边的连续页码号中不包含第一页的页码, # 所以需要显示第一页的页码号,通过 first 来指示 if left[0] > 1: first = True else: # 用户请求的既不是最后一页,也不是第 1 页,则需要获取当前页左右两边的连续页码号, # 这里只获取了当前页码前后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] # 是否需要显示最后一页和最后一页前的省略号 if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True # 是否需要显示第 1 页和第 1 页后的省略号 if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data #显示全文 """ def detail(request, pk): post = get_object_or_404(Post, pk=pk) # 阅读量 +1 post.increase_views() post.body = markdown.markdown(post.body, extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', 'markdown.extensions.tables', ]) form = CommentForm() # 获取这篇 post 下的全部评论 comment_list = post.comment_set.all() # 将文章、表单、以及文章下的评论列表作为模板变量传给 detail.html 模板,以便渲染相应数据。 context = {'post': post, 'form': form, 'comment_list': comment_list } return render(request, 'blog/detail.html', context=context) """ class PostDetailView(DetailView): model = Post template_name = 'blog/detail.html' context_object_name = 'post' def get(self, request, *args, **kwargs): # 覆写 get 方法的目的是因为每当文章被访问一次,就得将文章阅读量 +1 # get 方法返回的是一个 HttpResponse 实例 # 之所以需要先调用父类的 get 方法,是因为只有当 get 方法被调用后, # 才有 self.object 属性,其值为 Post 模型实例,即被访问的文章 post response = super(PostDetailView, self).get(request, *args, **kwargs) # 将文章阅读量 +1 # 注意 self.object 的值就是被访问的文章 post self.object.increase_views() # 视图必须返回一个 HttpResponse 对象 return response def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 post 的 body 值进行渲染 post = super(PostDetailView, self).get_object(queryset=None) #此处先将markdown禁掉,因为显然经过markdown渲染的文本,再经过MathJax渲染就不能看了 #但是不经markdown渲染,代码段又不能正常显示,淦 #所以以后写带公式的博文,公式格式参考MathJax附带的样例,防止自己写的经过markdown渲染后抽风 md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', TocExtension(slugify=slugify), ]) post.body = md.convert(post.body) post.toc = md.toc return post def get_context_data(self, **kwargs): # 覆写 get_context_data 的目的是因为除了将 post 传递给模板外(DetailView 已经帮我们完成), # 还要把评论表单、post 下的评论列表传递给模板。 context = super(PostDetailView, self).get_context_data(**kwargs) form = CommentForm() comment_list = self.object.comment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #查看归档 """ def archives(request, year, month): post_list = Post.objects.filter(created_time__year=year, created_time__month=month ).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class ArchivesView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(ArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) #查看分类文章 """ def category(request, pk): cate = get_object_or_404(Category, pk=pk) post_list = Post.objects.filter(category=cate).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class CategoryView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): cate = get_object_or_404(Category, pk=self.kwargs.get('pk')) return super(CategoryView, self).get_queryset().filter(category=cate) #查看标签文章 class TagView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): tag = get_object_or_404(Tag, pk=self.kwargs.get('pk')) return super(TagView, self).get_queryset().filter(tags=tag) #文章搜索 def search(request): q = request.GET.get('q') error_msg = '' if not q: error_msg = "请输入关键词" return render(request, 'blog/index.html', {'error_msg': error_msg}) post_list = Post.objects.filter(Q(title__icontains=q) | Q(body__icontains=q)) return render(request, 'blog/index.html', {'error_msg': error_msg, 'post_list': post_list}) #查看书评 class BookView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' paginate_by = 20 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class BookDetailView(DetailView): model = Book template_name = 'blog/bookdetail.html' context_object_name = 'book' def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 book 的 review 值进行渲染 book = super(BookDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) book.review = md.convert(book.review) #book.toc = md.toc return book def get_context_data(self, **kwargs): context = super(BookDetailView, self).get_context_data(**kwargs) form = BookCommentForm() comment_list = self.object.bookcomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #书评归档 class BookArchivesView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(BookArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) ###影评相关 class FilmView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' paginate_by = 36 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class FilmDetailView(DetailView): model = Movie template_name = 'blog/filmdetail.html' context_object_name = 'film' def get_object(self, queryset=None): film = super(FilmDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) film.review = md.convert(film.review) #film.toc = md.toc return film def get_context_data(self, **kwargs): context = super(FilmDetailView, self).get_context_data(**kwargs) form = MovieCommentForm() comment_list = self.object.moviecomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #影评归档 class FilmArchivesView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(FilmArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) def about(request): return render(request, 'blog/about.html')
import markdown from comments.forms import CommentForm,BookCommentForm,MovieCommentForm from django.shortcuts import render, get_object_or_404 from.models import Post,Category,Tag, Book,Movie #from django.http import HttpResponse from django.views.generic import ListView, DetailView from django.utils.text import slugify from markdown.extensions.toc import TocExtension from django.db.models import Q """ def index(request): #post_list = Post.objects.all().order_by('-created_time') post_list = Post.objects.all() return render(request, 'blog/index.html', context={'post_list': post_list}) """ class IndexView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' paginate_by = 10 def get_context_data(self, **kwargs): """ 在视图函数中将模板变量传递给模板是通过给 render 函数的 context 参数传递一个字典实现的, 例如 render(request, 'blog/index.html', context={'post_list': post_list}), 这里传递了一个 {'post_list': post_list} 字典给模板。 在类视图中,这个需要传递的模板变量字典是通过 get_context_data 获得的, 所以我们复写该方法,以便我们能够自己再插入一些我们自定义的模板变量进去。 """ # 首先获得父类生成的传递给模板的字典。 context = super().get_context_data(**kwargs) # 父类生成的字典中已有 paginator、page_obj、is_paginated 这三个模板变量, # paginator 是 Paginator 的一个实例, # page_obj 是 Page 的一个实例, # is_paginated 是一个布尔变量,用于指示是否已分页。 # 例如如果规定每页 10 个数据,而本身只有 5 个数据,其实就用不着分页,此时 is_paginated=False。 # 关于什么是 Paginator,Page 类在 Django Pagination 简单分页:http://zmrenwu.com/post/34/ 中已有详细说明。 # 由于 context 是一个字典,所以调用 get 方法从中取出某个键对应的值。 paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') # 调用自己写的 pagination_data 方法获得显示分页导航条需要的数据,见下方。 pagination_data = self.pagination_data(paginator, page, is_paginated) # 将分页导航条的模板变量更新到 context 中,注意 pagination_data 方法返回的也是一个字典。 context.update(pagination_data) # 将更新后的 context 返回,以便 ListView 使用这个字典中的模板变量去渲染模板。 # 注意此时 context 字典中已有了显示分页导航条所需的数据。 return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: # 如果没有分页,则无需显示分页导航条,不用任何分页导航条的数据,因此返回一个空的字典 return {} # 当前页左边连续的页码号,初始值为空 left = [] # 当前页右边连续的页码号,初始值为空 right = [] # 标示第 1 页页码后是否需要显示省略号 left_has_more = False # 标示最后一页页码前是否需要显示省略号 right_has_more = False # 标示是否需要显示第 1 页的页码号。 # 因为如果当前页左边的连续页码号中已经含有第 1 页的页码号,此时就无需再显示第 1 页的页码号, # 其它情况下第一页的页码是始终需要显示的。 # 初始值为 False first = False # 标示是否需要显示最后一页的页码号。 # 需要此指示变量的理由和上面相同。 last = False # 获得用户当前请求的页码号 page_number = page.number # 获得分页后的总页数 total_pages = paginator.num_pages # 获得整个分页页码列表,比如分了四页,那么就是 [1, 2, 3, 4] page_range = paginator.page_range if page_number == 1: # 如果用户请求的是第一页的数据,那么当前页左边的不需要数据,因此 left=[](已默认为空)。 # 此时只要获取当前页右边的连续页码号, # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 right = [2, 3]。 # 注意这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 right = page_range[page_number:page_number + 2] # 如果最右边的页码号比最后一页的页码号减去 1 还要小, # 说明最右边的页码号和最后一页的页码号之间还有其它页码,因此需要显示省略号,通过 right_has_more 来指示。 if right[-1] < total_pages - 1: right_has_more = True # 如果最右边的页码号比最后一页的页码号小,说明当前页右边的连续页码号中不包含最后一页的页码 # 所以需要显示最后一页的页码号,通过 last 来指示 if right[-1] < total_pages: last = True elif page_number == total_pages: # 如果用户请求的是最后一页的数据,那么当前页右边就不需要数据,因此 right=[](已默认为空), # 此时只要获取当前页左边的连续页码号。 # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 left = [2, 3] # 这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] # 如果最左边的页码号比第 2 页页码号还大, # 说明最左边的页码号和第 1 页的页码号之间还有其它页码,因此需要显示省略号,通过 left_has_more 来指示。 if left[0] > 2: left_has_more = True # 如果最左边的页码号比第 1 页的页码号大,说明当前页左边的连续页码号中不包含第一页的页码, # 所以需要显示第一页的页码号,通过 first 来指示 if left[0] > 1: first = True else: # 用户请求的既不是最后一页,也不是第 1 页,则需要获取当前页左右两边的连续页码号, # 这里只获取了当前页码前后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] # 是否需要显示最后一页和最后一页前的省略号 if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True # 是否需要显示第 1 页和第 1 页后的省略号 if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data #显示全文 """ def detail(request, pk): post = get_object_or_404(Post, pk=pk) # 阅读量 +1 post.increase_views() post.body = markdown.markdown(post.body, extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', 'markdown.extensions.tables', ]) form = CommentForm() # 获取这篇 post 下的全部评论 comment_list = post.comment_set.all() # 将文章、表单、以及文章下的评论列表作为模板变量传给 detail.html 模板,以便渲染相应数据。 context = {'post': post, 'form': form, 'comment_list': comment_list } return render(request, 'blog/detail.html', context=context) """ class PostDetailView(DetailView): model = Post template_name = 'blog/detail.html' context_object_name = 'post' def get(self, request, *args, **kwargs): # 覆写 get 方法的目的是因为每当文章被访问一次,就得将文章阅读量 +1 # get 方法返回的是一个 HttpResponse 实例 # 之所以需要先调用父类的 get 方法,是因为只有当 get 方法被调用后, # 才有 self.object 属性,其值为 Post 模型实例,即被访问的文章 post response = super(PostDetailView, self).get(request, *args, **kwargs) # 将文章阅读量 +1 # 注意 self.object 的值就是被访问的文章 post self.object.increase_views() # 视图必须返回一个 HttpResponse 对象 return response def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 post 的 body 值进行渲染 post = super(PostDetailView, self).get_object(queryset=None) #此处先将markdown禁掉,因为显然经过markdown渲染的文本,再经过MathJax渲染就不能看了 #但是不经markdown渲染,代码段又不能正常显示,淦 #所以以后写带公式的博文,公式格式参考MathJax附带的样例,防止自己写的经过markdown渲染后抽风 md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', TocExtension(slugify=slugify), ]) post.body = md.convert(post.body) post.toc = md.toc return post def get_context_data(self, **kwargs): # 覆写 get_context_data 的目的是因为除了将 post 传递给模板外(DetailView 已经帮我们完成), # 还要把评论表单、post 下的评论列表传递给模板。 context = super(PostDetailView, self).get_context_data(**kwargs) form = CommentForm() comment_list = self.object.comment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #查看归档 """ def archives(request, year, month): post_list = Post.objects.filter(created_time__year=year, created_time__month=month ).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class ArchivesView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(ArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) #查看分类文章 """ def category(request, pk): cate = get_object_or_404(Category, pk=pk) post_list = Post.objects.filter(category=cate).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class CategoryView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): cate = get_object_or_404(Category, pk=self.kwargs.get('pk')) return super(CategoryView, self).get_queryset().filter(category=cate) #查看标签文章 class TagView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): tag = get_object_or_404(Tag, pk=self.kwargs.get('pk')) return super(TagView, self).get_queryset().filter(tags=tag) #文章搜索 def search(request): q = request.GET.get('q') error_msg = '' if not q: error_msg = "请输入关键词" return render(request, 'blog/index.html', {'error_msg': error_msg}) post_list = Post.objects.filter(Q(title__icontains=q) | Q(body__icontains=q)) return render(request, 'blog/index.html', {'error_msg': error_msg, 'post_list': post_list}) #查看书评 class BookView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' paginate_by = 20 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class BookDetailView(DetailView): model = Book template_name = 'blog/bookdetail.html' context_object_name = 'book' def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 book 的 review 值进行渲染 book = super(BookDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) book.review = md.convert(book.review) #book.toc = md.toc return book def get_context_data(self, **kwargs): context = super(BookDetailView, self).get_context_data(**kwargs) form = BookCommentForm() comment_list = self.object.bookcomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #书评归档 class BookArchivesView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(BookArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) ###影评相关 class FilmView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' paginate_by = 36 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class FilmDetailView(DetailView): model = Movie template_name = 'blog/filmdetail.html' context_object_name = 'film' def get_object(self, queryset=None): film = super(FilmDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) film.review = md.convert(film.review) #film.toc = md.toc return film def get_context_data(self, **kwargs): context = super(FilmDetailView, self).get_context_data(**kwargs) form = MovieCommentForm() comment_list = self.object.moviecomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #影评归档 class FilmArchivesView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(FilmArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) def about(request): return render(request, 'blog/about.html')
zh
0.896648
#from django.http import HttpResponse def index(request): #post_list = Post.objects.all().order_by('-created_time') post_list = Post.objects.all() return render(request, 'blog/index.html', context={'post_list': post_list}) 在视图函数中将模板变量传递给模板是通过给 render 函数的 context 参数传递一个字典实现的, 例如 render(request, 'blog/index.html', context={'post_list': post_list}), 这里传递了一个 {'post_list': post_list} 字典给模板。 在类视图中,这个需要传递的模板变量字典是通过 get_context_data 获得的, 所以我们复写该方法,以便我们能够自己再插入一些我们自定义的模板变量进去。 # 首先获得父类生成的传递给模板的字典。 # 父类生成的字典中已有 paginator、page_obj、is_paginated 这三个模板变量, # paginator 是 Paginator 的一个实例, # page_obj 是 Page 的一个实例, # is_paginated 是一个布尔变量,用于指示是否已分页。 # 例如如果规定每页 10 个数据,而本身只有 5 个数据,其实就用不着分页,此时 is_paginated=False。 # 关于什么是 Paginator,Page 类在 Django Pagination 简单分页:http://zmrenwu.com/post/34/ 中已有详细说明。 # 由于 context 是一个字典,所以调用 get 方法从中取出某个键对应的值。 # 调用自己写的 pagination_data 方法获得显示分页导航条需要的数据,见下方。 # 将分页导航条的模板变量更新到 context 中,注意 pagination_data 方法返回的也是一个字典。 # 将更新后的 context 返回,以便 ListView 使用这个字典中的模板变量去渲染模板。 # 注意此时 context 字典中已有了显示分页导航条所需的数据。 # 如果没有分页,则无需显示分页导航条,不用任何分页导航条的数据,因此返回一个空的字典 # 当前页左边连续的页码号,初始值为空 # 当前页右边连续的页码号,初始值为空 # 标示第 1 页页码后是否需要显示省略号 # 标示最后一页页码前是否需要显示省略号 # 标示是否需要显示第 1 页的页码号。 # 因为如果当前页左边的连续页码号中已经含有第 1 页的页码号,此时就无需再显示第 1 页的页码号, # 其它情况下第一页的页码是始终需要显示的。 # 初始值为 False # 标示是否需要显示最后一页的页码号。 # 需要此指示变量的理由和上面相同。 # 获得用户当前请求的页码号 # 获得分页后的总页数 # 获得整个分页页码列表,比如分了四页,那么就是 [1, 2, 3, 4] # 如果用户请求的是第一页的数据,那么当前页左边的不需要数据,因此 left=[](已默认为空)。 # 此时只要获取当前页右边的连续页码号, # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 right = [2, 3]。 # 注意这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 # 如果最右边的页码号比最后一页的页码号减去 1 还要小, # 说明最右边的页码号和最后一页的页码号之间还有其它页码,因此需要显示省略号,通过 right_has_more 来指示。 # 如果最右边的页码号比最后一页的页码号小,说明当前页右边的连续页码号中不包含最后一页的页码 # 所以需要显示最后一页的页码号,通过 last 来指示 # 如果用户请求的是最后一页的数据,那么当前页右边就不需要数据,因此 right=[](已默认为空), # 此时只要获取当前页左边的连续页码号。 # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 left = [2, 3] # 这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 # 如果最左边的页码号比第 2 页页码号还大, # 说明最左边的页码号和第 1 页的页码号之间还有其它页码,因此需要显示省略号,通过 left_has_more 来指示。 # 如果最左边的页码号比第 1 页的页码号大,说明当前页左边的连续页码号中不包含第一页的页码, # 所以需要显示第一页的页码号,通过 first 来指示 # 用户请求的既不是最后一页,也不是第 1 页,则需要获取当前页左右两边的连续页码号, # 这里只获取了当前页码前后连续两个页码,你可以更改这个数字以获取更多页码。 # 是否需要显示最后一页和最后一页前的省略号 # 是否需要显示第 1 页和第 1 页后的省略号 #显示全文 def detail(request, pk): post = get_object_or_404(Post, pk=pk) # 阅读量 +1 post.increase_views() post.body = markdown.markdown(post.body, extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', 'markdown.extensions.tables', ]) form = CommentForm() # 获取这篇 post 下的全部评论 comment_list = post.comment_set.all() # 将文章、表单、以及文章下的评论列表作为模板变量传给 detail.html 模板,以便渲染相应数据。 context = {'post': post, 'form': form, 'comment_list': comment_list } return render(request, 'blog/detail.html', context=context) # 覆写 get 方法的目的是因为每当文章被访问一次,就得将文章阅读量 +1 # get 方法返回的是一个 HttpResponse 实例 # 之所以需要先调用父类的 get 方法,是因为只有当 get 方法被调用后, # 才有 self.object 属性,其值为 Post 模型实例,即被访问的文章 post # 将文章阅读量 +1 # 注意 self.object 的值就是被访问的文章 post # 视图必须返回一个 HttpResponse 对象 # 覆写 get_object 方法的目的是因为需要对 post 的 body 值进行渲染 #此处先将markdown禁掉,因为显然经过markdown渲染的文本,再经过MathJax渲染就不能看了 #但是不经markdown渲染,代码段又不能正常显示,淦 #所以以后写带公式的博文,公式格式参考MathJax附带的样例,防止自己写的经过markdown渲染后抽风 # 覆写 get_context_data 的目的是因为除了将 post 传递给模板外(DetailView 已经帮我们完成), # 还要把评论表单、post 下的评论列表传递给模板。 #查看归档 def archives(request, year, month): post_list = Post.objects.filter(created_time__year=year, created_time__month=month ).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) #查看分类文章 def category(request, pk): cate = get_object_or_404(Category, pk=pk) post_list = Post.objects.filter(category=cate).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) #查看标签文章 #文章搜索 #查看书评 # 覆写 get_object 方法的目的是因为需要对 book 的 review 值进行渲染 #'markdown.extensions.toc', #TocExtension(slugify=slugify), #book.toc = md.toc #书评归档 ###影评相关 #'markdown.extensions.toc', #TocExtension(slugify=slugify), #film.toc = md.toc #影评归档
2.407009
2
src/command_modules/azure-cli-security/azure/cli/command_modules/security/_params.py
jfcoz/azure-cli
1
8746
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from azure.cli.core.commands.parameters import resource_group_name_type from knack.arguments import CLIArgumentType from ._validators import (validate_alert_status, validate_auto_provisioning_toggle, validate_pricing_tier) name_arg_type = CLIArgumentType(options_list=('--name', '-n'), metavar='NAME', help='name of the resource to be fetched') home_region_arg_type = CLIArgumentType(options_list=('--home-region', '-hr'), metavar='HOMEREGION', help='home region that was selected for the subscription') location_arg_type = CLIArgumentType(options_list=('--location', '-l'), metavar='LOCATION', help='location of the resource') # Alerts alert_status_arg_type = CLIArgumentType(options_list=('--status'), metavar='STATUS', help='target status of the alert. possible values are "dismiss" and "activate"') # Auto Provisioning auto_provisioning_auto_provision_arg_type = CLIArgumentType(options_list=('--auto-provision'), metavar='AUTOPROVISION', help='Automatic provisioning toggle. possible values are "on" or "off"') # Contacts contact_email_arg_type = CLIArgumentType(options_list=('--email'), metavar='EMAIL', help='E-mail of the security contact') contact_phone_arg_type = CLIArgumentType(options_list=('--phone'), metavar='PHONE', help='Phone of the security contact') contact_alert_notifications_arg_type = CLIArgumentType(options_list=('--alert-notifications'), metavar='ALERTNOTIFICATIONS', help='Whether to send mail notifications to the security contacts') contact_alerts_admins_arg_type = CLIArgumentType(options_list=('--alerts-admins'), metavar='ALERTADMINS', help='Whether to send mail notifications to the subscription administrators') # Pricing pricing_tier_arg_type = CLIArgumentType(options_list=('--tier'), metavar='TIER', help='pricing tier type') # Workspace settings workspace_setting_target_workspace_arg_type = CLIArgumentType(options_list=('--target-workspace'), metavar='TARGETWORKSPACE', help='An ID of the workspace resource that will hold the security data') def load_arguments(self, _): for scope in ['alert', 'task', 'setting', 'contact', 'auto-provisioning-setting', 'discovered-security-solution', 'external-security-solution', 'jit-policy', 'location', 'pricing', 'topology', 'workspace-setting']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'resource_group_name', options_list=['--resource-group', '-g'], arg_type=resource_group_name_type) c.argument( 'resource_name', arg_type=name_arg_type) c.argument( 'location', arg_type=location_arg_type) for scope in ['alert update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'status', validator=validate_alert_status, arg_type=alert_status_arg_type) for scope in ['auto-provisioning-setting update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'auto_provision', validator=validate_auto_provisioning_toggle, arg_type=auto_provisioning_auto_provision_arg_type) for scope in ['contact create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'email', arg_type=contact_email_arg_type) c.argument( 'phone', arg_type=contact_phone_arg_type) c.argument( 'alert_notifications', arg_type=contact_alert_notifications_arg_type) c.argument( 'alerts_admins', arg_type=contact_alerts_admins_arg_type) for scope in ['pricing create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'tier', validator=validate_pricing_tier, arg_type=pricing_tier_arg_type) for scope in ['workspace-setting create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'target_workspace', arg_type=workspace_setting_target_workspace_arg_type)
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from azure.cli.core.commands.parameters import resource_group_name_type from knack.arguments import CLIArgumentType from ._validators import (validate_alert_status, validate_auto_provisioning_toggle, validate_pricing_tier) name_arg_type = CLIArgumentType(options_list=('--name', '-n'), metavar='NAME', help='name of the resource to be fetched') home_region_arg_type = CLIArgumentType(options_list=('--home-region', '-hr'), metavar='HOMEREGION', help='home region that was selected for the subscription') location_arg_type = CLIArgumentType(options_list=('--location', '-l'), metavar='LOCATION', help='location of the resource') # Alerts alert_status_arg_type = CLIArgumentType(options_list=('--status'), metavar='STATUS', help='target status of the alert. possible values are "dismiss" and "activate"') # Auto Provisioning auto_provisioning_auto_provision_arg_type = CLIArgumentType(options_list=('--auto-provision'), metavar='AUTOPROVISION', help='Automatic provisioning toggle. possible values are "on" or "off"') # Contacts contact_email_arg_type = CLIArgumentType(options_list=('--email'), metavar='EMAIL', help='E-mail of the security contact') contact_phone_arg_type = CLIArgumentType(options_list=('--phone'), metavar='PHONE', help='Phone of the security contact') contact_alert_notifications_arg_type = CLIArgumentType(options_list=('--alert-notifications'), metavar='ALERTNOTIFICATIONS', help='Whether to send mail notifications to the security contacts') contact_alerts_admins_arg_type = CLIArgumentType(options_list=('--alerts-admins'), metavar='ALERTADMINS', help='Whether to send mail notifications to the subscription administrators') # Pricing pricing_tier_arg_type = CLIArgumentType(options_list=('--tier'), metavar='TIER', help='pricing tier type') # Workspace settings workspace_setting_target_workspace_arg_type = CLIArgumentType(options_list=('--target-workspace'), metavar='TARGETWORKSPACE', help='An ID of the workspace resource that will hold the security data') def load_arguments(self, _): for scope in ['alert', 'task', 'setting', 'contact', 'auto-provisioning-setting', 'discovered-security-solution', 'external-security-solution', 'jit-policy', 'location', 'pricing', 'topology', 'workspace-setting']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'resource_group_name', options_list=['--resource-group', '-g'], arg_type=resource_group_name_type) c.argument( 'resource_name', arg_type=name_arg_type) c.argument( 'location', arg_type=location_arg_type) for scope in ['alert update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'status', validator=validate_alert_status, arg_type=alert_status_arg_type) for scope in ['auto-provisioning-setting update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'auto_provision', validator=validate_auto_provisioning_toggle, arg_type=auto_provisioning_auto_provision_arg_type) for scope in ['contact create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'email', arg_type=contact_email_arg_type) c.argument( 'phone', arg_type=contact_phone_arg_type) c.argument( 'alert_notifications', arg_type=contact_alert_notifications_arg_type) c.argument( 'alerts_admins', arg_type=contact_alerts_admins_arg_type) for scope in ['pricing create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'tier', validator=validate_pricing_tier, arg_type=pricing_tier_arg_type) for scope in ['workspace-setting create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'target_workspace', arg_type=workspace_setting_target_workspace_arg_type)
en
0.466718
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # Alerts # Auto Provisioning # Contacts # Pricing # Workspace settings
1.776854
2
utils/path_utils.py
kuyu12/pygame_fight_game
1
8747
import sys IMAGES_PATH = sys.path[1] + "/Images" BACKGROUND_IMAGES_PATH = IMAGES_PATH + '/background' USER_INFO_BACKGROUND_PATH = BACKGROUND_IMAGES_PATH+"/blue_background.jpg" SPRINT_IMAGE_PATH = IMAGES_PATH + '/sprite' PROFILE_IMAGES_PATH = IMAGES_PATH + '/profile' CONFIGURATION_FILES_PATH = sys.path[1] + "/configuration_files"
import sys IMAGES_PATH = sys.path[1] + "/Images" BACKGROUND_IMAGES_PATH = IMAGES_PATH + '/background' USER_INFO_BACKGROUND_PATH = BACKGROUND_IMAGES_PATH+"/blue_background.jpg" SPRINT_IMAGE_PATH = IMAGES_PATH + '/sprite' PROFILE_IMAGES_PATH = IMAGES_PATH + '/profile' CONFIGURATION_FILES_PATH = sys.path[1] + "/configuration_files"
none
1
1.717004
2
tests/models/test_transformers.py
Alicegaz/torchok
8
8748
import unittest import torch from parameterized import parameterized from src.constructor import create_backbone from src.models.backbones.utils import list_models from .test_segmentation import example_backbones def inp(bsize, in_ch, w, h): return torch.ones(bsize, in_ch, w, h) class TestBackboneCorrectness(unittest.TestCase): def setUp(self) -> None: self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') @parameterized.expand(list_models(module='vision_transformer', exclude_filters='')) def test_vit_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='coat', exclude_filters='')) def test_coat_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='swin_transformer', exclude_filters='')) def test_swin_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name).to(self.device).eval() input = torch.rand(2, 3, *model.img_size, device=self.device) with torch.no_grad(): torch.jit.trace(model, input) torch.cuda.empty_cache()
import unittest import torch from parameterized import parameterized from src.constructor import create_backbone from src.models.backbones.utils import list_models from .test_segmentation import example_backbones def inp(bsize, in_ch, w, h): return torch.ones(bsize, in_ch, w, h) class TestBackboneCorrectness(unittest.TestCase): def setUp(self) -> None: self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') @parameterized.expand(list_models(module='vision_transformer', exclude_filters='')) def test_vit_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='coat', exclude_filters='')) def test_coat_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='swin_transformer', exclude_filters='')) def test_swin_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name).to(self.device).eval() input = torch.rand(2, 3, *model.img_size, device=self.device) with torch.no_grad(): torch.jit.trace(model, input) torch.cuda.empty_cache()
none
1
2.355238
2
aiogram/types/inline_query.py
SvineruS/aiogram
1
8749
import typing from . import base from . import fields from .inline_query_result import InlineQueryResult from .location import Location from .user import User class InlineQuery(base.TelegramObject): """ This object represents an incoming inline query. When the user sends an empty query, your bot could return some default or trending results. https://core.telegram.org/bots/api#inlinequery """ id: base.String = fields.Field() from_user: User = fields.Field(alias='from', base=User) location: Location = fields.Field(base=Location) query: base.String = fields.Field() offset: base.String = fields.Field() async def answer(self, results: typing.List[InlineQueryResult], cache_time: typing.Optional[base.Integer] = None, is_personal: typing.Optional[base.Boolean] = None, next_offset: typing.Optional[base.String] = None, switch_pm_text: typing.Optional[base.String] = None, switch_pm_parameter: typing.Optional[base.String] = None): """ Use this method to send answers to an inline query. No more than 50 results per query are allowed. Source: https://core.telegram.org/bots/api#answerinlinequery :param results: A JSON-serialized array of results for the inline query :type results: :obj:`typing.List[types.InlineQueryResult]` :param cache_time: The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300. :type cache_time: :obj:`typing.Optional[base.Integer]` :param is_personal: Pass True, if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query :type is_personal: :obj:`typing.Optional[base.Boolean]` :param next_offset: Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don‘t support pagination. Offset length can’t exceed 64 bytes. :type next_offset: :obj:`typing.Optional[base.String]` :param switch_pm_text: If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter :type switch_pm_text: :obj:`typing.Optional[base.String]` :param switch_pm_parameter: Deep-linking parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed. :type switch_pm_parameter: :obj:`typing.Optional[base.String]` :return: On success, True is returned :rtype: :obj:`base.Boolean` """ return await self.bot.answer_inline_query(self.id, results=results, cache_time=cache_time, is_personal=is_personal, next_offset=next_offset, switch_pm_text=switch_pm_text, switch_pm_parameter=switch_pm_parameter)
import typing from . import base from . import fields from .inline_query_result import InlineQueryResult from .location import Location from .user import User class InlineQuery(base.TelegramObject): """ This object represents an incoming inline query. When the user sends an empty query, your bot could return some default or trending results. https://core.telegram.org/bots/api#inlinequery """ id: base.String = fields.Field() from_user: User = fields.Field(alias='from', base=User) location: Location = fields.Field(base=Location) query: base.String = fields.Field() offset: base.String = fields.Field() async def answer(self, results: typing.List[InlineQueryResult], cache_time: typing.Optional[base.Integer] = None, is_personal: typing.Optional[base.Boolean] = None, next_offset: typing.Optional[base.String] = None, switch_pm_text: typing.Optional[base.String] = None, switch_pm_parameter: typing.Optional[base.String] = None): """ Use this method to send answers to an inline query. No more than 50 results per query are allowed. Source: https://core.telegram.org/bots/api#answerinlinequery :param results: A JSON-serialized array of results for the inline query :type results: :obj:`typing.List[types.InlineQueryResult]` :param cache_time: The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300. :type cache_time: :obj:`typing.Optional[base.Integer]` :param is_personal: Pass True, if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query :type is_personal: :obj:`typing.Optional[base.Boolean]` :param next_offset: Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don‘t support pagination. Offset length can’t exceed 64 bytes. :type next_offset: :obj:`typing.Optional[base.String]` :param switch_pm_text: If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter :type switch_pm_text: :obj:`typing.Optional[base.String]` :param switch_pm_parameter: Deep-linking parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed. :type switch_pm_parameter: :obj:`typing.Optional[base.String]` :return: On success, True is returned :rtype: :obj:`base.Boolean` """ return await self.bot.answer_inline_query(self.id, results=results, cache_time=cache_time, is_personal=is_personal, next_offset=next_offset, switch_pm_text=switch_pm_text, switch_pm_parameter=switch_pm_parameter)
en
0.674216
This object represents an incoming inline query. When the user sends an empty query, your bot could return some default or trending results. https://core.telegram.org/bots/api#inlinequery Use this method to send answers to an inline query. No more than 50 results per query are allowed. Source: https://core.telegram.org/bots/api#answerinlinequery :param results: A JSON-serialized array of results for the inline query :type results: :obj:`typing.List[types.InlineQueryResult]` :param cache_time: The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300. :type cache_time: :obj:`typing.Optional[base.Integer]` :param is_personal: Pass True, if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query :type is_personal: :obj:`typing.Optional[base.Boolean]` :param next_offset: Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don‘t support pagination. Offset length can’t exceed 64 bytes. :type next_offset: :obj:`typing.Optional[base.String]` :param switch_pm_text: If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter :type switch_pm_text: :obj:`typing.Optional[base.String]` :param switch_pm_parameter: Deep-linking parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed. :type switch_pm_parameter: :obj:`typing.Optional[base.String]` :return: On success, True is returned :rtype: :obj:`base.Boolean`
2.707727
3
app/app.py
shaswat01/Disaster_Response_ETL
0
8750
import nltk import json import plotly import pandas as pd import plotly.graph_objects as go from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize nltk.download(['punkt','wordnet']) from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar, Histogram import joblib from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens # load data engine = create_engine('sqlite:///data/DisasterResponse.db') df = pd.read_sql_table('messages', engine) # load model model = joblib.load("models/model.pkl") # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): # extract data needed for visuals # Viz 1 genre = df.groupby('genre').count()['id'].sort_values() # Viz 2 df['text length'] = df['message'].apply(lambda x: len(x.split())) histogram = df[df['text length'] < 100].groupby('text length').count()['id'] # Viz 3 total_category = df.drop(columns=['id','message','original','genre', 'text length']).sum().sort_values(ascending=False).head(5) # create visuals graphs = [ { 'data': [ Bar( x=genre.values, y=genre.index, orientation='h' ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Genre" }, 'xaxis': { 'title': "Counts" } } }, { 'data': [ Bar( x=histogram.index, y=histogram.values ) ], 'layout': { 'title': 'Distribution of Messages Length', 'yaxis': { 'title': "Total Messages" }, 'xaxis': { 'title': "Total Words" } } }, { 'data': [ Bar( x=total_category.index, y=total_category.values ) ], 'layout': { 'title': 'Total Messages per Category (Top 5)', 'yaxis': { 'title': "Total" }, 'xaxis': { 'title': "Category" } } } ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graphJSON) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results ) def main(): app.run() #app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main()
import nltk import json import plotly import pandas as pd import plotly.graph_objects as go from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize nltk.download(['punkt','wordnet']) from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar, Histogram import joblib from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens # load data engine = create_engine('sqlite:///data/DisasterResponse.db') df = pd.read_sql_table('messages', engine) # load model model = joblib.load("models/model.pkl") # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): # extract data needed for visuals # Viz 1 genre = df.groupby('genre').count()['id'].sort_values() # Viz 2 df['text length'] = df['message'].apply(lambda x: len(x.split())) histogram = df[df['text length'] < 100].groupby('text length').count()['id'] # Viz 3 total_category = df.drop(columns=['id','message','original','genre', 'text length']).sum().sort_values(ascending=False).head(5) # create visuals graphs = [ { 'data': [ Bar( x=genre.values, y=genre.index, orientation='h' ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Genre" }, 'xaxis': { 'title': "Counts" } } }, { 'data': [ Bar( x=histogram.index, y=histogram.values ) ], 'layout': { 'title': 'Distribution of Messages Length', 'yaxis': { 'title': "Total Messages" }, 'xaxis': { 'title': "Total Words" } } }, { 'data': [ Bar( x=total_category.index, y=total_category.values ) ], 'layout': { 'title': 'Total Messages per Category (Top 5)', 'yaxis': { 'title': "Total" }, 'xaxis': { 'title': "Category" } } } ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graphJSON) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results ) def main(): app.run() #app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main()
en
0.690963
# load data # load model # index webpage displays cool visuals and receives user input text for model # extract data needed for visuals # Viz 1 # Viz 2 # Viz 3 # create visuals # encode plotly graphs in JSON # render web page with plotly graphs # web page that handles user query and displays model results # save user input in query # use model to predict classification for query # This will render the go.html Please see that file. #app.run(host='0.0.0.0', port=3001, debug=True)
2.800805
3
tools/mo/openvino/tools/mo/front/mxnet/mx_reshape_reverse.py
pazamelin/openvino
1
8751
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.mxnet.mx_reshape_to_reshape import MXReshapeToReshape from openvino.tools.mo.ops.Reverse import Reverse from openvino.tools.mo.ops.mxreshape import MXReshape from openvino.tools.mo.front.common.partial_infer.utils import int64_array from openvino.tools.mo.front.common.replacement import FrontReplacementOp from openvino.tools.mo.front.tf.graph_utils import create_op_node_with_second_input from openvino.tools.mo.graph.graph import Graph from openvino.tools.mo.ops.reshape import Reshape from openvino.tools.mo.ops.shape import Shape from openvino.tools.mo.ops.squeeze import Squeeze from openvino.tools.mo.ops.unsqueeze import Unsqueeze class MXReshapeReverse(FrontReplacementOp): """ If reshape layer with reverse True, special values will inferred from right to left. The Replacer simulate the behavior. The replaced subgraph reverse input data and special dims, and after reshape reverse output result to backward. Resulting subgraph: reshape(reverse=True) -> reverse - reshape(reverse=False) -reverse subgraph. """ op = 'MXReshape' enabled = True def run_before(self): return [MXReshapeToReshape] def replace_sub_graph(self, graph: Graph, match: dict): mxreshape = match['op'] if not mxreshape.reverse: return shape_node = Shape(graph, dict(name=mxreshape.id + '/Shape')).create_node() forward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardUnsqueeze')) forward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/ForwardReverse', axis=1)).create_node() forward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardSqueeze')) reshape_node = Reshape(graph, dict(name=mxreshape.id + '/Reshape')).create_node() shape_node.in_port(0).connect(mxreshape.in_port(0).get_source()) mxreshape.in_port(0).get_connection().set_destination(reshape_node.in_port(0)) forward_reverse_unsqueeze_node.in_port(0).connect(shape_node.out_port(0)) forward_reverse_node.in_port(0).connect(forward_reverse_unsqueeze_node.out_port(0)) forward_reverse_squeeze_node.in_port(0).connect(forward_reverse_node.out_port(0)) reshape_node.in_port(1).connect(forward_reverse_squeeze_node.out_port(0)) reshape_shape_node = create_op_node_with_second_input(graph, Reshape, int64_array(np.flip(mxreshape.dim, 0)), dict(name=str(mxreshape.id) + '/ReshapeShape')) if np.sum(np.in1d([-2, -3, -4], mxreshape.dim), axis=0): reshape_shape_node = MXReshape(graph, dict(name=mxreshape.id + '/Reshape', dim=int64_array(np.flip(mxreshape.dim, 0)))).create_node() reshape_shape_node.in_port(0).connect(reshape_node.out_port(0)) backward_shape_node = Shape(graph, dict(name=mxreshape.id + '/BackwardShape')).create_node() backward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardUnsqueeze')) backward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/BackwardReverse', axis=1)).create_node() backward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardSqueeze')) backward_reshape_node = Reshape(graph, dict(name=mxreshape.id + '/BackwardReshape')).create_node() backward_shape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reverse_unsqueeze_node.in_port(0).connect(backward_shape_node.out_port(0)) backward_reverse_node.in_port(0).connect(backward_reverse_unsqueeze_node.out_port(0)) backward_reverse_squeeze_node.in_port(0).connect(backward_reverse_node.out_port(0)) backward_reshape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reshape_node.in_port(1).connect(backward_reverse_squeeze_node.out_port(0)) mxreshape.out_port(0).get_connection().set_source(backward_reshape_node.out_port(0))
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.mxnet.mx_reshape_to_reshape import MXReshapeToReshape from openvino.tools.mo.ops.Reverse import Reverse from openvino.tools.mo.ops.mxreshape import MXReshape from openvino.tools.mo.front.common.partial_infer.utils import int64_array from openvino.tools.mo.front.common.replacement import FrontReplacementOp from openvino.tools.mo.front.tf.graph_utils import create_op_node_with_second_input from openvino.tools.mo.graph.graph import Graph from openvino.tools.mo.ops.reshape import Reshape from openvino.tools.mo.ops.shape import Shape from openvino.tools.mo.ops.squeeze import Squeeze from openvino.tools.mo.ops.unsqueeze import Unsqueeze class MXReshapeReverse(FrontReplacementOp): """ If reshape layer with reverse True, special values will inferred from right to left. The Replacer simulate the behavior. The replaced subgraph reverse input data and special dims, and after reshape reverse output result to backward. Resulting subgraph: reshape(reverse=True) -> reverse - reshape(reverse=False) -reverse subgraph. """ op = 'MXReshape' enabled = True def run_before(self): return [MXReshapeToReshape] def replace_sub_graph(self, graph: Graph, match: dict): mxreshape = match['op'] if not mxreshape.reverse: return shape_node = Shape(graph, dict(name=mxreshape.id + '/Shape')).create_node() forward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardUnsqueeze')) forward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/ForwardReverse', axis=1)).create_node() forward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardSqueeze')) reshape_node = Reshape(graph, dict(name=mxreshape.id + '/Reshape')).create_node() shape_node.in_port(0).connect(mxreshape.in_port(0).get_source()) mxreshape.in_port(0).get_connection().set_destination(reshape_node.in_port(0)) forward_reverse_unsqueeze_node.in_port(0).connect(shape_node.out_port(0)) forward_reverse_node.in_port(0).connect(forward_reverse_unsqueeze_node.out_port(0)) forward_reverse_squeeze_node.in_port(0).connect(forward_reverse_node.out_port(0)) reshape_node.in_port(1).connect(forward_reverse_squeeze_node.out_port(0)) reshape_shape_node = create_op_node_with_second_input(graph, Reshape, int64_array(np.flip(mxreshape.dim, 0)), dict(name=str(mxreshape.id) + '/ReshapeShape')) if np.sum(np.in1d([-2, -3, -4], mxreshape.dim), axis=0): reshape_shape_node = MXReshape(graph, dict(name=mxreshape.id + '/Reshape', dim=int64_array(np.flip(mxreshape.dim, 0)))).create_node() reshape_shape_node.in_port(0).connect(reshape_node.out_port(0)) backward_shape_node = Shape(graph, dict(name=mxreshape.id + '/BackwardShape')).create_node() backward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardUnsqueeze')) backward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/BackwardReverse', axis=1)).create_node() backward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardSqueeze')) backward_reshape_node = Reshape(graph, dict(name=mxreshape.id + '/BackwardReshape')).create_node() backward_shape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reverse_unsqueeze_node.in_port(0).connect(backward_shape_node.out_port(0)) backward_reverse_node.in_port(0).connect(backward_reverse_unsqueeze_node.out_port(0)) backward_reverse_squeeze_node.in_port(0).connect(backward_reverse_node.out_port(0)) backward_reshape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reshape_node.in_port(1).connect(backward_reverse_squeeze_node.out_port(0)) mxreshape.out_port(0).get_connection().set_source(backward_reshape_node.out_port(0))
en
0.607493
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 If reshape layer with reverse True, special values will inferred from right to left. The Replacer simulate the behavior. The replaced subgraph reverse input data and special dims, and after reshape reverse output result to backward. Resulting subgraph: reshape(reverse=True) -> reverse - reshape(reverse=False) -reverse subgraph.
2.262639
2
Python/Simulation/Numerical_Methods/test_cubic_spline_solve.py
MattMarti/Lambda-Trajectory-Sim
0
8752
<reponame>MattMarti/Lambda-Trajectory-Sim import unittest; import numpy as np; import scipy as sp; from cubic_spline_solve import cubic_spline_solve; from cubic_spline_fun import cubic_spline_fun; class Test_cubic_spline_solve(unittest.TestCase): ''' Test_cubicsplineSolve Test case for the cubic spline solver function. This function just solves for the spline data, so that the spline can be precomputed before code is run. This improves code performance by removing the need to invert a matrix every time the spline function is called. @author: <NAME> @date: 2019-06-16 ''' def test_nominal_01(self): '''Test the spline solve for nominal test case''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Compute already tested spline _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec, xinter, fslope); splineDataTrue = np.zeros((1, xkvec.shape[1], 5)); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); splineDataTrue[0,:,4] = xkvec.squeeze(); # Run spline solve splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_multiple_01(self): '''Test the spline works for a two dimensional case''' # Definition for two dimensional function output def func(x): if type(x) is not np.ndarray: f = np.zeros((2,1)); else: f = np.zeros((2,x.shape[0])); # f[0,:] = np.sin(x); f[1,:] = -10*x**2 + 50*x + 1000; return f; # # Definition for derivative function def dfunc(x): if type(x) is not np.ndarray: df = np.zeros((2,1)); else: df = np.zeros((2,x.shape[0])); # df[0,:] = np.cos(x); df[1,:] = -20*x + 50; return df; # # Given f = lambda x : func(x); df = lambda x : dfunc(x); xkvec = np.linspace(0, 10, 20); fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); fslope = np.ndarray((2,2)); # Clambed B.C.s fslope[:,0] = df(xkvec[0]).squeeze(); fslope[:,1] = df(xkvec[-1]).squeeze(); # Preallocate truth spline data m = 2; n = xkvec.shape[0]; splineDataTrue = np.zeros((m, n, 5)); splineDataTrue[0,:,4] = xkvec; # Run true spline for first dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[0,:], xinter, fslope[0,:]); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); # Run true spline for second dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[1,:], xinter, fslope[1,:]); splineDataTrue[1,:,0] = akvec.squeeze(); splineDataTrue[1,:,1] = bkvec.squeeze(); splineDataTrue[1,:,2] = ckvec.squeeze(); splineDataTrue[1,:,3] = dkvec.squeeze(); # Run new spline splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_types(self): '''Test that the function raises type errors on bad input''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Run function without errors splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, True, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 0.1, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, "AA", fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 'A', fkvec, fslope); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, xkvec, True, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 0.1, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, "AA", fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 'A', fslope); # Test with various inputs for fslope self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, True); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 0.1); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, "AA"); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 'A'); # #
import unittest; import numpy as np; import scipy as sp; from cubic_spline_solve import cubic_spline_solve; from cubic_spline_fun import cubic_spline_fun; class Test_cubic_spline_solve(unittest.TestCase): ''' Test_cubicsplineSolve Test case for the cubic spline solver function. This function just solves for the spline data, so that the spline can be precomputed before code is run. This improves code performance by removing the need to invert a matrix every time the spline function is called. @author: <NAME> @date: 2019-06-16 ''' def test_nominal_01(self): '''Test the spline solve for nominal test case''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Compute already tested spline _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec, xinter, fslope); splineDataTrue = np.zeros((1, xkvec.shape[1], 5)); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); splineDataTrue[0,:,4] = xkvec.squeeze(); # Run spline solve splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_multiple_01(self): '''Test the spline works for a two dimensional case''' # Definition for two dimensional function output def func(x): if type(x) is not np.ndarray: f = np.zeros((2,1)); else: f = np.zeros((2,x.shape[0])); # f[0,:] = np.sin(x); f[1,:] = -10*x**2 + 50*x + 1000; return f; # # Definition for derivative function def dfunc(x): if type(x) is not np.ndarray: df = np.zeros((2,1)); else: df = np.zeros((2,x.shape[0])); # df[0,:] = np.cos(x); df[1,:] = -20*x + 50; return df; # # Given f = lambda x : func(x); df = lambda x : dfunc(x); xkvec = np.linspace(0, 10, 20); fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); fslope = np.ndarray((2,2)); # Clambed B.C.s fslope[:,0] = df(xkvec[0]).squeeze(); fslope[:,1] = df(xkvec[-1]).squeeze(); # Preallocate truth spline data m = 2; n = xkvec.shape[0]; splineDataTrue = np.zeros((m, n, 5)); splineDataTrue[0,:,4] = xkvec; # Run true spline for first dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[0,:], xinter, fslope[0,:]); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); # Run true spline for second dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[1,:], xinter, fslope[1,:]); splineDataTrue[1,:,0] = akvec.squeeze(); splineDataTrue[1,:,1] = bkvec.squeeze(); splineDataTrue[1,:,2] = ckvec.squeeze(); splineDataTrue[1,:,3] = dkvec.squeeze(); # Run new spline splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_types(self): '''Test that the function raises type errors on bad input''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Run function without errors splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, True, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 0.1, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, "AA", fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 'A', fkvec, fslope); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, xkvec, True, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 0.1, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, "AA", fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 'A', fslope); # Test with various inputs for fslope self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, True); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 0.1); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, "AA"); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 'A'); # #
en
0.698745
Test_cubicsplineSolve Test case for the cubic spline solver function. This function just solves for the spline data, so that the spline can be precomputed before code is run. This improves code performance by removing the need to invert a matrix every time the spline function is called. @author: <NAME> @date: 2019-06-16 Test the spline solve for nominal test case # Function handles for function and derivatives # x from 0 to 30 in the correct format # # Generate function values dataset # Generate parameters for clamped boundary conditions # Compute already tested spline # Run spline solve # Test Function truth values # Test the spline works for a two dimensional case # Definition for two dimensional function output # # # Definition for derivative function # # # Given # Clambed B.C.s # Preallocate truth spline data # Run true spline for first dataset # Run true spline for second dataset # Run new spline # Test Function truth values # Test that the function raises type errors on bad input # Function handles for function and derivatives # x from 0 to 30 in the correct format # # Generate function values dataset # Generate parameters for clamped boundary conditions # Run function without errors # Test with various inputs for xkvec # Test with various inputs for xkvec # Test with various inputs for fslope # #
3.036769
3
PassWord.py
IQUBE-X/passGenerator
1
8753
# PassWord - The Safe Password Generator App! # importing the tkinter module for GUI from tkinter import * # importing the message box widget from tkinter from tkinter import messagebox # importing sqlite3 for database import sqlite3 # importing random for password generation import random # creating fonts font = ('Fixedsys', 10) font2 = ('Comic Sans MS', 9) font3 = ('System', 9) font4 = ('Two Cen MT', 9) # creating a database and establishing a connection conn = sqlite3.connect('password.db') # creating a cursor to navigate through database c = conn.cursor() # creating the table ''' c.execute("""CREATE TABLE passwords ( password text )""") ''' # defining the root variable root = Tk() # Naming the app root.title('PassWord') # creating a label frame to organize content label_frame = LabelFrame(root, padx=10, pady=10, text='Password Generator', font=font) # printing the label frame onto the screen or window label_frame.grid(row=0, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # creating a separate label frame to perform delete functions delete_labelframe = LabelFrame(root, text='Delete Password', padx=10, pady=10, font=font4) # printing delete labelframe onto the screen delete_labelframe.grid(row=5, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # making the text box where password is going to be displayed e = Entry(label_frame, fg='black', bg='white') # printing the text box to the screen e.grid(row=0, column=0, padx=10, pady=10, columnspan=1) # (for the delete function) to give information on input for delete function # (for the delete function) to give information on input for delete function info = Label(delete_labelframe, text='Password ID', fg='black', font=font2) # printing the label onto the screen info.grid(row=6, column=0, pady=10) # making the entry for user to input which password e2 = Entry(delete_labelframe, fg='black', bg='white') # printing the entry onto the screen e2.grid(row=6, column=1, pady=10) # making the password generate function def generate(): # creating lists lowercase_letters = ['a', 'b', 'c', 'd', 'e' 'f' 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u' 'v', 'w', 'x', 'y', 'z'] # creating lists uppercase_letters = ['A', 'B', 'C', 'D', 'E' 'F' 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U' 'V', 'W', 'X', 'Y', 'Z'] # creating lists symbols_list = ['-', '@', '!' '$', '%' '&' '?', '#', '^'] # creating lists numbers_list = ['1', '2', '3', '4', '5', '6', '7' '8', '9' '0'] # generating a random value from the lists lowercase_letter = random.choice(lowercase_letters) # generating a random value from the lists lowercase_letter2 = random.choice(lowercase_letters) # generating a random value from the lists uppercase_letter = random.choice(uppercase_letters) # generating a random value from the lists uppercase2_letter = random.choice(uppercase_letters) # generating a random value from the lists symbol = random.choice(symbols_list) # generating a random value from the lists symbol2 = random.choice(symbols_list) # generating a random value from the lists number = random.choice(numbers_list) # generating a random value from the lists number2 = random.choice(numbers_list) # creating a password list made of random values from previous lists password = [lowercase_letter, uppercase_letter, uppercase2_letter, lowercase_letter2, symbol, symbol2, number, number2] # shuffling password list password1 = random.sample(password, 8) # concatenating and making final list final_password = password1[0] + password1[1] + password1[2] + password1[3] + password1[4] + password1[5] + \ password1[6] + password1[7] # deleting previous item from entry e.delete(0, END) # inserting the final password e.insert(0, final_password) # making a function to save the password into the database def save_password(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("INSERT INTO passwords VALUES (?)", (e.get(),)) e.delete(0, END) conn.commit() conn.close() # making a function to show all the saved passwords def show_password(): global passcode_label conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid, * FROM passwords") passcodes = c.fetchall() print_code = '' for passcode in passcodes: print_code += str(passcode[0]) + '.' + ' ' + str(passcode[1]) + '\n' passcode_label = Text(label_frame, height=15, width=25) passcode_label.configure(state='normal') passcode_label.insert(1.0, print_code) passcode_label.grid(row=5, column=0, padx=10, pady=10) passcode_label.configure(state='disabled') conn.commit() conn.close() # making a function to hide the saved passwords def hide_password(): passcode_label.destroy() # making a function to delete passwords from database def delete(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("DELETE from passwords WHERE oid = (?)", (e2.get(),)) e2.delete(0, END) passcode_label.destroy() conn.commit() conn.close() # making a function to delete all the passwords in the database def delete_all(): global number_of_passwords conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid FROM passwords") number_of_passwords = c.fetchall() num_of_passwords = len(number_of_passwords) confirmation = messagebox.askyesno('Delete All Passwords?', 'You have chosen to delete ' + str( num_of_passwords) + ' passwords. This action cannot be reversed. Do you wish to proceed?') if confirmation == 1: c.execute("DELETE FROM passwords") conn.commit() conn.close() # button for generating password generate_password = Button(label_frame, text='Generate Strong Password', command=generate, font=font2) # printing the button onto the screen generate_password.grid(row=1, padx=10, pady=10, column=0) # button to save password save = Button(label_frame, text='Save Password', command=save_password, font=font2) # printing the button onto the screen save.grid(row=2, padx=10, pady=10, column=0) # making a button to show all the passwords show = Button(label_frame, text='Show Passwords', command=show_password, font=font2) # printing the button onto the screen show.grid(row=4, padx=10, pady=10, column=0) # making a button to hide the shown passwords hide = Button(label_frame, text='Hide Passwords', command=hide_password, font=font2) # printing the button onto the screen hide.grid(row=6, column=0, padx=10, pady=10) # making a button to delete a password delete = Button(delete_labelframe, text='Delete Password', command=delete, font=font2) # printing the button onto the screen delete.grid(row=8, padx=10, pady=10, column=1) # making a button to delete all the passwords delete_all = Button(delete_labelframe, text='Delete All', command=delete_all, fg='dark red', width=20, anchor=CENTER, font=font3) # printing the button onto the screen delete_all.grid(row=9, column=1, padx=10, pady=10, ipadx=15) # committing the changes to the database conn.commit() # closing the connection with database conn.close() # making the final loop root.mainloop()
# PassWord - The Safe Password Generator App! # importing the tkinter module for GUI from tkinter import * # importing the message box widget from tkinter from tkinter import messagebox # importing sqlite3 for database import sqlite3 # importing random for password generation import random # creating fonts font = ('Fixedsys', 10) font2 = ('Comic Sans MS', 9) font3 = ('System', 9) font4 = ('Two Cen MT', 9) # creating a database and establishing a connection conn = sqlite3.connect('password.db') # creating a cursor to navigate through database c = conn.cursor() # creating the table ''' c.execute("""CREATE TABLE passwords ( password text )""") ''' # defining the root variable root = Tk() # Naming the app root.title('PassWord') # creating a label frame to organize content label_frame = LabelFrame(root, padx=10, pady=10, text='Password Generator', font=font) # printing the label frame onto the screen or window label_frame.grid(row=0, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # creating a separate label frame to perform delete functions delete_labelframe = LabelFrame(root, text='Delete Password', padx=10, pady=10, font=font4) # printing delete labelframe onto the screen delete_labelframe.grid(row=5, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # making the text box where password is going to be displayed e = Entry(label_frame, fg='black', bg='white') # printing the text box to the screen e.grid(row=0, column=0, padx=10, pady=10, columnspan=1) # (for the delete function) to give information on input for delete function # (for the delete function) to give information on input for delete function info = Label(delete_labelframe, text='Password ID', fg='black', font=font2) # printing the label onto the screen info.grid(row=6, column=0, pady=10) # making the entry for user to input which password e2 = Entry(delete_labelframe, fg='black', bg='white') # printing the entry onto the screen e2.grid(row=6, column=1, pady=10) # making the password generate function def generate(): # creating lists lowercase_letters = ['a', 'b', 'c', 'd', 'e' 'f' 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u' 'v', 'w', 'x', 'y', 'z'] # creating lists uppercase_letters = ['A', 'B', 'C', 'D', 'E' 'F' 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U' 'V', 'W', 'X', 'Y', 'Z'] # creating lists symbols_list = ['-', '@', '!' '$', '%' '&' '?', '#', '^'] # creating lists numbers_list = ['1', '2', '3', '4', '5', '6', '7' '8', '9' '0'] # generating a random value from the lists lowercase_letter = random.choice(lowercase_letters) # generating a random value from the lists lowercase_letter2 = random.choice(lowercase_letters) # generating a random value from the lists uppercase_letter = random.choice(uppercase_letters) # generating a random value from the lists uppercase2_letter = random.choice(uppercase_letters) # generating a random value from the lists symbol = random.choice(symbols_list) # generating a random value from the lists symbol2 = random.choice(symbols_list) # generating a random value from the lists number = random.choice(numbers_list) # generating a random value from the lists number2 = random.choice(numbers_list) # creating a password list made of random values from previous lists password = [lowercase_letter, uppercase_letter, uppercase2_letter, lowercase_letter2, symbol, symbol2, number, number2] # shuffling password list password1 = random.sample(password, 8) # concatenating and making final list final_password = password1[0] + password1[1] + password1[2] + password1[3] + password1[4] + password1[5] + \ password1[6] + password1[7] # deleting previous item from entry e.delete(0, END) # inserting the final password e.insert(0, final_password) # making a function to save the password into the database def save_password(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("INSERT INTO passwords VALUES (?)", (e.get(),)) e.delete(0, END) conn.commit() conn.close() # making a function to show all the saved passwords def show_password(): global passcode_label conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid, * FROM passwords") passcodes = c.fetchall() print_code = '' for passcode in passcodes: print_code += str(passcode[0]) + '.' + ' ' + str(passcode[1]) + '\n' passcode_label = Text(label_frame, height=15, width=25) passcode_label.configure(state='normal') passcode_label.insert(1.0, print_code) passcode_label.grid(row=5, column=0, padx=10, pady=10) passcode_label.configure(state='disabled') conn.commit() conn.close() # making a function to hide the saved passwords def hide_password(): passcode_label.destroy() # making a function to delete passwords from database def delete(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("DELETE from passwords WHERE oid = (?)", (e2.get(),)) e2.delete(0, END) passcode_label.destroy() conn.commit() conn.close() # making a function to delete all the passwords in the database def delete_all(): global number_of_passwords conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid FROM passwords") number_of_passwords = c.fetchall() num_of_passwords = len(number_of_passwords) confirmation = messagebox.askyesno('Delete All Passwords?', 'You have chosen to delete ' + str( num_of_passwords) + ' passwords. This action cannot be reversed. Do you wish to proceed?') if confirmation == 1: c.execute("DELETE FROM passwords") conn.commit() conn.close() # button for generating password generate_password = Button(label_frame, text='Generate Strong Password', command=generate, font=font2) # printing the button onto the screen generate_password.grid(row=1, padx=10, pady=10, column=0) # button to save password save = Button(label_frame, text='Save Password', command=save_password, font=font2) # printing the button onto the screen save.grid(row=2, padx=10, pady=10, column=0) # making a button to show all the passwords show = Button(label_frame, text='Show Passwords', command=show_password, font=font2) # printing the button onto the screen show.grid(row=4, padx=10, pady=10, column=0) # making a button to hide the shown passwords hide = Button(label_frame, text='Hide Passwords', command=hide_password, font=font2) # printing the button onto the screen hide.grid(row=6, column=0, padx=10, pady=10) # making a button to delete a password delete = Button(delete_labelframe, text='Delete Password', command=delete, font=font2) # printing the button onto the screen delete.grid(row=8, padx=10, pady=10, column=1) # making a button to delete all the passwords delete_all = Button(delete_labelframe, text='Delete All', command=delete_all, fg='dark red', width=20, anchor=CENTER, font=font3) # printing the button onto the screen delete_all.grid(row=9, column=1, padx=10, pady=10, ipadx=15) # committing the changes to the database conn.commit() # closing the connection with database conn.close() # making the final loop root.mainloop()
en
0.789507
# PassWord - The Safe Password Generator App! # importing the tkinter module for GUI # importing the message box widget from tkinter # importing sqlite3 for database # importing random for password generation # creating fonts # creating a database and establishing a connection # creating a cursor to navigate through database # creating the table c.execute("""CREATE TABLE passwords ( password text )""") # defining the root variable # Naming the app # creating a label frame to organize content # printing the label frame onto the screen or window # creating a separate label frame to perform delete functions # printing delete labelframe onto the screen # making the text box where password is going to be displayed # printing the text box to the screen # (for the delete function) to give information on input for delete function # (for the delete function) to give information on input for delete function # printing the label onto the screen # making the entry for user to input which password # printing the entry onto the screen # making the password generate function # creating lists # creating lists # creating lists # creating lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # generating a random value from the lists # creating a password list made of random values from previous lists # shuffling password list # concatenating and making final list # deleting previous item from entry # inserting the final password # making a function to save the password into the database # making a function to show all the saved passwords # making a function to hide the saved passwords # making a function to delete passwords from database # making a function to delete all the passwords in the database # button for generating password # printing the button onto the screen # button to save password # printing the button onto the screen # making a button to show all the passwords # printing the button onto the screen # making a button to hide the shown passwords # printing the button onto the screen # making a button to delete a password # printing the button onto the screen # making a button to delete all the passwords # printing the button onto the screen # committing the changes to the database # closing the connection with database # making the final loop
4.522357
5
1805_number_of_different_integers_in_a_string.py
hotternative/leetcode
0
8754
<filename>1805_number_of_different_integers_in_a_string.py from string import ascii_lowercase ts = 'a123bc34d8ef34' cur = [] res = set() for c in ts: if c in ascii_lowercase: if cur: s = ''.join(cur) res.add(int(s)) cur = [] else: cur.append(c) else: if cur: s = ''.join(cur) res.add(int(s)) print(res)
<filename>1805_number_of_different_integers_in_a_string.py from string import ascii_lowercase ts = 'a123bc34d8ef34' cur = [] res = set() for c in ts: if c in ascii_lowercase: if cur: s = ''.join(cur) res.add(int(s)) cur = [] else: cur.append(c) else: if cur: s = ''.join(cur) res.add(int(s)) print(res)
none
1
3.476522
3
app.py
ahmedriaz9908/memeapiiz
0
8755
from flask import Flask, render_template, jsonify from reddit_handler import * app = Flask(__name__) meme_subreddits = ['izlam'] @app.route('/') def index(): return render_template('index.html') @app.route('/meme') def one_post(): sub = random.choice(meme_subreddits) re = get_posts(sub, 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return jsonify({ 'title': r[0], 'url': r[1], 'postLink': r[2], 'subreddit': sub }) @app.route('/sample') def sample(): re = get_posts(random.choice(meme_subreddits), 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return render_template('sample.html', title=r[0], img_url=r[1], shortlink=r[2]) @app.route('/test') def test(): re = get_posts(random.choice(meme_subreddits), 100) return render_template('test.html', re=re) @app.route('/<something>') def not_found(something): return render_template('not_found.html')
from flask import Flask, render_template, jsonify from reddit_handler import * app = Flask(__name__) meme_subreddits = ['izlam'] @app.route('/') def index(): return render_template('index.html') @app.route('/meme') def one_post(): sub = random.choice(meme_subreddits) re = get_posts(sub, 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return jsonify({ 'title': r[0], 'url': r[1], 'postLink': r[2], 'subreddit': sub }) @app.route('/sample') def sample(): re = get_posts(random.choice(meme_subreddits), 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return render_template('sample.html', title=r[0], img_url=r[1], shortlink=r[2]) @app.route('/test') def test(): re = get_posts(random.choice(meme_subreddits), 100) return render_template('test.html', re=re) @app.route('/<something>') def not_found(something): return render_template('not_found.html')
none
1
2.698476
3
10_compare_between_main_product_pages.py
e-davydenkova/SeleniumWebDriver_Training
0
8756
import pytest from selenium import webdriver import re @pytest.fixture def driver(request): wd = webdriver.Chrome() wd.get("http://localhost/litecart/en/") request.addfinalizer(wd.quit) return wd # check that product names are identical on the main page and on product page def test_product_names(driver): # get a product name on the main page main_name = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light .name").text # get a product name on a product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() product_name = driver.find_element_by_css_selector("#box-product .title").text assert main_name == product_name, "Product names on the main page and on product page are NOT identical" # check that prices (regular and campaign) are identical on the main page and on product page def test_prices(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a regular price on the main page main_regular_price = prices.find_element_by_css_selector(".regular-price").text # get a campaign price on the main page main_campaign_price = prices.find_element_by_css_selector(".campaign-price").text # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() # get a regular price on a product page product_regular_price = driver.find_element_by_css_selector("#box-product .price-wrapper .regular-price").text # get a campaign price on a product page product_campaign_price = driver.find_element_by_css_selector("#box-product .price-wrapper .campaign-price").text assert main_regular_price == product_regular_price, "Regular prices on the main page and on the product page " \ "are NOT identical" assert main_campaign_price == product_campaign_price, "Campaign prices on the main page and on the product page " \ "are NOT identical" # check color of regular and campaign prices and their attributes on the main page def test_colors_main_page(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+',regular_color) assert(color_list[0] == color_list[1] == color_list[2]), "The regular price on the main page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+',campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the main page is NOT red" regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property("text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the main page" campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the main page" # check color of regular and campaign prices and their attributes on the product page def test_colors_product_page(driver): # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+', regular_color) assert (color_list[0] == color_list[1] == color_list[2]), "The regular price on the product page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+', campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the product page is NOT red" # verify that the regular price is line-through regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property( "text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the product page" # verify that the campaign price is bold campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property( "font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the product page" # check that campaign price is bigger than regular prise on the main and product pages def test_size_comparison(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the main page" # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the product page"
import pytest from selenium import webdriver import re @pytest.fixture def driver(request): wd = webdriver.Chrome() wd.get("http://localhost/litecart/en/") request.addfinalizer(wd.quit) return wd # check that product names are identical on the main page and on product page def test_product_names(driver): # get a product name on the main page main_name = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light .name").text # get a product name on a product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() product_name = driver.find_element_by_css_selector("#box-product .title").text assert main_name == product_name, "Product names on the main page and on product page are NOT identical" # check that prices (regular and campaign) are identical on the main page and on product page def test_prices(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a regular price on the main page main_regular_price = prices.find_element_by_css_selector(".regular-price").text # get a campaign price on the main page main_campaign_price = prices.find_element_by_css_selector(".campaign-price").text # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() # get a regular price on a product page product_regular_price = driver.find_element_by_css_selector("#box-product .price-wrapper .regular-price").text # get a campaign price on a product page product_campaign_price = driver.find_element_by_css_selector("#box-product .price-wrapper .campaign-price").text assert main_regular_price == product_regular_price, "Regular prices on the main page and on the product page " \ "are NOT identical" assert main_campaign_price == product_campaign_price, "Campaign prices on the main page and on the product page " \ "are NOT identical" # check color of regular and campaign prices and their attributes on the main page def test_colors_main_page(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+',regular_color) assert(color_list[0] == color_list[1] == color_list[2]), "The regular price on the main page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+',campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the main page is NOT red" regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property("text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the main page" campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the main page" # check color of regular and campaign prices and their attributes on the product page def test_colors_product_page(driver): # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+', regular_color) assert (color_list[0] == color_list[1] == color_list[2]), "The regular price on the product page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+', campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the product page is NOT red" # verify that the regular price is line-through regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property( "text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the product page" # verify that the campaign price is bold campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property( "font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the product page" # check that campaign price is bigger than regular prise on the main and product pages def test_size_comparison(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the main page" # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the product page"
en
0.914373
# check that product names are identical on the main page and on product page # get a product name on the main page # get a product name on a product page # check that prices (regular and campaign) are identical on the main page and on product page # get a regular price on the main page # get a campaign price on the main page # open the product page # get a regular price on a product page # get a campaign price on a product page # check color of regular and campaign prices and their attributes on the main page # get a color of the regular price on the main page # verify that the regular price is grey (values of R,G,B are identical) # get a color of the campaign price on the main page # verify that the campaign price is red (values of G and B are 0) # check color of regular and campaign prices and their attributes on the product page # open the product page # get a color of the regular price on the main page # verify that the regular price is grey (values of R,G,B are identical) # get a color of the campaign price on the main page # verify that the campaign price is red (values of G and B are 0) # verify that the regular price is line-through # verify that the campaign price is bold # check that campaign price is bigger than regular prise on the main and product pages # open the product page
2.665517
3
pyrite/llvm.py
iahuang/pyrite
0
8757
import shutil from pyrite import fs from pyrite.command_line import run_command from pyrite.errors import UserError from pyrite.globals import Globals from os.path import join class LLVMInterface: _clang_path: str def __init__(self): self._clang_path = self._get_clang_path() def _get_clang_path(self) -> str: clang_path = shutil.which(Globals.get_compiler_options().clang_command) if not clang_path: raise UserError( "Pyrite requires clang to be installed, but no such installation was found." ) return clang_path def compile_ll(self, source: str, output_path: str) -> None: """ Compile the contents of [source] as LLVM IR code, outputting a binary specified by [output_path]. If any errors arise in compilation, raise an error. """ ir_path = join(self.get_build_directory(), "build.ll") fs.write_file( path=ir_path, data=source ) result = run_command([self._clang_path, ir_path, "-o", output_path]) if result.stderr: fs.write_file( path=join(self.get_build_directory(), "llvm_error.txt"), data=result.stderr ) raise UserError( "An unexpected error occurred during the compilation process. A detailed report has been written to {}".format( self.get_build_directory() ) ) def get_build_directory(self) -> str: """ Pyrite uses a temporary working "build" directory to store files needed for LLVM/Clang """ cwd = Globals.get_compiler_options().cwd return join(cwd, "_build")
import shutil from pyrite import fs from pyrite.command_line import run_command from pyrite.errors import UserError from pyrite.globals import Globals from os.path import join class LLVMInterface: _clang_path: str def __init__(self): self._clang_path = self._get_clang_path() def _get_clang_path(self) -> str: clang_path = shutil.which(Globals.get_compiler_options().clang_command) if not clang_path: raise UserError( "Pyrite requires clang to be installed, but no such installation was found." ) return clang_path def compile_ll(self, source: str, output_path: str) -> None: """ Compile the contents of [source] as LLVM IR code, outputting a binary specified by [output_path]. If any errors arise in compilation, raise an error. """ ir_path = join(self.get_build_directory(), "build.ll") fs.write_file( path=ir_path, data=source ) result = run_command([self._clang_path, ir_path, "-o", output_path]) if result.stderr: fs.write_file( path=join(self.get_build_directory(), "llvm_error.txt"), data=result.stderr ) raise UserError( "An unexpected error occurred during the compilation process. A detailed report has been written to {}".format( self.get_build_directory() ) ) def get_build_directory(self) -> str: """ Pyrite uses a temporary working "build" directory to store files needed for LLVM/Clang """ cwd = Globals.get_compiler_options().cwd return join(cwd, "_build")
en
0.736421
Compile the contents of [source] as LLVM IR code, outputting a binary specified by [output_path]. If any errors arise in compilation, raise an error. Pyrite uses a temporary working "build" directory to store files needed for LLVM/Clang
2.373717
2
bag_recursive.py
eduardogerentklein/Algoritmos-Geneticos
0
8758
maxWeight = 30 value = [15, 7, 10, 5, 8, 17] weight = [15, 3, 2, 5, 9, 20] def bag(pos, selected): # calcula o total totalValue = 0 pesoTotal = 0 for i in selected: totalValue += value[i] pesoTotal += weight[i] if pesoTotal > maxWeight: return (0,0) if pos >= len(weight): return (totalValue, pesoTotal) answer1 = bag(pos + 1, selected + [pos]) answer2 = bag(pos + 1, list(selected)) if answer1[0] > answer2[0]: return answer1 else: return answer2 bestAnswer = bag(0, []) print(bestAnswer)
maxWeight = 30 value = [15, 7, 10, 5, 8, 17] weight = [15, 3, 2, 5, 9, 20] def bag(pos, selected): # calcula o total totalValue = 0 pesoTotal = 0 for i in selected: totalValue += value[i] pesoTotal += weight[i] if pesoTotal > maxWeight: return (0,0) if pos >= len(weight): return (totalValue, pesoTotal) answer1 = bag(pos + 1, selected + [pos]) answer2 = bag(pos + 1, list(selected)) if answer1[0] > answer2[0]: return answer1 else: return answer2 bestAnswer = bag(0, []) print(bestAnswer)
en
0.364433
# calcula o total
3.583946
4
train.py
MEfeTiryaki/trpo
2
8759
<reponame>MEfeTiryaki/trpo import argparse from itertools import count import signal import sys import os import time import numpy as np import gym import torch import torch.autograd as autograd from torch.autograd import Variable import scipy.optimize import matplotlib.pyplot as plt from value import Value from policy import Policy from utils import * from trpo import trpo_step parser = argparse.ArgumentParser(description='PyTorch actor-critic example') # Algorithm Parameters parser.add_argument('--gamma', type=float, default=0.995, metavar='G', help='discount factor (default: 0.995)') parser.add_argument('--lambda-', type=float, default=0.97, metavar='G', help='gae (default: 0.97)') # Value Function Learning Parameters parser.add_argument('--l2-reg', type=float, default=1e-3, metavar='G', help='(NOT USED)l2 regularization regression (default: 1e-3)') parser.add_argument('--val-opt-iter', type=int, default=200, metavar='G', help='iteration number for value function learning(default: 200)') parser.add_argument('--lr', type=float, default=1e-3, metavar='G', help='learning rate for value function (default: 1e-3)') parser.add_argument('--value-memory', type=int, default=1, metavar='G', help='ratio of past value to be used to batch size (default: 1)') parser.add_argument('--value-memory-shuffle', action='store_true',help='if not shuffled latest memory stay') # TODO: implement # Policy Optimization parameters parser.add_argument('--max-kl', type=float, default=1e-2, metavar='G', help='max kl value (default: 1e-2)') parser.add_argument('--damping', type=float, default=1e-1, metavar='G', help='damping (default: 1e-1)') parser.add_argument('--fisher-ratio', type=float, default=1, metavar='G', help='ratio of data to calcualte fisher vector product (default: 1)') # Environment parameters parser.add_argument('--env-name', default="Pendulum-v0", metavar='G', help='name of the environment to run') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 1)') # Training length parser.add_argument('--batch-size', type=int, default=5000, metavar='N', help='number of steps per iteration') parser.add_argument('--episode-length', type=int, default=1000, metavar='N', help='max step size for one episode') parser.add_argument('--max-iteration-number', type=int, default=200, metavar='N', help='max policy iteration number') # Rendering parser.add_argument('--render', action='store_true', help='render the environment') # Logging parser.add_argument('--log-interval', type=int, default=1, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--log', action='store_true', help='log the results at the end') parser.add_argument('--log-dir', type=str, default=".", metavar='N', help='log directory') parser.add_argument('--log-prefix', type=str, default="log", metavar='N', help='log file prefix') # Load parser.add_argument('--load', action='store_true', help='load models') parser.add_argument('--save', action='store_true', help='load models') parser.add_argument('--load-dir', type=str, default=".", metavar='N', help='') args = parser.parse_args() env = gym.make(args.env_name) env.seed(args.seed) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.shape[0] torch.set_printoptions(profile="full") if args.load: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) set_flat_params_to(value_net, loadParameterCsv(args.load_dir+"/ValueNet")) set_flat_params_to(policy_net, loadParameterCsv(args.load_dir+"/PolicyNet")) print("Networks are loaded from "+args.load_dir+"/") else: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) def signal_handler(sig, frame): """ Signal Handler to save the networks when shutting down via ctrl+C Parameters: Returns: """ if(args.save): valueParam = get_flat_params_from(value_net) policyParam = get_flat_params_from(policy_net) saveParameterCsv(valueParam,args.load_dir+"/ValueNet") saveParameterCsv(policyParam,args.load_dir+"/PolicyNet") print("Networks are saved in "+args.load_dir+"/") print('Closing!!') env.close() sys.exit(0) def prepare_data(batch,valueBatch,previousBatch): """ Get the batch data and calculate value,return and generalized advantage Detail: TODO Parameters: batch (dict of arrays of numpy) : TODO valueBatch (dict of arrays of numpy) : TODO previousBatch (dict of arrays of numpy) : TODO Returns: """ # TODO : more description above stateList = [ torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["states"]] actionsList = [torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["actions"]] for states in stateList: value = value_net.forward(states) batch["values"].append(value) advantagesList = [] returnsList = [] rewardsList = [] for rewards,values,masks in zip(batch["rewards"],batch["values"],batch["mask"]): returns = torch.Tensor(len(rewards),1) advantages = torch.Tensor(len(rewards),1) deltas = torch.Tensor(len(rewards),1) prev_return = 0 prev_value = 0 prev_advantage = 0 for i in reversed(range(len(rewards))): returns[i] = rewards[i] + args.gamma * prev_value * masks[i] # TD # returns[i] = rewards[i] + args.gamma * prev_return * masks[i] # Monte Carlo deltas[i] = rewards[i] + args.gamma * prev_value * masks[i]- values.data[i] advantages[i] = deltas[i] + args.gamma * args.lambda_* prev_advantage* masks[i] prev_return = returns[i, 0] prev_value = values.data[i, 0] prev_advantage = advantages[i, 0] returnsList.append(returns) advantagesList.append(advantages) rewardsList.append(torch.Tensor(rewards)) batch["states"] = torch.cat(stateList,0) batch["actions"] = torch.cat(actionsList,0) batch["rewards"] = torch.cat(rewardsList,0) batch["returns"] = torch.cat(returnsList,0) advantagesList = torch.cat(advantagesList,0) batch["advantages"] = (advantagesList- advantagesList.mean()) / advantagesList.std() valueBatch["states"] = torch.cat(( previousBatch["states"],batch["states"]),0) valueBatch["targets"] = torch.cat((previousBatch["returns"],batch["returns"]),0) def update_policy(batch): """ Get advantage , states and action and calls trpo step Parameters: batch (dict of arrays of numpy) : TODO (batch is different than prepare_data by structure) Returns: """ advantages = batch["advantages"] states = batch["states"] actions = batch["actions"] trpo_step(policy_net, states,actions,advantages , args.max_kl, args.damping) def update_value(valueBatch): """ Get valueBatch and run adam optimizer to learn value function Parameters: valueBatch (dict of arrays of numpy) : TODO Returns: """ # shuffle the data dataSize = valueBatch["targets"].size()[0] permutation = torch.randperm(dataSize) input = valueBatch["states"][permutation] target = valueBatch["targets"][permutation] iter = args.val_opt_iter batchSize = int(dataSize/ iter) loss_fn = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.Adam(value_net.parameters(), lr=args.lr) for t in range(iter): prediction = value_net(input[t*batchSize:t*batchSize+batchSize]) loss = loss_fn(prediction, target[t*batchSize:t*batchSize+batchSize]) # XXX : Comment out for debug # if t%100==0: # print("\t%f"%loss.data) optimizer.zero_grad() loss.backward() optimizer.step() def save_to_previousBatch(previousBatch,batch): """ Save previous batch to use in future value optimization Details: TODO Parameters: Returns: """ if args.value_memory<0: print("Value memory should be equal or greater than zero") elif args.value_memory>0: if previousBatch["returns"].size() == 0: previousBatch= {"states":batch["states"], "returns":batch["returns"]} else: previous_size = previousBatch["returns"].size()[0] size = batch["returns"].size()[0] if previous_size/size == args.value_memory: previousBatch["states"] = torch.cat([previousBatch["states"][size:],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"][size:],batch["returns"]],0) else: previousBatch["states"] = torch.cat([previousBatch["states"],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"],batch["returns"]],0) if args.value_memory_shuffle: permutation = torch.randperm(previousBatch["returns"].size()[0]) previousBatch["states"] = previousBatch["states"][permutation] previousBatch["returns"] = previousBatch["returns"][permutation] def calculate_loss(reward_sum_mean,reward_sum_std,test_number = 10): """ Calculate mean cummulative reward for test_nubmer of trials Parameters: reward_sum_mean (list): holds the history of the means. reward_sum_std (list): holds the history of the std. Returns: list: new value appended means list: new value appended stds """ rewardSum = [] for i in range(test_number): state = env.reset() rewardSum.append(0) for t in range(args.episode_length): state, reward, done, _ = env.step(policy_net.get_action(state)[0] ) state = np.transpose(state) rewardSum[-1] += reward if done: break reward_sum_mean.append(np.array(rewardSum).mean()) reward_sum_std.append(np.array(rewardSum).std()) return reward_sum_mean, reward_sum_std def log(rewards): """ Saves mean and std over episodes in log file Parameters: Returns: """ # TODO : add duration to log filename = args.log_dir+"/"+ args.log_prefix \ + "_env_" + args.env_name \ + "_maxIter_" + str(args.max_iteration_number) \ + "_batchSize_" + str(args.batch_size) \ + "_gamma_" + str(args.gamma) \ + "_lambda_" + str(args.lambda_) \ + "_lr_" + str(args.lr) \ + "_valOptIter_" + str(args.val_opt_iter) if os.path.exists(filename + "_index_0.csv"): id = 0 file = filename + "_index_" + str(id) while os.path.exists(file + ".csv"): id = id +1 file = filename + "_index_" + str(id) filename = file else: filename = filename + "_index_0" import csv filename = filename+ ".csv" pythonVersion = sys.version_info[0] if pythonVersion == 3: with open(filename, 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) elif pythonVersion == 2: with open(filename, 'w', ) as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) def main(): """ Parameters: Returns: """ signal.signal(signal.SIGINT, signal_handler) time_start = time.time() reward_sum_mean,reward_sum_std = [], [] previousBatch= {"states":torch.Tensor(0) , "returns":torch.Tensor(0)} reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("Initial loss \n\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) for i_episode in range(args.max_iteration_number): time_episode_start = time.time() # reset batches batch = {"states":[] , "actions":[], "next_states":[] , "rewards":[], "returns":[], "values":[], "advantages":[], "mask":[]} valueBatch = {"states" :[], "targets" : []} num_steps = 0 while num_steps < args.batch_size: state = env.reset() reward_sum = 0 states,actions,rewards,next_states,masks = [],[],[],[],[] steps = 0 for t in range(args.episode_length): action = policy_net.get_action(state)[0] # agent next_state, reward, done, info = env.step(action) next_state = np.transpose(next_state) mask = 0 if done else 1 masks.append(mask) states.append(state) actions.append(action) next_states.append(next_state) rewards.append(reward) state = next_state reward_sum += reward steps+=1 if args.render: env.render() if done: break batch["states"].append(np.expand_dims(states, axis=1) ) batch["actions"].append(actions) batch["next_states"].append(np.expand_dims(next_states, axis=1)) batch["rewards"].append(rewards) batch["mask"].append(masks) num_steps += steps prepare_data(batch,valueBatch,previousBatch) update_policy(batch) # First policy update to avoid overfitting update_value(valueBatch) save_to_previousBatch(previousBatch,batch) print("episode %d | total: %.4f "%( i_episode, time.time()-time_episode_start)) reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) if args.log: print("Data is logged in "+args.log_dir+"/") log(reward_sum_mean) print("Total training duration: %.4f "%(time.time()-time_start)) env.close() if __name__ == '__main__': main()
import argparse from itertools import count import signal import sys import os import time import numpy as np import gym import torch import torch.autograd as autograd from torch.autograd import Variable import scipy.optimize import matplotlib.pyplot as plt from value import Value from policy import Policy from utils import * from trpo import trpo_step parser = argparse.ArgumentParser(description='PyTorch actor-critic example') # Algorithm Parameters parser.add_argument('--gamma', type=float, default=0.995, metavar='G', help='discount factor (default: 0.995)') parser.add_argument('--lambda-', type=float, default=0.97, metavar='G', help='gae (default: 0.97)') # Value Function Learning Parameters parser.add_argument('--l2-reg', type=float, default=1e-3, metavar='G', help='(NOT USED)l2 regularization regression (default: 1e-3)') parser.add_argument('--val-opt-iter', type=int, default=200, metavar='G', help='iteration number for value function learning(default: 200)') parser.add_argument('--lr', type=float, default=1e-3, metavar='G', help='learning rate for value function (default: 1e-3)') parser.add_argument('--value-memory', type=int, default=1, metavar='G', help='ratio of past value to be used to batch size (default: 1)') parser.add_argument('--value-memory-shuffle', action='store_true',help='if not shuffled latest memory stay') # TODO: implement # Policy Optimization parameters parser.add_argument('--max-kl', type=float, default=1e-2, metavar='G', help='max kl value (default: 1e-2)') parser.add_argument('--damping', type=float, default=1e-1, metavar='G', help='damping (default: 1e-1)') parser.add_argument('--fisher-ratio', type=float, default=1, metavar='G', help='ratio of data to calcualte fisher vector product (default: 1)') # Environment parameters parser.add_argument('--env-name', default="Pendulum-v0", metavar='G', help='name of the environment to run') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 1)') # Training length parser.add_argument('--batch-size', type=int, default=5000, metavar='N', help='number of steps per iteration') parser.add_argument('--episode-length', type=int, default=1000, metavar='N', help='max step size for one episode') parser.add_argument('--max-iteration-number', type=int, default=200, metavar='N', help='max policy iteration number') # Rendering parser.add_argument('--render', action='store_true', help='render the environment') # Logging parser.add_argument('--log-interval', type=int, default=1, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--log', action='store_true', help='log the results at the end') parser.add_argument('--log-dir', type=str, default=".", metavar='N', help='log directory') parser.add_argument('--log-prefix', type=str, default="log", metavar='N', help='log file prefix') # Load parser.add_argument('--load', action='store_true', help='load models') parser.add_argument('--save', action='store_true', help='load models') parser.add_argument('--load-dir', type=str, default=".", metavar='N', help='') args = parser.parse_args() env = gym.make(args.env_name) env.seed(args.seed) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.shape[0] torch.set_printoptions(profile="full") if args.load: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) set_flat_params_to(value_net, loadParameterCsv(args.load_dir+"/ValueNet")) set_flat_params_to(policy_net, loadParameterCsv(args.load_dir+"/PolicyNet")) print("Networks are loaded from "+args.load_dir+"/") else: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) def signal_handler(sig, frame): """ Signal Handler to save the networks when shutting down via ctrl+C Parameters: Returns: """ if(args.save): valueParam = get_flat_params_from(value_net) policyParam = get_flat_params_from(policy_net) saveParameterCsv(valueParam,args.load_dir+"/ValueNet") saveParameterCsv(policyParam,args.load_dir+"/PolicyNet") print("Networks are saved in "+args.load_dir+"/") print('Closing!!') env.close() sys.exit(0) def prepare_data(batch,valueBatch,previousBatch): """ Get the batch data and calculate value,return and generalized advantage Detail: TODO Parameters: batch (dict of arrays of numpy) : TODO valueBatch (dict of arrays of numpy) : TODO previousBatch (dict of arrays of numpy) : TODO Returns: """ # TODO : more description above stateList = [ torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["states"]] actionsList = [torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["actions"]] for states in stateList: value = value_net.forward(states) batch["values"].append(value) advantagesList = [] returnsList = [] rewardsList = [] for rewards,values,masks in zip(batch["rewards"],batch["values"],batch["mask"]): returns = torch.Tensor(len(rewards),1) advantages = torch.Tensor(len(rewards),1) deltas = torch.Tensor(len(rewards),1) prev_return = 0 prev_value = 0 prev_advantage = 0 for i in reversed(range(len(rewards))): returns[i] = rewards[i] + args.gamma * prev_value * masks[i] # TD # returns[i] = rewards[i] + args.gamma * prev_return * masks[i] # Monte Carlo deltas[i] = rewards[i] + args.gamma * prev_value * masks[i]- values.data[i] advantages[i] = deltas[i] + args.gamma * args.lambda_* prev_advantage* masks[i] prev_return = returns[i, 0] prev_value = values.data[i, 0] prev_advantage = advantages[i, 0] returnsList.append(returns) advantagesList.append(advantages) rewardsList.append(torch.Tensor(rewards)) batch["states"] = torch.cat(stateList,0) batch["actions"] = torch.cat(actionsList,0) batch["rewards"] = torch.cat(rewardsList,0) batch["returns"] = torch.cat(returnsList,0) advantagesList = torch.cat(advantagesList,0) batch["advantages"] = (advantagesList- advantagesList.mean()) / advantagesList.std() valueBatch["states"] = torch.cat(( previousBatch["states"],batch["states"]),0) valueBatch["targets"] = torch.cat((previousBatch["returns"],batch["returns"]),0) def update_policy(batch): """ Get advantage , states and action and calls trpo step Parameters: batch (dict of arrays of numpy) : TODO (batch is different than prepare_data by structure) Returns: """ advantages = batch["advantages"] states = batch["states"] actions = batch["actions"] trpo_step(policy_net, states,actions,advantages , args.max_kl, args.damping) def update_value(valueBatch): """ Get valueBatch and run adam optimizer to learn value function Parameters: valueBatch (dict of arrays of numpy) : TODO Returns: """ # shuffle the data dataSize = valueBatch["targets"].size()[0] permutation = torch.randperm(dataSize) input = valueBatch["states"][permutation] target = valueBatch["targets"][permutation] iter = args.val_opt_iter batchSize = int(dataSize/ iter) loss_fn = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.Adam(value_net.parameters(), lr=args.lr) for t in range(iter): prediction = value_net(input[t*batchSize:t*batchSize+batchSize]) loss = loss_fn(prediction, target[t*batchSize:t*batchSize+batchSize]) # XXX : Comment out for debug # if t%100==0: # print("\t%f"%loss.data) optimizer.zero_grad() loss.backward() optimizer.step() def save_to_previousBatch(previousBatch,batch): """ Save previous batch to use in future value optimization Details: TODO Parameters: Returns: """ if args.value_memory<0: print("Value memory should be equal or greater than zero") elif args.value_memory>0: if previousBatch["returns"].size() == 0: previousBatch= {"states":batch["states"], "returns":batch["returns"]} else: previous_size = previousBatch["returns"].size()[0] size = batch["returns"].size()[0] if previous_size/size == args.value_memory: previousBatch["states"] = torch.cat([previousBatch["states"][size:],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"][size:],batch["returns"]],0) else: previousBatch["states"] = torch.cat([previousBatch["states"],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"],batch["returns"]],0) if args.value_memory_shuffle: permutation = torch.randperm(previousBatch["returns"].size()[0]) previousBatch["states"] = previousBatch["states"][permutation] previousBatch["returns"] = previousBatch["returns"][permutation] def calculate_loss(reward_sum_mean,reward_sum_std,test_number = 10): """ Calculate mean cummulative reward for test_nubmer of trials Parameters: reward_sum_mean (list): holds the history of the means. reward_sum_std (list): holds the history of the std. Returns: list: new value appended means list: new value appended stds """ rewardSum = [] for i in range(test_number): state = env.reset() rewardSum.append(0) for t in range(args.episode_length): state, reward, done, _ = env.step(policy_net.get_action(state)[0] ) state = np.transpose(state) rewardSum[-1] += reward if done: break reward_sum_mean.append(np.array(rewardSum).mean()) reward_sum_std.append(np.array(rewardSum).std()) return reward_sum_mean, reward_sum_std def log(rewards): """ Saves mean and std over episodes in log file Parameters: Returns: """ # TODO : add duration to log filename = args.log_dir+"/"+ args.log_prefix \ + "_env_" + args.env_name \ + "_maxIter_" + str(args.max_iteration_number) \ + "_batchSize_" + str(args.batch_size) \ + "_gamma_" + str(args.gamma) \ + "_lambda_" + str(args.lambda_) \ + "_lr_" + str(args.lr) \ + "_valOptIter_" + str(args.val_opt_iter) if os.path.exists(filename + "_index_0.csv"): id = 0 file = filename + "_index_" + str(id) while os.path.exists(file + ".csv"): id = id +1 file = filename + "_index_" + str(id) filename = file else: filename = filename + "_index_0" import csv filename = filename+ ".csv" pythonVersion = sys.version_info[0] if pythonVersion == 3: with open(filename, 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) elif pythonVersion == 2: with open(filename, 'w', ) as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) def main(): """ Parameters: Returns: """ signal.signal(signal.SIGINT, signal_handler) time_start = time.time() reward_sum_mean,reward_sum_std = [], [] previousBatch= {"states":torch.Tensor(0) , "returns":torch.Tensor(0)} reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("Initial loss \n\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) for i_episode in range(args.max_iteration_number): time_episode_start = time.time() # reset batches batch = {"states":[] , "actions":[], "next_states":[] , "rewards":[], "returns":[], "values":[], "advantages":[], "mask":[]} valueBatch = {"states" :[], "targets" : []} num_steps = 0 while num_steps < args.batch_size: state = env.reset() reward_sum = 0 states,actions,rewards,next_states,masks = [],[],[],[],[] steps = 0 for t in range(args.episode_length): action = policy_net.get_action(state)[0] # agent next_state, reward, done, info = env.step(action) next_state = np.transpose(next_state) mask = 0 if done else 1 masks.append(mask) states.append(state) actions.append(action) next_states.append(next_state) rewards.append(reward) state = next_state reward_sum += reward steps+=1 if args.render: env.render() if done: break batch["states"].append(np.expand_dims(states, axis=1) ) batch["actions"].append(actions) batch["next_states"].append(np.expand_dims(next_states, axis=1)) batch["rewards"].append(rewards) batch["mask"].append(masks) num_steps += steps prepare_data(batch,valueBatch,previousBatch) update_policy(batch) # First policy update to avoid overfitting update_value(valueBatch) save_to_previousBatch(previousBatch,batch) print("episode %d | total: %.4f "%( i_episode, time.time()-time_episode_start)) reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) if args.log: print("Data is logged in "+args.log_dir+"/") log(reward_sum_mean) print("Total training duration: %.4f "%(time.time()-time_start)) env.close() if __name__ == '__main__': main()
en
0.57737
# Algorithm Parameters # Value Function Learning Parameters # TODO: implement # Policy Optimization parameters # Environment parameters # Training length # Rendering # Logging # Load Signal Handler to save the networks when shutting down via ctrl+C Parameters: Returns: Get the batch data and calculate value,return and generalized advantage Detail: TODO Parameters: batch (dict of arrays of numpy) : TODO valueBatch (dict of arrays of numpy) : TODO previousBatch (dict of arrays of numpy) : TODO Returns: # TODO : more description above # TD # returns[i] = rewards[i] + args.gamma * prev_return * masks[i] # Monte Carlo Get advantage , states and action and calls trpo step Parameters: batch (dict of arrays of numpy) : TODO (batch is different than prepare_data by structure) Returns: Get valueBatch and run adam optimizer to learn value function Parameters: valueBatch (dict of arrays of numpy) : TODO Returns: # shuffle the data # XXX : Comment out for debug # if t%100==0: # print("\t%f"%loss.data) Save previous batch to use in future value optimization Details: TODO Parameters: Returns: Calculate mean cummulative reward for test_nubmer of trials Parameters: reward_sum_mean (list): holds the history of the means. reward_sum_std (list): holds the history of the std. Returns: list: new value appended means list: new value appended stds Saves mean and std over episodes in log file Parameters: Returns: # TODO : add duration to log Parameters: Returns: # reset batches # agent # First policy update to avoid overfitting
2.054693
2
task3/task3_xgb_cv.py
meck93/intro_ml
0
8760
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import f_classif, SelectKBest import numpy as np import pandas as pd import os mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-7.2.0-posix-sjlj-rt_v5-rev1\\mingw64\\bin' os.environ['PATH'] = mingw_path + ';' + os.environ['PATH'] import xgboost as xgb # Constants FILE_PATH_TRAIN = "./input/train.h5" FILE_PATH_TEST = "./input/test.h5" TEST_SIZE = 0.25 # read training file # test_data = pd.read_hdf(FILE_PATH_TRAIN, "test") training_data = pd.read_hdf(FILE_PATH_TRAIN, "train") # training data # extracting the x-values x_values_training = training_data.copy() x_values_training = x_values_training.drop(labels=['y'], axis=1) x_component_training = x_values_training.values # extracting the y-values y_component_training = training_data['y'].values # training the scaler scaler = StandardScaler(with_mean=True, with_std=True) scaler = scaler.fit(x_component_training) # scaling the training and test data x_train_scaled = scaler.transform(x_component_training) # feature selection selector = SelectKBest(f_classif, k=25) selector = selector.fit(x_train_scaled, y_component_training) x_train_scaled_new = selector.transform(x_train_scaled) # splitting the training set into a training & validation set x_train, x_val, y_train, y_val = train_test_split(x_train_scaled_new, y_component_training, test_size=TEST_SIZE, random_state=42) # training, evaluation and test data in xgboost DMatrix xg_train = xgb.DMatrix(x_train, label=y_train) xg_val = xgb.DMatrix(x_val, label=y_val) # setup parameters for xgboost params = {} # use softmax multi-class classification params['objective'] = 'multi:softmax' # scale weight of positive examples params['silent'] = 0 params['num_class'] = 5 params['tree_method'] = 'auto' params['seed'] = 42 # number of boosting rounds rounds = 300 # gridsearch_params = [ # (max_depth, min_child_weight) # for max_depth in range(6,13,2) # for min_child_weight in range(4,9,2) # ] # print(gridsearch_params) # best_params = None # min_error = float("Inf") # for max_depth, min_child_weight in gridsearch_params: # print("CV with max_depth={}, min_child_weight={}".format(max_depth, min_child_weight)) # # Update our parameters # params['max_depth'] = max_depth # params['min_child_weight'] = min_child_weight # # Run CV # cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # # Update best error # mean_error = cv_results['test-merror-mean'].min() # boost_rounds = cv_results['test-merror-mean'].argmin() # print("\t Multiclass Error {} for {} rounds".format(mean_error, boost_rounds)) # print() # if mean_error < min_error: # min_error = mean_error # best_params = (max_depth, min_child_weight) # print("Best params: {}, {}, MAE: {}".format(best_params[0], best_params[1], min_error)) # # grid search parameters # gridsearch_params = [] # # tree depth, gamma, learning rate, regularization lambda # for max_tree_depth in range(6, 11, 1): # for gamma in range(0, 13, 2): # for learn_rate in [0.3, 0.1, 0.05]: # for reg_lambda in [10.0, 1.0, 0.0, 0.1, 0.01]: # gridsearch_params.append((max_tree_depth, gamma, learn_rate, reg_lambda)) # print(gridsearch_params) gridsearch_params = [ (max_depth, gamma) for max_depth in range(6,13,2) for gamma in range(0,13,2) ] print(gridsearch_params) best_params = None min_test_error = float("Inf") min_train_error = float("Inf") file = open("output.txt", mode="w+", encoding='utf-8', newline='\n') for max_depth, gamma in gridsearch_params: print("CV with max_depth={}, gamma={}".format(max_depth, gamma)) file.write("CV with max_depth={}, gamma={}\n".format(max_depth, gamma)) # Update our parameters params['max_depth'] = max_depth params['gamma'] = gamma # Run CV cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # Update best error test_error = cv_results['test-merror-mean'].min() train_error = cv_results['train-merror-mean'].min() boost_rounds = cv_results['test-merror-mean'].argmin() print("Multiclass Error {} for {} rounds".format(test_error, boost_rounds)) print() file.write("Multiclass Error - Test: {} - Train: {} for {} rounds\n".format(test_error, train_error, boost_rounds)) file.write("\n") if test_error < min_test_error: min_test_error = test_error min_train_error = train_error best_params = (max_depth, gamma) print("Best params: {}, {}, Test Error: {}, Train Error: {}".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.write("Best params: {}, {}, Test Error: {}, Train Error: {}\n".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.close()
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import f_classif, SelectKBest import numpy as np import pandas as pd import os mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-7.2.0-posix-sjlj-rt_v5-rev1\\mingw64\\bin' os.environ['PATH'] = mingw_path + ';' + os.environ['PATH'] import xgboost as xgb # Constants FILE_PATH_TRAIN = "./input/train.h5" FILE_PATH_TEST = "./input/test.h5" TEST_SIZE = 0.25 # read training file # test_data = pd.read_hdf(FILE_PATH_TRAIN, "test") training_data = pd.read_hdf(FILE_PATH_TRAIN, "train") # training data # extracting the x-values x_values_training = training_data.copy() x_values_training = x_values_training.drop(labels=['y'], axis=1) x_component_training = x_values_training.values # extracting the y-values y_component_training = training_data['y'].values # training the scaler scaler = StandardScaler(with_mean=True, with_std=True) scaler = scaler.fit(x_component_training) # scaling the training and test data x_train_scaled = scaler.transform(x_component_training) # feature selection selector = SelectKBest(f_classif, k=25) selector = selector.fit(x_train_scaled, y_component_training) x_train_scaled_new = selector.transform(x_train_scaled) # splitting the training set into a training & validation set x_train, x_val, y_train, y_val = train_test_split(x_train_scaled_new, y_component_training, test_size=TEST_SIZE, random_state=42) # training, evaluation and test data in xgboost DMatrix xg_train = xgb.DMatrix(x_train, label=y_train) xg_val = xgb.DMatrix(x_val, label=y_val) # setup parameters for xgboost params = {} # use softmax multi-class classification params['objective'] = 'multi:softmax' # scale weight of positive examples params['silent'] = 0 params['num_class'] = 5 params['tree_method'] = 'auto' params['seed'] = 42 # number of boosting rounds rounds = 300 # gridsearch_params = [ # (max_depth, min_child_weight) # for max_depth in range(6,13,2) # for min_child_weight in range(4,9,2) # ] # print(gridsearch_params) # best_params = None # min_error = float("Inf") # for max_depth, min_child_weight in gridsearch_params: # print("CV with max_depth={}, min_child_weight={}".format(max_depth, min_child_weight)) # # Update our parameters # params['max_depth'] = max_depth # params['min_child_weight'] = min_child_weight # # Run CV # cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # # Update best error # mean_error = cv_results['test-merror-mean'].min() # boost_rounds = cv_results['test-merror-mean'].argmin() # print("\t Multiclass Error {} for {} rounds".format(mean_error, boost_rounds)) # print() # if mean_error < min_error: # min_error = mean_error # best_params = (max_depth, min_child_weight) # print("Best params: {}, {}, MAE: {}".format(best_params[0], best_params[1], min_error)) # # grid search parameters # gridsearch_params = [] # # tree depth, gamma, learning rate, regularization lambda # for max_tree_depth in range(6, 11, 1): # for gamma in range(0, 13, 2): # for learn_rate in [0.3, 0.1, 0.05]: # for reg_lambda in [10.0, 1.0, 0.0, 0.1, 0.01]: # gridsearch_params.append((max_tree_depth, gamma, learn_rate, reg_lambda)) # print(gridsearch_params) gridsearch_params = [ (max_depth, gamma) for max_depth in range(6,13,2) for gamma in range(0,13,2) ] print(gridsearch_params) best_params = None min_test_error = float("Inf") min_train_error = float("Inf") file = open("output.txt", mode="w+", encoding='utf-8', newline='\n') for max_depth, gamma in gridsearch_params: print("CV with max_depth={}, gamma={}".format(max_depth, gamma)) file.write("CV with max_depth={}, gamma={}\n".format(max_depth, gamma)) # Update our parameters params['max_depth'] = max_depth params['gamma'] = gamma # Run CV cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # Update best error test_error = cv_results['test-merror-mean'].min() train_error = cv_results['train-merror-mean'].min() boost_rounds = cv_results['test-merror-mean'].argmin() print("Multiclass Error {} for {} rounds".format(test_error, boost_rounds)) print() file.write("Multiclass Error - Test: {} - Train: {} for {} rounds\n".format(test_error, train_error, boost_rounds)) file.write("\n") if test_error < min_test_error: min_test_error = test_error min_train_error = train_error best_params = (max_depth, gamma) print("Best params: {}, {}, Test Error: {}, Train Error: {}".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.write("Best params: {}, {}, Test Error: {}, Train Error: {}\n".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.close()
en
0.557208
# Constants # read training file # test_data = pd.read_hdf(FILE_PATH_TRAIN, "test") # training data # extracting the x-values # extracting the y-values # training the scaler # scaling the training and test data # feature selection # splitting the training set into a training & validation set # training, evaluation and test data in xgboost DMatrix # setup parameters for xgboost # use softmax multi-class classification # scale weight of positive examples # number of boosting rounds # gridsearch_params = [ # (max_depth, min_child_weight) # for max_depth in range(6,13,2) # for min_child_weight in range(4,9,2) # ] # print(gridsearch_params) # best_params = None # min_error = float("Inf") # for max_depth, min_child_weight in gridsearch_params: # print("CV with max_depth={}, min_child_weight={}".format(max_depth, min_child_weight)) # # Update our parameters # params['max_depth'] = max_depth # params['min_child_weight'] = min_child_weight # # Run CV # cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # # Update best error # mean_error = cv_results['test-merror-mean'].min() # boost_rounds = cv_results['test-merror-mean'].argmin() # print("\t Multiclass Error {} for {} rounds".format(mean_error, boost_rounds)) # print() # if mean_error < min_error: # min_error = mean_error # best_params = (max_depth, min_child_weight) # print("Best params: {}, {}, MAE: {}".format(best_params[0], best_params[1], min_error)) # # grid search parameters # gridsearch_params = [] # # tree depth, gamma, learning rate, regularization lambda # for max_tree_depth in range(6, 11, 1): # for gamma in range(0, 13, 2): # for learn_rate in [0.3, 0.1, 0.05]: # for reg_lambda in [10.0, 1.0, 0.0, 0.1, 0.01]: # gridsearch_params.append((max_tree_depth, gamma, learn_rate, reg_lambda)) # print(gridsearch_params) # Update our parameters # Run CV # Update best error
2.840855
3
discovery-provider/src/queries/get_plays_metrics.py
atticwip/audius-protocol
429
8761
<gh_stars>100-1000 import logging import time from sqlalchemy import func, desc from src.models import Play from src.utils import db_session logger = logging.getLogger(__name__) def get_plays_metrics(args): """ Returns metrics for play counts Args: args: dict The parsed args from the request args.start_time: date The start of the query args.limit: number The max number of responses to return args.bucket_size: string A date_trunc operation to aggregate timestamps by Returns: Array of dictionaries with the play counts and timestamp """ db = db_session.get_db_read_replica() with db.scoped_session() as session: return _get_plays_metrics(session, args) def _get_plays_metrics(session, args): metrics_query = ( session.query( func.date_trunc(args.get("bucket_size"), Play.created_at).label( "timestamp" ), func.count(Play.id).label("count"), ) .filter(Play.created_at > args.get("start_time")) .group_by(func.date_trunc(args.get("bucket_size"), Play.created_at)) .order_by(desc("timestamp")) .limit(args.get("limit")) ) metrics = metrics_query.all() metrics = [ {"timestamp": int(time.mktime(m[0].timetuple())), "count": m[1]} for m in metrics ] return metrics
import logging import time from sqlalchemy import func, desc from src.models import Play from src.utils import db_session logger = logging.getLogger(__name__) def get_plays_metrics(args): """ Returns metrics for play counts Args: args: dict The parsed args from the request args.start_time: date The start of the query args.limit: number The max number of responses to return args.bucket_size: string A date_trunc operation to aggregate timestamps by Returns: Array of dictionaries with the play counts and timestamp """ db = db_session.get_db_read_replica() with db.scoped_session() as session: return _get_plays_metrics(session, args) def _get_plays_metrics(session, args): metrics_query = ( session.query( func.date_trunc(args.get("bucket_size"), Play.created_at).label( "timestamp" ), func.count(Play.id).label("count"), ) .filter(Play.created_at > args.get("start_time")) .group_by(func.date_trunc(args.get("bucket_size"), Play.created_at)) .order_by(desc("timestamp")) .limit(args.get("limit")) ) metrics = metrics_query.all() metrics = [ {"timestamp": int(time.mktime(m[0].timetuple())), "count": m[1]} for m in metrics ] return metrics
en
0.740954
Returns metrics for play counts Args: args: dict The parsed args from the request args.start_time: date The start of the query args.limit: number The max number of responses to return args.bucket_size: string A date_trunc operation to aggregate timestamps by Returns: Array of dictionaries with the play counts and timestamp
2.540101
3
CAutomation/settings.py
Rich9rd/CAutomation
0
8762
""" Django settings for CAutomation project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) ACCOUNT_AUTHENTICATION_METHOD = 'username_email' ACCOUNT_LOGOUT_ON_GET = False ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = "none" AUTH_USER_MODEL = 'cleaning.User' AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ) ACCOUNT_CONFIRM_EMAIL_ON_GET = False SWAGGER_SETTINGS = { 'SECURITY_DEFINITIONS': { 'api_key': { 'type': 'apiKey', 'in': 'header', 'name': 'Authorization' } }, 'USE_SESSION_AUTH': False, 'JSON_EDITOR': True, } SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-=(#vt!5x^l3-j(e*%@p0)d_p&qd2x_#&n*^i=j38@b(26zz^mr' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] REST_FRAMEWORK = { 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema', 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', ], } # Application definition SITE_ID = 1 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'corsheaders', 'allauth', 'allauth.account', 'allauth.socialaccount', 'drf_yasg', 'rest_framework', 'rest_framework.authtoken', 'rest_auth.registration', 'rest_auth', 'common.apps.CommonConfig', 'cleaning.apps.CleaningConfig', ] #'corsheaders', MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.common.CommonMiddleware', 'corsheaders.middleware.CorsMiddleware', ] #'django.middleware.common.CommonMiddleware', EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #'corsheaders.middleware.CommonMiddleware', ROOT_URLCONF = 'CAutomation.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'CAutomation.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': dj_database_url.config( default='postgres://mzqgdpoeqiolgg:<EMAIL>:5432/d96ohaomhouuat' ), } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True CORS_ALLOW_ALL_ORIGINS = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
""" Django settings for CAutomation project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) ACCOUNT_AUTHENTICATION_METHOD = 'username_email' ACCOUNT_LOGOUT_ON_GET = False ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = "none" AUTH_USER_MODEL = 'cleaning.User' AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ) ACCOUNT_CONFIRM_EMAIL_ON_GET = False SWAGGER_SETTINGS = { 'SECURITY_DEFINITIONS': { 'api_key': { 'type': 'apiKey', 'in': 'header', 'name': 'Authorization' } }, 'USE_SESSION_AUTH': False, 'JSON_EDITOR': True, } SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-=(#vt!5x^l3-j(e*%@p0)d_p&qd2x_#&n*^i=j38@b(26zz^mr' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] REST_FRAMEWORK = { 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema', 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', ], } # Application definition SITE_ID = 1 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'corsheaders', 'allauth', 'allauth.account', 'allauth.socialaccount', 'drf_yasg', 'rest_framework', 'rest_framework.authtoken', 'rest_auth.registration', 'rest_auth', 'common.apps.CommonConfig', 'cleaning.apps.CleaningConfig', ] #'corsheaders', MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.common.CommonMiddleware', 'corsheaders.middleware.CorsMiddleware', ] #'django.middleware.common.CommonMiddleware', EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #'corsheaders.middleware.CommonMiddleware', ROOT_URLCONF = 'CAutomation.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'CAutomation.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': dj_database_url.config( default='postgres://mzqgdpoeqiolgg:<EMAIL>:5432/d96ohaomhouuat' ), } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True CORS_ALLOW_ALL_ORIGINS = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
en
0.610859
Django settings for CAutomation project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ # Build paths inside the project like this: BASE_DIR / 'subdir'. # Needed to login by username in Django admin, regardless of `allauth` # `allauth` specific authentication methods, such as login by e-mail # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! #vt!5x^l3-j(e*%@p0)d_p&qd2x_#&n*^i=j38@b(26zz^mr' # SECURITY WARNING: don't run with debug turned on in production! # Application definition #'corsheaders', #'django.middleware.common.CommonMiddleware', #'corsheaders.middleware.CommonMiddleware', # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
1.843328
2
calculators/credit_card_calculator.py
wanderindev/financial-calculator-backend
2
8763
from .calculator import Calculator # noinspection PyTypeChecker class CreditCardCalculator(Calculator): def __init__(self, **kwargs): super(CreditCardCalculator, self).__init__(**kwargs) self.cc_debt = self.get_float(kwargs.get("cc_debt", 0)) self.add_c = self.get_float(kwargs.get("add_c", 0)) self.min_p_perc = self.get_float(kwargs.get("min_p_perc", 0)) self.min_p = self.get_float(kwargs.get("min_p", 0)) self.fix_p = self.get_float(kwargs.get("fix_p", 0)) self.payments = [] self.payments_p = [] def get_payment_cc(self) -> float: _rate = self.rate / (100 * self.freq) _min_p_perc = self.min_p_perc / 100 _min_p = self.min_p _fix_p = self.fix_p b = self.cc_debt per = 0 while b > 0: i = b * _rate p = max(b * _min_p_perc, _min_p, _fix_p) if b + i < p: p = b + i b += i - p per += 1 self.periods.append(per) self.payments.append(p) self.payments_p.append(p - i) self.interests.append(i) self.balances.append(b) return self.payments[0] def get_rate_cc(self) -> float: return self.rate + self.add_c * 1200 / self.cc_debt
from .calculator import Calculator # noinspection PyTypeChecker class CreditCardCalculator(Calculator): def __init__(self, **kwargs): super(CreditCardCalculator, self).__init__(**kwargs) self.cc_debt = self.get_float(kwargs.get("cc_debt", 0)) self.add_c = self.get_float(kwargs.get("add_c", 0)) self.min_p_perc = self.get_float(kwargs.get("min_p_perc", 0)) self.min_p = self.get_float(kwargs.get("min_p", 0)) self.fix_p = self.get_float(kwargs.get("fix_p", 0)) self.payments = [] self.payments_p = [] def get_payment_cc(self) -> float: _rate = self.rate / (100 * self.freq) _min_p_perc = self.min_p_perc / 100 _min_p = self.min_p _fix_p = self.fix_p b = self.cc_debt per = 0 while b > 0: i = b * _rate p = max(b * _min_p_perc, _min_p, _fix_p) if b + i < p: p = b + i b += i - p per += 1 self.periods.append(per) self.payments.append(p) self.payments_p.append(p - i) self.interests.append(i) self.balances.append(b) return self.payments[0] def get_rate_cc(self) -> float: return self.rate + self.add_c * 1200 / self.cc_debt
en
0.214864
# noinspection PyTypeChecker
3.12905
3
setup.py
phaustin/MyST-Parser
0
8764
"""myst-parser package setup.""" from importlib import import_module from setuptools import find_packages, setup setup( name="myst-parser", version=import_module("myst_parser").__version__, description=( "An extended commonmark compliant parser, " "with bridges to docutils & sphinx." ), long_description=open("README.md").read(), long_description_content_type="text/markdown", url="https://github.com/executablebooks/MyST-Parser", project_urls={"Documentation": "https://myst-parser.readthedocs.io"}, author="<NAME>", author_email="<EMAIL>", license="MIT", packages=find_packages(), entry_points={ "console_scripts": ["myst-benchmark = myst_parser.cli.benchmark:main"] }, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Text Processing :: Markup", "Framework :: Sphinx :: Extension", ], keywords="markdown lexer parser development docutils sphinx", python_requires=">=3.6", install_requires=["markdown-it-py~=0.4.5"], extras_require={ "sphinx": ["pyyaml", "docutils>=0.15", "sphinx>=2,<3"], "code_style": ["flake8<3.8.0,>=3.7.0", "black", "pre-commit==1.17.0"], "testing": [ "coverage", "pytest>=3.6,<4", "pytest-cov", "pytest-regressions", "beautifulsoup4", ], "rtd": ["sphinxcontrib-bibtex", "ipython", "sphinx-book-theme", "sphinx_tabs"], }, zip_safe=True, )
"""myst-parser package setup.""" from importlib import import_module from setuptools import find_packages, setup setup( name="myst-parser", version=import_module("myst_parser").__version__, description=( "An extended commonmark compliant parser, " "with bridges to docutils & sphinx." ), long_description=open("README.md").read(), long_description_content_type="text/markdown", url="https://github.com/executablebooks/MyST-Parser", project_urls={"Documentation": "https://myst-parser.readthedocs.io"}, author="<NAME>", author_email="<EMAIL>", license="MIT", packages=find_packages(), entry_points={ "console_scripts": ["myst-benchmark = myst_parser.cli.benchmark:main"] }, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Text Processing :: Markup", "Framework :: Sphinx :: Extension", ], keywords="markdown lexer parser development docutils sphinx", python_requires=">=3.6", install_requires=["markdown-it-py~=0.4.5"], extras_require={ "sphinx": ["pyyaml", "docutils>=0.15", "sphinx>=2,<3"], "code_style": ["flake8<3.8.0,>=3.7.0", "black", "pre-commit==1.17.0"], "testing": [ "coverage", "pytest>=3.6,<4", "pytest-cov", "pytest-regressions", "beautifulsoup4", ], "rtd": ["sphinxcontrib-bibtex", "ipython", "sphinx-book-theme", "sphinx_tabs"], }, zip_safe=True, )
en
0.387349
myst-parser package setup.
1.600544
2
python/tests/extractor/refmt.py
kho/cdec
114
8765
#!/usr/bin/env python import collections, sys lines = [] f = collections.defaultdict(int) fe = collections.defaultdict(lambda: collections.defaultdict(int)) for line in sys.stdin: tok = [x.strip() for x in line.split('|||')] count = int(tok[4]) f[tok[1]] += count fe[tok[1]][tok[2]] += count lines.append(tok) for tok in lines: feat = 'IsSingletonF={0}.0 IsSingletonFE={1}.0'.format( 0 if f[tok[1]] > 1 else 1, 0 if fe[tok[1]][tok[2]] > 1 else 1) print ' ||| '.join((tok[0], tok[1], tok[2], feat, tok[3]))
#!/usr/bin/env python import collections, sys lines = [] f = collections.defaultdict(int) fe = collections.defaultdict(lambda: collections.defaultdict(int)) for line in sys.stdin: tok = [x.strip() for x in line.split('|||')] count = int(tok[4]) f[tok[1]] += count fe[tok[1]][tok[2]] += count lines.append(tok) for tok in lines: feat = 'IsSingletonF={0}.0 IsSingletonFE={1}.0'.format( 0 if f[tok[1]] > 1 else 1, 0 if fe[tok[1]][tok[2]] > 1 else 1) print ' ||| '.join((tok[0], tok[1], tok[2], feat, tok[3]))
ru
0.26433
#!/usr/bin/env python
2.6582
3
blog/models.py
tomitokko/django-blog-with-astradb
3
8766
from django.db import models import uuid from datetime import datetime from cassandra.cqlengine import columns from django_cassandra_engine.models import DjangoCassandraModel # Create your models here. class PostModel(DjangoCassandraModel): id = columns.UUID(primary_key=True, default=uuid.uuid4) title = columns.Text(required=True) body = columns.Text(required=True) created_at = columns.DateTime(default=datetime.now)
from django.db import models import uuid from datetime import datetime from cassandra.cqlengine import columns from django_cassandra_engine.models import DjangoCassandraModel # Create your models here. class PostModel(DjangoCassandraModel): id = columns.UUID(primary_key=True, default=uuid.uuid4) title = columns.Text(required=True) body = columns.Text(required=True) created_at = columns.DateTime(default=datetime.now)
en
0.963489
# Create your models here.
2.496449
2
fedex/services/availability_commitment_service.py
miczone/python-fedex
0
8767
<filename>fedex/services/availability_commitment_service.py<gh_stars>0 """ Service Availability and Commitment Module This package contains the shipping methods defined by Fedex's ValidationAvailabilityAndCommitmentService WSDL file. Each is encapsulated in a class for easy access. For more details on each, refer to the respective class's documentation. """ import datetime from ..base_service import FedexBaseService class FedexAvailabilityCommitmentRequest(FedexBaseService): """ This class allows you validate service availability """ def __init__(self, config_obj, *args, **kwargs): """ @type config_obj: L{FedexConfig} @param config_obj: A valid FedexConfig object. """ self._config_obj = config_obj # Holds version info for the VersionId SOAP object. self._version_info = { 'service_id': 'vacs', 'major': '14', 'intermediate': '0', 'minor': '0' } self.CarrierCode = None """@ivar: Carrier Code Default to Fedex (FDXE), or can bbe FDXG.""" self.Origin = None """@ivar: Holds Origin Address WSDL object.""" self.Destination = None """@ivar: Holds Destination Address WSDL object.""" self.ShipDate = None """@ivar: Ship Date date WSDL object.""" self.Service = None """@ivar: Service type, if set to None will get all available service information.""" self.Packaging = None """@ivar: Type of packaging to narrow down available shipping options or defaults to YOUR_PACKAGING.""" # Call the parent FedexBaseService class for basic setup work. # Shortened the name of the wsdl, otherwise suds did not load it properly. # Suds throws the following error when using the long file name from FedEx: # # File "/Library/Python/2.7/site-packages/suds/wsdl.py", line 878, in resolve # raise Exception("binding '%s', not-found" % p.binding) # Exception: binding 'ns:ValidationAvailabilityAndCommitmentServiceSoapBinding', not-found super(FedexAvailabilityCommitmentRequest, self).__init__( self._config_obj, 'ValidationAvailabilityAndCommitmentService_v14.wsdl', *args, **kwargs) def _prepare_wsdl_objects(self): """ Create the data structure and get it ready for the WSDL request. """ self.CarrierCode = 'FDXE' self.Origin = self.client.factory.create('Address') self.Destination = self.client.factory.create('Address') self.ShipDate = datetime.date.today().isoformat() self.Service = None self.Packaging = 'YOUR_PACKAGING' def _assemble_and_send_request(self): """ Fires off the Fedex request. @warning: NEVER CALL THIS METHOD DIRECTLY. CALL send_request(), WHICH RESIDES ON FedexBaseService AND IS INHERITED. """ # We get an exception like this when specifying an IntegratorId: # suds.TypeNotFound: Type not found: 'IntegratorId' # Setting it to None does not seem to appease it. del self.ClientDetail.IntegratorId self.logger.debug(self.WebAuthenticationDetail) self.logger.debug(self.ClientDetail) self.logger.debug(self.TransactionDetail) self.logger.debug(self.VersionId) # Fire off the query. return self.client.service.serviceAvailability( WebAuthenticationDetail=self.WebAuthenticationDetail, ClientDetail=self.ClientDetail, TransactionDetail=self.TransactionDetail, Version=self.VersionId, Origin=self.Origin, Destination=self.Destination, ShipDate=self.ShipDate, CarrierCode=self.CarrierCode, Service=self.Service, Packaging=self.Packaging)
<filename>fedex/services/availability_commitment_service.py<gh_stars>0 """ Service Availability and Commitment Module This package contains the shipping methods defined by Fedex's ValidationAvailabilityAndCommitmentService WSDL file. Each is encapsulated in a class for easy access. For more details on each, refer to the respective class's documentation. """ import datetime from ..base_service import FedexBaseService class FedexAvailabilityCommitmentRequest(FedexBaseService): """ This class allows you validate service availability """ def __init__(self, config_obj, *args, **kwargs): """ @type config_obj: L{FedexConfig} @param config_obj: A valid FedexConfig object. """ self._config_obj = config_obj # Holds version info for the VersionId SOAP object. self._version_info = { 'service_id': 'vacs', 'major': '14', 'intermediate': '0', 'minor': '0' } self.CarrierCode = None """@ivar: Carrier Code Default to Fedex (FDXE), or can bbe FDXG.""" self.Origin = None """@ivar: Holds Origin Address WSDL object.""" self.Destination = None """@ivar: Holds Destination Address WSDL object.""" self.ShipDate = None """@ivar: Ship Date date WSDL object.""" self.Service = None """@ivar: Service type, if set to None will get all available service information.""" self.Packaging = None """@ivar: Type of packaging to narrow down available shipping options or defaults to YOUR_PACKAGING.""" # Call the parent FedexBaseService class for basic setup work. # Shortened the name of the wsdl, otherwise suds did not load it properly. # Suds throws the following error when using the long file name from FedEx: # # File "/Library/Python/2.7/site-packages/suds/wsdl.py", line 878, in resolve # raise Exception("binding '%s', not-found" % p.binding) # Exception: binding 'ns:ValidationAvailabilityAndCommitmentServiceSoapBinding', not-found super(FedexAvailabilityCommitmentRequest, self).__init__( self._config_obj, 'ValidationAvailabilityAndCommitmentService_v14.wsdl', *args, **kwargs) def _prepare_wsdl_objects(self): """ Create the data structure and get it ready for the WSDL request. """ self.CarrierCode = 'FDXE' self.Origin = self.client.factory.create('Address') self.Destination = self.client.factory.create('Address') self.ShipDate = datetime.date.today().isoformat() self.Service = None self.Packaging = 'YOUR_PACKAGING' def _assemble_and_send_request(self): """ Fires off the Fedex request. @warning: NEVER CALL THIS METHOD DIRECTLY. CALL send_request(), WHICH RESIDES ON FedexBaseService AND IS INHERITED. """ # We get an exception like this when specifying an IntegratorId: # suds.TypeNotFound: Type not found: 'IntegratorId' # Setting it to None does not seem to appease it. del self.ClientDetail.IntegratorId self.logger.debug(self.WebAuthenticationDetail) self.logger.debug(self.ClientDetail) self.logger.debug(self.TransactionDetail) self.logger.debug(self.VersionId) # Fire off the query. return self.client.service.serviceAvailability( WebAuthenticationDetail=self.WebAuthenticationDetail, ClientDetail=self.ClientDetail, TransactionDetail=self.TransactionDetail, Version=self.VersionId, Origin=self.Origin, Destination=self.Destination, ShipDate=self.ShipDate, CarrierCode=self.CarrierCode, Service=self.Service, Packaging=self.Packaging)
en
0.735403
Service Availability and Commitment Module This package contains the shipping methods defined by Fedex's ValidationAvailabilityAndCommitmentService WSDL file. Each is encapsulated in a class for easy access. For more details on each, refer to the respective class's documentation. This class allows you validate service availability @type config_obj: L{FedexConfig} @param config_obj: A valid FedexConfig object. # Holds version info for the VersionId SOAP object. @ivar: Carrier Code Default to Fedex (FDXE), or can bbe FDXG. @ivar: Holds Origin Address WSDL object. @ivar: Holds Destination Address WSDL object. @ivar: Ship Date date WSDL object. @ivar: Service type, if set to None will get all available service information. @ivar: Type of packaging to narrow down available shipping options or defaults to YOUR_PACKAGING. # Call the parent FedexBaseService class for basic setup work. # Shortened the name of the wsdl, otherwise suds did not load it properly. # Suds throws the following error when using the long file name from FedEx: # # File "/Library/Python/2.7/site-packages/suds/wsdl.py", line 878, in resolve # raise Exception("binding '%s', not-found" % p.binding) # Exception: binding 'ns:ValidationAvailabilityAndCommitmentServiceSoapBinding', not-found Create the data structure and get it ready for the WSDL request. Fires off the Fedex request. @warning: NEVER CALL THIS METHOD DIRECTLY. CALL send_request(), WHICH RESIDES ON FedexBaseService AND IS INHERITED. # We get an exception like this when specifying an IntegratorId: # suds.TypeNotFound: Type not found: 'IntegratorId' # Setting it to None does not seem to appease it. # Fire off the query.
2.692755
3
xverse/transformer/_woe.py
gb-andreygsouza/XuniVerse
0
8768
import pandas as pd import numpy as np from sklearn.base import BaseEstimator, TransformerMixin import scipy.stats.stats as stats import pandas.core.algorithms as algos #from sklearn.utils.validation import check_is_fitted from sklearn.utils import check_array from ..transformer import MonotonicBinning pd.options.mode.chained_assignment = None class WOE(BaseEstimator, TransformerMixin): """Weight of evidence transformation for categorical variables. For numeric variables, monotonic operation is provided as default with this package. Parameters ---------- feature_names: 'all' or list (default='all') list of features to perform WOE transformation. - 'all' (default): All categorical features in the dataset will be used - list of features: ['age', 'income',......] exclude_features: list (default=None) list of features to be excluded from WOE transformation. - Example - ['age', 'income', .......] woe_prefix: string (default=None) Variable prefix to be used for the column created by WOE transformer. The default value is set 'None'. treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset woe_bins: dict of dicts(default=None) This feature is added as part of future WOE transformations or scoring. If this value is set, then WOE values provided for each of the features here will be used for transformation. Applicable only in the transform method. Dictionary structure - {'feature_name': float list} Example - {'education': {'primary' : 0.1, 'tertiary' : 0.5, 'secondary', 0.7}} monotonic_binning: bool (default=True) This parameter is used to perform monotonic binning on numeric variables. If set to False, numeric variables would be ignored. mono_feature_names: 'all' or list (default='all') list of features to perform monotonic binning operation. - 'all' (default): All features in the dataset will be used - list of features: ['age', 'income',......] mono_max_bins: int (default=20) Maximum number of bins that can be created for any given variable. The final number of bins created will be less than or equal to this number. mono_force_bins: int (default=3) It forces the module to create bins for a variable, when it cannot find monotonic relationship using "max_bins" option. The final number of bins created will be equal to the number specified. mono_cardinality_cutoff: int (default=5) Cutoff to determine if a variable is eligible for monotonic binning operation. Any variable which has unique levels less than this number will be treated as character variables. At this point no binning operation will be performed on the variable and it will return the unique levels as bins for these variable. mono_prefix: string (default=None) Variable prefix to be used for the column created by monotonic binning. mono_custom_binning: dict (default=None) Using this parameter, the user can perform custom binning on variables. This parameter is also used to apply previously computed bins for each feature (Score new data). Dictionary structure - {'feature_name': float list} Example - {'age': [0., 1., 2., 3.]} """ # Initialize the parameters for the function def __init__(self, feature_names='all', exclude_features=None, woe_prefix=None, treat_missing='separate', woe_bins=None, monotonic_binning=True, mono_feature_names='all', mono_max_bins=20, mono_force_bins=3, mono_cardinality_cutoff=5, mono_prefix=None, mono_custom_binning=None): self.feature_names = feature_names self.exclude_features = exclude_features self.woe_prefix = woe_prefix self.treat_missing = treat_missing self.woe_bins = woe_bins #only used for future transformations #these features below are for monotonic operations on numeric variables. #It uses MonotonicBinning class from binning package. self.monotonic_binning = monotonic_binning self.mono_feature_names = mono_feature_names self.mono_max_bins = mono_max_bins self.mono_force_bins = mono_force_bins self.mono_cardinality_cutoff = mono_cardinality_cutoff self.mono_prefix = mono_prefix self.mono_custom_binning = mono_custom_binning #only used for monotonic transformations # check input data type - Only Pandas Dataframe allowed def check_datatype(self, X): if not isinstance(X, pd.DataFrame): raise ValueError("The input data must be pandas dataframe. But the input provided is " + str(type(X))) return self # the fit function for WOE transformer def fit(self, X, y): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass #check datatype of X self.check_datatype(X) #The length of X and Y should be equal if X.shape[0] != y.shape[0]: raise ValueError("Mismatch in input lengths. Length of X is " + str(X.shape[0]) + " \ but length of y is " + str(y.shape[0]) + ".") # The label must be binary with values {0,1} unique = np.unique(y) if len(unique) != 2: raise ValueError("The target column y must be binary. But the target contains " + str(len(unique)) + \ " unique value(s).") #apply monotonic binning operation if self.monotonic_binning: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) if self.mono_custom_binning: X = self.mono_bin_clf.transform(X) self.mono_custom_binning = self.mono_bin_clf.bins else: X = self.mono_bin_clf.fit_transform(X, y) self.mono_custom_binning = self.mono_bin_clf.bins #identify the variables to tranform and assign the bin mapping dictionary self.woe_bins = {} #bin mapping if not self.mono_custom_binning: self.mono_custom_binning= {} else: for i in self.mono_custom_binning: X[i] = X[i].astype('object') numerical_features = list(X._get_numeric_data().columns) categorical_features = list(X.columns.difference(numerical_features)) #Identifying the features to perform fit if self.feature_names == 'all': self.transform_features = categorical_features else: self.transform_features = list(set(self.feature_names)) #Exclude variables provided in the exclusion list if self.exclude_features: self.transform_features = list(set(self.transform_features) - set(self.exclude_features)) temp_X = X[self.transform_features] #subset data only on features to fit temp_X = temp_X.astype('object') #convert categorical columns to object columns temp_X = self.treat_missing_values(temp_X) #treat missing values function #apply the WOE train function on dataset temp_X.apply(lambda x: self.train(x, y), axis=0) #provide Information value for each variable as a separate dataset self.iv_df = pd.DataFrame({'Information_Value':self.woe_df.groupby('Variable_Name').Information_Value.max()}) self.iv_df = self.iv_df.reset_index() self.iv_df = self.iv_df.sort_values('Information_Value', ascending=False) return self #treat missing values based on the 'treat_missing' option provided by user def treat_missing_values(self, X): """ treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset """ if self.treat_missing == 'separate': X = X.fillna('NA') elif self.treat_missing == 'mode': X = X.fillna(X.mode().iloc[0]) elif self.treat_missing == 'least_frequent': for i in X: X[i] = X[i].fillna(X[i].value_counts().index[-1]) else: raise ValueError("Missing values could be treated with one of these three options - \ 'separate', 'mode', 'least_frequent'. \ The provided option is - " + str(self.treat_missing)) return X #WOE binning - The function is applied on each columns identified in the fit function. #Here, the input X is a Pandas Series type. def train(self, X, y): # Assign values woe_mapping = {} #dictionary mapping for the current feature temp_woe = pd.DataFrame({},index=[]) temp_df = pd.DataFrame({'X': X, "Y":y}) grouped_df = temp_df.groupby('X', as_index=True) #calculate stats for variable and store it in temp_woe target_sum = grouped_df.Y.sum() temp_woe['Count'] = grouped_df.Y.count() temp_woe['Category'] = target_sum.index temp_woe['Event'] = target_sum temp_woe['Non_Event'] = temp_woe['Count'] - temp_woe['Event'] temp_woe['Event_Rate'] = temp_woe['Event']/temp_woe['Count'] temp_woe['Non_Event_Rate'] = temp_woe['Non_Event']/temp_woe['Count'] #calculate distributions and woe total_event = temp_woe['Event'].sum() total_non_event = temp_woe['Non_Event'].sum() temp_woe['Event_Distribution'] = temp_woe['Event']/total_event temp_woe['Non_Event_Distribution'] = temp_woe['Non_Event']/total_non_event temp_woe['WOE'] = np.log(temp_woe['Event_Distribution']/temp_woe['Non_Event_Distribution']) temp_woe['Information_Value'] = (temp_woe['Event_Distribution']- \ temp_woe['Non_Event_Distribution'])*temp_woe['WOE'] temp_woe['Variable_Name'] = X.name temp_woe = temp_woe[['Variable_Name', 'Category', 'Count', 'Event', 'Non_Event', \ 'Event_Rate', 'Non_Event_Rate', 'Event_Distribution', 'Non_Event_Distribution', \ 'WOE', 'Information_Value']] temp_woe = temp_woe.replace([np.inf, -np.inf], 0) temp_woe['Information_Value'] = temp_woe['Information_Value'].sum() temp_woe = temp_woe.reset_index(drop=True) woe_mapping[str(X.name)] = dict(zip(temp_woe['Category'], temp_woe['WOE'])) #assign computed values to class variables try: self.woe_df = self.woe_df.append(temp_woe, ignore_index=True) self.woe_bins.update(woe_mapping) except: self.woe_df = temp_woe self.woe_bins = woe_mapping return self #Transform new data or existing data based on the fit identified or custom transformation provided by user def transform(self, X, y=None): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass self.check_datatype(X) #check input datatype. outX = X.copy(deep=True) #identify the features on which the transformation should be performed try: if self.transform_features: transform_features = self.transform_features except: if self.woe_bins: transform_features = list(self.woe_bins.keys()) else: raise ValueError("Estimator has to be fitted to make WOE transformations") #final list of features to be transformed transform_features = list(set(transform_features) & set(outX.columns)) #raise error if the list is empty if not transform_features: raise ValueError("Empty list for WOE transformation. \ Estimator has to be fitted to make WOE transformations") #use the custom bins provided by user for numeric variables if self.mono_custom_binning: try: if self.mono_bin_clf: pass except: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) outX = self.mono_bin_clf.transform(outX) outX = outX.astype('object') #convert categorical columns to object columns outX = self.treat_missing_values(outX) #treat missing values function #iterate through the dataframe and apply the bins for i in transform_features: tempX = outX[i] #pandas Series original_column_name = str(i) #create the column name based on user provided prefix if self.woe_prefix: new_column_name = str(self.woe_prefix) + '_' + str(i) else: new_column_name = original_column_name #check if the bin mapping is present #check_is_fitted(self, 'woe_bins') if not self.woe_bins: raise ValueError("woe_bins variable is not present. \ Estimator has to be fitted to apply transformations.") outX[new_column_name] = tempX.replace(self.woe_bins[original_column_name]) #transformed dataframe return outX #Method that describes what we need this transformer to do def fit_transform(self, X, y): return self.fit(X, y).transform(X)
import pandas as pd import numpy as np from sklearn.base import BaseEstimator, TransformerMixin import scipy.stats.stats as stats import pandas.core.algorithms as algos #from sklearn.utils.validation import check_is_fitted from sklearn.utils import check_array from ..transformer import MonotonicBinning pd.options.mode.chained_assignment = None class WOE(BaseEstimator, TransformerMixin): """Weight of evidence transformation for categorical variables. For numeric variables, monotonic operation is provided as default with this package. Parameters ---------- feature_names: 'all' or list (default='all') list of features to perform WOE transformation. - 'all' (default): All categorical features in the dataset will be used - list of features: ['age', 'income',......] exclude_features: list (default=None) list of features to be excluded from WOE transformation. - Example - ['age', 'income', .......] woe_prefix: string (default=None) Variable prefix to be used for the column created by WOE transformer. The default value is set 'None'. treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset woe_bins: dict of dicts(default=None) This feature is added as part of future WOE transformations or scoring. If this value is set, then WOE values provided for each of the features here will be used for transformation. Applicable only in the transform method. Dictionary structure - {'feature_name': float list} Example - {'education': {'primary' : 0.1, 'tertiary' : 0.5, 'secondary', 0.7}} monotonic_binning: bool (default=True) This parameter is used to perform monotonic binning on numeric variables. If set to False, numeric variables would be ignored. mono_feature_names: 'all' or list (default='all') list of features to perform monotonic binning operation. - 'all' (default): All features in the dataset will be used - list of features: ['age', 'income',......] mono_max_bins: int (default=20) Maximum number of bins that can be created for any given variable. The final number of bins created will be less than or equal to this number. mono_force_bins: int (default=3) It forces the module to create bins for a variable, when it cannot find monotonic relationship using "max_bins" option. The final number of bins created will be equal to the number specified. mono_cardinality_cutoff: int (default=5) Cutoff to determine if a variable is eligible for monotonic binning operation. Any variable which has unique levels less than this number will be treated as character variables. At this point no binning operation will be performed on the variable and it will return the unique levels as bins for these variable. mono_prefix: string (default=None) Variable prefix to be used for the column created by monotonic binning. mono_custom_binning: dict (default=None) Using this parameter, the user can perform custom binning on variables. This parameter is also used to apply previously computed bins for each feature (Score new data). Dictionary structure - {'feature_name': float list} Example - {'age': [0., 1., 2., 3.]} """ # Initialize the parameters for the function def __init__(self, feature_names='all', exclude_features=None, woe_prefix=None, treat_missing='separate', woe_bins=None, monotonic_binning=True, mono_feature_names='all', mono_max_bins=20, mono_force_bins=3, mono_cardinality_cutoff=5, mono_prefix=None, mono_custom_binning=None): self.feature_names = feature_names self.exclude_features = exclude_features self.woe_prefix = woe_prefix self.treat_missing = treat_missing self.woe_bins = woe_bins #only used for future transformations #these features below are for monotonic operations on numeric variables. #It uses MonotonicBinning class from binning package. self.monotonic_binning = monotonic_binning self.mono_feature_names = mono_feature_names self.mono_max_bins = mono_max_bins self.mono_force_bins = mono_force_bins self.mono_cardinality_cutoff = mono_cardinality_cutoff self.mono_prefix = mono_prefix self.mono_custom_binning = mono_custom_binning #only used for monotonic transformations # check input data type - Only Pandas Dataframe allowed def check_datatype(self, X): if not isinstance(X, pd.DataFrame): raise ValueError("The input data must be pandas dataframe. But the input provided is " + str(type(X))) return self # the fit function for WOE transformer def fit(self, X, y): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass #check datatype of X self.check_datatype(X) #The length of X and Y should be equal if X.shape[0] != y.shape[0]: raise ValueError("Mismatch in input lengths. Length of X is " + str(X.shape[0]) + " \ but length of y is " + str(y.shape[0]) + ".") # The label must be binary with values {0,1} unique = np.unique(y) if len(unique) != 2: raise ValueError("The target column y must be binary. But the target contains " + str(len(unique)) + \ " unique value(s).") #apply monotonic binning operation if self.monotonic_binning: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) if self.mono_custom_binning: X = self.mono_bin_clf.transform(X) self.mono_custom_binning = self.mono_bin_clf.bins else: X = self.mono_bin_clf.fit_transform(X, y) self.mono_custom_binning = self.mono_bin_clf.bins #identify the variables to tranform and assign the bin mapping dictionary self.woe_bins = {} #bin mapping if not self.mono_custom_binning: self.mono_custom_binning= {} else: for i in self.mono_custom_binning: X[i] = X[i].astype('object') numerical_features = list(X._get_numeric_data().columns) categorical_features = list(X.columns.difference(numerical_features)) #Identifying the features to perform fit if self.feature_names == 'all': self.transform_features = categorical_features else: self.transform_features = list(set(self.feature_names)) #Exclude variables provided in the exclusion list if self.exclude_features: self.transform_features = list(set(self.transform_features) - set(self.exclude_features)) temp_X = X[self.transform_features] #subset data only on features to fit temp_X = temp_X.astype('object') #convert categorical columns to object columns temp_X = self.treat_missing_values(temp_X) #treat missing values function #apply the WOE train function on dataset temp_X.apply(lambda x: self.train(x, y), axis=0) #provide Information value for each variable as a separate dataset self.iv_df = pd.DataFrame({'Information_Value':self.woe_df.groupby('Variable_Name').Information_Value.max()}) self.iv_df = self.iv_df.reset_index() self.iv_df = self.iv_df.sort_values('Information_Value', ascending=False) return self #treat missing values based on the 'treat_missing' option provided by user def treat_missing_values(self, X): """ treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset """ if self.treat_missing == 'separate': X = X.fillna('NA') elif self.treat_missing == 'mode': X = X.fillna(X.mode().iloc[0]) elif self.treat_missing == 'least_frequent': for i in X: X[i] = X[i].fillna(X[i].value_counts().index[-1]) else: raise ValueError("Missing values could be treated with one of these three options - \ 'separate', 'mode', 'least_frequent'. \ The provided option is - " + str(self.treat_missing)) return X #WOE binning - The function is applied on each columns identified in the fit function. #Here, the input X is a Pandas Series type. def train(self, X, y): # Assign values woe_mapping = {} #dictionary mapping for the current feature temp_woe = pd.DataFrame({},index=[]) temp_df = pd.DataFrame({'X': X, "Y":y}) grouped_df = temp_df.groupby('X', as_index=True) #calculate stats for variable and store it in temp_woe target_sum = grouped_df.Y.sum() temp_woe['Count'] = grouped_df.Y.count() temp_woe['Category'] = target_sum.index temp_woe['Event'] = target_sum temp_woe['Non_Event'] = temp_woe['Count'] - temp_woe['Event'] temp_woe['Event_Rate'] = temp_woe['Event']/temp_woe['Count'] temp_woe['Non_Event_Rate'] = temp_woe['Non_Event']/temp_woe['Count'] #calculate distributions and woe total_event = temp_woe['Event'].sum() total_non_event = temp_woe['Non_Event'].sum() temp_woe['Event_Distribution'] = temp_woe['Event']/total_event temp_woe['Non_Event_Distribution'] = temp_woe['Non_Event']/total_non_event temp_woe['WOE'] = np.log(temp_woe['Event_Distribution']/temp_woe['Non_Event_Distribution']) temp_woe['Information_Value'] = (temp_woe['Event_Distribution']- \ temp_woe['Non_Event_Distribution'])*temp_woe['WOE'] temp_woe['Variable_Name'] = X.name temp_woe = temp_woe[['Variable_Name', 'Category', 'Count', 'Event', 'Non_Event', \ 'Event_Rate', 'Non_Event_Rate', 'Event_Distribution', 'Non_Event_Distribution', \ 'WOE', 'Information_Value']] temp_woe = temp_woe.replace([np.inf, -np.inf], 0) temp_woe['Information_Value'] = temp_woe['Information_Value'].sum() temp_woe = temp_woe.reset_index(drop=True) woe_mapping[str(X.name)] = dict(zip(temp_woe['Category'], temp_woe['WOE'])) #assign computed values to class variables try: self.woe_df = self.woe_df.append(temp_woe, ignore_index=True) self.woe_bins.update(woe_mapping) except: self.woe_df = temp_woe self.woe_bins = woe_mapping return self #Transform new data or existing data based on the fit identified or custom transformation provided by user def transform(self, X, y=None): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass self.check_datatype(X) #check input datatype. outX = X.copy(deep=True) #identify the features on which the transformation should be performed try: if self.transform_features: transform_features = self.transform_features except: if self.woe_bins: transform_features = list(self.woe_bins.keys()) else: raise ValueError("Estimator has to be fitted to make WOE transformations") #final list of features to be transformed transform_features = list(set(transform_features) & set(outX.columns)) #raise error if the list is empty if not transform_features: raise ValueError("Empty list for WOE transformation. \ Estimator has to be fitted to make WOE transformations") #use the custom bins provided by user for numeric variables if self.mono_custom_binning: try: if self.mono_bin_clf: pass except: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) outX = self.mono_bin_clf.transform(outX) outX = outX.astype('object') #convert categorical columns to object columns outX = self.treat_missing_values(outX) #treat missing values function #iterate through the dataframe and apply the bins for i in transform_features: tempX = outX[i] #pandas Series original_column_name = str(i) #create the column name based on user provided prefix if self.woe_prefix: new_column_name = str(self.woe_prefix) + '_' + str(i) else: new_column_name = original_column_name #check if the bin mapping is present #check_is_fitted(self, 'woe_bins') if not self.woe_bins: raise ValueError("woe_bins variable is not present. \ Estimator has to be fitted to apply transformations.") outX[new_column_name] = tempX.replace(self.woe_bins[original_column_name]) #transformed dataframe return outX #Method that describes what we need this transformer to do def fit_transform(self, X, y): return self.fit(X, y).transform(X)
en
0.687306
#from sklearn.utils.validation import check_is_fitted Weight of evidence transformation for categorical variables. For numeric variables, monotonic operation is provided as default with this package. Parameters ---------- feature_names: 'all' or list (default='all') list of features to perform WOE transformation. - 'all' (default): All categorical features in the dataset will be used - list of features: ['age', 'income',......] exclude_features: list (default=None) list of features to be excluded from WOE transformation. - Example - ['age', 'income', .......] woe_prefix: string (default=None) Variable prefix to be used for the column created by WOE transformer. The default value is set 'None'. treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset woe_bins: dict of dicts(default=None) This feature is added as part of future WOE transformations or scoring. If this value is set, then WOE values provided for each of the features here will be used for transformation. Applicable only in the transform method. Dictionary structure - {'feature_name': float list} Example - {'education': {'primary' : 0.1, 'tertiary' : 0.5, 'secondary', 0.7}} monotonic_binning: bool (default=True) This parameter is used to perform monotonic binning on numeric variables. If set to False, numeric variables would be ignored. mono_feature_names: 'all' or list (default='all') list of features to perform monotonic binning operation. - 'all' (default): All features in the dataset will be used - list of features: ['age', 'income',......] mono_max_bins: int (default=20) Maximum number of bins that can be created for any given variable. The final number of bins created will be less than or equal to this number. mono_force_bins: int (default=3) It forces the module to create bins for a variable, when it cannot find monotonic relationship using "max_bins" option. The final number of bins created will be equal to the number specified. mono_cardinality_cutoff: int (default=5) Cutoff to determine if a variable is eligible for monotonic binning operation. Any variable which has unique levels less than this number will be treated as character variables. At this point no binning operation will be performed on the variable and it will return the unique levels as bins for these variable. mono_prefix: string (default=None) Variable prefix to be used for the column created by monotonic binning. mono_custom_binning: dict (default=None) Using this parameter, the user can perform custom binning on variables. This parameter is also used to apply previously computed bins for each feature (Score new data). Dictionary structure - {'feature_name': float list} Example - {'age': [0., 1., 2., 3.]} # Initialize the parameters for the function #only used for future transformations #these features below are for monotonic operations on numeric variables. #It uses MonotonicBinning class from binning package. #only used for monotonic transformations # check input data type - Only Pandas Dataframe allowed # the fit function for WOE transformer #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. #check datatype of X #The length of X and Y should be equal # The label must be binary with values {0,1} #apply monotonic binning operation #identify the variables to tranform and assign the bin mapping dictionary #bin mapping #Identifying the features to perform fit #Exclude variables provided in the exclusion list #subset data only on features to fit #convert categorical columns to object columns #treat missing values function #apply the WOE train function on dataset #provide Information value for each variable as a separate dataset #treat missing values based on the 'treat_missing' option provided by user treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset #WOE binning - The function is applied on each columns identified in the fit function. #Here, the input X is a Pandas Series type. # Assign values #dictionary mapping for the current feature #calculate stats for variable and store it in temp_woe #calculate distributions and woe #assign computed values to class variables #Transform new data or existing data based on the fit identified or custom transformation provided by user #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. #check input datatype. #identify the features on which the transformation should be performed #final list of features to be transformed #raise error if the list is empty #use the custom bins provided by user for numeric variables #convert categorical columns to object columns #treat missing values function #iterate through the dataframe and apply the bins #pandas Series #create the column name based on user provided prefix #check if the bin mapping is present #check_is_fitted(self, 'woe_bins') #transformed dataframe #Method that describes what we need this transformer to do
2.821338
3
cupy/linalg/product.py
okapies/cupy
1
8769
<filename>cupy/linalg/product.py import numpy import six import cupy from cupy import core from cupy import internal from cupy.linalg.solve import inv from cupy.util import collections_abc matmul = core.matmul def dot(a, b, out=None): """Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (cupy.ndarray): The left argument. b (cupy.ndarray): The right argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The dot product of ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """ # TODO(okuta): check type return a.dot(b, out) def vdot(a, b): """Returns the dot product of two vectors. The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: Zero-dimensional array of the dot product result. .. seealso:: :func:`numpy.vdot` """ if a.size != b.size: raise ValueError('Axis dimension mismatch') if a.dtype.kind == 'c': a = a.conj() return core.tensordot_core(a, b, None, 1, 1, a.size, ()) def inner(a, b): """Returns the inner product of two arrays. It uses the last axis of each argument to take sum product. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: The inner product of ``a`` and ``b``. .. seealso:: :func:`numpy.inner` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) a_axis = a_ndim - 1 b_axis = b_ndim - 1 if a.shape[-1] != b.shape[-1]: raise ValueError('Axis dimension mismatch') if a_axis: a = cupy.rollaxis(a, a_axis, 0) if b_axis: b = cupy.rollaxis(b, b_axis, 0) ret_shape = a.shape[1:] + b.shape[1:] k = a.shape[0] n = a.size // k m = b.size // k return core.tensordot_core(a, b, None, n, m, k, ret_shape) def outer(a, b, out=None): """Returns the outer product of two vectors. The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: 2-D array of the outer product of ``a`` and ``b``. .. seealso:: :func:`numpy.outer` """ n = a.size m = b.size ret_shape = (n, m) if out is None: return core.tensordot_core(a, b, None, n, m, 1, ret_shape) if out.size != n * m: raise ValueError('Output array has an invalid size') if out.flags.c_contiguous: return core.tensordot_core(a, b, out, n, m, 1, ret_shape) else: out[:] = core.tensordot_core(a, b, None, n, m, 1, ret_shape) return out def tensordot(a, b, axes=2): """Returns the tensor dot product of two arrays along specified axes. This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. axes: - If it is an integer, then ``axes`` axes at the last of ``a`` and the first of ``b`` are used. - If it is a pair of sequences of integers, then these two sequences specify the list of axes for ``a`` and ``b``. The corresponding axes are paired for sum-product. Returns: cupy.ndarray: The tensor dot product of ``a`` and ``b`` along the axes specified by ``axes``. .. seealso:: :func:`numpy.tensordot` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: if axes != 0 and axes != ((), ()): raise ValueError('An input is zero-dim while axes has dimensions') return cupy.multiply(a, b) if isinstance(axes, collections_abc.Sequence): if len(axes) != 2: raise ValueError('Axes must consist of two arrays.') a_axes, b_axes = axes if numpy.isscalar(a_axes): a_axes = a_axes, if numpy.isscalar(b_axes): b_axes = b_axes, else: a_axes = tuple(six.moves.range(a_ndim - axes, a_ndim)) b_axes = tuple(six.moves.range(axes)) sum_ndim = len(a_axes) if sum_ndim != len(b_axes): raise ValueError('Axes length mismatch') for a_axis, b_axis in zip(a_axes, b_axes): if a.shape[a_axis] != b.shape[b_axis]: raise ValueError('Axis dimension mismatch') # Make the axes non-negative a = _move_axes_to_head(a, [axis % a_ndim for axis in a_axes]) b = _move_axes_to_head(b, [axis % b_ndim for axis in b_axes]) ret_shape = a.shape[sum_ndim:] + b.shape[sum_ndim:] k = internal.prod(a.shape[:sum_ndim]) # Avoid division by zero: core.tensordot_core returns zeros without # checking n, m consistency, thus allowing 0-length dimensions to work n = a.size // k if k != 0 else 0 m = b.size // k if k != 0 else 0 return core.tensordot_core(a, b, None, n, m, k, ret_shape) def matrix_power(M, n): """Raise a square matrix to the (integer) power `n`. Args: M (~cupy.ndarray): Matrix to raise by power n. n (~int): Power to raise matrix to. Returns: ~cupy.ndarray: Output array. .. note:: M must be of dtype `float32` or `float64`. ..seealso:: :func:`numpy.linalg.matrix_power` """ if M.ndim != 2 or M.shape[0] != M.shape[1]: raise ValueError('input must be a square array') if not isinstance(n, six.integer_types): raise TypeError('exponent must be an integer') if n == 0: return cupy.identity(M.shape[0], dtype=M.dtype) elif n < 0: M = inv(M) n *= -1 # short-cuts if n <= 3: if n == 1: return M elif n == 2: return cupy.matmul(M, M) else: return cupy.matmul(cupy.matmul(M, M), M) # binary decomposition to reduce the number of Matrix # multiplications for n > 3. result, Z = None, None for b in cupy.binary_repr(n)[::-1]: Z = M if Z is None else cupy.matmul(Z, Z) if b == '1': result = Z if result is None else cupy.matmul(result, Z) return result def kron(a, b): """Returns the kronecker product of two arrays. Args: a (~cupy.ndarray): The first argument. b (~cupy.ndarray): The second argument. Returns: ~cupy.ndarray: Output array. .. seealso:: :func:`numpy.kron` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) ndim = b_ndim a_shape = a.shape b_shape = b.shape if a_ndim != b_ndim: if b_ndim > a_ndim: a_shape = (1,) * (b_ndim - a_ndim) + a_shape else: b_shape = (1,) * (a_ndim - b_ndim) + b_shape ndim = a_ndim axis = ndim - 1 out = core.tensordot_core(a, b, None, a.size, b.size, 1, a_shape + b_shape) for _ in six.moves.range(ndim): out = core.concatenate_method(out, axis=axis) return out def _move_axes_to_head(a, axes): # This function moves the axes of ``s`` to the head of the shape. for idx, axis in enumerate(axes): if idx != axis: break else: return a return a.transpose( axes + [i for i in six.moves.range(a.ndim) if i not in axes])
<filename>cupy/linalg/product.py import numpy import six import cupy from cupy import core from cupy import internal from cupy.linalg.solve import inv from cupy.util import collections_abc matmul = core.matmul def dot(a, b, out=None): """Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (cupy.ndarray): The left argument. b (cupy.ndarray): The right argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The dot product of ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """ # TODO(okuta): check type return a.dot(b, out) def vdot(a, b): """Returns the dot product of two vectors. The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: Zero-dimensional array of the dot product result. .. seealso:: :func:`numpy.vdot` """ if a.size != b.size: raise ValueError('Axis dimension mismatch') if a.dtype.kind == 'c': a = a.conj() return core.tensordot_core(a, b, None, 1, 1, a.size, ()) def inner(a, b): """Returns the inner product of two arrays. It uses the last axis of each argument to take sum product. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: The inner product of ``a`` and ``b``. .. seealso:: :func:`numpy.inner` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) a_axis = a_ndim - 1 b_axis = b_ndim - 1 if a.shape[-1] != b.shape[-1]: raise ValueError('Axis dimension mismatch') if a_axis: a = cupy.rollaxis(a, a_axis, 0) if b_axis: b = cupy.rollaxis(b, b_axis, 0) ret_shape = a.shape[1:] + b.shape[1:] k = a.shape[0] n = a.size // k m = b.size // k return core.tensordot_core(a, b, None, n, m, k, ret_shape) def outer(a, b, out=None): """Returns the outer product of two vectors. The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: 2-D array of the outer product of ``a`` and ``b``. .. seealso:: :func:`numpy.outer` """ n = a.size m = b.size ret_shape = (n, m) if out is None: return core.tensordot_core(a, b, None, n, m, 1, ret_shape) if out.size != n * m: raise ValueError('Output array has an invalid size') if out.flags.c_contiguous: return core.tensordot_core(a, b, out, n, m, 1, ret_shape) else: out[:] = core.tensordot_core(a, b, None, n, m, 1, ret_shape) return out def tensordot(a, b, axes=2): """Returns the tensor dot product of two arrays along specified axes. This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. axes: - If it is an integer, then ``axes`` axes at the last of ``a`` and the first of ``b`` are used. - If it is a pair of sequences of integers, then these two sequences specify the list of axes for ``a`` and ``b``. The corresponding axes are paired for sum-product. Returns: cupy.ndarray: The tensor dot product of ``a`` and ``b`` along the axes specified by ``axes``. .. seealso:: :func:`numpy.tensordot` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: if axes != 0 and axes != ((), ()): raise ValueError('An input is zero-dim while axes has dimensions') return cupy.multiply(a, b) if isinstance(axes, collections_abc.Sequence): if len(axes) != 2: raise ValueError('Axes must consist of two arrays.') a_axes, b_axes = axes if numpy.isscalar(a_axes): a_axes = a_axes, if numpy.isscalar(b_axes): b_axes = b_axes, else: a_axes = tuple(six.moves.range(a_ndim - axes, a_ndim)) b_axes = tuple(six.moves.range(axes)) sum_ndim = len(a_axes) if sum_ndim != len(b_axes): raise ValueError('Axes length mismatch') for a_axis, b_axis in zip(a_axes, b_axes): if a.shape[a_axis] != b.shape[b_axis]: raise ValueError('Axis dimension mismatch') # Make the axes non-negative a = _move_axes_to_head(a, [axis % a_ndim for axis in a_axes]) b = _move_axes_to_head(b, [axis % b_ndim for axis in b_axes]) ret_shape = a.shape[sum_ndim:] + b.shape[sum_ndim:] k = internal.prod(a.shape[:sum_ndim]) # Avoid division by zero: core.tensordot_core returns zeros without # checking n, m consistency, thus allowing 0-length dimensions to work n = a.size // k if k != 0 else 0 m = b.size // k if k != 0 else 0 return core.tensordot_core(a, b, None, n, m, k, ret_shape) def matrix_power(M, n): """Raise a square matrix to the (integer) power `n`. Args: M (~cupy.ndarray): Matrix to raise by power n. n (~int): Power to raise matrix to. Returns: ~cupy.ndarray: Output array. .. note:: M must be of dtype `float32` or `float64`. ..seealso:: :func:`numpy.linalg.matrix_power` """ if M.ndim != 2 or M.shape[0] != M.shape[1]: raise ValueError('input must be a square array') if not isinstance(n, six.integer_types): raise TypeError('exponent must be an integer') if n == 0: return cupy.identity(M.shape[0], dtype=M.dtype) elif n < 0: M = inv(M) n *= -1 # short-cuts if n <= 3: if n == 1: return M elif n == 2: return cupy.matmul(M, M) else: return cupy.matmul(cupy.matmul(M, M), M) # binary decomposition to reduce the number of Matrix # multiplications for n > 3. result, Z = None, None for b in cupy.binary_repr(n)[::-1]: Z = M if Z is None else cupy.matmul(Z, Z) if b == '1': result = Z if result is None else cupy.matmul(result, Z) return result def kron(a, b): """Returns the kronecker product of two arrays. Args: a (~cupy.ndarray): The first argument. b (~cupy.ndarray): The second argument. Returns: ~cupy.ndarray: Output array. .. seealso:: :func:`numpy.kron` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) ndim = b_ndim a_shape = a.shape b_shape = b.shape if a_ndim != b_ndim: if b_ndim > a_ndim: a_shape = (1,) * (b_ndim - a_ndim) + a_shape else: b_shape = (1,) * (a_ndim - b_ndim) + b_shape ndim = a_ndim axis = ndim - 1 out = core.tensordot_core(a, b, None, a.size, b.size, 1, a_shape + b_shape) for _ in six.moves.range(ndim): out = core.concatenate_method(out, axis=axis) return out def _move_axes_to_head(a, axes): # This function moves the axes of ``s`` to the head of the shape. for idx, axis in enumerate(axes): if idx != axis: break else: return a return a.transpose( axes + [i for i in six.moves.range(a.ndim) if i not in axes])
en
0.731944
Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (cupy.ndarray): The left argument. b (cupy.ndarray): The right argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The dot product of ``a`` and ``b``. .. seealso:: :func:`numpy.dot` # TODO(okuta): check type Returns the dot product of two vectors. The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: Zero-dimensional array of the dot product result. .. seealso:: :func:`numpy.vdot` Returns the inner product of two arrays. It uses the last axis of each argument to take sum product. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: The inner product of ``a`` and ``b``. .. seealso:: :func:`numpy.inner` Returns the outer product of two vectors. The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: 2-D array of the outer product of ``a`` and ``b``. .. seealso:: :func:`numpy.outer` Returns the tensor dot product of two arrays along specified axes. This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. axes: - If it is an integer, then ``axes`` axes at the last of ``a`` and the first of ``b`` are used. - If it is a pair of sequences of integers, then these two sequences specify the list of axes for ``a`` and ``b``. The corresponding axes are paired for sum-product. Returns: cupy.ndarray: The tensor dot product of ``a`` and ``b`` along the axes specified by ``axes``. .. seealso:: :func:`numpy.tensordot` # Make the axes non-negative # Avoid division by zero: core.tensordot_core returns zeros without # checking n, m consistency, thus allowing 0-length dimensions to work Raise a square matrix to the (integer) power `n`. Args: M (~cupy.ndarray): Matrix to raise by power n. n (~int): Power to raise matrix to. Returns: ~cupy.ndarray: Output array. .. note:: M must be of dtype `float32` or `float64`. ..seealso:: :func:`numpy.linalg.matrix_power` # short-cuts # binary decomposition to reduce the number of Matrix # multiplications for n > 3. Returns the kronecker product of two arrays. Args: a (~cupy.ndarray): The first argument. b (~cupy.ndarray): The second argument. Returns: ~cupy.ndarray: Output array. .. seealso:: :func:`numpy.kron` # This function moves the axes of ``s`` to the head of the shape.
3.268448
3
fibo.py
aligoren/pyalgo
22
8770
<filename>fibo.py def fibo(n): return n <= 1 or fibo(n-1) + fibo(n-2) def fibo_main(): for n in range(1,47): res = fibo(n) print("%s\t%s" % (n, res)) fibo_main() # profiling result for 47 numbers # profile: python -m profile fibo.py """ -1273940835 function calls (275 primitive calls) in 18966.707 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 90 0.000 0.000 0.001 0.000 cp857.py:18(encode) 1 0.000 0.000 18966.707 18966.707 fibo.py:1(<module>) -1273941064/46 18966.697 -0.000 18966.697 412.319 fibo.py:1(fibo) 1 0.001 0.001 18966.707 18966.707 fibo.py:4(main) 90 0.000 0.000 0.000 0.000 {built-in method charmap_encode} 1 0.000 0.000 18966.707 18966.707 {built-in method exec} 45 0.009 0.000 0.010 0.000 {built-in method print} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof iler' objects} """
<filename>fibo.py def fibo(n): return n <= 1 or fibo(n-1) + fibo(n-2) def fibo_main(): for n in range(1,47): res = fibo(n) print("%s\t%s" % (n, res)) fibo_main() # profiling result for 47 numbers # profile: python -m profile fibo.py """ -1273940835 function calls (275 primitive calls) in 18966.707 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 90 0.000 0.000 0.001 0.000 cp857.py:18(encode) 1 0.000 0.000 18966.707 18966.707 fibo.py:1(<module>) -1273941064/46 18966.697 -0.000 18966.697 412.319 fibo.py:1(fibo) 1 0.001 0.001 18966.707 18966.707 fibo.py:4(main) 90 0.000 0.000 0.000 0.000 {built-in method charmap_encode} 1 0.000 0.000 18966.707 18966.707 {built-in method exec} 45 0.009 0.000 0.010 0.000 {built-in method print} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof iler' objects} """
en
0.267884
# profiling result for 47 numbers # profile: python -m profile fibo.py -1273940835 function calls (275 primitive calls) in 18966.707 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 90 0.000 0.000 0.001 0.000 cp857.py:18(encode) 1 0.000 0.000 18966.707 18966.707 fibo.py:1(<module>) -1273941064/46 18966.697 -0.000 18966.697 412.319 fibo.py:1(fibo) 1 0.001 0.001 18966.707 18966.707 fibo.py:4(main) 90 0.000 0.000 0.000 0.000 {built-in method charmap_encode} 1 0.000 0.000 18966.707 18966.707 {built-in method exec} 45 0.009 0.000 0.010 0.000 {built-in method print} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof iler' objects}
3.494306
3
trt_util/common.py
yihui8776/TensorRT-DETR
0
8771
<filename>trt_util/common.py # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ~~~Medcare AI Lab~~~ # 该部分代码参考了TensorRT官方示例完成,对相关方法进行修改 # import pycuda.driver as cuda #https://documen.tician.de/pycuda/driver.html import pycuda.autoinit import numpy as np import tensorrt as trt from .calibrator import Calibrator import sys, os import time # TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) # TRT_LOGGER = trt.Logger(trt.Logger.INFO) TRT_LOGGER = trt.Logger() # Allocate host and device buffers, and create a stream. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) # <--------- the main diff to v2 dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream def allocate_buffers_v2(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream # do inference multi outputs def do_inference_v2(context, bindings, inputs, outputs, stream, input_tensor): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async_v2(bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] # The onnx path is used for Pytorch models. def build_engine_onnx(model_file,engine_file,FP16=False,verbose=False,dynamic_input=False,batch_size=1): def get_engine(): EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) # with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network,builder.create_builder_config() as config, trt.OnnxParser(network,TRT_LOGGER) as parser: with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, builder.create_builder_config() as config,\ trt.OnnxParser(network,TRT_LOGGER) as parser: # Workspace size is the maximum amount of memory available to the builder while building an engine. #builder.max_workspace_size = 6 << 30 # 6G config.max_workspace_size = (1 << 30) #for trt8 config.max_batch_size = batch_size #for trt8 #builder.max_batch_size = batch_size if FP16: print("[INFO] Open FP16 Mode!") config.set_flag(tensorrt.BuilderFlag.FP16) # for trt8 #builder.fp16_mode = True #trt7 with open(model_file, 'rb') as model: parser.parse(model.read()) if verbose: print(">"*50) for error in range(parser.num_errors): print(parser.get_error(error)) network.get_input(0).shape = [ batch_size, 3, 800, 800 ] if dynamic_input: profile = builder.create_optimization_profile(); profile.set_shape("inputs", (1,3,800,800), (8,3,800,800), (64,3,800,800)) config.add_optimization_profile(profile) # builder engine #engine = builder.build_cuda_engine(network) #trt 7 engine = builder.build_engine(network, config) #trt8 print("[INFO] Completed creating Engine!") with open(engine_file, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file): # If a serialized engine exists, use it instead of building an engine. print("[INFO] Reading engine from file {}".format(engine_file)) with open(engine_file, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return get_engine() # int8 quant def build_engine_onnx_v2(onnx_file_path="", engine_file_path="",fp16_mode=False, int8_mode=False, \ max_batch_size=1,calibration_stream=None, calibration_table_path="", save_engine=False): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" def build_engine(max_batch_size, save_engine): """Takes an ONNX file and creates a TensorRT engine to run inference with""" with trt.Builder(TRT_LOGGER) as builder, builder.create_network(1) as network,\ builder.create_builder_config() as config,trt.OnnxParser(network, TRT_LOGGER) as parser: # parse onnx model file if not os.path.exists(onnx_file_path): quit(f'[Error]ONNX file {onnx_file_path} not found') print(f'[INFO] Loading ONNX file from path {onnx_file_path}...') with open(onnx_file_path, 'rb') as model: print('[INFO] Beginning ONNX file parsing') parser.parse(model.read()) assert network.num_layers > 0, '[Error] Failed to parse ONNX model. \ Please check if the ONNX model is compatible ' print('[INFO] Completed parsing of ONNX file') print(f'[INFO] Building an engine from file {onnx_file_path}; this may take a while...') # build trt engine # config.max_workspace_size = 2 << 30 # 2GB builder.max_batch_size = max_batch_size config.max_workspace_size = 2 << 30 # 2GB if fp16_mode: config.set_flag(trt.BuilderFlag.FP16) if int8_mode: #builder.int8_mode = int8_mode config.set_flag(trt.BuilderFlag.INT8) assert calibration_stream, '[Error] a calibration_stream should be provided for int8 mode' config.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) # builder.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) print('[INFO] Int8 mode enabled') #engine = builder.build_cuda_engine(network) engine = builder.build_engine(network, config) if engine is None: print('[INFO] Failed to create the engine') return None print("[INFO] Completed creating the engine") if save_engine: with open(engine_file_path, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file_path): # If a serialized engine exists, load it instead of building a new one. print(f"[INFO] Reading engine from file {engine_file_path}") with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return build_engine(max_batch_size, save_engine)
<filename>trt_util/common.py # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ~~~Medcare AI Lab~~~ # 该部分代码参考了TensorRT官方示例完成,对相关方法进行修改 # import pycuda.driver as cuda #https://documen.tician.de/pycuda/driver.html import pycuda.autoinit import numpy as np import tensorrt as trt from .calibrator import Calibrator import sys, os import time # TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) # TRT_LOGGER = trt.Logger(trt.Logger.INFO) TRT_LOGGER = trt.Logger() # Allocate host and device buffers, and create a stream. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) # <--------- the main diff to v2 dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream def allocate_buffers_v2(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream # do inference multi outputs def do_inference_v2(context, bindings, inputs, outputs, stream, input_tensor): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async_v2(bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] # The onnx path is used for Pytorch models. def build_engine_onnx(model_file,engine_file,FP16=False,verbose=False,dynamic_input=False,batch_size=1): def get_engine(): EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) # with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network,builder.create_builder_config() as config, trt.OnnxParser(network,TRT_LOGGER) as parser: with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, builder.create_builder_config() as config,\ trt.OnnxParser(network,TRT_LOGGER) as parser: # Workspace size is the maximum amount of memory available to the builder while building an engine. #builder.max_workspace_size = 6 << 30 # 6G config.max_workspace_size = (1 << 30) #for trt8 config.max_batch_size = batch_size #for trt8 #builder.max_batch_size = batch_size if FP16: print("[INFO] Open FP16 Mode!") config.set_flag(tensorrt.BuilderFlag.FP16) # for trt8 #builder.fp16_mode = True #trt7 with open(model_file, 'rb') as model: parser.parse(model.read()) if verbose: print(">"*50) for error in range(parser.num_errors): print(parser.get_error(error)) network.get_input(0).shape = [ batch_size, 3, 800, 800 ] if dynamic_input: profile = builder.create_optimization_profile(); profile.set_shape("inputs", (1,3,800,800), (8,3,800,800), (64,3,800,800)) config.add_optimization_profile(profile) # builder engine #engine = builder.build_cuda_engine(network) #trt 7 engine = builder.build_engine(network, config) #trt8 print("[INFO] Completed creating Engine!") with open(engine_file, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file): # If a serialized engine exists, use it instead of building an engine. print("[INFO] Reading engine from file {}".format(engine_file)) with open(engine_file, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return get_engine() # int8 quant def build_engine_onnx_v2(onnx_file_path="", engine_file_path="",fp16_mode=False, int8_mode=False, \ max_batch_size=1,calibration_stream=None, calibration_table_path="", save_engine=False): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" def build_engine(max_batch_size, save_engine): """Takes an ONNX file and creates a TensorRT engine to run inference with""" with trt.Builder(TRT_LOGGER) as builder, builder.create_network(1) as network,\ builder.create_builder_config() as config,trt.OnnxParser(network, TRT_LOGGER) as parser: # parse onnx model file if not os.path.exists(onnx_file_path): quit(f'[Error]ONNX file {onnx_file_path} not found') print(f'[INFO] Loading ONNX file from path {onnx_file_path}...') with open(onnx_file_path, 'rb') as model: print('[INFO] Beginning ONNX file parsing') parser.parse(model.read()) assert network.num_layers > 0, '[Error] Failed to parse ONNX model. \ Please check if the ONNX model is compatible ' print('[INFO] Completed parsing of ONNX file') print(f'[INFO] Building an engine from file {onnx_file_path}; this may take a while...') # build trt engine # config.max_workspace_size = 2 << 30 # 2GB builder.max_batch_size = max_batch_size config.max_workspace_size = 2 << 30 # 2GB if fp16_mode: config.set_flag(trt.BuilderFlag.FP16) if int8_mode: #builder.int8_mode = int8_mode config.set_flag(trt.BuilderFlag.INT8) assert calibration_stream, '[Error] a calibration_stream should be provided for int8 mode' config.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) # builder.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) print('[INFO] Int8 mode enabled') #engine = builder.build_cuda_engine(network) engine = builder.build_engine(network, config) if engine is None: print('[INFO] Failed to create the engine') return None print("[INFO] Completed creating the engine") if save_engine: with open(engine_file_path, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file_path): # If a serialized engine exists, load it instead of building a new one. print(f"[INFO] Reading engine from file {engine_file_path}") with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return build_engine(max_batch_size, save_engine)
en
0.761653
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ~~~Medcare AI Lab~~~ # 该部分代码参考了TensorRT官方示例完成,对相关方法进行修改 # #https://documen.tician.de/pycuda/driver.html # TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) # TRT_LOGGER = trt.Logger(trt.Logger.INFO) # Allocate host and device buffers, and create a stream. # <--------- the main diff to v2 # Allocate host and device buffers # Append the device buffer to device bindings. # Append to the appropriate list. # Allocate host and device buffers # Append the device buffer to device bindings. # Append to the appropriate list. # do inference multi outputs # Transfer input data to the GPU. # Run inference. # Transfer predictions back from the GPU. # Synchronize the stream # Return only the host outputs. # The onnx path is used for Pytorch models. # with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network,builder.create_builder_config() as config, trt.OnnxParser(network,TRT_LOGGER) as parser: # Workspace size is the maximum amount of memory available to the builder while building an engine. #builder.max_workspace_size = 6 << 30 # 6G #for trt8 #for trt8 #builder.max_batch_size = batch_size # for trt8 #builder.fp16_mode = True #trt7 # builder engine #engine = builder.build_cuda_engine(network) #trt 7 #trt8 # If a serialized engine exists, use it instead of building an engine. # int8 quant Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it. Takes an ONNX file and creates a TensorRT engine to run inference with # parse onnx model file # build trt engine # config.max_workspace_size = 2 << 30 # 2GB # 2GB #builder.int8_mode = int8_mode # builder.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) #engine = builder.build_cuda_engine(network) # If a serialized engine exists, load it instead of building a new one.
2.002341
2
src/init.py
inpanel/inpanel-desktop
1
8772
#!/usr/bin/env python3 # -*- coding:utf-8-*- import tkinter.messagebox from tkinter import Button, Label, Tk from utils.functions import set_window_center from utils.sqlite_helper import DBHelper from inpanel import App class InitWindow(Tk): """初始化窗口""" def __init__(self): Tk.__init__(self) self.title("初始化数据") set_window_center(self, 300, 180) self.resizable(False, False) self.win_success = None # 初始化成功的提示窗口 self.init_page() def init_page(self): """加载控件""" btn_1 = Button(self, text="初始化数据库", command=self.do_init_db) btn_1.pack(expand="yes", padx=10, pady=10, ipadx=5, ipady=5) def do_init_db(self): """初始化""" db_helper = DBHelper() db_helper.reset_database() db_helper.create_database() try: tmp = db_helper.insert_user("admin", "admin") # 默认用户 tmp2 = db_helper.insert_content_by_username( "admin", "Hello World !", "源码仓库地址:https://github.com/doudoudzj/tkinter-app", "github", ) tmp3 = db_helper.get_content_by_username("admin") print("添加用户admin:", tmp) print("添加内容:", tmp2) print("查询内容:", tmp3) self.do_success() self.destroy() except KeyError: print(KeyError) self.do_failed() def do_failed(self): """是否重试""" res = tkinter.messagebox.askretrycancel('提示', '初始化失败,是否重试?', parent=self) if res is True: self.do_init_db() elif res is False: self.destroy() def do_success(self): """初始化成功弹窗""" self.win_success = Tk() self.win_success.title("初始化成功") set_window_center(self.win_success, 250, 150) self.win_success.resizable(False, False) msg = Label(self.win_success, text="初始化成功") msg.pack(expand="yes", fill="both") btn = Button(self.win_success, text="确定", command=self.quit) btn.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) btn_open_app = Button(self.win_success, text="启动程序", command=self.open_app) btn_open_app.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) def open_app(self): """打开应用程序""" self.quit() self.win_success.destroy() self.win_success.quit() App() if __name__ == "__main__": APP_INIT = InitWindow() APP_INIT.mainloop()
#!/usr/bin/env python3 # -*- coding:utf-8-*- import tkinter.messagebox from tkinter import Button, Label, Tk from utils.functions import set_window_center from utils.sqlite_helper import DBHelper from inpanel import App class InitWindow(Tk): """初始化窗口""" def __init__(self): Tk.__init__(self) self.title("初始化数据") set_window_center(self, 300, 180) self.resizable(False, False) self.win_success = None # 初始化成功的提示窗口 self.init_page() def init_page(self): """加载控件""" btn_1 = Button(self, text="初始化数据库", command=self.do_init_db) btn_1.pack(expand="yes", padx=10, pady=10, ipadx=5, ipady=5) def do_init_db(self): """初始化""" db_helper = DBHelper() db_helper.reset_database() db_helper.create_database() try: tmp = db_helper.insert_user("admin", "admin") # 默认用户 tmp2 = db_helper.insert_content_by_username( "admin", "Hello World !", "源码仓库地址:https://github.com/doudoudzj/tkinter-app", "github", ) tmp3 = db_helper.get_content_by_username("admin") print("添加用户admin:", tmp) print("添加内容:", tmp2) print("查询内容:", tmp3) self.do_success() self.destroy() except KeyError: print(KeyError) self.do_failed() def do_failed(self): """是否重试""" res = tkinter.messagebox.askretrycancel('提示', '初始化失败,是否重试?', parent=self) if res is True: self.do_init_db() elif res is False: self.destroy() def do_success(self): """初始化成功弹窗""" self.win_success = Tk() self.win_success.title("初始化成功") set_window_center(self.win_success, 250, 150) self.win_success.resizable(False, False) msg = Label(self.win_success, text="初始化成功") msg.pack(expand="yes", fill="both") btn = Button(self.win_success, text="确定", command=self.quit) btn.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) btn_open_app = Button(self.win_success, text="启动程序", command=self.open_app) btn_open_app.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) def open_app(self): """打开应用程序""" self.quit() self.win_success.destroy() self.win_success.quit() App() if __name__ == "__main__": APP_INIT = InitWindow() APP_INIT.mainloop()
zh
0.943025
#!/usr/bin/env python3 # -*- coding:utf-8-*- 初始化窗口 # 初始化成功的提示窗口 加载控件 初始化 # 默认用户 是否重试 初始化成功弹窗 打开应用程序
3.180834
3
Toolkits/CMake/hunter/packages/sugar/python/sugar/sugar_warnings_wiki_table_generator.py
roscopecoltran/SniperKit-Core
102
8773
<reponame>roscopecoltran/SniperKit-Core #!/usr/bin/env python3 # Copyright (c) 2014, <NAME> # All rights reserved. """ * Wiki table for `leathers` C++ project Expected format: ### Main table Name | Clang | GCC | MSVC | -----------------------------|----------|----------|------| static-ctor-not-thread-safe | *no* | *no* | 4640 | switch | **same** | **same** | 4062 | switch-enum | **same** | **same** | 4061 | ### Xcode/Clang table Clang | Xcode | Objective-C | -----------------------|--------------------------------|-------------| bool-conversion | CLANG_WARN_BOOL_CONVERSION | no | c++11-extensions | CLANG_WARN_CXX0X_EXTENSIONS | no | strict-selector-match | GCC_WARN_STRICT_SELECTOR_MATCH | yes | undeclared-selector | GCC_WARN_UNDECLARED_SELECTOR | yes | """ def generate(main_warnings_table): groups = set() for i in main_warnings_table: if i.group != "": groups.add(i.group) wiki_file = open("wiki-table.txt", "w") generate_main_table(main_warnings_table, wiki_file) for group in groups: generate_group_table(main_warnings_table, wiki_file, group) generate_xcode_table(main_warnings_table, wiki_file) def generate_main_table(main_warnings_table, wiki_file): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("### Main table\n\n") s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != "": continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_group_table(main_warnings_table, wiki_file, group): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n### Table for group: `{}`\n\n".format(group)) s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != group: continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_xcode_table(main_warnings_table, wiki_file): head_clang = "Clang" head_xcode = "Xcode" head_objc = "Objective-C" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def clang_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.clang.option) def xcode_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.xcode.option) def objc_visitor(table_entry): if table_entry.xcode.option == "": return 0 if table_entry.objc: return 3 # "yes" else: return 2 # "no" max_clang = calc_max(head_clang, clang_visitor) max_xcode = calc_max(head_xcode, xcode_visitor) max_objc = calc_max(head_objc, objc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n\n### Xcode/Clang table\n\n") s = "{}|{}|{}|\n".format( fill_string(head_clang, max_clang), fill_string(head_xcode, max_xcode), fill_string(head_objc, max_objc), ) wiki_file.write(s) s = "{}|{}|{}|\n".format( '-' * max_clang, '-' * max_xcode, '-' * max_objc, ) wiki_file.write(s) done_list = [] for entry in main_warnings_table: if entry.xcode.option == "": continue if entry.clang.option in done_list: continue done_list.append(entry.clang.option) if entry.objc: objc = "yes" else: objc = "no" s = "{}|{}|{}|\n".format( fill_string(entry.clang.option, max_clang), fill_string(entry.xcode.option, max_xcode), fill_string(objc, max_objc), ) wiki_file.write(s)
#!/usr/bin/env python3 # Copyright (c) 2014, <NAME> # All rights reserved. """ * Wiki table for `leathers` C++ project Expected format: ### Main table Name | Clang | GCC | MSVC | -----------------------------|----------|----------|------| static-ctor-not-thread-safe | *no* | *no* | 4640 | switch | **same** | **same** | 4062 | switch-enum | **same** | **same** | 4061 | ### Xcode/Clang table Clang | Xcode | Objective-C | -----------------------|--------------------------------|-------------| bool-conversion | CLANG_WARN_BOOL_CONVERSION | no | c++11-extensions | CLANG_WARN_CXX0X_EXTENSIONS | no | strict-selector-match | GCC_WARN_STRICT_SELECTOR_MATCH | yes | undeclared-selector | GCC_WARN_UNDECLARED_SELECTOR | yes | """ def generate(main_warnings_table): groups = set() for i in main_warnings_table: if i.group != "": groups.add(i.group) wiki_file = open("wiki-table.txt", "w") generate_main_table(main_warnings_table, wiki_file) for group in groups: generate_group_table(main_warnings_table, wiki_file, group) generate_xcode_table(main_warnings_table, wiki_file) def generate_main_table(main_warnings_table, wiki_file): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("### Main table\n\n") s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != "": continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_group_table(main_warnings_table, wiki_file, group): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n### Table for group: `{}`\n\n".format(group)) s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != group: continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_xcode_table(main_warnings_table, wiki_file): head_clang = "Clang" head_xcode = "Xcode" head_objc = "Objective-C" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def clang_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.clang.option) def xcode_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.xcode.option) def objc_visitor(table_entry): if table_entry.xcode.option == "": return 0 if table_entry.objc: return 3 # "yes" else: return 2 # "no" max_clang = calc_max(head_clang, clang_visitor) max_xcode = calc_max(head_xcode, xcode_visitor) max_objc = calc_max(head_objc, objc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n\n### Xcode/Clang table\n\n") s = "{}|{}|{}|\n".format( fill_string(head_clang, max_clang), fill_string(head_xcode, max_xcode), fill_string(head_objc, max_objc), ) wiki_file.write(s) s = "{}|{}|{}|\n".format( '-' * max_clang, '-' * max_xcode, '-' * max_objc, ) wiki_file.write(s) done_list = [] for entry in main_warnings_table: if entry.xcode.option == "": continue if entry.clang.option in done_list: continue done_list.append(entry.clang.option) if entry.objc: objc = "yes" else: objc = "no" s = "{}|{}|{}|\n".format( fill_string(entry.clang.option, max_clang), fill_string(entry.xcode.option, max_xcode), fill_string(objc, max_objc), ) wiki_file.write(s)
en
0.282369
#!/usr/bin/env python3 # Copyright (c) 2014, <NAME> # All rights reserved. * Wiki table for `leathers` C++ project Expected format: ### Main table Name | Clang | GCC | MSVC | -----------------------------|----------|----------|------| static-ctor-not-thread-safe | *no* | *no* | 4640 | switch | **same** | **same** | 4062 | switch-enum | **same** | **same** | 4061 | ### Xcode/Clang table Clang | Xcode | Objective-C | -----------------------|--------------------------------|-------------| bool-conversion | CLANG_WARN_BOOL_CONVERSION | no | c++11-extensions | CLANG_WARN_CXX0X_EXTENSIONS | no | strict-selector-match | GCC_WARN_STRICT_SELECTOR_MATCH | yes | undeclared-selector | GCC_WARN_UNDECLARED_SELECTOR | yes | ## Main table\n\n") ### Table for group: `{}`\n\n".format(group)) # "yes" # "no" ### Xcode/Clang table\n\n")
2.218365
2
neutron/plugins/ofagent/agent/ports.py
armando-migliaccio/neutron-1
0
8774
# Copyright (C) 2014 VA Linux Systems Japan K.K. # Copyright (C) 2014 <NAME> <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class OFPort(object): def __init__(self, port_name, ofport): self.port_name = port_name self.ofport = ofport @classmethod def from_ofp_port(cls, ofp_port): """Convert from ryu OFPPort.""" return cls(port_name=ofp_port.name, ofport=ofp_port.port_no) PORT_NAME_LEN = 14 PORT_NAME_PREFIXES = [ "tap", # common cases, including ovs_use_veth=True "qvo", # nova hybrid interface driver "qr-", # l3-agent INTERNAL_DEV_PREFIX (ovs_use_veth=False) "qg-", # l3-agent EXTERNAL_DEV_PREFIX (ovs_use_veth=False) ] def _is_neutron_port(name): """Return True if the port name looks like a neutron port.""" if len(name) != PORT_NAME_LEN: return False for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return True return False def get_normalized_port_name(interface_id): """Convert from neutron device id (uuid) to "normalized" port name. This needs to be synced with ML2 plugin's _device_to_port_id(). An assumption: The switch uses an OS's interface name as the corresponding OpenFlow port name. NOTE(yamamoto): While it's true for Open vSwitch, it isn't necessarily true everywhere. For example, LINC uses something like "LogicalSwitch0-Port2". NOTE(yamamoto): The actual prefix might be different. For example, with the hybrid interface driver, it's "qvo". However, we always use "tap" prefix throughout the agent and plugin for simplicity. Some care should be taken when talking to the switch. """ return ("tap" + interface_id)[0:PORT_NAME_LEN] def _normalize_port_name(name): """Normalize port name. See comments in _get_ofport_name. """ for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return "tap" + name[len(pref):] return name class Port(OFPort): def __init__(self, *args, **kwargs): super(Port, self).__init__(*args, **kwargs) self.vif_mac = None def is_neutron_port(self): """Return True if the port looks like a neutron port.""" return _is_neutron_port(self.port_name) def normalized_port_name(self): return _normalize_port_name(self.port_name)
# Copyright (C) 2014 VA Linux Systems Japan K.K. # Copyright (C) 2014 <NAME> <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class OFPort(object): def __init__(self, port_name, ofport): self.port_name = port_name self.ofport = ofport @classmethod def from_ofp_port(cls, ofp_port): """Convert from ryu OFPPort.""" return cls(port_name=ofp_port.name, ofport=ofp_port.port_no) PORT_NAME_LEN = 14 PORT_NAME_PREFIXES = [ "tap", # common cases, including ovs_use_veth=True "qvo", # nova hybrid interface driver "qr-", # l3-agent INTERNAL_DEV_PREFIX (ovs_use_veth=False) "qg-", # l3-agent EXTERNAL_DEV_PREFIX (ovs_use_veth=False) ] def _is_neutron_port(name): """Return True if the port name looks like a neutron port.""" if len(name) != PORT_NAME_LEN: return False for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return True return False def get_normalized_port_name(interface_id): """Convert from neutron device id (uuid) to "normalized" port name. This needs to be synced with ML2 plugin's _device_to_port_id(). An assumption: The switch uses an OS's interface name as the corresponding OpenFlow port name. NOTE(yamamoto): While it's true for Open vSwitch, it isn't necessarily true everywhere. For example, LINC uses something like "LogicalSwitch0-Port2". NOTE(yamamoto): The actual prefix might be different. For example, with the hybrid interface driver, it's "qvo". However, we always use "tap" prefix throughout the agent and plugin for simplicity. Some care should be taken when talking to the switch. """ return ("tap" + interface_id)[0:PORT_NAME_LEN] def _normalize_port_name(name): """Normalize port name. See comments in _get_ofport_name. """ for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return "tap" + name[len(pref):] return name class Port(OFPort): def __init__(self, *args, **kwargs): super(Port, self).__init__(*args, **kwargs) self.vif_mac = None def is_neutron_port(self): """Return True if the port looks like a neutron port.""" return _is_neutron_port(self.port_name) def normalized_port_name(self): return _normalize_port_name(self.port_name)
en
0.787011
# Copyright (C) 2014 VA Linux Systems Japan K.K. # Copyright (C) 2014 <NAME> <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. Convert from ryu OFPPort. # common cases, including ovs_use_veth=True # nova hybrid interface driver # l3-agent INTERNAL_DEV_PREFIX (ovs_use_veth=False) # l3-agent EXTERNAL_DEV_PREFIX (ovs_use_veth=False) Return True if the port name looks like a neutron port. Convert from neutron device id (uuid) to "normalized" port name. This needs to be synced with ML2 plugin's _device_to_port_id(). An assumption: The switch uses an OS's interface name as the corresponding OpenFlow port name. NOTE(yamamoto): While it's true for Open vSwitch, it isn't necessarily true everywhere. For example, LINC uses something like "LogicalSwitch0-Port2". NOTE(yamamoto): The actual prefix might be different. For example, with the hybrid interface driver, it's "qvo". However, we always use "tap" prefix throughout the agent and plugin for simplicity. Some care should be taken when talking to the switch. Normalize port name. See comments in _get_ofport_name. Return True if the port looks like a neutron port.
1.857872
2
pdf/wechat/step.py
damaainan/html2md
0
8775
# -*- coding=utf-8 -*- from zwechathihu.mypdf import GenPdf from db.mysqlite import simpleToolSql data=[{"url": "http://mp.weixin.qq.com/s?__biz=MzAxODQxMDM0Mw==&mid=2247484852&idx=1&sn=85b50b8b0470bb4897e517955f4e5002&chksm=9bd7fbbcaca072aa75e2a241064a403fde1e579d57ab846cd8537a54253ceb2c8b93cc3bf38e&scene=21#wechat_redirect", "name": "001学习算法和刷题的框架思维"} ] # path = '***/' || '' # for val in data: # # print(val["url"]) # # print(val["name"]) # pdf = GenPdf() # title = val["name"].replace("/", "-") # print(title) # pdf.deal(val["url"], title, '') # sql = simpleToolSql("url") # # sql.execute("insert into wx_article (id,name,age) values (?,?,?);",[(1,'abc',15),(2,'bca',16)]) # res = sql.query("select * from wx_article;") # print(res) # res = sql.query("select * from wx_article where id=?;",(3,)) # print(res) # sql.close() # 从 db 获取需要生成的url def getListByTitle(title:str): sql = simpleToolSql("url") res = sql.query("select * from wx_article where title="+title+";") print(res) sql.close() return res # 从 db 获取需要生成的url def getListFromSql(): sql = simpleToolSql("url") # res = sql.query("select * from wx_article where state=0;") res = sql.query("select * from wx_article;") print(res) sql.close() return res # 更新 db def updateUrl(id:int): sql = simpleToolSql("url") res = sql.execute("update wx_article set state=1 where id = ?;",(id,)) # 需要加逗号 https://blog.csdn.net/yimaoyingbi/article/details/104323701 print(res) sql.close() return def addUrl(): sql = simpleToolSql("url") sql.execute( "insert into wx_article (url,folder,title,state,turn,create_at,update_at) values (?,?,?,?,?,?);", [("http",'test',"01",0,1,"2020-12-03 09:38:25","2020-12-03 09:38:25")] ) res = sql.query("select * from wx_article;") print(res) sql.close() return # addUrl() updateUrl(1) res = getListFromSql() print(res)
# -*- coding=utf-8 -*- from zwechathihu.mypdf import GenPdf from db.mysqlite import simpleToolSql data=[{"url": "http://mp.weixin.qq.com/s?__biz=MzAxODQxMDM0Mw==&mid=2247484852&idx=1&sn=85b50b8b0470bb4897e517955f4e5002&chksm=9bd7fbbcaca072aa75e2a241064a403fde1e579d57ab846cd8537a54253ceb2c8b93cc3bf38e&scene=21#wechat_redirect", "name": "001学习算法和刷题的框架思维"} ] # path = '***/' || '' # for val in data: # # print(val["url"]) # # print(val["name"]) # pdf = GenPdf() # title = val["name"].replace("/", "-") # print(title) # pdf.deal(val["url"], title, '') # sql = simpleToolSql("url") # # sql.execute("insert into wx_article (id,name,age) values (?,?,?);",[(1,'abc',15),(2,'bca',16)]) # res = sql.query("select * from wx_article;") # print(res) # res = sql.query("select * from wx_article where id=?;",(3,)) # print(res) # sql.close() # 从 db 获取需要生成的url def getListByTitle(title:str): sql = simpleToolSql("url") res = sql.query("select * from wx_article where title="+title+";") print(res) sql.close() return res # 从 db 获取需要生成的url def getListFromSql(): sql = simpleToolSql("url") # res = sql.query("select * from wx_article where state=0;") res = sql.query("select * from wx_article;") print(res) sql.close() return res # 更新 db def updateUrl(id:int): sql = simpleToolSql("url") res = sql.execute("update wx_article set state=1 where id = ?;",(id,)) # 需要加逗号 https://blog.csdn.net/yimaoyingbi/article/details/104323701 print(res) sql.close() return def addUrl(): sql = simpleToolSql("url") sql.execute( "insert into wx_article (url,folder,title,state,turn,create_at,update_at) values (?,?,?,?,?,?);", [("http",'test',"01",0,1,"2020-12-03 09:38:25","2020-12-03 09:38:25")] ) res = sql.query("select * from wx_article;") print(res) sql.close() return # addUrl() updateUrl(1) res = getListFromSql() print(res)
en
0.366692
# -*- coding=utf-8 -*- #wechat_redirect", "name": "001学习算法和刷题的框架思维"} # path = '***/' || '' # for val in data: # # print(val["url"]) # # print(val["name"]) # pdf = GenPdf() # title = val["name"].replace("/", "-") # print(title) # pdf.deal(val["url"], title, '') # sql = simpleToolSql("url") # # sql.execute("insert into wx_article (id,name,age) values (?,?,?);",[(1,'abc',15),(2,'bca',16)]) # res = sql.query("select * from wx_article;") # print(res) # res = sql.query("select * from wx_article where id=?;",(3,)) # print(res) # sql.close() # 从 db 获取需要生成的url # 从 db 获取需要生成的url # res = sql.query("select * from wx_article where state=0;") # 更新 db # 需要加逗号 https://blog.csdn.net/yimaoyingbi/article/details/104323701 # addUrl()
2.798182
3
pipeline/validators/handlers.py
ZhuoZhuoCrayon/bk-nodeman
31
8776
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.dispatch import receiver from pipeline.core.flow.event import EndEvent from pipeline.core.flow.signals import post_new_end_event_register from pipeline.validators import rules @receiver(post_new_end_event_register, sender=EndEvent) def post_new_end_event_register_handler(sender, node_type, node_cls, **kwargs): rules.NODE_RULES[node_type] = rules.SINK_RULE rules.FLOW_NODES_WITHOUT_STARTEVENT.append(node_type)
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.dispatch import receiver from pipeline.core.flow.event import EndEvent from pipeline.core.flow.signals import post_new_end_event_register from pipeline.validators import rules @receiver(post_new_end_event_register, sender=EndEvent) def post_new_end_event_register_handler(sender, node_type, node_cls, **kwargs): rules.NODE_RULES[node_type] = rules.SINK_RULE rules.FLOW_NODES_WITHOUT_STARTEVENT.append(node_type)
en
0.863967
# -*- coding: utf-8 -*- Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
1.57152
2
NumPy/Array Basics/Random Shuffle/tests/test_task.py
jetbrains-academy/Python-Libraries-NumPy
0
8777
import unittest import numpy as np from task import arr, permuted_2d, fully_random class TestCase(unittest.TestCase): def test_shape(self): self.assertEqual((5, 20), arr.shape, msg="Wrong shape of the array 'arr'.") self.assertEqual((5, 20), permuted_2d.shape, msg="Wrong shape of the array 'permuted_2d'.") self.assertEqual((5, 20), fully_random.shape, msg="Wrong shape of the array 'fully_random'.") def test_arr(self): for i in arr: # This test checks if in each row the minimum element goes first and maximum - last. self.assertTrue(i[0] == min(i) and i[-1] == max(i), msg="'arr' should be shuffled along the 0th axis.") def test_two_d(self): for i in permuted_2d: # This test checks that differences between all neighboring elements in rows of the array # are not equal to 1 (in non-shuffled rows they would be). self.assertFalse(all([(x - i[i.tolist().index(x) - 1]) == 1 for x in i if i.tolist().index(x) > 0]), msg="'permuted_2d' should be shuffled along the 1st axis.") def test_random(self): # This test checks if elements were also randomized between the rows. for i in fully_random: self.assertTrue(max(i) - min(i) > 19, "'fully_random' needs to be fully shuffled.")
import unittest import numpy as np from task import arr, permuted_2d, fully_random class TestCase(unittest.TestCase): def test_shape(self): self.assertEqual((5, 20), arr.shape, msg="Wrong shape of the array 'arr'.") self.assertEqual((5, 20), permuted_2d.shape, msg="Wrong shape of the array 'permuted_2d'.") self.assertEqual((5, 20), fully_random.shape, msg="Wrong shape of the array 'fully_random'.") def test_arr(self): for i in arr: # This test checks if in each row the minimum element goes first and maximum - last. self.assertTrue(i[0] == min(i) and i[-1] == max(i), msg="'arr' should be shuffled along the 0th axis.") def test_two_d(self): for i in permuted_2d: # This test checks that differences between all neighboring elements in rows of the array # are not equal to 1 (in non-shuffled rows they would be). self.assertFalse(all([(x - i[i.tolist().index(x) - 1]) == 1 for x in i if i.tolist().index(x) > 0]), msg="'permuted_2d' should be shuffled along the 1st axis.") def test_random(self): # This test checks if elements were also randomized between the rows. for i in fully_random: self.assertTrue(max(i) - min(i) > 19, "'fully_random' needs to be fully shuffled.")
en
0.950242
# This test checks if in each row the minimum element goes first and maximum - last. # This test checks that differences between all neighboring elements in rows of the array # are not equal to 1 (in non-shuffled rows they would be). # This test checks if elements were also randomized between the rows.
3.429708
3
resources/lib/channelui.py
lausitzer/plugin.video.mediathekview
0
8778
# -*- coding: utf-8 -*- """ The channel model UI module Copyright 2017-2018, <NAME> and <NAME> SPDX-License-Identifier: MIT """ # pylint: disable=import-error import os import xbmcgui import xbmcplugin import resources.lib.mvutils as mvutils from resources.lib.channel import Channel class ChannelUI(Channel): """ The channel model view class Args: plugin(MediathekView): the plugin object sortmethods(array, optional): an array of sort methods for the directory representation. Default is `[ xbmcplugin.SORT_METHOD_TITLE ]` nextdir(str, optional): """ def __init__(self, plugin, sortmethods=None, nextdir='initial'): super(ChannelUI, self).__init__() self.plugin = plugin self.handle = plugin.addon_handle self.nextdir = nextdir self.sortmethods = sortmethods if sortmethods is not None else [ xbmcplugin.SORT_METHOD_TITLE] self.count = 0 def begin(self): """ Begin a directory containing channels """ for method in self.sortmethods: xbmcplugin.addSortMethod(self.handle, method) def add(self, altname=None): """ Add the current entry to the directory Args: altname(str, optional): alternative name for the entry """ resultingname = self.channel if self.count == 0 else '%s (%d)' % ( self.channel, self.count, ) list_item = xbmcgui.ListItem( label=resultingname if altname is None else altname) icon = os.path.join( self.plugin.path, 'resources', 'icons', self.channel.lower() + '-m.png' ) list_item.setArt({ 'thumb': icon, 'icon': icon }) info_labels = { 'title': resultingname, 'sorttitle': resultingname.lower() } list_item.setInfo(type='video', infoLabels=info_labels) xbmcplugin.addDirectoryItem( handle=self.handle, url=mvutils.build_url({ 'mode': self.nextdir, 'channel': self.channelid }), listitem=list_item, isFolder=True ) def end(self): """ Finish a directory containing channels """ xbmcplugin.endOfDirectory(self.handle)
# -*- coding: utf-8 -*- """ The channel model UI module Copyright 2017-2018, <NAME> and <NAME> SPDX-License-Identifier: MIT """ # pylint: disable=import-error import os import xbmcgui import xbmcplugin import resources.lib.mvutils as mvutils from resources.lib.channel import Channel class ChannelUI(Channel): """ The channel model view class Args: plugin(MediathekView): the plugin object sortmethods(array, optional): an array of sort methods for the directory representation. Default is `[ xbmcplugin.SORT_METHOD_TITLE ]` nextdir(str, optional): """ def __init__(self, plugin, sortmethods=None, nextdir='initial'): super(ChannelUI, self).__init__() self.plugin = plugin self.handle = plugin.addon_handle self.nextdir = nextdir self.sortmethods = sortmethods if sortmethods is not None else [ xbmcplugin.SORT_METHOD_TITLE] self.count = 0 def begin(self): """ Begin a directory containing channels """ for method in self.sortmethods: xbmcplugin.addSortMethod(self.handle, method) def add(self, altname=None): """ Add the current entry to the directory Args: altname(str, optional): alternative name for the entry """ resultingname = self.channel if self.count == 0 else '%s (%d)' % ( self.channel, self.count, ) list_item = xbmcgui.ListItem( label=resultingname if altname is None else altname) icon = os.path.join( self.plugin.path, 'resources', 'icons', self.channel.lower() + '-m.png' ) list_item.setArt({ 'thumb': icon, 'icon': icon }) info_labels = { 'title': resultingname, 'sorttitle': resultingname.lower() } list_item.setInfo(type='video', infoLabels=info_labels) xbmcplugin.addDirectoryItem( handle=self.handle, url=mvutils.build_url({ 'mode': self.nextdir, 'channel': self.channelid }), listitem=list_item, isFolder=True ) def end(self): """ Finish a directory containing channels """ xbmcplugin.endOfDirectory(self.handle)
en
0.52842
# -*- coding: utf-8 -*- The channel model UI module Copyright 2017-2018, <NAME> and <NAME> SPDX-License-Identifier: MIT # pylint: disable=import-error The channel model view class Args: plugin(MediathekView): the plugin object sortmethods(array, optional): an array of sort methods for the directory representation. Default is `[ xbmcplugin.SORT_METHOD_TITLE ]` nextdir(str, optional): Begin a directory containing channels Add the current entry to the directory Args: altname(str, optional): alternative name for the entry Finish a directory containing channels
2.299552
2
getconf.py
smk762/Dragonhound
3
8779
#!/usr/bin/env python3 #Credit to @Alright for the RPCs import re import os import requests import json import platform # define function that fetchs rpc creds from .conf def def_credentials(chain): operating_system = platform.system() if operating_system == 'Darwin': ac_dir = os.environ['HOME'] + '/Library/Application Support/Komodo' elif operating_system == 'Linux': ac_dir = os.environ['HOME'] + '/.komodo' elif operating_system == 'Win64': ac_dir = "dont have windows machine now to test" # define config file path if chain == 'KMD': coin_config_file = str(ac_dir + '/komodo.conf') else: coin_config_file = str(ac_dir + '/' + chain + '/' + chain + '.conf') #define rpc creds with open(coin_config_file, 'r') as f: #print("Reading config file for credentials:", coin_config_file) for line in f: l = line.rstrip() if re.search('rpcuser', l): rpcuser = l.replace('rpcuser=', '') elif re.search('rpcpassword', l): rpcpassword = l.replace('rpcpassword=', '') elif re.search('rpcport', l): rpcport = l.replace('rpcport=', '') return('http://' + rpcuser + ':' + rpcpassword + '@127.0.0.1:' + rpcport) # define function that posts json data def post_rpc(url, payload, auth=None): try: r = requests.post(url, data=json.dumps(payload), auth=auth) return(json.loads(r.text)) except Exception as e: raise Exception("Couldn't connect to " + url + ": ", e) # Return current -pubkey= def getpubkey_rpc(chain): getinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "getinfo", "params": []} getinfo_result = post_rpc(def_credentials(chain), getinfo_payload) return(getinfo_result['result']['pubkey']) # return latest batontxid from all publishers def get_latest_batontxids(chain, oracletxid): oraclesinfo_result = oraclesinfo_rpc(chain, oracletxid) latest_batontxids = {} # fill "latest_batontxids" dictionary with publisher:batontxid data for i in oraclesinfo_result['registered']: latest_batontxids[i['publisher']] = i['batontxid'] return(latest_batontxids) #VANILLA RPC def sendrawtx_rpc(chain, rawtx): sendrawtx_payload = { "jsonrpc": "1.0", "id": "python", "method": "sendrawtransaction", "params": [rawtx]} #rpcurl = def_credentials(chain) return(post_rpc(def_credentials(chain), sendrawtx_payload)) def signmessage_rpc(chain, address, message): signmessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "signmessage", "params": [ address, message ] } signmessage_result = post_rpc(def_credentials(chain), signmessage_payload) return(signmessage_result['result']) def verifymessage_rpc(chain, address, signature, message): verifymessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "verifymessage", "params": [ address, signature, message ] } verifymessage_result = post_rpc(def_credentials(chain), verifymessage_payload) return(verifymessage_result['result']) def kvsearch_rpc(chain, key): kvsearch_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvsearch", "params": [ key ] } kvsearch_result = post_rpc(def_credentials(chain), kvsearch_payload) return(kvsearch_result['result']) def kvupdate_rpc(chain, key, value, days, password): # create dynamic oraclessamples payload kvupdate_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvupdate", "params": [ key, value, str(days), password]} # make kvupdate rpc call kvupdate_result = post_rpc(def_credentials(chain), kvupdate_payload) return(kvupdate_result) def oraclesdata_rpc(chain, oracletxid, hexstr): oraclesdata_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesdata", "params": [ oracletxid, hexstr]} oraclesdata_result = post_rpc(def_credentials(chain), oraclesdata_payload) return(oraclesdata_result['result']) def oraclescreate_rpc(chain, name, description, oracle_type): oraclescreate_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclescreate", "params": [ name, description, oracle_type]} oraclescreate_result = post_rpc(def_credentials(chain), oraclescreate_payload) return(oraclescreate_result['result']) def oraclesinfo_rpc(chain, oracletxid): oraclesinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesinfo", "params": [oracletxid]} oraclesinfo_result = post_rpc(def_credentials(chain), oraclesinfo_payload) return(oraclesinfo_result['result']) def oracleslist_rpc(chain): oracleslist_payload = { "jsonrpc": "1.0", "id": "python", "method": "oracleslist", "params": []} oracleslist_result = post_rpc(def_credentials(chain), oracleslist_payload) return(oracleslist_result['result']) def oraclessubscribe_rpc(chain, oracletxid, publisher, amount): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [oracletxid, publisher, amount]} oraclessubscribe_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(oraclessubscribe_result['result']) def oraclesregister_rpc(chain, oracletxid, datafee): oraclesregister_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesregister", "params": [ oracletxid, str(datafee)]} oraclesregister_result = post_rpc(def_credentials(chain), oraclesregister_payload) return(oraclesregister_result['result']) def oraclessamples_rpc(chain, oracletxid, batonutxo, num): oraclessamples_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessamples", "params": [ oracletxid, batonutxo, str(num)]} oraclessamples_result = post_rpc(def_credentials(chain), oraclessamples_payload) return(oraclessamples_result['result']) def getlastsegidstakes_rpc(chain, depth): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [depth]} getlastsegidstakes_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(getlastsegidstakes_result['result'])
#!/usr/bin/env python3 #Credit to @Alright for the RPCs import re import os import requests import json import platform # define function that fetchs rpc creds from .conf def def_credentials(chain): operating_system = platform.system() if operating_system == 'Darwin': ac_dir = os.environ['HOME'] + '/Library/Application Support/Komodo' elif operating_system == 'Linux': ac_dir = os.environ['HOME'] + '/.komodo' elif operating_system == 'Win64': ac_dir = "dont have windows machine now to test" # define config file path if chain == 'KMD': coin_config_file = str(ac_dir + '/komodo.conf') else: coin_config_file = str(ac_dir + '/' + chain + '/' + chain + '.conf') #define rpc creds with open(coin_config_file, 'r') as f: #print("Reading config file for credentials:", coin_config_file) for line in f: l = line.rstrip() if re.search('rpcuser', l): rpcuser = l.replace('rpcuser=', '') elif re.search('rpcpassword', l): rpcpassword = l.replace('rpcpassword=', '') elif re.search('rpcport', l): rpcport = l.replace('rpcport=', '') return('http://' + rpcuser + ':' + rpcpassword + '@127.0.0.1:' + rpcport) # define function that posts json data def post_rpc(url, payload, auth=None): try: r = requests.post(url, data=json.dumps(payload), auth=auth) return(json.loads(r.text)) except Exception as e: raise Exception("Couldn't connect to " + url + ": ", e) # Return current -pubkey= def getpubkey_rpc(chain): getinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "getinfo", "params": []} getinfo_result = post_rpc(def_credentials(chain), getinfo_payload) return(getinfo_result['result']['pubkey']) # return latest batontxid from all publishers def get_latest_batontxids(chain, oracletxid): oraclesinfo_result = oraclesinfo_rpc(chain, oracletxid) latest_batontxids = {} # fill "latest_batontxids" dictionary with publisher:batontxid data for i in oraclesinfo_result['registered']: latest_batontxids[i['publisher']] = i['batontxid'] return(latest_batontxids) #VANILLA RPC def sendrawtx_rpc(chain, rawtx): sendrawtx_payload = { "jsonrpc": "1.0", "id": "python", "method": "sendrawtransaction", "params": [rawtx]} #rpcurl = def_credentials(chain) return(post_rpc(def_credentials(chain), sendrawtx_payload)) def signmessage_rpc(chain, address, message): signmessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "signmessage", "params": [ address, message ] } signmessage_result = post_rpc(def_credentials(chain), signmessage_payload) return(signmessage_result['result']) def verifymessage_rpc(chain, address, signature, message): verifymessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "verifymessage", "params": [ address, signature, message ] } verifymessage_result = post_rpc(def_credentials(chain), verifymessage_payload) return(verifymessage_result['result']) def kvsearch_rpc(chain, key): kvsearch_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvsearch", "params": [ key ] } kvsearch_result = post_rpc(def_credentials(chain), kvsearch_payload) return(kvsearch_result['result']) def kvupdate_rpc(chain, key, value, days, password): # create dynamic oraclessamples payload kvupdate_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvupdate", "params": [ key, value, str(days), password]} # make kvupdate rpc call kvupdate_result = post_rpc(def_credentials(chain), kvupdate_payload) return(kvupdate_result) def oraclesdata_rpc(chain, oracletxid, hexstr): oraclesdata_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesdata", "params": [ oracletxid, hexstr]} oraclesdata_result = post_rpc(def_credentials(chain), oraclesdata_payload) return(oraclesdata_result['result']) def oraclescreate_rpc(chain, name, description, oracle_type): oraclescreate_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclescreate", "params": [ name, description, oracle_type]} oraclescreate_result = post_rpc(def_credentials(chain), oraclescreate_payload) return(oraclescreate_result['result']) def oraclesinfo_rpc(chain, oracletxid): oraclesinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesinfo", "params": [oracletxid]} oraclesinfo_result = post_rpc(def_credentials(chain), oraclesinfo_payload) return(oraclesinfo_result['result']) def oracleslist_rpc(chain): oracleslist_payload = { "jsonrpc": "1.0", "id": "python", "method": "oracleslist", "params": []} oracleslist_result = post_rpc(def_credentials(chain), oracleslist_payload) return(oracleslist_result['result']) def oraclessubscribe_rpc(chain, oracletxid, publisher, amount): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [oracletxid, publisher, amount]} oraclessubscribe_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(oraclessubscribe_result['result']) def oraclesregister_rpc(chain, oracletxid, datafee): oraclesregister_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesregister", "params": [ oracletxid, str(datafee)]} oraclesregister_result = post_rpc(def_credentials(chain), oraclesregister_payload) return(oraclesregister_result['result']) def oraclessamples_rpc(chain, oracletxid, batonutxo, num): oraclessamples_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessamples", "params": [ oracletxid, batonutxo, str(num)]} oraclessamples_result = post_rpc(def_credentials(chain), oraclessamples_payload) return(oraclessamples_result['result']) def getlastsegidstakes_rpc(chain, depth): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [depth]} getlastsegidstakes_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(getlastsegidstakes_result['result'])
en
0.441511
#!/usr/bin/env python3 #Credit to @Alright for the RPCs # define function that fetchs rpc creds from .conf # define config file path #define rpc creds #print("Reading config file for credentials:", coin_config_file) # define function that posts json data # Return current -pubkey= # return latest batontxid from all publishers # fill "latest_batontxids" dictionary with publisher:batontxid data #VANILLA RPC #rpcurl = def_credentials(chain) # create dynamic oraclessamples payload # make kvupdate rpc call
2.527189
3
cwr/parser/decoder/dictionary.py
orenyodfat/CWR-DataApi
37
8780
# -*- coding: utf-8 -*- from cwr.acknowledgement import AcknowledgementRecord, MessageRecord from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, \ InterestedPartyForAgreementRecord from cwr.group import Group, GroupHeader, GroupTrailer from cwr.info import AdditionalRelatedInfoRecord from cwr.parser.decoder.common import Decoder from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, \ PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, \ NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, \ NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, \ NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord from cwr.transmission import Transmission, TransmissionTrailer, \ TransmissionHeader from cwr.work import RecordingDetailRecord, ComponentRecord, \ AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, \ InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, \ WorkRecord from cwr.file import CWRFile, FileTag from cwr.other import AVIKey, VISAN from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue """ Classes for transforming dictionaries into instances of the CWR model. There is a decoder for each of the model classes, and all of them expect a dictionary having at least one key for each field, having the same name as the field, which will refer to a valid value. As said, the values on the dictionary should be valid values, for example if an integer is expected, then the dictionary contains an integer. The values contained in the dictionary entries should not need to be parsed. These decoders are useful for handling JSON transmissions or Mongo databases. """ __author__ = '<NAME>' __license__ = 'MIT' __status__ = 'Development' class TransactionRecordDictionaryDecoder(Decoder): def __init__(self): super(TransactionRecordDictionaryDecoder, self).__init__() self._decoders = {} self._decoders['ACK'] = AcknowledgementDictionaryDecoder() self._decoders['AGR'] = AgreementDictionaryDecoder() self._decoders['TER'] = AgreementTerritoryDictionaryDecoder() self._decoders['ARI'] = AdditionalRelatedInformationDictionaryDecoder() self._decoders['ALT'] = AlternateTitleDictionaryDecoder() self._decoders['EWT'] = AuthoredWorkDictionaryDecoder() self._decoders['VER'] = AuthoredWorkDictionaryDecoder() self._decoders['COM'] = ComponentDictionaryDecoder() self._decoders['IPA'] = InterestedPartyForAgreementDictionaryDecoder() self._decoders['SPT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['SWT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['IND'] = InstrumentationDetailDictionaryDecoder() self._decoders['INS'] = InstrumentationSummaryDictionaryDecoder() self._decoders['MSG'] = MessageDictionaryDecoder() self._decoders['PER'] = PerformingArtistDictionaryDecoder() self._decoders['PWR'] = PublisherForWriterDictionaryDecoder() self._decoders['REC'] = RecordingDetailDictionaryDecoder() self._decoders['EXC'] = WorkDictionaryDecoder() self._decoders['ISW'] = WorkDictionaryDecoder() self._decoders['NWR'] = WorkDictionaryDecoder() self._decoders['REV'] = WorkDictionaryDecoder() self._decoders['ORN'] = WorkOriginDictionaryDecoder() self._decoders['SWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders[ 'NPA'] = NonRomanAlphabetAgreementPartyDictionaryDecoder() self._decoders['NOW'] = NonRomanAlphabetOtherWriterDictionaryDecoder() self._decoders[ 'NPR'] = NonRomanAlphabetPerformanceDataDictionaryDecoder() self._decoders['NPN'] = NonRomanAlphabetPublisherNameDictionaryDecoder() self._decoders['NAT'] = NonRomanAlphabetTitleDictionaryDecoder() self._decoders['NET'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NCT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NVT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NWN'] = NonRomanAlphabetWriterNameDictionaryDecoder() self._decoders['SPU'] = PublisherRecordDictionaryDecoder() self._decoders['OPU'] = PublisherRecordDictionaryDecoder() def decode(self, data): return self._decoders[data['record_type']].decode(data) class AcknowledgementDictionaryDecoder(Decoder): def __init__(self): super(AcknowledgementDictionaryDecoder, self).__init__() def decode(self, data): return AcknowledgementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], original_group_id=data[ 'original_group_id'], original_transaction_sequence_n=data[ 'original_transaction_sequence_n'], original_transaction_type=data[ 'original_transaction_type'], transaction_status=data[ 'transaction_status'], creation_date_time=data[ 'creation_date_time'], processing_date=data['processing_date'], creation_title=data['creation_title'], submitter_creation_n=data[ 'submitter_creation_n'], recipient_creation_n=data[ 'recipient_creation_n']) class AgreementDictionaryDecoder(Decoder): def __init__(self): super(AgreementDictionaryDecoder, self).__init__() def decode(self, data): return AgreementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], agreement_type=data['agreement_type'], agreement_start_date=data[ 'agreement_start_date'], prior_royalty_status=data[ 'prior_royalty_status'], post_term_collection_status=data[ 'post_term_collection_status'], number_of_works=data['number_of_works'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n'], international_standard_code=data[ 'international_standard_code'], sales_manufacture_clause=data[ 'sales_manufacture_clause'], agreement_end_date=data['agreement_end_date'], date_of_signature=data['date_of_signature'], retention_end_date=data['retention_end_date'], prior_royalty_start_date=data[ 'prior_royalty_start_date'], post_term_collection_end_date=data[ 'post_term_collection_end_date'], shares_change=data['shares_change'], advance_given=data['advance_given']) class AgreementTerritoryDictionaryDecoder(Decoder): def __init__(self): super(AgreementTerritoryDictionaryDecoder, self).__init__() def decode(self, data): return AgreementTerritoryRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], tis_numeric_code=data[ 'tis_numeric_code'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator']) class AdditionalRelatedInformationDictionaryDecoder(Decoder): def __init__(self): super(AdditionalRelatedInformationDictionaryDecoder, self).__init__() def decode(self, data): return AdditionalRelatedInfoRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], society_n=data['society_n'], type_of_right=data['type_of_right'], work_n=data['work_n'], subject_code=data['subject_code'], note=data['note']) class AlternateTitleDictionaryDecoder(Decoder): def __init__(self): super(AlternateTitleDictionaryDecoder, self).__init__() def decode(self, data): return AlternateTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], alternate_title=data['alternate_title'], title_type=data['title_type'], language_code=data['language_code']) class AuthoredWorkDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(AuthoredWorkDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data[ 'writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data[ 'writer_2_ipi_base_n']) return AuthoredWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_first_name=data[ 'writer_1_first_name'], writer_1_last_name=data['writer_1_last_name'], writer_2_first_name=data[ 'writer_2_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data[ 'writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data[ 'writer_2_ipi_name_n'], source=data['source'], language_code=data['language_code'], iswc=data['iswc']) class ComponentDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(ComponentDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data['writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data['writer_2_ipi_base_n']) return ComponentRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_last_name=data['writer_1_last_name'], writer_1_first_name=data['writer_1_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_2_first_name=data['writer_2_first_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data['writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data['writer_2_ipi_name_n'], iswc=data['iswc'], duration=data['duration']) class GroupHeaderDictionaryDecoder(Decoder): def __init__(self): super(GroupHeaderDictionaryDecoder, self).__init__() def decode(self, data): return GroupHeader(record_type=data['record_type'], group_id=data['group_id'], transaction_type=data['transaction_type'], version_number=data['version_number'], batch_request_id=data['batch_request_id']) class GroupTrailerDictionaryDecoder(Decoder): def __init__(self): super(GroupTrailerDictionaryDecoder, self).__init__() def decode(self, data): total_monetary_value = None if 'total_monetary_value' in data: total_monetary_value = data['total_monetary_value'] currency_indicator = None if 'currency_indicator' in data: currency_indicator = data['currency_indicator'] return GroupTrailer(record_type=data['record_type'], group_id=data['group_id'], transaction_count=data['transaction_count'], record_count=data['record_count'], currency_indicator=currency_indicator, total_monetary_value=total_monetary_value, ) class InterestedPartyForAgreementDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(InterestedPartyForAgreementDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) return InterestedPartyForAgreementRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_n=data['ip_n'], ip_last_name=data['ip_last_name'], agreement_role_code=data['agreement_role_code'], ip_writer_first_name=data['ip_writer_first_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, pr_society=data['pr_society'], pr_share=data['pr_share'], mr_society=data['mr_society'], mr_share=data['mr_share'], sr_society=data['sr_society'], sr_share=data['sr_share']) class IPTerritoryOfControlDictionaryDecoder(Decoder): def __init__(self): super(IPTerritoryOfControlDictionaryDecoder, self).__init__() def decode(self, data): record = IPTerritoryOfControlRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], ip_n=data['ip_n'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator'], tis_numeric_code=data[ 'tis_numeric_code'], sequence_n=data['sequence_n'], pr_collection_share=data[ 'pr_collection_share'], mr_collection_share=data[ 'mr_collection_share'], shares_change=data['shares_change']) if 'sr_collection_share' in data: record.sr_collection_share = data['sr_collection_share'] return record class InstrumentationDetailDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationDetailDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], instrument_code=data[ 'instrument_code'], number_players=data[ 'number_players']) class InstrumentationSummaryDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationSummaryDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationSummaryRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], number_voices=data['number_voices'], standard_instrumentation_type=data['standard_instrumentation_type'], instrumentation_description=data['instrumentation_description']) class MessageDictionaryDecoder(Decoder): def __init__(self): super(MessageDictionaryDecoder, self).__init__() def decode(self, data): return MessageRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], message_type=data['message_type'], message_text=data['message_text'], original_record_sequence_n=data[ 'original_record_sequence_n'], message_record_type=data['message_record_type'], message_level=data['message_level'], validation_n=data['validation_n']) class PerformingArtistDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PerformingArtistDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = None if 'performing_artist_ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['performing_artist_ipi_base_n']) performing_artist_first_name = None if 'performing_artist_first_name' in data: performing_artist_first_name = data['performing_artist_first_name'] performing_artist_ipi_name_n = None if 'performing_artist_ipi_name_n' in data: performing_artist_ipi_name_n = data['performing_artist_ipi_name_n'] return PerformingArtistRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], performing_artist_last_name=data[ 'performing_artist_last_name'], performing_artist_first_name=performing_artist_first_name, performing_artist_ipi_name_n=performing_artist_ipi_name_n, performing_artist_ipi_base_n=ipi_base) class PublisherForWriterDictionaryDecoder(Decoder): def __init__(self): super(PublisherForWriterDictionaryDecoder, self).__init__() def decode(self, data): publisher_name = None if 'publisher_name' in data: publisher_name = data['publisher_name'] return PublisherForWriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], publisher_ip_n=data['publisher_ip_n'], publisher_name=publisher_name, writer_ip_n=data['writer_ip_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n']) class RecordingDetailDictionaryDecoder(Decoder): def __init__(self): super(RecordingDetailDictionaryDecoder, self).__init__() def decode(self, data): media_type = None if 'media_type' in data: media_type = data['media_type'] return RecordingDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], first_release_date=data[ 'first_release_date'], first_release_duration=data[ 'first_release_duration'], first_album_title=data[ 'first_album_title'], first_album_label=data[ 'first_album_label'], first_release_catalog_n=data[ 'first_release_catalog_n'], ean=data['ean'], isrc=data['isrc'], recording_format=data['recording_format'], recording_technique=data[ 'recording_technique'], media_type=media_type) class FileDictionaryDecoder(Decoder): def __init__(self): super(FileDictionaryDecoder, self).__init__() self._tag_decoder = FileTagDictionaryDecoder() self._transmission_decoder = TransmissionDictionaryDecoder() def decode(self, data): tag = data['tag'] if isinstance(tag, dict): tag = self._tag_decoder.decode(tag) transmission = data['transmission'] if isinstance(transmission, dict): transmission = self._transmission_decoder.decode(transmission) return CWRFile(tag, transmission) class TransmissionDictionaryDecoder(Decoder): def __init__(self): super(TransmissionDictionaryDecoder, self).__init__() self._header_decoder = TransmissionHeaderDictionaryDecoder() self._trailer_decoder = TransmissionTrailerDictionaryDecoder() self._group_decoder = GroupDictionaryDecoder() def decode(self, data): header = data['header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) groups = [] if len(data['groups']) > 0: if isinstance(data['groups'][0], dict): for group in data['groups']: groups.append(self._group_decoder.decode(group)) else: groups = data['groups'] return Transmission(header, trailer, groups) class GroupDictionaryDecoder(Decoder): def __init__(self): super(GroupDictionaryDecoder, self).__init__() self._header_decoder = GroupHeaderDictionaryDecoder() self._trailer_decoder = GroupTrailerDictionaryDecoder() self._transaction_decoder = TransactionRecordDictionaryDecoder() def decode(self, data): header = data['group_header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['group_trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) transactions = [] if len(data['transactions']) > 0: if isinstance(data['transactions'][0][0], dict): for transaction in data['transactions']: transaction_records = [] for record in transaction: transaction_records.append( self._transaction_decoder.decode(record)) transactions.append(transaction_records) else: transactions = data['transactions'] return Group(header, trailer, transactions) class TransmissionHeaderDictionaryDecoder(Decoder): def __init__(self): super(TransmissionHeaderDictionaryDecoder, self).__init__() def decode(self, data): header = TransmissionHeader(record_type=data['record_type'], sender_id=data['sender_id'], sender_name=data['sender_name'], sender_type=data['sender_type'], creation_date_time=data[ 'creation_date_time'], transmission_date=data['transmission_date'], edi_standard=data['edi_standard']) if 'character_set' in data: header.character_set = data['character_set'] return header class TransmissionTrailerDictionaryDecoder(Decoder): def __init__(self): super(TransmissionTrailerDictionaryDecoder, self).__init__() def decode(self, data): return TransmissionTrailer(record_type=data['record_type'], group_count=data['group_count'], transaction_count=data['transaction_count'], record_count=data['record_count']) class WorkDictionaryDecoder(Decoder): def __init__(self): super(WorkDictionaryDecoder, self).__init__() def decode(self, data): catalogue_number = None if 'catalogue_number' in data: catalogue_number = data['catalogue_number'] exceptional_clause = None if 'exceptional_clause' in data: exceptional_clause = data['exceptional_clause'] opus_number = None if 'opus_number' in data: opus_number = data['opus_number'] priority_flag = None if 'priority_flag' in data: priority_flag = data['priority_flag'] return WorkRecord(record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_work_n=data['submitter_work_n'], title=data['title'], version_type=data['version_type'], musical_work_distribution_category=data[ 'musical_work_distribution_category'], date_publication_printed_edition=data[ 'date_publication_printed_edition'], text_music_relationship=data[ 'text_music_relationship'], language_code=data['language_code'], copyright_number=data['copyright_number'], copyright_date=data['copyright_date'], music_arrangement=data['music_arrangement'], lyric_adaptation=data['lyric_adaptation'], excerpt_type=data['excerpt_type'], composite_type=data['composite_type'], composite_component_count=data[ 'composite_component_count'], iswc=data['iswc'], work_type=data['work_type'], duration=data['duration'], catalogue_number=catalogue_number, opus_number=opus_number, contact_id=data['contact_id'], contact_name=data['contact_name'], recorded_indicator=data['recorded_indicator'], priority_flag=priority_flag, exceptional_clause=exceptional_clause, grand_rights_indicator=data['grand_rights_indicator']) class WorkOriginDictionaryDecoder(Decoder): def __init__(self): super(WorkOriginDictionaryDecoder, self).__init__() def decode(self, data): return WorkOriginRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], intended_purpose=data['intended_purpose'], production_title=data['production_title'], cd_identifier=data['cd_identifier'], cut_number=data['cut_number'], library=data['library'], bltvr=data['bltvr'], visan=data['visan'], production_n=data['production_n'], episode_title=data['episode_title'], episode_n=data['episode_n'], year_production=data['year_production'], audio_visual_key=data['audio_visual_key']) class WriterDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(WriterDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_n = self._ipi_base_decoder.decode(data['ipi_base_n']) return Writer(ip_n=data['ip_n'], personal_number=data['personal_number'], ipi_base_n=ipi_base_n, writer_first_name=data['writer_first_name'], writer_last_name=data['writer_last_name'], tax_id=data['tax_id'], ipi_name_n=data['ipi_name_n']) class WriterRecordDictionaryDecoder(Decoder): def __init__(self): super(WriterRecordDictionaryDecoder, self).__init__() self._writer_decoder = WriterDictionaryDecoder() def decode(self, data): writer = self._writer_decoder.decode(data['writer']) usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] return WriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer=writer, writer_designation=data['writer_designation'], work_for_hire=data['work_for_hire'], writer_unknown=data['writer_unknown'], reversionary=data['reversionary'], first_recording_refusal=data[ 'first_recording_refusal'], usa_license=usa_license, pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share']) class NonRomanAlphabetAgreementPartyDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetAgreementPartyDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetAgreementPartyRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_name=data['ip_name'], ip_writer_name=data['ip_writer_name'], ip_n=data['ip_n'], language_code=data['language_code']) class NonRomanAlphabetOtherWriterDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetOtherWriterDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetOtherWriterRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer_first_name=data['writer_first_name'], writer_name=data['writer_name'], position=data['position'], language_code=data['language_code']) class NonRomanAlphabetPerformanceDataDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(NonRomanAlphabetPerformanceDataDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode( data['performing_artist_ipi_base_n']) return NonRomanAlphabetPerformanceDataRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], performing_artist_first_name=data['performing_artist_first_name'], performing_artist_name=data['performing_artist_name'], performing_artist_ipi_name_n=data['performing_artist_ipi_name_n'], performing_artist_ipi_base_n=ipi_base, language_code=data['language_code'], performance_language=data['performance_language'], performance_dialect=data['performance_dialect']) class NonRomanAlphabetPublisherNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetPublisherNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetPublisherNameRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher_sequence_n=data['publisher_sequence_n'], ip_n=data['ip_n'], publisher_name=data['publisher_name'], language_code=data['language_code']) class NonRomanAlphabetTitleDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetTitleDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], title_type=data['title_type'], language_code=data['language_code']) class NonRomanAlphabetWorkDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWorkDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], language_code=data['language_code']) class NonRomanAlphabetWriterNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWriterNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWriterNameRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], writer_first_name=data[ 'writer_first_name'], writer_last_name=data[ 'writer_last_name'], ip_n=data['ip_n'], language_code=data[ 'language_code']) class PublisherDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PublisherDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): if 'ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) else: ipi_base = None return Publisher(ip_n=data['ip_n'], publisher_name=data['publisher_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, tax_id=data['tax_id']) class PublisherRecordDictionaryDecoder(Decoder): def __init__(self): super(PublisherRecordDictionaryDecoder, self).__init__() self._publisher_decoder = PublisherDictionaryDecoder() def decode(self, data): publisher = self._publisher_decoder.decode(data['publisher']) special_agreements = None if 'special_agreements' in data: special_agreements = data['special_agreements'] first_recording_refusal = None if 'first_recording_refusal' in data: first_recording_refusal = data['first_recording_refusal'] agreement_type = None if 'agreement_type' in data: agreement_type = data['agreement_type'] usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] international_standard_code = None if 'international_standard_code' in data: international_standard_code = data['international_standard_code'] society_assigned_agreement_n = None if 'society_assigned_agreement_n' in data: society_assigned_agreement_n = data['society_assigned_agreement_n'] return PublisherRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher=publisher, publisher_sequence_n=data['publisher_sequence_n'], submitter_agreement_n=data['submitter_agreement_n'], publisher_type=data['publisher_type'], publisher_unknown=data['publisher_unknown'], pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share'], special_agreements=special_agreements, first_recording_refusal=first_recording_refusal, international_standard_code=international_standard_code, society_assigned_agreement_n=society_assigned_agreement_n, agreement_type=agreement_type, usa_license=usa_license) class TableValueDictionaryDecoder(Decoder): def __init__(self): super(TableValueDictionaryDecoder, self).__init__() def decode(self, data): return TableValue(code=data['code'], name=data['name'], description=data['description']) class MediaTypeValueDictionaryDecoder(Decoder): def __init__(self): super(MediaTypeValueDictionaryDecoder, self).__init__() def decode(self, data): return MediaTypeValue(code=data['code'], name=data['name'], media_type=data['media_type'], duration_max=data['duration_max'], works_max=data['works_max'], fragments_max=data['fragments_max']) class InstrumentValueDictionaryDecoder(Decoder): def __init__(self): super(InstrumentValueDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentValue(code=data['code'], name=data['name'], family=data['family'], description=data['description']) class FileTagDictionaryDecoder(Decoder): def __init__(self): super(FileTagDictionaryDecoder, self).__init__() def decode(self, data): return FileTag(data['year'], data['sequence_n'], data['sender'], data['receiver'], data['version']) class AVIKeyDictionaryDecoder(Decoder): def __init__(self): super(AVIKeyDictionaryDecoder, self).__init__() def decode(self, data): return AVIKey(data['society_code'], data['av_number']) class IPIBaseDictionaryDecoder(Decoder): def __init__(self): super(IPIBaseDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class ISWCDictionaryDecoder(Decoder): def __init__(self): super(ISWCDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class VISANDictionaryDecoder(Decoder): def __init__(self): super(VISANDictionaryDecoder, self).__init__() def decode(self, data): return data
# -*- coding: utf-8 -*- from cwr.acknowledgement import AcknowledgementRecord, MessageRecord from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, \ InterestedPartyForAgreementRecord from cwr.group import Group, GroupHeader, GroupTrailer from cwr.info import AdditionalRelatedInfoRecord from cwr.parser.decoder.common import Decoder from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, \ PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, \ NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, \ NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, \ NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord from cwr.transmission import Transmission, TransmissionTrailer, \ TransmissionHeader from cwr.work import RecordingDetailRecord, ComponentRecord, \ AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, \ InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, \ WorkRecord from cwr.file import CWRFile, FileTag from cwr.other import AVIKey, VISAN from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue """ Classes for transforming dictionaries into instances of the CWR model. There is a decoder for each of the model classes, and all of them expect a dictionary having at least one key for each field, having the same name as the field, which will refer to a valid value. As said, the values on the dictionary should be valid values, for example if an integer is expected, then the dictionary contains an integer. The values contained in the dictionary entries should not need to be parsed. These decoders are useful for handling JSON transmissions or Mongo databases. """ __author__ = '<NAME>' __license__ = 'MIT' __status__ = 'Development' class TransactionRecordDictionaryDecoder(Decoder): def __init__(self): super(TransactionRecordDictionaryDecoder, self).__init__() self._decoders = {} self._decoders['ACK'] = AcknowledgementDictionaryDecoder() self._decoders['AGR'] = AgreementDictionaryDecoder() self._decoders['TER'] = AgreementTerritoryDictionaryDecoder() self._decoders['ARI'] = AdditionalRelatedInformationDictionaryDecoder() self._decoders['ALT'] = AlternateTitleDictionaryDecoder() self._decoders['EWT'] = AuthoredWorkDictionaryDecoder() self._decoders['VER'] = AuthoredWorkDictionaryDecoder() self._decoders['COM'] = ComponentDictionaryDecoder() self._decoders['IPA'] = InterestedPartyForAgreementDictionaryDecoder() self._decoders['SPT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['SWT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['IND'] = InstrumentationDetailDictionaryDecoder() self._decoders['INS'] = InstrumentationSummaryDictionaryDecoder() self._decoders['MSG'] = MessageDictionaryDecoder() self._decoders['PER'] = PerformingArtistDictionaryDecoder() self._decoders['PWR'] = PublisherForWriterDictionaryDecoder() self._decoders['REC'] = RecordingDetailDictionaryDecoder() self._decoders['EXC'] = WorkDictionaryDecoder() self._decoders['ISW'] = WorkDictionaryDecoder() self._decoders['NWR'] = WorkDictionaryDecoder() self._decoders['REV'] = WorkDictionaryDecoder() self._decoders['ORN'] = WorkOriginDictionaryDecoder() self._decoders['SWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders[ 'NPA'] = NonRomanAlphabetAgreementPartyDictionaryDecoder() self._decoders['NOW'] = NonRomanAlphabetOtherWriterDictionaryDecoder() self._decoders[ 'NPR'] = NonRomanAlphabetPerformanceDataDictionaryDecoder() self._decoders['NPN'] = NonRomanAlphabetPublisherNameDictionaryDecoder() self._decoders['NAT'] = NonRomanAlphabetTitleDictionaryDecoder() self._decoders['NET'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NCT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NVT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NWN'] = NonRomanAlphabetWriterNameDictionaryDecoder() self._decoders['SPU'] = PublisherRecordDictionaryDecoder() self._decoders['OPU'] = PublisherRecordDictionaryDecoder() def decode(self, data): return self._decoders[data['record_type']].decode(data) class AcknowledgementDictionaryDecoder(Decoder): def __init__(self): super(AcknowledgementDictionaryDecoder, self).__init__() def decode(self, data): return AcknowledgementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], original_group_id=data[ 'original_group_id'], original_transaction_sequence_n=data[ 'original_transaction_sequence_n'], original_transaction_type=data[ 'original_transaction_type'], transaction_status=data[ 'transaction_status'], creation_date_time=data[ 'creation_date_time'], processing_date=data['processing_date'], creation_title=data['creation_title'], submitter_creation_n=data[ 'submitter_creation_n'], recipient_creation_n=data[ 'recipient_creation_n']) class AgreementDictionaryDecoder(Decoder): def __init__(self): super(AgreementDictionaryDecoder, self).__init__() def decode(self, data): return AgreementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], agreement_type=data['agreement_type'], agreement_start_date=data[ 'agreement_start_date'], prior_royalty_status=data[ 'prior_royalty_status'], post_term_collection_status=data[ 'post_term_collection_status'], number_of_works=data['number_of_works'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n'], international_standard_code=data[ 'international_standard_code'], sales_manufacture_clause=data[ 'sales_manufacture_clause'], agreement_end_date=data['agreement_end_date'], date_of_signature=data['date_of_signature'], retention_end_date=data['retention_end_date'], prior_royalty_start_date=data[ 'prior_royalty_start_date'], post_term_collection_end_date=data[ 'post_term_collection_end_date'], shares_change=data['shares_change'], advance_given=data['advance_given']) class AgreementTerritoryDictionaryDecoder(Decoder): def __init__(self): super(AgreementTerritoryDictionaryDecoder, self).__init__() def decode(self, data): return AgreementTerritoryRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], tis_numeric_code=data[ 'tis_numeric_code'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator']) class AdditionalRelatedInformationDictionaryDecoder(Decoder): def __init__(self): super(AdditionalRelatedInformationDictionaryDecoder, self).__init__() def decode(self, data): return AdditionalRelatedInfoRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], society_n=data['society_n'], type_of_right=data['type_of_right'], work_n=data['work_n'], subject_code=data['subject_code'], note=data['note']) class AlternateTitleDictionaryDecoder(Decoder): def __init__(self): super(AlternateTitleDictionaryDecoder, self).__init__() def decode(self, data): return AlternateTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], alternate_title=data['alternate_title'], title_type=data['title_type'], language_code=data['language_code']) class AuthoredWorkDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(AuthoredWorkDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data[ 'writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data[ 'writer_2_ipi_base_n']) return AuthoredWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_first_name=data[ 'writer_1_first_name'], writer_1_last_name=data['writer_1_last_name'], writer_2_first_name=data[ 'writer_2_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data[ 'writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data[ 'writer_2_ipi_name_n'], source=data['source'], language_code=data['language_code'], iswc=data['iswc']) class ComponentDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(ComponentDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data['writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data['writer_2_ipi_base_n']) return ComponentRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_last_name=data['writer_1_last_name'], writer_1_first_name=data['writer_1_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_2_first_name=data['writer_2_first_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data['writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data['writer_2_ipi_name_n'], iswc=data['iswc'], duration=data['duration']) class GroupHeaderDictionaryDecoder(Decoder): def __init__(self): super(GroupHeaderDictionaryDecoder, self).__init__() def decode(self, data): return GroupHeader(record_type=data['record_type'], group_id=data['group_id'], transaction_type=data['transaction_type'], version_number=data['version_number'], batch_request_id=data['batch_request_id']) class GroupTrailerDictionaryDecoder(Decoder): def __init__(self): super(GroupTrailerDictionaryDecoder, self).__init__() def decode(self, data): total_monetary_value = None if 'total_monetary_value' in data: total_monetary_value = data['total_monetary_value'] currency_indicator = None if 'currency_indicator' in data: currency_indicator = data['currency_indicator'] return GroupTrailer(record_type=data['record_type'], group_id=data['group_id'], transaction_count=data['transaction_count'], record_count=data['record_count'], currency_indicator=currency_indicator, total_monetary_value=total_monetary_value, ) class InterestedPartyForAgreementDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(InterestedPartyForAgreementDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) return InterestedPartyForAgreementRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_n=data['ip_n'], ip_last_name=data['ip_last_name'], agreement_role_code=data['agreement_role_code'], ip_writer_first_name=data['ip_writer_first_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, pr_society=data['pr_society'], pr_share=data['pr_share'], mr_society=data['mr_society'], mr_share=data['mr_share'], sr_society=data['sr_society'], sr_share=data['sr_share']) class IPTerritoryOfControlDictionaryDecoder(Decoder): def __init__(self): super(IPTerritoryOfControlDictionaryDecoder, self).__init__() def decode(self, data): record = IPTerritoryOfControlRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], ip_n=data['ip_n'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator'], tis_numeric_code=data[ 'tis_numeric_code'], sequence_n=data['sequence_n'], pr_collection_share=data[ 'pr_collection_share'], mr_collection_share=data[ 'mr_collection_share'], shares_change=data['shares_change']) if 'sr_collection_share' in data: record.sr_collection_share = data['sr_collection_share'] return record class InstrumentationDetailDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationDetailDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], instrument_code=data[ 'instrument_code'], number_players=data[ 'number_players']) class InstrumentationSummaryDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationSummaryDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationSummaryRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], number_voices=data['number_voices'], standard_instrumentation_type=data['standard_instrumentation_type'], instrumentation_description=data['instrumentation_description']) class MessageDictionaryDecoder(Decoder): def __init__(self): super(MessageDictionaryDecoder, self).__init__() def decode(self, data): return MessageRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], message_type=data['message_type'], message_text=data['message_text'], original_record_sequence_n=data[ 'original_record_sequence_n'], message_record_type=data['message_record_type'], message_level=data['message_level'], validation_n=data['validation_n']) class PerformingArtistDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PerformingArtistDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = None if 'performing_artist_ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['performing_artist_ipi_base_n']) performing_artist_first_name = None if 'performing_artist_first_name' in data: performing_artist_first_name = data['performing_artist_first_name'] performing_artist_ipi_name_n = None if 'performing_artist_ipi_name_n' in data: performing_artist_ipi_name_n = data['performing_artist_ipi_name_n'] return PerformingArtistRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], performing_artist_last_name=data[ 'performing_artist_last_name'], performing_artist_first_name=performing_artist_first_name, performing_artist_ipi_name_n=performing_artist_ipi_name_n, performing_artist_ipi_base_n=ipi_base) class PublisherForWriterDictionaryDecoder(Decoder): def __init__(self): super(PublisherForWriterDictionaryDecoder, self).__init__() def decode(self, data): publisher_name = None if 'publisher_name' in data: publisher_name = data['publisher_name'] return PublisherForWriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], publisher_ip_n=data['publisher_ip_n'], publisher_name=publisher_name, writer_ip_n=data['writer_ip_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n']) class RecordingDetailDictionaryDecoder(Decoder): def __init__(self): super(RecordingDetailDictionaryDecoder, self).__init__() def decode(self, data): media_type = None if 'media_type' in data: media_type = data['media_type'] return RecordingDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], first_release_date=data[ 'first_release_date'], first_release_duration=data[ 'first_release_duration'], first_album_title=data[ 'first_album_title'], first_album_label=data[ 'first_album_label'], first_release_catalog_n=data[ 'first_release_catalog_n'], ean=data['ean'], isrc=data['isrc'], recording_format=data['recording_format'], recording_technique=data[ 'recording_technique'], media_type=media_type) class FileDictionaryDecoder(Decoder): def __init__(self): super(FileDictionaryDecoder, self).__init__() self._tag_decoder = FileTagDictionaryDecoder() self._transmission_decoder = TransmissionDictionaryDecoder() def decode(self, data): tag = data['tag'] if isinstance(tag, dict): tag = self._tag_decoder.decode(tag) transmission = data['transmission'] if isinstance(transmission, dict): transmission = self._transmission_decoder.decode(transmission) return CWRFile(tag, transmission) class TransmissionDictionaryDecoder(Decoder): def __init__(self): super(TransmissionDictionaryDecoder, self).__init__() self._header_decoder = TransmissionHeaderDictionaryDecoder() self._trailer_decoder = TransmissionTrailerDictionaryDecoder() self._group_decoder = GroupDictionaryDecoder() def decode(self, data): header = data['header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) groups = [] if len(data['groups']) > 0: if isinstance(data['groups'][0], dict): for group in data['groups']: groups.append(self._group_decoder.decode(group)) else: groups = data['groups'] return Transmission(header, trailer, groups) class GroupDictionaryDecoder(Decoder): def __init__(self): super(GroupDictionaryDecoder, self).__init__() self._header_decoder = GroupHeaderDictionaryDecoder() self._trailer_decoder = GroupTrailerDictionaryDecoder() self._transaction_decoder = TransactionRecordDictionaryDecoder() def decode(self, data): header = data['group_header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['group_trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) transactions = [] if len(data['transactions']) > 0: if isinstance(data['transactions'][0][0], dict): for transaction in data['transactions']: transaction_records = [] for record in transaction: transaction_records.append( self._transaction_decoder.decode(record)) transactions.append(transaction_records) else: transactions = data['transactions'] return Group(header, trailer, transactions) class TransmissionHeaderDictionaryDecoder(Decoder): def __init__(self): super(TransmissionHeaderDictionaryDecoder, self).__init__() def decode(self, data): header = TransmissionHeader(record_type=data['record_type'], sender_id=data['sender_id'], sender_name=data['sender_name'], sender_type=data['sender_type'], creation_date_time=data[ 'creation_date_time'], transmission_date=data['transmission_date'], edi_standard=data['edi_standard']) if 'character_set' in data: header.character_set = data['character_set'] return header class TransmissionTrailerDictionaryDecoder(Decoder): def __init__(self): super(TransmissionTrailerDictionaryDecoder, self).__init__() def decode(self, data): return TransmissionTrailer(record_type=data['record_type'], group_count=data['group_count'], transaction_count=data['transaction_count'], record_count=data['record_count']) class WorkDictionaryDecoder(Decoder): def __init__(self): super(WorkDictionaryDecoder, self).__init__() def decode(self, data): catalogue_number = None if 'catalogue_number' in data: catalogue_number = data['catalogue_number'] exceptional_clause = None if 'exceptional_clause' in data: exceptional_clause = data['exceptional_clause'] opus_number = None if 'opus_number' in data: opus_number = data['opus_number'] priority_flag = None if 'priority_flag' in data: priority_flag = data['priority_flag'] return WorkRecord(record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_work_n=data['submitter_work_n'], title=data['title'], version_type=data['version_type'], musical_work_distribution_category=data[ 'musical_work_distribution_category'], date_publication_printed_edition=data[ 'date_publication_printed_edition'], text_music_relationship=data[ 'text_music_relationship'], language_code=data['language_code'], copyright_number=data['copyright_number'], copyright_date=data['copyright_date'], music_arrangement=data['music_arrangement'], lyric_adaptation=data['lyric_adaptation'], excerpt_type=data['excerpt_type'], composite_type=data['composite_type'], composite_component_count=data[ 'composite_component_count'], iswc=data['iswc'], work_type=data['work_type'], duration=data['duration'], catalogue_number=catalogue_number, opus_number=opus_number, contact_id=data['contact_id'], contact_name=data['contact_name'], recorded_indicator=data['recorded_indicator'], priority_flag=priority_flag, exceptional_clause=exceptional_clause, grand_rights_indicator=data['grand_rights_indicator']) class WorkOriginDictionaryDecoder(Decoder): def __init__(self): super(WorkOriginDictionaryDecoder, self).__init__() def decode(self, data): return WorkOriginRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], intended_purpose=data['intended_purpose'], production_title=data['production_title'], cd_identifier=data['cd_identifier'], cut_number=data['cut_number'], library=data['library'], bltvr=data['bltvr'], visan=data['visan'], production_n=data['production_n'], episode_title=data['episode_title'], episode_n=data['episode_n'], year_production=data['year_production'], audio_visual_key=data['audio_visual_key']) class WriterDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(WriterDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_n = self._ipi_base_decoder.decode(data['ipi_base_n']) return Writer(ip_n=data['ip_n'], personal_number=data['personal_number'], ipi_base_n=ipi_base_n, writer_first_name=data['writer_first_name'], writer_last_name=data['writer_last_name'], tax_id=data['tax_id'], ipi_name_n=data['ipi_name_n']) class WriterRecordDictionaryDecoder(Decoder): def __init__(self): super(WriterRecordDictionaryDecoder, self).__init__() self._writer_decoder = WriterDictionaryDecoder() def decode(self, data): writer = self._writer_decoder.decode(data['writer']) usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] return WriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer=writer, writer_designation=data['writer_designation'], work_for_hire=data['work_for_hire'], writer_unknown=data['writer_unknown'], reversionary=data['reversionary'], first_recording_refusal=data[ 'first_recording_refusal'], usa_license=usa_license, pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share']) class NonRomanAlphabetAgreementPartyDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetAgreementPartyDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetAgreementPartyRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_name=data['ip_name'], ip_writer_name=data['ip_writer_name'], ip_n=data['ip_n'], language_code=data['language_code']) class NonRomanAlphabetOtherWriterDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetOtherWriterDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetOtherWriterRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer_first_name=data['writer_first_name'], writer_name=data['writer_name'], position=data['position'], language_code=data['language_code']) class NonRomanAlphabetPerformanceDataDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(NonRomanAlphabetPerformanceDataDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode( data['performing_artist_ipi_base_n']) return NonRomanAlphabetPerformanceDataRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], performing_artist_first_name=data['performing_artist_first_name'], performing_artist_name=data['performing_artist_name'], performing_artist_ipi_name_n=data['performing_artist_ipi_name_n'], performing_artist_ipi_base_n=ipi_base, language_code=data['language_code'], performance_language=data['performance_language'], performance_dialect=data['performance_dialect']) class NonRomanAlphabetPublisherNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetPublisherNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetPublisherNameRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher_sequence_n=data['publisher_sequence_n'], ip_n=data['ip_n'], publisher_name=data['publisher_name'], language_code=data['language_code']) class NonRomanAlphabetTitleDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetTitleDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], title_type=data['title_type'], language_code=data['language_code']) class NonRomanAlphabetWorkDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWorkDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], language_code=data['language_code']) class NonRomanAlphabetWriterNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWriterNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWriterNameRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], writer_first_name=data[ 'writer_first_name'], writer_last_name=data[ 'writer_last_name'], ip_n=data['ip_n'], language_code=data[ 'language_code']) class PublisherDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PublisherDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): if 'ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) else: ipi_base = None return Publisher(ip_n=data['ip_n'], publisher_name=data['publisher_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, tax_id=data['tax_id']) class PublisherRecordDictionaryDecoder(Decoder): def __init__(self): super(PublisherRecordDictionaryDecoder, self).__init__() self._publisher_decoder = PublisherDictionaryDecoder() def decode(self, data): publisher = self._publisher_decoder.decode(data['publisher']) special_agreements = None if 'special_agreements' in data: special_agreements = data['special_agreements'] first_recording_refusal = None if 'first_recording_refusal' in data: first_recording_refusal = data['first_recording_refusal'] agreement_type = None if 'agreement_type' in data: agreement_type = data['agreement_type'] usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] international_standard_code = None if 'international_standard_code' in data: international_standard_code = data['international_standard_code'] society_assigned_agreement_n = None if 'society_assigned_agreement_n' in data: society_assigned_agreement_n = data['society_assigned_agreement_n'] return PublisherRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher=publisher, publisher_sequence_n=data['publisher_sequence_n'], submitter_agreement_n=data['submitter_agreement_n'], publisher_type=data['publisher_type'], publisher_unknown=data['publisher_unknown'], pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share'], special_agreements=special_agreements, first_recording_refusal=first_recording_refusal, international_standard_code=international_standard_code, society_assigned_agreement_n=society_assigned_agreement_n, agreement_type=agreement_type, usa_license=usa_license) class TableValueDictionaryDecoder(Decoder): def __init__(self): super(TableValueDictionaryDecoder, self).__init__() def decode(self, data): return TableValue(code=data['code'], name=data['name'], description=data['description']) class MediaTypeValueDictionaryDecoder(Decoder): def __init__(self): super(MediaTypeValueDictionaryDecoder, self).__init__() def decode(self, data): return MediaTypeValue(code=data['code'], name=data['name'], media_type=data['media_type'], duration_max=data['duration_max'], works_max=data['works_max'], fragments_max=data['fragments_max']) class InstrumentValueDictionaryDecoder(Decoder): def __init__(self): super(InstrumentValueDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentValue(code=data['code'], name=data['name'], family=data['family'], description=data['description']) class FileTagDictionaryDecoder(Decoder): def __init__(self): super(FileTagDictionaryDecoder, self).__init__() def decode(self, data): return FileTag(data['year'], data['sequence_n'], data['sender'], data['receiver'], data['version']) class AVIKeyDictionaryDecoder(Decoder): def __init__(self): super(AVIKeyDictionaryDecoder, self).__init__() def decode(self, data): return AVIKey(data['society_code'], data['av_number']) class IPIBaseDictionaryDecoder(Decoder): def __init__(self): super(IPIBaseDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class ISWCDictionaryDecoder(Decoder): def __init__(self): super(ISWCDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class VISANDictionaryDecoder(Decoder): def __init__(self): super(VISANDictionaryDecoder, self).__init__() def decode(self, data): return data
en
0.864843
# -*- coding: utf-8 -*- Classes for transforming dictionaries into instances of the CWR model. There is a decoder for each of the model classes, and all of them expect a dictionary having at least one key for each field, having the same name as the field, which will refer to a valid value. As said, the values on the dictionary should be valid values, for example if an integer is expected, then the dictionary contains an integer. The values contained in the dictionary entries should not need to be parsed. These decoders are useful for handling JSON transmissions or Mongo databases.
1.797038
2
prebuilt/twrp_fonts.py
imranpopz/android_bootable_recovery-1
95
8781
<gh_stars>10-100 #!/usr/bin/env python # -*- coding: utf8 -*- import codecs,os,gzip,ctypes,ctypes.util,sys from struct import * from PIL import Image, ImageDraw, ImageFont # ====== Python script to convert TrueTypeFonts to TWRP's .dat format ====== # This script was originally made by https://github.com/suky for his chinese version of TWRP # and then translated to English by feilplane at #twrp of irc.freenode.net. # However, it was not compatible with vanilla TWRP, so https://github.com/Tasssadar rewrote # most of it and it now has very little in common with the original script. class Reference(): def __init__(self, val): self.__value = val def get(self): return self.__value def set(self, val): self.__value = val quiet = Reference(False) def log(text): if not quiet.get(): sys.stdout.write(text) def write_data(f, width, height, offsets, data): f.write(pack("<I", width)) f.write(pack("<I", height)) for off in offsets: f.write(pack("<I", off)) f.write(data) if __name__ == "__main__": fontsize = Reference(20) out_fname = Reference("font.dat") voffset = Reference(None) padding = Reference(0) font_fname = Reference(None) preview = Reference(None) arg_parser = [ ["-s", "--size=", fontsize, int], ["-o", "--output=", out_fname, str], ["-p", "--preview=", preview, str], [None, "--padding=", padding, int], ["-q", "--quiet", quiet, None], [None, "--voffset=", voffset, int] ] argv = sys.argv argc = len(argv) i = 1 while i < argc: arg = argv[i] arg_next = argv[i+1] if i+1 < argc else None if arg == "--help" or arg == "-h": print ("This script converts TrueTypeFonts to .dat file for TWRP recovery.\n\n" "Usage: %s [SWITCHES] [TRUETYPE FILE]\n\n" " -h, --help - print help\n" " -o, --output=[FILE] - output file or '-' for stdout (default: font.dat)\n" " -p, --preview=[FILE] - generate font preview to png file\n" " --padding=[PIXELS] - horizontal padding around each character (default: 0)\n" " -q, --quiet - Do not print any output\n" " -s, --size=[SIZE IN PIXELS] - specify font size in points (default: 20)\n" " --voffset=[PIXELS] - vertical offset (default: font size*0.25)\n\n" "Example:\n" " %s -s 40 -o ComicSans_40.dat -p preview.png ComicSans.ttf\n") % ( sys.argv[0], sys.argv[0] ) exit(0) found = False for p in arg_parser: if p[0] and arg == p[0] and (arg_next or not p[3]): if p[3]: p[2].set(p[3](arg_next)) else: p[2].set(True) i += 1 found = True break elif p[1] and arg.startswith(p[1]): if p[3]: p[2].set(p[3](arg[len(p[1]):])) else: p[2].set(True) found = True break if not found: font_fname.set(arg) i += 1 if not voffset.get(): voffset.set(int(fontsize.get()*0.25)) if out_fname.get() == "-": quiet.set(True) log("Loading font %s...\n" % font_fname.get()) font = ImageFont.truetype(font_fname.get(), fontsize.get(), 0, "utf-32be") cwidth = 0 cheight = font.getsize('A')[1] offsets = [] renders = [] data = bytes() # temp Image and ImageDraw to get access to textsize res = Image.new('L', (1, 1), 0) res_draw = ImageDraw.Draw(res) # Measure each character and render it to separate Image log("Rendering characters...\n") for i in range(32, 128): w, h = res_draw.textsize(chr(i), font) w += padding.get()*2 offsets.append(cwidth) cwidth += w if h > cheight: cheight = h ichr = Image.new('L', (w, cheight*2)) ichr_draw = ImageDraw.Draw(ichr) ichr_draw.text((padding.get(), 0), chr(i), 255, font) renders.append(ichr) # Twice the height to account for under-the-baseline characters cheight *= 2 # Create the result bitmap log("Creating result bitmap...\n") res = Image.new('L', (cwidth, cheight), 0) res_draw = ImageDraw.Draw(res) # Paste all characters into result bitmap for i in range(len(renders)): res.paste(renders[i], (offsets[i], 0)) # uncomment to draw lines separating each character (for debug) #res_draw.rectangle([offsets[i], 0, offsets[i], cheight], outline="blue") # crop the blank areas on top and bottom (_, start_y, _, end_y) = res.getbbox() res = res.crop((0, start_y, cwidth, end_y)) cheight = (end_y - start_y) + voffset.get() new_res = Image.new('L', (cwidth, cheight)) new_res.paste(res, (0, voffset.get())) res = new_res # save the preview if preview.get(): log("Saving preview to %s...\n" % preview.get()) res.save(preview.get()) # Pack the data. # The "data" is a B/W bitmap with all 96 characters next to each other # on one line. It is as wide as all the characters combined and as # high as the tallest character, plus padding. # Each byte contains info about eight pixels, starting from # highest to lowest bit: # bits: | 7 6 5 4 3 2 1 0 | 15 14 13 12 11 10 9 8 | ... # pixels: | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | ... log("Packing data...\n") bit = 0 bit_itr = 0 for c in res.tostring(): # FIXME: How to handle antialiasing? # if c != '\x00': # In Python3, c is int, in Python2, c is string. Because of reasons. try: fill = (ord(c) >= 127) except TypeError: fill = (c >= 127) if fill: bit |= (1 << (7-bit_itr)) bit_itr += 1 if bit_itr >= 8: data += pack("<B", bit) bit_itr = 0 bit = 0 # Write them to the file. # Format: # 000: width # 004: height # 008: offsets of each characters (96*uint32) # 392: data as described above log("Writing to %s...\n" % out_fname.get()) if out_fname.get() == "-": write_data(sys.stdout, cwidth, cheight, offsets, data) else: with open(out_fname.get(), 'wb') as f: write_data(f, cwidth, cheight, offsets, data) exit(0)
#!/usr/bin/env python # -*- coding: utf8 -*- import codecs,os,gzip,ctypes,ctypes.util,sys from struct import * from PIL import Image, ImageDraw, ImageFont # ====== Python script to convert TrueTypeFonts to TWRP's .dat format ====== # This script was originally made by https://github.com/suky for his chinese version of TWRP # and then translated to English by feilplane at #twrp of irc.freenode.net. # However, it was not compatible with vanilla TWRP, so https://github.com/Tasssadar rewrote # most of it and it now has very little in common with the original script. class Reference(): def __init__(self, val): self.__value = val def get(self): return self.__value def set(self, val): self.__value = val quiet = Reference(False) def log(text): if not quiet.get(): sys.stdout.write(text) def write_data(f, width, height, offsets, data): f.write(pack("<I", width)) f.write(pack("<I", height)) for off in offsets: f.write(pack("<I", off)) f.write(data) if __name__ == "__main__": fontsize = Reference(20) out_fname = Reference("font.dat") voffset = Reference(None) padding = Reference(0) font_fname = Reference(None) preview = Reference(None) arg_parser = [ ["-s", "--size=", fontsize, int], ["-o", "--output=", out_fname, str], ["-p", "--preview=", preview, str], [None, "--padding=", padding, int], ["-q", "--quiet", quiet, None], [None, "--voffset=", voffset, int] ] argv = sys.argv argc = len(argv) i = 1 while i < argc: arg = argv[i] arg_next = argv[i+1] if i+1 < argc else None if arg == "--help" or arg == "-h": print ("This script converts TrueTypeFonts to .dat file for TWRP recovery.\n\n" "Usage: %s [SWITCHES] [TRUETYPE FILE]\n\n" " -h, --help - print help\n" " -o, --output=[FILE] - output file or '-' for stdout (default: font.dat)\n" " -p, --preview=[FILE] - generate font preview to png file\n" " --padding=[PIXELS] - horizontal padding around each character (default: 0)\n" " -q, --quiet - Do not print any output\n" " -s, --size=[SIZE IN PIXELS] - specify font size in points (default: 20)\n" " --voffset=[PIXELS] - vertical offset (default: font size*0.25)\n\n" "Example:\n" " %s -s 40 -o ComicSans_40.dat -p preview.png ComicSans.ttf\n") % ( sys.argv[0], sys.argv[0] ) exit(0) found = False for p in arg_parser: if p[0] and arg == p[0] and (arg_next or not p[3]): if p[3]: p[2].set(p[3](arg_next)) else: p[2].set(True) i += 1 found = True break elif p[1] and arg.startswith(p[1]): if p[3]: p[2].set(p[3](arg[len(p[1]):])) else: p[2].set(True) found = True break if not found: font_fname.set(arg) i += 1 if not voffset.get(): voffset.set(int(fontsize.get()*0.25)) if out_fname.get() == "-": quiet.set(True) log("Loading font %s...\n" % font_fname.get()) font = ImageFont.truetype(font_fname.get(), fontsize.get(), 0, "utf-32be") cwidth = 0 cheight = font.getsize('A')[1] offsets = [] renders = [] data = bytes() # temp Image and ImageDraw to get access to textsize res = Image.new('L', (1, 1), 0) res_draw = ImageDraw.Draw(res) # Measure each character and render it to separate Image log("Rendering characters...\n") for i in range(32, 128): w, h = res_draw.textsize(chr(i), font) w += padding.get()*2 offsets.append(cwidth) cwidth += w if h > cheight: cheight = h ichr = Image.new('L', (w, cheight*2)) ichr_draw = ImageDraw.Draw(ichr) ichr_draw.text((padding.get(), 0), chr(i), 255, font) renders.append(ichr) # Twice the height to account for under-the-baseline characters cheight *= 2 # Create the result bitmap log("Creating result bitmap...\n") res = Image.new('L', (cwidth, cheight), 0) res_draw = ImageDraw.Draw(res) # Paste all characters into result bitmap for i in range(len(renders)): res.paste(renders[i], (offsets[i], 0)) # uncomment to draw lines separating each character (for debug) #res_draw.rectangle([offsets[i], 0, offsets[i], cheight], outline="blue") # crop the blank areas on top and bottom (_, start_y, _, end_y) = res.getbbox() res = res.crop((0, start_y, cwidth, end_y)) cheight = (end_y - start_y) + voffset.get() new_res = Image.new('L', (cwidth, cheight)) new_res.paste(res, (0, voffset.get())) res = new_res # save the preview if preview.get(): log("Saving preview to %s...\n" % preview.get()) res.save(preview.get()) # Pack the data. # The "data" is a B/W bitmap with all 96 characters next to each other # on one line. It is as wide as all the characters combined and as # high as the tallest character, plus padding. # Each byte contains info about eight pixels, starting from # highest to lowest bit: # bits: | 7 6 5 4 3 2 1 0 | 15 14 13 12 11 10 9 8 | ... # pixels: | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | ... log("Packing data...\n") bit = 0 bit_itr = 0 for c in res.tostring(): # FIXME: How to handle antialiasing? # if c != '\x00': # In Python3, c is int, in Python2, c is string. Because of reasons. try: fill = (ord(c) >= 127) except TypeError: fill = (c >= 127) if fill: bit |= (1 << (7-bit_itr)) bit_itr += 1 if bit_itr >= 8: data += pack("<B", bit) bit_itr = 0 bit = 0 # Write them to the file. # Format: # 000: width # 004: height # 008: offsets of each characters (96*uint32) # 392: data as described above log("Writing to %s...\n" % out_fname.get()) if out_fname.get() == "-": write_data(sys.stdout, cwidth, cheight, offsets, data) else: with open(out_fname.get(), 'wb') as f: write_data(f, cwidth, cheight, offsets, data) exit(0)
en
0.891531
#!/usr/bin/env python # -*- coding: utf8 -*- # ====== Python script to convert TrueTypeFonts to TWRP's .dat format ====== # This script was originally made by https://github.com/suky for his chinese version of TWRP # and then translated to English by feilplane at #twrp of irc.freenode.net. # However, it was not compatible with vanilla TWRP, so https://github.com/Tasssadar rewrote # most of it and it now has very little in common with the original script. # temp Image and ImageDraw to get access to textsize # Measure each character and render it to separate Image # Twice the height to account for under-the-baseline characters # Create the result bitmap # Paste all characters into result bitmap # uncomment to draw lines separating each character (for debug) #res_draw.rectangle([offsets[i], 0, offsets[i], cheight], outline="blue") # crop the blank areas on top and bottom # save the preview # Pack the data. # The "data" is a B/W bitmap with all 96 characters next to each other # on one line. It is as wide as all the characters combined and as # high as the tallest character, plus padding. # Each byte contains info about eight pixels, starting from # highest to lowest bit: # bits: | 7 6 5 4 3 2 1 0 | 15 14 13 12 11 10 9 8 | ... # pixels: | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | ... # FIXME: How to handle antialiasing? # if c != '\x00': # In Python3, c is int, in Python2, c is string. Because of reasons. # Write them to the file. # Format: # 000: width # 004: height # 008: offsets of each characters (96*uint32) # 392: data as described above
2.422889
2
open/users/serializers.py
lawrendran/open
105
8782
import pytz from rest_auth.serializers import TokenSerializer from rest_framework.authtoken.models import Token from rest_framework.exceptions import ValidationError from rest_framework.fields import ( CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField, ) from rest_framework.serializers import ModelSerializer, Serializer from rest_framework.validators import UniqueValidator from django.contrib.auth.hashers import check_password from open.users.models import User class SimpleUserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", ) class UserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", "signed_up_from", "date_joined", "username", "email", "created", "modified", ) class UserTokenSerializer(TokenSerializer): user = UserReadSerializer() class Meta: model = Token fields = ["key", "user"] # TODO - this view and serializer is on hold as you figure out registration (later) class UserCreateSerializer(ModelSerializer): username = CharField(validators=[UniqueValidator(queryset=User.objects.all())]) # need to make email optional ... prob should think through signup form a little email = CharField( validators=[UniqueValidator(queryset=User.objects.all())], required=False ) password = CharField(write_only=True, min_length=8) signed_up_from = CharField( write_only=True, min_length=8, required=False, default="", trim_whitespace=True ) timezone_string = ChoiceField( choices=pytz.all_timezones, required=False, default="US/Eastern" ) class Meta: model = User fields = ["username", "email", "password", "signed_up_from", "timezone_string"] # TODO test - does this work with just username / no email, etc. def create(self, validated_data): username = validated_data.pop("username") password = validated_data.pop("password") is_betterself_user = False if validated_data["signed_up_from"] == "betterself": is_betterself_user = True validated_data["is_betterself_user"] = is_betterself_user user = User.objects.create(username=username, **validated_data) user.set_password(password) user.save() return user class UserDeleteSerializer(Serializer): # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake password = CharField() user = HiddenField(default=CurrentUserDefault()) uuid = UUIDField() def validate(self, data): user = data["user"] validated_password = check_password(data["password"], user.password) if not validated_password: raise ValidationError("Invalid Password Entered") validated_uuid = str(user.uuid) == str(data["uuid"]) if not validated_uuid: raise ValidationError("Invalid UUID", str(user.uuid)) validate_user = user.username != "<EMAIL>" if not validate_user: raise ValidationError( f"This is a protected user and cannot be deleted. {user.username}" ) return data
import pytz from rest_auth.serializers import TokenSerializer from rest_framework.authtoken.models import Token from rest_framework.exceptions import ValidationError from rest_framework.fields import ( CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField, ) from rest_framework.serializers import ModelSerializer, Serializer from rest_framework.validators import UniqueValidator from django.contrib.auth.hashers import check_password from open.users.models import User class SimpleUserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", ) class UserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", "signed_up_from", "date_joined", "username", "email", "created", "modified", ) class UserTokenSerializer(TokenSerializer): user = UserReadSerializer() class Meta: model = Token fields = ["key", "user"] # TODO - this view and serializer is on hold as you figure out registration (later) class UserCreateSerializer(ModelSerializer): username = CharField(validators=[UniqueValidator(queryset=User.objects.all())]) # need to make email optional ... prob should think through signup form a little email = CharField( validators=[UniqueValidator(queryset=User.objects.all())], required=False ) password = CharField(write_only=True, min_length=8) signed_up_from = CharField( write_only=True, min_length=8, required=False, default="", trim_whitespace=True ) timezone_string = ChoiceField( choices=pytz.all_timezones, required=False, default="US/Eastern" ) class Meta: model = User fields = ["username", "email", "password", "signed_up_from", "timezone_string"] # TODO test - does this work with just username / no email, etc. def create(self, validated_data): username = validated_data.pop("username") password = validated_data.pop("password") is_betterself_user = False if validated_data["signed_up_from"] == "betterself": is_betterself_user = True validated_data["is_betterself_user"] = is_betterself_user user = User.objects.create(username=username, **validated_data) user.set_password(password) user.save() return user class UserDeleteSerializer(Serializer): # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake password = CharField() user = HiddenField(default=CurrentUserDefault()) uuid = UUIDField() def validate(self, data): user = data["user"] validated_password = check_password(data["password"], user.password) if not validated_password: raise ValidationError("Invalid Password Entered") validated_uuid = str(user.uuid) == str(data["uuid"]) if not validated_uuid: raise ValidationError("Invalid UUID", str(user.uuid)) validate_user = user.username != "<EMAIL>" if not validate_user: raise ValidationError( f"This is a protected user and cannot be deleted. {user.username}" ) return data
en
0.965376
# TODO - this view and serializer is on hold as you figure out registration (later) # need to make email optional ... prob should think through signup form a little # TODO test - does this work with just username / no email, etc. # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake
2.281519
2
tests/en/test_asr.py
rhasspy/rhasspy-test
0
8783
"""Automated speech recognition tests.""" import os import sys import unittest from pathlib import Path import requests from rhasspyhermes.asr import AsrTextCaptured from rhasspyhermes.nlu import NluIntent class AsrEnglishTests(unittest.TestCase): """Test automated speech recognition (English)""" def setUp(self): self.http_host = os.environ.get("RHASSPY_HTTP_HOST", "localhost") self.http_port = os.environ.get("RHASSPY_HTTP_PORT", 12101) self.wav_bytes = Path("wav/en/turn_on_the_living_room_lamp.wav").read_bytes() def api_url(self, fragment): return f"http://{self.http_host}:{self.http_port}/api/{fragment}" def check_status(self, response): if response.status_code != 200: print(response.text, file=sys.stderr) response.raise_for_status() def test_http_speech_to_text(self): """Test speech-to-text HTTP endpoint""" response = requests.post(self.api_url("speech-to-text"), data=self.wav_bytes) self.check_status(response) text = response.content.decode() self.assertEqual(text, "turn on the living room lamp") def test_http_speech_to_text_json(self): """Text speech-to-text HTTP endpoint (Rhasspy JSON format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, headers={"Accept": "application/json"}, ) self.check_status(response) result = response.json() self.assertEqual(result["text"], "turn on the living room lamp") def test_http_speech_to_text_hermes(self): """Text speech-to-text HTTP endpoint (Hermes format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "textCaptured") text_captured = AsrTextCaptured.from_dict(result["value"]) self.assertEqual(text_captured.text, "turn on the living room lamp") def test_http_speech_to_intent(self): response = requests.post(self.api_url("speech-to-intent"), data=self.wav_bytes) self.check_status(response) result = response.json() self.assertEqual(result["intent"]["name"], "ChangeLightState") self.assertEqual(result["text"], "turn on the living room lamp") self.assertEqual(result["slots"]["name"], "living room lamp") self.assertEqual(result["slots"]["state"], "on") def test_http_speech_to_intent_hermes(self): response = requests.post( self.api_url("speech-to-intent"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "intent") nlu_intent = NluIntent.from_dict(result["value"]) self.assertEqual(nlu_intent.raw_input, "turn on the living room lamp") self.assertEqual(nlu_intent.input, "turn on the living room lamp") # Intent name and slots self.assertEqual(nlu_intent.intent.intent_name, "ChangeLightState") slots_by_name = {slot.slot_name: slot for slot in nlu_intent.slots} self.assertIn("name", slots_by_name) self.assertEqual(slots_by_name["name"].value["value"], "living room lamp") self.assertIn("state", slots_by_name) self.assertEqual(slots_by_name["state"].value["value"], "on")
"""Automated speech recognition tests.""" import os import sys import unittest from pathlib import Path import requests from rhasspyhermes.asr import AsrTextCaptured from rhasspyhermes.nlu import NluIntent class AsrEnglishTests(unittest.TestCase): """Test automated speech recognition (English)""" def setUp(self): self.http_host = os.environ.get("RHASSPY_HTTP_HOST", "localhost") self.http_port = os.environ.get("RHASSPY_HTTP_PORT", 12101) self.wav_bytes = Path("wav/en/turn_on_the_living_room_lamp.wav").read_bytes() def api_url(self, fragment): return f"http://{self.http_host}:{self.http_port}/api/{fragment}" def check_status(self, response): if response.status_code != 200: print(response.text, file=sys.stderr) response.raise_for_status() def test_http_speech_to_text(self): """Test speech-to-text HTTP endpoint""" response = requests.post(self.api_url("speech-to-text"), data=self.wav_bytes) self.check_status(response) text = response.content.decode() self.assertEqual(text, "turn on the living room lamp") def test_http_speech_to_text_json(self): """Text speech-to-text HTTP endpoint (Rhasspy JSON format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, headers={"Accept": "application/json"}, ) self.check_status(response) result = response.json() self.assertEqual(result["text"], "turn on the living room lamp") def test_http_speech_to_text_hermes(self): """Text speech-to-text HTTP endpoint (Hermes format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "textCaptured") text_captured = AsrTextCaptured.from_dict(result["value"]) self.assertEqual(text_captured.text, "turn on the living room lamp") def test_http_speech_to_intent(self): response = requests.post(self.api_url("speech-to-intent"), data=self.wav_bytes) self.check_status(response) result = response.json() self.assertEqual(result["intent"]["name"], "ChangeLightState") self.assertEqual(result["text"], "turn on the living room lamp") self.assertEqual(result["slots"]["name"], "living room lamp") self.assertEqual(result["slots"]["state"], "on") def test_http_speech_to_intent_hermes(self): response = requests.post( self.api_url("speech-to-intent"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "intent") nlu_intent = NluIntent.from_dict(result["value"]) self.assertEqual(nlu_intent.raw_input, "turn on the living room lamp") self.assertEqual(nlu_intent.input, "turn on the living room lamp") # Intent name and slots self.assertEqual(nlu_intent.intent.intent_name, "ChangeLightState") slots_by_name = {slot.slot_name: slot for slot in nlu_intent.slots} self.assertIn("name", slots_by_name) self.assertEqual(slots_by_name["name"].value["value"], "living room lamp") self.assertIn("state", slots_by_name) self.assertEqual(slots_by_name["state"].value["value"], "on")
en
0.627629
Automated speech recognition tests. Test automated speech recognition (English) Test speech-to-text HTTP endpoint Text speech-to-text HTTP endpoint (Rhasspy JSON format) Text speech-to-text HTTP endpoint (Hermes format) # Intent name and slots
3.295789
3
speech/melgan/model/multiscale.py
OthmaneJ/deep-tts
213
8784
import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import Discriminator from .identity import Identity class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [Discriminator() for _ in range(3)] ) self.pooling = nn.ModuleList( [Identity()] + [nn.AvgPool1d(kernel_size=4, stride=2, padding=2) for _ in range(1, 3)] ) def forward(self, x): ret = list() for pool, disc in zip(self.pooling, self.discriminators): x = pool(x) ret.append(disc(x)) return ret # [(feat, score), (feat, score), (feat, score)]
import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import Discriminator from .identity import Identity class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [Discriminator() for _ in range(3)] ) self.pooling = nn.ModuleList( [Identity()] + [nn.AvgPool1d(kernel_size=4, stride=2, padding=2) for _ in range(1, 3)] ) def forward(self, x): ret = list() for pool, disc in zip(self.pooling, self.discriminators): x = pool(x) ret.append(disc(x)) return ret # [(feat, score), (feat, score), (feat, score)]
en
0.784948
# [(feat, score), (feat, score), (feat, score)]
2.331615
2
main.py
AntonioLourencos/jogo-da-velha
10
8785
<gh_stars>1-10 from game import about_button, start_button, play_sound, center_pos import pygame WHITE = (255,255,255) BLACK = (0,0,0) GREEN = (0, 255, 0) pygame.init() pygame.font.init() pygame.mixer.init() FONT = pygame.font.Font("assets/font.ttf", 70) FONT_MIN = pygame.font.Font("assets/font.ttf", 30) window = pygame.display.set_mode([600,600]) running = True clock = pygame.time.Clock() nickname = " " me = "X" ia = "O" while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False play_sound("minimize_001") if event.type == pygame.KEYDOWN: if event.key == pygame.K_BACKSPACE and len(nickname) > 2: nickname = list(nickname) nickname.pop(-2) nickname = "".join(nickname) play_sound("error_001") elif len(nickname.strip()) <= 10: play_sound("bong_001") if len(nickname) > 1: nickname = list(nickname) nickname.pop(-1) nickname = "".join(nickname) nickname += event.unicode nickname += " " if event.key == pygame.K_UP or event.key == pygame.K_DOWN: if me == "X": me = "O" ia = "X" else: me = "X" ia = "O" window.fill(BLACK) title = FONT.render("<NAME>", True, WHITE) title_pos = center_pos(title.get_rect(), 10) window.blit(title, title_pos) nickname_label = FONT.render("SEU NOME", True, WHITE) nickname_label_pos = center_pos(nickname_label.get_rect(), 100) window.blit(nickname_label, nickname_label_pos) nickname_render = FONT.render(nickname, True, BLACK) nickname_rect = nickname_render.get_rect() nickname_pos = center_pos(nickname_rect, 180) pygame.draw.rect(window, WHITE, (nickname_pos[0], 180, nickname_rect[2], nickname_rect[3])) window.blit(nickname_render, nickname_pos) choice_render = FONT.render(f"JOGUE COM {me}", True, WHITE) window.blit(choice_render, center_pos(choice_render.get_rect(), 280)) my_name = FONT_MIN.render(f"DESENVOLVIDO POR <NAME>", True, WHITE) window.blit(my_name, center_pos(my_name.get_rect(), 560)) start_button(window, "JOGAR", 380, me, ia, nickname.strip(), 10) about_button(window, 450, 10) pygame.display.flip() clock.tick(60)
from game import about_button, start_button, play_sound, center_pos import pygame WHITE = (255,255,255) BLACK = (0,0,0) GREEN = (0, 255, 0) pygame.init() pygame.font.init() pygame.mixer.init() FONT = pygame.font.Font("assets/font.ttf", 70) FONT_MIN = pygame.font.Font("assets/font.ttf", 30) window = pygame.display.set_mode([600,600]) running = True clock = pygame.time.Clock() nickname = " " me = "X" ia = "O" while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False play_sound("minimize_001") if event.type == pygame.KEYDOWN: if event.key == pygame.K_BACKSPACE and len(nickname) > 2: nickname = list(nickname) nickname.pop(-2) nickname = "".join(nickname) play_sound("error_001") elif len(nickname.strip()) <= 10: play_sound("bong_001") if len(nickname) > 1: nickname = list(nickname) nickname.pop(-1) nickname = "".join(nickname) nickname += event.unicode nickname += " " if event.key == pygame.K_UP or event.key == pygame.K_DOWN: if me == "X": me = "O" ia = "X" else: me = "X" ia = "O" window.fill(BLACK) title = FONT.render("<NAME>", True, WHITE) title_pos = center_pos(title.get_rect(), 10) window.blit(title, title_pos) nickname_label = FONT.render("SEU NOME", True, WHITE) nickname_label_pos = center_pos(nickname_label.get_rect(), 100) window.blit(nickname_label, nickname_label_pos) nickname_render = FONT.render(nickname, True, BLACK) nickname_rect = nickname_render.get_rect() nickname_pos = center_pos(nickname_rect, 180) pygame.draw.rect(window, WHITE, (nickname_pos[0], 180, nickname_rect[2], nickname_rect[3])) window.blit(nickname_render, nickname_pos) choice_render = FONT.render(f"JOGUE COM {me}", True, WHITE) window.blit(choice_render, center_pos(choice_render.get_rect(), 280)) my_name = FONT_MIN.render(f"DESENVOLVIDO POR <NAME>", True, WHITE) window.blit(my_name, center_pos(my_name.get_rect(), 560)) start_button(window, "JOGAR", 380, me, ia, nickname.strip(), 10) about_button(window, 450, 10) pygame.display.flip() clock.tick(60)
none
1
2.94631
3
schedule/views.py
1donggri/teamProject
0
8786
from django.shortcuts import render, redirect from .models import Post from .forms import ScheduleForm from django.core.paginator import Paginator # Create your views here. def view_schedule(request): all_posts = Post.objects.all().order_by('pub_date') page = int(request.GET.get('p', 1)) pagenator = Paginator(all_posts, 5) posts = pagenator.get_page(page) return render(request, 'schedule/view_schedule.html', {'posts': posts}) def write_schedule(request): if request.method == "POST": form = ScheduleForm(request.POST) if form.is_valid(): # form의 모든 validators 호출 유효성 검증 수행 # user_id = request.session.get('user') # user = User.objects.get(pk=user_id) schedule = Post() schedule.title = form.cleaned_data['title'] # # 검증에 성공한 값들은 사전타입으로 제공 (form.cleaned_data) # # 검증에 실패시 form.error 에 오류 정보를 저장 schedule.username = form.cleaned_data['username'] schedule.pub_date = form.cleaned_data['pub_date'] schedule.save() return redirect('schedule:view_schedule') else: form = ScheduleForm() return render(request, 'schedule/write_schedule.html', {'form': form}) def delete(request, posts_id): post = Post.objects.get(id=posts_id) post.delete() posts = Post.objects.all().order_by('-id') return render(request, 'schedule/view_schedule.html', {'posts': posts})
from django.shortcuts import render, redirect from .models import Post from .forms import ScheduleForm from django.core.paginator import Paginator # Create your views here. def view_schedule(request): all_posts = Post.objects.all().order_by('pub_date') page = int(request.GET.get('p', 1)) pagenator = Paginator(all_posts, 5) posts = pagenator.get_page(page) return render(request, 'schedule/view_schedule.html', {'posts': posts}) def write_schedule(request): if request.method == "POST": form = ScheduleForm(request.POST) if form.is_valid(): # form의 모든 validators 호출 유효성 검증 수행 # user_id = request.session.get('user') # user = User.objects.get(pk=user_id) schedule = Post() schedule.title = form.cleaned_data['title'] # # 검증에 성공한 값들은 사전타입으로 제공 (form.cleaned_data) # # 검증에 실패시 form.error 에 오류 정보를 저장 schedule.username = form.cleaned_data['username'] schedule.pub_date = form.cleaned_data['pub_date'] schedule.save() return redirect('schedule:view_schedule') else: form = ScheduleForm() return render(request, 'schedule/write_schedule.html', {'form': form}) def delete(request, posts_id): post = Post.objects.get(id=posts_id) post.delete() posts = Post.objects.all().order_by('-id') return render(request, 'schedule/view_schedule.html', {'posts': posts})
ko
0.92538
# Create your views here. # form의 모든 validators 호출 유효성 검증 수행 # user_id = request.session.get('user') # user = User.objects.get(pk=user_id) # # 검증에 성공한 값들은 사전타입으로 제공 (form.cleaned_data) # # 검증에 실패시 form.error 에 오류 정보를 저장
2.196984
2
archetype/settings/local_stg.py
kingsdigitallab/archetype-django
1
8787
<reponame>kingsdigitallab/archetype-django from .base import * # noqa CACHE_REDIS_DATABASE = '1' CACHES['default']['LOCATION'] = '127.0.0.1:6379:' + CACHE_REDIS_DATABASE INTERNAL_IPS = INTERNAL_IPS + ('', ) ALLOWED_HOSTS = [''] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'app_archetype_stg', 'USER': 'app_archetype', 'PASSWORD': '', 'HOST': '' }, }
from .base import * # noqa CACHE_REDIS_DATABASE = '1' CACHES['default']['LOCATION'] = '127.0.0.1:6379:' + CACHE_REDIS_DATABASE INTERNAL_IPS = INTERNAL_IPS + ('', ) ALLOWED_HOSTS = [''] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'app_archetype_stg', 'USER': 'app_archetype', 'PASSWORD': '', 'HOST': '' }, }
none
1
1.366344
1
website/sites/admin.py
vnaskos/Website
0
8788
<reponame>vnaskos/Website from django.contrib import admin # Register your models here.] from website.sites.models import Post @admin.register(Post) class TestAdmin2(admin.ModelAdmin): pass
from django.contrib import admin # Register your models here.] from website.sites.models import Post @admin.register(Post) class TestAdmin2(admin.ModelAdmin): pass
en
0.876766
# Register your models here.]
1.351805
1
mcts.py
korbi98/TicTacToeGo_Zero
0
8789
<reponame>korbi98/TicTacToeGo_Zero<filename>mcts.py # Monte Carlo tree search for TicTacToe import numpy as np from tictactoe import Tictactoe import copy from random import choice from tree import Node import time class MCTS: ''' Class defining a simple monte carlo tree search algorithm. Attributes: - game: instance of TicTacToe game - current_player: player to perform next move - number_of_rollouts: number of simulations for generating one move - tree: list containing all possible and impossible (taken) leaf nodes ''' def __init__(self, game, number_of_rollouts): self.game = game self.current_player = game.move_number%2 + 1 print(self.current_player) self.tree = Node(None, -1, 3 - self.current_player) # Root node of tree self.number_of_rollouts = number_of_rollouts print("Initial game state:\n",self.game.board) def perform_search(self): '''Perfoming the mcts by performing the specified number of simulations and updating the corresponding leaf node. leaf node is choosen by traverse_tree function ''' start_time = time.clock() for i in range(self.number_of_rollouts): simulated_game = copy.deepcopy(self.game) # Traverse to leaf leaf = self.traverse_tree(simulated_game) # Random simulation for leaf result = self.rollout(simulated_game) # Update all visited nodes self.update_tree(result, leaf) end_time = time.clock() print("\nFirst layer:") for child in self.tree.children: child.print(self.tree) second_layer = max(self.tree.children, key= lambda x: x.visits) print("\nSecond layer:") for child in second_layer.children: child.print(self.tree) print("\nSearch took:", round(end_time-start_time, 4), "seconds") result = [0 for i in range(self.game.size**2)] for child in self.tree.children: result[child.boardposition] = child.visits return result def traverse_tree(self, simulated_game): '''Choose next leaf for performing rollout. When node is fully expanded, child with highest UCT is choosen. If not a random unexplored node is choosen. ''' current_node = self.tree #root while current_node.isExpanded(): current_node = current_node.UTC_traverse(self.tree) x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # create children if empty if not current_node.children: current_node.getPossibleChildren(simulated_game.board) # terminate if board is full if not simulated_game.move_number < simulated_game.size**2 or simulated_game.checkboard(): return current_node x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # Choose random unexplored leaf unexplored_leafs = list(filter(lambda x: x.visits == 0, current_node.children)) return choice(unexplored_leafs) def rollout(self, simulated_game): '''perform random play for choosen leaf node till terminal state is reached''' while (not simulated_game.checkboard()) and simulated_game.move_number < simulated_game.size**2: simulated_game.perform_random_move() res = simulated_game.checkboard() print("Finished simulation player", res, "won. Terminal state is:") simulated_game.printBoard() return res def update_tree(self, result, leaf): '''update all visited nodes in tree''' self.tree.visits += 1 current_node = leaf while current_node.parent: #current_node.print(self.tree) current_node.update(result) current_node = current_node.parent
# Monte Carlo tree search for TicTacToe import numpy as np from tictactoe import Tictactoe import copy from random import choice from tree import Node import time class MCTS: ''' Class defining a simple monte carlo tree search algorithm. Attributes: - game: instance of TicTacToe game - current_player: player to perform next move - number_of_rollouts: number of simulations for generating one move - tree: list containing all possible and impossible (taken) leaf nodes ''' def __init__(self, game, number_of_rollouts): self.game = game self.current_player = game.move_number%2 + 1 print(self.current_player) self.tree = Node(None, -1, 3 - self.current_player) # Root node of tree self.number_of_rollouts = number_of_rollouts print("Initial game state:\n",self.game.board) def perform_search(self): '''Perfoming the mcts by performing the specified number of simulations and updating the corresponding leaf node. leaf node is choosen by traverse_tree function ''' start_time = time.clock() for i in range(self.number_of_rollouts): simulated_game = copy.deepcopy(self.game) # Traverse to leaf leaf = self.traverse_tree(simulated_game) # Random simulation for leaf result = self.rollout(simulated_game) # Update all visited nodes self.update_tree(result, leaf) end_time = time.clock() print("\nFirst layer:") for child in self.tree.children: child.print(self.tree) second_layer = max(self.tree.children, key= lambda x: x.visits) print("\nSecond layer:") for child in second_layer.children: child.print(self.tree) print("\nSearch took:", round(end_time-start_time, 4), "seconds") result = [0 for i in range(self.game.size**2)] for child in self.tree.children: result[child.boardposition] = child.visits return result def traverse_tree(self, simulated_game): '''Choose next leaf for performing rollout. When node is fully expanded, child with highest UCT is choosen. If not a random unexplored node is choosen. ''' current_node = self.tree #root while current_node.isExpanded(): current_node = current_node.UTC_traverse(self.tree) x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # create children if empty if not current_node.children: current_node.getPossibleChildren(simulated_game.board) # terminate if board is full if not simulated_game.move_number < simulated_game.size**2 or simulated_game.checkboard(): return current_node x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # Choose random unexplored leaf unexplored_leafs = list(filter(lambda x: x.visits == 0, current_node.children)) return choice(unexplored_leafs) def rollout(self, simulated_game): '''perform random play for choosen leaf node till terminal state is reached''' while (not simulated_game.checkboard()) and simulated_game.move_number < simulated_game.size**2: simulated_game.perform_random_move() res = simulated_game.checkboard() print("Finished simulation player", res, "won. Terminal state is:") simulated_game.printBoard() return res def update_tree(self, result, leaf): '''update all visited nodes in tree''' self.tree.visits += 1 current_node = leaf while current_node.parent: #current_node.print(self.tree) current_node.update(result) current_node = current_node.parent
en
0.79936
# Monte Carlo tree search for TicTacToe Class defining a simple monte carlo tree search algorithm. Attributes: - game: instance of TicTacToe game - current_player: player to perform next move - number_of_rollouts: number of simulations for generating one move - tree: list containing all possible and impossible (taken) leaf nodes # Root node of tree Perfoming the mcts by performing the specified number of simulations and updating the corresponding leaf node. leaf node is choosen by traverse_tree function # Traverse to leaf # Random simulation for leaf # Update all visited nodes Choose next leaf for performing rollout. When node is fully expanded, child with highest UCT is choosen. If not a random unexplored node is choosen. #root # create children if empty # terminate if board is full # Choose random unexplored leaf perform random play for choosen leaf node till terminal state is reached update all visited nodes in tree #current_node.print(self.tree)
3.889465
4
grimer/metadata.py
pirovc/grimer
5
8790
import pandas as pd from pandas.api.types import is_numeric_dtype from grimer.utils import print_log class Metadata: valid_types = ["categorical", "numeric"] default_type = "categorical" def __init__(self, metadata_file, samples: list=[]): # Read metadata and let pandas guess dtypes, index as str self.data = pd.read_table(metadata_file, sep='\t', header=0, skiprows=0, index_col=0, dtype={0:str}) # Enforce string index self.data.index = self.data.index.astype('str') # Define all COLUMN TYPES as default self.types = pd.Series(self.default_type, index=self.data.columns) # Set types if str(self.data.index[0]).startswith("#"): # types defined on file self.set_hard_types() else: # guessed types from read_table self.types[self.data.dtypes.map(is_numeric_dtype)] = "numeric" # Convert datatypes to adequate numeric values (int, float) self.data = self.data.convert_dtypes(infer_objects=False, convert_string=False) # Re-convert everython to object to standardize (int64 NA is not seriazable on bokeh) self.data = self.data.astype("object") # Remove empty fields null_cols = self.data.isna().all(axis=0) if any(null_cols): self.data = self.data.loc[:, ~null_cols] self.types = self.types[~null_cols] print_log(str(sum(null_cols)) + " fields removed without valid values") # Convert NaN on categorical to "" self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].fillna('') # Remove names self.data.index.names = [None] self.types.name = None # sort and filter by given samples if samples: self.data = self.data.reindex(samples) # Check if matched metadata and samples null_rows = self.data.isna().all(axis=1) if any(null_rows): #self.data = self.data.loc[~null_rows, :] print_log(str(sum(null_rows)) + " samples without valid metadata") def __repr__(self): args = ['{}={}'.format(k, repr(v)) for (k, v) in vars(self).items()] return 'Metadata({})'.format(', '.join(args)) def set_hard_types(self): # Get values defined on the first row self.types = self.data.iloc[0] # Drop row with types from main data self.data.drop(self.types.name, inplace=True) # Validate declared types idx_valid = self.types.isin(self.valid_types) if not idx_valid.all(): print_log("Invalid metadata types replaced by: " + self.default_type) self.types[~idx_valid] = self.default_type # Enforce column type on dataframe self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].astype(str) self.data[self.types[self.types == "numeric"].index] = self.data[self.types[self.types == "numeric"].index].apply(pd.to_numeric) def get_col_headers(self): return self.data.columns def get_data(self, metadata_type: str=None): if metadata_type is not None: return self.data[self.types[self.types == metadata_type].index] else: return self.data def get_col(self, col): return self.data[col] def get_unique_values(self, col): return sorted(self.get_col(col).dropna().unique()) def get_formatted_unique_values(self, col): if self.types[col] == "categorical": return self.get_unique_values(col) else: return list(map('{:.16g}'.format, self.get_unique_values(col))) def get_type(self, col): return self.types[col] def get_subset(self, column, value): return self.data[self.data[column] == value]
import pandas as pd from pandas.api.types import is_numeric_dtype from grimer.utils import print_log class Metadata: valid_types = ["categorical", "numeric"] default_type = "categorical" def __init__(self, metadata_file, samples: list=[]): # Read metadata and let pandas guess dtypes, index as str self.data = pd.read_table(metadata_file, sep='\t', header=0, skiprows=0, index_col=0, dtype={0:str}) # Enforce string index self.data.index = self.data.index.astype('str') # Define all COLUMN TYPES as default self.types = pd.Series(self.default_type, index=self.data.columns) # Set types if str(self.data.index[0]).startswith("#"): # types defined on file self.set_hard_types() else: # guessed types from read_table self.types[self.data.dtypes.map(is_numeric_dtype)] = "numeric" # Convert datatypes to adequate numeric values (int, float) self.data = self.data.convert_dtypes(infer_objects=False, convert_string=False) # Re-convert everython to object to standardize (int64 NA is not seriazable on bokeh) self.data = self.data.astype("object") # Remove empty fields null_cols = self.data.isna().all(axis=0) if any(null_cols): self.data = self.data.loc[:, ~null_cols] self.types = self.types[~null_cols] print_log(str(sum(null_cols)) + " fields removed without valid values") # Convert NaN on categorical to "" self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].fillna('') # Remove names self.data.index.names = [None] self.types.name = None # sort and filter by given samples if samples: self.data = self.data.reindex(samples) # Check if matched metadata and samples null_rows = self.data.isna().all(axis=1) if any(null_rows): #self.data = self.data.loc[~null_rows, :] print_log(str(sum(null_rows)) + " samples without valid metadata") def __repr__(self): args = ['{}={}'.format(k, repr(v)) for (k, v) in vars(self).items()] return 'Metadata({})'.format(', '.join(args)) def set_hard_types(self): # Get values defined on the first row self.types = self.data.iloc[0] # Drop row with types from main data self.data.drop(self.types.name, inplace=True) # Validate declared types idx_valid = self.types.isin(self.valid_types) if not idx_valid.all(): print_log("Invalid metadata types replaced by: " + self.default_type) self.types[~idx_valid] = self.default_type # Enforce column type on dataframe self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].astype(str) self.data[self.types[self.types == "numeric"].index] = self.data[self.types[self.types == "numeric"].index].apply(pd.to_numeric) def get_col_headers(self): return self.data.columns def get_data(self, metadata_type: str=None): if metadata_type is not None: return self.data[self.types[self.types == metadata_type].index] else: return self.data def get_col(self, col): return self.data[col] def get_unique_values(self, col): return sorted(self.get_col(col).dropna().unique()) def get_formatted_unique_values(self, col): if self.types[col] == "categorical": return self.get_unique_values(col) else: return list(map('{:.16g}'.format, self.get_unique_values(col))) def get_type(self, col): return self.types[col] def get_subset(self, column, value): return self.data[self.data[column] == value]
en
0.668764
# Read metadata and let pandas guess dtypes, index as str # Enforce string index # Define all COLUMN TYPES as default # Set types # types defined on file # guessed types from read_table # Convert datatypes to adequate numeric values (int, float) # Re-convert everython to object to standardize (int64 NA is not seriazable on bokeh) # Remove empty fields # Convert NaN on categorical to "" # Remove names # sort and filter by given samples # Check if matched metadata and samples #self.data = self.data.loc[~null_rows, :] # Get values defined on the first row # Drop row with types from main data # Validate declared types # Enforce column type on dataframe
2.946081
3
allennlp/training/metric_tracker.py
MSLars/allennlp
11,433
8791
from typing import Optional, Dict, Any, List, Union from allennlp.common.checks import ConfigurationError class MetricTracker: """ This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. """ def __init__( self, metric_name: Union[str, List[str]], patience: Optional[int] = None, ) -> None: self._patience = patience self._best_so_far: Optional[float] = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch: Optional[int] = None self.best_epoch_metrics: Dict[str, float] = {} if isinstance(metric_name, str): metric_name = [metric_name] self.tracked_metrics = [] for name in metric_name: if name.startswith("+"): self.tracked_metrics.append((1.0, name[1:])) elif name.startswith("-"): self.tracked_metrics.append((-1.0, name[1:])) else: raise ConfigurationError("metric_name must start with + or -") def clear(self) -> None: """ Clears out the tracked metrics, but keeps the patience """ self._best_so_far = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch = None self.best_epoch_metrics.clear() def state_dict(self) -> Dict[str, Any]: """ A `Trainer` can use this to serialize the state of the metric tracker. """ return { "best_so_far": self._best_so_far, "epochs_with_no_improvement": self._epochs_with_no_improvement, "is_best_so_far": self._is_best_so_far, "epoch_number": self._epoch_number, "best_epoch": self.best_epoch, "best_epoch_metrics": self.best_epoch_metrics, } def load_state_dict(self, state_dict: Dict[str, Any]) -> None: """ A `Trainer` can use this to hydrate a metric tracker from a serialized state. """ self._best_so_far = state_dict["best_so_far"] self._epochs_with_no_improvement = state_dict["epochs_with_no_improvement"] self._is_best_so_far = state_dict["is_best_so_far"] self._epoch_number = state_dict["epoch_number"] self.best_epoch = state_dict["best_epoch"] # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. self.best_epoch_metrics = state_dict.get("best_epoch_metrics", {}) def add_metrics(self, metrics: Dict[str, float]) -> None: """ Record a new value of the metric and update the various things that depend on it. """ combined_score = self.combined_score(metrics) new_best = (self._best_so_far is None) or (combined_score > self._best_so_far) if new_best: self._best_so_far = combined_score self._epochs_with_no_improvement = 0 self._is_best_so_far = True self.best_epoch = self._epoch_number else: self._epochs_with_no_improvement += 1 self._is_best_so_far = False self._epoch_number += 1 def is_best_so_far(self) -> bool: """ Returns true if the most recent value of the metric is the best so far. """ return self._is_best_so_far def should_stop_early(self) -> bool: """ Returns true if improvement has stopped for long enough. """ if self._patience is None: return False else: return self._epochs_with_no_improvement >= self._patience def combined_score(self, metrics: Dict[str, float]) -> float: try: return sum( factor * metrics[metric_name] for factor, metric_name in self.tracked_metrics ) except KeyError as e: raise ConfigurationError( f"You configured the trainer to use the {e.args[0]} " "metric for early stopping, but the model did not produce that metric." )
from typing import Optional, Dict, Any, List, Union from allennlp.common.checks import ConfigurationError class MetricTracker: """ This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. """ def __init__( self, metric_name: Union[str, List[str]], patience: Optional[int] = None, ) -> None: self._patience = patience self._best_so_far: Optional[float] = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch: Optional[int] = None self.best_epoch_metrics: Dict[str, float] = {} if isinstance(metric_name, str): metric_name = [metric_name] self.tracked_metrics = [] for name in metric_name: if name.startswith("+"): self.tracked_metrics.append((1.0, name[1:])) elif name.startswith("-"): self.tracked_metrics.append((-1.0, name[1:])) else: raise ConfigurationError("metric_name must start with + or -") def clear(self) -> None: """ Clears out the tracked metrics, but keeps the patience """ self._best_so_far = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch = None self.best_epoch_metrics.clear() def state_dict(self) -> Dict[str, Any]: """ A `Trainer` can use this to serialize the state of the metric tracker. """ return { "best_so_far": self._best_so_far, "epochs_with_no_improvement": self._epochs_with_no_improvement, "is_best_so_far": self._is_best_so_far, "epoch_number": self._epoch_number, "best_epoch": self.best_epoch, "best_epoch_metrics": self.best_epoch_metrics, } def load_state_dict(self, state_dict: Dict[str, Any]) -> None: """ A `Trainer` can use this to hydrate a metric tracker from a serialized state. """ self._best_so_far = state_dict["best_so_far"] self._epochs_with_no_improvement = state_dict["epochs_with_no_improvement"] self._is_best_so_far = state_dict["is_best_so_far"] self._epoch_number = state_dict["epoch_number"] self.best_epoch = state_dict["best_epoch"] # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. self.best_epoch_metrics = state_dict.get("best_epoch_metrics", {}) def add_metrics(self, metrics: Dict[str, float]) -> None: """ Record a new value of the metric and update the various things that depend on it. """ combined_score = self.combined_score(metrics) new_best = (self._best_so_far is None) or (combined_score > self._best_so_far) if new_best: self._best_so_far = combined_score self._epochs_with_no_improvement = 0 self._is_best_so_far = True self.best_epoch = self._epoch_number else: self._epochs_with_no_improvement += 1 self._is_best_so_far = False self._epoch_number += 1 def is_best_so_far(self) -> bool: """ Returns true if the most recent value of the metric is the best so far. """ return self._is_best_so_far def should_stop_early(self) -> bool: """ Returns true if improvement has stopped for long enough. """ if self._patience is None: return False else: return self._epochs_with_no_improvement >= self._patience def combined_score(self, metrics: Dict[str, float]) -> float: try: return sum( factor * metrics[metric_name] for factor, metric_name in self.tracked_metrics ) except KeyError as e: raise ConfigurationError( f"You configured the trainer to use the {e.args[0]} " "metric for early stopping, but the model did not produce that metric." )
en
0.811103
This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. Clears out the tracked metrics, but keeps the patience A `Trainer` can use this to serialize the state of the metric tracker. A `Trainer` can use this to hydrate a metric tracker from a serialized state. # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. Record a new value of the metric and update the various things that depend on it. Returns true if the most recent value of the metric is the best so far. Returns true if improvement has stopped for long enough.
2.698195
3
authors/apps/profiles/renderers.py
MuhweziDeo/Ah-backend-xmen
4
8792
from authors.apps.utils.renderers import AppJSONRenderer import json from rest_framework.renderers import JSONRenderer class UserProfileJSONRenderer(AppJSONRenderer): name = 'profile' class UserProfileListRenderer(JSONRenderer): """ Returns profiles of existing users """ charset = 'utf-8' def render(self, data, media_type=None, renderer_context=None): """ present a list of user profiles in json format """ return json.dumps({ 'profiles':data }) class ReadStatsJsonRenderer(AppJSONRenderer): name = 'read_stats'
from authors.apps.utils.renderers import AppJSONRenderer import json from rest_framework.renderers import JSONRenderer class UserProfileJSONRenderer(AppJSONRenderer): name = 'profile' class UserProfileListRenderer(JSONRenderer): """ Returns profiles of existing users """ charset = 'utf-8' def render(self, data, media_type=None, renderer_context=None): """ present a list of user profiles in json format """ return json.dumps({ 'profiles':data }) class ReadStatsJsonRenderer(AppJSONRenderer): name = 'read_stats'
en
0.643342
Returns profiles of existing users present a list of user profiles in json format
2.524953
3
json_analyzer.py
bantenz/NetworkConfigParser
0
8793
<reponame>bantenz/NetworkConfigParser<gh_stars>0 import json from deepdiff import DeepDiff import pprint def get_json(file_name): with open(file_name) as json_file: json_data = json.load(json_file) return json_data def compare_json(Hostname, Command, Data1, Data2): if (Data1 == Data2): print ("%s - %s output is same" % (Hostname, Command)) else: print ("%s - %s output is different" % (Hostname, Command)) pprint.pprint(DeepDiff(Data1, Data2)) def main(): Hostname = raw_input('Input Hostname of the device : ').lower() Command = raw_input('Input Command : ').lower() Filename1 = raw_input('Input First JSON File : ').lower() Filename2 = raw_input('Input Second JSON File : ').lower() Data1 = get_json(Filename1) Data2 = get_json(Filename2) compare_json(Hostname, Command, Data1, Data2) if __name__ == "__main__": # If this Python file runs by itself, run below command. If imported, this section is not run main()
import json from deepdiff import DeepDiff import pprint def get_json(file_name): with open(file_name) as json_file: json_data = json.load(json_file) return json_data def compare_json(Hostname, Command, Data1, Data2): if (Data1 == Data2): print ("%s - %s output is same" % (Hostname, Command)) else: print ("%s - %s output is different" % (Hostname, Command)) pprint.pprint(DeepDiff(Data1, Data2)) def main(): Hostname = raw_input('Input Hostname of the device : ').lower() Command = raw_input('Input Command : ').lower() Filename1 = raw_input('Input First JSON File : ').lower() Filename2 = raw_input('Input Second JSON File : ').lower() Data1 = get_json(Filename1) Data2 = get_json(Filename2) compare_json(Hostname, Command, Data1, Data2) if __name__ == "__main__": # If this Python file runs by itself, run below command. If imported, this section is not run main()
en
0.793427
# If this Python file runs by itself, run below command. If imported, this section is not run
3.143137
3
fiwareglancesync/sync.py
telefonicaid/fiware-glancesync
0
8794
<reponame>telefonicaid/fiware-glancesync #!/usr/bin/env python # -- encoding: utf-8 -- # # Copyright 2015-2016 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with <EMAIL> # import sys import StringIO import os import os.path import datetime import argparse import logging from fiwareglancesync.glancesync import GlanceSync class Sync(object): def __init__(self, regions, override_d=None): """init object""" GlanceSync.init_logs() self.glancesync = GlanceSync(options_dict=override_d) regions_expanded = list() already_sorted = True for region in regions: if region.endswith(':'): regions_expanded.extend(self.glancesync.get_regions( target=region[:-1])) already_sorted = False else: regions_expanded.append(region) regions = regions_expanded if not regions: regions = self.glancesync.get_regions() already_sorted = False if not already_sorted: regions_unsorted = regions regions = list() for region in self.glancesync.preferable_order: if region in regions_unsorted: regions.append(region) regions_unsorted.remove(region) regions.extend(regions_unsorted) self.regions = regions def report_status(self): """Report the synchronisation status of the regions""" for region in self.regions: try: stream = StringIO.StringIO() self.glancesync.export_sync_region_status(region, stream) print(stream.getvalue()) except Exception: # Don't do anything. Message has been already printed # try next region continue def parallel_sync(self): """Run the synchronisation in several regions in parallel. The synchronisation inside the region is sequential (i.e. several regions are synchronised simultaneously, but only one image at time is uploaded for each region)""" max_children = self.glancesync.max_children now = datetime.datetime.now() datestr = str(now.year) + str(now.month).zfill(2) + \ str(now.day).zfill(2) + '_' + str(now.hour).zfill(2) +\ str(now.minute).zfill(2) msg = '======Master is ' + self.glancesync.master_region print(msg) sys.stdout.flush() os.mkdir('sync_' + datestr) children = dict() for region in self.regions: try: if len(children) >= max_children: self._wait_child(children) pid = os.fork() if pid > 0: children[pid] = region continue else: path = os.path.join('sync_' + datestr, region + '.txt') handler = logging.FileHandler(path) handler.setFormatter(logging.Formatter('%(message)s')) logger = self.glancesync.log # Remove old handlers for h in logger.handlers: logger.removeHandler(h) logger.addHandler(handler) logger.setLevel(logging.INFO) logger.propagate = 0 self.glancesync.sync_region(region) # After a fork, os_exit() and not sys.exit() must be used. os._exit(0) except Exception: raise sys.stderr.flush() sys.exit(-1) while len(children) > 0: self._wait_child(children) print('All is done.') def sequential_sync(self, dry_run=False): """Run the synchronisation sequentially (that is, do not start the synchronisation to a region before the previous one was completed or failed :param dry_run: if true, do not synchronise images actually """ msg = '======Master is ' + self.glancesync.master_region print(msg) for region in self.regions: try: msg = "======" + region print(msg) sys.stdout.flush() self.glancesync.sync_region(region, dry_run=dry_run) except Exception: # Don't do anything. Message has been already printed # try next region continue def _wait_child(self, children): """ Wait until one of the regions ends its synchronisation and then print the result :param children: :return: a dictionary or regions, indexed by the pid of the process """ finish_direct_child = False while not finish_direct_child: (pid, status) = os.wait() if pid not in children: continue else: finish_direct_child = True if status == 0: msg = 'Region {0} has finished'.format(children[pid]) print(msg) else: msg = 'Region {0} has finished with errors' print(msg.format(children[pid])) del children[pid] sys.stdout.flush() def show_regions(self): """print a full list of the regions available (excluding the master region) in all the targets defined in the configuration file""" regions = self.glancesync.get_regions() for target in self.glancesync.targets.keys(): if target == 'facade' or target == 'master': continue regions.extend(self.glancesync.get_regions(target=target)) print(' '.join(regions)) def make_backup(self): """make a backup of the metadata in the regions specified at the constructor (in addition to the master region). The backup is created in a directory named 'backup_glance_' with the date and time as suffix There is a file for each region (the name is backup_<region>.csv) and inside the file a line for each image. Only the information about public images/ the images owned by the tenant, can be obtained, regardless if the user is an admin. This is a limitation of the glance API""" now = datetime.datetime.now().isoformat() directory = 'backup_glance_' + now os.mkdir(directory) regions = set(self.regions) regions.add(self.glancesync.master_region) for region in regions: try: self.glancesync.backup_glancemetadata_region(region, directory) except Exception: # do nothing. Already logged. continue if __name__ == '__main__': # Parse cmdline description = 'A tool to sync images from a master region to other '\ 'regions' parser = argparse.ArgumentParser(description=description) parser.add_argument('regions', metavar='region', type=str, nargs='*', help='region where the images are uploaded to') parser.add_argument('--parallel', action='store_true', help='sync several regions in parallel') parser.add_argument( '--config', nargs='+', help='override configuration options. (e.g. ' + "main.master_region=Valladolid metadata_condition='image.name=name1')") group = parser.add_mutually_exclusive_group() group.add_argument('--dry-run', action='store_true', help='do not upload actually the images') group.add_argument('--show-status', action='store_true', help='do not sync, but show the synchronisation status') group.add_argument('--show-regions', action='store_true', help='don not sync, only show the available regions') group.add_argument( '--make-backup', action='store_true', help="do no sync, make a backup of the regions' metadata") meta = parser.parse_args() options = dict() if meta.config: for option in meta.config: pair = option.split('=') if len(pair) != 2: parser.error('config options must have the format key=value') sys.exit(-1) options[pair[0].strip()] = pair[1] # Run cmd sync = Sync(meta.regions, options) if meta.show_status: sync.report_status() elif meta.parallel: sync.parallel_sync() elif meta.show_regions: sync.show_regions() elif meta.make_backup: sync.make_backup() else: sync.sequential_sync(meta.dry_run)
#!/usr/bin/env python # -- encoding: utf-8 -- # # Copyright 2015-2016 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with <EMAIL> # import sys import StringIO import os import os.path import datetime import argparse import logging from fiwareglancesync.glancesync import GlanceSync class Sync(object): def __init__(self, regions, override_d=None): """init object""" GlanceSync.init_logs() self.glancesync = GlanceSync(options_dict=override_d) regions_expanded = list() already_sorted = True for region in regions: if region.endswith(':'): regions_expanded.extend(self.glancesync.get_regions( target=region[:-1])) already_sorted = False else: regions_expanded.append(region) regions = regions_expanded if not regions: regions = self.glancesync.get_regions() already_sorted = False if not already_sorted: regions_unsorted = regions regions = list() for region in self.glancesync.preferable_order: if region in regions_unsorted: regions.append(region) regions_unsorted.remove(region) regions.extend(regions_unsorted) self.regions = regions def report_status(self): """Report the synchronisation status of the regions""" for region in self.regions: try: stream = StringIO.StringIO() self.glancesync.export_sync_region_status(region, stream) print(stream.getvalue()) except Exception: # Don't do anything. Message has been already printed # try next region continue def parallel_sync(self): """Run the synchronisation in several regions in parallel. The synchronisation inside the region is sequential (i.e. several regions are synchronised simultaneously, but only one image at time is uploaded for each region)""" max_children = self.glancesync.max_children now = datetime.datetime.now() datestr = str(now.year) + str(now.month).zfill(2) + \ str(now.day).zfill(2) + '_' + str(now.hour).zfill(2) +\ str(now.minute).zfill(2) msg = '======Master is ' + self.glancesync.master_region print(msg) sys.stdout.flush() os.mkdir('sync_' + datestr) children = dict() for region in self.regions: try: if len(children) >= max_children: self._wait_child(children) pid = os.fork() if pid > 0: children[pid] = region continue else: path = os.path.join('sync_' + datestr, region + '.txt') handler = logging.FileHandler(path) handler.setFormatter(logging.Formatter('%(message)s')) logger = self.glancesync.log # Remove old handlers for h in logger.handlers: logger.removeHandler(h) logger.addHandler(handler) logger.setLevel(logging.INFO) logger.propagate = 0 self.glancesync.sync_region(region) # After a fork, os_exit() and not sys.exit() must be used. os._exit(0) except Exception: raise sys.stderr.flush() sys.exit(-1) while len(children) > 0: self._wait_child(children) print('All is done.') def sequential_sync(self, dry_run=False): """Run the synchronisation sequentially (that is, do not start the synchronisation to a region before the previous one was completed or failed :param dry_run: if true, do not synchronise images actually """ msg = '======Master is ' + self.glancesync.master_region print(msg) for region in self.regions: try: msg = "======" + region print(msg) sys.stdout.flush() self.glancesync.sync_region(region, dry_run=dry_run) except Exception: # Don't do anything. Message has been already printed # try next region continue def _wait_child(self, children): """ Wait until one of the regions ends its synchronisation and then print the result :param children: :return: a dictionary or regions, indexed by the pid of the process """ finish_direct_child = False while not finish_direct_child: (pid, status) = os.wait() if pid not in children: continue else: finish_direct_child = True if status == 0: msg = 'Region {0} has finished'.format(children[pid]) print(msg) else: msg = 'Region {0} has finished with errors' print(msg.format(children[pid])) del children[pid] sys.stdout.flush() def show_regions(self): """print a full list of the regions available (excluding the master region) in all the targets defined in the configuration file""" regions = self.glancesync.get_regions() for target in self.glancesync.targets.keys(): if target == 'facade' or target == 'master': continue regions.extend(self.glancesync.get_regions(target=target)) print(' '.join(regions)) def make_backup(self): """make a backup of the metadata in the regions specified at the constructor (in addition to the master region). The backup is created in a directory named 'backup_glance_' with the date and time as suffix There is a file for each region (the name is backup_<region>.csv) and inside the file a line for each image. Only the information about public images/ the images owned by the tenant, can be obtained, regardless if the user is an admin. This is a limitation of the glance API""" now = datetime.datetime.now().isoformat() directory = 'backup_glance_' + now os.mkdir(directory) regions = set(self.regions) regions.add(self.glancesync.master_region) for region in regions: try: self.glancesync.backup_glancemetadata_region(region, directory) except Exception: # do nothing. Already logged. continue if __name__ == '__main__': # Parse cmdline description = 'A tool to sync images from a master region to other '\ 'regions' parser = argparse.ArgumentParser(description=description) parser.add_argument('regions', metavar='region', type=str, nargs='*', help='region where the images are uploaded to') parser.add_argument('--parallel', action='store_true', help='sync several regions in parallel') parser.add_argument( '--config', nargs='+', help='override configuration options. (e.g. ' + "main.master_region=Valladolid metadata_condition='image.name=name1')") group = parser.add_mutually_exclusive_group() group.add_argument('--dry-run', action='store_true', help='do not upload actually the images') group.add_argument('--show-status', action='store_true', help='do not sync, but show the synchronisation status') group.add_argument('--show-regions', action='store_true', help='don not sync, only show the available regions') group.add_argument( '--make-backup', action='store_true', help="do no sync, make a backup of the regions' metadata") meta = parser.parse_args() options = dict() if meta.config: for option in meta.config: pair = option.split('=') if len(pair) != 2: parser.error('config options must have the format key=value') sys.exit(-1) options[pair[0].strip()] = pair[1] # Run cmd sync = Sync(meta.regions, options) if meta.show_status: sync.report_status() elif meta.parallel: sync.parallel_sync() elif meta.show_regions: sync.show_regions() elif meta.make_backup: sync.make_backup() else: sync.sequential_sync(meta.dry_run)
en
0.865413
#!/usr/bin/env python # -- encoding: utf-8 -- # # Copyright 2015-2016 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with <EMAIL> # init object Report the synchronisation status of the regions # Don't do anything. Message has been already printed # try next region Run the synchronisation in several regions in parallel. The synchronisation inside the region is sequential (i.e. several regions are synchronised simultaneously, but only one image at time is uploaded for each region) # Remove old handlers # After a fork, os_exit() and not sys.exit() must be used. Run the synchronisation sequentially (that is, do not start the synchronisation to a region before the previous one was completed or failed :param dry_run: if true, do not synchronise images actually # Don't do anything. Message has been already printed # try next region Wait until one of the regions ends its synchronisation and then print the result :param children: :return: a dictionary or regions, indexed by the pid of the process print a full list of the regions available (excluding the master region) in all the targets defined in the configuration file make a backup of the metadata in the regions specified at the constructor (in addition to the master region). The backup is created in a directory named 'backup_glance_' with the date and time as suffix There is a file for each region (the name is backup_<region>.csv) and inside the file a line for each image. Only the information about public images/ the images owned by the tenant, can be obtained, regardless if the user is an admin. This is a limitation of the glance API # do nothing. Already logged. # Parse cmdline # Run cmd
1.987208
2
models/object_detection/pytorch/ssd-resnet34/training/cpu/mlperf_logger.py
Pandinosaurus/models-intelai
0
8795
### This file is originally from: [mlcommons repo](https://github.com/mlcommons/training/tree/9947bdf21ee3f2488fa4b362eec2ce7deb2ec4dd/single_stage_detector/ssd/mlperf_logger.py) # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import os from mlperf_logging import mllog from mlperf_logging.mllog import constants as mllog_const mllogger = mllog.get_mllogger() mllog.config( filename=(os.getenv("COMPLIANCE_FILE") or "mlperf_compliance.log"), root_dir=os.path.normpath(os.path.dirname(os.path.realpath(__file__)))) def ssd_print(*args, sync=True, **kwargs): use_cuda = os.getenv('USE_CUDA') if sync and use_cuda=='True': barrier() if get_rank() == 0: kwargs['stack_offset'] = 2 mllogger.event(*args, **kwargs) def barrier(): """ Works as a temporary distributed barrier, currently pytorch doesn't implement barrier for NCCL backend. Calls all_reduce on dummy tensor and synchronizes with GPU. """ if torch.distributed.is_initialized(): torch.distributed.all_reduce(torch.cuda.FloatTensor(1)) torch.cuda.synchronize() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = os.getenv('RANK', os.getenv('LOCAL_RANK', 0)) return rank def broadcast_seeds(seed, device): if torch.distributed.is_initialized(): seeds_tensor = torch.LongTensor([seed]).to(device) torch.distributed.broadcast(seeds_tensor, 0) seed = seeds_tensor.item() return seed
### This file is originally from: [mlcommons repo](https://github.com/mlcommons/training/tree/9947bdf21ee3f2488fa4b362eec2ce7deb2ec4dd/single_stage_detector/ssd/mlperf_logger.py) # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import os from mlperf_logging import mllog from mlperf_logging.mllog import constants as mllog_const mllogger = mllog.get_mllogger() mllog.config( filename=(os.getenv("COMPLIANCE_FILE") or "mlperf_compliance.log"), root_dir=os.path.normpath(os.path.dirname(os.path.realpath(__file__)))) def ssd_print(*args, sync=True, **kwargs): use_cuda = os.getenv('USE_CUDA') if sync and use_cuda=='True': barrier() if get_rank() == 0: kwargs['stack_offset'] = 2 mllogger.event(*args, **kwargs) def barrier(): """ Works as a temporary distributed barrier, currently pytorch doesn't implement barrier for NCCL backend. Calls all_reduce on dummy tensor and synchronizes with GPU. """ if torch.distributed.is_initialized(): torch.distributed.all_reduce(torch.cuda.FloatTensor(1)) torch.cuda.synchronize() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = os.getenv('RANK', os.getenv('LOCAL_RANK', 0)) return rank def broadcast_seeds(seed, device): if torch.distributed.is_initialized(): seeds_tensor = torch.LongTensor([seed]).to(device) torch.distributed.broadcast(seeds_tensor, 0) seed = seeds_tensor.item() return seed
en
0.840162
### This file is originally from: [mlcommons repo](https://github.com/mlcommons/training/tree/9947bdf21ee3f2488fa4b362eec2ce7deb2ec4dd/single_stage_detector/ssd/mlperf_logger.py) # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Works as a temporary distributed barrier, currently pytorch doesn't implement barrier for NCCL backend. Calls all_reduce on dummy tensor and synchronizes with GPU. Gets distributed rank or returns zero if distributed is not initialized.
2.0774
2
omtk/models/model_avar_surface_lips.py
CDufour909/omtk_unreal
0
8796
import math import pymel.core as pymel from omtk.core.classNode import Node from omtk.libs import libAttr from omtk.libs import libRigging from . import model_avar_surface class SplitterNode(Node): """ A splitter is a node network that take the parameterV that is normally sent through the follicles and split it between two destination: the follicles and the jaw ref constraint. The more the jaw is opened, the more we'll transfer to the jaw ref before sending to the follicle. This is mainly used to ensure that any lip movement created by the jaw is canceled when the animator try to correct the lips and the jaw is open. Otherwise since the jaw space and the surface space To compute the displacement caused by the was, we'll usethe circumference around the jaw pivot. This create an 'approximation' that might be wrong if some translation also occur in the jaw. todo: test with corrective jaw translation """ def __init__(self): super(SplitterNode, self).__init__() # useless self.attr_inn_jaw_pt = None self.attr_inn_jaw_radius = None self.attr_inn_surface_v = None self.attr_inn_surface_range_v = None self.attr_inn_jaw_default_ratio = None self.attr_out_surface_v = None self.attr_out_jaw_ratio = None def build(self, nomenclature_rig, **kwargs): super(SplitterNode, self).build(**kwargs) # # Create inn and out attributes. # grp_splitter_inn = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterInn') ) # The jaw opening amount in degree. self.attr_inn_jaw_pt = libAttr.addAttr(grp_splitter_inn, 'innJawOpen') # The relative uv coordinates normally sent to the follicles. # Note that this value is expected to change at the output of the SplitterNode (see outSurfaceU and outSurfaceV) self.attr_inn_surface_u = libAttr.addAttr(grp_splitter_inn, 'innSurfaceU') self.attr_inn_surface_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceV') # Use this switch to disable completely the splitter. self.attr_inn_bypass = libAttr.addAttr(grp_splitter_inn, 'innBypassAmount') # The arc length in world space of the surface controlling the follicles. self.attr_inn_surface_range_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceRangeV') # How many degree does take the jaw to create 1 unit of surface deformation? (ex: 20) # How much inn percent is the lips following the jaw by default. # Note that this value is expected to change at the output of the SplitterNode (see attr_out_jaw_ratio) self.attr_inn_jaw_default_ratio = libAttr.addAttr(grp_splitter_inn, 'jawDefaultRatio') # The radius of the influence circle normally resolved by using the distance between the jaw and the avar as radius. self.attr_inn_jaw_radius = libAttr.addAttr(grp_splitter_inn, 'jawRadius') grp_splitter_out = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterOut') ) self.attr_out_surface_u = libAttr.addAttr(grp_splitter_out, 'outSurfaceU') self.attr_out_surface_v = libAttr.addAttr(grp_splitter_out, 'outSurfaceV') self.attr_out_jaw_ratio = libAttr.addAttr(grp_splitter_out, 'outJawRatio') # How much percent this influence follow the jaw after cancellation. # # Connect inn and out network nodes so they can easily be found from the SplitterNode. # attr_inn = libAttr.addAttr(grp_splitter_inn, longName='inn', attributeType='message') attr_out = libAttr.addAttr(grp_splitter_out, longName='out', attributeType='message') pymel.connectAttr(self.node.message, attr_inn) pymel.connectAttr(self.node.message, attr_out) # # Create node networks # Step 1: Get the jaw displacement in uv space (parameterV only). # attr_jaw_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawCircumference'), input1X=self.attr_inn_jaw_radius, input2X=(math.pi * 2.0) ).outputX attr_jaw_open_circle_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawOpenCircleRatio'), operation=2, # divide input1X=self.attr_inn_jaw_pt, input2X=360.0 ).outputX attr_jaw_active_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawActiveCircumference'), input1X=attr_jaw_circumference, input2X=attr_jaw_open_circle_ratio ).outputX attr_jaw_v_range = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getActiveJawRangeInSurfaceSpace'), operation=2, # divide input1X=attr_jaw_active_circumference, input2X=self.attr_inn_surface_range_v ).outputX # # Step 2: Resolve the output jaw_ratio # # Note that this can throw a zero division warning in Maya. # To prevent that we'll use some black-magic-ugly-ass-trick. attr_jaw_ratio_cancelation = libRigging.create_safe_division( self.attr_inn_surface_v, attr_jaw_v_range, nomenclature_rig, 'getJawRatioCancellation' ) attr_jaw_ratio_out_raw = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawRatioOutUnlimited'), operation=2, # substraction, input1D=( self.attr_inn_jaw_default_ratio, attr_jaw_ratio_cancelation ) ).output1D attr_jaw_ratio_out_limited = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawRatioOutLimited'), inputR=attr_jaw_ratio_out_raw, minR=0.0, maxR=1.0 ).outputR # # Step 3: Resolve attr_out_surface_u & attr_out_surface_v # attr_inn_jaw_default_ratio_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getJawDefaultRatioInv'), inputX=self.attr_inn_jaw_default_ratio ).outputX util_jaw_uv_default_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawDefaultRatioUvSpace'), input1X=self.attr_inn_jaw_default_ratio, input1Y=attr_inn_jaw_default_ratio_inv, input2X=attr_jaw_v_range, input2Y=attr_jaw_v_range ) attr_jaw_uv_default_ratio = util_jaw_uv_default_ratio.outputX attr_jaw_uv_default_ratio_inv = util_jaw_uv_default_ratio.outputY attr_jaw_uv_limit_max = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMax'), operation=2, # substract input1D=(attr_jaw_v_range, attr_jaw_uv_default_ratio_inv) ).output1D attr_jaw_uv_limit_min = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMin'), operation=2, # substract input1D=(attr_jaw_uv_default_ratio, attr_jaw_v_range) ).output1D attr_jaw_cancel_range = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawCancelRange'), inputR=self.attr_inn_surface_v, minR=attr_jaw_uv_limit_min, maxR=attr_jaw_uv_limit_max ).outputR attr_out_surface_v_cancelled = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getCanceledUv'), operation=2, # substraction input1D=(self.attr_inn_surface_v, attr_jaw_cancel_range) ).output1D # # Connect output attributes # attr_inn_bypass_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getBypassInv'), inputX=self.attr_inn_bypass ).outputX # Connect output jaw_ratio attr_output_jaw_ratio = libRigging.create_utility_node( 'blendWeighted', input=(attr_jaw_ratio_out_limited, self.attr_inn_jaw_default_ratio), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_jaw_ratio, self.attr_out_jaw_ratio) # Connect output surface u pymel.connectAttr(self.attr_inn_surface_u, self.attr_out_surface_u) # Connect output surface_v attr_output_surface_v = libRigging.create_utility_node( 'blendWeighted', input=(attr_out_surface_v_cancelled, self.attr_inn_surface_v), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_surface_v, self.attr_out_surface_v) class AvarSurfaceLipModel(model_avar_surface.AvarSurfaceModel): """ Custom avar model for the complex situation that is the lips. This ensure that we are moving according to the jaw before sliding on the surface. """ def __init__(self, *args, **kwargs): super(AvarSurfaceLipModel, self).__init__(*args, **kwargs) self._attr_inn_jaw_bindpose = None self._attr_inn_jaw_pitch = None self._attr_inn_jaw_ratio_default = None self._attr_inn_bypass_splitter = None self._attr_out_jaw_ratio = None def _create_interface(self): super(AvarSurfaceLipModel, self)._create_interface() self._attr_inn_jaw_bindpose = libAttr.addAttr(self.grp_rig, 'innJawBindPose', dataType='matrix') self._attr_inn_jaw_pitch = libAttr.addAttr(self.grp_rig, 'innJawPitch', defaultValue=0) self._attr_inn_jaw_ratio_default = libAttr.addAttr(self.grp_rig, 'innJawRatioDefault', defaultValue=0) self._attr_inn_bypass_splitter = libAttr.addAttr(self.grp_rig, 'innBypassSplitter') self._attr_inn_ud_bypass = libAttr.addAttr(self.grp_rig, 'innBypassUD') # self._attr_inn_surface_length_u = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthU', defaultValue=0) # self._attr_inn_surface_length_v = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthV', defaultValue=0) self._attr_out_jaw_ratio = libAttr.addAttr(self.grp_rig, 'outJawRatio') def connect_avar(self, avar): super(AvarSurfaceLipModel, self).connect_avar(avar) # Note: We expect a FaceLipAvar pymel.connectAttr(avar._attr_jaw_bind_tm, self._attr_inn_jaw_bindpose) pymel.connectAttr(avar._attr_jaw_pitch, self._attr_inn_jaw_pitch) pymel.connectAttr(avar._attr_inn_jaw_ratio_default, self._attr_inn_jaw_ratio_default) pymel.connectAttr(avar._attr_bypass_splitter, self._attr_inn_bypass_splitter) pymel.connectAttr(avar.attr_ud_bypass, self._attr_inn_ud_bypass) def _get_follicle_relative_uv_attr(self, **kwargs): nomenclature_rig = self.get_nomenclature_rig() attr_u, attr_v = super(AvarSurfaceLipModel, self)._get_follicle_relative_uv_attr(**kwargs) util_decompose_jaw_bind_tm = libRigging.create_utility_node( 'decomposeMatrix', inputMatrix=self._attr_inn_jaw_bindpose, ) # # Create and connect Splitter Node # splitter = SplitterNode() splitter.build( nomenclature_rig, name=nomenclature_rig.resolve('splitter') ) splitter.setParent(self.grp_rig) # Resolve the radius of the jaw influence. Used by the splitter. attr_jaw_radius = libRigging.create_utility_node( 'distanceBetween', name=nomenclature_rig.resolve('getJawRadius'), point1=self.grp_offset.translate, point2=util_decompose_jaw_bind_tm.outputTranslate ).distance # Resolve the jaw pitch. Used by the splitter. attr_jaw_pitch = self._attr_inn_jaw_pitch # Connect the splitter inputs pymel.connectAttr(attr_u, splitter.attr_inn_surface_u) pymel.connectAttr(attr_v, splitter.attr_inn_surface_v) pymel.connectAttr(self._attr_inn_jaw_ratio_default, splitter.attr_inn_jaw_default_ratio) pymel.connectAttr(self._attr_length_v, splitter.attr_inn_surface_range_v) pymel.connectAttr(attr_jaw_radius, splitter.attr_inn_jaw_radius) pymel.connectAttr(attr_jaw_pitch, splitter.attr_inn_jaw_pt) pymel.connectAttr(self._attr_inn_bypass_splitter, splitter.attr_inn_bypass) attr_u = splitter.attr_out_surface_u attr_v = splitter.attr_out_surface_v # Create constraint to controller the jaw reference pymel.connectAttr(splitter.attr_out_jaw_ratio, self._attr_out_jaw_ratio) # # Implement the 'bypass' avars. # Thoses avars bypass the splitter, used in corner cases only. # attr_attr_ud_bypass_adjusted = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getAdjustedUdBypass'), input1X=self._attr_inn_ud_bypass, input2X=self.multiplier_ud ).outputX attr_v = libRigging.create_utility_node( 'addDoubleLinear', name=nomenclature_rig.resolve('addBypassAvar'), input1=attr_v, input2=attr_attr_ud_bypass_adjusted ).output return attr_u, attr_v
import math import pymel.core as pymel from omtk.core.classNode import Node from omtk.libs import libAttr from omtk.libs import libRigging from . import model_avar_surface class SplitterNode(Node): """ A splitter is a node network that take the parameterV that is normally sent through the follicles and split it between two destination: the follicles and the jaw ref constraint. The more the jaw is opened, the more we'll transfer to the jaw ref before sending to the follicle. This is mainly used to ensure that any lip movement created by the jaw is canceled when the animator try to correct the lips and the jaw is open. Otherwise since the jaw space and the surface space To compute the displacement caused by the was, we'll usethe circumference around the jaw pivot. This create an 'approximation' that might be wrong if some translation also occur in the jaw. todo: test with corrective jaw translation """ def __init__(self): super(SplitterNode, self).__init__() # useless self.attr_inn_jaw_pt = None self.attr_inn_jaw_radius = None self.attr_inn_surface_v = None self.attr_inn_surface_range_v = None self.attr_inn_jaw_default_ratio = None self.attr_out_surface_v = None self.attr_out_jaw_ratio = None def build(self, nomenclature_rig, **kwargs): super(SplitterNode, self).build(**kwargs) # # Create inn and out attributes. # grp_splitter_inn = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterInn') ) # The jaw opening amount in degree. self.attr_inn_jaw_pt = libAttr.addAttr(grp_splitter_inn, 'innJawOpen') # The relative uv coordinates normally sent to the follicles. # Note that this value is expected to change at the output of the SplitterNode (see outSurfaceU and outSurfaceV) self.attr_inn_surface_u = libAttr.addAttr(grp_splitter_inn, 'innSurfaceU') self.attr_inn_surface_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceV') # Use this switch to disable completely the splitter. self.attr_inn_bypass = libAttr.addAttr(grp_splitter_inn, 'innBypassAmount') # The arc length in world space of the surface controlling the follicles. self.attr_inn_surface_range_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceRangeV') # How many degree does take the jaw to create 1 unit of surface deformation? (ex: 20) # How much inn percent is the lips following the jaw by default. # Note that this value is expected to change at the output of the SplitterNode (see attr_out_jaw_ratio) self.attr_inn_jaw_default_ratio = libAttr.addAttr(grp_splitter_inn, 'jawDefaultRatio') # The radius of the influence circle normally resolved by using the distance between the jaw and the avar as radius. self.attr_inn_jaw_radius = libAttr.addAttr(grp_splitter_inn, 'jawRadius') grp_splitter_out = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterOut') ) self.attr_out_surface_u = libAttr.addAttr(grp_splitter_out, 'outSurfaceU') self.attr_out_surface_v = libAttr.addAttr(grp_splitter_out, 'outSurfaceV') self.attr_out_jaw_ratio = libAttr.addAttr(grp_splitter_out, 'outJawRatio') # How much percent this influence follow the jaw after cancellation. # # Connect inn and out network nodes so they can easily be found from the SplitterNode. # attr_inn = libAttr.addAttr(grp_splitter_inn, longName='inn', attributeType='message') attr_out = libAttr.addAttr(grp_splitter_out, longName='out', attributeType='message') pymel.connectAttr(self.node.message, attr_inn) pymel.connectAttr(self.node.message, attr_out) # # Create node networks # Step 1: Get the jaw displacement in uv space (parameterV only). # attr_jaw_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawCircumference'), input1X=self.attr_inn_jaw_radius, input2X=(math.pi * 2.0) ).outputX attr_jaw_open_circle_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawOpenCircleRatio'), operation=2, # divide input1X=self.attr_inn_jaw_pt, input2X=360.0 ).outputX attr_jaw_active_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawActiveCircumference'), input1X=attr_jaw_circumference, input2X=attr_jaw_open_circle_ratio ).outputX attr_jaw_v_range = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getActiveJawRangeInSurfaceSpace'), operation=2, # divide input1X=attr_jaw_active_circumference, input2X=self.attr_inn_surface_range_v ).outputX # # Step 2: Resolve the output jaw_ratio # # Note that this can throw a zero division warning in Maya. # To prevent that we'll use some black-magic-ugly-ass-trick. attr_jaw_ratio_cancelation = libRigging.create_safe_division( self.attr_inn_surface_v, attr_jaw_v_range, nomenclature_rig, 'getJawRatioCancellation' ) attr_jaw_ratio_out_raw = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawRatioOutUnlimited'), operation=2, # substraction, input1D=( self.attr_inn_jaw_default_ratio, attr_jaw_ratio_cancelation ) ).output1D attr_jaw_ratio_out_limited = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawRatioOutLimited'), inputR=attr_jaw_ratio_out_raw, minR=0.0, maxR=1.0 ).outputR # # Step 3: Resolve attr_out_surface_u & attr_out_surface_v # attr_inn_jaw_default_ratio_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getJawDefaultRatioInv'), inputX=self.attr_inn_jaw_default_ratio ).outputX util_jaw_uv_default_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawDefaultRatioUvSpace'), input1X=self.attr_inn_jaw_default_ratio, input1Y=attr_inn_jaw_default_ratio_inv, input2X=attr_jaw_v_range, input2Y=attr_jaw_v_range ) attr_jaw_uv_default_ratio = util_jaw_uv_default_ratio.outputX attr_jaw_uv_default_ratio_inv = util_jaw_uv_default_ratio.outputY attr_jaw_uv_limit_max = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMax'), operation=2, # substract input1D=(attr_jaw_v_range, attr_jaw_uv_default_ratio_inv) ).output1D attr_jaw_uv_limit_min = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMin'), operation=2, # substract input1D=(attr_jaw_uv_default_ratio, attr_jaw_v_range) ).output1D attr_jaw_cancel_range = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawCancelRange'), inputR=self.attr_inn_surface_v, minR=attr_jaw_uv_limit_min, maxR=attr_jaw_uv_limit_max ).outputR attr_out_surface_v_cancelled = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getCanceledUv'), operation=2, # substraction input1D=(self.attr_inn_surface_v, attr_jaw_cancel_range) ).output1D # # Connect output attributes # attr_inn_bypass_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getBypassInv'), inputX=self.attr_inn_bypass ).outputX # Connect output jaw_ratio attr_output_jaw_ratio = libRigging.create_utility_node( 'blendWeighted', input=(attr_jaw_ratio_out_limited, self.attr_inn_jaw_default_ratio), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_jaw_ratio, self.attr_out_jaw_ratio) # Connect output surface u pymel.connectAttr(self.attr_inn_surface_u, self.attr_out_surface_u) # Connect output surface_v attr_output_surface_v = libRigging.create_utility_node( 'blendWeighted', input=(attr_out_surface_v_cancelled, self.attr_inn_surface_v), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_surface_v, self.attr_out_surface_v) class AvarSurfaceLipModel(model_avar_surface.AvarSurfaceModel): """ Custom avar model for the complex situation that is the lips. This ensure that we are moving according to the jaw before sliding on the surface. """ def __init__(self, *args, **kwargs): super(AvarSurfaceLipModel, self).__init__(*args, **kwargs) self._attr_inn_jaw_bindpose = None self._attr_inn_jaw_pitch = None self._attr_inn_jaw_ratio_default = None self._attr_inn_bypass_splitter = None self._attr_out_jaw_ratio = None def _create_interface(self): super(AvarSurfaceLipModel, self)._create_interface() self._attr_inn_jaw_bindpose = libAttr.addAttr(self.grp_rig, 'innJawBindPose', dataType='matrix') self._attr_inn_jaw_pitch = libAttr.addAttr(self.grp_rig, 'innJawPitch', defaultValue=0) self._attr_inn_jaw_ratio_default = libAttr.addAttr(self.grp_rig, 'innJawRatioDefault', defaultValue=0) self._attr_inn_bypass_splitter = libAttr.addAttr(self.grp_rig, 'innBypassSplitter') self._attr_inn_ud_bypass = libAttr.addAttr(self.grp_rig, 'innBypassUD') # self._attr_inn_surface_length_u = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthU', defaultValue=0) # self._attr_inn_surface_length_v = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthV', defaultValue=0) self._attr_out_jaw_ratio = libAttr.addAttr(self.grp_rig, 'outJawRatio') def connect_avar(self, avar): super(AvarSurfaceLipModel, self).connect_avar(avar) # Note: We expect a FaceLipAvar pymel.connectAttr(avar._attr_jaw_bind_tm, self._attr_inn_jaw_bindpose) pymel.connectAttr(avar._attr_jaw_pitch, self._attr_inn_jaw_pitch) pymel.connectAttr(avar._attr_inn_jaw_ratio_default, self._attr_inn_jaw_ratio_default) pymel.connectAttr(avar._attr_bypass_splitter, self._attr_inn_bypass_splitter) pymel.connectAttr(avar.attr_ud_bypass, self._attr_inn_ud_bypass) def _get_follicle_relative_uv_attr(self, **kwargs): nomenclature_rig = self.get_nomenclature_rig() attr_u, attr_v = super(AvarSurfaceLipModel, self)._get_follicle_relative_uv_attr(**kwargs) util_decompose_jaw_bind_tm = libRigging.create_utility_node( 'decomposeMatrix', inputMatrix=self._attr_inn_jaw_bindpose, ) # # Create and connect Splitter Node # splitter = SplitterNode() splitter.build( nomenclature_rig, name=nomenclature_rig.resolve('splitter') ) splitter.setParent(self.grp_rig) # Resolve the radius of the jaw influence. Used by the splitter. attr_jaw_radius = libRigging.create_utility_node( 'distanceBetween', name=nomenclature_rig.resolve('getJawRadius'), point1=self.grp_offset.translate, point2=util_decompose_jaw_bind_tm.outputTranslate ).distance # Resolve the jaw pitch. Used by the splitter. attr_jaw_pitch = self._attr_inn_jaw_pitch # Connect the splitter inputs pymel.connectAttr(attr_u, splitter.attr_inn_surface_u) pymel.connectAttr(attr_v, splitter.attr_inn_surface_v) pymel.connectAttr(self._attr_inn_jaw_ratio_default, splitter.attr_inn_jaw_default_ratio) pymel.connectAttr(self._attr_length_v, splitter.attr_inn_surface_range_v) pymel.connectAttr(attr_jaw_radius, splitter.attr_inn_jaw_radius) pymel.connectAttr(attr_jaw_pitch, splitter.attr_inn_jaw_pt) pymel.connectAttr(self._attr_inn_bypass_splitter, splitter.attr_inn_bypass) attr_u = splitter.attr_out_surface_u attr_v = splitter.attr_out_surface_v # Create constraint to controller the jaw reference pymel.connectAttr(splitter.attr_out_jaw_ratio, self._attr_out_jaw_ratio) # # Implement the 'bypass' avars. # Thoses avars bypass the splitter, used in corner cases only. # attr_attr_ud_bypass_adjusted = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getAdjustedUdBypass'), input1X=self._attr_inn_ud_bypass, input2X=self.multiplier_ud ).outputX attr_v = libRigging.create_utility_node( 'addDoubleLinear', name=nomenclature_rig.resolve('addBypassAvar'), input1=attr_v, input2=attr_attr_ud_bypass_adjusted ).output return attr_u, attr_v
en
0.848686
A splitter is a node network that take the parameterV that is normally sent through the follicles and split it between two destination: the follicles and the jaw ref constraint. The more the jaw is opened, the more we'll transfer to the jaw ref before sending to the follicle. This is mainly used to ensure that any lip movement created by the jaw is canceled when the animator try to correct the lips and the jaw is open. Otherwise since the jaw space and the surface space To compute the displacement caused by the was, we'll usethe circumference around the jaw pivot. This create an 'approximation' that might be wrong if some translation also occur in the jaw. todo: test with corrective jaw translation # useless # # Create inn and out attributes. # # The jaw opening amount in degree. # The relative uv coordinates normally sent to the follicles. # Note that this value is expected to change at the output of the SplitterNode (see outSurfaceU and outSurfaceV) # Use this switch to disable completely the splitter. # The arc length in world space of the surface controlling the follicles. # How many degree does take the jaw to create 1 unit of surface deformation? (ex: 20) # How much inn percent is the lips following the jaw by default. # Note that this value is expected to change at the output of the SplitterNode (see attr_out_jaw_ratio) # The radius of the influence circle normally resolved by using the distance between the jaw and the avar as radius. # How much percent this influence follow the jaw after cancellation. # # Connect inn and out network nodes so they can easily be found from the SplitterNode. # # # Create node networks # Step 1: Get the jaw displacement in uv space (parameterV only). # # divide # divide # # Step 2: Resolve the output jaw_ratio # # Note that this can throw a zero division warning in Maya. # To prevent that we'll use some black-magic-ugly-ass-trick. # substraction, # # Step 3: Resolve attr_out_surface_u & attr_out_surface_v # # substract # substract # substraction # # Connect output attributes # # Connect output jaw_ratio # Connect output surface u # Connect output surface_v Custom avar model for the complex situation that is the lips. This ensure that we are moving according to the jaw before sliding on the surface. # self._attr_inn_surface_length_u = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthU', defaultValue=0) # self._attr_inn_surface_length_v = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthV', defaultValue=0) # Note: We expect a FaceLipAvar # # Create and connect Splitter Node # # Resolve the radius of the jaw influence. Used by the splitter. # Resolve the jaw pitch. Used by the splitter. # Connect the splitter inputs # Create constraint to controller the jaw reference # # Implement the 'bypass' avars. # Thoses avars bypass the splitter, used in corner cases only. #
2.627216
3
project/server/main/feed.py
dataesr/harvest-theses
0
8797
<filename>project/server/main/feed.py import datetime import os import pymongo import requests from urllib import parse from urllib.parse import quote_plus import json from retry import retry from bs4 import BeautifulSoup import math from project.server.main.logger import get_logger from project.server.main.utils_swift import upload_object from project.server.main.parse import parse_theses, get_idref_from_OS from project.server.main.referentiel import harvest_and_save_idref logger = get_logger(__name__) def get_num_these(soup): num_theses = [] for d in soup.find_all('doc'): num_theses.append(d.find('str', {'name': 'num'}).text) return num_theses @retry(delay=60, tries=5) def get_num_these_between_dates(start_date, end_date): start_date_str = start_date.strftime("%d/%m/%Y") end_date_str = end_date.strftime("%d/%m/%Y") start_date_str_iso = start_date.strftime("%Y%m%d") end_date_str_iso = end_date.strftime("%Y%m%d") start = 0 url = "http://theses.fr/?q=&zone1=titreRAs&val1=&op1=AND&zone2=auteurs&val2=&op2=AND&zone3=etabSoutenances&val3=&op3=AND&zone4=dateSoutenance&val4a={}&val4b={}&start={}&format=xml" logger.debug(url.format(start_date_str, end_date_str, start)) r = requests.get(url.format(start_date_str, end_date_str, start)) soup = BeautifulSoup(r.text, 'lxml') nb_res = soup.find('result', {'name': 'response'}).attrs['numfound'] logger.debug("{} resultats entre {} et {}".format(nb_res, start_date_str_iso, end_date_str_iso )) num_theses = get_num_these(soup) nb_pages_remaining = math.ceil(int(nb_res)/1000) for p in range(1, nb_pages_remaining): logger.debug("page {} for entre {} et {}".format(p, start_date_str_iso, end_date_str_iso)) r = requests.get(url.format(start_date_str, end_date_str, p * 1000)) soup = BeautifulSoup(r.text, 'lxml') num_theses += get_num_these(soup) return num_theses def save_data(data, collection_name, year_start, year_end, chunk_index, referentiel): logger.debug(f'save_data theses {collection_name} {chunk_index}') year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' # 1. save raw data to OS current_file = f'theses_{year_start_end}_{chunk_index}.json' json.dump(data, open(current_file, 'w')) os.system(f'gzip {current_file}') upload_object('theses', f'{current_file}.gz', f'{collection_name}/raw/{current_file}.gz') os.system(f'rm -rf {current_file}.gz') # 2.transform data and save in mongo current_file_parsed = f'theses_parsed_{year_start_end}_{chunk_index}.json' data_parsed = [parse_theses(e, referentiel, collection_name) for e in data] json.dump(data_parsed, open(current_file_parsed, 'w')) # insert_data(collection_name, current_file_parsed) os.system(f'gzip {current_file_parsed}') upload_object('theses', f'{current_file_parsed}.gz', f'{collection_name}/parsed/{current_file_parsed}.gz') os.system(f'rm -rf {current_file_parsed}.gz') def harvest_and_insert(collection_name): # 1. save aurehal structures harvest_and_save_idref(collection_name) referentiel = get_idref_from_OS(collection_name) # 2. drop mongo #logger.debug(f'dropping {collection_name} collection before insertion') #myclient = pymongo.MongoClient('mongodb://mongo:27017/') #myclient['theses'][collection_name].drop() # 3. save publications year_start = None year_end = None if year_start is None: year_start = 1990 if year_end is None: year_end = datetime.date.today().year harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel) @retry(delay=60, tries=5) def download_these_notice(these_id): res = {'id': these_id} r_tefudoc = requests.get("http://www.theses.fr/{}.tefudoc".format(these_id)) r_xml = requests.get("http://www.theses.fr/{}.xml".format(these_id)) if r_tefudoc.text[0:5] == "<?xml": res['tefudoc'] = r_tefudoc.text if r_xml.text[0:5] == "<?xml": res['xml'] = r_xml.text return res def harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel): year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' start_date = datetime.datetime(year_start,1,1) end_date = datetime.datetime(year_end + 1,1,1) + datetime.timedelta(days = -1) all_num_theses = get_num_these_between_dates(start_date, end_date) # todo save by chunk chunk_index = 0 data = [] MAX_DATA_SIZE = 25000 nb_theses = len(all_num_theses) logger.debug(f'{nb_theses} theses to download and parse') for ix, nnt in enumerate(all_num_theses): if ix % 100 == 0: logger.debug(f'theses {year_start_end} {ix}') res = download_these_notice(nnt) data.append(res) if (len(data) > MAX_DATA_SIZE) or (ix == nb_theses - 1): if data: save_data(data, collection_name, year_start, year_end, chunk_index, referentiel) data = [] chunk_index += 1 def insert_data(collection_name, output_file): myclient = pymongo.MongoClient('mongodb://mongo:27017/') mydb = myclient['theses'] ## mongo start start = datetime.datetime.now() mongoimport = f"mongoimport --numInsertionWorkers 2 --uri mongodb://mongo:27017/theses --file {output_file}" \ f" --collection {collection_name} --jsonArray" logger.debug(f'Mongoimport {output_file} start at {start}') logger.debug(f'{mongoimport}') os.system(mongoimport) logger.debug(f'Checking indexes on collection {collection_name}') mycol = mydb[collection_name] #mycol.create_index('docid') end = datetime.datetime.now() delta = end - start logger.debug(f'Mongoimport done in {delta}') ## mongo done
<filename>project/server/main/feed.py import datetime import os import pymongo import requests from urllib import parse from urllib.parse import quote_plus import json from retry import retry from bs4 import BeautifulSoup import math from project.server.main.logger import get_logger from project.server.main.utils_swift import upload_object from project.server.main.parse import parse_theses, get_idref_from_OS from project.server.main.referentiel import harvest_and_save_idref logger = get_logger(__name__) def get_num_these(soup): num_theses = [] for d in soup.find_all('doc'): num_theses.append(d.find('str', {'name': 'num'}).text) return num_theses @retry(delay=60, tries=5) def get_num_these_between_dates(start_date, end_date): start_date_str = start_date.strftime("%d/%m/%Y") end_date_str = end_date.strftime("%d/%m/%Y") start_date_str_iso = start_date.strftime("%Y%m%d") end_date_str_iso = end_date.strftime("%Y%m%d") start = 0 url = "http://theses.fr/?q=&zone1=titreRAs&val1=&op1=AND&zone2=auteurs&val2=&op2=AND&zone3=etabSoutenances&val3=&op3=AND&zone4=dateSoutenance&val4a={}&val4b={}&start={}&format=xml" logger.debug(url.format(start_date_str, end_date_str, start)) r = requests.get(url.format(start_date_str, end_date_str, start)) soup = BeautifulSoup(r.text, 'lxml') nb_res = soup.find('result', {'name': 'response'}).attrs['numfound'] logger.debug("{} resultats entre {} et {}".format(nb_res, start_date_str_iso, end_date_str_iso )) num_theses = get_num_these(soup) nb_pages_remaining = math.ceil(int(nb_res)/1000) for p in range(1, nb_pages_remaining): logger.debug("page {} for entre {} et {}".format(p, start_date_str_iso, end_date_str_iso)) r = requests.get(url.format(start_date_str, end_date_str, p * 1000)) soup = BeautifulSoup(r.text, 'lxml') num_theses += get_num_these(soup) return num_theses def save_data(data, collection_name, year_start, year_end, chunk_index, referentiel): logger.debug(f'save_data theses {collection_name} {chunk_index}') year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' # 1. save raw data to OS current_file = f'theses_{year_start_end}_{chunk_index}.json' json.dump(data, open(current_file, 'w')) os.system(f'gzip {current_file}') upload_object('theses', f'{current_file}.gz', f'{collection_name}/raw/{current_file}.gz') os.system(f'rm -rf {current_file}.gz') # 2.transform data and save in mongo current_file_parsed = f'theses_parsed_{year_start_end}_{chunk_index}.json' data_parsed = [parse_theses(e, referentiel, collection_name) for e in data] json.dump(data_parsed, open(current_file_parsed, 'w')) # insert_data(collection_name, current_file_parsed) os.system(f'gzip {current_file_parsed}') upload_object('theses', f'{current_file_parsed}.gz', f'{collection_name}/parsed/{current_file_parsed}.gz') os.system(f'rm -rf {current_file_parsed}.gz') def harvest_and_insert(collection_name): # 1. save aurehal structures harvest_and_save_idref(collection_name) referentiel = get_idref_from_OS(collection_name) # 2. drop mongo #logger.debug(f'dropping {collection_name} collection before insertion') #myclient = pymongo.MongoClient('mongodb://mongo:27017/') #myclient['theses'][collection_name].drop() # 3. save publications year_start = None year_end = None if year_start is None: year_start = 1990 if year_end is None: year_end = datetime.date.today().year harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel) @retry(delay=60, tries=5) def download_these_notice(these_id): res = {'id': these_id} r_tefudoc = requests.get("http://www.theses.fr/{}.tefudoc".format(these_id)) r_xml = requests.get("http://www.theses.fr/{}.xml".format(these_id)) if r_tefudoc.text[0:5] == "<?xml": res['tefudoc'] = r_tefudoc.text if r_xml.text[0:5] == "<?xml": res['xml'] = r_xml.text return res def harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel): year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' start_date = datetime.datetime(year_start,1,1) end_date = datetime.datetime(year_end + 1,1,1) + datetime.timedelta(days = -1) all_num_theses = get_num_these_between_dates(start_date, end_date) # todo save by chunk chunk_index = 0 data = [] MAX_DATA_SIZE = 25000 nb_theses = len(all_num_theses) logger.debug(f'{nb_theses} theses to download and parse') for ix, nnt in enumerate(all_num_theses): if ix % 100 == 0: logger.debug(f'theses {year_start_end} {ix}') res = download_these_notice(nnt) data.append(res) if (len(data) > MAX_DATA_SIZE) or (ix == nb_theses - 1): if data: save_data(data, collection_name, year_start, year_end, chunk_index, referentiel) data = [] chunk_index += 1 def insert_data(collection_name, output_file): myclient = pymongo.MongoClient('mongodb://mongo:27017/') mydb = myclient['theses'] ## mongo start start = datetime.datetime.now() mongoimport = f"mongoimport --numInsertionWorkers 2 --uri mongodb://mongo:27017/theses --file {output_file}" \ f" --collection {collection_name} --jsonArray" logger.debug(f'Mongoimport {output_file} start at {start}') logger.debug(f'{mongoimport}') os.system(mongoimport) logger.debug(f'Checking indexes on collection {collection_name}') mycol = mydb[collection_name] #mycol.create_index('docid') end = datetime.datetime.now() delta = end - start logger.debug(f'Mongoimport done in {delta}') ## mongo done
en
0.377705
# 1. save raw data to OS # 2.transform data and save in mongo # insert_data(collection_name, current_file_parsed) # 1. save aurehal structures # 2. drop mongo #logger.debug(f'dropping {collection_name} collection before insertion') #myclient = pymongo.MongoClient('mongodb://mongo:27017/') #myclient['theses'][collection_name].drop() # 3. save publications # todo save by chunk ## mongo start #mycol.create_index('docid') ## mongo done
2.335372
2
DQM/L1TMonitor/python/L1TGCT_cfi.py
ckamtsikis/cmssw
852
8798
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer l1tGct = DQMEDAnalyzer('L1TGCT', gctCentralJetsSource = cms.InputTag("gctDigis","cenJets"), gctForwardJetsSource = cms.InputTag("gctDigis","forJets"), gctTauJetsSource = cms.InputTag("gctDigis","tauJets"), gctIsoTauJetsSource = cms.InputTag("gctDigis","fake"), gctEnergySumsSource = cms.InputTag("gctDigis"), gctIsoEmSource = cms.InputTag("gctDigis","isoEm"), gctNonIsoEmSource = cms.InputTag("gctDigis","nonIsoEm"), monitorDir = cms.untracked.string("L1T/L1TGCT"), verbose = cms.untracked.bool(False), stage1_layer2_ = cms.bool(False), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True), filterTriggerType = cms.int32(1) )
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer l1tGct = DQMEDAnalyzer('L1TGCT', gctCentralJetsSource = cms.InputTag("gctDigis","cenJets"), gctForwardJetsSource = cms.InputTag("gctDigis","forJets"), gctTauJetsSource = cms.InputTag("gctDigis","tauJets"), gctIsoTauJetsSource = cms.InputTag("gctDigis","fake"), gctEnergySumsSource = cms.InputTag("gctDigis"), gctIsoEmSource = cms.InputTag("gctDigis","isoEm"), gctNonIsoEmSource = cms.InputTag("gctDigis","nonIsoEm"), monitorDir = cms.untracked.string("L1T/L1TGCT"), verbose = cms.untracked.bool(False), stage1_layer2_ = cms.bool(False), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True), filterTriggerType = cms.int32(1) )
none
1
1.445069
1
utilities.py
gandhiy/lipMIP
11
8799
<reponame>gandhiy/lipMIP """ General all-purpose utilities """ import sys import torch import torch.nn.functional as F import numpy as np import gurobipy as gb import matplotlib.pyplot as plt import io import contextlib import tempfile import time import re import pickle import inspect import glob import os COMPLETED_JOB_DIR = os.path.join(os.path.dirname(__file__), 'jobs', 'completed') # =============================================================================== # = Helpful all-purpose functions = # =============================================================================== class ParameterObject: def __init__(self, **kwargs): self.attr_list = [] assert 'attr_list' not in kwargs for k,v in kwargs.items(): setattr(self, k, v) self.attr_list.append(k) def change_attrs(self, **kwargs): new_kwargs = {} for attr in self.attr_list: if attr in kwargs: new_kwargs[attr] = kwargs[attr] else: new_kwargs[attr] = getattr(self, attr) return self.__class__(**new_kwargs) class Factory(ParameterObject): def __init__(self, constructor, **kwargs): self.constructor = constructor super(Factory, self).__init__(**kwargs) def __call__(self, **kwargs): cons_args = inspect.getfullargspec(self.constructor).args # Make default args from attributes args = {k: getattr(self, k) for k in self.attr_list if k in cons_args} # Update the default args for k,v in kwargs.items(): if k in cons_args: args[k] = v # Build object return self.constructor(**args) def __repr__(self): return '<Factory: %s>' % self.constructor.__self__.__name__ class DoEvery: @classmethod def dummy(cls, *args, **kwargs): pass def __init__(self, func, freq): """ Simple class that holds onto a function and it returns this function every freq iterations ARGS: func: function object to be returned every freq iterations freq: int - how often to return the function """ self.func = func self.freq = freq self.i = 0 def __call__(self, *args, **kwargs): if self.i % self.freq == 0: returner = self.func else: returner = self.dummy self.i += 1 return returner(*args, **kwargs) class Timer: def __init__(self, start_on_init=True): if start_on_init: self.start() def start(self): self.start_time = time.time() def stop(self): self.stop_time = time.time() return self.stop_time - self.start_time def reset(self): self.start_time = self.stop_time = None def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" return [_.cpu() for _ in tensor_iter] def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] def prod(num_iter): """ returns product of all elements in this iterator *'ed together""" cumprod = 1 for el in num_iter: cumprod *= el return cumprod def partition(n, m): """ Given ints n > m, partitions n into an iterable where all elements are m, except for the last one which is (n % m) """ count = 0 while count < n: yield min([m, n - count]) count += m def flatten_list(lol): """ Given list of lists, flattens it into a single list. """ output = [] for el in lol: if not isinstance(el, list): output.append(el) continue output.extend(flatten_list(el)) return output def partition_by_suffix(iterable, func): """ Given an iterable and a boolean-valued function which takes in elements of that iterable, outputs a list of lists, where each list ends in an element for which the func returns true, (except for the last one) e.g. iterable := [1, 2, 3, 4, 5,5, 5] func := lambda x: (x % 2) == 0 returns [[1,2], [3,4], [5, 5, 5]] """ output = [] sublist = [] for el in iterable: sublist.append(el) if func(el): output.append(sublist) sublist = [] if len(sublist) > 0: output.append(sublist) return output def arraylike(obj): return isinstance(obj, (torch.Tensor, np.ndarray)) def as_numpy(tensor_or_array): """ If given a tensor or numpy array returns that object cast numpy array """ if isinstance(tensor_or_array, torch.Tensor): tensor_or_array = tensor_or_array.cpu().detach().numpy() return tensor_or_array def two_col(l, r): """ Takes two numpy arrays of size N and makes a numpy array of size Nx2 """ return np.vstack([l, r]).T def split_pos_neg(x): if isinstance(x, torch.Tensor): return split_tensor_pos_neg(x) else: return split_ndarray_pos_neg(x) def split_tensor_pos_neg(x): """ Splits a tensor into positive and negative components """ pos = F.relu(x) neg = -F.relu(-x) return pos, neg def split_ndarray_pos_neg(x): """ Splits a numpy ndarray into positive and negative components """ pos = x * (x >= 0) neg = x * (x <= 0) return pos, neg def swap_axes(x, source, dest): """ Swaps the dimensions of source <-> dest for torch/numpy ARGS: x : numpy array or tensor source : int index dest : int index RETURNS x' - object with same data as x, but with axes swapped """ if isinstance(x, torch.Tensor): return x.transpose(source, dest) else: return np.moveaxis(x, source, dest) def build_var_namer(k): return lambda d: '%s[%s]' % (k, d) @contextlib.contextmanager def silent(): save_stdout = sys.stdout temp = tempfile.TemporaryFile(mode='w') sys.stdout = temp yield sys.stdout = save_stdout temp.close() def ia_mm(matrix, intervals, lohi_dim, matrix_or_vec='matrix'): """ Interval analysis matrix(-vec) multiplication for torch/np intervals ARGS: matrix : tensor or numpy array of shape (m,n) - intervals : tensor or numpy array with shape (n1, ..., 2, n_i, ...) - "vector" of intervals to be multiplied by a matrix one such n_i must be equal to n (from matrix shape) lohi_dim : int - which dimension (index) of intervals corresponds to the lo/hi split matrix_or_vec : string - must be matrix or vec, corresponds to whether intervals is to be treated as a matrix or a vector. If a v RETURNS: object of same type as intervals, but with the shape slightly different: len(output[-1/-2]) == m """ # asserts for shapes and things assert isinstance(matrix, torch.Tensor) # TENSOR ONLY FOR NOW assert isinstance(intervals, torch.Tensor) m, n = matrix.shape assert intervals.shape[lohi_dim] == 2 assert matrix_or_vec in ['matrix', 'vec'] if matrix_or_vec == 'vec': intervals = intervals.unsqueeze(-1) assert lohi_dim != intervals.dim() - 2 assert intervals[dim][-2] == n # define operators based on tensor/numpy case matmul = lambda m, x: m.matmul(x) stack = lambda a, b: torch.stack([a, b]) # now do IA stuff intervals = swap_axes(intervals, 0, lohi_dim) matrix_pos, matrix_neg = split_pos_neg(matrix) los, his = intervals new_los = matmul(matrix_pos, los) + matmul(matrix_neg, his) new_his = matmul(matrix_pos, his) + matmul(matrix_neg, los) intervals = swap_axes(stack(new_los, new_his), 0, lohi_dim) if matrix_or_vec == 'vec': intervals = interval.squeeze(-1) return intervals # ============================================================================= # = Image display functions = # ============================================================================= def display_images(image_rows, figsize=(8, 8)): """ Given either a tensor/np.array (or list of same), will display each element in the row or tensor ARGS: image_rows: tensor or np.array or tensor[], np.array[] - image or list of images to display RETURNS: None, but displays images """ if not isinstance(image_rows, list): image_rows = [image_rows] np_rows = [as_numpy(row) for row in image_rows] # Transpose channel to last dimension and stack to make rows np_rows = [np.concatenate(_.transpose([0, 2, 3, 1]), axis=1) for _ in np_rows] # Now stack rows full_image = np.concatenate(np_rows, axis=0) # And then show image imshow_kwargs = {} if full_image.shape[-1] == 1: full_image = full_image.squeeze() imshow_kwargs['cmap'] = 'gray' fig = plt.figure(figsize=figsize) ax = fig.add_subplot() ax.axis('off') ax.imshow(full_image, **imshow_kwargs) plt.show() # ====================================================== # = Pytorch helpers = # ====================================================== def seq_append(seq, module): """ Takes a nn.sequential and a nn.module and creates a nn.sequential with the module appended to it ARGS: seq: nn.Sequntial object module: <inherits nn.Module> RETURNS: nn.Sequential object """ seq_modules = [seq[_] for _ in range(len(seq))] + [module] return nn.Sequential(*seq_modules) def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" output = [] for el in tensor_iter: if isinstance(el, tuple): output.append(tuple(_.cpu() for _ in el)) else: output.append(el.cpu()) return output def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: if isinstance(el, tuple): return tuple(_.cuda() for _ in el) else: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] # ======================================= # = Polytope class = # ======================================= class Polytope: INPUT_KEY = 'input' SLACK_KEY = 'slack' def __init__(self, A, b): """ Represents a polytope of the form {x | AX <= b} (where everything is a numpy array) """ self.A = A self.b = b def _input_from_model(self, model): var_namer = build_var_namer(self.INPUT_KEY) return np.array([model.getVarByName(var_namer(i)).X for i in range(self.A.shape[1])]) def _build_model(self, slack=False): """ Builds a gurobi model of this object """ with silent(): model = gb.Model() input_namer = build_var_namer(self.INPUT_KEY) input_vars = [model.addVar(lb=-gb.GRB.INFINITY, ub=gb.GRB.INFINITY, name=input_namer(i)) for i in range(self.A.shape[1])] if slack == True: slack_var = model.addVar(lb=0, ub=1.0, name=self.SLACK_KEY) else: slack_var = 0 for i, row in enumerate(self.A): model.addConstr(gb.LinExpr(row, input_vars) + slack_var <= self.b[i]) model.update() return model def contains(self, x, tolerance=1e-6): return all(self.A @ x <= self.b + tolerance) def interior_point(self): model = self._build_model(slack=True) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) def intersects_hbox(self, hbox): """ If this intersects a given hyperbox, returns a point contained in both """ model = self._build_model(slack=True) input_namer = build_var_namer(self.INPUT_KEY) for i, (lb, ub) in enumerate(hbox): var = model.getVarByName(input_namer(i)) model.addConstr(lb <= var <= ub) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) # ========================================================= # = experiment.Result object helpers = # ========================================================= def filename_to_epoch(filename): return int(re.search(r'_EPOCH\d{4}_', filename).group()[-5:-1]) def read_result_files(result_files): output = [] for result_file in result_files: try: with open(result_file, 'rb') as f: output.append((result_file, pickle.load(f))) except Exception as err: print("Failed on file: ", result_file, err) return output def job_out_series(job_outs, eval_style, method, value_or_time='value', avg_stdev='avg'): """ Takes in some result or resultList objects and a 'method', and desired object, and returns these objects in a list ARGS: results: Result[] or ResultList[], results to consider eval_style: str - which method of Experiment we look at method: str - which Lipschitz-estimation technique to consider value_or_time: 'value' or 'time' - which number to return avg_stdev: 'avg' or 'stdev' - for ResultList[], we can get average or stdev values RETURNS: list of floats """ # check everything is the same type assert value_or_time in ['value', 'time'] assert avg_stdev in ['avg', 'stdev'] assert eval_style in ['do_random_evals', 'do_unit_hypercube_eval', 'do_data_evals', 'do_large_radius_evals'] results = [job_out[eval_style] for job_out in job_outs] output = [] for result in results: try: #Result object case if value_or_time == 'value': output.append(result.values(method)) else: output.append(result.compute_times(method)) except: triple = result.average_stdevs(value_or_time)[method] if avg_stdev == 'avg': output.append(triple[0]) else: output.append(triple[1]) return output def collect_result_outs(filematch): """ Uses glob to collect and load result objects matching a series ARGS: filematch: string with *'s associated with it e.g. 'NAME*SUBNAME*GLOBAL.result' RESULTS: list of (filename, experiment.Result) objects """ search_str = os.path.join(COMPLETED_JOB_DIR, filematch) sorted_filenames = sorted(glob.glob(search_str)) return read_result_files(sorted_filenames) def collect_epochs(filename_list): """ Given a list of (filename) objects, converts the filenames into integers, pulling the EPOCH attribute from the filename str[] -> int[] """ def epoch_gleamer(filename): basename = os.path.basename(filename) return int(re.search('_EPOCH\d+_', filename).group()[6:-1]) return [epoch_gleamer(_) for _ in filename_list] def data_from_results(result_iter, method, lip_estimator, time_or_value='value', avg_or_stdev='avg'): """ Given a list of experiment.Result or experiment.ResultList objects will return the time/value for the lip_estimator of the method for result (or avg/stdev if resultList objects) e.g., data_from_results('do_unit_hypercube_eval', 'LipMIP', 'value') gets a list of values of the LipMIP over the unitHypercube domain ARGS: method: str - name of one of the experimental methods lip_estimator : str - name of the class of lipschitz estimator to use time_or_value : 'time' or 'value' - returning the time or value here avg_or_stdev : 'avg' or 'stdev' - returning either avg or stdev of results from ResultListObjects """ assert method in ['do_random_evals', 'do_data_evals', 'do_unit_hypercube_eval'] assert lip_estimator in ['LipMIP', 'FastLip', 'LipLP', 'CLEVER', 'LipSDP', 'NaiveUB', 'RandomLB', 'SeqLip'] assert time_or_value in ['time', 'value'] assert avg_or_stdev in ['avg', 'stdev'] def datum_getter(result_obj): if not hasattr(result_obj, 'average_stdevs'): if time_or_value == 'value': return result_obj[method].values(lip_estimator) else: return result_obj[method].compute_times(lip_estimator) else: triple = result_obj.average_stdevs(time_or_value) if avg_or_stdev == 'avg': return triple[0] else: return triple[1] return [datum_getter(_) for _ in result_iter]
""" General all-purpose utilities """ import sys import torch import torch.nn.functional as F import numpy as np import gurobipy as gb import matplotlib.pyplot as plt import io import contextlib import tempfile import time import re import pickle import inspect import glob import os COMPLETED_JOB_DIR = os.path.join(os.path.dirname(__file__), 'jobs', 'completed') # =============================================================================== # = Helpful all-purpose functions = # =============================================================================== class ParameterObject: def __init__(self, **kwargs): self.attr_list = [] assert 'attr_list' not in kwargs for k,v in kwargs.items(): setattr(self, k, v) self.attr_list.append(k) def change_attrs(self, **kwargs): new_kwargs = {} for attr in self.attr_list: if attr in kwargs: new_kwargs[attr] = kwargs[attr] else: new_kwargs[attr] = getattr(self, attr) return self.__class__(**new_kwargs) class Factory(ParameterObject): def __init__(self, constructor, **kwargs): self.constructor = constructor super(Factory, self).__init__(**kwargs) def __call__(self, **kwargs): cons_args = inspect.getfullargspec(self.constructor).args # Make default args from attributes args = {k: getattr(self, k) for k in self.attr_list if k in cons_args} # Update the default args for k,v in kwargs.items(): if k in cons_args: args[k] = v # Build object return self.constructor(**args) def __repr__(self): return '<Factory: %s>' % self.constructor.__self__.__name__ class DoEvery: @classmethod def dummy(cls, *args, **kwargs): pass def __init__(self, func, freq): """ Simple class that holds onto a function and it returns this function every freq iterations ARGS: func: function object to be returned every freq iterations freq: int - how often to return the function """ self.func = func self.freq = freq self.i = 0 def __call__(self, *args, **kwargs): if self.i % self.freq == 0: returner = self.func else: returner = self.dummy self.i += 1 return returner(*args, **kwargs) class Timer: def __init__(self, start_on_init=True): if start_on_init: self.start() def start(self): self.start_time = time.time() def stop(self): self.stop_time = time.time() return self.stop_time - self.start_time def reset(self): self.start_time = self.stop_time = None def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" return [_.cpu() for _ in tensor_iter] def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] def prod(num_iter): """ returns product of all elements in this iterator *'ed together""" cumprod = 1 for el in num_iter: cumprod *= el return cumprod def partition(n, m): """ Given ints n > m, partitions n into an iterable where all elements are m, except for the last one which is (n % m) """ count = 0 while count < n: yield min([m, n - count]) count += m def flatten_list(lol): """ Given list of lists, flattens it into a single list. """ output = [] for el in lol: if not isinstance(el, list): output.append(el) continue output.extend(flatten_list(el)) return output def partition_by_suffix(iterable, func): """ Given an iterable and a boolean-valued function which takes in elements of that iterable, outputs a list of lists, where each list ends in an element for which the func returns true, (except for the last one) e.g. iterable := [1, 2, 3, 4, 5,5, 5] func := lambda x: (x % 2) == 0 returns [[1,2], [3,4], [5, 5, 5]] """ output = [] sublist = [] for el in iterable: sublist.append(el) if func(el): output.append(sublist) sublist = [] if len(sublist) > 0: output.append(sublist) return output def arraylike(obj): return isinstance(obj, (torch.Tensor, np.ndarray)) def as_numpy(tensor_or_array): """ If given a tensor or numpy array returns that object cast numpy array """ if isinstance(tensor_or_array, torch.Tensor): tensor_or_array = tensor_or_array.cpu().detach().numpy() return tensor_or_array def two_col(l, r): """ Takes two numpy arrays of size N and makes a numpy array of size Nx2 """ return np.vstack([l, r]).T def split_pos_neg(x): if isinstance(x, torch.Tensor): return split_tensor_pos_neg(x) else: return split_ndarray_pos_neg(x) def split_tensor_pos_neg(x): """ Splits a tensor into positive and negative components """ pos = F.relu(x) neg = -F.relu(-x) return pos, neg def split_ndarray_pos_neg(x): """ Splits a numpy ndarray into positive and negative components """ pos = x * (x >= 0) neg = x * (x <= 0) return pos, neg def swap_axes(x, source, dest): """ Swaps the dimensions of source <-> dest for torch/numpy ARGS: x : numpy array or tensor source : int index dest : int index RETURNS x' - object with same data as x, but with axes swapped """ if isinstance(x, torch.Tensor): return x.transpose(source, dest) else: return np.moveaxis(x, source, dest) def build_var_namer(k): return lambda d: '%s[%s]' % (k, d) @contextlib.contextmanager def silent(): save_stdout = sys.stdout temp = tempfile.TemporaryFile(mode='w') sys.stdout = temp yield sys.stdout = save_stdout temp.close() def ia_mm(matrix, intervals, lohi_dim, matrix_or_vec='matrix'): """ Interval analysis matrix(-vec) multiplication for torch/np intervals ARGS: matrix : tensor or numpy array of shape (m,n) - intervals : tensor or numpy array with shape (n1, ..., 2, n_i, ...) - "vector" of intervals to be multiplied by a matrix one such n_i must be equal to n (from matrix shape) lohi_dim : int - which dimension (index) of intervals corresponds to the lo/hi split matrix_or_vec : string - must be matrix or vec, corresponds to whether intervals is to be treated as a matrix or a vector. If a v RETURNS: object of same type as intervals, but with the shape slightly different: len(output[-1/-2]) == m """ # asserts for shapes and things assert isinstance(matrix, torch.Tensor) # TENSOR ONLY FOR NOW assert isinstance(intervals, torch.Tensor) m, n = matrix.shape assert intervals.shape[lohi_dim] == 2 assert matrix_or_vec in ['matrix', 'vec'] if matrix_or_vec == 'vec': intervals = intervals.unsqueeze(-1) assert lohi_dim != intervals.dim() - 2 assert intervals[dim][-2] == n # define operators based on tensor/numpy case matmul = lambda m, x: m.matmul(x) stack = lambda a, b: torch.stack([a, b]) # now do IA stuff intervals = swap_axes(intervals, 0, lohi_dim) matrix_pos, matrix_neg = split_pos_neg(matrix) los, his = intervals new_los = matmul(matrix_pos, los) + matmul(matrix_neg, his) new_his = matmul(matrix_pos, his) + matmul(matrix_neg, los) intervals = swap_axes(stack(new_los, new_his), 0, lohi_dim) if matrix_or_vec == 'vec': intervals = interval.squeeze(-1) return intervals # ============================================================================= # = Image display functions = # ============================================================================= def display_images(image_rows, figsize=(8, 8)): """ Given either a tensor/np.array (or list of same), will display each element in the row or tensor ARGS: image_rows: tensor or np.array or tensor[], np.array[] - image or list of images to display RETURNS: None, but displays images """ if not isinstance(image_rows, list): image_rows = [image_rows] np_rows = [as_numpy(row) for row in image_rows] # Transpose channel to last dimension and stack to make rows np_rows = [np.concatenate(_.transpose([0, 2, 3, 1]), axis=1) for _ in np_rows] # Now stack rows full_image = np.concatenate(np_rows, axis=0) # And then show image imshow_kwargs = {} if full_image.shape[-1] == 1: full_image = full_image.squeeze() imshow_kwargs['cmap'] = 'gray' fig = plt.figure(figsize=figsize) ax = fig.add_subplot() ax.axis('off') ax.imshow(full_image, **imshow_kwargs) plt.show() # ====================================================== # = Pytorch helpers = # ====================================================== def seq_append(seq, module): """ Takes a nn.sequential and a nn.module and creates a nn.sequential with the module appended to it ARGS: seq: nn.Sequntial object module: <inherits nn.Module> RETURNS: nn.Sequential object """ seq_modules = [seq[_] for _ in range(len(seq))] + [module] return nn.Sequential(*seq_modules) def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" output = [] for el in tensor_iter: if isinstance(el, tuple): output.append(tuple(_.cpu() for _ in el)) else: output.append(el.cpu()) return output def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: if isinstance(el, tuple): return tuple(_.cuda() for _ in el) else: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] # ======================================= # = Polytope class = # ======================================= class Polytope: INPUT_KEY = 'input' SLACK_KEY = 'slack' def __init__(self, A, b): """ Represents a polytope of the form {x | AX <= b} (where everything is a numpy array) """ self.A = A self.b = b def _input_from_model(self, model): var_namer = build_var_namer(self.INPUT_KEY) return np.array([model.getVarByName(var_namer(i)).X for i in range(self.A.shape[1])]) def _build_model(self, slack=False): """ Builds a gurobi model of this object """ with silent(): model = gb.Model() input_namer = build_var_namer(self.INPUT_KEY) input_vars = [model.addVar(lb=-gb.GRB.INFINITY, ub=gb.GRB.INFINITY, name=input_namer(i)) for i in range(self.A.shape[1])] if slack == True: slack_var = model.addVar(lb=0, ub=1.0, name=self.SLACK_KEY) else: slack_var = 0 for i, row in enumerate(self.A): model.addConstr(gb.LinExpr(row, input_vars) + slack_var <= self.b[i]) model.update() return model def contains(self, x, tolerance=1e-6): return all(self.A @ x <= self.b + tolerance) def interior_point(self): model = self._build_model(slack=True) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) def intersects_hbox(self, hbox): """ If this intersects a given hyperbox, returns a point contained in both """ model = self._build_model(slack=True) input_namer = build_var_namer(self.INPUT_KEY) for i, (lb, ub) in enumerate(hbox): var = model.getVarByName(input_namer(i)) model.addConstr(lb <= var <= ub) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) # ========================================================= # = experiment.Result object helpers = # ========================================================= def filename_to_epoch(filename): return int(re.search(r'_EPOCH\d{4}_', filename).group()[-5:-1]) def read_result_files(result_files): output = [] for result_file in result_files: try: with open(result_file, 'rb') as f: output.append((result_file, pickle.load(f))) except Exception as err: print("Failed on file: ", result_file, err) return output def job_out_series(job_outs, eval_style, method, value_or_time='value', avg_stdev='avg'): """ Takes in some result or resultList objects and a 'method', and desired object, and returns these objects in a list ARGS: results: Result[] or ResultList[], results to consider eval_style: str - which method of Experiment we look at method: str - which Lipschitz-estimation technique to consider value_or_time: 'value' or 'time' - which number to return avg_stdev: 'avg' or 'stdev' - for ResultList[], we can get average or stdev values RETURNS: list of floats """ # check everything is the same type assert value_or_time in ['value', 'time'] assert avg_stdev in ['avg', 'stdev'] assert eval_style in ['do_random_evals', 'do_unit_hypercube_eval', 'do_data_evals', 'do_large_radius_evals'] results = [job_out[eval_style] for job_out in job_outs] output = [] for result in results: try: #Result object case if value_or_time == 'value': output.append(result.values(method)) else: output.append(result.compute_times(method)) except: triple = result.average_stdevs(value_or_time)[method] if avg_stdev == 'avg': output.append(triple[0]) else: output.append(triple[1]) return output def collect_result_outs(filematch): """ Uses glob to collect and load result objects matching a series ARGS: filematch: string with *'s associated with it e.g. 'NAME*SUBNAME*GLOBAL.result' RESULTS: list of (filename, experiment.Result) objects """ search_str = os.path.join(COMPLETED_JOB_DIR, filematch) sorted_filenames = sorted(glob.glob(search_str)) return read_result_files(sorted_filenames) def collect_epochs(filename_list): """ Given a list of (filename) objects, converts the filenames into integers, pulling the EPOCH attribute from the filename str[] -> int[] """ def epoch_gleamer(filename): basename = os.path.basename(filename) return int(re.search('_EPOCH\d+_', filename).group()[6:-1]) return [epoch_gleamer(_) for _ in filename_list] def data_from_results(result_iter, method, lip_estimator, time_or_value='value', avg_or_stdev='avg'): """ Given a list of experiment.Result or experiment.ResultList objects will return the time/value for the lip_estimator of the method for result (or avg/stdev if resultList objects) e.g., data_from_results('do_unit_hypercube_eval', 'LipMIP', 'value') gets a list of values of the LipMIP over the unitHypercube domain ARGS: method: str - name of one of the experimental methods lip_estimator : str - name of the class of lipschitz estimator to use time_or_value : 'time' or 'value' - returning the time or value here avg_or_stdev : 'avg' or 'stdev' - returning either avg or stdev of results from ResultListObjects """ assert method in ['do_random_evals', 'do_data_evals', 'do_unit_hypercube_eval'] assert lip_estimator in ['LipMIP', 'FastLip', 'LipLP', 'CLEVER', 'LipSDP', 'NaiveUB', 'RandomLB', 'SeqLip'] assert time_or_value in ['time', 'value'] assert avg_or_stdev in ['avg', 'stdev'] def datum_getter(result_obj): if not hasattr(result_obj, 'average_stdevs'): if time_or_value == 'value': return result_obj[method].values(lip_estimator) else: return result_obj[method].compute_times(lip_estimator) else: triple = result_obj.average_stdevs(time_or_value) if avg_or_stdev == 'avg': return triple[0] else: return triple[1] return [datum_getter(_) for _ in result_iter]
en
0.674301
General all-purpose utilities # =============================================================================== # = Helpful all-purpose functions = # =============================================================================== # Make default args from attributes # Update the default args # Build object Simple class that holds onto a function and it returns this function every freq iterations ARGS: func: function object to be returned every freq iterations freq: int - how often to return the function Takes a list of tensors and safely pushes them back onto the cpu Takes a list of tensors and safely converts all of them to cuda returns product of all elements in this iterator *'ed together Given ints n > m, partitions n into an iterable where all elements are m, except for the last one which is (n % m) Given list of lists, flattens it into a single list. Given an iterable and a boolean-valued function which takes in elements of that iterable, outputs a list of lists, where each list ends in an element for which the func returns true, (except for the last one) e.g. iterable := [1, 2, 3, 4, 5,5, 5] func := lambda x: (x % 2) == 0 returns [[1,2], [3,4], [5, 5, 5]] If given a tensor or numpy array returns that object cast numpy array Takes two numpy arrays of size N and makes a numpy array of size Nx2 Splits a tensor into positive and negative components Splits a numpy ndarray into positive and negative components Swaps the dimensions of source <-> dest for torch/numpy ARGS: x : numpy array or tensor source : int index dest : int index RETURNS x' - object with same data as x, but with axes swapped Interval analysis matrix(-vec) multiplication for torch/np intervals ARGS: matrix : tensor or numpy array of shape (m,n) - intervals : tensor or numpy array with shape (n1, ..., 2, n_i, ...) - "vector" of intervals to be multiplied by a matrix one such n_i must be equal to n (from matrix shape) lohi_dim : int - which dimension (index) of intervals corresponds to the lo/hi split matrix_or_vec : string - must be matrix or vec, corresponds to whether intervals is to be treated as a matrix or a vector. If a v RETURNS: object of same type as intervals, but with the shape slightly different: len(output[-1/-2]) == m # asserts for shapes and things # TENSOR ONLY FOR NOW # define operators based on tensor/numpy case # now do IA stuff # ============================================================================= # = Image display functions = # ============================================================================= Given either a tensor/np.array (or list of same), will display each element in the row or tensor ARGS: image_rows: tensor or np.array or tensor[], np.array[] - image or list of images to display RETURNS: None, but displays images # Transpose channel to last dimension and stack to make rows # Now stack rows # And then show image # ====================================================== # = Pytorch helpers = # ====================================================== Takes a nn.sequential and a nn.module and creates a nn.sequential with the module appended to it ARGS: seq: nn.Sequntial object module: <inherits nn.Module> RETURNS: nn.Sequential object Takes a list of tensors and safely pushes them back onto the cpu Takes a list of tensors and safely converts all of them to cuda # ======================================= # = Polytope class = # ======================================= Represents a polytope of the form {x | AX <= b} (where everything is a numpy array) Builds a gurobi model of this object If this intersects a given hyperbox, returns a point contained in both # ========================================================= # = experiment.Result object helpers = # ========================================================= Takes in some result or resultList objects and a 'method', and desired object, and returns these objects in a list ARGS: results: Result[] or ResultList[], results to consider eval_style: str - which method of Experiment we look at method: str - which Lipschitz-estimation technique to consider value_or_time: 'value' or 'time' - which number to return avg_stdev: 'avg' or 'stdev' - for ResultList[], we can get average or stdev values RETURNS: list of floats # check everything is the same type #Result object case Uses glob to collect and load result objects matching a series ARGS: filematch: string with *'s associated with it e.g. 'NAME*SUBNAME*GLOBAL.result' RESULTS: list of (filename, experiment.Result) objects Given a list of (filename) objects, converts the filenames into integers, pulling the EPOCH attribute from the filename str[] -> int[] Given a list of experiment.Result or experiment.ResultList objects will return the time/value for the lip_estimator of the method for result (or avg/stdev if resultList objects) e.g., data_from_results('do_unit_hypercube_eval', 'LipMIP', 'value') gets a list of values of the LipMIP over the unitHypercube domain ARGS: method: str - name of one of the experimental methods lip_estimator : str - name of the class of lipschitz estimator to use time_or_value : 'time' or 'value' - returning the time or value here avg_or_stdev : 'avg' or 'stdev' - returning either avg or stdev of results from ResultListObjects
2.123502
2