max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
venv/lib/python3.8/site-packages/requests/compat.py
GiulianaPola/select_repeats
1
9000
/home/runner/.cache/pip/pool/d1/fc/c7/6cbbdf9c58b6591d28ed792bbd7944946d3f56042698e822a2869787f6
/home/runner/.cache/pip/pool/d1/fc/c7/6cbbdf9c58b6591d28ed792bbd7944946d3f56042698e822a2869787f6
none
1
0.768761
1
examples/python-guide/cross_validation_example.py
StatMixedML/GPBoost
2
9001
<reponame>StatMixedML/GPBoost # coding: utf-8 # pylint: disable = invalid-name, C0111 import gpboost as gpb import numpy as np from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt plt.style.use('ggplot') #--------------------Cross validation for tree-boosting without GP or random effects---------------- print('Simulating data...') # Simulate and create your dataset def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() def sim_data(n): """Function that simulates data. Two covariates of which only one has an effect""" X = np.random.rand(n, 2) # mean function plus noise y = f1d(X[:, 0]) + np.random.normal(scale=0.1, size=n) return ([X, y]) # Simulate data n = 1000 data = sim_data(2 * n) # create dataset for gpb.train data_train = gpb.Dataset(data[0][0:n, :], data[1][0:n]) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'metric': {'l2', 'l1'}, 'learning_rate': 0.1, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # --------------------Combine tree-boosting and grouped random effects model---------------- print('Simulating data...') # Simulate data def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.figure("Mean function") plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() n = 1000 # number of samples np.random.seed(1) X = np.random.rand(n, 2) F = f1d(X[:, 0]) # Simulate grouped random effects m = 25 # number of categories / levels for grouping variable group = np.arange(n) # grouping variable for i in range(m): group[int(i * n / m):int((i + 1) * n / m)] = i # incidence matrix relating grouped random effects to samples Z1 = np.zeros((n, m)) for i in range(m): Z1[np.where(group == i), i] = 1 sigma2_1 = 1 ** 2 # random effect variance sigma2 = 0.1 ** 2 # error variance b1 = np.sqrt(sigma2_1) * np.random.normal(size=m) # simulate random effects eps = Z1.dot(b1) xi = np.sqrt(sigma2) * np.random.normal(size=n) # simulate error term y = F + eps + xi # observed data # define GPModel gp_model = gpb.GPModel(group_data=group) gp_model.set_optim_params(params={"optimizer_cov": "fisher_scoring"}) # create dataset for gpb.train data_train = gpb.Dataset(X, y) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'learning_rate': 0.05, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=False, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # Include random effect predictions for validation (observe the lower test error) gp_model = gpb.GPModel(group_data=group) print("Running cross validation for GPBoost model and use_gp_model_for_validation = TRUE") cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=True, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=Falsem, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) cvbst.best_iteration
# coding: utf-8 # pylint: disable = invalid-name, C0111 import gpboost as gpb import numpy as np from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt plt.style.use('ggplot') #--------------------Cross validation for tree-boosting without GP or random effects---------------- print('Simulating data...') # Simulate and create your dataset def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() def sim_data(n): """Function that simulates data. Two covariates of which only one has an effect""" X = np.random.rand(n, 2) # mean function plus noise y = f1d(X[:, 0]) + np.random.normal(scale=0.1, size=n) return ([X, y]) # Simulate data n = 1000 data = sim_data(2 * n) # create dataset for gpb.train data_train = gpb.Dataset(data[0][0:n, :], data[1][0:n]) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'metric': {'l2', 'l1'}, 'learning_rate': 0.1, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # --------------------Combine tree-boosting and grouped random effects model---------------- print('Simulating data...') # Simulate data def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.figure("Mean function") plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() n = 1000 # number of samples np.random.seed(1) X = np.random.rand(n, 2) F = f1d(X[:, 0]) # Simulate grouped random effects m = 25 # number of categories / levels for grouping variable group = np.arange(n) # grouping variable for i in range(m): group[int(i * n / m):int((i + 1) * n / m)] = i # incidence matrix relating grouped random effects to samples Z1 = np.zeros((n, m)) for i in range(m): Z1[np.where(group == i), i] = 1 sigma2_1 = 1 ** 2 # random effect variance sigma2 = 0.1 ** 2 # error variance b1 = np.sqrt(sigma2_1) * np.random.normal(size=m) # simulate random effects eps = Z1.dot(b1) xi = np.sqrt(sigma2) * np.random.normal(size=n) # simulate error term y = F + eps + xi # observed data # define GPModel gp_model = gpb.GPModel(group_data=group) gp_model.set_optim_params(params={"optimizer_cov": "fisher_scoring"}) # create dataset for gpb.train data_train = gpb.Dataset(X, y) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'learning_rate': 0.05, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=False, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # Include random effect predictions for validation (observe the lower test error) gp_model = gpb.GPModel(group_data=group) print("Running cross validation for GPBoost model and use_gp_model_for_validation = TRUE") cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=True, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=Falsem, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) cvbst.best_iteration
en
0.638467
# coding: utf-8 # pylint: disable = invalid-name, C0111 #--------------------Cross validation for tree-boosting without GP or random effects---------------- # Simulate and create your dataset Non-linear function for simulation Function that simulates data. Two covariates of which only one has an effect # mean function plus noise # Simulate data # create dataset for gpb.train # specify your configurations as a dict # do cross-validation # --------------------Combine tree-boosting and grouped random effects model---------------- # Simulate data Non-linear function for simulation # number of samples # Simulate grouped random effects # number of categories / levels for grouping variable # grouping variable # incidence matrix relating grouped random effects to samples # random effect variance # error variance # simulate random effects # simulate error term # observed data # define GPModel # create dataset for gpb.train # specify your configurations as a dict # do cross-validation # Include random effect predictions for validation (observe the lower test error)
3.035678
3
synapse/rest/synapse/client/unsubscribe.py
Florian-Sabonchi/synapse
0
9002
# Copyright 2022 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from synapse.api.errors import StoreError from synapse.http.server import DirectServeHtmlResource, respond_with_html_bytes from synapse.http.servlet import parse_string from synapse.http.site import SynapseRequest if TYPE_CHECKING: from synapse.server import HomeServer class UnsubscribeResource(DirectServeHtmlResource): """ To allow pusher to be delete by clicking a link (ie. GET request) """ SUCCESS_HTML = b"<html><body>You have been unsubscribed</body><html>" def __init__(self, hs: "HomeServer"): super().__init__() self.notifier = hs.get_notifier() self.auth = hs.get_auth() self.pusher_pool = hs.get_pusherpool() self.macaroon_generator = hs.get_macaroon_generator() async def _async_render_GET(self, request: SynapseRequest) -> None: token = parse_string(request, "access_token", required=True) app_id = parse_string(request, "app_id", required=True) pushkey = parse_string(request, "pushkey", required=True) user_id = self.macaroon_generator.verify_delete_pusher_token( token, app_id, pushkey ) try: await self.pusher_pool.remove_pusher( app_id=app_id, pushkey=pushkey, user_id=user_id ) except StoreError as se: if se.code != 404: # This is fine: they're already unsubscribed raise self.notifier.on_new_replication_data() respond_with_html_bytes( request, 200, UnsubscribeResource.SUCCESS_HTML, )
# Copyright 2022 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from synapse.api.errors import StoreError from synapse.http.server import DirectServeHtmlResource, respond_with_html_bytes from synapse.http.servlet import parse_string from synapse.http.site import SynapseRequest if TYPE_CHECKING: from synapse.server import HomeServer class UnsubscribeResource(DirectServeHtmlResource): """ To allow pusher to be delete by clicking a link (ie. GET request) """ SUCCESS_HTML = b"<html><body>You have been unsubscribed</body><html>" def __init__(self, hs: "HomeServer"): super().__init__() self.notifier = hs.get_notifier() self.auth = hs.get_auth() self.pusher_pool = hs.get_pusherpool() self.macaroon_generator = hs.get_macaroon_generator() async def _async_render_GET(self, request: SynapseRequest) -> None: token = parse_string(request, "access_token", required=True) app_id = parse_string(request, "app_id", required=True) pushkey = parse_string(request, "pushkey", required=True) user_id = self.macaroon_generator.verify_delete_pusher_token( token, app_id, pushkey ) try: await self.pusher_pool.remove_pusher( app_id=app_id, pushkey=pushkey, user_id=user_id ) except StoreError as se: if se.code != 404: # This is fine: they're already unsubscribed raise self.notifier.on_new_replication_data() respond_with_html_bytes( request, 200, UnsubscribeResource.SUCCESS_HTML, )
en
0.876896
# Copyright 2022 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. To allow pusher to be delete by clicking a link (ie. GET request) # This is fine: they're already unsubscribed
2.109907
2
pyhanabi/act_group.py
ravihammond/hanabi-convention-adaptation
1
9003
<filename>pyhanabi/act_group.py import set_path import sys import torch set_path.append_sys_path() import rela import hanalearn import utils assert rela.__file__.endswith(".so") assert hanalearn.__file__.endswith(".so") class ActGroup: def __init__( self, devices, agent, partner_weight, seed, num_thread, num_game_per_thread, num_player, explore_eps, trinary, replay_buffer, max_len, gamma, convention, convention_act_override, ): self.devices = devices.split(",") self.seed = seed self.num_thread = num_thread self.num_player = num_player self.num_game_per_thread = num_game_per_thread self.explore_eps = explore_eps self.trinary = trinary self.replay_buffer = replay_buffer self.max_len = max_len self.gamma = gamma self.load_partner_model(partner_weight) self.model_runners = [] for dev in self.devices: runner = rela.BatchRunner(agent.clone(dev), dev) runner.add_method("act", 5000) runner.add_method("compute_priority", 100) runner.add_method("compute_target", 5000) partner_runner = rela.BatchRunner( self._partner_agent.clone(dev), dev) partner_runner.add_method("act", 5000) self.model_runners.append([runner, partner_runner]) self.num_runners = len(self.model_runners) self.convention = convention self.convention_act_override = convention_act_override self.create_r2d2_actors() def load_partner_model(self, weight_file): try: state_dict = torch.load(weight_file) except: sys.exit(f"weight_file {weight_file} can't be loaded") overwrite = {} overwrite["vdn"] = False overwrite["device"] = "cuda:0" overwrite["boltzmann_act"] = False if "fc_v.weight" in state_dict.keys(): agent, cfg = utils.load_agent(weight_file, overwrite) self._partner_sad = cfg["sad"] if "sad" in cfg else cfg["greedy_extra"] self._partner_hide_action = bool(cfg["hide_action"]) else: agent = utils.load_supervised_agent(weight_file, "cuda:0") self._partner_sad = False self._partner_hide_action = False agent.train(False) self._partner_agent = agent def create_r2d2_actors(self): convention_act_override = [0, 0] convention_sender = [1, 0] if self.convention_act_override: convention_act_override = [0, 1] convention_sender = [1, 0] actors = [] for i in range(self.num_thread): thread_actors = [] for j in range(self.num_game_per_thread): game_actors = [] actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][0], self.seed, self.num_player, 0, self.explore_eps, [0], # boltzmann_act False, 0, # sad 0, # shuffle_color 0, # hide_action self.trinary, self.replay_buffer, 1, # multi-step self.max_len, self.gamma, self.convention, 1, 0, True, # convention_fict_act_override True, # use_experience ) game_actors.append(actor) self.seed += 1 actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][1], # runner self.num_player, # numPlayer 1, # playerIdx False, # vdn self._partner_sad, # sad self._partner_hide_action, # hideAction self.convention, # convention 0, # conventionSender 1) # conventionOverride game_actors.append(actor) for k in range(self.num_player): partners = game_actors[:] partners[k] = None game_actors[k].set_partners(partners) thread_actors.append(game_actors) actors.append(thread_actors) self.actors = actors print("ActGroup created") def start(self): for runners in self.model_runners: for runner in runners: runner.start() def update_model(self, agent): for runner in self.model_runners: runner[0].update_model(agent)
<filename>pyhanabi/act_group.py import set_path import sys import torch set_path.append_sys_path() import rela import hanalearn import utils assert rela.__file__.endswith(".so") assert hanalearn.__file__.endswith(".so") class ActGroup: def __init__( self, devices, agent, partner_weight, seed, num_thread, num_game_per_thread, num_player, explore_eps, trinary, replay_buffer, max_len, gamma, convention, convention_act_override, ): self.devices = devices.split(",") self.seed = seed self.num_thread = num_thread self.num_player = num_player self.num_game_per_thread = num_game_per_thread self.explore_eps = explore_eps self.trinary = trinary self.replay_buffer = replay_buffer self.max_len = max_len self.gamma = gamma self.load_partner_model(partner_weight) self.model_runners = [] for dev in self.devices: runner = rela.BatchRunner(agent.clone(dev), dev) runner.add_method("act", 5000) runner.add_method("compute_priority", 100) runner.add_method("compute_target", 5000) partner_runner = rela.BatchRunner( self._partner_agent.clone(dev), dev) partner_runner.add_method("act", 5000) self.model_runners.append([runner, partner_runner]) self.num_runners = len(self.model_runners) self.convention = convention self.convention_act_override = convention_act_override self.create_r2d2_actors() def load_partner_model(self, weight_file): try: state_dict = torch.load(weight_file) except: sys.exit(f"weight_file {weight_file} can't be loaded") overwrite = {} overwrite["vdn"] = False overwrite["device"] = "cuda:0" overwrite["boltzmann_act"] = False if "fc_v.weight" in state_dict.keys(): agent, cfg = utils.load_agent(weight_file, overwrite) self._partner_sad = cfg["sad"] if "sad" in cfg else cfg["greedy_extra"] self._partner_hide_action = bool(cfg["hide_action"]) else: agent = utils.load_supervised_agent(weight_file, "cuda:0") self._partner_sad = False self._partner_hide_action = False agent.train(False) self._partner_agent = agent def create_r2d2_actors(self): convention_act_override = [0, 0] convention_sender = [1, 0] if self.convention_act_override: convention_act_override = [0, 1] convention_sender = [1, 0] actors = [] for i in range(self.num_thread): thread_actors = [] for j in range(self.num_game_per_thread): game_actors = [] actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][0], self.seed, self.num_player, 0, self.explore_eps, [0], # boltzmann_act False, 0, # sad 0, # shuffle_color 0, # hide_action self.trinary, self.replay_buffer, 1, # multi-step self.max_len, self.gamma, self.convention, 1, 0, True, # convention_fict_act_override True, # use_experience ) game_actors.append(actor) self.seed += 1 actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][1], # runner self.num_player, # numPlayer 1, # playerIdx False, # vdn self._partner_sad, # sad self._partner_hide_action, # hideAction self.convention, # convention 0, # conventionSender 1) # conventionOverride game_actors.append(actor) for k in range(self.num_player): partners = game_actors[:] partners[k] = None game_actors[k].set_partners(partners) thread_actors.append(game_actors) actors.append(thread_actors) self.actors = actors print("ActGroup created") def start(self): for runners in self.model_runners: for runner in runners: runner.start() def update_model(self, agent): for runner in self.model_runners: runner[0].update_model(agent)
en
0.65857
# boltzmann_act # sad # shuffle_color # hide_action # multi-step # convention_fict_act_override # use_experience # runner # numPlayer # playerIdx # vdn # sad # hideAction # convention # conventionSender # conventionOverride
2.130337
2
A_source_code/carbon/code/make_mask.py
vanHoek-dgnm/CARBON-DISC
0
9004
# ****************************************************** ## Copyright 2019, PBL Netherlands Environmental Assessment Agency and Utrecht University. ## Reuse permitted under Gnu Public License, GPL v3. # ****************************************************** from netCDF4 import Dataset import numpy as np import general_path import accuflux import ascraster import get_surrounding_cells import make_np_grid def do(mask_asc_fn, mask_id, dum_asc, logical = "EQ", mask_type='np_grid'): dum_mask = ascraster.create_mask(mask_asc_fn, mask_id, logical = logical, numtype=int) mask=[] if mask_type=="rowcol": for i in dum_mask: mask.append(dum_asc.get_row_col_from_index(i)) elif mask_type=="index": for i in dum_mask: mask.append(i) elif mask_type=="latlon": for i in dum_mask: mask.append(dum_asc.get_coord_from_index(i)) elif mask_type=="np_grid": mask = np.zeros((dum_asc.nrows, dum_asc.ncols), dtype=bool) mask[:,:] = True for i in dum_mask: row, col = dum_asc.get_row_col_from_index(i) mask[row,col]=False return mask
# ****************************************************** ## Copyright 2019, PBL Netherlands Environmental Assessment Agency and Utrecht University. ## Reuse permitted under Gnu Public License, GPL v3. # ****************************************************** from netCDF4 import Dataset import numpy as np import general_path import accuflux import ascraster import get_surrounding_cells import make_np_grid def do(mask_asc_fn, mask_id, dum_asc, logical = "EQ", mask_type='np_grid'): dum_mask = ascraster.create_mask(mask_asc_fn, mask_id, logical = logical, numtype=int) mask=[] if mask_type=="rowcol": for i in dum_mask: mask.append(dum_asc.get_row_col_from_index(i)) elif mask_type=="index": for i in dum_mask: mask.append(i) elif mask_type=="latlon": for i in dum_mask: mask.append(dum_asc.get_coord_from_index(i)) elif mask_type=="np_grid": mask = np.zeros((dum_asc.nrows, dum_asc.ncols), dtype=bool) mask[:,:] = True for i in dum_mask: row, col = dum_asc.get_row_col_from_index(i) mask[row,col]=False return mask
en
0.472568
# ****************************************************** ## Copyright 2019, PBL Netherlands Environmental Assessment Agency and Utrecht University. ## Reuse permitted under Gnu Public License, GPL v3. # ******************************************************
1.907263
2
Code/Dataset.py
gitFloyd/AAI-Project-2
0
9005
from io import TextIOWrapper import math from typing import TypeVar import random import os from Settings import Settings class Dataset: DataT = TypeVar('DataT') WIN_NL = "\r\n" LINUX_NL = "\n" def __init__(self, path:str, filename:str, newline:str = WIN_NL) -> None: self.path_ = path self.filename_ = filename self.loaded_ = False self.parsed_ = False self.data_ = None self.nl = newline self.classes_ = set() self.attributes_ = [] self.types_ = [] self.data_ = [] def Data(self) -> list: return self.data_ def Attributes(self) -> list: return self.attributes_ def Types(self) -> list: return self.types_ def Classes(self) -> list: return self.classes_ def Load(self, reload:bool = False) -> DataT: if not self.loaded_ or reload: self.file_ = open(os.sep.join([self.path_, self.filename_])) self.loaded_ = True # If we reload, then we want to reparse as well. return self.Parse_(reload) def Parse_(self, reparse:bool = False) -> DataT: if not self.loaded_: # Silently return instead of raising an exception because # this method is not intended to be used outside of the # class. Although, it can be used that way if needed. return if not self.parsed_ or reparse: self.Parse_Hook_(self.file_.read()) return self.data_ def Parse_Hook_(self, data:str) -> None: self.data_ = data def __del__(self): if self.loaded_: self.file_.close() class ArffRow: ATTR_LABEL = '@ATTRIBUTE ' # need the space at the end here DATA_LABEL = '@DATA' ATTR_LEN = len(ATTR_LABEL) DATA_LEN = len(DATA_LABEL) Attributes = [] Types = [] Data = [] Classes = set() IsCollecting_ = False @classmethod def Reset(cls): cls.Attributes = [] cls.Types = [] cls.Data = [] cls.Classes = set() cls.IsCollecting_ = False def __init__(self, line:str, nl:str) -> None: self.line_ = line self.len_ = len(line) self.nl_ = nl def Len(self) -> str: return self.len_ def HasAttributeLabel(self) -> bool: return self.len_ >= ArffRow.ATTR_LEN and self.line_[0:ArffRow.ATTR_LEN] == ArffRow.ATTR_LABEL def HasDataLabel(self) -> bool: return self.len_ >= ArffRow.DATA_LEN and self.line_[0:ArffRow.DATA_LEN] == ArffRow.DATA_LABEL def GetAttributeData(self) -> tuple[str, str]: namePosition = 0 for (i, char) in enumerate(self.line_[ArffRow.ATTR_LEN:]): if char == '\t': namePosition = i + ArffRow.ATTR_LEN break return (self.line_[ArffRow.ATTR_LEN:namePosition], self.line_[namePosition + 1:]) def Parse(self): if ArffRow.IsCollecting_ and self.len_ > 1: ArffRow.Data.append(self.line_.split(',')) ArffRow.Classes.add(ArffRow.Data[-1][-1]) elif self.HasDataLabel(): ArffRow.IsCollecting_ = True elif self.HasAttributeLabel(): attrData = self.GetAttributeData() ArffRow.Attributes.append(attrData[0]) ArffRow.Types.append(attrData[1]) class ArffDataset(Dataset): # ARFF (Attribute-Relation File Format) #def __init__(self, path:str, filename:str, newline:str = Dataset.WIN_NL) -> None: # super().__init__(path, filename, newline) # # self.parser_ = { # 'attributesLoaded': False, # } def Parse_Hook_(self, data:str) -> None: ArffRow.Reset() rows = [ArffRow(line, self.nl) for line in data.split(self.nl)] for row in rows: row.Parse() for attribute in ArffRow.Attributes: self.attributes_.append(attribute) for typeName in ArffRow.Types: self.types_.append(typeName) for datum in ArffRow.Data: self.data_.append(datum) self.classes_ = self.classes_.union(ArffRow.Classes) classes = list(self.classes_) attribute_maxes = {} for row in self.data_: classIndex = classes.index(row[-1]) row[-1] = [1 if i == classIndex else 0 for (i, value) in enumerate(classes)] for i in range(len(row)): if self.types_[i] == 'REAL': row[i] = float(row[i]) elif self.types_[i] == 'INTEGER': row[i] = int(row[i]) else: continue if i not in attribute_maxes: attribute_maxes[i] = 0 if abs(row[i]) > attribute_maxes[i]: attribute_maxes[i] = row[i] for i in range(len(row)): if self.types_[i] == 'REAL' or self.types_[i] == 'INTEGER': row[i] = row[i] / attribute_maxes[i] self.data_ = self.RowSort(self.data_) def LexOrder(self, item1, item2): num_fields = len(item1) for i in range(num_fields): if item1[i] != item2[i]: if item1[i] < item2[i]: return -1 else: return 1 return 0 def RowSort(self, rows): rows_len = len(rows) if rows_len > 2: result1 = self.RowSort(rows[0: math.floor(rows_len * 0.5)]) result2 = self.RowSort(rows[math.floor(rows_len * 0.5):]) sorted_rows = [] item1 = None item2 = None while len(result1) > 0 or len(result2) > 0: if len(result1) > 0 and len(result2) > 0 and item1 == None and item2 == None: item1 = result1.pop(0) item2 = result2.pop(0) elif len(result1) > 0 and item1 == None: item1 = result1.pop(0) elif len(result2) > 0 and item2 == None: item2 = result2.pop(0) order = 0 if item1 == None and item2 != None: order = 1 elif item1 != None and item2 == None: order = -1 else: order = self.LexOrder(item1, item2) if order == -1: sorted_rows.append(item1) item1 = None elif order == 1: sorted_rows.append(item2) item2 = None else: sorted_rows.append(item1) sorted_rows.append(item2) item1 = None item2 = None if item1 != None: sorted_rows.append(item1) if item2 != None: sorted_rows.append(item2) return sorted_rows elif rows_len == 1: return rows else: order = self.LexOrder(rows[0], rows[1]) if order == 1: rows.reverse() return rows def Fetch(self, *fields:list[str], limit:int = None, offset:int = 0): cols = [] data = [] # iterate over the field names and find the column indices # for names that match the requested field names for (i, field) in enumerate(fields): try: cols.append(self.attributes_.index(field)) except ValueError: pass end = limit if limit != None: end += offset for row in self.data_[offset:end]: data.append([row[i] for i in cols]) return data def FetchFilter_(self, i, value): # Not used any more #if self.types_[i] == 'REAL': # return float(value) #elif self.types_[i] == 'INTEGER': # return int(value) #else: # return value pass def Size(self): length = len(self.data_) if length == 0: return (len(self.data_), None) return (len(self.data_), len(self.data_[0])) def Shuffle(self): random.shuffle(self.data_) class Pistachio(ArffDataset): SettingsKey = 'PistachioDataset' def __init__(self, newline:str = Dataset.WIN_NL) -> None: settings = Settings.Data() super().__init__( path = settings[Pistachio.SettingsKey]['Path'], filename = settings[Pistachio.SettingsKey]['FileName'], newline = newline ) #pist = Pistachio(Dataset.LINUX_NL) # #for row in pist.Load()[0:10]: # print(row)
from io import TextIOWrapper import math from typing import TypeVar import random import os from Settings import Settings class Dataset: DataT = TypeVar('DataT') WIN_NL = "\r\n" LINUX_NL = "\n" def __init__(self, path:str, filename:str, newline:str = WIN_NL) -> None: self.path_ = path self.filename_ = filename self.loaded_ = False self.parsed_ = False self.data_ = None self.nl = newline self.classes_ = set() self.attributes_ = [] self.types_ = [] self.data_ = [] def Data(self) -> list: return self.data_ def Attributes(self) -> list: return self.attributes_ def Types(self) -> list: return self.types_ def Classes(self) -> list: return self.classes_ def Load(self, reload:bool = False) -> DataT: if not self.loaded_ or reload: self.file_ = open(os.sep.join([self.path_, self.filename_])) self.loaded_ = True # If we reload, then we want to reparse as well. return self.Parse_(reload) def Parse_(self, reparse:bool = False) -> DataT: if not self.loaded_: # Silently return instead of raising an exception because # this method is not intended to be used outside of the # class. Although, it can be used that way if needed. return if not self.parsed_ or reparse: self.Parse_Hook_(self.file_.read()) return self.data_ def Parse_Hook_(self, data:str) -> None: self.data_ = data def __del__(self): if self.loaded_: self.file_.close() class ArffRow: ATTR_LABEL = '@ATTRIBUTE ' # need the space at the end here DATA_LABEL = '@DATA' ATTR_LEN = len(ATTR_LABEL) DATA_LEN = len(DATA_LABEL) Attributes = [] Types = [] Data = [] Classes = set() IsCollecting_ = False @classmethod def Reset(cls): cls.Attributes = [] cls.Types = [] cls.Data = [] cls.Classes = set() cls.IsCollecting_ = False def __init__(self, line:str, nl:str) -> None: self.line_ = line self.len_ = len(line) self.nl_ = nl def Len(self) -> str: return self.len_ def HasAttributeLabel(self) -> bool: return self.len_ >= ArffRow.ATTR_LEN and self.line_[0:ArffRow.ATTR_LEN] == ArffRow.ATTR_LABEL def HasDataLabel(self) -> bool: return self.len_ >= ArffRow.DATA_LEN and self.line_[0:ArffRow.DATA_LEN] == ArffRow.DATA_LABEL def GetAttributeData(self) -> tuple[str, str]: namePosition = 0 for (i, char) in enumerate(self.line_[ArffRow.ATTR_LEN:]): if char == '\t': namePosition = i + ArffRow.ATTR_LEN break return (self.line_[ArffRow.ATTR_LEN:namePosition], self.line_[namePosition + 1:]) def Parse(self): if ArffRow.IsCollecting_ and self.len_ > 1: ArffRow.Data.append(self.line_.split(',')) ArffRow.Classes.add(ArffRow.Data[-1][-1]) elif self.HasDataLabel(): ArffRow.IsCollecting_ = True elif self.HasAttributeLabel(): attrData = self.GetAttributeData() ArffRow.Attributes.append(attrData[0]) ArffRow.Types.append(attrData[1]) class ArffDataset(Dataset): # ARFF (Attribute-Relation File Format) #def __init__(self, path:str, filename:str, newline:str = Dataset.WIN_NL) -> None: # super().__init__(path, filename, newline) # # self.parser_ = { # 'attributesLoaded': False, # } def Parse_Hook_(self, data:str) -> None: ArffRow.Reset() rows = [ArffRow(line, self.nl) for line in data.split(self.nl)] for row in rows: row.Parse() for attribute in ArffRow.Attributes: self.attributes_.append(attribute) for typeName in ArffRow.Types: self.types_.append(typeName) for datum in ArffRow.Data: self.data_.append(datum) self.classes_ = self.classes_.union(ArffRow.Classes) classes = list(self.classes_) attribute_maxes = {} for row in self.data_: classIndex = classes.index(row[-1]) row[-1] = [1 if i == classIndex else 0 for (i, value) in enumerate(classes)] for i in range(len(row)): if self.types_[i] == 'REAL': row[i] = float(row[i]) elif self.types_[i] == 'INTEGER': row[i] = int(row[i]) else: continue if i not in attribute_maxes: attribute_maxes[i] = 0 if abs(row[i]) > attribute_maxes[i]: attribute_maxes[i] = row[i] for i in range(len(row)): if self.types_[i] == 'REAL' or self.types_[i] == 'INTEGER': row[i] = row[i] / attribute_maxes[i] self.data_ = self.RowSort(self.data_) def LexOrder(self, item1, item2): num_fields = len(item1) for i in range(num_fields): if item1[i] != item2[i]: if item1[i] < item2[i]: return -1 else: return 1 return 0 def RowSort(self, rows): rows_len = len(rows) if rows_len > 2: result1 = self.RowSort(rows[0: math.floor(rows_len * 0.5)]) result2 = self.RowSort(rows[math.floor(rows_len * 0.5):]) sorted_rows = [] item1 = None item2 = None while len(result1) > 0 or len(result2) > 0: if len(result1) > 0 and len(result2) > 0 and item1 == None and item2 == None: item1 = result1.pop(0) item2 = result2.pop(0) elif len(result1) > 0 and item1 == None: item1 = result1.pop(0) elif len(result2) > 0 and item2 == None: item2 = result2.pop(0) order = 0 if item1 == None and item2 != None: order = 1 elif item1 != None and item2 == None: order = -1 else: order = self.LexOrder(item1, item2) if order == -1: sorted_rows.append(item1) item1 = None elif order == 1: sorted_rows.append(item2) item2 = None else: sorted_rows.append(item1) sorted_rows.append(item2) item1 = None item2 = None if item1 != None: sorted_rows.append(item1) if item2 != None: sorted_rows.append(item2) return sorted_rows elif rows_len == 1: return rows else: order = self.LexOrder(rows[0], rows[1]) if order == 1: rows.reverse() return rows def Fetch(self, *fields:list[str], limit:int = None, offset:int = 0): cols = [] data = [] # iterate over the field names and find the column indices # for names that match the requested field names for (i, field) in enumerate(fields): try: cols.append(self.attributes_.index(field)) except ValueError: pass end = limit if limit != None: end += offset for row in self.data_[offset:end]: data.append([row[i] for i in cols]) return data def FetchFilter_(self, i, value): # Not used any more #if self.types_[i] == 'REAL': # return float(value) #elif self.types_[i] == 'INTEGER': # return int(value) #else: # return value pass def Size(self): length = len(self.data_) if length == 0: return (len(self.data_), None) return (len(self.data_), len(self.data_[0])) def Shuffle(self): random.shuffle(self.data_) class Pistachio(ArffDataset): SettingsKey = 'PistachioDataset' def __init__(self, newline:str = Dataset.WIN_NL) -> None: settings = Settings.Data() super().__init__( path = settings[Pistachio.SettingsKey]['Path'], filename = settings[Pistachio.SettingsKey]['FileName'], newline = newline ) #pist = Pistachio(Dataset.LINUX_NL) # #for row in pist.Load()[0:10]: # print(row)
en
0.597702
# If we reload, then we want to reparse as well. # Silently return instead of raising an exception because # this method is not intended to be used outside of the # class. Although, it can be used that way if needed. # need the space at the end here # ARFF (Attribute-Relation File Format) #def __init__(self, path:str, filename:str, newline:str = Dataset.WIN_NL) -> None: # super().__init__(path, filename, newline) # # self.parser_ = { # 'attributesLoaded': False, # } # iterate over the field names and find the column indices # for names that match the requested field names # Not used any more #if self.types_[i] == 'REAL': # return float(value) #elif self.types_[i] == 'INTEGER': # return int(value) #else: # return value #pist = Pistachio(Dataset.LINUX_NL) # #for row in pist.Load()[0:10]: # print(row)
2.554012
3
payments/models.py
wahuneke/django-stripe-payments
0
9006
<reponame>wahuneke/django-stripe-payments<filename>payments/models.py import datetime import decimal import json import traceback from django.conf import settings from django.core.mail import EmailMessage from django.db import models from django.utils import timezone from django.template.loader import render_to_string from django.contrib.sites.models import Site import stripe from jsonfield.fields import JSONField from .managers import CustomerManager, ChargeManager, TransferManager from .settings import ( DEFAULT_PLAN, INVOICE_FROM_EMAIL, PAYMENTS_PLANS, plan_from_stripe_id, SEND_EMAIL_RECEIPTS, TRIAL_PERIOD_FOR_USER_CALLBACK, PLAN_QUANTITY_CALLBACK ) from .signals import ( cancelled, card_changed, subscription_made, webhook_processing_error, WEBHOOK_SIGNALS, ) from .utils import convert_tstamp stripe.api_key = settings.STRIPE_SECRET_KEY stripe.api_version = getattr(settings, "STRIPE_API_VERSION", "2012-11-07") class StripeObject(models.Model): stripe_id = models.CharField(max_length=255, unique=True) created_at = models.DateTimeField(default=timezone.now) class Meta: # pylint: disable=E0012,C1001 abstract = True class EventProcessingException(models.Model): event = models.ForeignKey("Event", null=True) data = models.TextField() message = models.CharField(max_length=500) traceback = models.TextField() created_at = models.DateTimeField(default=timezone.now) @classmethod def log(cls, data, exception, event): cls.objects.create( event=event, data=data or "", message=str(exception), traceback=traceback.format_exc() ) def __unicode__(self): return u"<%s, pk=%s, Event=%s>" % (self.message, self.pk, self.event) class Event(StripeObject): kind = models.CharField(max_length=250) livemode = models.BooleanField() customer = models.ForeignKey("Customer", null=True) webhook_message = JSONField() validated_message = JSONField(null=True) valid = models.NullBooleanField(null=True) processed = models.BooleanField(default=False) stripe_connect = models.ForeignKey('ConnectUser', null=True) @property def message(self): return self.validated_message def __unicode__(self): return "%s - %s" % (self.kind, self.stripe_id) def link_customer(self): cus_id = None customer_crud_events = [ "customer.created", "customer.updated", "customer.deleted" ] if self.kind in customer_crud_events: cus_id = self.message["data"]["object"]["id"] else: cus_id = self.message["data"]["object"].get("customer", None) if cus_id is not None: try: self.customer = Customer.objects.get(stripe_id=cus_id) self.save() except Customer.DoesNotExist: pass def link_stripe_connect(self): connect_id = self.message["data"]["object"].get("user_id", None) if connect_id is not None: try: self.stripe_connect = ConnectUser.objects.get(account_id=connect_id) self.save() except ConnectUser.DoesNotExist: pass def validate(self): evt = stripe.Event.retrieve(self.stripe_id) self.validated_message = json.loads( json.dumps( evt.to_dict(), sort_keys=True, cls=stripe.StripeObjectEncoder ) ) if self.webhook_message["data"] == self.validated_message["data"]: self.valid = True else: self.valid = False self.save() def process(self): """ "account.updated", "account.application.deauthorized", "charge.succeeded", "charge.failed", "charge.refunded", "charge.dispute.created", "charge.dispute.updated", "chagne.dispute.closed", "customer.created", "customer.updated", "customer.deleted", "customer.subscription.created", "customer.subscription.updated", "customer.subscription.deleted", "customer.subscription.trial_will_end", "customer.discount.created", "customer.discount.updated", "customer.discount.deleted", "invoice.created", "invoice.updated", "invoice.payment_succeeded", "invoice.payment_failed", "invoiceitem.created", "invoiceitem.updated", "invoiceitem.deleted", "plan.created", "plan.updated", "plan.deleted", "coupon.created", "coupon.updated", "coupon.deleted", "transfer.created", "transfer.updated", "transfer.failed", "ping" """ if self.valid and not self.processed: try: if not self.kind.startswith("plan.") and \ not self.kind.startswith("transfer."): self.link_customer() if not self.stripe_connect: self.link_stripe_connect() if self.kind.startswith("invoice."): Invoice.handle_event(self) elif self.kind.startswith("charge."): if not self.customer: self.link_customer() self.customer.record_charge( self.message["data"]["object"]["id"] ) elif self.kind.startswith("transfer."): Transfer.process_transfer( self, self.message["data"]["object"] ) elif self.kind.startswith("customer.subscription."): if not self.customer: self.link_customer() if self.customer: self.customer.sync_current_subscription() elif self.kind == "customer.deleted": if not self.customer: self.link_customer() self.customer.purge() self.send_signal() self.processed = True self.save() except stripe.StripeError, e: EventProcessingException.log( data=e.http_body, exception=e, event=self ) webhook_processing_error.send( sender=Event, data=e.http_body, exception=e ) def send_signal(self): signal = WEBHOOK_SIGNALS.get(self.kind) if signal: return signal.send(sender=Event, event=self) class Transfer(StripeObject): # pylint: disable=C0301 event = models.ForeignKey(Event, related_name="transfers") amount = models.DecimalField(decimal_places=2, max_digits=9) status = models.CharField(max_length=25) date = models.DateTimeField() description = models.TextField(null=True, blank=True) adjustment_count = models.IntegerField(null=True) adjustment_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) adjustment_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_count = models.IntegerField(null=True) charge_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_gross = models.DecimalField(decimal_places=2, max_digits=9, null=True) collected_fee_count = models.IntegerField(null=True) collected_fee_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) net = models.DecimalField(decimal_places=2, max_digits=9, null=True) refund_count = models.IntegerField(null=True) refund_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) refund_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) validation_count = models.IntegerField(null=True) validation_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) stripe_connect = models.ForeignKey('ConnectUser', null=True) objects = TransferManager() def update_status(self): self.status = stripe.Transfer.retrieve(self.stripe_id).status self.save() @classmethod def process_transfer(cls, event, transfer): defaults = { "amount": transfer["amount"] / decimal.Decimal("100"), "status": transfer["status"], "date": convert_tstamp(transfer, "date"), "description": transfer.get("description", "") } summary = transfer.get("summary") if summary: defaults.update({ "adjustment_count": summary.get("adjustment_count"), "adjustment_fees": summary.get("adjustment_fees"), "adjustment_gross": summary.get("adjustment_gross"), "charge_count": summary.get("charge_count"), "charge_fees": summary.get("charge_fees"), "charge_gross": summary.get("charge_gross"), "collected_fee_count": summary.get("collected_fee_count"), "collected_fee_gross": summary.get("collected_fee_gross"), "refund_count": summary.get("refund_count"), "refund_fees": summary.get("refund_fees"), "refund_gross": summary.get("refund_gross"), "validation_count": summary.get("validation_count"), "validation_fees": summary.get("validation_fees"), "net": summary.get("net") / decimal.Decimal("100") }) for field in defaults: if field.endswith("fees") or field.endswith("gross"): defaults[field] = defaults[field] / decimal.Decimal("100") if event.kind == "transfer.paid": defaults.update({"event": event}) obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], defaults=defaults ) else: obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], event=event, defaults=defaults ) if event.stripe_connect: obj.stripe_connect = event.stripe_connect if created and summary: for fee in summary.get("charge_fee_details", []): obj.charge_fee_details.create( amount=fee["amount"] / decimal.Decimal("100"), application=fee.get("application", ""), description=fee.get("description", ""), kind=fee["type"] ) else: obj.status = transfer["status"] obj.save() if event.kind == "transfer.updated": obj.update_status() class TransferChargeFee(models.Model): transfer = models.ForeignKey(Transfer, related_name="charge_fee_details") amount = models.DecimalField(decimal_places=2, max_digits=7) application = models.TextField(null=True, blank=True) description = models.TextField(null=True, blank=True) kind = models.CharField(max_length=150) created_at = models.DateTimeField(default=timezone.now) class Customer(StripeObject): user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) card_fingerprint = models.CharField(max_length=200, blank=True) card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) date_purged = models.DateTimeField(null=True, editable=False) objects = CustomerManager() def __unicode__(self): return unicode(self.user) @property def stripe_customer(self): return stripe.Customer.retrieve(self.stripe_id) def purge(self): try: self.stripe_customer.delete() except stripe.InvalidRequestError as e: if e.message.startswith("No such customer:"): # The exception was thrown because the customer was already # deleted on the stripe side, ignore the exception pass else: # The exception was raised for another reason, re-raise it raise self.user = None self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" self.date_purged = timezone.now() self.save() def delete(self, using=None): # Only way to delete a customer is to use SQL self.purge() def can_charge(self): return self.card_fingerprint and \ self.card_last_4 and \ self.card_kind and \ self.date_purged is None def has_active_subscription(self): try: return self.current_subscription.is_valid() except CurrentSubscription.DoesNotExist: return False def cancel(self, at_period_end=True): try: current = self.current_subscription except CurrentSubscription.DoesNotExist: return sub = self.stripe_customer.cancel_subscription( at_period_end=at_period_end ) current.status = sub.status current.cancel_at_period_end = sub.cancel_at_period_end current.current_period_end = convert_tstamp(sub, "current_period_end") current.save() cancelled.send(sender=self, stripe_response=sub) @classmethod def create(cls, user, card=None, plan=None, charge_immediately=True): if card and plan: plan = PAYMENTS_PLANS[plan]["stripe_plan_id"] elif DEFAULT_PLAN: plan = PAYMENTS_PLANS[DEFAULT_PLAN]["stripe_plan_id"] else: plan = None trial_end = None if TRIAL_PERIOD_FOR_USER_CALLBACK and plan: trial_days = TRIAL_PERIOD_FOR_USER_CALLBACK(user) trial_end = datetime.datetime.utcnow() + datetime.timedelta( days=trial_days ) stripe_customer = stripe.Customer.create( email=user.email, card=card, plan=plan or DEFAULT_PLAN, trial_end=trial_end ) if stripe_customer.active_card: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, card_fingerprint=stripe_customer.active_card.fingerprint, card_last_4=stripe_customer.active_card.last4, card_kind=stripe_customer.active_card.type ) else: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, ) if plan: if stripe_customer.subscription: cus.sync_current_subscription(cu=stripe_customer) if charge_immediately: cus.send_invoice() return cus def update_card(self, token): cu = self.stripe_customer cu.card = token cu.save() self.save_card(cu) def save_card(self, cu=None): cu = cu or self.stripe_customer active_card = cu.active_card self.card_fingerprint = active_card.fingerprint self.card_last_4 = active_card.last4 self.card_kind = active_card.type self.save() card_changed.send(sender=self, stripe_response=cu) def retry_unpaid_invoices(self): self.sync_invoices() for inv in self.invoices.filter(paid=False, closed=False): try: inv.retry() # Always retry unpaid invoices except stripe.InvalidRequestError, error: if error.message != "Invoice is already paid": raise error def send_invoice(self): try: invoice = stripe.Invoice.create(customer=self.stripe_id) if invoice.amount_due > 0: invoice.pay() return True except stripe.InvalidRequestError: return False # There was nothing to invoice def sync(self, cu=None): cu = cu or self.stripe_customer updated = False if hasattr(cu, "active_card") and cu.active_card: # Test to make sure the card has changed, otherwise do not update it # (i.e. refrain from sending any signals) if (self.card_last_4 != cu.active_card.last4 or self.card_fingerprint != cu.active_card.fingerprint or self.card_kind != cu.active_card.type): updated = True self.card_last_4 = cu.active_card.last4 self.card_fingerprint = cu.active_card.fingerprint self.card_kind = cu.active_card.type else: updated = True self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" if updated: self.save() card_changed.send(sender=self, stripe_response=cu) def sync_invoices(self, cu=None): cu = cu or self.stripe_customer for invoice in cu.invoices().data: Invoice.sync_from_stripe_data(invoice, send_receipt=False) def sync_charges(self, cu=None): cu = cu or self.stripe_customer for charge in cu.charges().data: self.record_charge(charge.id) def sync_current_subscription(self, cu=None): cu = cu or self.stripe_customer sub = getattr(cu, "subscription", None) if sub is None: try: self.current_subscription.delete() except CurrentSubscription.DoesNotExist: pass else: try: sub_obj = self.current_subscription sub_obj.plan = plan_from_stripe_id(sub.plan.id) sub_obj.current_period_start = convert_tstamp( sub.current_period_start ) sub_obj.current_period_end = convert_tstamp( sub.current_period_end ) sub_obj.amount = (sub.plan.amount / decimal.Decimal("100")) sub_obj.status = sub.status sub_obj.cancel_at_period_end = sub.cancel_at_period_end sub_obj.start = convert_tstamp(sub.start) sub_obj.quantity = sub.quantity sub_obj.save() except CurrentSubscription.DoesNotExist: sub_obj = CurrentSubscription.objects.create( customer=self, plan=plan_from_stripe_id(sub.plan.id), current_period_start=convert_tstamp( sub.current_period_start ), current_period_end=convert_tstamp( sub.current_period_end ), amount=(sub.plan.amount / decimal.Decimal("100")), status=sub.status, cancel_at_period_end=sub.cancel_at_period_end, start=convert_tstamp(sub.start), quantity=sub.quantity ) if sub.trial_start and sub.trial_end: sub_obj.trial_start = convert_tstamp(sub.trial_start) sub_obj.trial_end = convert_tstamp(sub.trial_end) sub_obj.save() return sub_obj def update_plan_quantity(self, quantity, charge_immediately=False): self.subscribe( plan=plan_from_stripe_id( self.stripe_customer.subscription.plan.id ), quantity=quantity, charge_immediately=charge_immediately ) def subscribe(self, plan, quantity=None, trial_days=None, charge_immediately=True, token=None, coupon=None): if quantity is None: if PLAN_QUANTITY_CALLBACK is not None: quantity = PLAN_QUANTITY_CALLBACK(self) else: quantity = 1 cu = self.stripe_customer subscription_params = {} if trial_days: subscription_params["trial_end"] = \ datetime.datetime.utcnow() + datetime.timedelta(days=trial_days) if token: subscription_params["card"] = token subscription_params["plan"] = PAYMENTS_PLANS[plan]["stripe_plan_id"] subscription_params["quantity"] = quantity subscription_params["coupon"] = coupon resp = cu.update_subscription(**subscription_params) if token: # Refetch the stripe customer so we have the updated card info cu = self.stripe_customer self.save_card(cu) self.sync_current_subscription(cu) if charge_immediately: self.send_invoice() subscription_made.send(sender=self, plan=plan, stripe_response=resp) return resp def charge(self, amount, currency="usd", description=None, send_receipt=True, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['card'] = stripe.Token.create(customer=self.stripe_id, api_key=stripe_connect_user.stripe_access_token) charge_args['api_key'] = stripe_connect_user.stripe_access_token else: charge_args['customer'] = self.stripe_id if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) obj = self.record_charge(resp["id"], stripe_connect_user) if send_receipt: obj.send_receipt() return obj def record_charge(self, charge_id, stripe_connect_user=None): if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): data = stripe.Charge.retrieve(charge_id, api_key=stripe_connect_user.stripe_access_token) else: data = stripe.Charge.retrieve(charge_id) return Charge.sync_from_stripe_data(data) class ConnectUser(models.Model): """ A user in your system who you may be routing payments to through "Stripe Connect" """ user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) # when a webhook is received for an action related to a ConnectUser, a 'user_id' will be provided # This is the same as an account id account_id = models.CharField(max_length=100) stripe_access_token = models.CharField(max_length=100) stripe_publishable_key = models.CharField(max_length=100) @staticmethod def account_id_lookup(stripe_access_token): data = stripe.Account.retrieve(api_key=stripe_access_token) return data.get('id', None) def __unicode__(self): return unicode(self.user) class CurrentSubscription(models.Model): customer = models.OneToOneField( Customer, related_name="current_subscription", null=True ) plan = models.CharField(max_length=100) quantity = models.IntegerField() start = models.DateTimeField() # trialing, active, past_due, canceled, or unpaid status = models.CharField(max_length=25) cancel_at_period_end = models.BooleanField(default=False) canceled_at = models.DateTimeField(blank=True, null=True) current_period_end = models.DateTimeField(blank=True, null=True) current_period_start = models.DateTimeField(blank=True, null=True) ended_at = models.DateTimeField(blank=True, null=True) trial_end = models.DateTimeField(blank=True, null=True) trial_start = models.DateTimeField(blank=True, null=True) amount = models.DecimalField(decimal_places=2, max_digits=7) created_at = models.DateTimeField(default=timezone.now) @property def total_amount(self): return self.amount * self.quantity def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] def status_display(self): return self.status.replace("_", " ").title() def is_period_current(self): return self.current_period_end > timezone.now() def is_status_current(self): return self.status in ["trialing", "active"] def is_valid(self): if not self.is_status_current(): return False if self.cancel_at_period_end and not self.is_period_current(): return False return True def delete(self, using=None): # pylint: disable=E1002 """ Set values to None while deleting the object so that any lingering references will not show previous values (such as when an Event signal is triggered after a subscription has been deleted) """ super(CurrentSubscription, self).delete(using=using) self.plan = None self.status = None self.quantity = 0 self.amount = 0 class Invoice(models.Model): stripe_id = models.CharField(max_length=255) customer = models.ForeignKey(Customer, related_name="invoices") attempted = models.NullBooleanField() attempts = models.PositiveIntegerField(null=True) closed = models.BooleanField(default=False) paid = models.BooleanField(default=False) period_end = models.DateTimeField() period_start = models.DateTimeField() subtotal = models.DecimalField(decimal_places=2, max_digits=7) total = models.DecimalField(decimal_places=2, max_digits=7) date = models.DateTimeField() charge = models.CharField(max_length=50, blank=True) created_at = models.DateTimeField(default=timezone.now) stripe_connect = models.ForeignKey(ConnectUser, null=True) class Meta: # pylint: disable=E0012,C1001 ordering = ["-date"] def retry(self): if not self.paid and not self.closed: inv = stripe.Invoice.retrieve(self.stripe_id) inv.pay() return True return False def status(self): if self.paid: return "Paid" return "Open" @classmethod def sync_from_stripe_data(cls, stripe_invoice, send_receipt=True, stripe_connect=None): c = Customer.objects.get(stripe_id=stripe_invoice["customer"]) period_end = convert_tstamp(stripe_invoice, "period_end") period_start = convert_tstamp(stripe_invoice, "period_start") date = convert_tstamp(stripe_invoice, "date") invoice, created = cls.objects.get_or_create( stripe_id=stripe_invoice["id"], defaults=dict( customer=c, attempted=stripe_invoice["attempted"], attempts=stripe_invoice["attempt_count"], closed=stripe_invoice["closed"], paid=stripe_invoice["paid"], period_end=period_end, period_start=period_start, subtotal=stripe_invoice["subtotal"] / decimal.Decimal("100"), total=stripe_invoice["total"] / decimal.Decimal("100"), date=date, charge=stripe_invoice.get("charge") or "", stripe_connect=stripe_connect ) ) if not created: # pylint: disable=C0301 invoice.attempted = stripe_invoice["attempted"] invoice.attempts = stripe_invoice["attempt_count"] invoice.closed = stripe_invoice["closed"] invoice.paid = stripe_invoice["paid"] invoice.period_end = period_end invoice.period_start = period_start invoice.subtotal = stripe_invoice["subtotal"] / decimal.Decimal("100") invoice.total = stripe_invoice["total"] / decimal.Decimal("100") invoice.date = date invoice.charge = stripe_invoice.get("charge") or "" invoice.stripe_connect = stripe_connect invoice.save() for item in stripe_invoice["lines"].get("data", []): period_end = convert_tstamp(item["period"], "end") period_start = convert_tstamp(item["period"], "start") if item.get("plan"): plan = plan_from_stripe_id(item["plan"]["id"]) else: plan = "" inv_item, inv_item_created = invoice.items.get_or_create( stripe_id=item["id"], defaults=dict( amount=(item["amount"] / decimal.Decimal("100")), currency=item["currency"], proration=item["proration"], description=item.get("description") or "", line_type=item["type"], plan=plan, period_start=period_start, period_end=period_end, quantity=item.get("quantity") ) ) if not inv_item_created: inv_item.amount = (item["amount"] / decimal.Decimal("100")) inv_item.currency = item["currency"] inv_item.proration = item["proration"] inv_item.description = item.get("description") or "" inv_item.line_type = item["type"] inv_item.plan = plan inv_item.period_start = period_start inv_item.period_end = period_end inv_item.quantity = item.get("quantity") inv_item.save() if stripe_invoice.get("charge"): obj = c.record_charge(stripe_invoice["charge"]) obj.invoice = invoice obj.save() if send_receipt: obj.send_receipt() return invoice @classmethod def handle_event(cls, event, send_receipt=SEND_EMAIL_RECEIPTS): valid_events = ["invoice.payment_failed", "invoice.payment_succeeded"] if event.kind in valid_events: invoice_data = event.message["data"]["object"] stripe_invoice = stripe.Invoice.retrieve(invoice_data["id"]) cls.sync_from_stripe_data(stripe_invoice, send_receipt=send_receipt, stripe_connect=event.stripe_connect) class InvoiceItem(models.Model): stripe_id = models.CharField(max_length=255) created_at = models.DateTimeField(default=timezone.now) invoice = models.ForeignKey(Invoice, related_name="items") amount = models.DecimalField(decimal_places=2, max_digits=7) currency = models.CharField(max_length=10) period_start = models.DateTimeField() period_end = models.DateTimeField() proration = models.BooleanField(default=False) line_type = models.CharField(max_length=50) description = models.CharField(max_length=200, blank=True) plan = models.CharField(max_length=100, blank=True) quantity = models.IntegerField(null=True) def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] class Charge(StripeObject): customer = models.ForeignKey(Customer, related_name="charges", null=True) invoice = models.ForeignKey(Invoice, null=True, related_name="charges") card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) amount = models.DecimalField(decimal_places=2, max_digits=7, null=True) amount_refunded = models.DecimalField( decimal_places=2, max_digits=7, null=True ) description = models.TextField(blank=True) paid = models.NullBooleanField(null=True) disputed = models.NullBooleanField(null=True) refunded = models.NullBooleanField(null=True) fee = models.DecimalField(decimal_places=2, max_digits=7, null=True) receipt_sent = models.BooleanField(default=False) charge_created = models.DateTimeField(null=True, blank=True) stripe_connect = models.ForeignKey(ConnectUser, null=True) objects = ChargeManager() def calculate_refund_amount(self, amount=None): eligible_to_refund = self.amount - (self.amount_refunded or 0) if amount: amount_to_refund = min(eligible_to_refund, amount) else: amount_to_refund = eligible_to_refund return int(amount_to_refund * 100) def refund(self, amount=None): # pylint: disable=E1121 charge_obj = stripe.Charge.retrieve( self.stripe_id ).refund( amount=self.calculate_refund_amount(amount=amount) ) Charge.sync_from_stripe_data(charge_obj) @classmethod def sync_from_stripe_data(cls, data): obj, _ = Charge.objects.get_or_create( stripe_id=data["id"] ) customer_id = data.get("customer", None); customer = Customer.objects.get(stripe_id=customer_id) if customer_id else None obj.customer = customer invoice_id = data.get("invoice", None) if Invoice.objects.filter(stripe_id=invoice_id).exists(): obj.invoice = obj.customer.invoices.get(stripe_id=invoice_id) obj.card_last_4 = data["card"]["last4"] obj.card_kind = data["card"]["type"] obj.amount = (data["amount"] / decimal.Decimal("100")) obj.paid = data["paid"] obj.refunded = data["refunded"] obj.fee = (data["fee"] / decimal.Decimal("100")) obj.disputed = data["dispute"] is not None obj.charge_created = convert_tstamp(data, "created") if data.get("description"): obj.description = data["description"] if data.get("amount_refunded"): # pylint: disable=C0301 obj.amount_refunded = (data["amount_refunded"] / decimal.Decimal("100")) if data["refunded"]: obj.amount_refunded = (data["amount"] / decimal.Decimal("100")) user_id = data.get("user_id", None) if user_id and ConnectUser.objects.filter(account_id=user_id).exists(): obj.stripe_connect = ConnectUser.objects.get(account_id=user_id) obj.save() return obj def send_receipt(self): if not self.receipt_sent and self.customer: site = Site.objects.get_current() protocol = getattr(settings, "DEFAULT_HTTP_PROTOCOL", "http") ctx = { "charge": self, "site": site, "protocol": protocol, } subject = render_to_string("payments/email/subject.txt", ctx) subject = subject.strip() message = render_to_string("payments/email/body.txt", ctx) num_sent = EmailMessage( subject, message, to=[self.customer.user.email], from_email=INVOICE_FROM_EMAIL ).send() self.receipt_sent = num_sent > 0 self.save() @classmethod def create(cls, card, amount, currency="usd", description=None, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, 'card': card, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['api_key'] = stripe_connect_user.stripe_access_token elif stripe_connect_user: charge_args['api_key'] = stripe_connect_user if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) return Charge.sync_from_stripe_data(resp)
import datetime import decimal import json import traceback from django.conf import settings from django.core.mail import EmailMessage from django.db import models from django.utils import timezone from django.template.loader import render_to_string from django.contrib.sites.models import Site import stripe from jsonfield.fields import JSONField from .managers import CustomerManager, ChargeManager, TransferManager from .settings import ( DEFAULT_PLAN, INVOICE_FROM_EMAIL, PAYMENTS_PLANS, plan_from_stripe_id, SEND_EMAIL_RECEIPTS, TRIAL_PERIOD_FOR_USER_CALLBACK, PLAN_QUANTITY_CALLBACK ) from .signals import ( cancelled, card_changed, subscription_made, webhook_processing_error, WEBHOOK_SIGNALS, ) from .utils import convert_tstamp stripe.api_key = settings.STRIPE_SECRET_KEY stripe.api_version = getattr(settings, "STRIPE_API_VERSION", "2012-11-07") class StripeObject(models.Model): stripe_id = models.CharField(max_length=255, unique=True) created_at = models.DateTimeField(default=timezone.now) class Meta: # pylint: disable=E0012,C1001 abstract = True class EventProcessingException(models.Model): event = models.ForeignKey("Event", null=True) data = models.TextField() message = models.CharField(max_length=500) traceback = models.TextField() created_at = models.DateTimeField(default=timezone.now) @classmethod def log(cls, data, exception, event): cls.objects.create( event=event, data=data or "", message=str(exception), traceback=traceback.format_exc() ) def __unicode__(self): return u"<%s, pk=%s, Event=%s>" % (self.message, self.pk, self.event) class Event(StripeObject): kind = models.CharField(max_length=250) livemode = models.BooleanField() customer = models.ForeignKey("Customer", null=True) webhook_message = JSONField() validated_message = JSONField(null=True) valid = models.NullBooleanField(null=True) processed = models.BooleanField(default=False) stripe_connect = models.ForeignKey('ConnectUser', null=True) @property def message(self): return self.validated_message def __unicode__(self): return "%s - %s" % (self.kind, self.stripe_id) def link_customer(self): cus_id = None customer_crud_events = [ "customer.created", "customer.updated", "customer.deleted" ] if self.kind in customer_crud_events: cus_id = self.message["data"]["object"]["id"] else: cus_id = self.message["data"]["object"].get("customer", None) if cus_id is not None: try: self.customer = Customer.objects.get(stripe_id=cus_id) self.save() except Customer.DoesNotExist: pass def link_stripe_connect(self): connect_id = self.message["data"]["object"].get("user_id", None) if connect_id is not None: try: self.stripe_connect = ConnectUser.objects.get(account_id=connect_id) self.save() except ConnectUser.DoesNotExist: pass def validate(self): evt = stripe.Event.retrieve(self.stripe_id) self.validated_message = json.loads( json.dumps( evt.to_dict(), sort_keys=True, cls=stripe.StripeObjectEncoder ) ) if self.webhook_message["data"] == self.validated_message["data"]: self.valid = True else: self.valid = False self.save() def process(self): """ "account.updated", "account.application.deauthorized", "charge.succeeded", "charge.failed", "charge.refunded", "charge.dispute.created", "charge.dispute.updated", "chagne.dispute.closed", "customer.created", "customer.updated", "customer.deleted", "customer.subscription.created", "customer.subscription.updated", "customer.subscription.deleted", "customer.subscription.trial_will_end", "customer.discount.created", "customer.discount.updated", "customer.discount.deleted", "invoice.created", "invoice.updated", "invoice.payment_succeeded", "invoice.payment_failed", "invoiceitem.created", "invoiceitem.updated", "invoiceitem.deleted", "plan.created", "plan.updated", "plan.deleted", "coupon.created", "coupon.updated", "coupon.deleted", "transfer.created", "transfer.updated", "transfer.failed", "ping" """ if self.valid and not self.processed: try: if not self.kind.startswith("plan.") and \ not self.kind.startswith("transfer."): self.link_customer() if not self.stripe_connect: self.link_stripe_connect() if self.kind.startswith("invoice."): Invoice.handle_event(self) elif self.kind.startswith("charge."): if not self.customer: self.link_customer() self.customer.record_charge( self.message["data"]["object"]["id"] ) elif self.kind.startswith("transfer."): Transfer.process_transfer( self, self.message["data"]["object"] ) elif self.kind.startswith("customer.subscription."): if not self.customer: self.link_customer() if self.customer: self.customer.sync_current_subscription() elif self.kind == "customer.deleted": if not self.customer: self.link_customer() self.customer.purge() self.send_signal() self.processed = True self.save() except stripe.StripeError, e: EventProcessingException.log( data=e.http_body, exception=e, event=self ) webhook_processing_error.send( sender=Event, data=e.http_body, exception=e ) def send_signal(self): signal = WEBHOOK_SIGNALS.get(self.kind) if signal: return signal.send(sender=Event, event=self) class Transfer(StripeObject): # pylint: disable=C0301 event = models.ForeignKey(Event, related_name="transfers") amount = models.DecimalField(decimal_places=2, max_digits=9) status = models.CharField(max_length=25) date = models.DateTimeField() description = models.TextField(null=True, blank=True) adjustment_count = models.IntegerField(null=True) adjustment_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) adjustment_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_count = models.IntegerField(null=True) charge_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_gross = models.DecimalField(decimal_places=2, max_digits=9, null=True) collected_fee_count = models.IntegerField(null=True) collected_fee_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) net = models.DecimalField(decimal_places=2, max_digits=9, null=True) refund_count = models.IntegerField(null=True) refund_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) refund_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) validation_count = models.IntegerField(null=True) validation_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) stripe_connect = models.ForeignKey('ConnectUser', null=True) objects = TransferManager() def update_status(self): self.status = stripe.Transfer.retrieve(self.stripe_id).status self.save() @classmethod def process_transfer(cls, event, transfer): defaults = { "amount": transfer["amount"] / decimal.Decimal("100"), "status": transfer["status"], "date": convert_tstamp(transfer, "date"), "description": transfer.get("description", "") } summary = transfer.get("summary") if summary: defaults.update({ "adjustment_count": summary.get("adjustment_count"), "adjustment_fees": summary.get("adjustment_fees"), "adjustment_gross": summary.get("adjustment_gross"), "charge_count": summary.get("charge_count"), "charge_fees": summary.get("charge_fees"), "charge_gross": summary.get("charge_gross"), "collected_fee_count": summary.get("collected_fee_count"), "collected_fee_gross": summary.get("collected_fee_gross"), "refund_count": summary.get("refund_count"), "refund_fees": summary.get("refund_fees"), "refund_gross": summary.get("refund_gross"), "validation_count": summary.get("validation_count"), "validation_fees": summary.get("validation_fees"), "net": summary.get("net") / decimal.Decimal("100") }) for field in defaults: if field.endswith("fees") or field.endswith("gross"): defaults[field] = defaults[field] / decimal.Decimal("100") if event.kind == "transfer.paid": defaults.update({"event": event}) obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], defaults=defaults ) else: obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], event=event, defaults=defaults ) if event.stripe_connect: obj.stripe_connect = event.stripe_connect if created and summary: for fee in summary.get("charge_fee_details", []): obj.charge_fee_details.create( amount=fee["amount"] / decimal.Decimal("100"), application=fee.get("application", ""), description=fee.get("description", ""), kind=fee["type"] ) else: obj.status = transfer["status"] obj.save() if event.kind == "transfer.updated": obj.update_status() class TransferChargeFee(models.Model): transfer = models.ForeignKey(Transfer, related_name="charge_fee_details") amount = models.DecimalField(decimal_places=2, max_digits=7) application = models.TextField(null=True, blank=True) description = models.TextField(null=True, blank=True) kind = models.CharField(max_length=150) created_at = models.DateTimeField(default=timezone.now) class Customer(StripeObject): user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) card_fingerprint = models.CharField(max_length=200, blank=True) card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) date_purged = models.DateTimeField(null=True, editable=False) objects = CustomerManager() def __unicode__(self): return unicode(self.user) @property def stripe_customer(self): return stripe.Customer.retrieve(self.stripe_id) def purge(self): try: self.stripe_customer.delete() except stripe.InvalidRequestError as e: if e.message.startswith("No such customer:"): # The exception was thrown because the customer was already # deleted on the stripe side, ignore the exception pass else: # The exception was raised for another reason, re-raise it raise self.user = None self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" self.date_purged = timezone.now() self.save() def delete(self, using=None): # Only way to delete a customer is to use SQL self.purge() def can_charge(self): return self.card_fingerprint and \ self.card_last_4 and \ self.card_kind and \ self.date_purged is None def has_active_subscription(self): try: return self.current_subscription.is_valid() except CurrentSubscription.DoesNotExist: return False def cancel(self, at_period_end=True): try: current = self.current_subscription except CurrentSubscription.DoesNotExist: return sub = self.stripe_customer.cancel_subscription( at_period_end=at_period_end ) current.status = sub.status current.cancel_at_period_end = sub.cancel_at_period_end current.current_period_end = convert_tstamp(sub, "current_period_end") current.save() cancelled.send(sender=self, stripe_response=sub) @classmethod def create(cls, user, card=None, plan=None, charge_immediately=True): if card and plan: plan = PAYMENTS_PLANS[plan]["stripe_plan_id"] elif DEFAULT_PLAN: plan = PAYMENTS_PLANS[DEFAULT_PLAN]["stripe_plan_id"] else: plan = None trial_end = None if TRIAL_PERIOD_FOR_USER_CALLBACK and plan: trial_days = TRIAL_PERIOD_FOR_USER_CALLBACK(user) trial_end = datetime.datetime.utcnow() + datetime.timedelta( days=trial_days ) stripe_customer = stripe.Customer.create( email=user.email, card=card, plan=plan or DEFAULT_PLAN, trial_end=trial_end ) if stripe_customer.active_card: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, card_fingerprint=stripe_customer.active_card.fingerprint, card_last_4=stripe_customer.active_card.last4, card_kind=stripe_customer.active_card.type ) else: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, ) if plan: if stripe_customer.subscription: cus.sync_current_subscription(cu=stripe_customer) if charge_immediately: cus.send_invoice() return cus def update_card(self, token): cu = self.stripe_customer cu.card = token cu.save() self.save_card(cu) def save_card(self, cu=None): cu = cu or self.stripe_customer active_card = cu.active_card self.card_fingerprint = active_card.fingerprint self.card_last_4 = active_card.last4 self.card_kind = active_card.type self.save() card_changed.send(sender=self, stripe_response=cu) def retry_unpaid_invoices(self): self.sync_invoices() for inv in self.invoices.filter(paid=False, closed=False): try: inv.retry() # Always retry unpaid invoices except stripe.InvalidRequestError, error: if error.message != "Invoice is already paid": raise error def send_invoice(self): try: invoice = stripe.Invoice.create(customer=self.stripe_id) if invoice.amount_due > 0: invoice.pay() return True except stripe.InvalidRequestError: return False # There was nothing to invoice def sync(self, cu=None): cu = cu or self.stripe_customer updated = False if hasattr(cu, "active_card") and cu.active_card: # Test to make sure the card has changed, otherwise do not update it # (i.e. refrain from sending any signals) if (self.card_last_4 != cu.active_card.last4 or self.card_fingerprint != cu.active_card.fingerprint or self.card_kind != cu.active_card.type): updated = True self.card_last_4 = cu.active_card.last4 self.card_fingerprint = cu.active_card.fingerprint self.card_kind = cu.active_card.type else: updated = True self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" if updated: self.save() card_changed.send(sender=self, stripe_response=cu) def sync_invoices(self, cu=None): cu = cu or self.stripe_customer for invoice in cu.invoices().data: Invoice.sync_from_stripe_data(invoice, send_receipt=False) def sync_charges(self, cu=None): cu = cu or self.stripe_customer for charge in cu.charges().data: self.record_charge(charge.id) def sync_current_subscription(self, cu=None): cu = cu or self.stripe_customer sub = getattr(cu, "subscription", None) if sub is None: try: self.current_subscription.delete() except CurrentSubscription.DoesNotExist: pass else: try: sub_obj = self.current_subscription sub_obj.plan = plan_from_stripe_id(sub.plan.id) sub_obj.current_period_start = convert_tstamp( sub.current_period_start ) sub_obj.current_period_end = convert_tstamp( sub.current_period_end ) sub_obj.amount = (sub.plan.amount / decimal.Decimal("100")) sub_obj.status = sub.status sub_obj.cancel_at_period_end = sub.cancel_at_period_end sub_obj.start = convert_tstamp(sub.start) sub_obj.quantity = sub.quantity sub_obj.save() except CurrentSubscription.DoesNotExist: sub_obj = CurrentSubscription.objects.create( customer=self, plan=plan_from_stripe_id(sub.plan.id), current_period_start=convert_tstamp( sub.current_period_start ), current_period_end=convert_tstamp( sub.current_period_end ), amount=(sub.plan.amount / decimal.Decimal("100")), status=sub.status, cancel_at_period_end=sub.cancel_at_period_end, start=convert_tstamp(sub.start), quantity=sub.quantity ) if sub.trial_start and sub.trial_end: sub_obj.trial_start = convert_tstamp(sub.trial_start) sub_obj.trial_end = convert_tstamp(sub.trial_end) sub_obj.save() return sub_obj def update_plan_quantity(self, quantity, charge_immediately=False): self.subscribe( plan=plan_from_stripe_id( self.stripe_customer.subscription.plan.id ), quantity=quantity, charge_immediately=charge_immediately ) def subscribe(self, plan, quantity=None, trial_days=None, charge_immediately=True, token=None, coupon=None): if quantity is None: if PLAN_QUANTITY_CALLBACK is not None: quantity = PLAN_QUANTITY_CALLBACK(self) else: quantity = 1 cu = self.stripe_customer subscription_params = {} if trial_days: subscription_params["trial_end"] = \ datetime.datetime.utcnow() + datetime.timedelta(days=trial_days) if token: subscription_params["card"] = token subscription_params["plan"] = PAYMENTS_PLANS[plan]["stripe_plan_id"] subscription_params["quantity"] = quantity subscription_params["coupon"] = coupon resp = cu.update_subscription(**subscription_params) if token: # Refetch the stripe customer so we have the updated card info cu = self.stripe_customer self.save_card(cu) self.sync_current_subscription(cu) if charge_immediately: self.send_invoice() subscription_made.send(sender=self, plan=plan, stripe_response=resp) return resp def charge(self, amount, currency="usd", description=None, send_receipt=True, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['card'] = stripe.Token.create(customer=self.stripe_id, api_key=stripe_connect_user.stripe_access_token) charge_args['api_key'] = stripe_connect_user.stripe_access_token else: charge_args['customer'] = self.stripe_id if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) obj = self.record_charge(resp["id"], stripe_connect_user) if send_receipt: obj.send_receipt() return obj def record_charge(self, charge_id, stripe_connect_user=None): if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): data = stripe.Charge.retrieve(charge_id, api_key=stripe_connect_user.stripe_access_token) else: data = stripe.Charge.retrieve(charge_id) return Charge.sync_from_stripe_data(data) class ConnectUser(models.Model): """ A user in your system who you may be routing payments to through "Stripe Connect" """ user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) # when a webhook is received for an action related to a ConnectUser, a 'user_id' will be provided # This is the same as an account id account_id = models.CharField(max_length=100) stripe_access_token = models.CharField(max_length=100) stripe_publishable_key = models.CharField(max_length=100) @staticmethod def account_id_lookup(stripe_access_token): data = stripe.Account.retrieve(api_key=stripe_access_token) return data.get('id', None) def __unicode__(self): return unicode(self.user) class CurrentSubscription(models.Model): customer = models.OneToOneField( Customer, related_name="current_subscription", null=True ) plan = models.CharField(max_length=100) quantity = models.IntegerField() start = models.DateTimeField() # trialing, active, past_due, canceled, or unpaid status = models.CharField(max_length=25) cancel_at_period_end = models.BooleanField(default=False) canceled_at = models.DateTimeField(blank=True, null=True) current_period_end = models.DateTimeField(blank=True, null=True) current_period_start = models.DateTimeField(blank=True, null=True) ended_at = models.DateTimeField(blank=True, null=True) trial_end = models.DateTimeField(blank=True, null=True) trial_start = models.DateTimeField(blank=True, null=True) amount = models.DecimalField(decimal_places=2, max_digits=7) created_at = models.DateTimeField(default=timezone.now) @property def total_amount(self): return self.amount * self.quantity def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] def status_display(self): return self.status.replace("_", " ").title() def is_period_current(self): return self.current_period_end > timezone.now() def is_status_current(self): return self.status in ["trialing", "active"] def is_valid(self): if not self.is_status_current(): return False if self.cancel_at_period_end and not self.is_period_current(): return False return True def delete(self, using=None): # pylint: disable=E1002 """ Set values to None while deleting the object so that any lingering references will not show previous values (such as when an Event signal is triggered after a subscription has been deleted) """ super(CurrentSubscription, self).delete(using=using) self.plan = None self.status = None self.quantity = 0 self.amount = 0 class Invoice(models.Model): stripe_id = models.CharField(max_length=255) customer = models.ForeignKey(Customer, related_name="invoices") attempted = models.NullBooleanField() attempts = models.PositiveIntegerField(null=True) closed = models.BooleanField(default=False) paid = models.BooleanField(default=False) period_end = models.DateTimeField() period_start = models.DateTimeField() subtotal = models.DecimalField(decimal_places=2, max_digits=7) total = models.DecimalField(decimal_places=2, max_digits=7) date = models.DateTimeField() charge = models.CharField(max_length=50, blank=True) created_at = models.DateTimeField(default=timezone.now) stripe_connect = models.ForeignKey(ConnectUser, null=True) class Meta: # pylint: disable=E0012,C1001 ordering = ["-date"] def retry(self): if not self.paid and not self.closed: inv = stripe.Invoice.retrieve(self.stripe_id) inv.pay() return True return False def status(self): if self.paid: return "Paid" return "Open" @classmethod def sync_from_stripe_data(cls, stripe_invoice, send_receipt=True, stripe_connect=None): c = Customer.objects.get(stripe_id=stripe_invoice["customer"]) period_end = convert_tstamp(stripe_invoice, "period_end") period_start = convert_tstamp(stripe_invoice, "period_start") date = convert_tstamp(stripe_invoice, "date") invoice, created = cls.objects.get_or_create( stripe_id=stripe_invoice["id"], defaults=dict( customer=c, attempted=stripe_invoice["attempted"], attempts=stripe_invoice["attempt_count"], closed=stripe_invoice["closed"], paid=stripe_invoice["paid"], period_end=period_end, period_start=period_start, subtotal=stripe_invoice["subtotal"] / decimal.Decimal("100"), total=stripe_invoice["total"] / decimal.Decimal("100"), date=date, charge=stripe_invoice.get("charge") or "", stripe_connect=stripe_connect ) ) if not created: # pylint: disable=C0301 invoice.attempted = stripe_invoice["attempted"] invoice.attempts = stripe_invoice["attempt_count"] invoice.closed = stripe_invoice["closed"] invoice.paid = stripe_invoice["paid"] invoice.period_end = period_end invoice.period_start = period_start invoice.subtotal = stripe_invoice["subtotal"] / decimal.Decimal("100") invoice.total = stripe_invoice["total"] / decimal.Decimal("100") invoice.date = date invoice.charge = stripe_invoice.get("charge") or "" invoice.stripe_connect = stripe_connect invoice.save() for item in stripe_invoice["lines"].get("data", []): period_end = convert_tstamp(item["period"], "end") period_start = convert_tstamp(item["period"], "start") if item.get("plan"): plan = plan_from_stripe_id(item["plan"]["id"]) else: plan = "" inv_item, inv_item_created = invoice.items.get_or_create( stripe_id=item["id"], defaults=dict( amount=(item["amount"] / decimal.Decimal("100")), currency=item["currency"], proration=item["proration"], description=item.get("description") or "", line_type=item["type"], plan=plan, period_start=period_start, period_end=period_end, quantity=item.get("quantity") ) ) if not inv_item_created: inv_item.amount = (item["amount"] / decimal.Decimal("100")) inv_item.currency = item["currency"] inv_item.proration = item["proration"] inv_item.description = item.get("description") or "" inv_item.line_type = item["type"] inv_item.plan = plan inv_item.period_start = period_start inv_item.period_end = period_end inv_item.quantity = item.get("quantity") inv_item.save() if stripe_invoice.get("charge"): obj = c.record_charge(stripe_invoice["charge"]) obj.invoice = invoice obj.save() if send_receipt: obj.send_receipt() return invoice @classmethod def handle_event(cls, event, send_receipt=SEND_EMAIL_RECEIPTS): valid_events = ["invoice.payment_failed", "invoice.payment_succeeded"] if event.kind in valid_events: invoice_data = event.message["data"]["object"] stripe_invoice = stripe.Invoice.retrieve(invoice_data["id"]) cls.sync_from_stripe_data(stripe_invoice, send_receipt=send_receipt, stripe_connect=event.stripe_connect) class InvoiceItem(models.Model): stripe_id = models.CharField(max_length=255) created_at = models.DateTimeField(default=timezone.now) invoice = models.ForeignKey(Invoice, related_name="items") amount = models.DecimalField(decimal_places=2, max_digits=7) currency = models.CharField(max_length=10) period_start = models.DateTimeField() period_end = models.DateTimeField() proration = models.BooleanField(default=False) line_type = models.CharField(max_length=50) description = models.CharField(max_length=200, blank=True) plan = models.CharField(max_length=100, blank=True) quantity = models.IntegerField(null=True) def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] class Charge(StripeObject): customer = models.ForeignKey(Customer, related_name="charges", null=True) invoice = models.ForeignKey(Invoice, null=True, related_name="charges") card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) amount = models.DecimalField(decimal_places=2, max_digits=7, null=True) amount_refunded = models.DecimalField( decimal_places=2, max_digits=7, null=True ) description = models.TextField(blank=True) paid = models.NullBooleanField(null=True) disputed = models.NullBooleanField(null=True) refunded = models.NullBooleanField(null=True) fee = models.DecimalField(decimal_places=2, max_digits=7, null=True) receipt_sent = models.BooleanField(default=False) charge_created = models.DateTimeField(null=True, blank=True) stripe_connect = models.ForeignKey(ConnectUser, null=True) objects = ChargeManager() def calculate_refund_amount(self, amount=None): eligible_to_refund = self.amount - (self.amount_refunded or 0) if amount: amount_to_refund = min(eligible_to_refund, amount) else: amount_to_refund = eligible_to_refund return int(amount_to_refund * 100) def refund(self, amount=None): # pylint: disable=E1121 charge_obj = stripe.Charge.retrieve( self.stripe_id ).refund( amount=self.calculate_refund_amount(amount=amount) ) Charge.sync_from_stripe_data(charge_obj) @classmethod def sync_from_stripe_data(cls, data): obj, _ = Charge.objects.get_or_create( stripe_id=data["id"] ) customer_id = data.get("customer", None); customer = Customer.objects.get(stripe_id=customer_id) if customer_id else None obj.customer = customer invoice_id = data.get("invoice", None) if Invoice.objects.filter(stripe_id=invoice_id).exists(): obj.invoice = obj.customer.invoices.get(stripe_id=invoice_id) obj.card_last_4 = data["card"]["last4"] obj.card_kind = data["card"]["type"] obj.amount = (data["amount"] / decimal.Decimal("100")) obj.paid = data["paid"] obj.refunded = data["refunded"] obj.fee = (data["fee"] / decimal.Decimal("100")) obj.disputed = data["dispute"] is not None obj.charge_created = convert_tstamp(data, "created") if data.get("description"): obj.description = data["description"] if data.get("amount_refunded"): # pylint: disable=C0301 obj.amount_refunded = (data["amount_refunded"] / decimal.Decimal("100")) if data["refunded"]: obj.amount_refunded = (data["amount"] / decimal.Decimal("100")) user_id = data.get("user_id", None) if user_id and ConnectUser.objects.filter(account_id=user_id).exists(): obj.stripe_connect = ConnectUser.objects.get(account_id=user_id) obj.save() return obj def send_receipt(self): if not self.receipt_sent and self.customer: site = Site.objects.get_current() protocol = getattr(settings, "DEFAULT_HTTP_PROTOCOL", "http") ctx = { "charge": self, "site": site, "protocol": protocol, } subject = render_to_string("payments/email/subject.txt", ctx) subject = subject.strip() message = render_to_string("payments/email/body.txt", ctx) num_sent = EmailMessage( subject, message, to=[self.customer.user.email], from_email=INVOICE_FROM_EMAIL ).send() self.receipt_sent = num_sent > 0 self.save() @classmethod def create(cls, card, amount, currency="usd", description=None, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, 'card': card, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['api_key'] = stripe_connect_user.stripe_access_token elif stripe_connect_user: charge_args['api_key'] = stripe_connect_user if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) return Charge.sync_from_stripe_data(resp)
en
0.833848
# pylint: disable=E0012,C1001 "account.updated", "account.application.deauthorized", "charge.succeeded", "charge.failed", "charge.refunded", "charge.dispute.created", "charge.dispute.updated", "chagne.dispute.closed", "customer.created", "customer.updated", "customer.deleted", "customer.subscription.created", "customer.subscription.updated", "customer.subscription.deleted", "customer.subscription.trial_will_end", "customer.discount.created", "customer.discount.updated", "customer.discount.deleted", "invoice.created", "invoice.updated", "invoice.payment_succeeded", "invoice.payment_failed", "invoiceitem.created", "invoiceitem.updated", "invoiceitem.deleted", "plan.created", "plan.updated", "plan.deleted", "coupon.created", "coupon.updated", "coupon.deleted", "transfer.created", "transfer.updated", "transfer.failed", "ping" # pylint: disable=C0301 # The exception was thrown because the customer was already # deleted on the stripe side, ignore the exception # The exception was raised for another reason, re-raise it # Only way to delete a customer is to use SQL # Always retry unpaid invoices # There was nothing to invoice # Test to make sure the card has changed, otherwise do not update it # (i.e. refrain from sending any signals) # Refetch the stripe customer so we have the updated card info This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. A user in your system who you may be routing payments to through "Stripe Connect" # when a webhook is received for an action related to a ConnectUser, a 'user_id' will be provided # This is the same as an account id # trialing, active, past_due, canceled, or unpaid # pylint: disable=E1002 Set values to None while deleting the object so that any lingering references will not show previous values (such as when an Event signal is triggered after a subscription has been deleted) # pylint: disable=E0012,C1001 # pylint: disable=C0301 # pylint: disable=E1121 # pylint: disable=C0301 This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored.
1.890476
2
mars/tensor/base/flip.py
tomzhang/mars-1
2
9007
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..datasource import tensor as astensor def flip(m, axis): """ Reverse the order of elements in a tensor along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : array_like Input tensor. axis : integer Axis in tensor, which entries are reversed. Returns ------- out : array_like A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. See Also -------- flipud : Flip a tensor vertically (axis=0). fliplr : Flip a tensor horizontally (axis=1). Notes ----- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. Examples -------- >>> import mars.tensor as mt >>> A = mt.arange(8).reshape((2,2,2)) >>> A.execute() array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> mt.flip(A, 0).execute() array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> mt.flip(A, 1).execute() array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> A = mt.random.randn(3,4,5) >>> mt.all(mt.flip(A,2) == A[:,:,::-1,...]).execute() True """ m = astensor(m) sl = [slice(None)] * m.ndim try: sl[axis] = slice(None, None, -1) except IndexError: raise ValueError("axis=%i is invalid for the %i-dimensional input tensor" % (axis, m.ndim)) return m[tuple(sl)]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..datasource import tensor as astensor def flip(m, axis): """ Reverse the order of elements in a tensor along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : array_like Input tensor. axis : integer Axis in tensor, which entries are reversed. Returns ------- out : array_like A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. See Also -------- flipud : Flip a tensor vertically (axis=0). fliplr : Flip a tensor horizontally (axis=1). Notes ----- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. Examples -------- >>> import mars.tensor as mt >>> A = mt.arange(8).reshape((2,2,2)) >>> A.execute() array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> mt.flip(A, 0).execute() array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> mt.flip(A, 1).execute() array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> A = mt.random.randn(3,4,5) >>> mt.all(mt.flip(A,2) == A[:,:,::-1,...]).execute() True """ m = astensor(m) sl = [slice(None)] * m.ndim try: sl[axis] = slice(None, None, -1) except IndexError: raise ValueError("axis=%i is invalid for the %i-dimensional input tensor" % (axis, m.ndim)) return m[tuple(sl)]
en
0.725855
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Reverse the order of elements in a tensor along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : array_like Input tensor. axis : integer Axis in tensor, which entries are reversed. Returns ------- out : array_like A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. See Also -------- flipud : Flip a tensor vertically (axis=0). fliplr : Flip a tensor horizontally (axis=1). Notes ----- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. Examples -------- >>> import mars.tensor as mt >>> A = mt.arange(8).reshape((2,2,2)) >>> A.execute() array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> mt.flip(A, 0).execute() array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> mt.flip(A, 1).execute() array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> A = mt.random.randn(3,4,5) >>> mt.all(mt.flip(A,2) == A[:,:,::-1,...]).execute() True
3.617157
4
tests/test_ops/test_upfirdn2d.py
imabackstabber/mmcv
0
9008
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck, gradgradcheck _USING_PARROTS = False class TestUpFirDn2d: """Unit test for UpFirDn2d. Here, we just test the basic case of upsample version. More gerneal tests will be included in other unit test for UpFirDnUpsample and UpFirDnDownSample modules. """ @classmethod def setup_class(cls): kernel_1d = torch.tensor([1., 3., 3., 1.]) cls.kernel = kernel_1d[:, None] * kernel_1d[None, :] cls.kernel = cls.kernel / cls.kernel.sum() cls.factor = 2 pad = cls.kernel.shape[0] - cls.factor cls.pad = ((pad + 1) // 2 + cls.factor - 1, pad // 2) cls.input_tensor = torch.randn((2, 3, 4, 4), requires_grad=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') def test_upfirdn2d(self): from mmcv.ops import upfirdn2d if _USING_PARROTS: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), delta=1e-4, pt_atol=1e-3) else: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3) gradgradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck, gradgradcheck _USING_PARROTS = False class TestUpFirDn2d: """Unit test for UpFirDn2d. Here, we just test the basic case of upsample version. More gerneal tests will be included in other unit test for UpFirDnUpsample and UpFirDnDownSample modules. """ @classmethod def setup_class(cls): kernel_1d = torch.tensor([1., 3., 3., 1.]) cls.kernel = kernel_1d[:, None] * kernel_1d[None, :] cls.kernel = cls.kernel / cls.kernel.sum() cls.factor = 2 pad = cls.kernel.shape[0] - cls.factor cls.pad = ((pad + 1) // 2 + cls.factor - 1, pad // 2) cls.input_tensor = torch.randn((2, 3, 4, 4), requires_grad=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') def test_upfirdn2d(self): from mmcv.ops import upfirdn2d if _USING_PARROTS: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), delta=1e-4, pt_atol=1e-3) else: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3) gradgradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3)
en
0.806097
# Copyright (c) OpenMMLab. All rights reserved. Unit test for UpFirDn2d. Here, we just test the basic case of upsample version. More gerneal tests will be included in other unit test for UpFirDnUpsample and UpFirDnDownSample modules.
2.313103
2
dataset_creation/description_task2.py
rmorain/kirby
1
9009
import pandas as pd from tqdm import tqdm data_list = [] def get_questions(row): global data_list random_samples = df.sample(n=num_choices - 1) distractors = random_samples["description"].tolist() data = { "question": "What is " + row["label"] + "?", "correct": row["description"], "distractors": distractors, "knowledge": "{" + row["label"] + " : " + row["description"] + "}", } data_list.append(data) debug = False num_choices = 4 tqdm.pandas(desc="Progress") df = pd.read_pickle("data/augmented_datasets/pickle/label_description.pkl") if debug: df = df.iloc[:10] df = df.progress_apply(get_questions, axis=1) new_df = pd.DataFrame(data_list) if not debug: new_df.to_pickle("data/augmented_datasets/pickle/description_qa_knowledge.pkl") else: __import__("pudb").set_trace()
import pandas as pd from tqdm import tqdm data_list = [] def get_questions(row): global data_list random_samples = df.sample(n=num_choices - 1) distractors = random_samples["description"].tolist() data = { "question": "What is " + row["label"] + "?", "correct": row["description"], "distractors": distractors, "knowledge": "{" + row["label"] + " : " + row["description"] + "}", } data_list.append(data) debug = False num_choices = 4 tqdm.pandas(desc="Progress") df = pd.read_pickle("data/augmented_datasets/pickle/label_description.pkl") if debug: df = df.iloc[:10] df = df.progress_apply(get_questions, axis=1) new_df = pd.DataFrame(data_list) if not debug: new_df.to_pickle("data/augmented_datasets/pickle/description_qa_knowledge.pkl") else: __import__("pudb").set_trace()
none
1
2.653242
3
scarab/commands/attach.py
gonzoua/scarab
5
9010
<filename>scarab/commands/attach.py<gh_stars>1-10 # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 """ 'attach' command implementation''' """ from base64 import b64encode import argparse import magic from ..bugzilla import BugzillaError from ..context import bugzilla_instance from .. import ui from .base import Base class Command(Base): """Attach file to the existing PR""" def register(self, subparsers): """Register 'attach' parser""" parser = subparsers.add_parser('attach') parser.set_defaults(func=self.run) parser.add_argument('attachment', type=str, help='path to the attachment') parser.add_argument('pr', type=int, help='PR number') parser.add_argument('-b', '--batch', action='store_true', \ help='batch mode, only print newly created attachment\'s id') parser.add_argument('-s', '--summary', dest='summary', help='summary for the attachment') comment_group = parser.add_mutually_exclusive_group() comment_group.add_argument('-c', '--comment', dest='comment', help='comment text') comment_group.add_argument('-F', '--comment-file', dest='comment_file', \ type=argparse.FileType('r'), help='file with comment text') parser.add_argument('-t', '--content-type', dest='content_type', help='file content type') def run(self, args): """Run 'attach' command""" bugzilla = bugzilla_instance() content_type = args.content_type # Read data and encode it to base64 try: with open(args.attachment, 'rb') as attach_file: data = attach_file.read() except IOError as ex: ui.fatal('error reading file: {}'.format(str(ex))) comment = args.comment if comment is None: if args.comment_file: comment = args.comment_file.read() if comment is None: if args.batch: comment = '' else: comment = ui.edit_message() # Try and guess file content type if content_type is None: mime = magic.Magic(mime=True) content_type = mime.from_file(args.attachment) try: attachment = bugzilla.add_attachment(args.pr, args.attachment, data, \ summary=args.summary, comment=comment, content_type=content_type) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) if args.batch: ui.output('{}'.format(attachment)) else: ui.output('New attachment {} has been added to bug {}'.format(attachment, args.pr)) ui.output('Attachment URL: {}'.format(bugzilla.attachment_url(attachment))) ui.output('Bug URL: {}'.format(bugzilla.bug_url(args.pr)))
<filename>scarab/commands/attach.py<gh_stars>1-10 # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 """ 'attach' command implementation''' """ from base64 import b64encode import argparse import magic from ..bugzilla import BugzillaError from ..context import bugzilla_instance from .. import ui from .base import Base class Command(Base): """Attach file to the existing PR""" def register(self, subparsers): """Register 'attach' parser""" parser = subparsers.add_parser('attach') parser.set_defaults(func=self.run) parser.add_argument('attachment', type=str, help='path to the attachment') parser.add_argument('pr', type=int, help='PR number') parser.add_argument('-b', '--batch', action='store_true', \ help='batch mode, only print newly created attachment\'s id') parser.add_argument('-s', '--summary', dest='summary', help='summary for the attachment') comment_group = parser.add_mutually_exclusive_group() comment_group.add_argument('-c', '--comment', dest='comment', help='comment text') comment_group.add_argument('-F', '--comment-file', dest='comment_file', \ type=argparse.FileType('r'), help='file with comment text') parser.add_argument('-t', '--content-type', dest='content_type', help='file content type') def run(self, args): """Run 'attach' command""" bugzilla = bugzilla_instance() content_type = args.content_type # Read data and encode it to base64 try: with open(args.attachment, 'rb') as attach_file: data = attach_file.read() except IOError as ex: ui.fatal('error reading file: {}'.format(str(ex))) comment = args.comment if comment is None: if args.comment_file: comment = args.comment_file.read() if comment is None: if args.batch: comment = '' else: comment = ui.edit_message() # Try and guess file content type if content_type is None: mime = magic.Magic(mime=True) content_type = mime.from_file(args.attachment) try: attachment = bugzilla.add_attachment(args.pr, args.attachment, data, \ summary=args.summary, comment=comment, content_type=content_type) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) if args.batch: ui.output('{}'.format(attachment)) else: ui.output('New attachment {} has been added to bug {}'.format(attachment, args.pr)) ui.output('Attachment URL: {}'.format(bugzilla.attachment_url(attachment))) ui.output('Bug URL: {}'.format(bugzilla.bug_url(args.pr)))
en
0.520267
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 'attach' command implementation''' Attach file to the existing PR Register 'attach' parser Run 'attach' command # Read data and encode it to base64 # Try and guess file content type
2.590868
3
test/test_airfoil.py
chabotsi/pygmsh
0
9011
<reponame>chabotsi/pygmsh #!/usr/bin/env python # -*- coding: utf-8 -*- # import numpy import pygmsh from helpers import compute_volume def test(): # Airfoil coordinates airfoil_coordinates = numpy.array([ [1.000000, 0.000000, 0.0], [0.999023, 0.000209, 0.0], [0.996095, 0.000832, 0.0], [0.991228, 0.001863, 0.0], [0.984438, 0.003289, 0.0], [0.975752, 0.005092, 0.0], [0.965201, 0.007252, 0.0], [0.952825, 0.009744, 0.0], [0.938669, 0.012538, 0.0], [0.922788, 0.015605, 0.0], [0.905240, 0.018910, 0.0], [0.886092, 0.022419, 0.0], [0.865417, 0.026096, 0.0], [0.843294, 0.029903, 0.0], [0.819807, 0.033804, 0.0], [0.795047, 0.037760, 0.0], [0.769109, 0.041734, 0.0], [0.742094, 0.045689, 0.0], [0.714107, 0.049588, 0.0], [0.685258, 0.053394, 0.0], [0.655659, 0.057071, 0.0], [0.625426, 0.060584, 0.0], [0.594680, 0.063897, 0.0], [0.563542, 0.066977, 0.0], [0.532136, 0.069789, 0.0], [0.500587, 0.072303, 0.0], [0.469022, 0.074486, 0.0], [0.437567, 0.076312, 0.0], [0.406350, 0.077752, 0.0], [0.375297, 0.078743, 0.0], [0.344680, 0.079180, 0.0], [0.314678, 0.079051, 0.0], [0.285418, 0.078355, 0.0], [0.257025, 0.077096, 0.0], [0.229618, 0.075287, 0.0], [0.203313, 0.072945, 0.0], [0.178222, 0.070096, 0.0], [0.154449, 0.066770, 0.0], [0.132094, 0.063005, 0.0], [0.111248, 0.058842, 0.0], [0.091996, 0.054325, 0.0], [0.074415, 0.049504, 0.0], [0.058573, 0.044427, 0.0], [0.044532, 0.039144, 0.0], [0.032343, 0.033704, 0.0], [0.022051, 0.028152, 0.0], [0.013692, 0.022531, 0.0], [0.007292, 0.016878, 0.0], [0.002870, 0.011224, 0.0], [0.000439, 0.005592, 0.0], [0.000000, 0.000000, 0.0], [0.001535, -0.005395, 0.0], [0.005015, -0.010439, 0.0], [0.010421, -0.015126, 0.0], [0.017725, -0.019451, 0.0], [0.026892, -0.023408, 0.0], [0.037880, -0.026990, 0.0], [0.050641, -0.030193, 0.0], [0.065120, -0.033014, 0.0], [0.081257, -0.035451, 0.0], [0.098987, -0.037507, 0.0], [0.118239, -0.039185, 0.0], [0.138937, -0.040493, 0.0], [0.161004, -0.041444, 0.0], [0.184354, -0.042054, 0.0], [0.208902, -0.042343, 0.0], [0.234555, -0.042335, 0.0], [0.261221, -0.042058, 0.0], [0.288802, -0.041541, 0.0], [0.317197, -0.040817, 0.0], [0.346303, -0.039923, 0.0], [0.376013, -0.038892, 0.0], [0.406269, -0.037757, 0.0], [0.437099, -0.036467, 0.0], [0.468187, -0.035009, 0.0], [0.499413, -0.033414, 0.0], [0.530654, -0.031708, 0.0], [0.561791, -0.029917, 0.0], [0.592701, -0.028066, 0.0], [0.623264, -0.026176, 0.0], [0.653358, -0.024269, 0.0], [0.682867, -0.022360, 0.0], [0.711672, -0.020466, 0.0], [0.739659, -0.018600, 0.0], [0.766718, -0.016774, 0.0], [0.792738, -0.014999, 0.0], [0.817617, -0.013284, 0.0], [0.841253, -0.011637, 0.0], [0.863551, -0.010068, 0.0], [0.884421, -0.008583, 0.0], [0.903777, -0.007191, 0.0], [0.921540, -0.005900, 0.0], [0.937637, -0.004717, 0.0], [0.952002, -0.003650, 0.0], [0.964576, -0.002708, 0.0], [0.975305, -0.001896, 0.0], [0.984145, -0.001222, 0.0], [0.991060, -0.000691, 0.0], [0.996020, -0.000308, 0.0], [0.999004, -0.000077, 0.0] ]) # Scale airfoil to input coord coord = 1.0 airfoil_coordinates *= coord # Instantiate geometry object geom = pygmsh.built_in.Geometry() # Create polygon for airfoil char_length = 1.0e-1 airfoil = geom.add_polygon( airfoil_coordinates, char_length, make_surface=False ) # Create surface for numerical domain with an airfoil-shaped hole left_dist = 1.0 right_dist = 3.0 top_dist = 1.0 bottom_dist = 1.0 xmin = airfoil_coordinates[:, 0].min() - left_dist*coord xmax = airfoil_coordinates[:, 0].max() + right_dist*coord ymin = airfoil_coordinates[:, 1].min() - bottom_dist*coord ymax = airfoil_coordinates[:, 1].max() + top_dist*coord domainCoordinates = numpy.array([ [xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin, ymax, 0.0], ]) polygon = geom.add_polygon( domainCoordinates, char_length, holes=[airfoil] ) geom.add_raw_code('Recombine Surface {%s};' % polygon.surface.id) ref = 10.525891646546 points, cells, _, _, _ = pygmsh.generate_mesh(geom) assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref return points, cells if __name__ == '__main__': import meshio meshio.write('airfoil.vtu', *test())
#!/usr/bin/env python # -*- coding: utf-8 -*- # import numpy import pygmsh from helpers import compute_volume def test(): # Airfoil coordinates airfoil_coordinates = numpy.array([ [1.000000, 0.000000, 0.0], [0.999023, 0.000209, 0.0], [0.996095, 0.000832, 0.0], [0.991228, 0.001863, 0.0], [0.984438, 0.003289, 0.0], [0.975752, 0.005092, 0.0], [0.965201, 0.007252, 0.0], [0.952825, 0.009744, 0.0], [0.938669, 0.012538, 0.0], [0.922788, 0.015605, 0.0], [0.905240, 0.018910, 0.0], [0.886092, 0.022419, 0.0], [0.865417, 0.026096, 0.0], [0.843294, 0.029903, 0.0], [0.819807, 0.033804, 0.0], [0.795047, 0.037760, 0.0], [0.769109, 0.041734, 0.0], [0.742094, 0.045689, 0.0], [0.714107, 0.049588, 0.0], [0.685258, 0.053394, 0.0], [0.655659, 0.057071, 0.0], [0.625426, 0.060584, 0.0], [0.594680, 0.063897, 0.0], [0.563542, 0.066977, 0.0], [0.532136, 0.069789, 0.0], [0.500587, 0.072303, 0.0], [0.469022, 0.074486, 0.0], [0.437567, 0.076312, 0.0], [0.406350, 0.077752, 0.0], [0.375297, 0.078743, 0.0], [0.344680, 0.079180, 0.0], [0.314678, 0.079051, 0.0], [0.285418, 0.078355, 0.0], [0.257025, 0.077096, 0.0], [0.229618, 0.075287, 0.0], [0.203313, 0.072945, 0.0], [0.178222, 0.070096, 0.0], [0.154449, 0.066770, 0.0], [0.132094, 0.063005, 0.0], [0.111248, 0.058842, 0.0], [0.091996, 0.054325, 0.0], [0.074415, 0.049504, 0.0], [0.058573, 0.044427, 0.0], [0.044532, 0.039144, 0.0], [0.032343, 0.033704, 0.0], [0.022051, 0.028152, 0.0], [0.013692, 0.022531, 0.0], [0.007292, 0.016878, 0.0], [0.002870, 0.011224, 0.0], [0.000439, 0.005592, 0.0], [0.000000, 0.000000, 0.0], [0.001535, -0.005395, 0.0], [0.005015, -0.010439, 0.0], [0.010421, -0.015126, 0.0], [0.017725, -0.019451, 0.0], [0.026892, -0.023408, 0.0], [0.037880, -0.026990, 0.0], [0.050641, -0.030193, 0.0], [0.065120, -0.033014, 0.0], [0.081257, -0.035451, 0.0], [0.098987, -0.037507, 0.0], [0.118239, -0.039185, 0.0], [0.138937, -0.040493, 0.0], [0.161004, -0.041444, 0.0], [0.184354, -0.042054, 0.0], [0.208902, -0.042343, 0.0], [0.234555, -0.042335, 0.0], [0.261221, -0.042058, 0.0], [0.288802, -0.041541, 0.0], [0.317197, -0.040817, 0.0], [0.346303, -0.039923, 0.0], [0.376013, -0.038892, 0.0], [0.406269, -0.037757, 0.0], [0.437099, -0.036467, 0.0], [0.468187, -0.035009, 0.0], [0.499413, -0.033414, 0.0], [0.530654, -0.031708, 0.0], [0.561791, -0.029917, 0.0], [0.592701, -0.028066, 0.0], [0.623264, -0.026176, 0.0], [0.653358, -0.024269, 0.0], [0.682867, -0.022360, 0.0], [0.711672, -0.020466, 0.0], [0.739659, -0.018600, 0.0], [0.766718, -0.016774, 0.0], [0.792738, -0.014999, 0.0], [0.817617, -0.013284, 0.0], [0.841253, -0.011637, 0.0], [0.863551, -0.010068, 0.0], [0.884421, -0.008583, 0.0], [0.903777, -0.007191, 0.0], [0.921540, -0.005900, 0.0], [0.937637, -0.004717, 0.0], [0.952002, -0.003650, 0.0], [0.964576, -0.002708, 0.0], [0.975305, -0.001896, 0.0], [0.984145, -0.001222, 0.0], [0.991060, -0.000691, 0.0], [0.996020, -0.000308, 0.0], [0.999004, -0.000077, 0.0] ]) # Scale airfoil to input coord coord = 1.0 airfoil_coordinates *= coord # Instantiate geometry object geom = pygmsh.built_in.Geometry() # Create polygon for airfoil char_length = 1.0e-1 airfoil = geom.add_polygon( airfoil_coordinates, char_length, make_surface=False ) # Create surface for numerical domain with an airfoil-shaped hole left_dist = 1.0 right_dist = 3.0 top_dist = 1.0 bottom_dist = 1.0 xmin = airfoil_coordinates[:, 0].min() - left_dist*coord xmax = airfoil_coordinates[:, 0].max() + right_dist*coord ymin = airfoil_coordinates[:, 1].min() - bottom_dist*coord ymax = airfoil_coordinates[:, 1].max() + top_dist*coord domainCoordinates = numpy.array([ [xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin, ymax, 0.0], ]) polygon = geom.add_polygon( domainCoordinates, char_length, holes=[airfoil] ) geom.add_raw_code('Recombine Surface {%s};' % polygon.surface.id) ref = 10.525891646546 points, cells, _, _, _ = pygmsh.generate_mesh(geom) assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref return points, cells if __name__ == '__main__': import meshio meshio.write('airfoil.vtu', *test())
en
0.646336
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Airfoil coordinates # Scale airfoil to input coord # Instantiate geometry object # Create polygon for airfoil # Create surface for numerical domain with an airfoil-shaped hole
2.458082
2
LeetCode/python3/287.py
ZintrulCre/LeetCode_Archiver
279
9012
class Solution: def findDuplicate(self, nums: List[int]) -> int: p1, p2 = nums[0], nums[nums[0]] while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[nums[p2]] p2 = 0 while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[p2] return nums[p1]
class Solution: def findDuplicate(self, nums: List[int]) -> int: p1, p2 = nums[0], nums[nums[0]] while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[nums[p2]] p2 = 0 while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[p2] return nums[p1]
none
1
3.449634
3
src/twisted/test/myrebuilder1.py
mathieui/twisted
9,953
9013
<reponame>mathieui/twisted<filename>src/twisted/test/myrebuilder1.py class A: def a(self): return 'a' class B(A, object): def b(self): return 'b' class Inherit(A): def a(self): return 'c'
class A: def a(self): return 'a' class B(A, object): def b(self): return 'b' class Inherit(A): def a(self): return 'c'
none
1
3.213656
3
examples/test_yield_8.py
MateuszG/django_auth
2
9014
import pytest @pytest.yield_fixture def passwd(): print ("\nsetup before yield") f = open("/etc/passwd") yield f.readlines() print ("teardown after yield") f.close() def test_has_lines(passwd): print ("test called") assert passwd
import pytest @pytest.yield_fixture def passwd(): print ("\nsetup before yield") f = open("/etc/passwd") yield f.readlines() print ("teardown after yield") f.close() def test_has_lines(passwd): print ("test called") assert passwd
none
1
2.063829
2
modules/google-earth-engine/docker/src/sepalinternal/gee.py
BuddyVolly/sepal
153
9015
import json from threading import Semaphore import ee from flask import request from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials service_account_credentials = None import logging export_semaphore = Semaphore(5) get_info_semaphore = Semaphore(2) def init_service_account_credentials(args): global service_account_credentials with open(args['gee_key_path'], 'r') as file_: key_data = file_.read() signer = crypt.RSASigner.from_string(key_data) service_account_credentials = service_account.Credentials( signer=signer, service_account_email=args['gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'] ) def init_ee(): credentials = service_account_credentials if 'sepal-user' in request.headers: user = json.loads(request.headers['sepal-user']) googleTokens = user.get('googleTokens', None) if googleTokens: credentials = Credentials(googleTokens['accessToken']) ee.InitializeThread(credentials) def to_asset_id(asset_path): asset_roots = ee.data.getAssetRoots() if not asset_roots: raise Exception('User has no GEE asset roots') return asset_roots[0]['id'] + '/' + asset_path def delete_asset_collection(asset_id): logging.info('Recursively deleting ' + asset_id) if ee.data.getInfo(asset_id): images = ee.data.getList({ 'id': asset_id, 'fields': 'id' }) for image in images: ee.data.deleteAsset(image['id']) logging.info('Deleted ' + image['id']) ee.data.deleteAsset(asset_id) logging.info('Deleted ' + asset_id) def create_asset_image_collection(asset_id): delete_asset_collection(asset_id) ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_IMAGE_COLL, mk_parents=True ) def create_asset_folder(asset_id): ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_FOLDER, mk_parents=True ) def get_info(ee_object): try: get_info_semaphore.acquire() return ee_object.getInfo() finally: get_info_semaphore.release()
import json from threading import Semaphore import ee from flask import request from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials service_account_credentials = None import logging export_semaphore = Semaphore(5) get_info_semaphore = Semaphore(2) def init_service_account_credentials(args): global service_account_credentials with open(args['gee_key_path'], 'r') as file_: key_data = file_.read() signer = crypt.RSASigner.from_string(key_data) service_account_credentials = service_account.Credentials( signer=signer, service_account_email=args['gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'] ) def init_ee(): credentials = service_account_credentials if 'sepal-user' in request.headers: user = json.loads(request.headers['sepal-user']) googleTokens = user.get('googleTokens', None) if googleTokens: credentials = Credentials(googleTokens['accessToken']) ee.InitializeThread(credentials) def to_asset_id(asset_path): asset_roots = ee.data.getAssetRoots() if not asset_roots: raise Exception('User has no GEE asset roots') return asset_roots[0]['id'] + '/' + asset_path def delete_asset_collection(asset_id): logging.info('Recursively deleting ' + asset_id) if ee.data.getInfo(asset_id): images = ee.data.getList({ 'id': asset_id, 'fields': 'id' }) for image in images: ee.data.deleteAsset(image['id']) logging.info('Deleted ' + image['id']) ee.data.deleteAsset(asset_id) logging.info('Deleted ' + asset_id) def create_asset_image_collection(asset_id): delete_asset_collection(asset_id) ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_IMAGE_COLL, mk_parents=True ) def create_asset_folder(asset_id): ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_FOLDER, mk_parents=True ) def get_info(ee_object): try: get_info_semaphore.acquire() return ee_object.getInfo() finally: get_info_semaphore.release()
none
1
2.300301
2
micropython/007_boat_sink.py
mirontoli/tolle-rasp
2
9016
#https://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html#animation from microbit import * boat1 = Image("05050:05050:05050:99999:09990") boat2 = Image("00000:05050:05050:05050:99999") boat3 = Image("00000:00000:05050:05050:05050") boat4 = Image("00000:00000:00000:05050:05050") boat5 = Image("00000:00000:00000:00000:05050") boat6 = Image("00000:00000:00000:00000:00000") all_boats = [boat1, boat2, boat3, boat4, boat5, boat6] display.show(all_boats, delay=200)
#https://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html#animation from microbit import * boat1 = Image("05050:05050:05050:99999:09990") boat2 = Image("00000:05050:05050:05050:99999") boat3 = Image("00000:00000:05050:05050:05050") boat4 = Image("00000:00000:00000:05050:05050") boat5 = Image("00000:00000:00000:00000:05050") boat6 = Image("00000:00000:00000:00000:00000") all_boats = [boat1, boat2, boat3, boat4, boat5, boat6] display.show(all_boats, delay=200)
en
0.615244
#https://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html#animation
3.028838
3
examples/api-samples/inc_samples/convert_callback.py
groupdocs-legacy-sdk/python
0
9017
import os import json import shutil import time from pyramid.renderers import render_to_response from pyramid.response import Response from groupdocs.ApiClient import ApiClient from groupdocs.AsyncApi import AsyncApi from groupdocs.StorageApi import StorageApi from groupdocs.GroupDocsRequestSigner import GroupDocsRequestSigner # Checking value on null def IsNotNull(value): return value is not None and len(value) > 0 def convert_callback(request): currentDir = os.path.dirname(os.path.realpath(__file__)) if os.path.exists(currentDir + '/../user_info.txt'): f = open(currentDir + '/../user_info.txt') lines = f.readlines() f.close() clientId = lines[0].replace("\r\n", "") privateKey = lines[1] if IsNotNull(request.json_body): jsonPostData = request.json_body jobId = jsonPostData['SourceId'] # Create signer object signer = GroupDocsRequestSigner(privateKey) # Create apiClient object apiClient = ApiClient(signer) # Create AsyncApi object async = AsyncApi(apiClient) # Create Storage object api = StorageApi(apiClient) if jobId != '': time.sleep(5) # Make request to api for get document info by job id jobs = async.GetJobDocuments(clientId, jobId) if jobs.status == 'Ok': # Get file guid resultGuid = jobs.result.inputs[0].outputs[0].guid name = jobs.result.inputs[0].outputs[0].name currentDir = os.path.dirname(os.path.realpath(__file__)) downloadFolder = currentDir + '/../downloads/' if not os.path.isdir(downloadFolder): os.makedirs(downloadFolder) #Downlaoding of file fs = api.GetFile(clientId, resultGuid); if fs: filePath = downloadFolder + name with open(filePath, 'wb') as fp: shutil.copyfileobj(fs.inputStream, fp)
import os import json import shutil import time from pyramid.renderers import render_to_response from pyramid.response import Response from groupdocs.ApiClient import ApiClient from groupdocs.AsyncApi import AsyncApi from groupdocs.StorageApi import StorageApi from groupdocs.GroupDocsRequestSigner import GroupDocsRequestSigner # Checking value on null def IsNotNull(value): return value is not None and len(value) > 0 def convert_callback(request): currentDir = os.path.dirname(os.path.realpath(__file__)) if os.path.exists(currentDir + '/../user_info.txt'): f = open(currentDir + '/../user_info.txt') lines = f.readlines() f.close() clientId = lines[0].replace("\r\n", "") privateKey = lines[1] if IsNotNull(request.json_body): jsonPostData = request.json_body jobId = jsonPostData['SourceId'] # Create signer object signer = GroupDocsRequestSigner(privateKey) # Create apiClient object apiClient = ApiClient(signer) # Create AsyncApi object async = AsyncApi(apiClient) # Create Storage object api = StorageApi(apiClient) if jobId != '': time.sleep(5) # Make request to api for get document info by job id jobs = async.GetJobDocuments(clientId, jobId) if jobs.status == 'Ok': # Get file guid resultGuid = jobs.result.inputs[0].outputs[0].guid name = jobs.result.inputs[0].outputs[0].name currentDir = os.path.dirname(os.path.realpath(__file__)) downloadFolder = currentDir + '/../downloads/' if not os.path.isdir(downloadFolder): os.makedirs(downloadFolder) #Downlaoding of file fs = api.GetFile(clientId, resultGuid); if fs: filePath = downloadFolder + name with open(filePath, 'wb') as fp: shutil.copyfileobj(fs.inputStream, fp)
en
0.640266
# Checking value on null # Create signer object # Create apiClient object # Create AsyncApi object # Create Storage object # Make request to api for get document info by job id # Get file guid #Downlaoding of file
2.236854
2
PyIK/src/litearm.py
AliShug/EvoArm
110
9018
<reponame>AliShug/EvoArm from __future__ import print_function import numpy as np import struct import solvers import pid from util import * MOTORSPEED = 0.9 MOTORMARGIN = 1 MOTORSLOPE = 30 ERRORLIM = 5.0 class ArmConfig: """Holds an arm's proportions, limits and other configuration data""" def __init__(self, main_length = 148.4, forearm_length = 160, linkage_length = 155, lower_actuator_length = 65, upper_actuator_length = 54.4, wrist_length = 90.52, shoulder_offset = [-9.7, 18.71]): self.main_length = main_length self.forearm_length = forearm_length self.linkage_length = linkage_length self.lower_actuator_length = lower_actuator_length self.upper_actuator_length = upper_actuator_length self.wrist_length = wrist_length; self.shoulder_offset = shoulder_offset class ArmPose: """ Defines a physical configuration of a LiteArm robot arm. Internal angles are relative to vertical (elevator/actuator) or straight forward (swing), and are stored in radians. Extracted servo angles range 0-300 and are measured in degrees. Provides methods for: - finding the required servo angles to reach the pose - checking the validity of the pose """ structFormat = 'fffff' @staticmethod def calcElevatorAngle(servoAngle): return radians(178.21 - servoAngle) @staticmethod def calcSwingAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcActuatorAngle(servoAngle): return radians(servoAngle - 204.78) @staticmethod def calcWristXAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcWristYAngle(servoAngle): return radians(servoAngle - 147.0) def __init__(self, arm_config, swing_angle, shoulder_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x, wrist_y): self.cfg = arm_config self.swing_angle = swing_angle self.shoulder_angle = shoulder_angle self.actuator_angle = actuator_angle self.elbow_angle = elbow_angle # Joints in the arm shoulder = rotate(self.cfg.shoulder_offset, swing_angle) self.shoulder2D = [self.cfg.shoulder_offset[1], 0] self.shoulder = [shoulder[0], 0, shoulder[1]] self.wrist2D = wrist2D self.effector2D = effector2D self.effector = effector # Construct the 3D elbow & wrist positions from the 2D (planar) IK # solution arm_vec = effector - self.shoulder arm_vec[1] = 0 self.elbow2D = elbow2D self.elbow = self.shoulder + normalize(arm_vec)*elbow2D[0] self.elbow[1] = elbow2D[1] self.wrist = self.effector - normalize(arm_vec)*arm_config.wrist_length # Wrist pose self.wristXAngle = wrist_x self.wristYAngle = wrist_y def getServoElevator(self): return 178.21 - degrees(self.shoulder_angle) def getServoActuator(self): return degrees(self.actuator_angle) + 204.78 def getServoSwing(self): return 150 - degrees(self.swing_angle) def getServoWristX(self): return 150 - degrees(self.wristXAngle) def getServoWristY(self): return 147 + degrees(self.wristYAngle) def armDiffAngle(self): return degrees(self.shoulder_angle - self.actuator_angle) def checkActuator(self): angle = self.getServoActuator() return angle >= 95 and angle <= 250 def checkDiff(self): angle = self.armDiffAngle() return angle >= 44 and angle <= 175 def checkElevator(self): angle = self.getServoElevator() return angle >= 60 and angle <= 210 def checkForearm(self): angle = degrees(self.elbow_angle + self.shoulder_angle) return angle < 200 and angle > 80 def checkSwing(self): angle = self.getServoSwing() return angle >= 60 and angle <= 240 def checkWristX(self): angle = self.getServoWristX() return angle >= 60 and angle <= 240 def checkWristY(self): angle = self.getServoWristY() return angle >= 60 and angle <= 160 def checkPositioning(self): # When Y>0 Forearm always faces outwards if self.wrist2D[1] > 0 and self.wrist2D[0] < self.elbow2D[0]: return False # No valid positions X<=0 if self.wrist2D[0] <= 0: return False # Effector height range if self.effector[1] > 180 or self.effector[1] < -200: return False return True def checkClearance(self): return (self.checkDiff() and self.checkActuator() and self.checkElevator() and self.checkSwing() and self.checkWristX() and self.checkWristY() and self.checkPositioning() and self.checkForearm()) def serialize(self): """Returns a packed struct holding the pose information""" return struct.pack( ArmPose.structFormat, self.swing_angle, self.shoulder_angle, self.elbow_angle, self.wristXAngle, self.wristYAngle ) class ArmController: def __init__(self, servo_swing, servo_shoulder, servo_elbow, servo_wrist_x, servo_wrist_y, arm_config, motion_enable = False): # Solvers are responsible for calculating the target servo positions to # reach a given goal position self.ik = solvers.IKSolver( arm_config.main_length, arm_config.forearm_length, arm_config.wrist_length, arm_config.shoulder_offset) self.physsolver = solvers.PhysicalSolver( arm_config.main_length, arm_config.linkage_length, arm_config.lower_actuator_length, arm_config.upper_actuator_length) # Servos self.servos = {} self.servos["swing"] = servo_swing self.servos["shoulder"] = servo_shoulder self.servos["elbow"] = servo_elbow self.servos["wrist_x"] = servo_wrist_x self.servos["wrist_y"] = servo_wrist_y for key, servo in self.servos.iteritems(): if servo is None: print ("Warning: {0} servo not connected".format(key)) else: # Initialise a PID controller for the servo if servo.protocol == 1: servo.setGoalSpeed(-MOTORSPEED) servo.data['pid'] = pid.PIDControl(2.4, 0, 0.4) else: servo.setGoalSpeed(0) servo.data['error'] = 0.0 # Make sure the goal speed is set servo.setTorqueEnable(1) if servo.protocol == 1: print("Setting slope") servo.setCWMargin(MOTORMARGIN) servo.setCCWMargin(MOTORMARGIN) servo.setCWSlope(MOTORSLOPE) servo.setCCWSlope(MOTORSLOPE) # Store parameters self.motion_enable = True self.enableMovement(False) self.cfg = arm_config # Dirty flags for stored poses self.ik_pose = None self.ik_dirty = True self.real_pose = None self.real_dirty = True # Current target pose self.target_pose = None def enableMovement(self, enable): changed = False if enable and not self.motion_enable: print ("Warning: Arm enabled") self.motion_enable = True changed = True elif not enable: self.motion_enable = False changed = True if changed: # Set servos on/off if self.servos['swing'] is not None: self.servos['swing'].setTorqueEnable(self.motion_enable) if self.servos['shoulder'] is not None: self.servos['shoulder'].setTorqueEnable(self.motion_enable) if self.servos['elbow'] is not None: self.servos['elbow'].setTorqueEnable(self.motion_enable) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setTorqueEnable(self.motion_enable) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setTorqueEnable(self.motion_enable) def setWristGoalPosition(self, pos): self.ik.setGoal(pos) self.ik_dirty = True def setWristGoalDirection(self, normal): self.ik.setWristDir(normal) self.ik_dirty = True def getIKPose(self): if self.ik_dirty and self.ik.valid: # Construct geometry of arm from IK state main_arm = self.ik.elbow - self.ik.originpl arm_vert_angle = sigangle(main_arm, vertical) forearm = self.ik.wristpl - self.ik.elbow elbow_angle = angle_between(main_arm, forearm) # Solve actuator angle for given elbow angle # Base angle is between the main arm and actuator base_angle = self.physsolver.inverse_forearm(elbow_angle) actuator_angle = arm_vert_angle - base_angle self.ik_pose = ArmPose( self.cfg, swing_angle = self.ik.swing, # angles from vertical shoulder_angle = arm_vert_angle, actuator_angle = actuator_angle, # angle between the main arm and forearm elbow_angle = elbow_angle, elbow2D = self.ik.elbow, wrist2D = self.ik.wristpl, effector2D = self.ik.goalpl, effector = self.ik.goal, wrist_x = self.ik.wrist_x, wrist_y = self.ik.wrist_y ) return self.ik_pose def pollServos(self): """Poll the real-world servo positions""" for servo in self.servos.itervalues(): if servo is not None: newPos = servo.getPosition() if type(newPos) is float: servo.data['pos'] = newPos def clearPositionError(self): """Clears the servo's position-error accumulators""" for servo in self.servos.itervalues(): if servo is not None and servo.protocol == 1: servo.data['error'] = 0.0 def getRealPose(self): """Retrieve the real-world arm pose, or None if not all servos are connected. """ if any([servo is None for servo in self.servos.itervalues()]): return None # This whole function is essentially just FK based on the known servo # angles swing_servo = self.servos['swing'].data['pos'] elevator_servo = self.servos['shoulder'].data['pos'] actuator_servo = self.servos['elbow'].data['pos'] wrist_x_servo = self.servos['wrist_x'].data['pos'] wrist_y_servo = self.servos['wrist_y'].data['pos'] # Find the internal arm-pose angles for the given servo positions swing_angle = ArmPose.calcSwingAngle(swing_servo) elevator_angle = ArmPose.calcElevatorAngle(elevator_servo) actuator_angle = ArmPose.calcActuatorAngle(actuator_servo) wrist_x_angle = ArmPose.calcWristXAngle(wrist_x_servo) wrist_y_angle = ArmPose.calcWristYAngle(wrist_y_servo) # Solve elbow angle for given actuator and elevator angles # (this is the angle from the elevator arm's direction to the forearm's) elbow_angle = self.physsolver.solve_forearm(elevator_angle, actuator_angle) # FK positions from config and angles offset = self.cfg.shoulder_offset shoulder2D = np.array([offset[1], 0]) elbow2D = shoulder2D + rotate(vertical, elevator_angle)*self.cfg.main_length wrist2D = elbow2D + rotate(vertical, elevator_angle + elbow_angle)*self.cfg.forearm_length effector2D = wrist2D + [self.cfg.wrist_length, 0] # 3D Effector calculation is a little more involved td = rotate([offset[0], effector2D[0]], swing_angle) effector = np.array([td[0], effector2D[1], td[1]]) pose = ArmPose( self.cfg, swing_angle, elevator_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x_angle, wrist_y_angle) return pose def setTargetPose(self, new_pose): self.target_pose = new_pose def tick(self): if self.target_pose is not None: if self.motion_enable: # Drive servos gain = 0.1 if self.servos['swing'] is not None: s = self.servos['swing'] pos = s.data['pos'] target = self.target_pose.getServoSwing() # err = min(10, pos-target) # s.data['error'] += err*gain s.setGoalPosition(target) if self.servos['shoulder'] is not None: s = self.servos['shoulder'] # cumulative error pos = s.data['pos'] target = self.target_pose.getServoElevator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['elbow'] is not None: s = self.servos['elbow'] pos = s.data['pos'] target = self.target_pose.getServoActuator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setGoalPosition(self.target_pose.getServoWristX()) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setGoalPosition(self.target_pose.getServoWristY())
from __future__ import print_function import numpy as np import struct import solvers import pid from util import * MOTORSPEED = 0.9 MOTORMARGIN = 1 MOTORSLOPE = 30 ERRORLIM = 5.0 class ArmConfig: """Holds an arm's proportions, limits and other configuration data""" def __init__(self, main_length = 148.4, forearm_length = 160, linkage_length = 155, lower_actuator_length = 65, upper_actuator_length = 54.4, wrist_length = 90.52, shoulder_offset = [-9.7, 18.71]): self.main_length = main_length self.forearm_length = forearm_length self.linkage_length = linkage_length self.lower_actuator_length = lower_actuator_length self.upper_actuator_length = upper_actuator_length self.wrist_length = wrist_length; self.shoulder_offset = shoulder_offset class ArmPose: """ Defines a physical configuration of a LiteArm robot arm. Internal angles are relative to vertical (elevator/actuator) or straight forward (swing), and are stored in radians. Extracted servo angles range 0-300 and are measured in degrees. Provides methods for: - finding the required servo angles to reach the pose - checking the validity of the pose """ structFormat = 'fffff' @staticmethod def calcElevatorAngle(servoAngle): return radians(178.21 - servoAngle) @staticmethod def calcSwingAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcActuatorAngle(servoAngle): return radians(servoAngle - 204.78) @staticmethod def calcWristXAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcWristYAngle(servoAngle): return radians(servoAngle - 147.0) def __init__(self, arm_config, swing_angle, shoulder_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x, wrist_y): self.cfg = arm_config self.swing_angle = swing_angle self.shoulder_angle = shoulder_angle self.actuator_angle = actuator_angle self.elbow_angle = elbow_angle # Joints in the arm shoulder = rotate(self.cfg.shoulder_offset, swing_angle) self.shoulder2D = [self.cfg.shoulder_offset[1], 0] self.shoulder = [shoulder[0], 0, shoulder[1]] self.wrist2D = wrist2D self.effector2D = effector2D self.effector = effector # Construct the 3D elbow & wrist positions from the 2D (planar) IK # solution arm_vec = effector - self.shoulder arm_vec[1] = 0 self.elbow2D = elbow2D self.elbow = self.shoulder + normalize(arm_vec)*elbow2D[0] self.elbow[1] = elbow2D[1] self.wrist = self.effector - normalize(arm_vec)*arm_config.wrist_length # Wrist pose self.wristXAngle = wrist_x self.wristYAngle = wrist_y def getServoElevator(self): return 178.21 - degrees(self.shoulder_angle) def getServoActuator(self): return degrees(self.actuator_angle) + 204.78 def getServoSwing(self): return 150 - degrees(self.swing_angle) def getServoWristX(self): return 150 - degrees(self.wristXAngle) def getServoWristY(self): return 147 + degrees(self.wristYAngle) def armDiffAngle(self): return degrees(self.shoulder_angle - self.actuator_angle) def checkActuator(self): angle = self.getServoActuator() return angle >= 95 and angle <= 250 def checkDiff(self): angle = self.armDiffAngle() return angle >= 44 and angle <= 175 def checkElevator(self): angle = self.getServoElevator() return angle >= 60 and angle <= 210 def checkForearm(self): angle = degrees(self.elbow_angle + self.shoulder_angle) return angle < 200 and angle > 80 def checkSwing(self): angle = self.getServoSwing() return angle >= 60 and angle <= 240 def checkWristX(self): angle = self.getServoWristX() return angle >= 60 and angle <= 240 def checkWristY(self): angle = self.getServoWristY() return angle >= 60 and angle <= 160 def checkPositioning(self): # When Y>0 Forearm always faces outwards if self.wrist2D[1] > 0 and self.wrist2D[0] < self.elbow2D[0]: return False # No valid positions X<=0 if self.wrist2D[0] <= 0: return False # Effector height range if self.effector[1] > 180 or self.effector[1] < -200: return False return True def checkClearance(self): return (self.checkDiff() and self.checkActuator() and self.checkElevator() and self.checkSwing() and self.checkWristX() and self.checkWristY() and self.checkPositioning() and self.checkForearm()) def serialize(self): """Returns a packed struct holding the pose information""" return struct.pack( ArmPose.structFormat, self.swing_angle, self.shoulder_angle, self.elbow_angle, self.wristXAngle, self.wristYAngle ) class ArmController: def __init__(self, servo_swing, servo_shoulder, servo_elbow, servo_wrist_x, servo_wrist_y, arm_config, motion_enable = False): # Solvers are responsible for calculating the target servo positions to # reach a given goal position self.ik = solvers.IKSolver( arm_config.main_length, arm_config.forearm_length, arm_config.wrist_length, arm_config.shoulder_offset) self.physsolver = solvers.PhysicalSolver( arm_config.main_length, arm_config.linkage_length, arm_config.lower_actuator_length, arm_config.upper_actuator_length) # Servos self.servos = {} self.servos["swing"] = servo_swing self.servos["shoulder"] = servo_shoulder self.servos["elbow"] = servo_elbow self.servos["wrist_x"] = servo_wrist_x self.servos["wrist_y"] = servo_wrist_y for key, servo in self.servos.iteritems(): if servo is None: print ("Warning: {0} servo not connected".format(key)) else: # Initialise a PID controller for the servo if servo.protocol == 1: servo.setGoalSpeed(-MOTORSPEED) servo.data['pid'] = pid.PIDControl(2.4, 0, 0.4) else: servo.setGoalSpeed(0) servo.data['error'] = 0.0 # Make sure the goal speed is set servo.setTorqueEnable(1) if servo.protocol == 1: print("Setting slope") servo.setCWMargin(MOTORMARGIN) servo.setCCWMargin(MOTORMARGIN) servo.setCWSlope(MOTORSLOPE) servo.setCCWSlope(MOTORSLOPE) # Store parameters self.motion_enable = True self.enableMovement(False) self.cfg = arm_config # Dirty flags for stored poses self.ik_pose = None self.ik_dirty = True self.real_pose = None self.real_dirty = True # Current target pose self.target_pose = None def enableMovement(self, enable): changed = False if enable and not self.motion_enable: print ("Warning: Arm enabled") self.motion_enable = True changed = True elif not enable: self.motion_enable = False changed = True if changed: # Set servos on/off if self.servos['swing'] is not None: self.servos['swing'].setTorqueEnable(self.motion_enable) if self.servos['shoulder'] is not None: self.servos['shoulder'].setTorqueEnable(self.motion_enable) if self.servos['elbow'] is not None: self.servos['elbow'].setTorqueEnable(self.motion_enable) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setTorqueEnable(self.motion_enable) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setTorqueEnable(self.motion_enable) def setWristGoalPosition(self, pos): self.ik.setGoal(pos) self.ik_dirty = True def setWristGoalDirection(self, normal): self.ik.setWristDir(normal) self.ik_dirty = True def getIKPose(self): if self.ik_dirty and self.ik.valid: # Construct geometry of arm from IK state main_arm = self.ik.elbow - self.ik.originpl arm_vert_angle = sigangle(main_arm, vertical) forearm = self.ik.wristpl - self.ik.elbow elbow_angle = angle_between(main_arm, forearm) # Solve actuator angle for given elbow angle # Base angle is between the main arm and actuator base_angle = self.physsolver.inverse_forearm(elbow_angle) actuator_angle = arm_vert_angle - base_angle self.ik_pose = ArmPose( self.cfg, swing_angle = self.ik.swing, # angles from vertical shoulder_angle = arm_vert_angle, actuator_angle = actuator_angle, # angle between the main arm and forearm elbow_angle = elbow_angle, elbow2D = self.ik.elbow, wrist2D = self.ik.wristpl, effector2D = self.ik.goalpl, effector = self.ik.goal, wrist_x = self.ik.wrist_x, wrist_y = self.ik.wrist_y ) return self.ik_pose def pollServos(self): """Poll the real-world servo positions""" for servo in self.servos.itervalues(): if servo is not None: newPos = servo.getPosition() if type(newPos) is float: servo.data['pos'] = newPos def clearPositionError(self): """Clears the servo's position-error accumulators""" for servo in self.servos.itervalues(): if servo is not None and servo.protocol == 1: servo.data['error'] = 0.0 def getRealPose(self): """Retrieve the real-world arm pose, or None if not all servos are connected. """ if any([servo is None for servo in self.servos.itervalues()]): return None # This whole function is essentially just FK based on the known servo # angles swing_servo = self.servos['swing'].data['pos'] elevator_servo = self.servos['shoulder'].data['pos'] actuator_servo = self.servos['elbow'].data['pos'] wrist_x_servo = self.servos['wrist_x'].data['pos'] wrist_y_servo = self.servos['wrist_y'].data['pos'] # Find the internal arm-pose angles for the given servo positions swing_angle = ArmPose.calcSwingAngle(swing_servo) elevator_angle = ArmPose.calcElevatorAngle(elevator_servo) actuator_angle = ArmPose.calcActuatorAngle(actuator_servo) wrist_x_angle = ArmPose.calcWristXAngle(wrist_x_servo) wrist_y_angle = ArmPose.calcWristYAngle(wrist_y_servo) # Solve elbow angle for given actuator and elevator angles # (this is the angle from the elevator arm's direction to the forearm's) elbow_angle = self.physsolver.solve_forearm(elevator_angle, actuator_angle) # FK positions from config and angles offset = self.cfg.shoulder_offset shoulder2D = np.array([offset[1], 0]) elbow2D = shoulder2D + rotate(vertical, elevator_angle)*self.cfg.main_length wrist2D = elbow2D + rotate(vertical, elevator_angle + elbow_angle)*self.cfg.forearm_length effector2D = wrist2D + [self.cfg.wrist_length, 0] # 3D Effector calculation is a little more involved td = rotate([offset[0], effector2D[0]], swing_angle) effector = np.array([td[0], effector2D[1], td[1]]) pose = ArmPose( self.cfg, swing_angle, elevator_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x_angle, wrist_y_angle) return pose def setTargetPose(self, new_pose): self.target_pose = new_pose def tick(self): if self.target_pose is not None: if self.motion_enable: # Drive servos gain = 0.1 if self.servos['swing'] is not None: s = self.servos['swing'] pos = s.data['pos'] target = self.target_pose.getServoSwing() # err = min(10, pos-target) # s.data['error'] += err*gain s.setGoalPosition(target) if self.servos['shoulder'] is not None: s = self.servos['shoulder'] # cumulative error pos = s.data['pos'] target = self.target_pose.getServoElevator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['elbow'] is not None: s = self.servos['elbow'] pos = s.data['pos'] target = self.target_pose.getServoActuator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setGoalPosition(self.target_pose.getServoWristX()) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setGoalPosition(self.target_pose.getServoWristY())
en
0.819092
Holds an arm's proportions, limits and other configuration data Defines a physical configuration of a LiteArm robot arm. Internal angles are relative to vertical (elevator/actuator) or straight forward (swing), and are stored in radians. Extracted servo angles range 0-300 and are measured in degrees. Provides methods for: - finding the required servo angles to reach the pose - checking the validity of the pose # Joints in the arm # Construct the 3D elbow & wrist positions from the 2D (planar) IK # solution # Wrist pose # When Y>0 Forearm always faces outwards # No valid positions X<=0 # Effector height range Returns a packed struct holding the pose information # Solvers are responsible for calculating the target servo positions to # reach a given goal position # Servos # Initialise a PID controller for the servo # Make sure the goal speed is set # Store parameters # Dirty flags for stored poses # Current target pose # Set servos on/off # Construct geometry of arm from IK state # Solve actuator angle for given elbow angle # Base angle is between the main arm and actuator # angles from vertical # angle between the main arm and forearm Poll the real-world servo positions Clears the servo's position-error accumulators Retrieve the real-world arm pose, or None if not all servos are connected. # This whole function is essentially just FK based on the known servo # angles # Find the internal arm-pose angles for the given servo positions # Solve elbow angle for given actuator and elevator angles # (this is the angle from the elevator arm's direction to the forearm's) # FK positions from config and angles # 3D Effector calculation is a little more involved # Drive servos # err = min(10, pos-target) # s.data['error'] += err*gain # cumulative error
3.196585
3
create_augmented_versions.py
jakobabesser/piano_aug
0
9019
from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard import soundfile as sf if __name__ == '__main__': # replace by path of unprocessed piano file if necessar fn_wav_source = 'live_grand_piano.wav' # augmentation settings using Pedalboard library settings = {'rev-': [Reverb(room_size=.4)], 'rev+': [Reverb(room_size=.8)], 'comp+': [Compressor(threshold_db=-15, ratio=20)], 'comp-': [Compressor(threshold_db=-10, ratio=10)], 'gain+': [Gain(gain_db=15)], # clipping 'gain-': [Gain(gain_db=5)], 'lpf-': [LowpassFilter(cutoff_frequency_hz=50)], 'lpf+': [LowpassFilter(cutoff_frequency_hz=250)]} # create augmented versions for s in settings.keys(): # load unprocessed piano recording audio, sample_rate = sf.read(fn_wav_source) # create Pedalboard object board = Pedalboard(settings[s]) # create augmented audio effected = board(audio, sample_rate) # save it fn_target = fn_wav_source.replace('.wav', f'_{s}.wav') sf.write(fn_target, effected, sample_rate)
from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard import soundfile as sf if __name__ == '__main__': # replace by path of unprocessed piano file if necessar fn_wav_source = 'live_grand_piano.wav' # augmentation settings using Pedalboard library settings = {'rev-': [Reverb(room_size=.4)], 'rev+': [Reverb(room_size=.8)], 'comp+': [Compressor(threshold_db=-15, ratio=20)], 'comp-': [Compressor(threshold_db=-10, ratio=10)], 'gain+': [Gain(gain_db=15)], # clipping 'gain-': [Gain(gain_db=5)], 'lpf-': [LowpassFilter(cutoff_frequency_hz=50)], 'lpf+': [LowpassFilter(cutoff_frequency_hz=250)]} # create augmented versions for s in settings.keys(): # load unprocessed piano recording audio, sample_rate = sf.read(fn_wav_source) # create Pedalboard object board = Pedalboard(settings[s]) # create augmented audio effected = board(audio, sample_rate) # save it fn_target = fn_wav_source.replace('.wav', f'_{s}.wav') sf.write(fn_target, effected, sample_rate)
en
0.659061
# replace by path of unprocessed piano file if necessar # augmentation settings using Pedalboard library # clipping # create augmented versions # load unprocessed piano recording # create Pedalboard object # create augmented audio # save it
2.453048
2
flux/migrations/versions/9ba67b798fa_add_request_system.py
siq/flux
0
9020
"""add_request_system Revision: <KEY> Revises: 31b92bf6506d Created: 2013-07-23 02:49:09.342814 """ revision = '<KEY>' down_revision = '31b92bf6506d' from alembic import op from spire.schema.fields import * from spire.mesh import SurrogateType from sqlalchemy import (Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint) from sqlalchemy.dialects import postgresql def upgrade(): op.create_table('request', Column('id', UUIDType(), nullable=False), Column('name', TextType(), nullable=False), Column('status', EnumerationType(), nullable=False), Column('originator', TokenType(), nullable=False), Column('assignee', TokenType(), nullable=False), PrimaryKeyConstraint('id'), UniqueConstraint('name'), ) op.create_table('request_slot', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('slot', TokenType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('request_attachment', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=True), Column('title', TextType(), nullable=True), Column('attachment', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) op.create_table('request_product', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('product', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('message', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('author', TokenType(), nullable=False), Column('occurrence', DateTimeType(timezone=True), nullable=False), Column('message', TextType(), nullable=True), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) def downgrade(): op.drop_table('message') op.drop_table('request_product') op.drop_table('request_attachment') op.drop_table('request_slot') op.drop_table('request')
"""add_request_system Revision: <KEY> Revises: 31b92bf6506d Created: 2013-07-23 02:49:09.342814 """ revision = '<KEY>' down_revision = '31b92bf6506d' from alembic import op from spire.schema.fields import * from spire.mesh import SurrogateType from sqlalchemy import (Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint) from sqlalchemy.dialects import postgresql def upgrade(): op.create_table('request', Column('id', UUIDType(), nullable=False), Column('name', TextType(), nullable=False), Column('status', EnumerationType(), nullable=False), Column('originator', TokenType(), nullable=False), Column('assignee', TokenType(), nullable=False), PrimaryKeyConstraint('id'), UniqueConstraint('name'), ) op.create_table('request_slot', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('slot', TokenType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('request_attachment', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=True), Column('title', TextType(), nullable=True), Column('attachment', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) op.create_table('request_product', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('product', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('message', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('author', TokenType(), nullable=False), Column('occurrence', DateTimeType(timezone=True), nullable=False), Column('message', TextType(), nullable=True), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) def downgrade(): op.drop_table('message') op.drop_table('request_product') op.drop_table('request_attachment') op.drop_table('request_slot') op.drop_table('request')
en
0.52525
add_request_system Revision: <KEY> Revises: 31b92bf6506d Created: 2013-07-23 02:49:09.342814
1.604071
2
src/python/Vector2_TEST.py
clalancette/ign-math
43
9021
# Copyright (C) 2021 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math from ignition.math import Vector2d from ignition.math import Vector2f class TestVector2(unittest.TestCase): def test_construction(self): v = Vector2d() self.assertAlmostEqual(0.0, v.x()) self.assertAlmostEqual(0.0, v.y()) vec = Vector2d(1, 0) self.assertEqual(vec.x(), 1) self.assertEqual(vec.y(), 0) vec2 = Vector2d(vec) self.assertEqual(vec2, vec) # Copy vec3 = vec self.assertEqual(vec3, vec) # Inequality vec4 = Vector2d() self.assertNotEqual(vec, vec4) def test_vector2(self): v = Vector2d(1, 2) # Distance self.assertAlmostEqual(2.236, v.distance(Vector2d()), delta=1e-2) # Normalize v.normalize() self.assertTrue(v.equal(Vector2d(0.447214, 0.894427), 1e-4)) # Set v.set(4, 5) self.assertTrue(v.equal(Vector2d(4, 5), 1e-4)) # Abs v.set(-1, -2) self.assertTrue(v.abs().equal(Vector2d(1, 2), 1e-4)) # _eq_ v = Vector2d(6, 7) self.assertTrue(v.equal(Vector2d(6, 7), 1e-4)) # _add_ v = v + Vector2d(1, 2) self.assertTrue(v.equal(Vector2d(7, 9), 1e-4)) v += Vector2d(5, 6) self.assertTrue(v.equal(Vector2d(12, 15), 1e-4)) # __sub__ v = v - Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(10, 11), 1e-4)) v.set(2, 4) v -= Vector2d(1, 6) self.assertTrue(v.equal(Vector2d(1, -2), 1e-4)) # __truediv__ v.set(10, 6) v = v / Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) v.set(10, 6) v /= Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) # __truediv__ int v.set(10, 6) v = v / 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) v.set(10, 6) v /= 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) # __mul__ v.set(10, 6) v = v * Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) v.set(10, 6) v *= Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) # __mul__ int v.set(10, 6) v = v * 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) v.set(10, 6) v *= 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) # is_finite self.assertTrue(v.is_finite()) def test_max(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(0.3, 0.5) vec3 = Vector2d(0.4, 0.2) self.assertAlmostEqual(vec1.max(), 0.2) self.assertAlmostEqual(vec3.max(), 0.4) vec1.max(vec2) self.assertAlmostEqual(vec1, Vector2d(0.3, 0.5)) vec1.max(vec3) self.assertAlmostEqual(vec1, Vector2d(0.4, 0.5)) def test_min(self): vec1 = Vector2d(0.3, 0.5) vec2 = Vector2d(0.1, 0.2) vec3 = Vector2d(0.05, 0.1) self.assertAlmostEqual(vec1.min(), 0.3) self.assertAlmostEqual(vec3.min(), 0.05) vec1.min(vec2) self.assertAlmostEqual(vec1, Vector2d(0.1, 0.2)) vec1.min(vec3) self.assertAlmostEqual(vec1, Vector2d(0.05, 0.1)) def test_equal_tolerance(self): # Test Equal function with specified tolerance self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-6)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-3)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1.1)) def test_dot(self): v = Vector2d(1, 2) self.assertAlmostEqual(v.dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.dot(Vector2d(0, 1)), 2.0) def test_correct(self): vec1 = Vector2d(0, float("nan")) vec2 = Vector2d(float("inf"), -1) vec3 = Vector2d(10, -2) vec1.correct() vec2.correct() vec3.correct() self.assertAlmostEqual(vec1, Vector2d(0, 0)) self.assertAlmostEqual(vec2, Vector2d(0, -1)) self.assertAlmostEqual(vec3, Vector2d(10, -2)) def test_abs_dot(self): v = Vector2d(1, -2) self.assertAlmostEqual(v.abs_dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.abs_dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 1)), 2.0) def test_add(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec1 vec3 += vec2 self.assertAlmostEqual(vec1 + vec2, Vector2d(1.2, 2.4)) self.assertAlmostEqual(vec3, Vector2d(1.2, 2.4)) # Add zero # Scalar right self.assertEqual(vec1 + 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO + vec1, vec1) self.assertAlmostEqual(vec1 + Vector2d.ZERO, vec1) # Addition assigment vec4 = Vector2d(vec1) vec4 += 0 self.assertEqual(vec4, vec1) vec4 += Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Add non-trivial scalar values left and right self.assertEqual(vec1 + 2.5, Vector2d(2.6, 2.7)) vec1 = vec4 vec4 += 2.5 self.assertEqual(vec4, Vector2d(2.6, 2.7)) def test_sub(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec2 vec3 -= vec1 self.assertAlmostEqual(vec2 - vec1, Vector2d(1.0, 2.0)) self.assertAlmostEqual(vec3, Vector2d(1.0, 2.0)) # Subtraction with zeros # Scalar right self.assertEqual(vec1 - 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO - vec1, -vec1) self.assertAlmostEqual(vec1 - Vector2d.ZERO, vec1) # Subtraction assignment vec4 = Vector2d(vec1) vec4 -= 0 self.assertEqual(vec4, vec1) vec4 -= Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Subtract non-trivial scalar values left and right self.assertEqual(vec1 - 2.5, -Vector2d(2.4, 2.3)) vec4 = vec1 vec4 -= 2.5 self.assertEqual(vec4, -Vector2d(2.4, 2.3)) def test_multiply(self): v = Vector2d(0.1, -4.2) vec2 = v * 2.0 self.assertEqual(vec2, Vector2d(0.2, -8.4)) vec2 *= 4.0 self.assertEqual(vec2, Vector2d(0.8, -33.6)) # Multiply by zero # Scalar right self.assertEqual(v * 0, Vector2d.ZERO) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ZERO, Vector2d.ZERO) # Multiply by one # Scalar right self.assertEqual(v * 1, v) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ONE, v) # Multiply by non-trivial scalar value scalar = 2.5 expect = Vector2d(0.25, -10.5) self.assertEqual(v * scalar, expect) # Multiply by itself element-wise v.set(0.1, 0.5) self.assertAlmostEqual(v * v, Vector2d(0.01, 0.25)) def test_lenght(self): # Zero vector self.assertAlmostEqual(Vector2d.ZERO.length(), 0.0) self.assertAlmostEqual(Vector2d.ZERO.squared_length(), 0.0) # One vector self.assertAlmostEqual(Vector2d.ONE.length(), math.sqrt(2), delta=1e-10) self.assertAlmostEqual(Vector2d.ONE.squared_length(), 2.0) # Arbitrary vector v = Vector2d(0.1, -4.2) self.assertAlmostEqual(v.length(), 4.20119030752, delta=1e-10) self.assertAlmostEqual(v.squared_length(), 17.65) # Integer vector v = Vector2d(3, 4) self.assertAlmostEqual(v.length(), 5) self.assertAlmostEqual(v.squared_length(), 25) def test_nan(self): nanVec = Vector2d.NAN self.assertFalse(nanVec.is_finite()) self.assertTrue(math.isnan(nanVec.x())) self.assertTrue(math.isnan(nanVec.y())) nanVec.correct() self.assertEqual(Vector2d.ZERO, nanVec) self.assertTrue(nanVec.is_finite()) nanVecF = Vector2f.NAN self.assertFalse(nanVecF.is_finite()) self.assertTrue(math.isnan(nanVecF.x())) self.assertTrue(math.isnan(nanVecF.y())) nanVecF.correct() self.assertEqual(Vector2f.ZERO, nanVecF) self.assertTrue(nanVecF.is_finite()) if __name__ == '__main__': unittest.main()
# Copyright (C) 2021 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math from ignition.math import Vector2d from ignition.math import Vector2f class TestVector2(unittest.TestCase): def test_construction(self): v = Vector2d() self.assertAlmostEqual(0.0, v.x()) self.assertAlmostEqual(0.0, v.y()) vec = Vector2d(1, 0) self.assertEqual(vec.x(), 1) self.assertEqual(vec.y(), 0) vec2 = Vector2d(vec) self.assertEqual(vec2, vec) # Copy vec3 = vec self.assertEqual(vec3, vec) # Inequality vec4 = Vector2d() self.assertNotEqual(vec, vec4) def test_vector2(self): v = Vector2d(1, 2) # Distance self.assertAlmostEqual(2.236, v.distance(Vector2d()), delta=1e-2) # Normalize v.normalize() self.assertTrue(v.equal(Vector2d(0.447214, 0.894427), 1e-4)) # Set v.set(4, 5) self.assertTrue(v.equal(Vector2d(4, 5), 1e-4)) # Abs v.set(-1, -2) self.assertTrue(v.abs().equal(Vector2d(1, 2), 1e-4)) # _eq_ v = Vector2d(6, 7) self.assertTrue(v.equal(Vector2d(6, 7), 1e-4)) # _add_ v = v + Vector2d(1, 2) self.assertTrue(v.equal(Vector2d(7, 9), 1e-4)) v += Vector2d(5, 6) self.assertTrue(v.equal(Vector2d(12, 15), 1e-4)) # __sub__ v = v - Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(10, 11), 1e-4)) v.set(2, 4) v -= Vector2d(1, 6) self.assertTrue(v.equal(Vector2d(1, -2), 1e-4)) # __truediv__ v.set(10, 6) v = v / Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) v.set(10, 6) v /= Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) # __truediv__ int v.set(10, 6) v = v / 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) v.set(10, 6) v /= 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) # __mul__ v.set(10, 6) v = v * Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) v.set(10, 6) v *= Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) # __mul__ int v.set(10, 6) v = v * 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) v.set(10, 6) v *= 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) # is_finite self.assertTrue(v.is_finite()) def test_max(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(0.3, 0.5) vec3 = Vector2d(0.4, 0.2) self.assertAlmostEqual(vec1.max(), 0.2) self.assertAlmostEqual(vec3.max(), 0.4) vec1.max(vec2) self.assertAlmostEqual(vec1, Vector2d(0.3, 0.5)) vec1.max(vec3) self.assertAlmostEqual(vec1, Vector2d(0.4, 0.5)) def test_min(self): vec1 = Vector2d(0.3, 0.5) vec2 = Vector2d(0.1, 0.2) vec3 = Vector2d(0.05, 0.1) self.assertAlmostEqual(vec1.min(), 0.3) self.assertAlmostEqual(vec3.min(), 0.05) vec1.min(vec2) self.assertAlmostEqual(vec1, Vector2d(0.1, 0.2)) vec1.min(vec3) self.assertAlmostEqual(vec1, Vector2d(0.05, 0.1)) def test_equal_tolerance(self): # Test Equal function with specified tolerance self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-6)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-3)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1.1)) def test_dot(self): v = Vector2d(1, 2) self.assertAlmostEqual(v.dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.dot(Vector2d(0, 1)), 2.0) def test_correct(self): vec1 = Vector2d(0, float("nan")) vec2 = Vector2d(float("inf"), -1) vec3 = Vector2d(10, -2) vec1.correct() vec2.correct() vec3.correct() self.assertAlmostEqual(vec1, Vector2d(0, 0)) self.assertAlmostEqual(vec2, Vector2d(0, -1)) self.assertAlmostEqual(vec3, Vector2d(10, -2)) def test_abs_dot(self): v = Vector2d(1, -2) self.assertAlmostEqual(v.abs_dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.abs_dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 1)), 2.0) def test_add(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec1 vec3 += vec2 self.assertAlmostEqual(vec1 + vec2, Vector2d(1.2, 2.4)) self.assertAlmostEqual(vec3, Vector2d(1.2, 2.4)) # Add zero # Scalar right self.assertEqual(vec1 + 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO + vec1, vec1) self.assertAlmostEqual(vec1 + Vector2d.ZERO, vec1) # Addition assigment vec4 = Vector2d(vec1) vec4 += 0 self.assertEqual(vec4, vec1) vec4 += Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Add non-trivial scalar values left and right self.assertEqual(vec1 + 2.5, Vector2d(2.6, 2.7)) vec1 = vec4 vec4 += 2.5 self.assertEqual(vec4, Vector2d(2.6, 2.7)) def test_sub(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec2 vec3 -= vec1 self.assertAlmostEqual(vec2 - vec1, Vector2d(1.0, 2.0)) self.assertAlmostEqual(vec3, Vector2d(1.0, 2.0)) # Subtraction with zeros # Scalar right self.assertEqual(vec1 - 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO - vec1, -vec1) self.assertAlmostEqual(vec1 - Vector2d.ZERO, vec1) # Subtraction assignment vec4 = Vector2d(vec1) vec4 -= 0 self.assertEqual(vec4, vec1) vec4 -= Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Subtract non-trivial scalar values left and right self.assertEqual(vec1 - 2.5, -Vector2d(2.4, 2.3)) vec4 = vec1 vec4 -= 2.5 self.assertEqual(vec4, -Vector2d(2.4, 2.3)) def test_multiply(self): v = Vector2d(0.1, -4.2) vec2 = v * 2.0 self.assertEqual(vec2, Vector2d(0.2, -8.4)) vec2 *= 4.0 self.assertEqual(vec2, Vector2d(0.8, -33.6)) # Multiply by zero # Scalar right self.assertEqual(v * 0, Vector2d.ZERO) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ZERO, Vector2d.ZERO) # Multiply by one # Scalar right self.assertEqual(v * 1, v) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ONE, v) # Multiply by non-trivial scalar value scalar = 2.5 expect = Vector2d(0.25, -10.5) self.assertEqual(v * scalar, expect) # Multiply by itself element-wise v.set(0.1, 0.5) self.assertAlmostEqual(v * v, Vector2d(0.01, 0.25)) def test_lenght(self): # Zero vector self.assertAlmostEqual(Vector2d.ZERO.length(), 0.0) self.assertAlmostEqual(Vector2d.ZERO.squared_length(), 0.0) # One vector self.assertAlmostEqual(Vector2d.ONE.length(), math.sqrt(2), delta=1e-10) self.assertAlmostEqual(Vector2d.ONE.squared_length(), 2.0) # Arbitrary vector v = Vector2d(0.1, -4.2) self.assertAlmostEqual(v.length(), 4.20119030752, delta=1e-10) self.assertAlmostEqual(v.squared_length(), 17.65) # Integer vector v = Vector2d(3, 4) self.assertAlmostEqual(v.length(), 5) self.assertAlmostEqual(v.squared_length(), 25) def test_nan(self): nanVec = Vector2d.NAN self.assertFalse(nanVec.is_finite()) self.assertTrue(math.isnan(nanVec.x())) self.assertTrue(math.isnan(nanVec.y())) nanVec.correct() self.assertEqual(Vector2d.ZERO, nanVec) self.assertTrue(nanVec.is_finite()) nanVecF = Vector2f.NAN self.assertFalse(nanVecF.is_finite()) self.assertTrue(math.isnan(nanVecF.x())) self.assertTrue(math.isnan(nanVecF.y())) nanVecF.correct() self.assertEqual(Vector2f.ZERO, nanVecF) self.assertTrue(nanVecF.is_finite()) if __name__ == '__main__': unittest.main()
en
0.730648
# Copyright (C) 2021 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copy # Inequality # Distance # Normalize # Set # Abs # _eq_ # _add_ # __sub__ # __truediv__ # __truediv__ int # __mul__ # __mul__ int # is_finite # Test Equal function with specified tolerance # Add zero # Scalar right # Vector left and right # Addition assigment # Add non-trivial scalar values left and right # Subtraction with zeros # Scalar right # Vector left and right # Subtraction assignment # Subtract non-trivial scalar values left and right # Multiply by zero # Scalar right # Element-wise vector multiplication # Multiply by one # Scalar right # Element-wise vector multiplication # Multiply by non-trivial scalar value # Multiply by itself element-wise # Zero vector # One vector # Arbitrary vector # Integer vector
2.647163
3
fsspec/tests/test_mapping.py
sodre/filesystem_spec
0
9022
<gh_stars>0 import os import fsspec from fsspec.implementations.memory import MemoryFileSystem import pickle import pytest def test_mapping_prefix(tmpdir): tmpdir = str(tmpdir) os.makedirs(os.path.join(tmpdir, "afolder")) open(os.path.join(tmpdir, "afile"), "w").write("test") open(os.path.join(tmpdir, "afolder", "anotherfile"), "w").write("test2") m = fsspec.get_mapper("file://" + tmpdir) assert "afile" in m assert m["afolder/anotherfile"] == b"test2" fs = fsspec.filesystem("file") m2 = fs.get_mapper(tmpdir) m3 = fs.get_mapper("file://" + tmpdir) assert m == m2 == m3 def test_ops(): MemoryFileSystem.store.clear() m = fsspec.get_mapper("memory://") assert not m assert list(m) == [] with pytest.raises(KeyError): m["hi"] assert m.pop("key", 0) == 0 m["key0"] = b"data" assert list(m) == ["key0"] assert m["key0"] == b"data" m.clear() assert list(m) == [] def test_pickle(): m = fsspec.get_mapper("memory://") assert isinstance(m.fs, MemoryFileSystem) m["key"] = b"data" m2 = pickle.loads(pickle.dumps(m)) assert list(m) == list(m2) def test_keys_view(): # https://github.com/intake/filesystem_spec/issues/186 m = fsspec.get_mapper("memory://") m["key"] = b"data" keys = m.keys() assert len(keys) == 1 # check that we don't consume the keys assert len(keys) == 1
import os import fsspec from fsspec.implementations.memory import MemoryFileSystem import pickle import pytest def test_mapping_prefix(tmpdir): tmpdir = str(tmpdir) os.makedirs(os.path.join(tmpdir, "afolder")) open(os.path.join(tmpdir, "afile"), "w").write("test") open(os.path.join(tmpdir, "afolder", "anotherfile"), "w").write("test2") m = fsspec.get_mapper("file://" + tmpdir) assert "afile" in m assert m["afolder/anotherfile"] == b"test2" fs = fsspec.filesystem("file") m2 = fs.get_mapper(tmpdir) m3 = fs.get_mapper("file://" + tmpdir) assert m == m2 == m3 def test_ops(): MemoryFileSystem.store.clear() m = fsspec.get_mapper("memory://") assert not m assert list(m) == [] with pytest.raises(KeyError): m["hi"] assert m.pop("key", 0) == 0 m["key0"] = b"data" assert list(m) == ["key0"] assert m["key0"] == b"data" m.clear() assert list(m) == [] def test_pickle(): m = fsspec.get_mapper("memory://") assert isinstance(m.fs, MemoryFileSystem) m["key"] = b"data" m2 = pickle.loads(pickle.dumps(m)) assert list(m) == list(m2) def test_keys_view(): # https://github.com/intake/filesystem_spec/issues/186 m = fsspec.get_mapper("memory://") m["key"] = b"data" keys = m.keys() assert len(keys) == 1 # check that we don't consume the keys assert len(keys) == 1
en
0.871978
# https://github.com/intake/filesystem_spec/issues/186 # check that we don't consume the keys
2.430238
2
testedome/questions/quest_5.py
EderReisS/pythonChallenges
0
9023
""" A / | B C 'B, C' """ class CategoryTree: def __init__(self): self.root = {} self.all_categories = [] def add_category(self, category, parent): if category in self.all_categories: raise KeyError(f"{category} exists") if parent is None: self.root[category] = set() if parent: if parent not in self.root: raise KeyError(f"{parent} invalid") self.root[category] = set() self.root[parent].add(category) self.all_categories.append(category) def get_children(self, parent): if parent and parent not in self.root: raise KeyError(f"{parent} invalid") return list(self.root[parent]) if __name__ == "__main__": c = CategoryTree() c.add_category('A', None) c.add_category('B', 'A') c.add_category('C', 'A') print(','.join(c.get_children('A') or [])) print(','.join(c.get_children('E') or []))
""" A / | B C 'B, C' """ class CategoryTree: def __init__(self): self.root = {} self.all_categories = [] def add_category(self, category, parent): if category in self.all_categories: raise KeyError(f"{category} exists") if parent is None: self.root[category] = set() if parent: if parent not in self.root: raise KeyError(f"{parent} invalid") self.root[category] = set() self.root[parent].add(category) self.all_categories.append(category) def get_children(self, parent): if parent and parent not in self.root: raise KeyError(f"{parent} invalid") return list(self.root[parent]) if __name__ == "__main__": c = CategoryTree() c.add_category('A', None) c.add_category('B', 'A') c.add_category('C', 'A') print(','.join(c.get_children('A') or [])) print(','.join(c.get_children('E') or []))
en
0.671334
A / | B C 'B, C'
3.663921
4
sppas/sppas/src/anndata/aio/__init__.py
mirfan899/MTTS
0
9024
<reponame>mirfan899/MTTS # -*- coding: UTF-8 -*- """ .. --------------------------------------------------------------------- ___ __ __ __ ___ / | \ | \ | \ / the automatic \__ |__/ |__/ |___| \__ annotation and \ | | | | \ analysis ___/ | | | | ___/ of speech http://www.sppas.org/ Use of this software is governed by the GNU Public License, version 3. SPPAS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SPPAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SPPAS. If not, see <http://www.gnu.org/licenses/>. This banner notice must not be removed. --------------------------------------------------------------------- anndata.aio ~~~~~~~~~~~ Readers and writers of annotated data. :author: <NAME> :organization: Laboratoire Parole et Langage, Aix-en-Provence, France :contact: <EMAIL> :license: GPL, v3 :copyright: Copyright (C) 2011-2018 <NAME> """ from .annotationpro import sppasANT from .annotationpro import sppasANTX from .anvil import sppasAnvil from .audacity import sppasAudacity from .elan import sppasEAF from .htk import sppasLab from .phonedit import sppasMRK from .phonedit import sppasSignaix from .praat import sppasTextGrid from .praat import sppasIntensityTier from .praat import sppasPitchTier from .sclite import sppasCTM from .sclite import sppasSTM from .subtitle import sppasSubRip from .subtitle import sppasSubViewer from .text import sppasRawText from .text import sppasCSV from .weka import sppasARFF from .weka import sppasXRFF from .xtrans import sppasTDF from .xra import sppasXRA # ---------------------------------------------------------------------------- # Variables # ---------------------------------------------------------------------------- # TODO: get extension from the "default_extension" member of each class ext_sppas = ['.xra', '.[Xx][Rr][Aa]'] ext_praat = ['.TextGrid', '.PitchTier', '.[Tt][eE][xX][tT][Gg][Rr][Ii][dD]','.[Pp][Ii][tT][cC][hH][Tt][Ii][Ee][rR]'] ext_transcriber = ['.trs','.[tT][rR][sS]'] ext_elan = ['.eaf', '[eE][aA][fF]'] ext_ascii = ['.txt', '.csv', '.[cC][sS][vV]', '.[tT][xX][Tt]', '.info'] ext_phonedit = ['.mrk', '.[mM][rR][kK]'] ext_signaix = ['.hz', '.[Hh][zZ]'] ext_sclite = ['.stm', '.ctm', '.[sScC][tT][mM]'] ext_htk = ['.lab', '.mlf'] ext_subtitles = ['.sub', '.srt', '.[sS][uU][bB]', '.[sS][rR][tT]'] ext_anvil = ['.anvil', '.[aA][aN][vV][iI][lL]'] ext_annotationpro = ['.antx', '.[aA][aN][tT][xX]'] ext_xtrans = ['.tdf', '.[tT][dD][fF]'] ext_audacity = ['.aup'] ext_weka = ['.arff', '.xrff'] primary_in = ['.hz', '.PitchTier'] annotations_in = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.anvil', '.aup', '.trs', '.tdf'] extensions = ['.xra', '.textgrid', '.pitchtier', '.hz', '.eaf', '.trs', '.csv', '.mrk', '.txt', '.mrk', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', 'anvil', '.antx', '.tdf', '.arff', '.xrff'] extensionsul = ext_sppas + ext_praat + ext_transcriber + ext_elan + ext_ascii + ext_phonedit + ext_signaix + ext_sclite + ext_htk + ext_subtitles + ext_anvil + ext_annotationpro + ext_xtrans + ext_audacity + ext_weka extensions_in = primary_in + annotations_in extensions_out = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.arff', '.xrff'] extensions_out_multitiers = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.antx', '.arff', '.xrff'] # ---------------------------------------------------------------------------- __all__ = ( "sppasANT", "sppasANTX", "sppasAnvil", "sppasAudacity", "sppasEAF", "sppasLab", "sppasMRK", "sppasSignaix", "sppasTextGrid", "sppasIntensityTier", "sppasPitchTier", "sppasCTM", "sppasSTM", "sppasSubRip", "sppasSubViewer", "sppasRawText", "sppasCSV", "sppasARFF", "sppasXRFF", "sppasTDF", "sppasXRA", "extensions", "extensions_in", "extensions_out" )
# -*- coding: UTF-8 -*- """ .. --------------------------------------------------------------------- ___ __ __ __ ___ / | \ | \ | \ / the automatic \__ |__/ |__/ |___| \__ annotation and \ | | | | \ analysis ___/ | | | | ___/ of speech http://www.sppas.org/ Use of this software is governed by the GNU Public License, version 3. SPPAS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SPPAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SPPAS. If not, see <http://www.gnu.org/licenses/>. This banner notice must not be removed. --------------------------------------------------------------------- anndata.aio ~~~~~~~~~~~ Readers and writers of annotated data. :author: <NAME> :organization: Laboratoire Parole et Langage, Aix-en-Provence, France :contact: <EMAIL> :license: GPL, v3 :copyright: Copyright (C) 2011-2018 <NAME> """ from .annotationpro import sppasANT from .annotationpro import sppasANTX from .anvil import sppasAnvil from .audacity import sppasAudacity from .elan import sppasEAF from .htk import sppasLab from .phonedit import sppasMRK from .phonedit import sppasSignaix from .praat import sppasTextGrid from .praat import sppasIntensityTier from .praat import sppasPitchTier from .sclite import sppasCTM from .sclite import sppasSTM from .subtitle import sppasSubRip from .subtitle import sppasSubViewer from .text import sppasRawText from .text import sppasCSV from .weka import sppasARFF from .weka import sppasXRFF from .xtrans import sppasTDF from .xra import sppasXRA # ---------------------------------------------------------------------------- # Variables # ---------------------------------------------------------------------------- # TODO: get extension from the "default_extension" member of each class ext_sppas = ['.xra', '.[Xx][Rr][Aa]'] ext_praat = ['.TextGrid', '.PitchTier', '.[Tt][eE][xX][tT][Gg][Rr][Ii][dD]','.[Pp][Ii][tT][cC][hH][Tt][Ii][Ee][rR]'] ext_transcriber = ['.trs','.[tT][rR][sS]'] ext_elan = ['.eaf', '[eE][aA][fF]'] ext_ascii = ['.txt', '.csv', '.[cC][sS][vV]', '.[tT][xX][Tt]', '.info'] ext_phonedit = ['.mrk', '.[mM][rR][kK]'] ext_signaix = ['.hz', '.[Hh][zZ]'] ext_sclite = ['.stm', '.ctm', '.[sScC][tT][mM]'] ext_htk = ['.lab', '.mlf'] ext_subtitles = ['.sub', '.srt', '.[sS][uU][bB]', '.[sS][rR][tT]'] ext_anvil = ['.anvil', '.[aA][aN][vV][iI][lL]'] ext_annotationpro = ['.antx', '.[aA][aN][tT][xX]'] ext_xtrans = ['.tdf', '.[tT][dD][fF]'] ext_audacity = ['.aup'] ext_weka = ['.arff', '.xrff'] primary_in = ['.hz', '.PitchTier'] annotations_in = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.anvil', '.aup', '.trs', '.tdf'] extensions = ['.xra', '.textgrid', '.pitchtier', '.hz', '.eaf', '.trs', '.csv', '.mrk', '.txt', '.mrk', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', 'anvil', '.antx', '.tdf', '.arff', '.xrff'] extensionsul = ext_sppas + ext_praat + ext_transcriber + ext_elan + ext_ascii + ext_phonedit + ext_signaix + ext_sclite + ext_htk + ext_subtitles + ext_anvil + ext_annotationpro + ext_xtrans + ext_audacity + ext_weka extensions_in = primary_in + annotations_in extensions_out = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.arff', '.xrff'] extensions_out_multitiers = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.antx', '.arff', '.xrff'] # ---------------------------------------------------------------------------- __all__ = ( "sppasANT", "sppasANTX", "sppasAnvil", "sppasAudacity", "sppasEAF", "sppasLab", "sppasMRK", "sppasSignaix", "sppasTextGrid", "sppasIntensityTier", "sppasPitchTier", "sppasCTM", "sppasSTM", "sppasSubRip", "sppasSubViewer", "sppasRawText", "sppasCSV", "sppasARFF", "sppasXRFF", "sppasTDF", "sppasXRA", "extensions", "extensions_in", "extensions_out" )
en
0.656041
# -*- coding: UTF-8 -*- .. --------------------------------------------------------------------- ___ __ __ __ ___ / | \ | \ | \ / the automatic \__ |__/ |__/ |___| \__ annotation and \ | | | | \ analysis ___/ | | | | ___/ of speech http://www.sppas.org/ Use of this software is governed by the GNU Public License, version 3. SPPAS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SPPAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SPPAS. If not, see <http://www.gnu.org/licenses/>. This banner notice must not be removed. --------------------------------------------------------------------- anndata.aio ~~~~~~~~~~~ Readers and writers of annotated data. :author: <NAME> :organization: Laboratoire Parole et Langage, Aix-en-Provence, France :contact: <EMAIL> :license: GPL, v3 :copyright: Copyright (C) 2011-2018 <NAME> # ---------------------------------------------------------------------------- # Variables # ---------------------------------------------------------------------------- # TODO: get extension from the "default_extension" member of each class # ----------------------------------------------------------------------------
1.307879
1
models/__init__.py
dapengchen123/hfsoftmax
1
9025
from .resnet import * from .hynet import * from .classifier import Classifier, HFClassifier, HNSWClassifier from .ext_layers import ParameterClient samplerClassifier = { 'hf': HFClassifier, 'hnsw': HNSWClassifier, }
from .resnet import * from .hynet import * from .classifier import Classifier, HFClassifier, HNSWClassifier from .ext_layers import ParameterClient samplerClassifier = { 'hf': HFClassifier, 'hnsw': HNSWClassifier, }
none
1
1.36135
1
scripts/multiplayer/server.py
AgnirudraSil/tetris
3
9026
import pickle import socket import _thread from scripts.multiplayer import game, board, tetriminos server = "192.168.29.144" port = 5555 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind((server, port)) except socket.error as e: print(e) s.listen() print("Waiting for connection") connected = set() games = {} idCount = 0 def threaded_client(conn, p, gameId): global idCount conn.send(str.encode(str(p))) reply = "" while True: try: data = conn.recv(4096).decode() if gameId in games: game = games[gameId] if not data: break else: game.update(p, data) reply = game conn.sendall(pickle.dumps(reply)) else: break except: break print("Lost Connection!") try: del games[gameId] print("Closing Game", gameId) except: pass idCount -= 1 conn.close() while True: conn, addr = s.accept() print("Connected to: ", addr) idCount += 1 p = 0 game_id = (idCount - 1) // 2 if idCount % 2 == 1: games[game_id] = game.Game((0, 0, 0), None, board) else: games[game_id].ready = True p = 1 _thread.start_new_thread(threaded_client, (conn, p, game_id))
import pickle import socket import _thread from scripts.multiplayer import game, board, tetriminos server = "192.168.29.144" port = 5555 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind((server, port)) except socket.error as e: print(e) s.listen() print("Waiting for connection") connected = set() games = {} idCount = 0 def threaded_client(conn, p, gameId): global idCount conn.send(str.encode(str(p))) reply = "" while True: try: data = conn.recv(4096).decode() if gameId in games: game = games[gameId] if not data: break else: game.update(p, data) reply = game conn.sendall(pickle.dumps(reply)) else: break except: break print("Lost Connection!") try: del games[gameId] print("Closing Game", gameId) except: pass idCount -= 1 conn.close() while True: conn, addr = s.accept() print("Connected to: ", addr) idCount += 1 p = 0 game_id = (idCount - 1) // 2 if idCount % 2 == 1: games[game_id] = game.Game((0, 0, 0), None, board) else: games[game_id].ready = True p = 1 _thread.start_new_thread(threaded_client, (conn, p, game_id))
none
1
2.769664
3
solutions/6-sum-suqare-difference.py
smaranjitghose/PyProjectEuler
1
9027
<filename>solutions/6-sum-suqare-difference.py def sum_of_squares(n): return sum(i ** 2 for i in range(1, n+1)) def square_of_sum(n): return sum(range(1, n+1)) ** 2
<filename>solutions/6-sum-suqare-difference.py def sum_of_squares(n): return sum(i ** 2 for i in range(1, n+1)) def square_of_sum(n): return sum(range(1, n+1)) ** 2
none
1
3.638595
4
AdventOfCode/2018/src/day-03/app.py
AustinTSchaffer/DailyProgrammer
1
9028
<reponame>AustinTSchaffer/DailyProgrammer import os import re from collections import defaultdict class Claim(object): def __init__(self, data_row): match = re.match(r'#(\d+) @ (\d+),(\d+): (\d+)x(\d+)', data_row) self.id = int(match[1]) self.x = int(match[2]) self.y = int(match[3]) self.width = int(match[4]) self.height = int(match[5]) def all_locations(self): for x in range(self.width): for y in range(self.height): yield (self.x + x, self.y + y) CURRENT_DIR, _ = os.path.split(__file__) DATA_FLIE = os.path.join(CURRENT_DIR, 'data.txt') def data_file_iter(data_file) -> Claim: with open(data_file, 'r') as data: for claim in data: claim = claim.strip() if (claim): yield Claim(claim) def part1(claims): """ This is basically a single-threaded collision detection method, implemented in pure python. Computation complexity is obviously not a consideration. """ # Determines how many times each locations was claimed claimed_space_registry = defaultdict(int) for claim in claims: for location in claim.all_locations(): claimed_space_registry[location] += 1 # Generates the set of all locations that were claimed more than once multi_claimed_spaces = { location for location,count in claimed_space_registry.items() if count > 1 } # Prints the number of locations that are claimed more than once # and returns the set of locations that were claimed more than once print('Multi-Claimed Spaces:', len(multi_claimed_spaces)) return multi_claimed_spaces def part2(claims, multi_claimed_spaces): """ Might not be the optimal solution, but it runs fast enough, and uses components that were already calculated in part 1. """ for claim in claims: all_locations_are_non_overlapping = all(map( lambda loc: loc not in multi_claimed_spaces, claim.all_locations() )) if all_locations_are_non_overlapping: print('Non-overlapping claim:', claim.id) return claim if __name__ == '__main__': claims = list(data_file_iter(DATA_FLIE)) mcs = part1(claims) santas_suit_material = part2(claims, mcs)
import os import re from collections import defaultdict class Claim(object): def __init__(self, data_row): match = re.match(r'#(\d+) @ (\d+),(\d+): (\d+)x(\d+)', data_row) self.id = int(match[1]) self.x = int(match[2]) self.y = int(match[3]) self.width = int(match[4]) self.height = int(match[5]) def all_locations(self): for x in range(self.width): for y in range(self.height): yield (self.x + x, self.y + y) CURRENT_DIR, _ = os.path.split(__file__) DATA_FLIE = os.path.join(CURRENT_DIR, 'data.txt') def data_file_iter(data_file) -> Claim: with open(data_file, 'r') as data: for claim in data: claim = claim.strip() if (claim): yield Claim(claim) def part1(claims): """ This is basically a single-threaded collision detection method, implemented in pure python. Computation complexity is obviously not a consideration. """ # Determines how many times each locations was claimed claimed_space_registry = defaultdict(int) for claim in claims: for location in claim.all_locations(): claimed_space_registry[location] += 1 # Generates the set of all locations that were claimed more than once multi_claimed_spaces = { location for location,count in claimed_space_registry.items() if count > 1 } # Prints the number of locations that are claimed more than once # and returns the set of locations that were claimed more than once print('Multi-Claimed Spaces:', len(multi_claimed_spaces)) return multi_claimed_spaces def part2(claims, multi_claimed_spaces): """ Might not be the optimal solution, but it runs fast enough, and uses components that were already calculated in part 1. """ for claim in claims: all_locations_are_non_overlapping = all(map( lambda loc: loc not in multi_claimed_spaces, claim.all_locations() )) if all_locations_are_non_overlapping: print('Non-overlapping claim:', claim.id) return claim if __name__ == '__main__': claims = list(data_file_iter(DATA_FLIE)) mcs = part1(claims) santas_suit_material = part2(claims, mcs)
en
0.982544
This is basically a single-threaded collision detection method, implemented in pure python. Computation complexity is obviously not a consideration. # Determines how many times each locations was claimed # Generates the set of all locations that were claimed more than once # Prints the number of locations that are claimed more than once # and returns the set of locations that were claimed more than once Might not be the optimal solution, but it runs fast enough, and uses components that were already calculated in part 1.
3.140856
3
facerec-master/py/facerec/distance.py
ArianeFire/HaniCam
776
9029
<reponame>ArianeFire/HaniCam<filename>facerec-master/py/facerec/distance.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) <NAME>. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. import numpy as np class AbstractDistance(object): def __init__(self, name): self._name = name def __call__(self,p,q): raise NotImplementedError("Every AbstractDistance must implement the __call__ method.") @property def name(self): return self._name def __repr__(self): return self._name class EuclideanDistance(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"EuclideanDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sqrt(np.sum(np.power((p-q),2))) class CosineDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"CosineDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return -np.dot(p.T,q) / (np.sqrt(np.dot(p,p.T)*np.dot(q,q.T))) class NormalizedCorrelation(AbstractDistance): """ Calculates the NormalizedCorrelation Coefficient for two vectors. Literature: "Multi-scale Local Binary Pattern Histogram for Face Recognition". PhD (2008). Chi Ho Chan, University Of Surrey. """ def __init__(self): AbstractDistance.__init__(self,"NormalizedCorrelation") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() pmu = p.mean() qmu = q.mean() pm = p - pmu qm = q - qmu return 1.0 - (np.dot(pm, qm) / (np.sqrt(np.dot(pm, pm)) * np.sqrt(np.dot(qm, qm)))) class ChiSquareDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"ChiSquareDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() bin_dists = (p-q)**2 / (p+q+np.finfo('float').eps) return np.sum(bin_dists) class HistogramIntersection(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"HistogramIntersection") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sum(np.minimum(p,q)) class BinRatioDistance(AbstractDistance): """ Calculates the Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"BinRatioDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q))/((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class L1BinRatioDistance(AbstractDistance): """ Calculates the L1-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"L1-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * abs(p-q) / ((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class ChiSquareBRD(AbstractDistance): """ Calculates the ChiSquare-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"ChiSquare-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * (p-q)**2 / ((p+q)**3+np.finfo('float').eps) return np.abs(np.sum(b))
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) <NAME>. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. import numpy as np class AbstractDistance(object): def __init__(self, name): self._name = name def __call__(self,p,q): raise NotImplementedError("Every AbstractDistance must implement the __call__ method.") @property def name(self): return self._name def __repr__(self): return self._name class EuclideanDistance(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"EuclideanDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sqrt(np.sum(np.power((p-q),2))) class CosineDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"CosineDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return -np.dot(p.T,q) / (np.sqrt(np.dot(p,p.T)*np.dot(q,q.T))) class NormalizedCorrelation(AbstractDistance): """ Calculates the NormalizedCorrelation Coefficient for two vectors. Literature: "Multi-scale Local Binary Pattern Histogram for Face Recognition". PhD (2008). Chi Ho Chan, University Of Surrey. """ def __init__(self): AbstractDistance.__init__(self,"NormalizedCorrelation") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() pmu = p.mean() qmu = q.mean() pm = p - pmu qm = q - qmu return 1.0 - (np.dot(pm, qm) / (np.sqrt(np.dot(pm, pm)) * np.sqrt(np.dot(qm, qm)))) class ChiSquareDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"ChiSquareDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() bin_dists = (p-q)**2 / (p+q+np.finfo('float').eps) return np.sum(bin_dists) class HistogramIntersection(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"HistogramIntersection") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sum(np.minimum(p,q)) class BinRatioDistance(AbstractDistance): """ Calculates the Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"BinRatioDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q))/((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class L1BinRatioDistance(AbstractDistance): """ Calculates the L1-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"L1-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * abs(p-q) / ((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class ChiSquareBRD(AbstractDistance): """ Calculates the ChiSquare-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"ChiSquare-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * (p-q)**2 / ((p+q)**3+np.finfo('float').eps) return np.abs(np.sum(b))
en
0.766589
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) <NAME>. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang Calculates the NormalizedCorrelation Coefficient for two vectors. Literature: "Multi-scale Local Binary Pattern Histogram for Face Recognition". PhD (2008). Chi Ho Chan, University Of Surrey. Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang Calculates the Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. # NumPy needs np.dot instead of * for reducing to tensor Calculates the L1-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. # NumPy needs np.dot instead of * for reducing to tensor Calculates the ChiSquare-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. # NumPy needs np.dot instead of * for reducing to tensor
3.110069
3
pgyer_uploader.py
elina8013/android_demo
666
9030
<filename>pgyer_uploader.py #!/usr/bin/python #coding=utf-8 import os import requests import time import re from datetime import datetime import urllib2 import json import mimetypes import smtplib from email.MIMEText import MIMEText from email.MIMEMultipart import MIMEMultipart # configuration for pgyer USER_KEY = "f605b7c7826690f796078e3dd23a60d5" API_KEY = "<KEY>" PGYER_UPLOAD_URL = "https://www.pgyer.com/apiv1/app/upload" repo_path = 'C:/Users/Administrator/.jenkins/workspace/Demo/app' repo_url = 'https://github.com/r17171709/iite_test' ipa_path = "C:/Users/Administrator/.jenkins/workspace/Demo/app/build/outputs/apk/app-release.apk" update_description = "版本更新测试" def parseUploadResult(jsonResult): print 'post response: %s' % jsonResult resultCode = jsonResult['code'] send_Email(jsonResult) if resultCode != 0: print "Upload Fail!" raise Exception("Reason: %s" % jsonResult['message']) print "Upload Success" appKey = jsonResult['data']['appKey'] appDownloadPageURL = "https://www.pgyer.com/%s" % appKey print "appDownloadPage: %s" % appDownloadPageURL return appDownloadPageURL def uploadIpaToPgyer(ipaPath, updateDescription): print "Begin to upload ipa to Pgyer: %s" % ipaPath headers = {'enctype': 'multipart/form-data'} payload = { 'uKey': USER_KEY, '_api_key': API_KEY, 'publishRange': '2', # 直接发布 'isPublishToPublic': '2', # 不发布到广场 'updateDescription': updateDescription # 版本更新描述 } try_times = 0 while try_times < 5: try: print "uploading ... %s" % datetime.now() ipa_file = {'file': open(ipaPath, 'rb')} r = requests.post(PGYER_UPLOAD_URL, headers = headers, files = ipa_file, data = payload ) assert r.status_code == requests.codes.ok result = r.json() appDownloadPageURL = parseUploadResult(result) return appDownloadPageURL except requests.exceptions.ConnectionError: print "requests.exceptions.ConnectionError occured!" time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 except Exception as e: print "Exception occured: %s" % str(e) time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 if try_times >= 5: raise Exception("Failed to upload ipa to Pgyer, retried 5 times.") def parseQRCodeImageUrl(appDownloadPageURL): try_times = 0 while try_times < 3: try: response = requests.get(appDownloadPageURL) regex = '<img src=\"(.*?)\" style=' m = re.search(regex, response.content) assert m is not None appQRCodeURL = m.group(1) print "appQRCodeURL: %s" % appQRCodeURL return appQRCodeURL except AssertionError: try_times += 1 time.sleep(60) print "Can not locate QRCode image. retry ... %s: %s" % (try_times, datetime.now()) if try_times >= 3: raise Exception("Failed to locate QRCode image in download page, retried 3 times.") def saveQRCodeImage(appDownloadPageURL, output_folder): appQRCodeURL = parseQRCodeImageUrl(appDownloadPageURL) response = requests.get(appQRCodeURL) qr_image_file_path = os.path.join(output_folder, 'QRCode.png') if response.status_code == 200: with open(qr_image_file_path, 'wb') as f: f.write(response.content) print 'Save QRCode image to file: %s' % qr_image_file_path def main(): appDownloadPageURL = uploadIpaToPgyer(ipa_path, update_description) try: output_folder = os.path.dirname(ipa_path) saveQRCodeImage(appDownloadPageURL, output_folder) except Exception as e: print "Exception occured: %s" % str(e) #获取 最后一次 提交git的信息 def getCommitInfo(): #方法一 使用 python 库 前提是 当前分支 在服务器上存在 # repo = Gittle(repo_path, origin_uri=repo_url) # commitInfo = repo.commit_info(start=0, end=1) # lastCommitInfo = commitInfo[0] #方法二 直接 cd 到 目录下 git log -1 打印commit 信息 os.chdir(repo_path); lastCommitInfo = run_cmd('git log -1') return lastCommitInfo #发送邮件 def send_Email(json_result): print '*******start to send mail****' appName = json_result['data']['appName'] appKey = json_result['data']['appKey'] appVersion = json_result['data']['appVersion'] appBuildVersion = json_result['data']['appBuildVersion'] appShortcutUrl = json_result['data']['appShortcutUrl'] #邮件接受者 mail_receiver = ['<EMAIL>'] #根据不同邮箱配置 host,user,和pwd mail_host = 'smtp.139.com' mail_port = 465 mail_user = '<EMAIL>' mail_pwd = '<PASSWORD>' mail_to = ','.join(mail_receiver) msg = MIMEMultipart() environsString = '<p><h3>本次打包相关信息</h3><p>' # environsString += '<p>ipa 包下载地址 : ' + 'wudizhi' + '<p>' environsString += '<p>蒲公英安装地址 : ' + 'http://www.pgyer.com/' + str(appShortcutUrl) + '<p><p><p><p>' # environsString += '<li><a href="itms-services://?action=download-manifest&url=https://ssl.pgyer.com/app/plist/' + str(appKey) + '"></a>点击直接安装</li>' environsString += '<p><h3>本次git提交相关信息</h3><p>' #获取git最后一次提交信息 lastCommitInfo = getCommitInfo() # #提交人 # committer = lastCommitInfo['committer']['raw'] # #提交信息 # description = lastCommitInfo['description'] environsString += '<p>' + '<font color="red">' + lastCommitInfo + '</font>' + '<p>' # environsString += '<p>Description:' + '<font color="red">' + description + '</font>' + '<p>' message = environsString body = MIMEText(message, _subtype='html', _charset='utf-8') msg["Accept-Language"]="zh-CN" msg["Accept-Charset"]="ISO-8859-1,utf-8" msg.attach(body) msg['To'] = mail_to msg['from'] = '<EMAIL>' msg['subject'] = 'Android APP 最新打包文件' try: s = smtplib.SMTP() # 设置为调试模式,就是在会话过程中会有输出信息 s.set_debuglevel(1) s.connect(mail_host) s.starttls() # 创建 SSL 安全加密 链接 s.login(mail_user, mail_pwd) s.sendmail(mail_user, mail_receiver, msg.as_string()) s.close() print '*******mail send ok****' except Exception, e: print e def run_cmd(cmd): try: import subprocess except ImportError: _, result_f, error_f = os.popen3(cmd) else: process = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE) result_f, error_f = process.stdout, process.stderr errors = error_f.read() if errors: pass result_str = result_f.read().strip() if result_f : result_f.close() if error_f : error_f.close() return result_str if __name__ == '__main__': main()
<filename>pgyer_uploader.py #!/usr/bin/python #coding=utf-8 import os import requests import time import re from datetime import datetime import urllib2 import json import mimetypes import smtplib from email.MIMEText import MIMEText from email.MIMEMultipart import MIMEMultipart # configuration for pgyer USER_KEY = "f605b7c7826690f796078e3dd23a60d5" API_KEY = "<KEY>" PGYER_UPLOAD_URL = "https://www.pgyer.com/apiv1/app/upload" repo_path = 'C:/Users/Administrator/.jenkins/workspace/Demo/app' repo_url = 'https://github.com/r17171709/iite_test' ipa_path = "C:/Users/Administrator/.jenkins/workspace/Demo/app/build/outputs/apk/app-release.apk" update_description = "版本更新测试" def parseUploadResult(jsonResult): print 'post response: %s' % jsonResult resultCode = jsonResult['code'] send_Email(jsonResult) if resultCode != 0: print "Upload Fail!" raise Exception("Reason: %s" % jsonResult['message']) print "Upload Success" appKey = jsonResult['data']['appKey'] appDownloadPageURL = "https://www.pgyer.com/%s" % appKey print "appDownloadPage: %s" % appDownloadPageURL return appDownloadPageURL def uploadIpaToPgyer(ipaPath, updateDescription): print "Begin to upload ipa to Pgyer: %s" % ipaPath headers = {'enctype': 'multipart/form-data'} payload = { 'uKey': USER_KEY, '_api_key': API_KEY, 'publishRange': '2', # 直接发布 'isPublishToPublic': '2', # 不发布到广场 'updateDescription': updateDescription # 版本更新描述 } try_times = 0 while try_times < 5: try: print "uploading ... %s" % datetime.now() ipa_file = {'file': open(ipaPath, 'rb')} r = requests.post(PGYER_UPLOAD_URL, headers = headers, files = ipa_file, data = payload ) assert r.status_code == requests.codes.ok result = r.json() appDownloadPageURL = parseUploadResult(result) return appDownloadPageURL except requests.exceptions.ConnectionError: print "requests.exceptions.ConnectionError occured!" time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 except Exception as e: print "Exception occured: %s" % str(e) time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 if try_times >= 5: raise Exception("Failed to upload ipa to Pgyer, retried 5 times.") def parseQRCodeImageUrl(appDownloadPageURL): try_times = 0 while try_times < 3: try: response = requests.get(appDownloadPageURL) regex = '<img src=\"(.*?)\" style=' m = re.search(regex, response.content) assert m is not None appQRCodeURL = m.group(1) print "appQRCodeURL: %s" % appQRCodeURL return appQRCodeURL except AssertionError: try_times += 1 time.sleep(60) print "Can not locate QRCode image. retry ... %s: %s" % (try_times, datetime.now()) if try_times >= 3: raise Exception("Failed to locate QRCode image in download page, retried 3 times.") def saveQRCodeImage(appDownloadPageURL, output_folder): appQRCodeURL = parseQRCodeImageUrl(appDownloadPageURL) response = requests.get(appQRCodeURL) qr_image_file_path = os.path.join(output_folder, 'QRCode.png') if response.status_code == 200: with open(qr_image_file_path, 'wb') as f: f.write(response.content) print 'Save QRCode image to file: %s' % qr_image_file_path def main(): appDownloadPageURL = uploadIpaToPgyer(ipa_path, update_description) try: output_folder = os.path.dirname(ipa_path) saveQRCodeImage(appDownloadPageURL, output_folder) except Exception as e: print "Exception occured: %s" % str(e) #获取 最后一次 提交git的信息 def getCommitInfo(): #方法一 使用 python 库 前提是 当前分支 在服务器上存在 # repo = Gittle(repo_path, origin_uri=repo_url) # commitInfo = repo.commit_info(start=0, end=1) # lastCommitInfo = commitInfo[0] #方法二 直接 cd 到 目录下 git log -1 打印commit 信息 os.chdir(repo_path); lastCommitInfo = run_cmd('git log -1') return lastCommitInfo #发送邮件 def send_Email(json_result): print '*******start to send mail****' appName = json_result['data']['appName'] appKey = json_result['data']['appKey'] appVersion = json_result['data']['appVersion'] appBuildVersion = json_result['data']['appBuildVersion'] appShortcutUrl = json_result['data']['appShortcutUrl'] #邮件接受者 mail_receiver = ['<EMAIL>'] #根据不同邮箱配置 host,user,和pwd mail_host = 'smtp.139.com' mail_port = 465 mail_user = '<EMAIL>' mail_pwd = '<PASSWORD>' mail_to = ','.join(mail_receiver) msg = MIMEMultipart() environsString = '<p><h3>本次打包相关信息</h3><p>' # environsString += '<p>ipa 包下载地址 : ' + 'wudizhi' + '<p>' environsString += '<p>蒲公英安装地址 : ' + 'http://www.pgyer.com/' + str(appShortcutUrl) + '<p><p><p><p>' # environsString += '<li><a href="itms-services://?action=download-manifest&url=https://ssl.pgyer.com/app/plist/' + str(appKey) + '"></a>点击直接安装</li>' environsString += '<p><h3>本次git提交相关信息</h3><p>' #获取git最后一次提交信息 lastCommitInfo = getCommitInfo() # #提交人 # committer = lastCommitInfo['committer']['raw'] # #提交信息 # description = lastCommitInfo['description'] environsString += '<p>' + '<font color="red">' + lastCommitInfo + '</font>' + '<p>' # environsString += '<p>Description:' + '<font color="red">' + description + '</font>' + '<p>' message = environsString body = MIMEText(message, _subtype='html', _charset='utf-8') msg["Accept-Language"]="zh-CN" msg["Accept-Charset"]="ISO-8859-1,utf-8" msg.attach(body) msg['To'] = mail_to msg['from'] = '<EMAIL>' msg['subject'] = 'Android APP 最新打包文件' try: s = smtplib.SMTP() # 设置为调试模式,就是在会话过程中会有输出信息 s.set_debuglevel(1) s.connect(mail_host) s.starttls() # 创建 SSL 安全加密 链接 s.login(mail_user, mail_pwd) s.sendmail(mail_user, mail_receiver, msg.as_string()) s.close() print '*******mail send ok****' except Exception, e: print e def run_cmd(cmd): try: import subprocess except ImportError: _, result_f, error_f = os.popen3(cmd) else: process = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE) result_f, error_f = process.stdout, process.stderr errors = error_f.read() if errors: pass result_str = result_f.read().strip() if result_f : result_f.close() if error_f : error_f.close() return result_str if __name__ == '__main__': main()
zh
0.611113
#!/usr/bin/python #coding=utf-8 # configuration for pgyer # 直接发布 # 不发布到广场 # 版本更新描述 #获取 最后一次 提交git的信息 #方法一 使用 python 库 前提是 当前分支 在服务器上存在 # repo = Gittle(repo_path, origin_uri=repo_url) # commitInfo = repo.commit_info(start=0, end=1) # lastCommitInfo = commitInfo[0] #方法二 直接 cd 到 目录下 git log -1 打印commit 信息 #发送邮件 #邮件接受者 #根据不同邮箱配置 host,user,和pwd # environsString += '<p>ipa 包下载地址 : ' + 'wudizhi' + '<p>' # environsString += '<li><a href="itms-services://?action=download-manifest&url=https://ssl.pgyer.com/app/plist/' + str(appKey) + '"></a>点击直接安装</li>' #获取git最后一次提交信息 # #提交人 # committer = lastCommitInfo['committer']['raw'] # #提交信息 # description = lastCommitInfo['description'] # environsString += '<p>Description:' + '<font color="red">' + description + '</font>' + '<p>' # 设置为调试模式,就是在会话过程中会有输出信息 # 创建 SSL 安全加密 链接
2.258492
2
edit/editpublisher.py
lokal-profil/isfdb_site
0
9031
#!_PYTHONLOC # # (C) COPYRIGHT 2004-2021 <NAME> and Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ from isfdblib import * from isfdblib_help import * from isfdblib_print import * from isfdb import * from SQLparsing import * from login import User if __name__ == '__main__': publisherID = SESSION.Parameter(0, 'int') record = SQLGetPublisher(publisherID) if not record: SESSION.DisplayError('Record Does Not Exist') PrintPreSearch('Publisher Editor') PrintNavBar('edit/editpublisher.cgi', publisherID) help = HelpPublisher() printHelpBox('publisher', 'EditPublisher') print '<form id="data" METHOD="POST" ACTION="/cgi-bin/edit/submitpublisher.cgi">' print '<table border="0">' print '<tbody id="tagBody">' # Limit the ability to edit publisher names to moderators user = User() user.load() display_only = 1 if SQLisUserModerator(user.id): display_only = 0 printfield("Publisher Name", "publisher_name", help, record[PUBLISHER_NAME], display_only) trans_publisher_names = SQLloadTransPublisherNames(record[PUBLISHER_ID]) printmultiple(trans_publisher_names, "Transliterated Name", "trans_publisher_names", help) webpages = SQLloadPublisherWebpages(record[PUBLISHER_ID]) printWebPages(webpages, 'publisher', help) printtextarea('Note', 'publisher_note', help, SQLgetNotes(record[PUBLISHER_NOTE])) printtextarea('Note to Moderator', 'mod_note', help, '') print '</tbody>' print '</table>' print '<p>' print '<input NAME="publisher_id" VALUE="%d" TYPE="HIDDEN">' % publisherID print '<input TYPE="SUBMIT" VALUE="Submit Data" tabindex="1">' print '</form>' print '<p>' PrintPostSearch(0, 0, 0, 0, 0, 0)
#!_PYTHONLOC # # (C) COPYRIGHT 2004-2021 <NAME> and Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ from isfdblib import * from isfdblib_help import * from isfdblib_print import * from isfdb import * from SQLparsing import * from login import User if __name__ == '__main__': publisherID = SESSION.Parameter(0, 'int') record = SQLGetPublisher(publisherID) if not record: SESSION.DisplayError('Record Does Not Exist') PrintPreSearch('Publisher Editor') PrintNavBar('edit/editpublisher.cgi', publisherID) help = HelpPublisher() printHelpBox('publisher', 'EditPublisher') print '<form id="data" METHOD="POST" ACTION="/cgi-bin/edit/submitpublisher.cgi">' print '<table border="0">' print '<tbody id="tagBody">' # Limit the ability to edit publisher names to moderators user = User() user.load() display_only = 1 if SQLisUserModerator(user.id): display_only = 0 printfield("Publisher Name", "publisher_name", help, record[PUBLISHER_NAME], display_only) trans_publisher_names = SQLloadTransPublisherNames(record[PUBLISHER_ID]) printmultiple(trans_publisher_names, "Transliterated Name", "trans_publisher_names", help) webpages = SQLloadPublisherWebpages(record[PUBLISHER_ID]) printWebPages(webpages, 'publisher', help) printtextarea('Note', 'publisher_note', help, SQLgetNotes(record[PUBLISHER_NOTE])) printtextarea('Note to Moderator', 'mod_note', help, '') print '</tbody>' print '</table>' print '<p>' print '<input NAME="publisher_id" VALUE="%d" TYPE="HIDDEN">' % publisherID print '<input TYPE="SUBMIT" VALUE="Submit Data" tabindex="1">' print '</form>' print '<p>' PrintPostSearch(0, 0, 0, 0, 0, 0)
en
0.581942
#!_PYTHONLOC # # (C) COPYRIGHT 2004-2021 <NAME> and Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ # Limit the ability to edit publisher names to moderators
2.104581
2
src/dispatch/incident_cost/views.py
vj-codes/dispatch
1
9032
from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from dispatch.database.core import get_db from dispatch.database.service import common_parameters, search_filter_sort_paginate from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency from .models import ( IncidentCostCreate, IncidentCostPagination, IncidentCostRead, IncidentCostUpdate, ) from .service import create, delete, get, update router = APIRouter() @router.get("", response_model=IncidentCostPagination) def get_incident_costs(*, common: dict = Depends(common_parameters)): """ Get all incident costs, or only those matching a given search term. """ return search_filter_sort_paginate(model="IncidentCost", **common) @router.get("/{incident_cost_id}", response_model=IncidentCostRead) def get_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Get an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") return incident_cost @router.post( "", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def create_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_in: IncidentCostCreate ): """ Create an incident cost. """ incident_cost = create(db_session=db_session, incident_cost_in=incident_cost_in) return incident_cost @router.put( "/{incident_cost_id}", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def update_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_id: int, incident_cost_in: IncidentCostUpdate, ): """ Update an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") incident_cost = update( db_session=db_session, incident_cost=incident_cost, incident_cost_in=incident_cost_in, ) return incident_cost @router.delete( "/{incident_cost_id}", dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def delete_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Delete an incident cost, returning only an HTTP 200 OK if successful. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") delete(db_session=db_session, incident_cost_id=incident_cost_id)
from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from dispatch.database.core import get_db from dispatch.database.service import common_parameters, search_filter_sort_paginate from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency from .models import ( IncidentCostCreate, IncidentCostPagination, IncidentCostRead, IncidentCostUpdate, ) from .service import create, delete, get, update router = APIRouter() @router.get("", response_model=IncidentCostPagination) def get_incident_costs(*, common: dict = Depends(common_parameters)): """ Get all incident costs, or only those matching a given search term. """ return search_filter_sort_paginate(model="IncidentCost", **common) @router.get("/{incident_cost_id}", response_model=IncidentCostRead) def get_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Get an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") return incident_cost @router.post( "", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def create_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_in: IncidentCostCreate ): """ Create an incident cost. """ incident_cost = create(db_session=db_session, incident_cost_in=incident_cost_in) return incident_cost @router.put( "/{incident_cost_id}", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def update_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_id: int, incident_cost_in: IncidentCostUpdate, ): """ Update an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") incident_cost = update( db_session=db_session, incident_cost=incident_cost, incident_cost_in=incident_cost_in, ) return incident_cost @router.delete( "/{incident_cost_id}", dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def delete_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Delete an incident cost, returning only an HTTP 200 OK if successful. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") delete(db_session=db_session, incident_cost_id=incident_cost_id)
en
0.917487
Get all incident costs, or only those matching a given search term. Get an incident cost by id. Create an incident cost. Update an incident cost by id. Delete an incident cost, returning only an HTTP 200 OK if successful.
2.242516
2
tests/views/test_admin_committee_questions.py
Lunga001/pmg-cms-2
2
9033
import os from urllib.parse import urlparse, parse_qs from builtins import str from tests import PMGLiveServerTestCase from pmg.models import db, Committee, CommitteeQuestion from tests.fixtures import dbfixture, UserData, CommitteeData, MembershipData from flask import escape from io import BytesIO class TestAdminCommitteeQuestions(PMGLiveServerTestCase): def setUp(self): super().setUp() self.fx = dbfixture.data(UserData) self.fx.setup() self.user = self.fx.UserData.admin def tearDown(self): self.delete_created_objects() self.fx.teardown() super().tearDown() def test_upload_committee_question_document_with_old_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW190-200303.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW190-200303.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/somethingelse"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "Whether her Office has initiated the drafting of a Bill that seeks to protect and promote the rights of persons with disabilities; if not, (a) why not and (b) what steps does her Office intend taking in this regard; if so, on what date does she envisage that the Bill will be introduced in the National Assembly?", ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertEqual( question.answer, "<p>Yes</p><p>(b) The Department is in the process of preparing the drafting of a Bill which will be submitted to Cabinet for approval before it will be tabled in Parliament during the 2021/2022 financial year.</p>", ) self.assertEqual(question.code, "NW190") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_new_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW104-2020-02-28.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW104-2020-02-28.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "What (a) is the number of (i) residential properties, (ii) business erven’, (iii) government buildings and (iv) agricultural properties owned by her department in the Lephalale Local Municipality which are (aa) vacant, (bb) occupied and (cc) earmarked for disposal and (b) total amount does her department owe the municipality in outstanding rates and services?", ) self.assertEqual( question.minister.name, "Minister of Public Works and Infrastructure", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertEqual( question.answer, "<p><strong>The Minister of Public Works and</strong><strong> Infrastructure: </strong></p><ol><li>The Department of Public Works and Infrastructure (DPWI) has informed me that in the Lephalale Local Municipality the Department owns (i) 183 residential properties (ii) one business erven (iii) 132 government buildings and (iv) 5 agricultural properties. DPWI informed me that (aa) 8 land parcels are vacant and (bb) only one property is unutilised. </li></ol><p>(cc) DPWI has not earmarked any properties for disposal in the Lephalale Local Municipality.</p><ol><li>In August 2019 the Department started a Government Debt Project engaging directly with municipalities and Eskom to verify and reconcile accounts and the project. DPWI, on behalf of client departments, owed the Lephalale Local Municipality, as per accounts received on 17 February 2020, R 334,989.69 which relates current consumption. </li></ol>", ) self.assertEqual(question.code, "NW104") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_navigable_string_error(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW1153-200619.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW1153-200619.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertIn( "(1)Whether, with reference to her reply to question 937 on 4 June 2020", question.question, ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertIn( "There were no deviations from the standard supply chain management procedures", question.answer, ) self.assertEqual(question.code, "NW1153") # Delete the question that was created self.created_objects.append(question) def get_absolute_file_path(self, relative_path): dir_name = os.path.dirname(__file__) return os.path.join(dir_name, relative_path)
import os from urllib.parse import urlparse, parse_qs from builtins import str from tests import PMGLiveServerTestCase from pmg.models import db, Committee, CommitteeQuestion from tests.fixtures import dbfixture, UserData, CommitteeData, MembershipData from flask import escape from io import BytesIO class TestAdminCommitteeQuestions(PMGLiveServerTestCase): def setUp(self): super().setUp() self.fx = dbfixture.data(UserData) self.fx.setup() self.user = self.fx.UserData.admin def tearDown(self): self.delete_created_objects() self.fx.teardown() super().tearDown() def test_upload_committee_question_document_with_old_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW190-200303.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW190-200303.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/somethingelse"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "Whether her Office has initiated the drafting of a Bill that seeks to protect and promote the rights of persons with disabilities; if not, (a) why not and (b) what steps does her Office intend taking in this regard; if so, on what date does she envisage that the Bill will be introduced in the National Assembly?", ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertEqual( question.answer, "<p>Yes</p><p>(b) The Department is in the process of preparing the drafting of a Bill which will be submitted to Cabinet for approval before it will be tabled in Parliament during the 2021/2022 financial year.</p>", ) self.assertEqual(question.code, "NW190") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_new_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW104-2020-02-28.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW104-2020-02-28.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "What (a) is the number of (i) residential properties, (ii) business erven’, (iii) government buildings and (iv) agricultural properties owned by her department in the Lephalale Local Municipality which are (aa) vacant, (bb) occupied and (cc) earmarked for disposal and (b) total amount does her department owe the municipality in outstanding rates and services?", ) self.assertEqual( question.minister.name, "Minister of Public Works and Infrastructure", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertEqual( question.answer, "<p><strong>The Minister of Public Works and</strong><strong> Infrastructure: </strong></p><ol><li>The Department of Public Works and Infrastructure (DPWI) has informed me that in the Lephalale Local Municipality the Department owns (i) 183 residential properties (ii) one business erven (iii) 132 government buildings and (iv) 5 agricultural properties. DPWI informed me that (aa) 8 land parcels are vacant and (bb) only one property is unutilised. </li></ol><p>(cc) DPWI has not earmarked any properties for disposal in the Lephalale Local Municipality.</p><ol><li>In August 2019 the Department started a Government Debt Project engaging directly with municipalities and Eskom to verify and reconcile accounts and the project. DPWI, on behalf of client departments, owed the Lephalale Local Municipality, as per accounts received on 17 February 2020, R 334,989.69 which relates current consumption. </li></ol>", ) self.assertEqual(question.code, "NW104") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_navigable_string_error(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW1153-200619.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW1153-200619.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertIn( "(1)Whether, with reference to her reply to question 937 on 4 June 2020", question.question, ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "<NAME>") self.assertIn( "There were no deviations from the standard supply chain management procedures", question.answer, ) self.assertEqual(question.code, "NW1153") # Delete the question that was created self.created_objects.append(question) def get_absolute_file_path(self, relative_path): dir_name = os.path.dirname(__file__) return os.path.join(dir_name, relative_path)
en
0.982116
Upload committee question document (/admin/committee-question/upload) # Test that the question that was created contains the correct data # Delete the question that was created Upload committee question document (/admin/committee-question/upload) # Test that the question that was created contains the correct data # Delete the question that was created Upload committee question document (/admin/committee-question/upload) # Test that the question that was created contains the correct data # Delete the question that was created
2.367907
2
audioanalysis_demo/test_audio_analysis.py
tiaotiao/applets
0
9034
<filename>audioanalysis_demo/test_audio_analysis.py import sys, wave import AudioAnalysis FILE_NAME = "snippet.wav" def testWavWrite(): try: f = wave.open(FILE_NAME, "rb") except Exception, e: print e print "File type is not wav!" return c = wave.open("cnv_" + FILE_NAME, "wb") print f.getnchannels() print f.getsampwidth() print f.getframerate() print f.getnframes() #print f.getparams() total = f.getnframes() read_count = total / 2 c.setnchannels(f.getnchannels()) c.setsampwidth(f.getsampwidth()) c.setframerate(f.getframerate()) c.setnframes(read_count) c.setcomptype(f.getcomptype(), f.getcompname()) frames = f.readframes(read_count) print len(frames) print "bytes per frame: ", len(frames) / read_count #for b in frames: # i = int(b.encode("hex"), 16) # print b.encode("hex") #print '#' * (i / 10) c.writeframes(frames) print "----------" f.close() c.close() def process(p): print p def testAudioAnalysis(): a = AudioAnalysis.AudioAnalysis(FILE_NAME) print a.getFilename() print a.getFileType() a.setFrameInterval(0.01) print a.analysePower(process) print a.getPowerMin(), "\tgetPowerMin" print a.getPowerMax(), "\tgetPowerMax" print a.getSamplePowerMin(), "\tgetSamplePowerMin" print a.getSamplePowerMax(), "\tgetSamplePowerMax" print a.getFrameRate(), "\tgetFrameRate" print a.getSampleWidth(), "\tgetSampleWidth" print a.getDuration(), "\tgetDuration" print a.getFrameInterval(), "\tgetFrameInterval" print a.getSamples(), "\tgetSamples" powers = a.getFramePower() for p in powers: print "%04lf" % p[0], "%-6d" % p[1] ,'#' * (p[1] / 100) def main(): f = open(FILE_NAME, "rb") if not f: print "Open file failed!" return try: w = wave.open(f) except Exception, e: print e print "File type is not wav!" return print "get channels\t", w.getnchannels() # channels, single or double print "frame rate\t", w.getframerate() # rate, frames per sec print "samp width\t", w.getsampwidth() # maybe: channels * width = bytes per frame print "get n frames\t", w.getnframes() # total frames print "comp type\t", w.getcomptype() # compress print "params\t", w.getparams() total = w.getnframes() read_count = 100 frames = w.readframes(read_count) print "len(frames)\t", len(frames) print "bytes per frame\t", len(frames) / read_count #for b in frames: #i = int(b.encode("hex"), 16) #print b.encode("hex") #print '#' * (i / 10) print "----------" w.close() f.close() if __name__ == "__main__": main() #testAudioAnalysis() #testWavWrite()
<filename>audioanalysis_demo/test_audio_analysis.py import sys, wave import AudioAnalysis FILE_NAME = "snippet.wav" def testWavWrite(): try: f = wave.open(FILE_NAME, "rb") except Exception, e: print e print "File type is not wav!" return c = wave.open("cnv_" + FILE_NAME, "wb") print f.getnchannels() print f.getsampwidth() print f.getframerate() print f.getnframes() #print f.getparams() total = f.getnframes() read_count = total / 2 c.setnchannels(f.getnchannels()) c.setsampwidth(f.getsampwidth()) c.setframerate(f.getframerate()) c.setnframes(read_count) c.setcomptype(f.getcomptype(), f.getcompname()) frames = f.readframes(read_count) print len(frames) print "bytes per frame: ", len(frames) / read_count #for b in frames: # i = int(b.encode("hex"), 16) # print b.encode("hex") #print '#' * (i / 10) c.writeframes(frames) print "----------" f.close() c.close() def process(p): print p def testAudioAnalysis(): a = AudioAnalysis.AudioAnalysis(FILE_NAME) print a.getFilename() print a.getFileType() a.setFrameInterval(0.01) print a.analysePower(process) print a.getPowerMin(), "\tgetPowerMin" print a.getPowerMax(), "\tgetPowerMax" print a.getSamplePowerMin(), "\tgetSamplePowerMin" print a.getSamplePowerMax(), "\tgetSamplePowerMax" print a.getFrameRate(), "\tgetFrameRate" print a.getSampleWidth(), "\tgetSampleWidth" print a.getDuration(), "\tgetDuration" print a.getFrameInterval(), "\tgetFrameInterval" print a.getSamples(), "\tgetSamples" powers = a.getFramePower() for p in powers: print "%04lf" % p[0], "%-6d" % p[1] ,'#' * (p[1] / 100) def main(): f = open(FILE_NAME, "rb") if not f: print "Open file failed!" return try: w = wave.open(f) except Exception, e: print e print "File type is not wav!" return print "get channels\t", w.getnchannels() # channels, single or double print "frame rate\t", w.getframerate() # rate, frames per sec print "samp width\t", w.getsampwidth() # maybe: channels * width = bytes per frame print "get n frames\t", w.getnframes() # total frames print "comp type\t", w.getcomptype() # compress print "params\t", w.getparams() total = w.getnframes() read_count = 100 frames = w.readframes(read_count) print "len(frames)\t", len(frames) print "bytes per frame\t", len(frames) / read_count #for b in frames: #i = int(b.encode("hex"), 16) #print b.encode("hex") #print '#' * (i / 10) print "----------" w.close() f.close() if __name__ == "__main__": main() #testAudioAnalysis() #testWavWrite()
en
0.318007
#print f.getparams() #for b in frames: # i = int(b.encode("hex"), 16) # print b.encode("hex") #print '#' * (i / 10) # channels, single or double # rate, frames per sec # maybe: channels * width = bytes per frame # total frames # compress #for b in frames: #i = int(b.encode("hex"), 16) #print b.encode("hex") #print '#' * (i / 10) #testAudioAnalysis() #testWavWrite()
3.083511
3
syloga/transform/evaluation.py
xaedes/python-symbolic-logic-to-gate
0
9035
from syloga.core.map_expression_args import map_expression_args from syloga.utils.identity import identity from syloga.ast.BooleanNot import BooleanNot from syloga.ast.BooleanValue import BooleanValue from syloga.ast.BooleanOr import BooleanOr from syloga.ast.BooleanAnd import BooleanAnd from syloga.ast.BooleanNand import BooleanNand from syloga.ast.BooleanNor import BooleanNor from syloga.ast.BooleanXor import BooleanXor from syloga.ast.BreakOut import BreakOut # from syloga.core.assert_equality_by_table import assert_equality_by_table def evaluate_expr(expression): recurse = evaluate_expr # result = assert_equality_by_table result = identity #arg_is_value = lambda arg: isinstance(arg, (BooleanValue, bool)) arg_is_value = lambda arg: type(arg) in [BooleanValue, bool] def arg_is_value(arg): is_value = type(arg) in [BooleanValue, bool] #print("is arg a value? " + str(type(arg)) + " " + str(arg)) #print("is_value", is_value) return is_value args_are_values = lambda args: all(map(arg_is_value, args)) get_value = lambda arg: arg if type(arg) == bool else arg.value is_true = lambda val: val == True is_false = lambda val: val == False #print("looking at " + str(type(expression))) if type(expression) == BooleanNot: assert(len(expression.args) == 1) arg = recurse(expression.args[0]); if arg_is_value(arg): return result(BooleanValue(not get_value(arg))) else: return result(BooleanNot(arg)) elif type(expression) == BooleanOr: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_false(get_value(x))),args)) if args_are_values(args): return result(BooleanValue(any(arg_values))) elif any(map(is_true,arg_values)): return result(BooleanValue(True)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanOr(*args_wo_neutral))) else: return result(BooleanOr(*args)) elif type(expression) == BooleanAnd: args = list(map(recurse, expression.args)) #print(expression.args) #print(args) #negated_atom_values = [not get_value(arg) for arg in args if arg_is_value(arg)] arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_true(get_value(x))),args)) #print(arg_values) if args_are_values(args): return result(BooleanValue(all(map(is_true,arg_values)))) elif any(map(is_false,arg_values)): return result(BooleanValue(False)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanAnd(*args_wo_neutral))) else: return result(BooleanAnd(*args)) elif type(expression) == BooleanNand: return result(recurse(BooleanNot(BooleanAnd(*expression.args)))) elif type(expression) == BooleanNor: return result(recurse(BooleanNot(BooleanOr(*expression.args)))) elif type(expression) == BooleanXor: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] non_value_args = [arg for arg in args if not arg_is_value(arg)] if len(args) == 0: raise ValueError("args are missing") elif len(args) == 1: return result(args[0]) elif len(arg_values) == 0: return result(BooleanXor(*non_value_args)) elif len(arg_values) == 1: if is_true(arg_values[0]): return result(BooleanXor(arg_values[0], *non_value_args)) else: return result(recurse(BooleanXor(*non_value_args))) elif len(arg_values) > 1: evaluated = is_true(arg_values[0]) for a in arg_values[1:]: evaluated ^= is_true(a) evaluated = bool(evaluated) return result(recurse(BooleanXor(evaluated, *non_value_args))) elif type(expression) == BreakOut: expr = recurse(expression.expr) if arg_is_value(expr): return result(BooleanValue(expr)) else: return result(BreakOut(expr)) else: return result(map_expression_args(recurse, expression, recurse_collection=True))
from syloga.core.map_expression_args import map_expression_args from syloga.utils.identity import identity from syloga.ast.BooleanNot import BooleanNot from syloga.ast.BooleanValue import BooleanValue from syloga.ast.BooleanOr import BooleanOr from syloga.ast.BooleanAnd import BooleanAnd from syloga.ast.BooleanNand import BooleanNand from syloga.ast.BooleanNor import BooleanNor from syloga.ast.BooleanXor import BooleanXor from syloga.ast.BreakOut import BreakOut # from syloga.core.assert_equality_by_table import assert_equality_by_table def evaluate_expr(expression): recurse = evaluate_expr # result = assert_equality_by_table result = identity #arg_is_value = lambda arg: isinstance(arg, (BooleanValue, bool)) arg_is_value = lambda arg: type(arg) in [BooleanValue, bool] def arg_is_value(arg): is_value = type(arg) in [BooleanValue, bool] #print("is arg a value? " + str(type(arg)) + " " + str(arg)) #print("is_value", is_value) return is_value args_are_values = lambda args: all(map(arg_is_value, args)) get_value = lambda arg: arg if type(arg) == bool else arg.value is_true = lambda val: val == True is_false = lambda val: val == False #print("looking at " + str(type(expression))) if type(expression) == BooleanNot: assert(len(expression.args) == 1) arg = recurse(expression.args[0]); if arg_is_value(arg): return result(BooleanValue(not get_value(arg))) else: return result(BooleanNot(arg)) elif type(expression) == BooleanOr: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_false(get_value(x))),args)) if args_are_values(args): return result(BooleanValue(any(arg_values))) elif any(map(is_true,arg_values)): return result(BooleanValue(True)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanOr(*args_wo_neutral))) else: return result(BooleanOr(*args)) elif type(expression) == BooleanAnd: args = list(map(recurse, expression.args)) #print(expression.args) #print(args) #negated_atom_values = [not get_value(arg) for arg in args if arg_is_value(arg)] arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_true(get_value(x))),args)) #print(arg_values) if args_are_values(args): return result(BooleanValue(all(map(is_true,arg_values)))) elif any(map(is_false,arg_values)): return result(BooleanValue(False)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanAnd(*args_wo_neutral))) else: return result(BooleanAnd(*args)) elif type(expression) == BooleanNand: return result(recurse(BooleanNot(BooleanAnd(*expression.args)))) elif type(expression) == BooleanNor: return result(recurse(BooleanNot(BooleanOr(*expression.args)))) elif type(expression) == BooleanXor: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] non_value_args = [arg for arg in args if not arg_is_value(arg)] if len(args) == 0: raise ValueError("args are missing") elif len(args) == 1: return result(args[0]) elif len(arg_values) == 0: return result(BooleanXor(*non_value_args)) elif len(arg_values) == 1: if is_true(arg_values[0]): return result(BooleanXor(arg_values[0], *non_value_args)) else: return result(recurse(BooleanXor(*non_value_args))) elif len(arg_values) > 1: evaluated = is_true(arg_values[0]) for a in arg_values[1:]: evaluated ^= is_true(a) evaluated = bool(evaluated) return result(recurse(BooleanXor(evaluated, *non_value_args))) elif type(expression) == BreakOut: expr = recurse(expression.expr) if arg_is_value(expr): return result(BooleanValue(expr)) else: return result(BreakOut(expr)) else: return result(map_expression_args(recurse, expression, recurse_collection=True))
en
0.330722
# from syloga.core.assert_equality_by_table import assert_equality_by_table # result = assert_equality_by_table #arg_is_value = lambda arg: isinstance(arg, (BooleanValue, bool)) #print("is arg a value? " + str(type(arg)) + " " + str(arg)) #print("is_value", is_value) #print("looking at " + str(type(expression))) #print(expression.args) #print(args) #negated_atom_values = [not get_value(arg) for arg in args if arg_is_value(arg)] #print(arg_values)
3.034837
3
oscar/apps/customer/mixins.py
Idematica/django-oscar
1
9036
<reponame>Idematica/django-oscar<filename>oscar/apps/customer/mixins.py from django.conf import settings from django.contrib.auth import authenticate, login as auth_login from django.contrib.sites.models import get_current_site from django.db.models import get_model from oscar.apps.customer.signals import user_registered from oscar.core.loading import get_class from oscar.core.compat import get_user_model User = get_user_model() CommunicationEventType = get_model('customer', 'CommunicationEventType') Dispatcher = get_class('customer.utils', 'Dispatcher') class PageTitleMixin(object): """ Passes page_title and active_tab into context, which makes it quite useful for the accounts views. Dynamic page titles are possible by overriding get_page_title. """ page_title = None active_tab = None # Use a method that can be overridden and customised def get_page_title(self): return self.page_title def get_context_data(self, **kwargs): ctx = super(PageTitleMixin, self).get_context_data(**kwargs) ctx.setdefault('page_title', self.get_page_title()) ctx.setdefault('active_tab', self.active_tab) return ctx class RegisterUserMixin(object): communication_type_code = 'REGISTRATION' def register_user(self, form): """ Create a user instance and send a new registration email (if configured to). """ user = form.save() if getattr(settings, 'OSCAR_SEND_REGISTRATION_EMAIL', True): self.send_registration_email(user) # Raise signal user_registered.send_robust(sender=self, user=user) # We have to authenticate before login try: user = authenticate( username=user.email, password=form.cleaned_data['<PASSWORD>']) except User.MultipleObjectsReturned: # Handle race condition where the registration request is made # multiple times in quick succession. This leads to both requests # passing the uniqueness check and creating users (as the first one # hasn't committed when the second one runs the check). We retain # the first one and delete the dupes. users = User.objects.filter(email=user.email) user = users[0] for u in users[1:]: u.delete() auth_login(self.request, user) return user def send_registration_email(self, user): code = self.communication_type_code ctx = {'user': user, 'site': get_current_site(self.request)} messages = CommunicationEventType.objects.get_and_render( code, ctx) if messages and messages['body']: Dispatcher().dispatch_user_messages(user, messages)
from django.conf import settings from django.contrib.auth import authenticate, login as auth_login from django.contrib.sites.models import get_current_site from django.db.models import get_model from oscar.apps.customer.signals import user_registered from oscar.core.loading import get_class from oscar.core.compat import get_user_model User = get_user_model() CommunicationEventType = get_model('customer', 'CommunicationEventType') Dispatcher = get_class('customer.utils', 'Dispatcher') class PageTitleMixin(object): """ Passes page_title and active_tab into context, which makes it quite useful for the accounts views. Dynamic page titles are possible by overriding get_page_title. """ page_title = None active_tab = None # Use a method that can be overridden and customised def get_page_title(self): return self.page_title def get_context_data(self, **kwargs): ctx = super(PageTitleMixin, self).get_context_data(**kwargs) ctx.setdefault('page_title', self.get_page_title()) ctx.setdefault('active_tab', self.active_tab) return ctx class RegisterUserMixin(object): communication_type_code = 'REGISTRATION' def register_user(self, form): """ Create a user instance and send a new registration email (if configured to). """ user = form.save() if getattr(settings, 'OSCAR_SEND_REGISTRATION_EMAIL', True): self.send_registration_email(user) # Raise signal user_registered.send_robust(sender=self, user=user) # We have to authenticate before login try: user = authenticate( username=user.email, password=form.cleaned_data['<PASSWORD>']) except User.MultipleObjectsReturned: # Handle race condition where the registration request is made # multiple times in quick succession. This leads to both requests # passing the uniqueness check and creating users (as the first one # hasn't committed when the second one runs the check). We retain # the first one and delete the dupes. users = User.objects.filter(email=user.email) user = users[0] for u in users[1:]: u.delete() auth_login(self.request, user) return user def send_registration_email(self, user): code = self.communication_type_code ctx = {'user': user, 'site': get_current_site(self.request)} messages = CommunicationEventType.objects.get_and_render( code, ctx) if messages and messages['body']: Dispatcher().dispatch_user_messages(user, messages)
en
0.902315
Passes page_title and active_tab into context, which makes it quite useful for the accounts views. Dynamic page titles are possible by overriding get_page_title. # Use a method that can be overridden and customised Create a user instance and send a new registration email (if configured to). # Raise signal # We have to authenticate before login # Handle race condition where the registration request is made # multiple times in quick succession. This leads to both requests # passing the uniqueness check and creating users (as the first one # hasn't committed when the second one runs the check). We retain # the first one and delete the dupes.
2.11751
2
plot_integral.py
vfloeser/TumorDelivery
0
9037
from parameters import * from library_time import * from paths import * import numpy as np import pylab as plt import matplotlib.pyplot as mplt mplt.rc('text', usetex=True) mplt.rcParams.update({'font.size': 16}) import logging, getopt, sys import time import os ########################################################################################## # C O N F I G U R A T I O N ########################################################################################## # activate ylim for w var1 = w1 var3 = w3 var5 = w5 var10 = w10 var25 = w25 mode = "w" # u or w ########################################################################################## # M A I N ########################################################################################## if __name__ == "__main__": if not os.path.exists('plots'): os.makedirs('plots') print('Created folder plots!') if not os.path.exists('plots/integral'): os.makedirs('plots/integral') print('Created folder plots/integral!') t = np.linspace(tmin, tmax, Nt) r = np.linspace(0,R,Nr) Ivar1 = np.zeros(Nt) Ivar3 = np.zeros(Nt) Ivar5 = np.zeros(Nt) Ivar10 = np.zeros(Nt) Ivar25 = np.zeros(Nt) for i in range(Nt): # /1000000 because of units Ivar1[i] = integrate(var1, i,r, Nt)/1000000 Ivar3[i] = integrate(var3, i,r, Nt)/1000000 Ivar5[i] = integrate(var5, i,r, Nt)/1000000 Ivar10[i] = integrate(var10, i,r, Nt)/1000000 Ivar25[i] = integrate(var25, i,r, Nt)/1000000 mplt.plot(t, Ivar1, label=r'$\alpha = 1$') mplt.plot(t, Ivar3, label=r'$\alpha = 3$') mplt.plot(t, Ivar5, label=r'$\alpha = 5$') mplt.plot(t, Ivar10, label=r'$\alpha = 10$') mplt.plot(t, Ivar25, label=r'$\alpha = 25$') mplt.xlim(tmin, tmax) mplt.yscale('log') mplt.xlabel(r'$t\quad [h]$') mplt.ylabel(r'$\bar{'+mode+'}\quad [\mu mol]$') ########################################################################################## # lim for w, because some values dont make sense mplt.ylim(1e-11, 3e2) # lim for w, because some values dont make sense ########################################################################################## mplt.legend(loc=1, bbox_to_anchor=(1, 0.9)) mplt.tight_layout() mplt.savefig('plots/integral/int'+mode+'.pdf', format='pdf') mplt.show()
from parameters import * from library_time import * from paths import * import numpy as np import pylab as plt import matplotlib.pyplot as mplt mplt.rc('text', usetex=True) mplt.rcParams.update({'font.size': 16}) import logging, getopt, sys import time import os ########################################################################################## # C O N F I G U R A T I O N ########################################################################################## # activate ylim for w var1 = w1 var3 = w3 var5 = w5 var10 = w10 var25 = w25 mode = "w" # u or w ########################################################################################## # M A I N ########################################################################################## if __name__ == "__main__": if not os.path.exists('plots'): os.makedirs('plots') print('Created folder plots!') if not os.path.exists('plots/integral'): os.makedirs('plots/integral') print('Created folder plots/integral!') t = np.linspace(tmin, tmax, Nt) r = np.linspace(0,R,Nr) Ivar1 = np.zeros(Nt) Ivar3 = np.zeros(Nt) Ivar5 = np.zeros(Nt) Ivar10 = np.zeros(Nt) Ivar25 = np.zeros(Nt) for i in range(Nt): # /1000000 because of units Ivar1[i] = integrate(var1, i,r, Nt)/1000000 Ivar3[i] = integrate(var3, i,r, Nt)/1000000 Ivar5[i] = integrate(var5, i,r, Nt)/1000000 Ivar10[i] = integrate(var10, i,r, Nt)/1000000 Ivar25[i] = integrate(var25, i,r, Nt)/1000000 mplt.plot(t, Ivar1, label=r'$\alpha = 1$') mplt.plot(t, Ivar3, label=r'$\alpha = 3$') mplt.plot(t, Ivar5, label=r'$\alpha = 5$') mplt.plot(t, Ivar10, label=r'$\alpha = 10$') mplt.plot(t, Ivar25, label=r'$\alpha = 25$') mplt.xlim(tmin, tmax) mplt.yscale('log') mplt.xlabel(r'$t\quad [h]$') mplt.ylabel(r'$\bar{'+mode+'}\quad [\mu mol]$') ########################################################################################## # lim for w, because some values dont make sense mplt.ylim(1e-11, 3e2) # lim for w, because some values dont make sense ########################################################################################## mplt.legend(loc=1, bbox_to_anchor=(1, 0.9)) mplt.tight_layout() mplt.savefig('plots/integral/int'+mode+'.pdf', format='pdf') mplt.show()
de
0.781621
########################################################################################## # C O N F I G U R A T I O N ########################################################################################## # activate ylim for w # u or w ########################################################################################## # M A I N ########################################################################################## # /1000000 because of units ########################################################################################## # lim for w, because some values dont make sense # lim for w, because some values dont make sense ##########################################################################################
1.839002
2
tests/unit/combiner/Try.py
wangjeaf/CSSCheckStyle
21
9038
<reponame>wangjeaf/CSSCheckStyle from helper import * def doTest(): msg = doCssFileCompress('_test.css') equal(msg, '@import (url-here);.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px}.test6{display:none;_width:100px;*height:100px}', 'totally compressed') msg = doCssFileCompress('_test_different_order.css') equal(msg, '.test1,.test2,.test3,.test4,.test5{*display:none;_display:inline-block;width:100px;height:200px;border:1px solid #FFF}', 'totally compressed') msg = doCssFileCompress('_with_margin.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;margin:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'margin compress ok') msg = doCssFileCompress('_just_margin.css') equal(msg, '.test,.test2,.test3,.test4{margin:20px 10px 10px}', 'just margin compress ok') msg = doCssFileCompress('_with_padding.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;padding:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'padding compress ok') msg = doCssFileCompress('_just_padding.css') equal(msg, '.test,.test2,.test3,.test4{padding:20px 10px 10px}', 'just padding compress ok')
from helper import * def doTest(): msg = doCssFileCompress('_test.css') equal(msg, '@import (url-here);.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px}.test6{display:none;_width:100px;*height:100px}', 'totally compressed') msg = doCssFileCompress('_test_different_order.css') equal(msg, '.test1,.test2,.test3,.test4,.test5{*display:none;_display:inline-block;width:100px;height:200px;border:1px solid #FFF}', 'totally compressed') msg = doCssFileCompress('_with_margin.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;margin:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'margin compress ok') msg = doCssFileCompress('_just_margin.css') equal(msg, '.test,.test2,.test3,.test4{margin:20px 10px 10px}', 'just margin compress ok') msg = doCssFileCompress('_with_padding.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;padding:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'padding compress ok') msg = doCssFileCompress('_just_padding.css') equal(msg, '.test,.test2,.test3,.test4{padding:20px 10px 10px}', 'just padding compress ok')
en
0.364677
#FFF}', 'totally compressed')
2.149843
2
tests/tests.py
desdelgado/rheology-data-toolkit
0
9039
import sys, os sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata/extractors") import h5py import pandas as pd from antonpaar import AntonPaarExtractor as APE from ARES_G2 import ARES_G2Extractor # %% sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata") from data_converter import rheo_data_transformer import unittest extractor = APE() #converter = data_converter() class TestAntonPaar(unittest.TestCase): def setUp(self): self.multi_file_test = "C:/Users/Delgado/Documents/Research/rheology-data-toolkit/tests/test_data/Anton_Paar/excel_test_data/two_tests_Steady State Viscosity Curve-LO50C_excel.xlsx" self.modified_dict, self.raw_data_dict, self.cols, self.units = extractor.import_rheo_data(self.multi_file_test) # Inilize the class to convert self.converter = rheo_data_transformer(self.modified_dict, self.raw_data_dict, self.cols, self.units) self.converter.load_to_hdf("test") def test_modified_output_isdictionary(self): self.assertIsInstance(self.modified_dict, dict) def test_modified_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.modified_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_raw_output_isdictionary(self): self.assertIsInstance(self.raw_data_dict, dict) def test_raw_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.raw_data_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_project_name_added_raw_data(self): """ Test if the output is a dictonary of pandas dataframes'""" for df in self.raw_data_dict.values(): self.assertEqual(df.iloc[0,0], "Project:") def test_hdf5_created(self): name, ext = os.path.splitext("test.hdf5") self.assertEqual(ext, ".hdf5") def test_project_subfolders_added(self): f = h5py.File('test.hdf5', "r") project_keys = list(f['Project'].keys()) f.close() self.assertListEqual(project_keys, ['Steady State Viscosity Curve-75C','Steady State Viscosity Curve-LO80C', ]) def test_analyze_cols(self): temp_df = extractor.make_analyze_dataframes(self.multi_file_test) for test_key in temp_df.keys(): test_cols = list(temp_df[test_key].columns) parsed_cols = list(self.cols[test_key]) self.assertListEqual(test_cols, parsed_cols) # TODO Write test for saving a file if __name__ == '__main__': unittest.main()
import sys, os sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata/extractors") import h5py import pandas as pd from antonpaar import AntonPaarExtractor as APE from ARES_G2 import ARES_G2Extractor # %% sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata") from data_converter import rheo_data_transformer import unittest extractor = APE() #converter = data_converter() class TestAntonPaar(unittest.TestCase): def setUp(self): self.multi_file_test = "C:/Users/Delgado/Documents/Research/rheology-data-toolkit/tests/test_data/Anton_Paar/excel_test_data/two_tests_Steady State Viscosity Curve-LO50C_excel.xlsx" self.modified_dict, self.raw_data_dict, self.cols, self.units = extractor.import_rheo_data(self.multi_file_test) # Inilize the class to convert self.converter = rheo_data_transformer(self.modified_dict, self.raw_data_dict, self.cols, self.units) self.converter.load_to_hdf("test") def test_modified_output_isdictionary(self): self.assertIsInstance(self.modified_dict, dict) def test_modified_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.modified_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_raw_output_isdictionary(self): self.assertIsInstance(self.raw_data_dict, dict) def test_raw_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.raw_data_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_project_name_added_raw_data(self): """ Test if the output is a dictonary of pandas dataframes'""" for df in self.raw_data_dict.values(): self.assertEqual(df.iloc[0,0], "Project:") def test_hdf5_created(self): name, ext = os.path.splitext("test.hdf5") self.assertEqual(ext, ".hdf5") def test_project_subfolders_added(self): f = h5py.File('test.hdf5', "r") project_keys = list(f['Project'].keys()) f.close() self.assertListEqual(project_keys, ['Steady State Viscosity Curve-75C','Steady State Viscosity Curve-LO80C', ]) def test_analyze_cols(self): temp_df = extractor.make_analyze_dataframes(self.multi_file_test) for test_key in temp_df.keys(): test_cols = list(temp_df[test_key].columns) parsed_cols = list(self.cols[test_key]) self.assertListEqual(test_cols, parsed_cols) # TODO Write test for saving a file if __name__ == '__main__': unittest.main()
en
0.529939
# %% #converter = data_converter() # Inilize the class to convert Test if the output is a dictonary of pandas dataframes' Test if the output is a dictonary of pandas dataframes' Test if the output is a dictonary of pandas dataframes' # TODO Write test for saving a file
2.457703
2
openslides_backend/action/topic/delete.py
reiterl/openslides-backend
0
9040
from ...models.models import Topic from ..default_schema import DefaultSchema from ..generics import DeleteAction from ..register import register_action @register_action("topic.delete") class TopicDelete(DeleteAction): """ Action to delete simple topics that can be shown in the agenda. """ model = Topic() schema = DefaultSchema(Topic()).get_delete_schema()
from ...models.models import Topic from ..default_schema import DefaultSchema from ..generics import DeleteAction from ..register import register_action @register_action("topic.delete") class TopicDelete(DeleteAction): """ Action to delete simple topics that can be shown in the agenda. """ model = Topic() schema = DefaultSchema(Topic()).get_delete_schema()
en
0.92193
Action to delete simple topics that can be shown in the agenda.
2.112637
2
main.py
Dr3xler/CookieConsentChecker
0
9041
<filename>main.py from core import file_handling as file_h, driver_handling as driver_h from website_handling import website_check as wc from cookie_handling import cookie_compare websites = file_h.website_reader() driver = driver_h.webdriver_setup() try: wc.load_with_addon(driver, websites) except: print('ERROR: IN FIREFOX USAGE WITH ADDONS') finally: wc.close_driver_session(driver) # driver need to be reloaded because we need a new session without addons driver = driver_h.webdriver_setup() try: wc.load_without_addon(driver, websites) except: print('ERROR: IN VANILLA FIREFOX VERSION') finally: wc.close_driver_session(driver) cookie_compare.compare(websites)
<filename>main.py from core import file_handling as file_h, driver_handling as driver_h from website_handling import website_check as wc from cookie_handling import cookie_compare websites = file_h.website_reader() driver = driver_h.webdriver_setup() try: wc.load_with_addon(driver, websites) except: print('ERROR: IN FIREFOX USAGE WITH ADDONS') finally: wc.close_driver_session(driver) # driver need to be reloaded because we need a new session without addons driver = driver_h.webdriver_setup() try: wc.load_without_addon(driver, websites) except: print('ERROR: IN VANILLA FIREFOX VERSION') finally: wc.close_driver_session(driver) cookie_compare.compare(websites)
en
0.90483
# driver need to be reloaded because we need a new session without addons
2.324811
2
PyPBEC/OpticalMedium.py
photonbec/PyPBEC
1
9042
<reponame>photonbec/PyPBEC import numpy as np from scipy import constants as sc from scipy.interpolate import interp1d from pathlib import Path from scipy.special import erf as Erf import pandas as pd import sys import os import csv class OpticalMedium(): available_media = list() available_media.append("Rhodamine6G") def __init__(self, optical_medium): """ Initiazies an optical medium object. Parameters: optical_medium (str): Optical medium """ if not type(optical_medium) == str: raise Exception("optical_medium is expected to be a string") if not optical_medium in self.available_media: raise Exception(optical_medium+" is an unknown optical medium") if optical_medium == "Rhodamine6G": self.medium = Rhodamine6G() def get_rates(self, lambdas, **kwargs): """ Calculates the rates of absorption and emission, for a specific optical medium. Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters other medium specific arguments """ return self.medium.get_rates(lambdas=lambdas, **kwargs) class Rhodamine6G(OpticalMedium): def __init__(self): pass def get_rates(self, lambdas, dye_concentration, n): """ Rates for Rhodamine 6G Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters dye_concentration (float): In mM (milimolar) 1 mM = 1 mol / m^3 n (float): index of refraction """ # absorption data min_wavelength = 480 max_wavelength = 650 absorption_spectrum_datafile = Path("data") / 'absorption_cross_sections_R6G_in_EthyleneGlycol_corrected.csv' absorption_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / absorption_spectrum_datafile raw_data2 = pd.read_csv(absorption_spectrum_datafile) initial_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[initial_index:].reset_index(drop=True) final_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[:final_index].reset_index(drop=True) absorption_data = raw_data2 absorption_data_normalized = absorption_data['absorption cross-section (m^2)'].values / np.max(absorption_data['absorption cross-section (m^2)'].values) absorption_spectrum = np.squeeze(np.array([[absorption_data['wavelength (nm)'].values], [absorption_data_normalized]], dtype=float)) interpolated_absorption_spectrum = interp1d(absorption_spectrum[0,:], absorption_spectrum[1,:], kind='cubic') # emission data fluorescence_spectrum_datafile = Path("data") / 'fluorescence_spectrum_R6G_in_EthyleneGlycol_corrected.csv' fluorescence_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / fluorescence_spectrum_datafile raw_data = pd.read_csv(fluorescence_spectrum_datafile) initial_index = raw_data.iloc[(raw_data['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[initial_index:].reset_index(drop=True) final_index = raw_data.iloc[(raw_data['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[:final_index].reset_index(drop=True) fluorescence_data = raw_data fluorescence_data_normalized = fluorescence_data['fluorescence (arb. units)'].values / np.max(fluorescence_data['fluorescence (arb. units)'].values) emission_spectrum = np.squeeze(np.array([[fluorescence_data['wavelength (nm)'].values], [fluorescence_data_normalized]], dtype=float)) interpolated_emission_spectrum = interp1d(emission_spectrum[0,:], emission_spectrum[1,:], kind='cubic') # Uses both datasets if np.min(1e9*np.array(lambdas)) < 480 or np.max(1e9*np.array(lambdas)) > 650: raise Exception('*** Restrict wavelength to the range between 480 and 650 nm ***') temperature = 300 lamZPL = 545e-9 n_mol_per_vol= dye_concentration*sc.Avogadro peak_Xsectn = 2.45e-20*n_mol_per_vol*sc.c/n wpzl = 2*np.pi*sc.c/lamZPL/1e12 def freq(wl): return 2*np.pi*sc.c/wl/1e12 def single_exp_func(det): f_p = 2*np.pi*sc.c/(wpzl+det)*1e-3 f_m = 2*np.pi*sc.c/(wpzl-det)*1e-3 return (0.5*interpolated_absorption_spectrum(f_p)) + (0.5*interpolated_emission_spectrum(f_m)) def Err(det): return Erf(det*1e12) def single_adjust_func(det): return ((1+Err(det))/2.0*single_exp_func(det)) + ((1-Err(det))/2.0*single_exp_func(-1.0*det)*np.exp(sc.h/(2*np.pi*sc.k*temperature)*det*1e12)) emission_rates = np.array([single_adjust_func(-1.0*freq(a_l)+wpzl) for a_l in lambdas])*peak_Xsectn absorption_rates = np.array([single_adjust_func(freq(a_l)-wpzl) for a_l in lambdas])*peak_Xsectn return absorption_rates, emission_rates
import numpy as np from scipy import constants as sc from scipy.interpolate import interp1d from pathlib import Path from scipy.special import erf as Erf import pandas as pd import sys import os import csv class OpticalMedium(): available_media = list() available_media.append("Rhodamine6G") def __init__(self, optical_medium): """ Initiazies an optical medium object. Parameters: optical_medium (str): Optical medium """ if not type(optical_medium) == str: raise Exception("optical_medium is expected to be a string") if not optical_medium in self.available_media: raise Exception(optical_medium+" is an unknown optical medium") if optical_medium == "Rhodamine6G": self.medium = Rhodamine6G() def get_rates(self, lambdas, **kwargs): """ Calculates the rates of absorption and emission, for a specific optical medium. Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters other medium specific arguments """ return self.medium.get_rates(lambdas=lambdas, **kwargs) class Rhodamine6G(OpticalMedium): def __init__(self): pass def get_rates(self, lambdas, dye_concentration, n): """ Rates for Rhodamine 6G Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters dye_concentration (float): In mM (milimolar) 1 mM = 1 mol / m^3 n (float): index of refraction """ # absorption data min_wavelength = 480 max_wavelength = 650 absorption_spectrum_datafile = Path("data") / 'absorption_cross_sections_R6G_in_EthyleneGlycol_corrected.csv' absorption_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / absorption_spectrum_datafile raw_data2 = pd.read_csv(absorption_spectrum_datafile) initial_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[initial_index:].reset_index(drop=True) final_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[:final_index].reset_index(drop=True) absorption_data = raw_data2 absorption_data_normalized = absorption_data['absorption cross-section (m^2)'].values / np.max(absorption_data['absorption cross-section (m^2)'].values) absorption_spectrum = np.squeeze(np.array([[absorption_data['wavelength (nm)'].values], [absorption_data_normalized]], dtype=float)) interpolated_absorption_spectrum = interp1d(absorption_spectrum[0,:], absorption_spectrum[1,:], kind='cubic') # emission data fluorescence_spectrum_datafile = Path("data") / 'fluorescence_spectrum_R6G_in_EthyleneGlycol_corrected.csv' fluorescence_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / fluorescence_spectrum_datafile raw_data = pd.read_csv(fluorescence_spectrum_datafile) initial_index = raw_data.iloc[(raw_data['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[initial_index:].reset_index(drop=True) final_index = raw_data.iloc[(raw_data['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[:final_index].reset_index(drop=True) fluorescence_data = raw_data fluorescence_data_normalized = fluorescence_data['fluorescence (arb. units)'].values / np.max(fluorescence_data['fluorescence (arb. units)'].values) emission_spectrum = np.squeeze(np.array([[fluorescence_data['wavelength (nm)'].values], [fluorescence_data_normalized]], dtype=float)) interpolated_emission_spectrum = interp1d(emission_spectrum[0,:], emission_spectrum[1,:], kind='cubic') # Uses both datasets if np.min(1e9*np.array(lambdas)) < 480 or np.max(1e9*np.array(lambdas)) > 650: raise Exception('*** Restrict wavelength to the range between 480 and 650 nm ***') temperature = 300 lamZPL = 545e-9 n_mol_per_vol= dye_concentration*sc.Avogadro peak_Xsectn = 2.45e-20*n_mol_per_vol*sc.c/n wpzl = 2*np.pi*sc.c/lamZPL/1e12 def freq(wl): return 2*np.pi*sc.c/wl/1e12 def single_exp_func(det): f_p = 2*np.pi*sc.c/(wpzl+det)*1e-3 f_m = 2*np.pi*sc.c/(wpzl-det)*1e-3 return (0.5*interpolated_absorption_spectrum(f_p)) + (0.5*interpolated_emission_spectrum(f_m)) def Err(det): return Erf(det*1e12) def single_adjust_func(det): return ((1+Err(det))/2.0*single_exp_func(det)) + ((1-Err(det))/2.0*single_exp_func(-1.0*det)*np.exp(sc.h/(2*np.pi*sc.k*temperature)*det*1e12)) emission_rates = np.array([single_adjust_func(-1.0*freq(a_l)+wpzl) for a_l in lambdas])*peak_Xsectn absorption_rates = np.array([single_adjust_func(freq(a_l)-wpzl) for a_l in lambdas])*peak_Xsectn return absorption_rates, emission_rates
en
0.735826
Initiazies an optical medium object. Parameters: optical_medium (str): Optical medium Calculates the rates of absorption and emission, for a specific optical medium. Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters other medium specific arguments Rates for Rhodamine 6G Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters dye_concentration (float): In mM (milimolar) 1 mM = 1 mol / m^3 n (float): index of refraction # absorption data # emission data # Uses both datasets
2.949172
3
corehq/apps/appstore/urls.py
dslowikowski/commcare-hq
1
9043
from django.conf.urls.defaults import url, include, patterns from corehq.apps.appstore.dispatcher import AppstoreDispatcher store_urls = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore_default', name="appstore_interfaces_default"), AppstoreDispatcher.url_pattern(), ) urlpatterns = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore', name='appstore'), url(r'^api/', 'appstore_api', name='appstore_api'), url(r'^store/', include(store_urls)), url(r'^(?P<domain>[\w\.-]+)/info/$', 'project_info', name='project_info'), url(r'^deployments/$', 'deployments', name='deployments'), url(r'^deployments/api/$', 'deployments_api', name='deployments_api'), url(r'^deployments/(?P<domain>[\w\.-]+)/info/$', 'deployment_info', name='deployment_info'), url(r'^(?P<domain>[\w\.-]+)/approve/$', 'approve_app', name='approve_appstore_app'), url(r'^(?P<domain>[\w\.-]+)/copy/$', 'copy_snapshot', name='domain_copy_snapshot'), url(r'^(?P<domain>[\w\.-]+)/importapp/$', 'import_app', name='import_app_from_snapshot'), url(r'^(?P<domain>[\w\.-]+)/image/$', 'project_image', name='appstore_project_image'), url(r'^(?P<domain>[\w\.-]+)/multimedia/$', 'media_files', name='media_files'), )
from django.conf.urls.defaults import url, include, patterns from corehq.apps.appstore.dispatcher import AppstoreDispatcher store_urls = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore_default', name="appstore_interfaces_default"), AppstoreDispatcher.url_pattern(), ) urlpatterns = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore', name='appstore'), url(r'^api/', 'appstore_api', name='appstore_api'), url(r'^store/', include(store_urls)), url(r'^(?P<domain>[\w\.-]+)/info/$', 'project_info', name='project_info'), url(r'^deployments/$', 'deployments', name='deployments'), url(r'^deployments/api/$', 'deployments_api', name='deployments_api'), url(r'^deployments/(?P<domain>[\w\.-]+)/info/$', 'deployment_info', name='deployment_info'), url(r'^(?P<domain>[\w\.-]+)/approve/$', 'approve_app', name='approve_appstore_app'), url(r'^(?P<domain>[\w\.-]+)/copy/$', 'copy_snapshot', name='domain_copy_snapshot'), url(r'^(?P<domain>[\w\.-]+)/importapp/$', 'import_app', name='import_app_from_snapshot'), url(r'^(?P<domain>[\w\.-]+)/image/$', 'project_image', name='appstore_project_image'), url(r'^(?P<domain>[\w\.-]+)/multimedia/$', 'media_files', name='media_files'), )
none
1
1.955226
2
faster-rcnn-vgg16-fpn/model/fpn.py
fengkaibit/faster-rcnn_vgg16_fpn
13
9044
from __future__ import absolute_import import torch from torch.nn import functional class FPN(torch.nn.Module): def __init__(self, out_channels): super(FPN, self).__init__() self.out_channels = out_channels self.P5 = torch.nn.MaxPool2d(kernel_size=1, stride=2, padding=0) self.P4_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P4_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P3_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P3_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P2_conv1 = torch.nn.Conv2d(256, self.out_channels, kernel_size=1, stride=1, padding=0) self.P2_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) normal_init(self.P4_conv1, 0, 0.01) normal_init(self.P4_conv2, 0, 0.01) normal_init(self.P3_conv1, 0, 0.01) normal_init(self.P3_conv2, 0, 0.01) normal_init(self.P2_conv1, 0, 0.01) normal_init(self.P2_conv2, 0, 0.01) def forward(self, C2, C3, C4): p4_out = self.P4_conv1(C4) p5_out = self.P5(p4_out) p3_out = self._upsample_add(p4_out, self.P3_conv1(C3)) p2_out = self._upsample_add(p3_out, self.P2_conv1(C2)) p4_out = self.P4_conv2(p4_out) p3_out = self.P3_conv2(p3_out) p2_out = self.P2_conv2(p2_out) return p2_out, p3_out, p4_out, p5_out def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return functional.interpolate(x, size=(H,W), mode='bilinear') + y def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_()
from __future__ import absolute_import import torch from torch.nn import functional class FPN(torch.nn.Module): def __init__(self, out_channels): super(FPN, self).__init__() self.out_channels = out_channels self.P5 = torch.nn.MaxPool2d(kernel_size=1, stride=2, padding=0) self.P4_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P4_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P3_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P3_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P2_conv1 = torch.nn.Conv2d(256, self.out_channels, kernel_size=1, stride=1, padding=0) self.P2_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) normal_init(self.P4_conv1, 0, 0.01) normal_init(self.P4_conv2, 0, 0.01) normal_init(self.P3_conv1, 0, 0.01) normal_init(self.P3_conv2, 0, 0.01) normal_init(self.P2_conv1, 0, 0.01) normal_init(self.P2_conv2, 0, 0.01) def forward(self, C2, C3, C4): p4_out = self.P4_conv1(C4) p5_out = self.P5(p4_out) p3_out = self._upsample_add(p4_out, self.P3_conv1(C3)) p2_out = self._upsample_add(p3_out, self.P2_conv1(C2)) p4_out = self.P4_conv2(p4_out) p3_out = self.P3_conv2(p3_out) p2_out = self.P2_conv2(p2_out) return p2_out, p3_out, p4_out, p5_out def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return functional.interpolate(x, size=(H,W), mode='bilinear') + y def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_()
en
0.745157
Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. weight initalizer: truncated normal and random normal. # x is a parameter # not a perfect approximation
2.384017
2
test/setups/finders/finders_test.py
bowlofstew/client
40
9045
<reponame>bowlofstew/client import unittest from biicode.common.settings.version import Version from mock import patch from biicode.client.setups.finders.finders import gnu_version from biicode.client.setups.rpi_cross_compiler import find_gnu_arm from biicode.client.workspace.bii_paths import get_biicode_env_folder_path GCC_VERSION_MAC = '''Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1 Apple LLVM version 5.1 (clang-503.0.38) (based on LLVM 3.4svn) Target: x86_64-apple-darwin13.1.0 Thread model: posix''' GCC_VERSION_UBUNTU = '''gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ''' GCC_VERSION_WIN = '''gcc (GCC) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.''' class FindersTest(unittest.TestCase): @patch('biicode.client.setups.finders.finders.execute') def test_gnu_version_detection(self, execute_mock): execute_mock.return_value = ("", GCC_VERSION_MAC) self.assertEquals(gnu_version('gnu'), Version('4.2.1')) execute_mock.return_value = ("", GCC_VERSION_UBUNTU) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) execute_mock.return_value = ("", GCC_VERSION_WIN) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) @patch('os.path.exists') def test_find_gnu_arm(self, exists): exists.return_value = False self.assertEqual((None, None), find_gnu_arm()) exists.return_value = True c_path, cpp_path = find_gnu_arm() inst_path = get_biicode_env_folder_path().replace('\\', '/') c_path = c_path.replace('\\', '/') cpp_path = cpp_path.replace('\\', '/') inst_path = '%s/raspberry_cross_compilers/arm-bcm2708/'\ 'arm-bcm2708hardfp-linux-gnueabi/bin/'\ 'arm-bcm2708hardfp-linux-gnueabi' % inst_path self.assertTrue(cpp_path.endswith('%s-g++' % inst_path)) self.assertTrue(c_path.endswith('%s-gcc' % inst_path))
import unittest from biicode.common.settings.version import Version from mock import patch from biicode.client.setups.finders.finders import gnu_version from biicode.client.setups.rpi_cross_compiler import find_gnu_arm from biicode.client.workspace.bii_paths import get_biicode_env_folder_path GCC_VERSION_MAC = '''Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1 Apple LLVM version 5.1 (clang-503.0.38) (based on LLVM 3.4svn) Target: x86_64-apple-darwin13.1.0 Thread model: posix''' GCC_VERSION_UBUNTU = '''gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ''' GCC_VERSION_WIN = '''gcc (GCC) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.''' class FindersTest(unittest.TestCase): @patch('biicode.client.setups.finders.finders.execute') def test_gnu_version_detection(self, execute_mock): execute_mock.return_value = ("", GCC_VERSION_MAC) self.assertEquals(gnu_version('gnu'), Version('4.2.1')) execute_mock.return_value = ("", GCC_VERSION_UBUNTU) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) execute_mock.return_value = ("", GCC_VERSION_WIN) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) @patch('os.path.exists') def test_find_gnu_arm(self, exists): exists.return_value = False self.assertEqual((None, None), find_gnu_arm()) exists.return_value = True c_path, cpp_path = find_gnu_arm() inst_path = get_biicode_env_folder_path().replace('\\', '/') c_path = c_path.replace('\\', '/') cpp_path = cpp_path.replace('\\', '/') inst_path = '%s/raspberry_cross_compilers/arm-bcm2708/'\ 'arm-bcm2708hardfp-linux-gnueabi/bin/'\ 'arm-bcm2708hardfp-linux-gnueabi' % inst_path self.assertTrue(cpp_path.endswith('%s-g++' % inst_path)) self.assertTrue(c_path.endswith('%s-gcc' % inst_path))
en
0.652458
Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1 Apple LLVM version 5.1 (clang-503.0.38) (based on LLVM 3.4svn) Target: x86_64-apple-darwin13.1.0 Thread model: posix gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. gcc (GCC) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1.86705
2
setup.py
mintmachine/arweave-python-client
63
9046
from distutils.core import setup setup( name="arweave-python-client", packages = ['arweave'], # this must be the same as the name above version="1.0.15.dev0", description="Client interface for sending transactions on the Arweave permaweb", author="<NAME>", author_email="<EMAIL>", url="https://github.com/MikeHibbert/arweave-python-client", download_url="https://github.com/MikeHibbert/arweave-python-client", keywords=['arweave', 'crypto'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'arrow', 'python-jose', 'pynacl', 'pycryptodome', 'cryptography', 'requests', 'psutil' ], )
from distutils.core import setup setup( name="arweave-python-client", packages = ['arweave'], # this must be the same as the name above version="1.0.15.dev0", description="Client interface for sending transactions on the Arweave permaweb", author="<NAME>", author_email="<EMAIL>", url="https://github.com/MikeHibbert/arweave-python-client", download_url="https://github.com/MikeHibbert/arweave-python-client", keywords=['arweave', 'crypto'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'arrow', 'python-jose', 'pynacl', 'pycryptodome', 'cryptography', 'requests', 'psutil' ], )
en
0.955069
# this must be the same as the name above
1.299459
1
exchange_calendars/extensions/exchange_calendar_krx.py
syonoki/exchange_calendars
0
9047
<reponame>syonoki/exchange_calendars<filename>exchange_calendars/extensions/exchange_calendar_krx.py """ Last update: 2018-10-26 """ from exchange_calendars.extensions.calendar_extension import ExtendedExchangeCalendar from pandas import ( Timestamp, ) from pandas.tseries.holiday import ( Holiday, previous_friday, ) from exchange_calendars.exchange_calendar import HolidayCalendar from datetime import time from itertools import chain from pytz import timezone KRNewYearsDay = Holiday( 'New Years Day', month=1, day=1) KRIndependenceDay = Holiday( 'Independence Day', month=3, day=1 ) KRArbourDay = Holiday( 'Arbour Day', month=4, day=5, end_date=Timestamp('2006-01-01'), ) KRLabourDay = Holiday( 'Labour Day', month=5, day=1 ) KRChildrensDay = Holiday( 'Labour Day', month=5, day=5 ) # 현충일 KRMemorialDay = Holiday( 'Memorial Day', month=6, day=6 ) # 제헌절 KRConstitutionDay = Holiday( 'Constitution Day', month=7, day=17, end_date=Timestamp('2008-01-01') ) # 광복절 KRLiberationDay = Holiday( 'Liberation Day', month=8, day=15 ) # 개천절 KRNationalFoundationDay = Holiday( 'NationalFoundationDay', month=10, day=3 ) Christmas = Holiday( 'Christmas', month=12, day=25 ) # 한글날 KRHangulProclamationDay = Holiday( 'Hangul Proclamation Day', month=10, day=9, start_date=Timestamp('2013-01-01') ) # KRX 연말 휴장 KRXEndOfYearClosing = Holiday( 'KRX Year-end Closing', month=12, day=31, observance=previous_friday, start_date=Timestamp('2001-01-01') ) KRXEndOfYearClosing2000 = [ Timestamp('2000-12-27', tz='UTC'), Timestamp('2000-12-28', tz='UTC'), Timestamp('2000-12-29', tz='UTC'), Timestamp('2000-12-30', tz='UTC'), ] # Lunar New Year KRLunarNewYear = [ # 2000 Timestamp('2000-02-04', tz='UTC'), # 2001 Timestamp('2001-01-23', tz='UTC'), Timestamp('2001-01-24', tz='UTC'), Timestamp('2001-01-25', tz='UTC'), # 2002 Timestamp('2002-02-11', tz='UTC'), Timestamp('2002-02-12', tz='UTC'), Timestamp('2002-02-13', tz='UTC'), # 2003 Timestamp('2003-01-31', tz='UTC'), # 2004 Timestamp('2004-01-21', tz='UTC'), Timestamp('2004-01-22', tz='UTC'), Timestamp('2004-01-23', tz='UTC'), # 2005 Timestamp('2005-02-08', tz='UTC'), Timestamp('2005-02-09', tz='UTC'), Timestamp('2005-02-10', tz='UTC'), # 2006 Timestamp('2006-01-28', tz='UTC'), Timestamp('2006-01-29', tz='UTC'), Timestamp('2006-01-30', tz='UTC'), # 2007 Timestamp('2007-02-19', tz='UTC'), # 2008 Timestamp('2008-02-06', tz='UTC'), Timestamp('2008-02-07', tz='UTC'), Timestamp('2008-02-08', tz='UTC'), # 2009 Timestamp('2009-01-25', tz='UTC'), Timestamp('2009-01-26', tz='UTC'), Timestamp('2009-01-27', tz='UTC'), # 2010 Timestamp('2010-02-13', tz='UTC'), Timestamp('2010-02-14', tz='UTC'), Timestamp('2010-02-15', tz='UTC'), # 2011 Timestamp('2011-02-02', tz='UTC'), Timestamp('2011-02-03', tz='UTC'), Timestamp('2011-02-04', tz='UTC'), # 2012 Timestamp('2012-01-23', tz='UTC'), Timestamp('2012-01-24', tz='UTC'), # 2013 Timestamp('2013-02-11', tz='UTC'), # 2014 Timestamp('2014-01-30', tz='UTC'), Timestamp('2014-01-31', tz='UTC'), # 2015 Timestamp('2015-02-18', tz='UTC'), Timestamp('2015-02-19', tz='UTC'), Timestamp('2015-02-20', tz='UTC'), # 2016 Timestamp('2016-02-07', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-02-09', tz='UTC'), Timestamp('2016-02-10', tz='UTC'), # 2017 Timestamp('2017-01-27', tz='UTC'), Timestamp('2017-01-28', tz='UTC'), Timestamp('2017-01-29', tz='UTC'), Timestamp('2017-01-30', tz='UTC'), # 2018 Timestamp('2018-02-15', tz='UTC'), Timestamp('2018-02-16', tz='UTC'), Timestamp('2018-02-17', tz='UTC'), # 2019 Timestamp('2019-02-04', tz='UTC'), Timestamp('2019-02-05', tz='UTC'), Timestamp('2019-02-06', tz='UTC'), # 2020 Timestamp('2020-01-24', tz='UTC'), Timestamp('2020-01-25', tz='UTC'), Timestamp('2020-01-26', tz='UTC'), Timestamp('2020-01-27', tz='UTC'), # 2021 Timestamp('2021-02-11', tz='UTC'), Timestamp('2021-02-12', tz='UTC'), # 2022 Timestamp('2022-01-31', tz='UTC'), Timestamp('2022-02-01', tz='UTC'), Timestamp('2022-02-02', tz='UTC'), ] # Election Days KRElectionDays = [ Timestamp('2000-04-13', tz='UTC'), # National Assembly Timestamp('2002-06-13', tz='UTC'), # Regional election Timestamp('2002-12-19', tz='UTC'), # Presidency Timestamp('2004-04-15', tz='UTC'), # National Assembly Timestamp('2006-05-31', tz='UTC'), # Regional election Timestamp('2007-12-19', tz='UTC'), # Presidency Timestamp('2008-04-09', tz='UTC'), # National Assembly Timestamp('2010-06-02', tz='UTC'), # Local election Timestamp('2012-04-11', tz='UTC'), # National Assembly Timestamp('2012-12-19', tz='UTC'), # Presidency Timestamp('2014-06-04', tz='UTC'), # Local election Timestamp('2016-04-13', tz='UTC'), # National Assembly Timestamp('2017-05-09', tz='UTC'), # Presidency Timestamp('2018-06-13', tz='UTC'), # Local election Timestamp('2020-04-15', tz='UTC'), # National Assembly Timestamp('2022-03-09', tz='UTC'), # Presidency Timestamp('2022-06-01', tz='UTC'), # Local election ] # Buddha's birthday KRBuddhasBirthday = [ Timestamp('2000-05-11', tz='UTC'), Timestamp('2001-05-01', tz='UTC'), Timestamp('2003-05-08', tz='UTC'), Timestamp('2004-05-26', tz='UTC'), Timestamp('2005-05-15', tz='UTC'), Timestamp('2006-05-05', tz='UTC'), Timestamp('2007-05-24', tz='UTC'), Timestamp('2008-05-12', tz='UTC'), Timestamp('2009-05-02', tz='UTC'), Timestamp('2010-05-21', tz='UTC'), Timestamp('2011-05-10', tz='UTC'), Timestamp('2012-05-28', tz='UTC'), Timestamp('2013-05-17', tz='UTC'), Timestamp('2014-05-06', tz='UTC'), Timestamp('2015-05-25', tz='UTC'), Timestamp('2016-05-14', tz='UTC'), Timestamp('2017-05-03', tz='UTC'), Timestamp('2018-05-22', tz='UTC'), Timestamp('2020-04-30', tz='UTC'), Timestamp('2021-05-19', tz='UTC'), ] # Harvest Moon Day KRHarvestMoonDay = [ # 2000 Timestamp('2000-09-11', tz='UTC'), Timestamp('2000-09-12', tz='UTC'), Timestamp('2000-09-13', tz='UTC'), # 2001 Timestamp('2001-10-01', tz='UTC'), Timestamp('2001-10-02', tz='UTC'), # 2002 Timestamp('2002-09-20', tz='UTC'), # 2003 Timestamp('2003-09-10', tz='UTC'), Timestamp('2003-09-11', tz='UTC'), Timestamp('2003-09-12', tz='UTC'), # 2004 Timestamp('2004-09-27', tz='UTC'), Timestamp('2004-09-28', tz='UTC'), Timestamp('2004-09-29', tz='UTC'), # 2005 Timestamp('2005-09-17', tz='UTC'), Timestamp('2005-09-18', tz='UTC'), Timestamp('2005-09-19', tz='UTC'), # 2006 Timestamp('2006-10-05', tz='UTC'), Timestamp('2006-10-06', tz='UTC'), Timestamp('2006-10-07', tz='UTC'), # 2007 Timestamp('2007-09-24', tz='UTC'), Timestamp('2007-09-25', tz='UTC'), Timestamp('2007-09-26', tz='UTC'), # 2008 Timestamp('2008-09-13', tz='UTC'), Timestamp('2008-09-14', tz='UTC'), Timestamp('2008-09-15', tz='UTC'), # 2009 Timestamp('2009-10-02', tz='UTC'), Timestamp('2009-10-03', tz='UTC'), Timestamp('2009-10-04', tz='UTC'), # 2010 Timestamp('2010-09-21', tz='UTC'), Timestamp('2010-09-22', tz='UTC'), Timestamp('2010-09-23', tz='UTC'), # 2011 Timestamp('2011-09-12', tz='UTC'), Timestamp('2011-09-13', tz='UTC'), # 2012 Timestamp('2012-10-01', tz='UTC'), # 2013 Timestamp('2013-09-18', tz='UTC'), Timestamp('2013-09-19', tz='UTC'), Timestamp('2013-09-20', tz='UTC'), # 2014 Timestamp('2014-09-08', tz='UTC'), Timestamp('2014-09-09', tz='UTC'), Timestamp('2014-09-10', tz='UTC'), # 2015 Timestamp('2015-09-28', tz='UTC'), Timestamp('2015-09-29', tz='UTC'), # 2016 Timestamp('2016-09-14', tz='UTC'), Timestamp('2016-09-15', tz='UTC'), Timestamp('2016-09-16', tz='UTC'), # 2017 Timestamp('2017-10-03', tz='UTC'), Timestamp('2017-10-04', tz='UTC'), Timestamp('2017-10-05', tz='UTC'), Timestamp('2017-10-06', tz='UTC'), # 2018 Timestamp('2018-09-23', tz='UTC'), Timestamp('2018-09-24', tz='UTC'), Timestamp('2018-09-25', tz='UTC'), Timestamp('2018-09-26', tz='UTC'), # 2019 Timestamp('2019-09-12', tz='UTC'), Timestamp('2019-09-13', tz='UTC'), # 2020 Timestamp('2020-09-30', tz='UTC'), Timestamp('2020-10-01', tz='UTC'), Timestamp('2020-10-02', tz='UTC'), # 2021 Timestamp('2021-09-20', tz='UTC'), Timestamp('2021-09-21', tz='UTC'), Timestamp('2021-09-22', tz='UTC'), # 2022 Timestamp('2022-09-09', tz='UTC'), Timestamp('2022-09-12', tz='UTC'), # 대체휴일 ] # 대체휴일 KRSubstitutionHolidayForChildrensDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] # 임시공휴일 KRCelebrationForWorldCupHosting = [ Timestamp('2002-07-01', tz='UTC') ] KRSeventyYearsFromIndependenceDay = [ Timestamp('2015-08-14', tz='UTC') ] KRTemporaryHolidayForChildrensDay2016 = [ Timestamp('2016-05-06', tz='UTC') ] KRTemporaryHolidayForHarvestMoonDay2017 = [ Timestamp('2017-10-02', tz='UTC') ] KRTemporaryHolidayForChildrenDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] KRTemporaryHolidayForChildrenDay2019 = [ Timestamp('2019-05-06', tz='UTC') ] KRTemporaryHolidayForLiberationDay2020 = [ Timestamp('2020-08-17', tz='UTC') ] KRTemporaryHoliday2021 = [ Timestamp('2021-08-16', tz='UTC'), # 광복절 대체휴일 Timestamp('2021-10-04', tz='UTC'), # 개천절 대체휴일 Timestamp('2021-10-11', tz='UTC'), # 한글날 대체휴일 ] KRTemporaryHoliday2022 = [ Timestamp('2022-10-10', tz='UTC'), # 한글날 대체휴일 ] # 잘 모르겠는 휴장일 HolidaysNeedToCheck = [ Timestamp('2000-01-03', tz='UTC') ] HolidaysBefore1999 = [ Timestamp('1990-01-01', tz='UTC'), Timestamp('1990-01-02', tz='UTC'), Timestamp('1990-01-03', tz='UTC'), Timestamp('1990-01-29', tz='UTC'), Timestamp('1990-03-01', tz='UTC'), Timestamp('1990-04-05', tz='UTC'), Timestamp('1990-05-02', tz='UTC'), Timestamp('1990-06-06', tz='UTC'), Timestamp('1990-07-17', tz='UTC'), Timestamp('1990-08-15', tz='UTC'), Timestamp('1990-09-03', tz='UTC'), Timestamp('1990-10-01', tz='UTC'), Timestamp('1990-10-03', tz='UTC'), Timestamp('1990-10-09', tz='UTC'), Timestamp('1990-12-25', tz='UTC'), Timestamp('1991-01-01', tz='UTC'), Timestamp('1991-01-02', tz='UTC'), Timestamp('1991-02-14', tz='UTC'), Timestamp('1991-02-15', tz='UTC'), Timestamp('1991-03-01', tz='UTC'), Timestamp('1991-04-05', tz='UTC'), Timestamp('1991-05-21', tz='UTC'), Timestamp('1991-06-06', tz='UTC'), Timestamp('1991-07-17', tz='UTC'), Timestamp('1991-08-15', tz='UTC'), Timestamp('1991-09-23', tz='UTC'), Timestamp('1991-10-03', tz='UTC'), Timestamp('1991-12-25', tz='UTC'), Timestamp('1991-12-30', tz='UTC'), Timestamp('1992-01-01', tz='UTC'), Timestamp('1992-09-10', tz='UTC'), Timestamp('1992-09-11', tz='UTC'), Timestamp('1992-10-03', tz='UTC'), Timestamp('1992-12-25', tz='UTC'), Timestamp('1992-12-29', tz='UTC'), Timestamp('1992-12-30', tz='UTC'), Timestamp('1992-12-31', tz='UTC'), Timestamp('1993-01-01', tz='UTC'), Timestamp('1993-01-22', tz='UTC'), Timestamp('1993-03-01', tz='UTC'), Timestamp('1993-04-05', tz='UTC'), Timestamp('1993-05-05', tz='UTC'), Timestamp('1993-05-28', tz='UTC'), Timestamp('1993-07-17', tz='UTC'), Timestamp('1993-09-29', tz='UTC'), Timestamp('1993-09-30', tz='UTC'), Timestamp('1993-10-01', tz='UTC'), Timestamp('1993-12-29', tz='UTC'), Timestamp('1993-12-30', tz='UTC'), Timestamp('1993-12-31', tz='UTC'), Timestamp('1994-01-02', tz='UTC'), Timestamp('1994-02-09', tz='UTC'), Timestamp('1994-02-10', tz='UTC'), Timestamp('1994-02-11', tz='UTC'), Timestamp('1994-03-01', tz='UTC'), Timestamp('1994-04-05', tz='UTC'), Timestamp('1994-05-05', tz='UTC'), Timestamp('1994-06-06', tz='UTC'), Timestamp('1994-07-17', tz='UTC'), Timestamp('1994-08-15', tz='UTC'), Timestamp('1994-09-19', tz='UTC'), Timestamp('1994-09-20', tz='UTC'), Timestamp('1994-09-21', tz='UTC'), Timestamp('1994-10-03', tz='UTC'), Timestamp('1994-12-29', tz='UTC'), Timestamp('1994-12-30', tz='UTC'), Timestamp('1995-01-02', tz='UTC'), Timestamp('1995-01-30', tz='UTC'), Timestamp('1995-01-31', tz='UTC'), Timestamp('1995-02-01', tz='UTC'), Timestamp('1995-03-01', tz='UTC'), Timestamp('1995-05-01', tz='UTC'), Timestamp('1995-05-05', tz='UTC'), Timestamp('1995-06-06', tz='UTC'), Timestamp('1995-06-27', tz='UTC'), Timestamp('1995-07-17', tz='UTC'), Timestamp('1995-08-15', tz='UTC'), Timestamp('1995-09-08', tz='UTC'), Timestamp('1995-09-09', tz='UTC'), Timestamp('1995-10-03', tz='UTC'), Timestamp('1995-12-22', tz='UTC'), Timestamp('1995-12-25', tz='UTC'), Timestamp('1995-12-28', tz='UTC'), Timestamp('1995-12-29', tz='UTC'), Timestamp('1995-12-30', tz='UTC'), Timestamp('1995-12-31', tz='UTC'), Timestamp('1996-01-01', tz='UTC'), Timestamp('1996-01-02', tz='UTC'), Timestamp('1996-02-19', tz='UTC'), Timestamp('1996-02-20', tz='UTC'), Timestamp('1996-03-01', tz='UTC'), Timestamp('1996-04-05', tz='UTC'), Timestamp('1996-04-11', tz='UTC'), Timestamp('1996-05-01', tz='UTC'), Timestamp('1996-05-05', tz='UTC'), Timestamp('1996-05-24', tz='UTC'), Timestamp('1996-06-06', tz='UTC'), Timestamp('1996-07-17', tz='UTC'), Timestamp('1996-08-15', tz='UTC'), Timestamp('1996-09-26', tz='UTC'), Timestamp('1996-09-27', tz='UTC'), Timestamp('1996-09-28', tz='UTC'), Timestamp('1996-10-03', tz='UTC'), Timestamp('1996-12-25', tz='UTC'), Timestamp('1996-12-30', tz='UTC'), Timestamp('1996-12-31', tz='UTC'), Timestamp('1997-01-01', tz='UTC'), Timestamp('1997-01-02', tz='UTC'), Timestamp('1997-02-07', tz='UTC'), Timestamp('1997-02-08', tz='UTC'), Timestamp('1997-03-01', tz='UTC'), Timestamp('1997-04-05', tz='UTC'), Timestamp('1997-05-05', tz='UTC'), Timestamp('1997-05-14', tz='UTC'), Timestamp('1997-06-06', tz='UTC'), Timestamp('1997-07-17', tz='UTC'), Timestamp('1997-08-15', tz='UTC'), Timestamp('1997-09-16', tz='UTC'), Timestamp('1997-09-17', tz='UTC'), Timestamp('1997-10-03', tz='UTC'), Timestamp('1997-12-25', tz='UTC'), Timestamp('1998-01-01', tz='UTC'), Timestamp('1998-01-02', tz='UTC'), Timestamp('1998-01-27', tz='UTC'), Timestamp('1998-01-28', tz='UTC'), Timestamp('1998-01-29', tz='UTC'), Timestamp('1998-03-01', tz='UTC'), Timestamp('1998-04-05', tz='UTC'), Timestamp('1998-05-01', tz='UTC'), Timestamp('1998-05-03', tz='UTC'), Timestamp('1998-05-05', tz='UTC'), Timestamp('1998-06-04', tz='UTC'), Timestamp('1998-06-06', tz='UTC'), Timestamp('1998-07-17', tz='UTC'), Timestamp('1998-08-15', tz='UTC'), Timestamp('1998-10-03', tz='UTC'), Timestamp('1998-10-04', tz='UTC'), Timestamp('1998-10-05', tz='UTC'), Timestamp('1998-10-06', tz='UTC'), Timestamp('1998-12-25', tz='UTC'), Timestamp('1998-12-31', tz='UTC'), Timestamp('1999-01-01', tz='UTC'), Timestamp('1999-02-15', tz='UTC'), Timestamp('1999-02-16', tz='UTC'), Timestamp('1999-02-17', tz='UTC'), Timestamp('1999-03-01', tz='UTC'), Timestamp('1999-04-05', tz='UTC'), Timestamp('1999-05-05', tz='UTC'), Timestamp('1999-05-22', tz='UTC'), Timestamp('1999-06-06', tz='UTC'), Timestamp('1999-07-17', tz='UTC'), Timestamp('1999-09-23', tz='UTC'), Timestamp('1999-09-24', tz='UTC'), Timestamp('1999-09-25', tz='UTC'), Timestamp('1999-10-03', tz='UTC'), Timestamp('1999-12-29', tz='UTC'), Timestamp('1999-12-30', tz='UTC'), Timestamp('1999-12-31', tz='UTC'), ] class KRXExchangeCalendar(ExtendedExchangeCalendar): """ Exchange calendars for KRX Open Time: 9:00 AM, Asia/Seoul Close Time: 3:30 PM, Asia/Seoul (3:00 PM until 2016/07/31) """ @property def name(self): return "KRX" @property def tz(self): # return timezone('Asia/Seoul') return timezone('UTC') @property def open_time(self): return time(9, 0) @property def open_times(self): return [(None, time(9, 0))] @property def close_time(self): return time(15, 30) @property def close_times(self): return [(None, time(15, 30))] @property def regular_holidays(self): return HolidayCalendar([ KRNewYearsDay, KRIndependenceDay, KRArbourDay, KRLabourDay, KRChildrensDay, KRMemorialDay, KRConstitutionDay, KRLiberationDay, KRNationalFoundationDay, Christmas, KRHangulProclamationDay, KRXEndOfYearClosing ]) @property def special_closes(self): return [] @property def adhoc_holidays(self): return list(chain( KRXEndOfYearClosing2000, KRLunarNewYear, KRElectionDays, KRBuddhasBirthday, KRHarvestMoonDay, KRSubstitutionHolidayForChildrensDay2018, KRCelebrationForWorldCupHosting, KRSeventyYearsFromIndependenceDay, KRTemporaryHolidayForChildrensDay2016, KRTemporaryHolidayForHarvestMoonDay2017, KRTemporaryHolidayForChildrenDay2018, KRTemporaryHolidayForChildrenDay2019, HolidaysNeedToCheck, KRTemporaryHolidayForLiberationDay2020, KRTemporaryHoliday2021, HolidaysBefore1999, )) def __hash__(self): return hash(self.name) def __eq__(self, other): return self.__class__ == other.__class__
""" Last update: 2018-10-26 """ from exchange_calendars.extensions.calendar_extension import ExtendedExchangeCalendar from pandas import ( Timestamp, ) from pandas.tseries.holiday import ( Holiday, previous_friday, ) from exchange_calendars.exchange_calendar import HolidayCalendar from datetime import time from itertools import chain from pytz import timezone KRNewYearsDay = Holiday( 'New Years Day', month=1, day=1) KRIndependenceDay = Holiday( 'Independence Day', month=3, day=1 ) KRArbourDay = Holiday( 'Arbour Day', month=4, day=5, end_date=Timestamp('2006-01-01'), ) KRLabourDay = Holiday( 'Labour Day', month=5, day=1 ) KRChildrensDay = Holiday( 'Labour Day', month=5, day=5 ) # 현충일 KRMemorialDay = Holiday( 'Memorial Day', month=6, day=6 ) # 제헌절 KRConstitutionDay = Holiday( 'Constitution Day', month=7, day=17, end_date=Timestamp('2008-01-01') ) # 광복절 KRLiberationDay = Holiday( 'Liberation Day', month=8, day=15 ) # 개천절 KRNationalFoundationDay = Holiday( 'NationalFoundationDay', month=10, day=3 ) Christmas = Holiday( 'Christmas', month=12, day=25 ) # 한글날 KRHangulProclamationDay = Holiday( 'Hangul Proclamation Day', month=10, day=9, start_date=Timestamp('2013-01-01') ) # KRX 연말 휴장 KRXEndOfYearClosing = Holiday( 'KRX Year-end Closing', month=12, day=31, observance=previous_friday, start_date=Timestamp('2001-01-01') ) KRXEndOfYearClosing2000 = [ Timestamp('2000-12-27', tz='UTC'), Timestamp('2000-12-28', tz='UTC'), Timestamp('2000-12-29', tz='UTC'), Timestamp('2000-12-30', tz='UTC'), ] # Lunar New Year KRLunarNewYear = [ # 2000 Timestamp('2000-02-04', tz='UTC'), # 2001 Timestamp('2001-01-23', tz='UTC'), Timestamp('2001-01-24', tz='UTC'), Timestamp('2001-01-25', tz='UTC'), # 2002 Timestamp('2002-02-11', tz='UTC'), Timestamp('2002-02-12', tz='UTC'), Timestamp('2002-02-13', tz='UTC'), # 2003 Timestamp('2003-01-31', tz='UTC'), # 2004 Timestamp('2004-01-21', tz='UTC'), Timestamp('2004-01-22', tz='UTC'), Timestamp('2004-01-23', tz='UTC'), # 2005 Timestamp('2005-02-08', tz='UTC'), Timestamp('2005-02-09', tz='UTC'), Timestamp('2005-02-10', tz='UTC'), # 2006 Timestamp('2006-01-28', tz='UTC'), Timestamp('2006-01-29', tz='UTC'), Timestamp('2006-01-30', tz='UTC'), # 2007 Timestamp('2007-02-19', tz='UTC'), # 2008 Timestamp('2008-02-06', tz='UTC'), Timestamp('2008-02-07', tz='UTC'), Timestamp('2008-02-08', tz='UTC'), # 2009 Timestamp('2009-01-25', tz='UTC'), Timestamp('2009-01-26', tz='UTC'), Timestamp('2009-01-27', tz='UTC'), # 2010 Timestamp('2010-02-13', tz='UTC'), Timestamp('2010-02-14', tz='UTC'), Timestamp('2010-02-15', tz='UTC'), # 2011 Timestamp('2011-02-02', tz='UTC'), Timestamp('2011-02-03', tz='UTC'), Timestamp('2011-02-04', tz='UTC'), # 2012 Timestamp('2012-01-23', tz='UTC'), Timestamp('2012-01-24', tz='UTC'), # 2013 Timestamp('2013-02-11', tz='UTC'), # 2014 Timestamp('2014-01-30', tz='UTC'), Timestamp('2014-01-31', tz='UTC'), # 2015 Timestamp('2015-02-18', tz='UTC'), Timestamp('2015-02-19', tz='UTC'), Timestamp('2015-02-20', tz='UTC'), # 2016 Timestamp('2016-02-07', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-02-09', tz='UTC'), Timestamp('2016-02-10', tz='UTC'), # 2017 Timestamp('2017-01-27', tz='UTC'), Timestamp('2017-01-28', tz='UTC'), Timestamp('2017-01-29', tz='UTC'), Timestamp('2017-01-30', tz='UTC'), # 2018 Timestamp('2018-02-15', tz='UTC'), Timestamp('2018-02-16', tz='UTC'), Timestamp('2018-02-17', tz='UTC'), # 2019 Timestamp('2019-02-04', tz='UTC'), Timestamp('2019-02-05', tz='UTC'), Timestamp('2019-02-06', tz='UTC'), # 2020 Timestamp('2020-01-24', tz='UTC'), Timestamp('2020-01-25', tz='UTC'), Timestamp('2020-01-26', tz='UTC'), Timestamp('2020-01-27', tz='UTC'), # 2021 Timestamp('2021-02-11', tz='UTC'), Timestamp('2021-02-12', tz='UTC'), # 2022 Timestamp('2022-01-31', tz='UTC'), Timestamp('2022-02-01', tz='UTC'), Timestamp('2022-02-02', tz='UTC'), ] # Election Days KRElectionDays = [ Timestamp('2000-04-13', tz='UTC'), # National Assembly Timestamp('2002-06-13', tz='UTC'), # Regional election Timestamp('2002-12-19', tz='UTC'), # Presidency Timestamp('2004-04-15', tz='UTC'), # National Assembly Timestamp('2006-05-31', tz='UTC'), # Regional election Timestamp('2007-12-19', tz='UTC'), # Presidency Timestamp('2008-04-09', tz='UTC'), # National Assembly Timestamp('2010-06-02', tz='UTC'), # Local election Timestamp('2012-04-11', tz='UTC'), # National Assembly Timestamp('2012-12-19', tz='UTC'), # Presidency Timestamp('2014-06-04', tz='UTC'), # Local election Timestamp('2016-04-13', tz='UTC'), # National Assembly Timestamp('2017-05-09', tz='UTC'), # Presidency Timestamp('2018-06-13', tz='UTC'), # Local election Timestamp('2020-04-15', tz='UTC'), # National Assembly Timestamp('2022-03-09', tz='UTC'), # Presidency Timestamp('2022-06-01', tz='UTC'), # Local election ] # Buddha's birthday KRBuddhasBirthday = [ Timestamp('2000-05-11', tz='UTC'), Timestamp('2001-05-01', tz='UTC'), Timestamp('2003-05-08', tz='UTC'), Timestamp('2004-05-26', tz='UTC'), Timestamp('2005-05-15', tz='UTC'), Timestamp('2006-05-05', tz='UTC'), Timestamp('2007-05-24', tz='UTC'), Timestamp('2008-05-12', tz='UTC'), Timestamp('2009-05-02', tz='UTC'), Timestamp('2010-05-21', tz='UTC'), Timestamp('2011-05-10', tz='UTC'), Timestamp('2012-05-28', tz='UTC'), Timestamp('2013-05-17', tz='UTC'), Timestamp('2014-05-06', tz='UTC'), Timestamp('2015-05-25', tz='UTC'), Timestamp('2016-05-14', tz='UTC'), Timestamp('2017-05-03', tz='UTC'), Timestamp('2018-05-22', tz='UTC'), Timestamp('2020-04-30', tz='UTC'), Timestamp('2021-05-19', tz='UTC'), ] # Harvest Moon Day KRHarvestMoonDay = [ # 2000 Timestamp('2000-09-11', tz='UTC'), Timestamp('2000-09-12', tz='UTC'), Timestamp('2000-09-13', tz='UTC'), # 2001 Timestamp('2001-10-01', tz='UTC'), Timestamp('2001-10-02', tz='UTC'), # 2002 Timestamp('2002-09-20', tz='UTC'), # 2003 Timestamp('2003-09-10', tz='UTC'), Timestamp('2003-09-11', tz='UTC'), Timestamp('2003-09-12', tz='UTC'), # 2004 Timestamp('2004-09-27', tz='UTC'), Timestamp('2004-09-28', tz='UTC'), Timestamp('2004-09-29', tz='UTC'), # 2005 Timestamp('2005-09-17', tz='UTC'), Timestamp('2005-09-18', tz='UTC'), Timestamp('2005-09-19', tz='UTC'), # 2006 Timestamp('2006-10-05', tz='UTC'), Timestamp('2006-10-06', tz='UTC'), Timestamp('2006-10-07', tz='UTC'), # 2007 Timestamp('2007-09-24', tz='UTC'), Timestamp('2007-09-25', tz='UTC'), Timestamp('2007-09-26', tz='UTC'), # 2008 Timestamp('2008-09-13', tz='UTC'), Timestamp('2008-09-14', tz='UTC'), Timestamp('2008-09-15', tz='UTC'), # 2009 Timestamp('2009-10-02', tz='UTC'), Timestamp('2009-10-03', tz='UTC'), Timestamp('2009-10-04', tz='UTC'), # 2010 Timestamp('2010-09-21', tz='UTC'), Timestamp('2010-09-22', tz='UTC'), Timestamp('2010-09-23', tz='UTC'), # 2011 Timestamp('2011-09-12', tz='UTC'), Timestamp('2011-09-13', tz='UTC'), # 2012 Timestamp('2012-10-01', tz='UTC'), # 2013 Timestamp('2013-09-18', tz='UTC'), Timestamp('2013-09-19', tz='UTC'), Timestamp('2013-09-20', tz='UTC'), # 2014 Timestamp('2014-09-08', tz='UTC'), Timestamp('2014-09-09', tz='UTC'), Timestamp('2014-09-10', tz='UTC'), # 2015 Timestamp('2015-09-28', tz='UTC'), Timestamp('2015-09-29', tz='UTC'), # 2016 Timestamp('2016-09-14', tz='UTC'), Timestamp('2016-09-15', tz='UTC'), Timestamp('2016-09-16', tz='UTC'), # 2017 Timestamp('2017-10-03', tz='UTC'), Timestamp('2017-10-04', tz='UTC'), Timestamp('2017-10-05', tz='UTC'), Timestamp('2017-10-06', tz='UTC'), # 2018 Timestamp('2018-09-23', tz='UTC'), Timestamp('2018-09-24', tz='UTC'), Timestamp('2018-09-25', tz='UTC'), Timestamp('2018-09-26', tz='UTC'), # 2019 Timestamp('2019-09-12', tz='UTC'), Timestamp('2019-09-13', tz='UTC'), # 2020 Timestamp('2020-09-30', tz='UTC'), Timestamp('2020-10-01', tz='UTC'), Timestamp('2020-10-02', tz='UTC'), # 2021 Timestamp('2021-09-20', tz='UTC'), Timestamp('2021-09-21', tz='UTC'), Timestamp('2021-09-22', tz='UTC'), # 2022 Timestamp('2022-09-09', tz='UTC'), Timestamp('2022-09-12', tz='UTC'), # 대체휴일 ] # 대체휴일 KRSubstitutionHolidayForChildrensDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] # 임시공휴일 KRCelebrationForWorldCupHosting = [ Timestamp('2002-07-01', tz='UTC') ] KRSeventyYearsFromIndependenceDay = [ Timestamp('2015-08-14', tz='UTC') ] KRTemporaryHolidayForChildrensDay2016 = [ Timestamp('2016-05-06', tz='UTC') ] KRTemporaryHolidayForHarvestMoonDay2017 = [ Timestamp('2017-10-02', tz='UTC') ] KRTemporaryHolidayForChildrenDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] KRTemporaryHolidayForChildrenDay2019 = [ Timestamp('2019-05-06', tz='UTC') ] KRTemporaryHolidayForLiberationDay2020 = [ Timestamp('2020-08-17', tz='UTC') ] KRTemporaryHoliday2021 = [ Timestamp('2021-08-16', tz='UTC'), # 광복절 대체휴일 Timestamp('2021-10-04', tz='UTC'), # 개천절 대체휴일 Timestamp('2021-10-11', tz='UTC'), # 한글날 대체휴일 ] KRTemporaryHoliday2022 = [ Timestamp('2022-10-10', tz='UTC'), # 한글날 대체휴일 ] # 잘 모르겠는 휴장일 HolidaysNeedToCheck = [ Timestamp('2000-01-03', tz='UTC') ] HolidaysBefore1999 = [ Timestamp('1990-01-01', tz='UTC'), Timestamp('1990-01-02', tz='UTC'), Timestamp('1990-01-03', tz='UTC'), Timestamp('1990-01-29', tz='UTC'), Timestamp('1990-03-01', tz='UTC'), Timestamp('1990-04-05', tz='UTC'), Timestamp('1990-05-02', tz='UTC'), Timestamp('1990-06-06', tz='UTC'), Timestamp('1990-07-17', tz='UTC'), Timestamp('1990-08-15', tz='UTC'), Timestamp('1990-09-03', tz='UTC'), Timestamp('1990-10-01', tz='UTC'), Timestamp('1990-10-03', tz='UTC'), Timestamp('1990-10-09', tz='UTC'), Timestamp('1990-12-25', tz='UTC'), Timestamp('1991-01-01', tz='UTC'), Timestamp('1991-01-02', tz='UTC'), Timestamp('1991-02-14', tz='UTC'), Timestamp('1991-02-15', tz='UTC'), Timestamp('1991-03-01', tz='UTC'), Timestamp('1991-04-05', tz='UTC'), Timestamp('1991-05-21', tz='UTC'), Timestamp('1991-06-06', tz='UTC'), Timestamp('1991-07-17', tz='UTC'), Timestamp('1991-08-15', tz='UTC'), Timestamp('1991-09-23', tz='UTC'), Timestamp('1991-10-03', tz='UTC'), Timestamp('1991-12-25', tz='UTC'), Timestamp('1991-12-30', tz='UTC'), Timestamp('1992-01-01', tz='UTC'), Timestamp('1992-09-10', tz='UTC'), Timestamp('1992-09-11', tz='UTC'), Timestamp('1992-10-03', tz='UTC'), Timestamp('1992-12-25', tz='UTC'), Timestamp('1992-12-29', tz='UTC'), Timestamp('1992-12-30', tz='UTC'), Timestamp('1992-12-31', tz='UTC'), Timestamp('1993-01-01', tz='UTC'), Timestamp('1993-01-22', tz='UTC'), Timestamp('1993-03-01', tz='UTC'), Timestamp('1993-04-05', tz='UTC'), Timestamp('1993-05-05', tz='UTC'), Timestamp('1993-05-28', tz='UTC'), Timestamp('1993-07-17', tz='UTC'), Timestamp('1993-09-29', tz='UTC'), Timestamp('1993-09-30', tz='UTC'), Timestamp('1993-10-01', tz='UTC'), Timestamp('1993-12-29', tz='UTC'), Timestamp('1993-12-30', tz='UTC'), Timestamp('1993-12-31', tz='UTC'), Timestamp('1994-01-02', tz='UTC'), Timestamp('1994-02-09', tz='UTC'), Timestamp('1994-02-10', tz='UTC'), Timestamp('1994-02-11', tz='UTC'), Timestamp('1994-03-01', tz='UTC'), Timestamp('1994-04-05', tz='UTC'), Timestamp('1994-05-05', tz='UTC'), Timestamp('1994-06-06', tz='UTC'), Timestamp('1994-07-17', tz='UTC'), Timestamp('1994-08-15', tz='UTC'), Timestamp('1994-09-19', tz='UTC'), Timestamp('1994-09-20', tz='UTC'), Timestamp('1994-09-21', tz='UTC'), Timestamp('1994-10-03', tz='UTC'), Timestamp('1994-12-29', tz='UTC'), Timestamp('1994-12-30', tz='UTC'), Timestamp('1995-01-02', tz='UTC'), Timestamp('1995-01-30', tz='UTC'), Timestamp('1995-01-31', tz='UTC'), Timestamp('1995-02-01', tz='UTC'), Timestamp('1995-03-01', tz='UTC'), Timestamp('1995-05-01', tz='UTC'), Timestamp('1995-05-05', tz='UTC'), Timestamp('1995-06-06', tz='UTC'), Timestamp('1995-06-27', tz='UTC'), Timestamp('1995-07-17', tz='UTC'), Timestamp('1995-08-15', tz='UTC'), Timestamp('1995-09-08', tz='UTC'), Timestamp('1995-09-09', tz='UTC'), Timestamp('1995-10-03', tz='UTC'), Timestamp('1995-12-22', tz='UTC'), Timestamp('1995-12-25', tz='UTC'), Timestamp('1995-12-28', tz='UTC'), Timestamp('1995-12-29', tz='UTC'), Timestamp('1995-12-30', tz='UTC'), Timestamp('1995-12-31', tz='UTC'), Timestamp('1996-01-01', tz='UTC'), Timestamp('1996-01-02', tz='UTC'), Timestamp('1996-02-19', tz='UTC'), Timestamp('1996-02-20', tz='UTC'), Timestamp('1996-03-01', tz='UTC'), Timestamp('1996-04-05', tz='UTC'), Timestamp('1996-04-11', tz='UTC'), Timestamp('1996-05-01', tz='UTC'), Timestamp('1996-05-05', tz='UTC'), Timestamp('1996-05-24', tz='UTC'), Timestamp('1996-06-06', tz='UTC'), Timestamp('1996-07-17', tz='UTC'), Timestamp('1996-08-15', tz='UTC'), Timestamp('1996-09-26', tz='UTC'), Timestamp('1996-09-27', tz='UTC'), Timestamp('1996-09-28', tz='UTC'), Timestamp('1996-10-03', tz='UTC'), Timestamp('1996-12-25', tz='UTC'), Timestamp('1996-12-30', tz='UTC'), Timestamp('1996-12-31', tz='UTC'), Timestamp('1997-01-01', tz='UTC'), Timestamp('1997-01-02', tz='UTC'), Timestamp('1997-02-07', tz='UTC'), Timestamp('1997-02-08', tz='UTC'), Timestamp('1997-03-01', tz='UTC'), Timestamp('1997-04-05', tz='UTC'), Timestamp('1997-05-05', tz='UTC'), Timestamp('1997-05-14', tz='UTC'), Timestamp('1997-06-06', tz='UTC'), Timestamp('1997-07-17', tz='UTC'), Timestamp('1997-08-15', tz='UTC'), Timestamp('1997-09-16', tz='UTC'), Timestamp('1997-09-17', tz='UTC'), Timestamp('1997-10-03', tz='UTC'), Timestamp('1997-12-25', tz='UTC'), Timestamp('1998-01-01', tz='UTC'), Timestamp('1998-01-02', tz='UTC'), Timestamp('1998-01-27', tz='UTC'), Timestamp('1998-01-28', tz='UTC'), Timestamp('1998-01-29', tz='UTC'), Timestamp('1998-03-01', tz='UTC'), Timestamp('1998-04-05', tz='UTC'), Timestamp('1998-05-01', tz='UTC'), Timestamp('1998-05-03', tz='UTC'), Timestamp('1998-05-05', tz='UTC'), Timestamp('1998-06-04', tz='UTC'), Timestamp('1998-06-06', tz='UTC'), Timestamp('1998-07-17', tz='UTC'), Timestamp('1998-08-15', tz='UTC'), Timestamp('1998-10-03', tz='UTC'), Timestamp('1998-10-04', tz='UTC'), Timestamp('1998-10-05', tz='UTC'), Timestamp('1998-10-06', tz='UTC'), Timestamp('1998-12-25', tz='UTC'), Timestamp('1998-12-31', tz='UTC'), Timestamp('1999-01-01', tz='UTC'), Timestamp('1999-02-15', tz='UTC'), Timestamp('1999-02-16', tz='UTC'), Timestamp('1999-02-17', tz='UTC'), Timestamp('1999-03-01', tz='UTC'), Timestamp('1999-04-05', tz='UTC'), Timestamp('1999-05-05', tz='UTC'), Timestamp('1999-05-22', tz='UTC'), Timestamp('1999-06-06', tz='UTC'), Timestamp('1999-07-17', tz='UTC'), Timestamp('1999-09-23', tz='UTC'), Timestamp('1999-09-24', tz='UTC'), Timestamp('1999-09-25', tz='UTC'), Timestamp('1999-10-03', tz='UTC'), Timestamp('1999-12-29', tz='UTC'), Timestamp('1999-12-30', tz='UTC'), Timestamp('1999-12-31', tz='UTC'), ] class KRXExchangeCalendar(ExtendedExchangeCalendar): """ Exchange calendars for KRX Open Time: 9:00 AM, Asia/Seoul Close Time: 3:30 PM, Asia/Seoul (3:00 PM until 2016/07/31) """ @property def name(self): return "KRX" @property def tz(self): # return timezone('Asia/Seoul') return timezone('UTC') @property def open_time(self): return time(9, 0) @property def open_times(self): return [(None, time(9, 0))] @property def close_time(self): return time(15, 30) @property def close_times(self): return [(None, time(15, 30))] @property def regular_holidays(self): return HolidayCalendar([ KRNewYearsDay, KRIndependenceDay, KRArbourDay, KRLabourDay, KRChildrensDay, KRMemorialDay, KRConstitutionDay, KRLiberationDay, KRNationalFoundationDay, Christmas, KRHangulProclamationDay, KRXEndOfYearClosing ]) @property def special_closes(self): return [] @property def adhoc_holidays(self): return list(chain( KRXEndOfYearClosing2000, KRLunarNewYear, KRElectionDays, KRBuddhasBirthday, KRHarvestMoonDay, KRSubstitutionHolidayForChildrensDay2018, KRCelebrationForWorldCupHosting, KRSeventyYearsFromIndependenceDay, KRTemporaryHolidayForChildrensDay2016, KRTemporaryHolidayForHarvestMoonDay2017, KRTemporaryHolidayForChildrenDay2018, KRTemporaryHolidayForChildrenDay2019, HolidaysNeedToCheck, KRTemporaryHolidayForLiberationDay2020, KRTemporaryHoliday2021, HolidaysBefore1999, )) def __hash__(self): return hash(self.name) def __eq__(self, other): return self.__class__ == other.__class__
en
0.492863
Last update: 2018-10-26 # 현충일 # 제헌절 # 광복절 # 개천절 # 한글날 # KRX 연말 휴장 # Lunar New Year # 2000 # 2001 # 2002 # 2003 # 2004 # 2005 # 2006 # 2007 # 2008 # 2009 # 2010 # 2011 # 2012 # 2013 # 2014 # 2015 # 2016 # 2017 # 2018 # 2019 # 2020 # 2021 # 2022 # Election Days # National Assembly # Regional election # Presidency # National Assembly # Regional election # Presidency # National Assembly # Local election # National Assembly # Presidency # Local election # National Assembly # Presidency # Local election # National Assembly # Presidency # Local election # Buddha's birthday # Harvest Moon Day # 2000 # 2001 # 2002 # 2003 # 2004 # 2005 # 2006 # 2007 # 2008 # 2009 # 2010 # 2011 # 2012 # 2013 # 2014 # 2015 # 2016 # 2017 # 2018 # 2019 # 2020 # 2021 # 2022 # 대체휴일 # 대체휴일 # 임시공휴일 # 광복절 대체휴일 # 개천절 대체휴일 # 한글날 대체휴일 # 한글날 대체휴일 # 잘 모르겠는 휴장일 Exchange calendars for KRX Open Time: 9:00 AM, Asia/Seoul Close Time: 3:30 PM, Asia/Seoul (3:00 PM until 2016/07/31) # return timezone('Asia/Seoul')
2.338201
2
utilities.py
ameldocena/StratifiedAggregation
0
9048
<reponame>ameldocena/StratifiedAggregation import random import numpy #import tensorflow as tf #import torch from abc import abstractmethod from sklearn.decomposition import PCA from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr class SelectionStrategy: # Unchanged from original work @abstractmethod def select_round_workers(self, workers, poisoned_workers, kwargs): """ :param workers: list(int). All workers available for learning :param poisoned_workers: list(int). All workers that are poisoned :param kwargs: dict """ raise NotImplementedError("select_round_workers() not implemented") class RandomSelectionStrategy(SelectionStrategy): # Unchanged from original work """ Randomly selects workers out of the list of all workers """ def select_round_workers(self, workers, poisoned_workers, kwargs): #The poisoned_workers here are not used return random.sample(workers, kwargs["NUM_WORKERS_PER_ROUND"]) #returns a list of sampled worker ids # class StratifiedRandomSelection(SelectionStrategy): # #We first stratify: Each stratum will be a list of workers # #Then within each stratum, we randomly select # #We would need the list of workers and the information about their skews def select_aggregator(args, name, KWARGS={}): #Creates an Aggregator object as selected if name == "FedAvg": return FedAvg(args, name, KWARGS) elif name == "AlignedAvg": return AlignedAvg(args, name, KWARGS) elif name == "AlignedAvgImpute": KWARGS.update({"use_impute":"filter","align":"fusion"}) return AlignedAvg(args, name, **KWARGS) elif name == "MultiKrum": return MultiKrum(args, name, KWARGS) elif name == "TrimmedMean": return TrimmedMean(args, name, KWARGS) elif name == "Median": return Median(args, name, KWARGS) elif (name == "StratKrum") or (name == "StratTrimMean") or (name == "StratMedian") or (name == "StratFedAvg"): #We may have to change the class name to StratifiedAggregation return StratifiedAggr(args, name, KWARGS) else: raise NotImplementedError(f"Unrecognized Aggregator Name: {name}") def calculate_pca_of_gradients(logger, gradients, num_components): # Unchanged from original work pca = PCA(n_components=num_components) logger.info("Computing {}-component PCA of gradients".format(num_components)) return pca.fit_transform(gradients) #So this is here after all def calculate_model_gradient( model_1, model_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two Torch models. :param logger: loguru.logger (NOW REMOVED) :param model_1: torch.nn :param model_2: torch.nn """ model_1_parameters = list(dict(model_1.state_dict())) model_2_parameters = list(dict(model_2.state_dict())) return calculate_parameter_gradients(model_1_parameters, model_2_parameters) def calculate_parameter_gradients(params_1, params_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two sets of Torch parameters. :param logger: loguru.logger (NOW REMOVED) :param params_1: dict :param params_2: dict """ #logger.debug("Shape of model_1_parameters: {}".format(str(len(params_1)))) #logger.debug("Shape of model_2_parameters: {}".format(str(len(params_2)))) return numpy.array([x for x in numpy.subtract(params_1, params_2)]) # #Inserted # def convert2TF(torch_tensor): # # Converts a pytorch tensor into a Tensorflow. # # We first convert torch into numpy, then to tensorflow. # # Arg: torch_tensor - a Pytorch tensor object # np_tensor = torch_tensor.numpy().astype(float) # return tf.convert_to_tensor(np_tensor) # # def convert2Torch(tf_tensor): # #Converts a TF tensor to Torch # #Arg: tf_tensor - a TF tensor # np_tensor = tf.make_ndarray(tf_tensor) # return torch.from_numpy(np_tensor) def count_poisoned_stratum(stratified_workers, poisoned_workers): if len(poisoned_workers) > 0: print("\nPoisoned workers:", len(poisoned_workers), poisoned_workers) for stratum in stratified_workers: intersect = list(set(stratified_workers[stratum]).intersection(poisoned_workers)) print("Count poisoned workers per stratum:", len(intersect), intersect) print("Stratum: {}. Propn to total poisoned: {}. Propn to subpopn in stratum: {}".format(stratum, len(intersect)/len(poisoned_workers), len(intersect)/len(stratified_workers[stratum]))) else: print("No poisoned workers") def generate_uniform_weights(random_workers): """ This function generates uniform weights for each stratum in random_workers :param random_workers: :return: """ strata_weights = dict() weight = 1.0 / len(list(random_workers.keys())) for stratum in random_workers: strata_weights[stratum] = weight return strata_weights
import random import numpy #import tensorflow as tf #import torch from abc import abstractmethod from sklearn.decomposition import PCA from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr class SelectionStrategy: # Unchanged from original work @abstractmethod def select_round_workers(self, workers, poisoned_workers, kwargs): """ :param workers: list(int). All workers available for learning :param poisoned_workers: list(int). All workers that are poisoned :param kwargs: dict """ raise NotImplementedError("select_round_workers() not implemented") class RandomSelectionStrategy(SelectionStrategy): # Unchanged from original work """ Randomly selects workers out of the list of all workers """ def select_round_workers(self, workers, poisoned_workers, kwargs): #The poisoned_workers here are not used return random.sample(workers, kwargs["NUM_WORKERS_PER_ROUND"]) #returns a list of sampled worker ids # class StratifiedRandomSelection(SelectionStrategy): # #We first stratify: Each stratum will be a list of workers # #Then within each stratum, we randomly select # #We would need the list of workers and the information about their skews def select_aggregator(args, name, KWARGS={}): #Creates an Aggregator object as selected if name == "FedAvg": return FedAvg(args, name, KWARGS) elif name == "AlignedAvg": return AlignedAvg(args, name, KWARGS) elif name == "AlignedAvgImpute": KWARGS.update({"use_impute":"filter","align":"fusion"}) return AlignedAvg(args, name, **KWARGS) elif name == "MultiKrum": return MultiKrum(args, name, KWARGS) elif name == "TrimmedMean": return TrimmedMean(args, name, KWARGS) elif name == "Median": return Median(args, name, KWARGS) elif (name == "StratKrum") or (name == "StratTrimMean") or (name == "StratMedian") or (name == "StratFedAvg"): #We may have to change the class name to StratifiedAggregation return StratifiedAggr(args, name, KWARGS) else: raise NotImplementedError(f"Unrecognized Aggregator Name: {name}") def calculate_pca_of_gradients(logger, gradients, num_components): # Unchanged from original work pca = PCA(n_components=num_components) logger.info("Computing {}-component PCA of gradients".format(num_components)) return pca.fit_transform(gradients) #So this is here after all def calculate_model_gradient( model_1, model_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two Torch models. :param logger: loguru.logger (NOW REMOVED) :param model_1: torch.nn :param model_2: torch.nn """ model_1_parameters = list(dict(model_1.state_dict())) model_2_parameters = list(dict(model_2.state_dict())) return calculate_parameter_gradients(model_1_parameters, model_2_parameters) def calculate_parameter_gradients(params_1, params_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two sets of Torch parameters. :param logger: loguru.logger (NOW REMOVED) :param params_1: dict :param params_2: dict """ #logger.debug("Shape of model_1_parameters: {}".format(str(len(params_1)))) #logger.debug("Shape of model_2_parameters: {}".format(str(len(params_2)))) return numpy.array([x for x in numpy.subtract(params_1, params_2)]) # #Inserted # def convert2TF(torch_tensor): # # Converts a pytorch tensor into a Tensorflow. # # We first convert torch into numpy, then to tensorflow. # # Arg: torch_tensor - a Pytorch tensor object # np_tensor = torch_tensor.numpy().astype(float) # return tf.convert_to_tensor(np_tensor) # # def convert2Torch(tf_tensor): # #Converts a TF tensor to Torch # #Arg: tf_tensor - a TF tensor # np_tensor = tf.make_ndarray(tf_tensor) # return torch.from_numpy(np_tensor) def count_poisoned_stratum(stratified_workers, poisoned_workers): if len(poisoned_workers) > 0: print("\nPoisoned workers:", len(poisoned_workers), poisoned_workers) for stratum in stratified_workers: intersect = list(set(stratified_workers[stratum]).intersection(poisoned_workers)) print("Count poisoned workers per stratum:", len(intersect), intersect) print("Stratum: {}. Propn to total poisoned: {}. Propn to subpopn in stratum: {}".format(stratum, len(intersect)/len(poisoned_workers), len(intersect)/len(stratified_workers[stratum]))) else: print("No poisoned workers") def generate_uniform_weights(random_workers): """ This function generates uniform weights for each stratum in random_workers :param random_workers: :return: """ strata_weights = dict() weight = 1.0 / len(list(random_workers.keys())) for stratum in random_workers: strata_weights[stratum] = weight return strata_weights
en
0.693368
#import tensorflow as tf #import torch # Unchanged from original work :param workers: list(int). All workers available for learning :param poisoned_workers: list(int). All workers that are poisoned :param kwargs: dict # Unchanged from original work Randomly selects workers out of the list of all workers #The poisoned_workers here are not used #returns a list of sampled worker ids # class StratifiedRandomSelection(SelectionStrategy): # #We first stratify: Each stratum will be a list of workers # #Then within each stratum, we randomly select # #We would need the list of workers and the information about their skews #Creates an Aggregator object as selected #We may have to change the class name to StratifiedAggregation # Unchanged from original work #So this is here after all # Minor change from original work Calculates the gradient (parameter difference) between two Torch models. :param logger: loguru.logger (NOW REMOVED) :param model_1: torch.nn :param model_2: torch.nn # Minor change from original work Calculates the gradient (parameter difference) between two sets of Torch parameters. :param logger: loguru.logger (NOW REMOVED) :param params_1: dict :param params_2: dict #logger.debug("Shape of model_1_parameters: {}".format(str(len(params_1)))) #logger.debug("Shape of model_2_parameters: {}".format(str(len(params_2)))) # #Inserted # def convert2TF(torch_tensor): # # Converts a pytorch tensor into a Tensorflow. # # We first convert torch into numpy, then to tensorflow. # # Arg: torch_tensor - a Pytorch tensor object # np_tensor = torch_tensor.numpy().astype(float) # return tf.convert_to_tensor(np_tensor) # # def convert2Torch(tf_tensor): # #Converts a TF tensor to Torch # #Arg: tf_tensor - a TF tensor # np_tensor = tf.make_ndarray(tf_tensor) # return torch.from_numpy(np_tensor) This function generates uniform weights for each stratum in random_workers :param random_workers: :return:
2.595923
3
game/player.py
b1naryth1ef/mmo
7
9049
<reponame>b1naryth1ef/mmo from sprites import PlayerSprite import time class Player(object): def __init__(self, name, game): self.name = name self.pos = [50, 50] self.do_blit = False self.game = game self.surf = game.SCREEN self.lastMove = 99999999999 self.velo_def = [0, 0] self.velo_x = 0 self.velo_y = 0 self.sprite = PlayerSprite(self) self.moving = [False, False, False, False] def tick(self): if self.do_blit: self.game.reDraw = True self.sprite.display(self.surf.screen) #self.surface.screen.blit(self.image, self.pos) self.do_blit = False # print self.lastMove - time.time() if True in self.moving and abs(self.lastMove - time.time()) >= .08: self.lastMove = time.time() if self.moving[0]: self.move(x=-1) if self.moving[1]: self.move(x=1)#down if self.moving[2]: self.move(y=-1)#left if self.moving[3]: self.move(y=1)#right def move(self, x=0, y=0): self.pos[1]+=x*10 self.pos[0]+=y*10 self.do_blit = True if y < 0 and self.sprite.dir == 1: self.sprite.flip() elif y > 0 and self.sprite.dir == -1: self.sprite.flip()
from sprites import PlayerSprite import time class Player(object): def __init__(self, name, game): self.name = name self.pos = [50, 50] self.do_blit = False self.game = game self.surf = game.SCREEN self.lastMove = 99999999999 self.velo_def = [0, 0] self.velo_x = 0 self.velo_y = 0 self.sprite = PlayerSprite(self) self.moving = [False, False, False, False] def tick(self): if self.do_blit: self.game.reDraw = True self.sprite.display(self.surf.screen) #self.surface.screen.blit(self.image, self.pos) self.do_blit = False # print self.lastMove - time.time() if True in self.moving and abs(self.lastMove - time.time()) >= .08: self.lastMove = time.time() if self.moving[0]: self.move(x=-1) if self.moving[1]: self.move(x=1)#down if self.moving[2]: self.move(y=-1)#left if self.moving[3]: self.move(y=1)#right def move(self, x=0, y=0): self.pos[1]+=x*10 self.pos[0]+=y*10 self.do_blit = True if y < 0 and self.sprite.dir == 1: self.sprite.flip() elif y > 0 and self.sprite.dir == -1: self.sprite.flip()
en
0.159253
#self.surface.screen.blit(self.image, self.pos) # print self.lastMove - time.time() #down #left #right
3.146375
3
toys/layers/pool.py
cbarrick/toys
1
9050
<filename>toys/layers/pool.py from typing import Sequence import torch from torch import nn class MaxPool2d(nn.Module): def __init__(self, kernel_size, **kwargs): super().__init__() stride = kwargs.setdefault('stride', kernel_size) padding = kwargs.setdefault('padding', 0) dilation = kwargs.setdefault('dilation', 1) return_indices = kwargs.setdefault('return_indices', False) ceil_mode = kwargs.setdefault('ceil_mode', False) self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding, dilation=dilation, return_indices=return_indices, ceil_mode=ceil_mode) def forward(self, x): (*batch, height, width, channels) = x.shape x = x.view(-1, height, width, channels) x = torch.einsum('nhwc->nchw', [x]) x = self.pool(x) x = torch.einsum('nchw->nhwc', [x]) (_, new_height, new_width, _) = x.shape x = x.contiguous() x = x.view(*batch, new_height, new_width, channels) return x
<filename>toys/layers/pool.py from typing import Sequence import torch from torch import nn class MaxPool2d(nn.Module): def __init__(self, kernel_size, **kwargs): super().__init__() stride = kwargs.setdefault('stride', kernel_size) padding = kwargs.setdefault('padding', 0) dilation = kwargs.setdefault('dilation', 1) return_indices = kwargs.setdefault('return_indices', False) ceil_mode = kwargs.setdefault('ceil_mode', False) self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding, dilation=dilation, return_indices=return_indices, ceil_mode=ceil_mode) def forward(self, x): (*batch, height, width, channels) = x.shape x = x.view(-1, height, width, channels) x = torch.einsum('nhwc->nchw', [x]) x = self.pool(x) x = torch.einsum('nchw->nhwc', [x]) (_, new_height, new_width, _) = x.shape x = x.contiguous() x = x.view(*batch, new_height, new_width, channels) return x
none
1
2.628106
3
src/forecastmgmt/ui/masterdata/person_window.py
vvladych/forecastmgmt
0
9051
<reponame>vvladych/forecastmgmt from gi.repository import Gtk from masterdata_abstract_window import MasterdataAbstractWindow from person_add_mask import PersonAddMask from person_list_mask import PersonListMask class PersonWindow(MasterdataAbstractWindow): def __init__(self, main_window): super(PersonWindow, self).__init__(main_window, PersonListMask(), PersonAddMask(main_window, self.add_working_area))
from gi.repository import Gtk from masterdata_abstract_window import MasterdataAbstractWindow from person_add_mask import PersonAddMask from person_list_mask import PersonListMask class PersonWindow(MasterdataAbstractWindow): def __init__(self, main_window): super(PersonWindow, self).__init__(main_window, PersonListMask(), PersonAddMask(main_window, self.add_working_area))
none
1
1.838144
2
fastseg/model/utils.py
SeockHwa/Segmentation_mobileV3
274
9052
<filename>fastseg/model/utils.py<gh_stars>100-1000 import torch.nn as nn from .efficientnet import EfficientNet_B4, EfficientNet_B0 from .mobilenetv3 import MobileNetV3_Large, MobileNetV3_Small def get_trunk(trunk_name): """Retrieve the pretrained network trunk and channel counts""" if trunk_name == 'efficientnet_b4': backbone = EfficientNet_B4(pretrained=True) s2_ch = 24 s4_ch = 32 high_level_ch = 1792 elif trunk_name == 'efficientnet_b0': backbone = EfficientNet_B0(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 1280 elif trunk_name == 'mobilenetv3_large': backbone = MobileNetV3_Large(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 960 elif trunk_name == 'mobilenetv3_small': backbone = MobileNetV3_Small(pretrained=True) s2_ch = 16 s4_ch = 16 high_level_ch = 576 else: raise ValueError('unknown backbone {}'.format(trunk_name)) return backbone, s2_ch, s4_ch, high_level_ch class ConvBnRelu(nn.Module): """Convenience layer combining a Conv2d, BatchNorm2d, and a ReLU activation. Original source of this code comes from https://github.com/lingtengqiu/Deeperlab-pytorch/blob/master/seg_opr/seg_oprs.py """ def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, norm_layer=nn.BatchNorm2d): super(ConvBnRelu, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = norm_layer(out_planes, eps=1e-5) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x
<filename>fastseg/model/utils.py<gh_stars>100-1000 import torch.nn as nn from .efficientnet import EfficientNet_B4, EfficientNet_B0 from .mobilenetv3 import MobileNetV3_Large, MobileNetV3_Small def get_trunk(trunk_name): """Retrieve the pretrained network trunk and channel counts""" if trunk_name == 'efficientnet_b4': backbone = EfficientNet_B4(pretrained=True) s2_ch = 24 s4_ch = 32 high_level_ch = 1792 elif trunk_name == 'efficientnet_b0': backbone = EfficientNet_B0(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 1280 elif trunk_name == 'mobilenetv3_large': backbone = MobileNetV3_Large(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 960 elif trunk_name == 'mobilenetv3_small': backbone = MobileNetV3_Small(pretrained=True) s2_ch = 16 s4_ch = 16 high_level_ch = 576 else: raise ValueError('unknown backbone {}'.format(trunk_name)) return backbone, s2_ch, s4_ch, high_level_ch class ConvBnRelu(nn.Module): """Convenience layer combining a Conv2d, BatchNorm2d, and a ReLU activation. Original source of this code comes from https://github.com/lingtengqiu/Deeperlab-pytorch/blob/master/seg_opr/seg_oprs.py """ def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, norm_layer=nn.BatchNorm2d): super(ConvBnRelu, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = norm_layer(out_planes, eps=1e-5) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x
en
0.596223
Retrieve the pretrained network trunk and channel counts Convenience layer combining a Conv2d, BatchNorm2d, and a ReLU activation. Original source of this code comes from https://github.com/lingtengqiu/Deeperlab-pytorch/blob/master/seg_opr/seg_oprs.py
2.182528
2
python/testData/inspections/PyTypeCheckerInspection/ModuleTypeParameter/a.py
06needhamt/intellij-community
2
9053
import module from types import ModuleType def foo(m: ModuleType): pass def bar(m): return m.__name__ foo(module) bar(module)
import module from types import ModuleType def foo(m: ModuleType): pass def bar(m): return m.__name__ foo(module) bar(module)
none
1
2.524533
3
tests/webapp/test_webapp_actions.py
proofdock/chaos-azure
1
9054
<reponame>proofdock/chaos-azure from unittest.mock import patch, MagicMock from pdchaosazure.webapp.actions import stop, restart, delete from tests.data import config_provider, secrets_provider, webapp_provider @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_stop_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" stop(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.stop.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_restart_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" restart(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.restart.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_delete_webapp(init, fetch): webapp = webapp_provider.default() config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" delete(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.delete.assert_called_with(webapp['resourceGroup'], webapp['name'])
from unittest.mock import patch, MagicMock from pdchaosazure.webapp.actions import stop, restart, delete from tests.data import config_provider, secrets_provider, webapp_provider @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_stop_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" stop(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.stop.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_restart_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" restart(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.restart.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_delete_webapp(init, fetch): webapp = webapp_provider.default() config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" delete(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.delete.assert_called_with(webapp['resourceGroup'], webapp['name'])
none
1
2.204043
2
utils.py
lbesnard/subimporter
0
9055
<reponame>lbesnard/subimporter def stringifySong(song): return f"<'{song['title']}' by '{song['artist']}' in '{song['album']}'>"
def stringifySong(song): return f"<'{song['title']}' by '{song['artist']}' in '{song['album']}'>"
none
1
2.663007
3
echopype/model/modelbase.py
leewujung/echopype-lfs-test
0
9056
""" echopype data model that keeps tracks of echo data and its connection to data files. """ import os import warnings import datetime as dt from echopype.utils import uwa import numpy as np import xarray as xr class ModelBase(object): """Class for manipulating echo data that is already converted to netCDF.""" def __init__(self, file_path=""): self.file_path = file_path # this passes the input through file name test self.noise_est_range_bin_size = 5 # meters per tile for noise estimation self.noise_est_ping_size = 30 # number of pings per tile for noise estimation self.MVBS_range_bin_size = 5 # meters per tile for MVBS self.MVBS_ping_size = 30 # number of pings per tile for MVBS self.Sv = None # calibrated volume backscattering strength self.Sv_path = None # path to save calibrated results self.Sv_clean = None # denoised volume backscattering strength self.TS = None # calibrated target strength self.TS_path = None # path to save TS calculation results self.MVBS = None # mean volume backscattering strength self._salinity = None self._temperature = None self._pressure = None self._sound_speed = None self._sample_thickness = None self._range = None self._seawater_absorption = None @property def salinity(self): return self._salinity @salinity.setter def salinity(self, sal): self._salinity = sal @property def pressure(self): return self._pressure @pressure.setter def pressure(self, pres): self._pressure = pres @property def temperature(self): return self._temperature @temperature.setter def temperature(self, t): self._temperature = t @property def sample_thickness(self): return self._sample_thickness @sample_thickness.setter def sample_thickness(self, sth): self._sample_thickness = sth @property def range(self): return self._range @range.setter def range(self, rr): self._range = rr @property def seawater_absorption(self): return self._seawater_absorption @seawater_absorption.setter def seawater_absorption(self, absorption): self._seawater_absorption.values = absorption @property def sound_speed(self): return self._sound_speed @sound_speed.setter def sound_speed(self, ss): if isinstance(self._sound_speed, xr.DataArray): self._sound_speed.values = ss else: self._sound_speed = ss @property def file_path(self): return self._file_path @file_path.setter def file_path(self, p): self._file_path = p # Load netCDF groups if file format is correct pp = os.path.basename(p) _, ext = os.path.splitext(pp) supported_ext_list = ['.raw', '.01A'] if ext in supported_ext_list: print('Data file in manufacturer format, please convert to .nc first.') elif ext == '.nc': self.toplevel = xr.open_dataset(self.file_path) # Get .nc filenames for storing processed data if computation is performed self.Sv_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv.nc') self.Sv_clean_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv_clean.nc') self.TS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_TS.nc') self.MVBS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_MVBS.nc') # Raise error if the file format convention does not match if self.toplevel.sonar_convention_name != 'SONAR-netCDF4': raise ValueError('netCDF file convention not recognized.') self.toplevel.close() else: raise ValueError('Data file format not recognized.') def calc_sound_speed(self, src='file'): """Base method to be overridden for calculating sound_speed for different sonar models """ # issue warning when subclass methods not available print("Sound speed calculation has not been implemented for this sonar model!") def calc_seawater_absorption(self, src='file'): """Base method to be overridden for calculating seawater_absorption for different sonar models """ # issue warning when subclass methods not available print("Seawater absorption calculation has not been implemented for this sonar model!") def calc_sample_thickness(self): """Base method to be overridden for calculating sample_thickness for different sonar models. """ # issue warning when subclass methods not available print('Sample thickness calculation has not been implemented for this sonar model!') def calc_range(self): """Base method to be overridden for calculating range for different sonar models. """ # issue warning when subclass methods not available print('Range calculation has not been implemented for this sonar model!') def recalculate_environment(self, ss=True, sa=True, st=True, r=True): """ Recalculates sound speed, seawater absorption, sample thickness, and range using salinity, temperature, and pressure Parameters ---------- ss : bool Whether to calcualte sound speed. Defaults to `True` sa : bool Whether to calcualte seawater absorption. Defaults to `True` st : bool Whether to calcualte sample thickness. Defaults to `True` r : bool Whether to calcualte range. Defaults to `True` """ s, t, p = self.salinity, self.temperature, self.pressure if s is not None and t is not None and p is not None: if ss: self.sound_speed = self.calc_sound_speed(src='user') if sa: self.seawater_absorption = self.calc_seawater_absorption(src='user') if st: self.sample_thickness = self.calc_sample_thickness() if r: self.range = self.calc_range() elif s is None: print("Salinity was not provided. Environment was not recalculated") elif t is None: print("Temperature was not provided. Environment was not recalculated") else: print("Pressure was not provided. Environment was not recalculated") def calibrate(self): """Base method to be overridden for volume backscatter calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Calibration has not been implemented for this sonar model!') def calibrate_TS(self): """Base method to be overridden for target strength calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Target strength calibration has not been implemented for this sonar model!') def validate_path(self, save_path, save_postfix): """Creates a directory if it doesnt exist. Returns a valid save path. """ def _assemble_path(): file_in = os.path.basename(self.file_path) file_name, file_ext = os.path.splitext(file_in) return file_name + save_postfix + file_ext if save_path is None: save_dir = os.path.dirname(self.file_path) file_out = _assemble_path() else: path_ext = os.path.splitext(save_path)[1] # If given save_path is file, split into directory and file if path_ext != '': save_dir, file_out = os.path.split(save_path) if save_dir == '': # save_path is only a filename without directory save_dir = os.path.dirname(self.file_path) # use directory from input file # If given save_path is a directory, get a filename from input .nc file else: save_dir = save_path file_out = _assemble_path() # Create folder if not already exists if save_dir == '': # TODO: should we use '.' instead of os.getcwd()? save_dir = os.getcwd() # explicit about path to current directory if not os.path.exists(save_dir): os.mkdir(save_dir) return os.path.join(save_dir, file_out) @staticmethod def get_tile_params(r_data_sz, p_data_sz, r_tile_sz, p_tile_sz, sample_thickness): """Obtain ping_time and range_bin parameters associated with groupby and groupby_bins operations. These parameters are used in methods remove_noise(), noise_estimates(), get_MVBS(). Parameters ---------- r_data_sz : int number of range_bin entries in data p_data_sz : int number of ping_time entries in data r_tile_sz : float tile size along the range_bin dimension [m] p_tile_sz : int tile size along the ping_time dimension [number of pings] sample_thickness : float thickness of each data sample, determined by sound speed and pulse duration Returns ------- r_tile_sz : int modified tile size along the range dimension [m], determined by sample_thickness r_tile_bin_edge : list of int bin edges along the range_bin dimension for :py:func:`xarray.DataArray.groupby_bins` operation p_tile_bin_edge : list of int bin edges along the ping_time dimension for :py:func:`xarray.DataArray.groupby_bins` operation """ # Adjust noise_est_range_bin_size because range_bin_size may be an inconvenient value num_r_per_tile = np.round(r_tile_sz / sample_thickness).astype(int) # num of range_bin per tile r_tile_sz = num_r_per_tile * sample_thickness # Total number of range_bin and ping tiles num_tile_range_bin = np.ceil(r_data_sz / num_r_per_tile).astype(int) if np.mod(p_data_sz, p_tile_sz) == 0: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) + 1 else: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) # Tile bin edges along range # ... -1 to make sure each bin has the same size because of the right-inclusive and left-exclusive bins r_tile_bin_edge = [np.arange(x.values + 1) * y.values - 1 for x, y in zip(num_tile_range_bin, num_r_per_tile)] p_tile_bin_edge = np.arange(num_tile_ping + 1) * p_tile_sz - 1 return r_tile_sz, r_tile_bin_edge, p_tile_bin_edge def _get_proc_Sv(self, source_path=None, source_postfix='_Sv'): """Private method to return calibrated Sv either from memory or _Sv.nc file. This method is called by remove_noise(), noise_estimates() and get_MVBS(). """ if self.Sv is None: # calibration not yet performed Sv_path = self.validate_path(save_path=source_path, # wrangle _Sv path save_postfix=source_postfix) if os.path.exists(Sv_path): # _Sv exists self.Sv = xr.open_dataset(Sv_path) # load _Sv file else: # if path specification given but file do not exist: if (source_path is not None) or (source_postfix != '_Sv'): print('%s no calibrated data found in specified path: %s' % (dt.datetime.now().strftime('%H:%M:%S'), Sv_path)) else: print('%s data has not been calibrated. ' % dt.datetime.now().strftime('%H:%M:%S')) print(' performing calibration now and operate from Sv in memory.') self.calibrate() # calibrate, have Sv in memory return self.Sv def remove_noise(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None, SNR=0, Sv_threshold=None, save=False, save_postfix='_Sv_clean', save_path=None): """Remove noise by using noise estimates obtained from the minimum mean calibrated power level along each column of tiles. See method noise_estimates() for details of noise estimation. Reference: <NAME> & Higginbottom, 2017, ICES Journal of Marine Sciences Parameters ---------- source_postfix : str postfix of the Sv file used to remove noise from, default to '_Sv' source_path : str path of Sv file used to remove noise from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float, optional Meters per tile for noise estimation [m] noise_est_ping_size : int, optional Number of pings per tile for noise estimation SNR : int, optional Minimum signal-to-noise ratio (remove values below this after general noise removal). Sv_threshold : int, optional Minimum Sv threshold [dB] (remove values below this after general noise removal) save : bool, optional Whether to save the denoised Sv (``Sv_clean``) into a new .nc file. Default to ``False``. save_postfix : str Filename postfix, default to '_Sv_clean' save_path : str Full filename to save to, overwriting the RAWFILENAME_Sv_clean.nc default """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Get calibrated Sv if self.Sv is not None: print('%s Remove noise from Sv stored in memory.' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: print('%s Remove noise from Sv stored in: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Get TVG and ABS for compensating for transmission loss range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Function for use with apply def remove_n(x, rr): p_c_lin = 10 ** ((x.Sv - x.ABS - x.TVG) / 10) nn = 10 * np.log10(p_c_lin.mean(dim='ping_time').groupby_bins('range_bin', rr).mean().min( dim='range_bin_bins')) + x.ABS + x.TVG # Return values where signal is [SNR] dB above noise and at least [Sv_threshold] dB if not Sv_threshold: return x.Sv.where(x.Sv > (nn + SNR), other=np.nan) else: return x.Sv.where((x.Sv > (nn + SNR)) & (x > Sv_threshold), other=np.nan) # Groupby noise removal operation proc_data.coords['ping_idx'] = ('ping_time', np.arange(proc_data.Sv['ping_time'].size)) ABS.name = 'ABS' TVG.name = 'TVG' pp = xr.merge([proc_data, ABS]) pp = xr.merge([pp, TVG]) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: Sv_clean = pp.groupby_bins('ping_idx', ping_tile_bin_edge).\ map(remove_n, rr=range_bin_tile_bin_edge[0]) Sv_clean = Sv_clean.drop_vars(['ping_idx']) else: tmp_clean = [] cnt = 0 for key, val in pp.groupby('frequency'): # iterate over different frequency channel tmp = val.groupby_bins('ping_idx', ping_tile_bin_edge). \ map(remove_n, rr=range_bin_tile_bin_edge[cnt]) cnt += 1 tmp_clean.append(tmp) clean_val = np.array([zz.values for zz in xr.align(*tmp_clean, join='outer')]) Sv_clean = xr.DataArray(clean_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_clean[0]['ping_time'].values, 'range_bin': tmp_clean[0]['range_bin'].values}, dims=['frequency', 'ping_time', 'range_bin']) # Set up DataSet Sv_clean.name = 'Sv' Sv_clean = Sv_clean.to_dataset() Sv_clean['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) Sv_clean.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Attach calculated range into data set Sv_clean['range'] = (('frequency', 'range_bin'), self.range.T) # Save as object attributes as a netCDF file self.Sv_clean = Sv_clean # TODO: now adding the below so that MVBS can be calculated directly # from the cleaned Sv without saving and loading Sv_clean from disk. # However this is not explicit to the user. A better way to do this # is to change get_MVBS() to first check existence of self.Sv_clean # when `_Sv_clean` is specified as the source_postfix. if not print_src: # remove noise from Sv stored in memory self.Sv = Sv_clean.copy() if save: self.Sv_clean_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving denoised Sv to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_clean_path)) Sv_clean.to_netcdf(self.Sv_clean_path) # Close opened resources proc_data.close() def noise_estimates(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None): """Obtain noise estimates from the minimum mean calibrated power level along each column of tiles. The tiles here are defined by class attributes noise_est_range_bin_size and noise_est_ping_size. This method contains redundant pieces of code that also appear in method remove_noise(), but this method can be used separately to determine the exact tile size for noise removal before noise removal is actually performed. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate noise estimates from, default to '_Sv' source_path : str path of Sv file used to calculate noise estimates from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float meters per tile for noise estimation [m] noise_est_ping_size : int number of pings per tile for noise estimation Returns ------- noise_est : xarray DataSet noise estimates as a DataArray with dimension [ping_time x range_bin] ping_time and range_bin are taken from the first element of each tile along each of the dimensions """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Use calibrated data to calculate noise removal proc_data = self._get_proc_Sv() # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Values for noise estimates range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Noise estimates proc_data['power_cal'] = 10 ** ((proc_data.Sv - ABS - TVG) / 10) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: noise_est = 10 * np.log10(proc_data['power_cal'].coarsen( ping_time=self.noise_est_ping_size, range_bin=int(np.unique(self.noise_est_range_bin_size / self.sample_thickness)), boundary='pad').mean().min(dim='range_bin')) else: range_bin_coarsen_idx = (self.noise_est_range_bin_size / self.sample_thickness).astype(int) tmp_noise = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(proc_data['power_cal'].sel(frequency=freq).coarsen( ping_time=self.noise_est_ping_size, range_bin=r_bin.values, boundary='pad').mean().min(dim='range_bin')) tmp_da.name = 'noise_est' tmp_noise.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions noise_val = np.array([zz.values for zz in xr.align(*tmp_noise, join='outer')]) noise_est = xr.DataArray(noise_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_noise[0]['ping_time'].values}, dims=['frequency', 'ping_time']) noise_est = noise_est.to_dataset(name='noise_est') noise_est['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) noise_est.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Close opened resources proc_data.close() return noise_est def get_MVBS(self, source_postfix='_Sv', source_path=None, MVBS_range_bin_size=None, MVBS_ping_size=None, save=False, save_postfix='_MVBS', save_path=None): """Calculate Mean Volume Backscattering Strength (MVBS). The calculation uses class attributes MVBS_ping_size and MVBS_range_bin_size to calculate and save MVBS as a new attribute to the calling EchoData instance. MVBS is an xarray DataArray with dimensions ``ping_time`` and ``range_bin`` that are from the first elements of each tile along the corresponding dimensions in the original Sv or Sv_clean DataArray. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate MVBS, default to '_Sv' source_path : str path of Sv file used to calculate MVBS, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc MVBS_range_bin_size : float, optional meters per tile for calculating MVBS [m] MVBS_ping_size : int, optional number of pings per tile for calculating MVBS save : bool, optional whether to save the calculated MVBS into a new .nc file, default to ``False`` save_postfix : str Filename postfix, default to '_MVBS' save_path : str Full filename to save to, overwriting the RAWFILENAME_MVBS.nc default """ # Check params if (MVBS_range_bin_size is not None) and (self.MVBS_range_bin_size != MVBS_range_bin_size): self.MVBS_range_bin_size = MVBS_range_bin_size if (MVBS_ping_size is not None) and (self.MVBS_ping_size != MVBS_ping_size): self.MVBS_ping_size = MVBS_ping_size # Get Sv by validating path and calibrate if not already done if self.Sv is not None: print('%s use Sv stored in memory to calculate MVBS' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: if self.Sv_path is not None: print('%s Sv source used to calculate MVBS: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) else: print('%s Sv source used to calculate MVBS: memory' % dt.datetime.now().strftime('%H:%M:%S')) # Get tile indexing parameters self.MVBS_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.MVBS_range_bin_size, p_tile_sz=self.MVBS_ping_size, sample_thickness=self.sample_thickness) # Calculate MVBS Sv_linear = 10 ** (proc_data.Sv / 10) # convert to linear domain before averaging # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: MVBS = 10 * np.log10(Sv_linear.coarsen( ping_time=self.MVBS_ping_size, range_bin=int(np.unique(self.MVBS_range_bin_size / self.sample_thickness)), boundary='pad').mean()) MVBS.coords['range_bin'] = ('range_bin', np.arange(MVBS['range_bin'].size)) else: range_bin_coarsen_idx = (self.MVBS_range_bin_size / self.sample_thickness).astype(int) tmp_MVBS = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(Sv_linear.sel(frequency=freq).coarsen( ping_time=self.MVBS_ping_size, range_bin=r_bin.values, boundary='pad').mean()) tmp_da.coords['range_bin'] = ('range_bin', np.arange(tmp_da['range_bin'].size)) tmp_da.name = 'MVBS' tmp_MVBS.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions MVBS_val = np.array([zz.values for zz in xr.align(*tmp_MVBS, join='outer')]) MVBS = xr.DataArray(MVBS_val, coords={'frequency': Sv_linear['frequency'].values, 'ping_time': tmp_MVBS[0]['ping_time'].values, 'range_bin': np.arange(MVBS_val.shape[2])}, dims=['frequency', 'ping_time', 'range_bin']).dropna(dim='range_bin', how='all') # Set MVBS attributes MVBS.name = 'MVBS' MVBS = MVBS.to_dataset() MVBS['MVBS_range_bin_size'] = ('frequency', self.MVBS_range_bin_size) MVBS.attrs['MVBS_ping_size'] = self.MVBS_ping_size # Save results in object and as a netCDF file self.MVBS = MVBS if save: self.MVBS_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving MVBS to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.MVBS_path)) MVBS.to_netcdf(self.MVBS_path) # Close opened resources proc_data.close()
""" echopype data model that keeps tracks of echo data and its connection to data files. """ import os import warnings import datetime as dt from echopype.utils import uwa import numpy as np import xarray as xr class ModelBase(object): """Class for manipulating echo data that is already converted to netCDF.""" def __init__(self, file_path=""): self.file_path = file_path # this passes the input through file name test self.noise_est_range_bin_size = 5 # meters per tile for noise estimation self.noise_est_ping_size = 30 # number of pings per tile for noise estimation self.MVBS_range_bin_size = 5 # meters per tile for MVBS self.MVBS_ping_size = 30 # number of pings per tile for MVBS self.Sv = None # calibrated volume backscattering strength self.Sv_path = None # path to save calibrated results self.Sv_clean = None # denoised volume backscattering strength self.TS = None # calibrated target strength self.TS_path = None # path to save TS calculation results self.MVBS = None # mean volume backscattering strength self._salinity = None self._temperature = None self._pressure = None self._sound_speed = None self._sample_thickness = None self._range = None self._seawater_absorption = None @property def salinity(self): return self._salinity @salinity.setter def salinity(self, sal): self._salinity = sal @property def pressure(self): return self._pressure @pressure.setter def pressure(self, pres): self._pressure = pres @property def temperature(self): return self._temperature @temperature.setter def temperature(self, t): self._temperature = t @property def sample_thickness(self): return self._sample_thickness @sample_thickness.setter def sample_thickness(self, sth): self._sample_thickness = sth @property def range(self): return self._range @range.setter def range(self, rr): self._range = rr @property def seawater_absorption(self): return self._seawater_absorption @seawater_absorption.setter def seawater_absorption(self, absorption): self._seawater_absorption.values = absorption @property def sound_speed(self): return self._sound_speed @sound_speed.setter def sound_speed(self, ss): if isinstance(self._sound_speed, xr.DataArray): self._sound_speed.values = ss else: self._sound_speed = ss @property def file_path(self): return self._file_path @file_path.setter def file_path(self, p): self._file_path = p # Load netCDF groups if file format is correct pp = os.path.basename(p) _, ext = os.path.splitext(pp) supported_ext_list = ['.raw', '.01A'] if ext in supported_ext_list: print('Data file in manufacturer format, please convert to .nc first.') elif ext == '.nc': self.toplevel = xr.open_dataset(self.file_path) # Get .nc filenames for storing processed data if computation is performed self.Sv_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv.nc') self.Sv_clean_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv_clean.nc') self.TS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_TS.nc') self.MVBS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_MVBS.nc') # Raise error if the file format convention does not match if self.toplevel.sonar_convention_name != 'SONAR-netCDF4': raise ValueError('netCDF file convention not recognized.') self.toplevel.close() else: raise ValueError('Data file format not recognized.') def calc_sound_speed(self, src='file'): """Base method to be overridden for calculating sound_speed for different sonar models """ # issue warning when subclass methods not available print("Sound speed calculation has not been implemented for this sonar model!") def calc_seawater_absorption(self, src='file'): """Base method to be overridden for calculating seawater_absorption for different sonar models """ # issue warning when subclass methods not available print("Seawater absorption calculation has not been implemented for this sonar model!") def calc_sample_thickness(self): """Base method to be overridden for calculating sample_thickness for different sonar models. """ # issue warning when subclass methods not available print('Sample thickness calculation has not been implemented for this sonar model!') def calc_range(self): """Base method to be overridden for calculating range for different sonar models. """ # issue warning when subclass methods not available print('Range calculation has not been implemented for this sonar model!') def recalculate_environment(self, ss=True, sa=True, st=True, r=True): """ Recalculates sound speed, seawater absorption, sample thickness, and range using salinity, temperature, and pressure Parameters ---------- ss : bool Whether to calcualte sound speed. Defaults to `True` sa : bool Whether to calcualte seawater absorption. Defaults to `True` st : bool Whether to calcualte sample thickness. Defaults to `True` r : bool Whether to calcualte range. Defaults to `True` """ s, t, p = self.salinity, self.temperature, self.pressure if s is not None and t is not None and p is not None: if ss: self.sound_speed = self.calc_sound_speed(src='user') if sa: self.seawater_absorption = self.calc_seawater_absorption(src='user') if st: self.sample_thickness = self.calc_sample_thickness() if r: self.range = self.calc_range() elif s is None: print("Salinity was not provided. Environment was not recalculated") elif t is None: print("Temperature was not provided. Environment was not recalculated") else: print("Pressure was not provided. Environment was not recalculated") def calibrate(self): """Base method to be overridden for volume backscatter calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Calibration has not been implemented for this sonar model!') def calibrate_TS(self): """Base method to be overridden for target strength calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Target strength calibration has not been implemented for this sonar model!') def validate_path(self, save_path, save_postfix): """Creates a directory if it doesnt exist. Returns a valid save path. """ def _assemble_path(): file_in = os.path.basename(self.file_path) file_name, file_ext = os.path.splitext(file_in) return file_name + save_postfix + file_ext if save_path is None: save_dir = os.path.dirname(self.file_path) file_out = _assemble_path() else: path_ext = os.path.splitext(save_path)[1] # If given save_path is file, split into directory and file if path_ext != '': save_dir, file_out = os.path.split(save_path) if save_dir == '': # save_path is only a filename without directory save_dir = os.path.dirname(self.file_path) # use directory from input file # If given save_path is a directory, get a filename from input .nc file else: save_dir = save_path file_out = _assemble_path() # Create folder if not already exists if save_dir == '': # TODO: should we use '.' instead of os.getcwd()? save_dir = os.getcwd() # explicit about path to current directory if not os.path.exists(save_dir): os.mkdir(save_dir) return os.path.join(save_dir, file_out) @staticmethod def get_tile_params(r_data_sz, p_data_sz, r_tile_sz, p_tile_sz, sample_thickness): """Obtain ping_time and range_bin parameters associated with groupby and groupby_bins operations. These parameters are used in methods remove_noise(), noise_estimates(), get_MVBS(). Parameters ---------- r_data_sz : int number of range_bin entries in data p_data_sz : int number of ping_time entries in data r_tile_sz : float tile size along the range_bin dimension [m] p_tile_sz : int tile size along the ping_time dimension [number of pings] sample_thickness : float thickness of each data sample, determined by sound speed and pulse duration Returns ------- r_tile_sz : int modified tile size along the range dimension [m], determined by sample_thickness r_tile_bin_edge : list of int bin edges along the range_bin dimension for :py:func:`xarray.DataArray.groupby_bins` operation p_tile_bin_edge : list of int bin edges along the ping_time dimension for :py:func:`xarray.DataArray.groupby_bins` operation """ # Adjust noise_est_range_bin_size because range_bin_size may be an inconvenient value num_r_per_tile = np.round(r_tile_sz / sample_thickness).astype(int) # num of range_bin per tile r_tile_sz = num_r_per_tile * sample_thickness # Total number of range_bin and ping tiles num_tile_range_bin = np.ceil(r_data_sz / num_r_per_tile).astype(int) if np.mod(p_data_sz, p_tile_sz) == 0: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) + 1 else: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) # Tile bin edges along range # ... -1 to make sure each bin has the same size because of the right-inclusive and left-exclusive bins r_tile_bin_edge = [np.arange(x.values + 1) * y.values - 1 for x, y in zip(num_tile_range_bin, num_r_per_tile)] p_tile_bin_edge = np.arange(num_tile_ping + 1) * p_tile_sz - 1 return r_tile_sz, r_tile_bin_edge, p_tile_bin_edge def _get_proc_Sv(self, source_path=None, source_postfix='_Sv'): """Private method to return calibrated Sv either from memory or _Sv.nc file. This method is called by remove_noise(), noise_estimates() and get_MVBS(). """ if self.Sv is None: # calibration not yet performed Sv_path = self.validate_path(save_path=source_path, # wrangle _Sv path save_postfix=source_postfix) if os.path.exists(Sv_path): # _Sv exists self.Sv = xr.open_dataset(Sv_path) # load _Sv file else: # if path specification given but file do not exist: if (source_path is not None) or (source_postfix != '_Sv'): print('%s no calibrated data found in specified path: %s' % (dt.datetime.now().strftime('%H:%M:%S'), Sv_path)) else: print('%s data has not been calibrated. ' % dt.datetime.now().strftime('%H:%M:%S')) print(' performing calibration now and operate from Sv in memory.') self.calibrate() # calibrate, have Sv in memory return self.Sv def remove_noise(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None, SNR=0, Sv_threshold=None, save=False, save_postfix='_Sv_clean', save_path=None): """Remove noise by using noise estimates obtained from the minimum mean calibrated power level along each column of tiles. See method noise_estimates() for details of noise estimation. Reference: <NAME> & Higginbottom, 2017, ICES Journal of Marine Sciences Parameters ---------- source_postfix : str postfix of the Sv file used to remove noise from, default to '_Sv' source_path : str path of Sv file used to remove noise from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float, optional Meters per tile for noise estimation [m] noise_est_ping_size : int, optional Number of pings per tile for noise estimation SNR : int, optional Minimum signal-to-noise ratio (remove values below this after general noise removal). Sv_threshold : int, optional Minimum Sv threshold [dB] (remove values below this after general noise removal) save : bool, optional Whether to save the denoised Sv (``Sv_clean``) into a new .nc file. Default to ``False``. save_postfix : str Filename postfix, default to '_Sv_clean' save_path : str Full filename to save to, overwriting the RAWFILENAME_Sv_clean.nc default """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Get calibrated Sv if self.Sv is not None: print('%s Remove noise from Sv stored in memory.' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: print('%s Remove noise from Sv stored in: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Get TVG and ABS for compensating for transmission loss range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Function for use with apply def remove_n(x, rr): p_c_lin = 10 ** ((x.Sv - x.ABS - x.TVG) / 10) nn = 10 * np.log10(p_c_lin.mean(dim='ping_time').groupby_bins('range_bin', rr).mean().min( dim='range_bin_bins')) + x.ABS + x.TVG # Return values where signal is [SNR] dB above noise and at least [Sv_threshold] dB if not Sv_threshold: return x.Sv.where(x.Sv > (nn + SNR), other=np.nan) else: return x.Sv.where((x.Sv > (nn + SNR)) & (x > Sv_threshold), other=np.nan) # Groupby noise removal operation proc_data.coords['ping_idx'] = ('ping_time', np.arange(proc_data.Sv['ping_time'].size)) ABS.name = 'ABS' TVG.name = 'TVG' pp = xr.merge([proc_data, ABS]) pp = xr.merge([pp, TVG]) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: Sv_clean = pp.groupby_bins('ping_idx', ping_tile_bin_edge).\ map(remove_n, rr=range_bin_tile_bin_edge[0]) Sv_clean = Sv_clean.drop_vars(['ping_idx']) else: tmp_clean = [] cnt = 0 for key, val in pp.groupby('frequency'): # iterate over different frequency channel tmp = val.groupby_bins('ping_idx', ping_tile_bin_edge). \ map(remove_n, rr=range_bin_tile_bin_edge[cnt]) cnt += 1 tmp_clean.append(tmp) clean_val = np.array([zz.values for zz in xr.align(*tmp_clean, join='outer')]) Sv_clean = xr.DataArray(clean_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_clean[0]['ping_time'].values, 'range_bin': tmp_clean[0]['range_bin'].values}, dims=['frequency', 'ping_time', 'range_bin']) # Set up DataSet Sv_clean.name = 'Sv' Sv_clean = Sv_clean.to_dataset() Sv_clean['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) Sv_clean.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Attach calculated range into data set Sv_clean['range'] = (('frequency', 'range_bin'), self.range.T) # Save as object attributes as a netCDF file self.Sv_clean = Sv_clean # TODO: now adding the below so that MVBS can be calculated directly # from the cleaned Sv without saving and loading Sv_clean from disk. # However this is not explicit to the user. A better way to do this # is to change get_MVBS() to first check existence of self.Sv_clean # when `_Sv_clean` is specified as the source_postfix. if not print_src: # remove noise from Sv stored in memory self.Sv = Sv_clean.copy() if save: self.Sv_clean_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving denoised Sv to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_clean_path)) Sv_clean.to_netcdf(self.Sv_clean_path) # Close opened resources proc_data.close() def noise_estimates(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None): """Obtain noise estimates from the minimum mean calibrated power level along each column of tiles. The tiles here are defined by class attributes noise_est_range_bin_size and noise_est_ping_size. This method contains redundant pieces of code that also appear in method remove_noise(), but this method can be used separately to determine the exact tile size for noise removal before noise removal is actually performed. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate noise estimates from, default to '_Sv' source_path : str path of Sv file used to calculate noise estimates from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float meters per tile for noise estimation [m] noise_est_ping_size : int number of pings per tile for noise estimation Returns ------- noise_est : xarray DataSet noise estimates as a DataArray with dimension [ping_time x range_bin] ping_time and range_bin are taken from the first element of each tile along each of the dimensions """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Use calibrated data to calculate noise removal proc_data = self._get_proc_Sv() # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Values for noise estimates range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Noise estimates proc_data['power_cal'] = 10 ** ((proc_data.Sv - ABS - TVG) / 10) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: noise_est = 10 * np.log10(proc_data['power_cal'].coarsen( ping_time=self.noise_est_ping_size, range_bin=int(np.unique(self.noise_est_range_bin_size / self.sample_thickness)), boundary='pad').mean().min(dim='range_bin')) else: range_bin_coarsen_idx = (self.noise_est_range_bin_size / self.sample_thickness).astype(int) tmp_noise = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(proc_data['power_cal'].sel(frequency=freq).coarsen( ping_time=self.noise_est_ping_size, range_bin=r_bin.values, boundary='pad').mean().min(dim='range_bin')) tmp_da.name = 'noise_est' tmp_noise.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions noise_val = np.array([zz.values for zz in xr.align(*tmp_noise, join='outer')]) noise_est = xr.DataArray(noise_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_noise[0]['ping_time'].values}, dims=['frequency', 'ping_time']) noise_est = noise_est.to_dataset(name='noise_est') noise_est['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) noise_est.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Close opened resources proc_data.close() return noise_est def get_MVBS(self, source_postfix='_Sv', source_path=None, MVBS_range_bin_size=None, MVBS_ping_size=None, save=False, save_postfix='_MVBS', save_path=None): """Calculate Mean Volume Backscattering Strength (MVBS). The calculation uses class attributes MVBS_ping_size and MVBS_range_bin_size to calculate and save MVBS as a new attribute to the calling EchoData instance. MVBS is an xarray DataArray with dimensions ``ping_time`` and ``range_bin`` that are from the first elements of each tile along the corresponding dimensions in the original Sv or Sv_clean DataArray. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate MVBS, default to '_Sv' source_path : str path of Sv file used to calculate MVBS, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc MVBS_range_bin_size : float, optional meters per tile for calculating MVBS [m] MVBS_ping_size : int, optional number of pings per tile for calculating MVBS save : bool, optional whether to save the calculated MVBS into a new .nc file, default to ``False`` save_postfix : str Filename postfix, default to '_MVBS' save_path : str Full filename to save to, overwriting the RAWFILENAME_MVBS.nc default """ # Check params if (MVBS_range_bin_size is not None) and (self.MVBS_range_bin_size != MVBS_range_bin_size): self.MVBS_range_bin_size = MVBS_range_bin_size if (MVBS_ping_size is not None) and (self.MVBS_ping_size != MVBS_ping_size): self.MVBS_ping_size = MVBS_ping_size # Get Sv by validating path and calibrate if not already done if self.Sv is not None: print('%s use Sv stored in memory to calculate MVBS' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: if self.Sv_path is not None: print('%s Sv source used to calculate MVBS: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) else: print('%s Sv source used to calculate MVBS: memory' % dt.datetime.now().strftime('%H:%M:%S')) # Get tile indexing parameters self.MVBS_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.MVBS_range_bin_size, p_tile_sz=self.MVBS_ping_size, sample_thickness=self.sample_thickness) # Calculate MVBS Sv_linear = 10 ** (proc_data.Sv / 10) # convert to linear domain before averaging # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: MVBS = 10 * np.log10(Sv_linear.coarsen( ping_time=self.MVBS_ping_size, range_bin=int(np.unique(self.MVBS_range_bin_size / self.sample_thickness)), boundary='pad').mean()) MVBS.coords['range_bin'] = ('range_bin', np.arange(MVBS['range_bin'].size)) else: range_bin_coarsen_idx = (self.MVBS_range_bin_size / self.sample_thickness).astype(int) tmp_MVBS = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(Sv_linear.sel(frequency=freq).coarsen( ping_time=self.MVBS_ping_size, range_bin=r_bin.values, boundary='pad').mean()) tmp_da.coords['range_bin'] = ('range_bin', np.arange(tmp_da['range_bin'].size)) tmp_da.name = 'MVBS' tmp_MVBS.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions MVBS_val = np.array([zz.values for zz in xr.align(*tmp_MVBS, join='outer')]) MVBS = xr.DataArray(MVBS_val, coords={'frequency': Sv_linear['frequency'].values, 'ping_time': tmp_MVBS[0]['ping_time'].values, 'range_bin': np.arange(MVBS_val.shape[2])}, dims=['frequency', 'ping_time', 'range_bin']).dropna(dim='range_bin', how='all') # Set MVBS attributes MVBS.name = 'MVBS' MVBS = MVBS.to_dataset() MVBS['MVBS_range_bin_size'] = ('frequency', self.MVBS_range_bin_size) MVBS.attrs['MVBS_ping_size'] = self.MVBS_ping_size # Save results in object and as a netCDF file self.MVBS = MVBS if save: self.MVBS_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving MVBS to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.MVBS_path)) MVBS.to_netcdf(self.MVBS_path) # Close opened resources proc_data.close()
en
0.683863
echopype data model that keeps tracks of echo data and its connection to data files. Class for manipulating echo data that is already converted to netCDF. # this passes the input through file name test # meters per tile for noise estimation # number of pings per tile for noise estimation # meters per tile for MVBS # number of pings per tile for MVBS # calibrated volume backscattering strength # path to save calibrated results # denoised volume backscattering strength # calibrated target strength # path to save TS calculation results # mean volume backscattering strength # Load netCDF groups if file format is correct # Get .nc filenames for storing processed data if computation is performed # Raise error if the file format convention does not match Base method to be overridden for calculating sound_speed for different sonar models # issue warning when subclass methods not available Base method to be overridden for calculating seawater_absorption for different sonar models # issue warning when subclass methods not available Base method to be overridden for calculating sample_thickness for different sonar models. # issue warning when subclass methods not available Base method to be overridden for calculating range for different sonar models. # issue warning when subclass methods not available Recalculates sound speed, seawater absorption, sample thickness, and range using salinity, temperature, and pressure Parameters ---------- ss : bool Whether to calcualte sound speed. Defaults to `True` sa : bool Whether to calcualte seawater absorption. Defaults to `True` st : bool Whether to calcualte sample thickness. Defaults to `True` r : bool Whether to calcualte range. Defaults to `True` Base method to be overridden for volume backscatter calibration and echo-integration for different sonar models. # issue warning when subclass methods not available Base method to be overridden for target strength calibration and echo-integration for different sonar models. # issue warning when subclass methods not available Creates a directory if it doesnt exist. Returns a valid save path. # If given save_path is file, split into directory and file # save_path is only a filename without directory # use directory from input file # If given save_path is a directory, get a filename from input .nc file # Create folder if not already exists # TODO: should we use '.' instead of os.getcwd()? # explicit about path to current directory Obtain ping_time and range_bin parameters associated with groupby and groupby_bins operations. These parameters are used in methods remove_noise(), noise_estimates(), get_MVBS(). Parameters ---------- r_data_sz : int number of range_bin entries in data p_data_sz : int number of ping_time entries in data r_tile_sz : float tile size along the range_bin dimension [m] p_tile_sz : int tile size along the ping_time dimension [number of pings] sample_thickness : float thickness of each data sample, determined by sound speed and pulse duration Returns ------- r_tile_sz : int modified tile size along the range dimension [m], determined by sample_thickness r_tile_bin_edge : list of int bin edges along the range_bin dimension for :py:func:`xarray.DataArray.groupby_bins` operation p_tile_bin_edge : list of int bin edges along the ping_time dimension for :py:func:`xarray.DataArray.groupby_bins` operation # Adjust noise_est_range_bin_size because range_bin_size may be an inconvenient value # num of range_bin per tile # Total number of range_bin and ping tiles # Tile bin edges along range # ... -1 to make sure each bin has the same size because of the right-inclusive and left-exclusive bins Private method to return calibrated Sv either from memory or _Sv.nc file. This method is called by remove_noise(), noise_estimates() and get_MVBS(). # calibration not yet performed # wrangle _Sv path # _Sv exists # load _Sv file # if path specification given but file do not exist: # calibrate, have Sv in memory Remove noise by using noise estimates obtained from the minimum mean calibrated power level along each column of tiles. See method noise_estimates() for details of noise estimation. Reference: <NAME> & Higginbottom, 2017, ICES Journal of Marine Sciences Parameters ---------- source_postfix : str postfix of the Sv file used to remove noise from, default to '_Sv' source_path : str path of Sv file used to remove noise from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float, optional Meters per tile for noise estimation [m] noise_est_ping_size : int, optional Number of pings per tile for noise estimation SNR : int, optional Minimum signal-to-noise ratio (remove values below this after general noise removal). Sv_threshold : int, optional Minimum Sv threshold [dB] (remove values below this after general noise removal) save : bool, optional Whether to save the denoised Sv (``Sv_clean``) into a new .nc file. Default to ``False``. save_postfix : str Filename postfix, default to '_Sv_clean' save_path : str Full filename to save to, overwriting the RAWFILENAME_Sv_clean.nc default # Check params # Get calibrated Sv # Get tile indexing parameters # Get TVG and ABS for compensating for transmission loss # Function for use with apply # Return values where signal is [SNR] dB above noise and at least [Sv_threshold] dB # Groupby noise removal operation # check if number of range_bin per tile the same for all freq channels # iterate over different frequency channel # Set up DataSet # Attach calculated range into data set # Save as object attributes as a netCDF file # TODO: now adding the below so that MVBS can be calculated directly # from the cleaned Sv without saving and loading Sv_clean from disk. # However this is not explicit to the user. A better way to do this # is to change get_MVBS() to first check existence of self.Sv_clean # when `_Sv_clean` is specified as the source_postfix. # remove noise from Sv stored in memory # Close opened resources Obtain noise estimates from the minimum mean calibrated power level along each column of tiles. The tiles here are defined by class attributes noise_est_range_bin_size and noise_est_ping_size. This method contains redundant pieces of code that also appear in method remove_noise(), but this method can be used separately to determine the exact tile size for noise removal before noise removal is actually performed. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate noise estimates from, default to '_Sv' source_path : str path of Sv file used to calculate noise estimates from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float meters per tile for noise estimation [m] noise_est_ping_size : int number of pings per tile for noise estimation Returns ------- noise_est : xarray DataSet noise estimates as a DataArray with dimension [ping_time x range_bin] ping_time and range_bin are taken from the first element of each tile along each of the dimensions # Check params # Use calibrated data to calculate noise removal # Get tile indexing parameters # Values for noise estimates # Noise estimates # check if number of range_bin per tile the same for all freq channels # Construct a dataArray TODO: this can probably be done smarter using xarray native functions # Close opened resources Calculate Mean Volume Backscattering Strength (MVBS). The calculation uses class attributes MVBS_ping_size and MVBS_range_bin_size to calculate and save MVBS as a new attribute to the calling EchoData instance. MVBS is an xarray DataArray with dimensions ``ping_time`` and ``range_bin`` that are from the first elements of each tile along the corresponding dimensions in the original Sv or Sv_clean DataArray. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate MVBS, default to '_Sv' source_path : str path of Sv file used to calculate MVBS, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc MVBS_range_bin_size : float, optional meters per tile for calculating MVBS [m] MVBS_ping_size : int, optional number of pings per tile for calculating MVBS save : bool, optional whether to save the calculated MVBS into a new .nc file, default to ``False`` save_postfix : str Filename postfix, default to '_MVBS' save_path : str Full filename to save to, overwriting the RAWFILENAME_MVBS.nc default # Check params # Get Sv by validating path and calibrate if not already done # Get tile indexing parameters # Calculate MVBS # convert to linear domain before averaging # check if number of range_bin per tile the same for all freq channels # Construct a dataArray TODO: this can probably be done smarter using xarray native functions # Set MVBS attributes # Save results in object and as a netCDF file # Close opened resources
2.851058
3
Python/face_detect_camera/managers.py
abondar24/OpenCVBase
0
9057
import cv2 import numpy as np import time class CaptureManager(object): def __init__(self, capture, preview_window_manager=None, should_mirror_preview = False): self.preview_window_manager = preview_window_manager self.should_mirror_preview = should_mirror_preview self._capture = capture self._channel = 0 self._entered_frame = False self._frame = None self._frames_elapsed = long(0) self._fps_est = None @property def channel(self): return self._channel @channel.setter def channel(self): return self._channel @property def frame(self): if self._entered_frame and self._frame is None: _, self._frame = self._capture.retrieve(channel=self.channel) return self._frame def enter_frame(self): # capture the next frame assert not self._entered_frame, 'previous enter_frame() had no matching exit_frame()' if self._capture is not None: self._entered_frame = self._capture.grab() def exit_frame(self): # draw to window, write to files, release the frame # frame is retrievable or not if self.frame is None: self._entered_frame = False return if self._frames_elapsed == 0: self._start_time = time.time() else: time_elapsed = time.time() - self._start_time self._fps_est = self._frames_elapsed / time_elapsed self._frames_elapsed += 1 # draw if self.preview_window_manager is not None: if self.should_mirror_preview: mirrored_frame = np.fliplr(self._frame).copy() self.preview_window_manager.show(mirrored_frame) else: self.preview_window_manager.show(self._frame) # release the frame self._frame = None self._entered_frame = False class WindowManager(object): def __init__(self, window_name, keypress_callback = None): self.keypress_callback = keypress_callback self._window_name = window_name self._is_window_created = False @property def is_window_created(self): return self._is_window_created def create_window(self): cv2.namedWindow(self._window_name) self._is_window_created = True def show(self, frame): cv2.imshow(self._window_name, frame) def destroy_window(self): cv2.destroyWindow(self._window_name) self._is_window_created = False def process_events(self): keykode = cv2.waitKey(1) if self.keypress_callback is not None and keykode != -1: keykode &= 0xFF self.keypress_callback(keykode)
import cv2 import numpy as np import time class CaptureManager(object): def __init__(self, capture, preview_window_manager=None, should_mirror_preview = False): self.preview_window_manager = preview_window_manager self.should_mirror_preview = should_mirror_preview self._capture = capture self._channel = 0 self._entered_frame = False self._frame = None self._frames_elapsed = long(0) self._fps_est = None @property def channel(self): return self._channel @channel.setter def channel(self): return self._channel @property def frame(self): if self._entered_frame and self._frame is None: _, self._frame = self._capture.retrieve(channel=self.channel) return self._frame def enter_frame(self): # capture the next frame assert not self._entered_frame, 'previous enter_frame() had no matching exit_frame()' if self._capture is not None: self._entered_frame = self._capture.grab() def exit_frame(self): # draw to window, write to files, release the frame # frame is retrievable or not if self.frame is None: self._entered_frame = False return if self._frames_elapsed == 0: self._start_time = time.time() else: time_elapsed = time.time() - self._start_time self._fps_est = self._frames_elapsed / time_elapsed self._frames_elapsed += 1 # draw if self.preview_window_manager is not None: if self.should_mirror_preview: mirrored_frame = np.fliplr(self._frame).copy() self.preview_window_manager.show(mirrored_frame) else: self.preview_window_manager.show(self._frame) # release the frame self._frame = None self._entered_frame = False class WindowManager(object): def __init__(self, window_name, keypress_callback = None): self.keypress_callback = keypress_callback self._window_name = window_name self._is_window_created = False @property def is_window_created(self): return self._is_window_created def create_window(self): cv2.namedWindow(self._window_name) self._is_window_created = True def show(self, frame): cv2.imshow(self._window_name, frame) def destroy_window(self): cv2.destroyWindow(self._window_name) self._is_window_created = False def process_events(self): keykode = cv2.waitKey(1) if self.keypress_callback is not None and keykode != -1: keykode &= 0xFF self.keypress_callback(keykode)
en
0.835866
# capture the next frame # draw to window, write to files, release the frame # frame is retrievable or not # draw # release the frame
2.654734
3
ELLA/ELLA.py
micaelverissimo/lifelong_ringer
0
9058
<gh_stars>0 """ Alpha version of a version of ELLA that plays nicely with sklearn @author: <NAME> """ from math import log import numpy as np from scipy.special import logsumexp from scipy.linalg import sqrtm, inv, norm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression, Lasso import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, explained_variance_score class ELLA(object): """ The ELLA model """ def __init__(self, d, k, base_learner, base_learner_kwargs = {}, mu = 1, lam = 1, k_init = False): """ Initializes a new model for the given base_learner. d: the number of parameters for the base learner k: the number of latent model components base_learner: the base learner to use (currently can only be LinearRegression, Ridge, or LogisticRegression). base_learner_kwargs: keyword arguments to base learner (for instance to specify regularization strength) mu: hyperparameter for sparsity lam: L2 penalty on L mu: the L_1 penalty to use lam: the L_2 penalty to use NOTE: currently only binary logistic regression is supported """ self.d = d self.k = k self.L = np.random.randn(d,k) self.A = np.zeros((d * k, d * k)) self.b = np.zeros((d * k, 1)) self.S = np.zeros((k, 0)) self.T = 0 self.mu = mu self.lam = lam self.k_init = k_init if base_learner in [LinearRegression, Ridge]: self.perf_metric = explained_variance_score elif base_learner in [LogisticRegression]: self.perf_metric = accuracy_score else: raise Exception("Unsupported Base Learner") self.base_learner = base_learner self.base_learner_kwargs = base_learner_kwargs def fit(self, X, y, task_id): """ Fit the model to a new batch of training data. The task_id must start at 0 and increase by one each time this function is called. Currently you cannot add new data to old tasks. X: the training data y: the trianing labels task_id: the id of the task """ self.T += 1 single_task_model = self.base_learner(fit_intercept = False, **self.base_learner_kwargs).fit(X, y) D_t = self.get_hessian(single_task_model, X, y) D_t_sqrt = sqrtm(D_t) theta_t = single_task_model.coef_ sparse_encode = Lasso(alpha = self.mu / (X.shape[0] * 2.0), fit_intercept = False, tol=1e9, max_iter=50000).fit(D_t_sqrt.dot(self.L), D_t_sqrt.dot(theta_t.T)) if self.k_init and task_id < self.k: sparse_coeffs = np.zeros((self.k,)) sparse_coeffs[task_id] = 1.0 else: sparse_coeffs = sparse_encode.coef_ self.S = np.hstack((self.S, np.matrix(sparse_coeffs).T)) self.A += np.kron(self.S[:,task_id].dot(self.S[:,task_id].T), D_t) self.b += np.kron(self.S[:,task_id].T, np.mat(theta_t).dot(D_t)).T L_vectorized = inv(self.A / self.T + self.lam * np.eye(self.d * self.k, self.d * self.k)).dot(self.b) / self.T self.L = L_vectorized.reshape((self.k, self.d)).T self.revive_dead_components() def revive_dead_components(self): """ re-initailizes any components that have decayed to 0 """ for i,val in enumerate(np.sum(self.L, axis = 0)): if abs(val) < 10 ** -8: self.L[:, i] = np.random.randn(self.d,) def predict(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: return X.dot(self.L.dot(self.S[:, task_id])) elif self.base_learner == LogisticRegression: return 1. / (1.0 + np.exp(-X.dot(self.L.dot(self.S[:, task_id])))) > 0.5 def predict_probs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return np.exp(self.predict_logprobs(X, task_id)) def predict_logprobs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return -logsumexp(np.hstack((np.zeros((X.shape[0], 1)), -X.dot(self.L.dot(self.S[:, task_id])))), axis = 1) def score(self, X, y, task_id): """ Output the score for ELLA's model on the specified testing data. If using a continuous model (Ridge and LinearRegression) the score is explained variance. If using a classification model (LogisticRegression) the score is accuracy. """ return self.perf_metric(self.predict(X, task_id), y) def get_hessian(self, model, X, y): """ ELLA requires that each single task learner provide the Hessian of the loss function evaluated around the optimal single task parameters. This funciton implements this for the base learners that are currently supported """ theta_t = model.coef_ if self.base_learner == LinearRegression: return X.T.dot(X)/(2.0 * X.shape[0]) elif self.base_learner == Ridge: return X.T.dot(X)/(2.0 * X.shape[0]) + model.alpha * np.eye(self.d, self.d) elif self.base_learner == LogisticRegression: preds = 1. / (1.0 + np.exp(-X.dot(theta_t.T))) base = np.tile(preds * (1 - preds), (1, X.shape[1])) hessian = (np.multiply(X, base)).T.dot(X) / (2.0 * X.shape[0]) return hessian + np.eye(self.d,self.d) / (2.0 * model.C)
""" Alpha version of a version of ELLA that plays nicely with sklearn @author: <NAME> """ from math import log import numpy as np from scipy.special import logsumexp from scipy.linalg import sqrtm, inv, norm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression, Lasso import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, explained_variance_score class ELLA(object): """ The ELLA model """ def __init__(self, d, k, base_learner, base_learner_kwargs = {}, mu = 1, lam = 1, k_init = False): """ Initializes a new model for the given base_learner. d: the number of parameters for the base learner k: the number of latent model components base_learner: the base learner to use (currently can only be LinearRegression, Ridge, or LogisticRegression). base_learner_kwargs: keyword arguments to base learner (for instance to specify regularization strength) mu: hyperparameter for sparsity lam: L2 penalty on L mu: the L_1 penalty to use lam: the L_2 penalty to use NOTE: currently only binary logistic regression is supported """ self.d = d self.k = k self.L = np.random.randn(d,k) self.A = np.zeros((d * k, d * k)) self.b = np.zeros((d * k, 1)) self.S = np.zeros((k, 0)) self.T = 0 self.mu = mu self.lam = lam self.k_init = k_init if base_learner in [LinearRegression, Ridge]: self.perf_metric = explained_variance_score elif base_learner in [LogisticRegression]: self.perf_metric = accuracy_score else: raise Exception("Unsupported Base Learner") self.base_learner = base_learner self.base_learner_kwargs = base_learner_kwargs def fit(self, X, y, task_id): """ Fit the model to a new batch of training data. The task_id must start at 0 and increase by one each time this function is called. Currently you cannot add new data to old tasks. X: the training data y: the trianing labels task_id: the id of the task """ self.T += 1 single_task_model = self.base_learner(fit_intercept = False, **self.base_learner_kwargs).fit(X, y) D_t = self.get_hessian(single_task_model, X, y) D_t_sqrt = sqrtm(D_t) theta_t = single_task_model.coef_ sparse_encode = Lasso(alpha = self.mu / (X.shape[0] * 2.0), fit_intercept = False, tol=1e9, max_iter=50000).fit(D_t_sqrt.dot(self.L), D_t_sqrt.dot(theta_t.T)) if self.k_init and task_id < self.k: sparse_coeffs = np.zeros((self.k,)) sparse_coeffs[task_id] = 1.0 else: sparse_coeffs = sparse_encode.coef_ self.S = np.hstack((self.S, np.matrix(sparse_coeffs).T)) self.A += np.kron(self.S[:,task_id].dot(self.S[:,task_id].T), D_t) self.b += np.kron(self.S[:,task_id].T, np.mat(theta_t).dot(D_t)).T L_vectorized = inv(self.A / self.T + self.lam * np.eye(self.d * self.k, self.d * self.k)).dot(self.b) / self.T self.L = L_vectorized.reshape((self.k, self.d)).T self.revive_dead_components() def revive_dead_components(self): """ re-initailizes any components that have decayed to 0 """ for i,val in enumerate(np.sum(self.L, axis = 0)): if abs(val) < 10 ** -8: self.L[:, i] = np.random.randn(self.d,) def predict(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: return X.dot(self.L.dot(self.S[:, task_id])) elif self.base_learner == LogisticRegression: return 1. / (1.0 + np.exp(-X.dot(self.L.dot(self.S[:, task_id])))) > 0.5 def predict_probs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return np.exp(self.predict_logprobs(X, task_id)) def predict_logprobs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return -logsumexp(np.hstack((np.zeros((X.shape[0], 1)), -X.dot(self.L.dot(self.S[:, task_id])))), axis = 1) def score(self, X, y, task_id): """ Output the score for ELLA's model on the specified testing data. If using a continuous model (Ridge and LinearRegression) the score is explained variance. If using a classification model (LogisticRegression) the score is accuracy. """ return self.perf_metric(self.predict(X, task_id), y) def get_hessian(self, model, X, y): """ ELLA requires that each single task learner provide the Hessian of the loss function evaluated around the optimal single task parameters. This funciton implements this for the base learners that are currently supported """ theta_t = model.coef_ if self.base_learner == LinearRegression: return X.T.dot(X)/(2.0 * X.shape[0]) elif self.base_learner == Ridge: return X.T.dot(X)/(2.0 * X.shape[0]) + model.alpha * np.eye(self.d, self.d) elif self.base_learner == LogisticRegression: preds = 1. / (1.0 + np.exp(-X.dot(theta_t.T))) base = np.tile(preds * (1 - preds), (1, X.shape[1])) hessian = (np.multiply(X, base)).T.dot(X) / (2.0 * X.shape[0]) return hessian + np.eye(self.d,self.d) / (2.0 * model.C)
en
0.816177
Alpha version of a version of ELLA that plays nicely with sklearn @author: <NAME> The ELLA model Initializes a new model for the given base_learner. d: the number of parameters for the base learner k: the number of latent model components base_learner: the base learner to use (currently can only be LinearRegression, Ridge, or LogisticRegression). base_learner_kwargs: keyword arguments to base learner (for instance to specify regularization strength) mu: hyperparameter for sparsity lam: L2 penalty on L mu: the L_1 penalty to use lam: the L_2 penalty to use NOTE: currently only binary logistic regression is supported Fit the model to a new batch of training data. The task_id must start at 0 and increase by one each time this function is called. Currently you cannot add new data to old tasks. X: the training data y: the trianing labels task_id: the id of the task re-initailizes any components that have decayed to 0 Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. Output the score for ELLA's model on the specified testing data. If using a continuous model (Ridge and LinearRegression) the score is explained variance. If using a classification model (LogisticRegression) the score is accuracy. ELLA requires that each single task learner provide the Hessian of the loss function evaluated around the optimal single task parameters. This funciton implements this for the base learners that are currently supported
2.981724
3
webhook/utils.py
Myst1c-a/phen-cogs
0
9059
<filename>webhook/utils.py """ MIT License Copyright (c) 2020-present phenom4n4n Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re import discord from redbot.core.commands import Context USER_MENTIONS = discord.AllowedMentions.none() USER_MENTIONS.users = True WEBHOOK_RE = re.compile( r"discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})" ) async def _monkeypatch_send(ctx: Context, content: str = None, **kwargs) -> discord.Message: self = ctx.bot.get_cog("Webhook") original_kwargs = kwargs.copy() try: webhook = await self.get_webhook(ctx=ctx) kwargs["username"] = ctx.author.display_name kwargs["avatar_url"] = ctx.author.avatar_url kwargs["wait"] = True return await webhook.send(content, **kwargs) except Exception: return await super(Context, ctx).send(content, **original_kwargs) class FakeResponse: def __init__(self): self.status = 403 self.reason = "Forbidden"
<filename>webhook/utils.py """ MIT License Copyright (c) 2020-present phenom4n4n Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re import discord from redbot.core.commands import Context USER_MENTIONS = discord.AllowedMentions.none() USER_MENTIONS.users = True WEBHOOK_RE = re.compile( r"discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})" ) async def _monkeypatch_send(ctx: Context, content: str = None, **kwargs) -> discord.Message: self = ctx.bot.get_cog("Webhook") original_kwargs = kwargs.copy() try: webhook = await self.get_webhook(ctx=ctx) kwargs["username"] = ctx.author.display_name kwargs["avatar_url"] = ctx.author.avatar_url kwargs["wait"] = True return await webhook.send(content, **kwargs) except Exception: return await super(Context, ctx).send(content, **original_kwargs) class FakeResponse: def __init__(self): self.status = 403 self.reason = "Forbidden"
en
0.764605
MIT License Copyright (c) 2020-present phenom4n4n Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1.928739
2
scripts/generate.py
jwise/pebble-caltrain
1
9060
<reponame>jwise/pebble-caltrain<gh_stars>1-10 __author__ = 'katharine' import csv import struct import time import datetime def generate_files(source_dir, target_dir): stops_txt = [x for x in csv.DictReader(open("%s/stops.txt" % source_dir, 'rb')) if x['location_type'] == '0'] print "%d stops" % len(stops_txt) name_replacements = ( ('Caltrain', ''), ('Station', ''), ('Mt View', 'Mountain View'), ('So. San Francisco', 'South SF'), ('South San Francisco', 'South SF'), ) stop_parent_map = {} stop_name_map = {} stop_map = {} stops = [] for s in stops_txt: if s['parent_station'] != '' and s['parent_station'] in stop_parent_map: stop_map[int(s['stop_code'])] = stop_parent_map[s['parent_station']] continue for replacement in name_replacements: s['stop_name'] = s['stop_name'].replace(*replacement) s['stop_name'] = s['stop_name'].rstrip() if s['stop_name'] in stop_name_map: stop_map[int(s['stop_code'])] = stop_name_map[s['stop_name']] continue stop_map[int(s['stop_code'])] = len(stops) stop_parent_map[s['parent_station']] = len(stops) stop_name_map[s['stop_name']] = len(stops) stops.append({ 'name': s['stop_name'], 'zone': int(s['zone_id']) if s['zone_id'] != '' else 0, 'lat': float(s['stop_lat']), 'lon': float(s['stop_lon']) }) with open('%s/stops.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(stops))) for stop in stops: f.write(struct.pack('<B18sii', stop['zone'], stop['name'], int(stop['lat'] * 1000000), int(stop['lon'] * 1000000))) calendar_txt = list(csv.DictReader(open("%s/calendar.txt" % source_dir, 'rb'))) cal = [] cal_map = {} for i, x in enumerate(calendar_txt): cal_map[x['service_id']] = len(cal) end_time = datetime.datetime.strptime(x['end_date'], '%Y%m%d') + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(time.strptime(x['start_date'], '%Y%m%d')), 'end': time.mktime(end_time.timetuple()), 'days': ( (int(x['monday']) << 0) | (int(x['tuesday']) << 1) | (int(x['wednesday']) << 2) | (int(x['thursday']) << 3) | (int(x['friday']) << 4) | (int(x['saturday']) << 5) | (int(x['sunday']) << 6) ) }) calendar_dates_txt = list(csv.DictReader(open("%s/calendar_dates.txt" % source_dir, 'rb'))) for i, x in enumerate(calendar_dates_txt): if x['service_id'] in cal_map: # XXX: Would be nice to find a way to mark special dates. But # we can't, right now. Oh well. continue cal_map[x['service_id']] = len(cal) start_time = datetime.datetime.strptime(x['date'], '%Y%m%d') end_time = start_time + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(start_time.timetuple()), 'end': time.mktime(end_time.timetuple()), 'days': 0x7F, }) with open('%s/calendar.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(cal))) for c in cal: f.write(struct.pack('<IIB', int(c['start']), int(c['end']), c['days'])) trips_txt = list(csv.DictReader(open("%s/trips.txt" % source_dir, "rb"))) tr = [] tr_map = {} # These shouldn't be hardcoded, and should instead be inferred from routes.txt. route_map = { "BABY BULLET": 0, "LIMITED": 1, "LOCAL": 2, "SHUTTLE": 3, "Bu-130": 0, "Li-130": 1, "Lo-130": 2, "TaSj-130": 3, "Sp-130": 2, # XXX: Special Event Extra Service } short_name_replacements = ( ('<NAME>', ''), ('S', ''), ('shuttle', ''), ) for i, trip in enumerate(trips_txt): for replacement in short_name_replacements: trip['trip_short_name'] = trip['trip_short_name'].replace(*replacement) tr.append({ 'direction': int(not int(trip['direction_id'])), # We picked opposing values for north/south. 'route': route_map[trip['route_id']], 'service': cal_map[trip['service_id']], 'trip_name': int(trip['trip_short_name'])}), tr_map[trip['trip_id']] = i with open('%s/trips.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tr))) for t in tr: f.write(struct.pack('<HBBB', t['trip_name'], t['direction'], t['route'], t['service'])) times_txt = list(csv.DictReader(open("%s/stop_times.txt" % source_dir))) tm = sorted([{ 'time': (int(x['arrival_time'].split(':')[0])*60 + int(x['arrival_time'].split(':')[1])), 'stop': stop_map[int(x['stop_id'])], 'sequence': int(x['stop_sequence']), 'trip': tr_map[x['trip_id']] } for x in times_txt], key=lambda y: y['time']) with open('%s/times.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tm))) for t in tm: f.write(struct.pack('<HHBB', t['trip'], t['time'], t['stop'], t['sequence'])) stop_times = [sorted([i for i, x in enumerate(tm) if x['stop'] == stop], key=lambda t: tm[t]['time']) for stop, s in enumerate(stops)] lengths = [len(x) for x in stop_times] with open('%s/stop_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(lengths))) counter = len(lengths)*4 + 1 for l in lengths: f.write(struct.pack('<HH', counter, l)) counter += l*2 for s in stop_times: for x in s: f.write(struct.pack('<H', x)) trip_stops = [sorted([i for i, x in enumerate(tm) if x['trip'] == trip], key=lambda k: tm[k]['stop']) for trip, s in enumerate(tr)] lengths = map(len, trip_stops) with open('%s/trip_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(lengths))) counter = len(lengths) * 3 + 2 data_start = counter for l in lengths: f.write(struct.pack('<HB', counter, l)) counter += l*2 if data_start != f.tell(): raise Exception("%d != %d" % (counter, f.tell())) for s in trip_stops: for x in s: f.write(struct.pack('<H', x)) if f.tell() != counter: raise Exception("Not the expected length!") if __name__ == "__main__": import sys generate_files(sys.argv[1], sys.argv[2])
__author__ = 'katharine' import csv import struct import time import datetime def generate_files(source_dir, target_dir): stops_txt = [x for x in csv.DictReader(open("%s/stops.txt" % source_dir, 'rb')) if x['location_type'] == '0'] print "%d stops" % len(stops_txt) name_replacements = ( ('Caltrain', ''), ('Station', ''), ('Mt View', 'Mountain View'), ('So. San Francisco', 'South SF'), ('South San Francisco', 'South SF'), ) stop_parent_map = {} stop_name_map = {} stop_map = {} stops = [] for s in stops_txt: if s['parent_station'] != '' and s['parent_station'] in stop_parent_map: stop_map[int(s['stop_code'])] = stop_parent_map[s['parent_station']] continue for replacement in name_replacements: s['stop_name'] = s['stop_name'].replace(*replacement) s['stop_name'] = s['stop_name'].rstrip() if s['stop_name'] in stop_name_map: stop_map[int(s['stop_code'])] = stop_name_map[s['stop_name']] continue stop_map[int(s['stop_code'])] = len(stops) stop_parent_map[s['parent_station']] = len(stops) stop_name_map[s['stop_name']] = len(stops) stops.append({ 'name': s['stop_name'], 'zone': int(s['zone_id']) if s['zone_id'] != '' else 0, 'lat': float(s['stop_lat']), 'lon': float(s['stop_lon']) }) with open('%s/stops.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(stops))) for stop in stops: f.write(struct.pack('<B18sii', stop['zone'], stop['name'], int(stop['lat'] * 1000000), int(stop['lon'] * 1000000))) calendar_txt = list(csv.DictReader(open("%s/calendar.txt" % source_dir, 'rb'))) cal = [] cal_map = {} for i, x in enumerate(calendar_txt): cal_map[x['service_id']] = len(cal) end_time = datetime.datetime.strptime(x['end_date'], '%Y%m%d') + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(time.strptime(x['start_date'], '%Y%m%d')), 'end': time.mktime(end_time.timetuple()), 'days': ( (int(x['monday']) << 0) | (int(x['tuesday']) << 1) | (int(x['wednesday']) << 2) | (int(x['thursday']) << 3) | (int(x['friday']) << 4) | (int(x['saturday']) << 5) | (int(x['sunday']) << 6) ) }) calendar_dates_txt = list(csv.DictReader(open("%s/calendar_dates.txt" % source_dir, 'rb'))) for i, x in enumerate(calendar_dates_txt): if x['service_id'] in cal_map: # XXX: Would be nice to find a way to mark special dates. But # we can't, right now. Oh well. continue cal_map[x['service_id']] = len(cal) start_time = datetime.datetime.strptime(x['date'], '%Y%m%d') end_time = start_time + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(start_time.timetuple()), 'end': time.mktime(end_time.timetuple()), 'days': 0x7F, }) with open('%s/calendar.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(cal))) for c in cal: f.write(struct.pack('<IIB', int(c['start']), int(c['end']), c['days'])) trips_txt = list(csv.DictReader(open("%s/trips.txt" % source_dir, "rb"))) tr = [] tr_map = {} # These shouldn't be hardcoded, and should instead be inferred from routes.txt. route_map = { "BABY BULLET": 0, "LIMITED": 1, "LOCAL": 2, "SHUTTLE": 3, "Bu-130": 0, "Li-130": 1, "Lo-130": 2, "TaSj-130": 3, "Sp-130": 2, # XXX: Special Event Extra Service } short_name_replacements = ( ('<NAME>', ''), ('S', ''), ('shuttle', ''), ) for i, trip in enumerate(trips_txt): for replacement in short_name_replacements: trip['trip_short_name'] = trip['trip_short_name'].replace(*replacement) tr.append({ 'direction': int(not int(trip['direction_id'])), # We picked opposing values for north/south. 'route': route_map[trip['route_id']], 'service': cal_map[trip['service_id']], 'trip_name': int(trip['trip_short_name'])}), tr_map[trip['trip_id']] = i with open('%s/trips.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tr))) for t in tr: f.write(struct.pack('<HBBB', t['trip_name'], t['direction'], t['route'], t['service'])) times_txt = list(csv.DictReader(open("%s/stop_times.txt" % source_dir))) tm = sorted([{ 'time': (int(x['arrival_time'].split(':')[0])*60 + int(x['arrival_time'].split(':')[1])), 'stop': stop_map[int(x['stop_id'])], 'sequence': int(x['stop_sequence']), 'trip': tr_map[x['trip_id']] } for x in times_txt], key=lambda y: y['time']) with open('%s/times.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tm))) for t in tm: f.write(struct.pack('<HHBB', t['trip'], t['time'], t['stop'], t['sequence'])) stop_times = [sorted([i for i, x in enumerate(tm) if x['stop'] == stop], key=lambda t: tm[t]['time']) for stop, s in enumerate(stops)] lengths = [len(x) for x in stop_times] with open('%s/stop_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(lengths))) counter = len(lengths)*4 + 1 for l in lengths: f.write(struct.pack('<HH', counter, l)) counter += l*2 for s in stop_times: for x in s: f.write(struct.pack('<H', x)) trip_stops = [sorted([i for i, x in enumerate(tm) if x['trip'] == trip], key=lambda k: tm[k]['stop']) for trip, s in enumerate(tr)] lengths = map(len, trip_stops) with open('%s/trip_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(lengths))) counter = len(lengths) * 3 + 2 data_start = counter for l in lengths: f.write(struct.pack('<HB', counter, l)) counter += l*2 if data_start != f.tell(): raise Exception("%d != %d" % (counter, f.tell())) for s in trip_stops: for x in s: f.write(struct.pack('<H', x)) if f.tell() != counter: raise Exception("Not the expected length!") if __name__ == "__main__": import sys generate_files(sys.argv[1], sys.argv[2])
en
0.905104
# XXX: Would be nice to find a way to mark special dates. But # we can't, right now. Oh well. # These shouldn't be hardcoded, and should instead be inferred from routes.txt. # XXX: Special Event Extra Service # We picked opposing values for north/south.
2.713381
3
tests/test_is_valid_php_version_file_version.py
gerardroche/sublime-phpunit
85
9061
from PHPUnitKit.tests import unittest from PHPUnitKit.plugin import is_valid_php_version_file_version class TestIsValidPhpVersionFileVersion(unittest.TestCase): def test_invalid_values(self): self.assertFalse(is_valid_php_version_file_version('')) self.assertFalse(is_valid_php_version_file_version(' ')) self.assertFalse(is_valid_php_version_file_version('foobar')) self.assertFalse(is_valid_php_version_file_version('masterfoo')) self.assertFalse(is_valid_php_version_file_version('.')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('x.x')) self.assertFalse(is_valid_php_version_file_version('x.x.x')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('snapshot')) def test_master_branch_version(self): self.assertTrue(is_valid_php_version_file_version('master')) def test_specific_semver_versions(self): self.assertTrue(is_valid_php_version_file_version('5.0.0')) self.assertTrue(is_valid_php_version_file_version('5.0.1')) self.assertTrue(is_valid_php_version_file_version('5.0.7')) self.assertTrue(is_valid_php_version_file_version('5.0.30')) self.assertTrue(is_valid_php_version_file_version('5.0.32')) self.assertTrue(is_valid_php_version_file_version('5.1.0')) self.assertTrue(is_valid_php_version_file_version('5.1.1')) self.assertTrue(is_valid_php_version_file_version('5.1.3')) self.assertTrue(is_valid_php_version_file_version('5.1.27')) self.assertTrue(is_valid_php_version_file_version('7.0.0')) self.assertTrue(is_valid_php_version_file_version('7.1.19')) def test_minor_versions(self): self.assertTrue(is_valid_php_version_file_version('5.6')) self.assertTrue(is_valid_php_version_file_version('7.1')) self.assertTrue(is_valid_php_version_file_version('7.2')) def test_major_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('5.x')) self.assertTrue(is_valid_php_version_file_version('6.x')) self.assertTrue(is_valid_php_version_file_version('7.x')) self.assertTrue(is_valid_php_version_file_version('8.x')) def test_major_dot_minor_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('7.0.x')) self.assertTrue(is_valid_php_version_file_version('7.1.x')) self.assertTrue(is_valid_php_version_file_version('7.2.x')) def test_snapshot_versions(self): self.assertTrue(is_valid_php_version_file_version('5.4snapshot')) self.assertTrue(is_valid_php_version_file_version('5.5snapshot')) self.assertTrue(is_valid_php_version_file_version('5.6snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.1snapshot'))
from PHPUnitKit.tests import unittest from PHPUnitKit.plugin import is_valid_php_version_file_version class TestIsValidPhpVersionFileVersion(unittest.TestCase): def test_invalid_values(self): self.assertFalse(is_valid_php_version_file_version('')) self.assertFalse(is_valid_php_version_file_version(' ')) self.assertFalse(is_valid_php_version_file_version('foobar')) self.assertFalse(is_valid_php_version_file_version('masterfoo')) self.assertFalse(is_valid_php_version_file_version('.')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('x.x')) self.assertFalse(is_valid_php_version_file_version('x.x.x')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('snapshot')) def test_master_branch_version(self): self.assertTrue(is_valid_php_version_file_version('master')) def test_specific_semver_versions(self): self.assertTrue(is_valid_php_version_file_version('5.0.0')) self.assertTrue(is_valid_php_version_file_version('5.0.1')) self.assertTrue(is_valid_php_version_file_version('5.0.7')) self.assertTrue(is_valid_php_version_file_version('5.0.30')) self.assertTrue(is_valid_php_version_file_version('5.0.32')) self.assertTrue(is_valid_php_version_file_version('5.1.0')) self.assertTrue(is_valid_php_version_file_version('5.1.1')) self.assertTrue(is_valid_php_version_file_version('5.1.3')) self.assertTrue(is_valid_php_version_file_version('5.1.27')) self.assertTrue(is_valid_php_version_file_version('7.0.0')) self.assertTrue(is_valid_php_version_file_version('7.1.19')) def test_minor_versions(self): self.assertTrue(is_valid_php_version_file_version('5.6')) self.assertTrue(is_valid_php_version_file_version('7.1')) self.assertTrue(is_valid_php_version_file_version('7.2')) def test_major_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('5.x')) self.assertTrue(is_valid_php_version_file_version('6.x')) self.assertTrue(is_valid_php_version_file_version('7.x')) self.assertTrue(is_valid_php_version_file_version('8.x')) def test_major_dot_minor_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('7.0.x')) self.assertTrue(is_valid_php_version_file_version('7.1.x')) self.assertTrue(is_valid_php_version_file_version('7.2.x')) def test_snapshot_versions(self): self.assertTrue(is_valid_php_version_file_version('5.4snapshot')) self.assertTrue(is_valid_php_version_file_version('5.5snapshot')) self.assertTrue(is_valid_php_version_file_version('5.6snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.1snapshot'))
none
1
2.763245
3
feed/tests/test_consts.py
cul-it/arxiv-rss
4
9062
<filename>feed/tests/test_consts.py import pytest from feed.consts import FeedVersion from feed.utils import randomize_case from feed.errors import FeedVersionError # FeedVersion.supported def test_feed_version_supported(): assert FeedVersion.supported() == { FeedVersion.RSS_2_0, FeedVersion.ATOM_1_0, } # FeedVersion.get def test_feed_version_get_supported(): # RSS full version assert ( FeedVersion.get(randomize_case(FeedVersion.RSS_2_0.lower())) == FeedVersion.RSS_2_0 ) # RSS only number assert FeedVersion.get("2.0") == FeedVersion.RSS_2_0 # Atom full version assert ( FeedVersion.get(randomize_case(FeedVersion.ATOM_1_0.lower())) == FeedVersion.ATOM_1_0 ) # Atom only number assert FeedVersion.get("1.0", atom=True) == FeedVersion.ATOM_1_0 def test_feed_version_get_unsupported(): # RSS 0.91 full version rss_0_91 = randomize_case(FeedVersion.RSS_0_91) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_0_91) ex: FeedVersionError = excinfo.value assert ex.version == rss_0_91 assert ex.supported == FeedVersion.supported() # RSS 0.91 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("0.91") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 0.91" assert ex.supported == FeedVersion.supported() # RSS 1.0 full version rss_1_0 = randomize_case(FeedVersion.RSS_1_0) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_1_0) ex: FeedVersionError = excinfo.value assert ex.version == rss_1_0 assert ex.supported == FeedVersion.supported() # RSS 1.0 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("1.0") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 1.0" assert ex.supported == FeedVersion.supported() def test_feed_version_get_invalid(): # RSS for version, test in [ ("RSS 3.3", "3.3"), ("RSS 0.1", "0.1"), ("RSS 1.1", "RSS 1.1"), ("RSS 2.1", "RSS 2.1"), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Atom for version, test, prefere in [ ("Atom 0.1", "0.1", True), ("Atom 0.91", "0.91", True), ("Atom 2.0", "2.0", True), ("Atom 0.1", "Atom 0.1", False), ("Atom 0.91", "Atom 0.91", False), ("Atom 2.0", "Atom 2.0", False), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test, atom=prefere) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Nonsense for version in ["foo", "bar", "baz"]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(version) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() def test_is_property(): # RSS assert FeedVersion.RSS_0_91.is_rss assert FeedVersion.RSS_1_0.is_rss assert FeedVersion.RSS_2_0.is_rss assert not FeedVersion.RSS_0_91.is_atom assert not FeedVersion.RSS_1_0.is_atom assert not FeedVersion.RSS_2_0.is_atom # Atom assert FeedVersion.ATOM_1_0.is_atom assert not FeedVersion.ATOM_1_0.is_rss
<filename>feed/tests/test_consts.py import pytest from feed.consts import FeedVersion from feed.utils import randomize_case from feed.errors import FeedVersionError # FeedVersion.supported def test_feed_version_supported(): assert FeedVersion.supported() == { FeedVersion.RSS_2_0, FeedVersion.ATOM_1_0, } # FeedVersion.get def test_feed_version_get_supported(): # RSS full version assert ( FeedVersion.get(randomize_case(FeedVersion.RSS_2_0.lower())) == FeedVersion.RSS_2_0 ) # RSS only number assert FeedVersion.get("2.0") == FeedVersion.RSS_2_0 # Atom full version assert ( FeedVersion.get(randomize_case(FeedVersion.ATOM_1_0.lower())) == FeedVersion.ATOM_1_0 ) # Atom only number assert FeedVersion.get("1.0", atom=True) == FeedVersion.ATOM_1_0 def test_feed_version_get_unsupported(): # RSS 0.91 full version rss_0_91 = randomize_case(FeedVersion.RSS_0_91) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_0_91) ex: FeedVersionError = excinfo.value assert ex.version == rss_0_91 assert ex.supported == FeedVersion.supported() # RSS 0.91 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("0.91") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 0.91" assert ex.supported == FeedVersion.supported() # RSS 1.0 full version rss_1_0 = randomize_case(FeedVersion.RSS_1_0) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_1_0) ex: FeedVersionError = excinfo.value assert ex.version == rss_1_0 assert ex.supported == FeedVersion.supported() # RSS 1.0 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("1.0") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 1.0" assert ex.supported == FeedVersion.supported() def test_feed_version_get_invalid(): # RSS for version, test in [ ("RSS 3.3", "3.3"), ("RSS 0.1", "0.1"), ("RSS 1.1", "RSS 1.1"), ("RSS 2.1", "RSS 2.1"), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Atom for version, test, prefere in [ ("Atom 0.1", "0.1", True), ("Atom 0.91", "0.91", True), ("Atom 2.0", "2.0", True), ("Atom 0.1", "Atom 0.1", False), ("Atom 0.91", "Atom 0.91", False), ("Atom 2.0", "Atom 2.0", False), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test, atom=prefere) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Nonsense for version in ["foo", "bar", "baz"]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(version) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() def test_is_property(): # RSS assert FeedVersion.RSS_0_91.is_rss assert FeedVersion.RSS_1_0.is_rss assert FeedVersion.RSS_2_0.is_rss assert not FeedVersion.RSS_0_91.is_atom assert not FeedVersion.RSS_1_0.is_atom assert not FeedVersion.RSS_2_0.is_atom # Atom assert FeedVersion.ATOM_1_0.is_atom assert not FeedVersion.ATOM_1_0.is_rss
en
0.474448
# FeedVersion.supported # FeedVersion.get # RSS full version # RSS only number # Atom full version # Atom only number # RSS 0.91 full version # RSS 0.91 only number # RSS 1.0 full version # RSS 1.0 only number # RSS # Atom # Nonsense # RSS # Atom
2.115119
2
cmsplugin_cascade/migrations/0007_add_proxy_models.py
teklager/djangocms-cascade
139
9063
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0006_bootstrapgallerypluginmodel'), ] operations = [ ]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0006_bootstrapgallerypluginmodel'), ] operations = [ ]
none
1
1.304525
1
theonionbox/tob/credits.py
ralphwetzel/theonionbox
120
9064
Credits = [ ('Bootstrap', 'https://getbootstrap.com', 'The Bootstrap team', 'MIT'), ('Bottle', 'http://bottlepy.org', '<NAME>', 'MIT'), ('Cheroot', 'https://github.com/cherrypy/cheroot', 'CherryPy Team', 'BSD 3-Clause "New" or "Revised" License'), ('Click', 'https://github.com/pallets/click', 'Pallets', 'BSD 3-Clause "New" or "Revised" License'), ('ConfigUpdater', 'https://github.com/pyscaffold/configupdater', '<NAME>', 'MIT'), ('Glide', 'https://github.com/glidejs/glide', '@jedrzejchalubek', 'MIT'), ('JQuery', 'https://jquery.com', 'The jQuery Foundation', 'MIT'), ('jquery.pep.js', 'http://pep.briangonzalez.org', '@briangonzalez', 'MIT'), ('js-md5', 'https://github.com/emn178/js-md5', '@emn178', 'MIT'), ('PySocks', 'https://github.com/Anorov/PySocks', '@Anorov', 'Custom DAN HAIM'), ('RapydScript-NG', 'https://github.com/kovidgoyal/rapydscript-ng', '@kovidgoyal', 'BSD 2-Clause "Simplified" License'), ('Requests', 'https://requests.kennethreitz.org', '<NAME>', 'Apache License, Version 2.0'), ('scrollMonitor', 'https://github.com/stutrek/scrollmonitor', '@stutrek', 'MIT'), ('Smoothie Charts', 'https://github.com/joewalnes/smoothie', '@drewnoakes', 'MIT'), ('stem', 'https://stem.torproject.org', '<NAME> and The Tor Project', 'GNU LESSER GENERAL PUBLIC LICENSE') ]
Credits = [ ('Bootstrap', 'https://getbootstrap.com', 'The Bootstrap team', 'MIT'), ('Bottle', 'http://bottlepy.org', '<NAME>', 'MIT'), ('Cheroot', 'https://github.com/cherrypy/cheroot', 'CherryPy Team', 'BSD 3-Clause "New" or "Revised" License'), ('Click', 'https://github.com/pallets/click', 'Pallets', 'BSD 3-Clause "New" or "Revised" License'), ('ConfigUpdater', 'https://github.com/pyscaffold/configupdater', '<NAME>', 'MIT'), ('Glide', 'https://github.com/glidejs/glide', '@jedrzejchalubek', 'MIT'), ('JQuery', 'https://jquery.com', 'The jQuery Foundation', 'MIT'), ('jquery.pep.js', 'http://pep.briangonzalez.org', '@briangonzalez', 'MIT'), ('js-md5', 'https://github.com/emn178/js-md5', '@emn178', 'MIT'), ('PySocks', 'https://github.com/Anorov/PySocks', '@Anorov', 'Custom DAN HAIM'), ('RapydScript-NG', 'https://github.com/kovidgoyal/rapydscript-ng', '@kovidgoyal', 'BSD 2-Clause "Simplified" License'), ('Requests', 'https://requests.kennethreitz.org', '<NAME>', 'Apache License, Version 2.0'), ('scrollMonitor', 'https://github.com/stutrek/scrollmonitor', '@stutrek', 'MIT'), ('Smoothie Charts', 'https://github.com/joewalnes/smoothie', '@drewnoakes', 'MIT'), ('stem', 'https://stem.torproject.org', '<NAME> and The Tor Project', 'GNU LESSER GENERAL PUBLIC LICENSE') ]
none
1
1.159658
1
turorials/Google/projects/01_02_TextClassification/01_02_main.py
Ubpa/LearnTF
0
9065
#---------------- # 01_02 文本分类 #---------------- # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt # TensorFlow's version : 1.12.0 print('TensorFlow\'s version : ', tf.__version__) #---------------- # 1 下载 IMDB 数据集 #---------------- imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) #---------------- # 2 探索数据 #---------------- # Training entries: 25000, labels: 25000 print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels))) print(train_data[0]) # (218, 189) print(len(train_data[0]), len(train_data[1])) # A dictionary mapping words to an integer index word_index = imdb.get_word_index() # The first indices are reserved word_index = {k:(v+3) for k,v in word_index.items()} word_index["<PAD>"] = 0 word_index["<START>"] = 1 word_index["<UNK>"] = 2 # unknown word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_review(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) decode_review(train_data[0]) #---------------- # 3 准备数据 #---------------- train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding='post', maxlen=256) test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding='post', maxlen=256) # (256, 256) print((len(train_data[0]), len(train_data[1]))) print(train_data[0]) #---------------- # 4 构建模型 #---------------- # input shape is the vocabulary count used for the movie reviews (10,000 words) vocab_size = 10000 model = keras.Sequential() model.add(keras.layers.Embedding(vocab_size, 16)) model.add(keras.layers.GlobalAveragePooling1D()) model.add(keras.layers.Dense(16, activation=tf.nn.relu)) model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) model.summary() model.compile(optimizer=tf.train.AdamOptimizer(), loss='binary_crossentropy', metrics=['accuracy']) #---------------- # 5 创建验证集 #---------------- x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] #---------------- # 6 训练模型 #---------------- history = model.fit(partial_x_train, partial_y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1) #---------------- # 7 评估模型 #---------------- results = model.evaluate(test_data, test_labels) print(results) #---------------- # 8 创建准确率和损失随时间变化的图 #---------------- history_dict = history.history # dict_keys(['loss', 'val_loss', 'val_acc', 'acc']) print(history_dict.keys()) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) # loss # "bo" is for "blue dot" plt.plot(epochs, loss, 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # acc plt.clf() # clear figure acc_values = history_dict['acc'] val_acc_values = history_dict['val_acc'] plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show()
#---------------- # 01_02 文本分类 #---------------- # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt # TensorFlow's version : 1.12.0 print('TensorFlow\'s version : ', tf.__version__) #---------------- # 1 下载 IMDB 数据集 #---------------- imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) #---------------- # 2 探索数据 #---------------- # Training entries: 25000, labels: 25000 print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels))) print(train_data[0]) # (218, 189) print(len(train_data[0]), len(train_data[1])) # A dictionary mapping words to an integer index word_index = imdb.get_word_index() # The first indices are reserved word_index = {k:(v+3) for k,v in word_index.items()} word_index["<PAD>"] = 0 word_index["<START>"] = 1 word_index["<UNK>"] = 2 # unknown word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_review(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) decode_review(train_data[0]) #---------------- # 3 准备数据 #---------------- train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding='post', maxlen=256) test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding='post', maxlen=256) # (256, 256) print((len(train_data[0]), len(train_data[1]))) print(train_data[0]) #---------------- # 4 构建模型 #---------------- # input shape is the vocabulary count used for the movie reviews (10,000 words) vocab_size = 10000 model = keras.Sequential() model.add(keras.layers.Embedding(vocab_size, 16)) model.add(keras.layers.GlobalAveragePooling1D()) model.add(keras.layers.Dense(16, activation=tf.nn.relu)) model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) model.summary() model.compile(optimizer=tf.train.AdamOptimizer(), loss='binary_crossentropy', metrics=['accuracy']) #---------------- # 5 创建验证集 #---------------- x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] #---------------- # 6 训练模型 #---------------- history = model.fit(partial_x_train, partial_y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1) #---------------- # 7 评估模型 #---------------- results = model.evaluate(test_data, test_labels) print(results) #---------------- # 8 创建准确率和损失随时间变化的图 #---------------- history_dict = history.history # dict_keys(['loss', 'val_loss', 'val_acc', 'acc']) print(history_dict.keys()) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) # loss # "bo" is for "blue dot" plt.plot(epochs, loss, 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # acc plt.clf() # clear figure acc_values = history_dict['acc'] val_acc_values = history_dict['val_acc'] plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show()
en
0.117853
#---------------- # 01_02 文本分类 #---------------- # TensorFlow and tf.keras # Helper libraries # TensorFlow's version : 1.12.0 #---------------- # 1 下载 IMDB 数据集 #---------------- #---------------- # 2 探索数据 #---------------- # Training entries: 25000, labels: 25000 # (218, 189) # A dictionary mapping words to an integer index # The first indices are reserved # unknown #---------------- # 3 准备数据 #---------------- # (256, 256) #---------------- # 4 构建模型 #---------------- # input shape is the vocabulary count used for the movie reviews (10,000 words) #---------------- # 5 创建验证集 #---------------- #---------------- # 6 训练模型 #---------------- #---------------- # 7 评估模型 #---------------- #---------------- # 8 创建准确率和损失随时间变化的图 #---------------- # dict_keys(['loss', 'val_loss', 'val_acc', 'acc']) # loss # "bo" is for "blue dot" # b is for "solid blue line" # acc # clear figure
3.700153
4
backend/api/urls.py
12xiaoni/text-label
0
9066
<reponame>12xiaoni/text-label<filename>backend/api/urls.py from django.urls import include, path from .views import (annotation, auto_labeling, comment, example, example_state, health, label, project, tag, task) from .views.tasks import category, relation, span, text urlpatterns_project = [ path( route='category-types', view=label.CategoryTypeList.as_view(), name='category_types' ), path( route='category-types/<int:label_id>', view=label.CategoryTypeDetail.as_view(), name='category_type' ), path( route='span-types', view=label.SpanTypeList.as_view(), name='span_types' ), path( route='span-types/<int:label_id>', view=label.SpanTypeDetail.as_view(), name='span_type' ), path( route='category-type-upload', view=label.CategoryTypeUploadAPI.as_view(), name='category_type_upload' ), path( route='span-type-upload', view=label.SpanTypeUploadAPI.as_view(), name='span_type_upload' ), path( route='examples', view=example.ExampleList.as_view(), name='example_list' ), path( route='examples/<int:example_id>', view=example.ExampleDetail.as_view(), name='example_detail' ), path( route='relation_types', view=label.RelationTypeList.as_view(), name='relation_types_list' ), path( route='relation_type-upload', view=label.RelationTypeUploadAPI.as_view(), name='relation_type-upload' ), path( route='relation_types/<int:relation_type_id>', view=label.RelationTypeDetail.as_view(), name='relation_type_detail' ), path( route='annotation_relations', view=relation.RelationList.as_view(), name='relation_types_list' ), path( route='annotation_relation-upload', view=relation.RelationUploadAPI.as_view(), name='annotation_relation-upload' ), path( route='annotation_relations/<int:annotation_relation_id>', view=relation.RelationDetail.as_view(), name='annotation_relation_detail' ), path( route='approval/<int:example_id>', view=annotation.ApprovalAPI.as_view(), name='approve_labels' ), path( route='examples/<int:example_id>/categories', view=category.CategoryListAPI.as_view(), name='category_list' ), path( route='examples/<int:example_id>/categories/<int:annotation_id>', view=category.CategoryDetailAPI.as_view(), name='category_detail' ), path( route='examples/<int:example_id>/spans', view=span.SpanListAPI.as_view(), name='span_list' ), path( route='examples/<int:example_id>/spans/<int:annotation_id>', view=span.SpanDetailAPI.as_view(), name='span_detail' ), path( route='examples/<int:example_id>/texts', view=text.TextLabelListAPI.as_view(), name='text_list' ), path( route='examples/<int:example_id>/texts/<int:annotation_id>', view=text.TextLabelDetailAPI.as_view(), name='text_detail' ), path( route='tags', view=tag.TagList.as_view(), name='tag_list' ), path( route='tags/<int:tag_id>', view=tag.TagDetail.as_view(), name='tag_detail' ), path( route='examples/<int:example_id>/comments', view=comment.CommentListDoc.as_view(), name='comment_list_doc' ), path( route='comments', view=comment.CommentListProject.as_view(), name='comment_list_project' ), path( route='examples/<int:example_id>/comments/<int:comment_id>', view=comment.CommentDetail.as_view(), name='comment_detail' ), path( route='examples/<int:example_id>/states', view=example_state.ExampleStateList.as_view(), name='example_state_list' ), path( route='auto-labeling-templates', view=auto_labeling.AutoLabelingTemplateListAPI.as_view(), name='auto_labeling_templates' ), path( route='auto-labeling-templates/<str:option_name>', view=auto_labeling.AutoLabelingTemplateDetailAPI.as_view(), name='auto_labeling_template' ), path( route='auto-labeling-configs', view=auto_labeling.AutoLabelingConfigList.as_view(), name='auto_labeling_configs' ), path( route='auto-labeling-configs/<int:config_id>', view=auto_labeling.AutoLabelingConfigDetail.as_view(), name='auto_labeling_config' ), path( route='auto-labeling-config-testing', view=auto_labeling.AutoLabelingConfigTest.as_view(), name='auto_labeling_config_test' ), path( route='examples/<int:example_id>/auto-labeling', view=auto_labeling.AutoLabelingAnnotation.as_view(), name='auto_labeling_annotation' ), path( route='auto-labeling-parameter-testing', view=auto_labeling.AutoLabelingConfigParameterTest.as_view(), name='auto_labeling_parameter_testing' ), path( route='auto-labeling-template-testing', view=auto_labeling.AutoLabelingTemplateTest.as_view(), name='auto_labeling_template_test' ), path( route='auto-labeling-mapping-testing', view=auto_labeling.AutoLabelingMappingTest.as_view(), name='auto_labeling_mapping_test' ) ] urlpatterns = [ path( route='health', view=health.Health.as_view(), name='health' ), path( route='projects', view=project.ProjectList.as_view(), name='project_list' ), path( route='tasks/status/<task_id>', view=task.TaskStatus.as_view(), name='task_status' ), path( route='projects/<int:project_id>', view=project.ProjectDetail.as_view(), name='project_detail' ), path('projects/<int:project_id>/', include(urlpatterns_project)) ]
from django.urls import include, path from .views import (annotation, auto_labeling, comment, example, example_state, health, label, project, tag, task) from .views.tasks import category, relation, span, text urlpatterns_project = [ path( route='category-types', view=label.CategoryTypeList.as_view(), name='category_types' ), path( route='category-types/<int:label_id>', view=label.CategoryTypeDetail.as_view(), name='category_type' ), path( route='span-types', view=label.SpanTypeList.as_view(), name='span_types' ), path( route='span-types/<int:label_id>', view=label.SpanTypeDetail.as_view(), name='span_type' ), path( route='category-type-upload', view=label.CategoryTypeUploadAPI.as_view(), name='category_type_upload' ), path( route='span-type-upload', view=label.SpanTypeUploadAPI.as_view(), name='span_type_upload' ), path( route='examples', view=example.ExampleList.as_view(), name='example_list' ), path( route='examples/<int:example_id>', view=example.ExampleDetail.as_view(), name='example_detail' ), path( route='relation_types', view=label.RelationTypeList.as_view(), name='relation_types_list' ), path( route='relation_type-upload', view=label.RelationTypeUploadAPI.as_view(), name='relation_type-upload' ), path( route='relation_types/<int:relation_type_id>', view=label.RelationTypeDetail.as_view(), name='relation_type_detail' ), path( route='annotation_relations', view=relation.RelationList.as_view(), name='relation_types_list' ), path( route='annotation_relation-upload', view=relation.RelationUploadAPI.as_view(), name='annotation_relation-upload' ), path( route='annotation_relations/<int:annotation_relation_id>', view=relation.RelationDetail.as_view(), name='annotation_relation_detail' ), path( route='approval/<int:example_id>', view=annotation.ApprovalAPI.as_view(), name='approve_labels' ), path( route='examples/<int:example_id>/categories', view=category.CategoryListAPI.as_view(), name='category_list' ), path( route='examples/<int:example_id>/categories/<int:annotation_id>', view=category.CategoryDetailAPI.as_view(), name='category_detail' ), path( route='examples/<int:example_id>/spans', view=span.SpanListAPI.as_view(), name='span_list' ), path( route='examples/<int:example_id>/spans/<int:annotation_id>', view=span.SpanDetailAPI.as_view(), name='span_detail' ), path( route='examples/<int:example_id>/texts', view=text.TextLabelListAPI.as_view(), name='text_list' ), path( route='examples/<int:example_id>/texts/<int:annotation_id>', view=text.TextLabelDetailAPI.as_view(), name='text_detail' ), path( route='tags', view=tag.TagList.as_view(), name='tag_list' ), path( route='tags/<int:tag_id>', view=tag.TagDetail.as_view(), name='tag_detail' ), path( route='examples/<int:example_id>/comments', view=comment.CommentListDoc.as_view(), name='comment_list_doc' ), path( route='comments', view=comment.CommentListProject.as_view(), name='comment_list_project' ), path( route='examples/<int:example_id>/comments/<int:comment_id>', view=comment.CommentDetail.as_view(), name='comment_detail' ), path( route='examples/<int:example_id>/states', view=example_state.ExampleStateList.as_view(), name='example_state_list' ), path( route='auto-labeling-templates', view=auto_labeling.AutoLabelingTemplateListAPI.as_view(), name='auto_labeling_templates' ), path( route='auto-labeling-templates/<str:option_name>', view=auto_labeling.AutoLabelingTemplateDetailAPI.as_view(), name='auto_labeling_template' ), path( route='auto-labeling-configs', view=auto_labeling.AutoLabelingConfigList.as_view(), name='auto_labeling_configs' ), path( route='auto-labeling-configs/<int:config_id>', view=auto_labeling.AutoLabelingConfigDetail.as_view(), name='auto_labeling_config' ), path( route='auto-labeling-config-testing', view=auto_labeling.AutoLabelingConfigTest.as_view(), name='auto_labeling_config_test' ), path( route='examples/<int:example_id>/auto-labeling', view=auto_labeling.AutoLabelingAnnotation.as_view(), name='auto_labeling_annotation' ), path( route='auto-labeling-parameter-testing', view=auto_labeling.AutoLabelingConfigParameterTest.as_view(), name='auto_labeling_parameter_testing' ), path( route='auto-labeling-template-testing', view=auto_labeling.AutoLabelingTemplateTest.as_view(), name='auto_labeling_template_test' ), path( route='auto-labeling-mapping-testing', view=auto_labeling.AutoLabelingMappingTest.as_view(), name='auto_labeling_mapping_test' ) ] urlpatterns = [ path( route='health', view=health.Health.as_view(), name='health' ), path( route='projects', view=project.ProjectList.as_view(), name='project_list' ), path( route='tasks/status/<task_id>', view=task.TaskStatus.as_view(), name='task_status' ), path( route='projects/<int:project_id>', view=project.ProjectDetail.as_view(), name='project_detail' ), path('projects/<int:project_id>/', include(urlpatterns_project)) ]
none
1
2.107987
2
nwbwidgets/test/test_base.py
d-sot/nwb-jupyter-widgets
0
9067
<filename>nwbwidgets/test/test_base.py import numpy as np import matplotlib.pyplot as plt import pandas as pd from pynwb import TimeSeries from datetime import datetime from dateutil.tz import tzlocal from pynwb import NWBFile from ipywidgets import widgets from pynwb.core import DynamicTable from pynwb.file import Subject from nwbwidgets.view import default_neurodata_vis_spec from pynwb import ProcessingModule from pynwb.behavior import Position, SpatialSeries from nwbwidgets.base import show_neurodata_base,processing_module, nwb2widget, show_text_fields, \ fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data import unittest import pytest def test_show_neurodata_base(): start_time = datetime(2017, 4, 3, 11, tzinfo=tzlocal()) create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='demonstrate NWBFile basics', identifier='NWB123', session_start_time=start_time, file_create_date=create_date, related_publications='https://doi.org/10.1088/1741-2552/aaa904', experimenter='Dr. Pack') assert isinstance(show_neurodata_base(nwbfile,default_neurodata_vis_spec), widgets.Widget) def test_show_text_fields(): data = np.random.rand(160,3) ts = TimeSeries(name='test_timeseries', data=data, unit='m', starting_time=0.0, rate=1.0) assert isinstance(show_text_fields(ts), widgets.Widget) class ProcessingModuleTestCase(unittest.TestCase): def setUp(self): spatial_series = SpatialSeries(name='position', data=np.linspace(0, 1, 20), rate=50., reference_frame='starting gate') self.position = Position(spatial_series=spatial_series) def test_processing_module(self): start_time = datetime(2020, 1, 29, 11, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='Test Session', identifier='NWBPM', session_start_time=start_time) behavior_module = ProcessingModule(name='behavior', description='preprocessed behavioral data') nwbfile.add_processing_module(behavior_module) nwbfile.processing['behavior'].add(self.position) processing_module(nwbfile.processing['behavior'], default_neurodata_vis_spec) def test_nwb2widget(self): nwb2widget(self.position, default_neurodata_vis_spec) def test_fig2widget(): data = np.random.rand(160, 3) fig = plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(fig2widget(fig), widgets.Widget) class Test_vis2widget: def test_vis2widget_input_widget(self): wg = widgets.IntSlider( value=7, min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') assert isinstance(vis2widget(wg), widgets.Widget) def test_vis2widget_input_figure(self): data = np.random.rand(160,3) fig=plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(vis2widget(fig), widgets.Widget) def test_vis2widget_input_other(self): data = np.random.rand(160,3) with pytest.raises(ValueError, match="unsupported vis type"): vis2widget(data) def test_show_subject(): node = Subject(age='8', sex='m', species='macaque') show_fields(node) def test_show_dynamic_table(): d = {'col1': [1, 2], 'col2': [3, 4]} DT = DynamicTable.from_dataframe(df=pd.DataFrame(data=d), name='Test Dtable', table_description='no description') show_dynamic_table(DT) def test_df2accordion(): df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_df2accordion_single(): df = pd.DataFrame(np.array([1]), columns=['a']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_lazy_show_over_data(): list_ = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig assert isinstance(lazy_show_over_data(list_=list_,func_=func_fig),widgets.Widget)
<filename>nwbwidgets/test/test_base.py import numpy as np import matplotlib.pyplot as plt import pandas as pd from pynwb import TimeSeries from datetime import datetime from dateutil.tz import tzlocal from pynwb import NWBFile from ipywidgets import widgets from pynwb.core import DynamicTable from pynwb.file import Subject from nwbwidgets.view import default_neurodata_vis_spec from pynwb import ProcessingModule from pynwb.behavior import Position, SpatialSeries from nwbwidgets.base import show_neurodata_base,processing_module, nwb2widget, show_text_fields, \ fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data import unittest import pytest def test_show_neurodata_base(): start_time = datetime(2017, 4, 3, 11, tzinfo=tzlocal()) create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='demonstrate NWBFile basics', identifier='NWB123', session_start_time=start_time, file_create_date=create_date, related_publications='https://doi.org/10.1088/1741-2552/aaa904', experimenter='Dr. Pack') assert isinstance(show_neurodata_base(nwbfile,default_neurodata_vis_spec), widgets.Widget) def test_show_text_fields(): data = np.random.rand(160,3) ts = TimeSeries(name='test_timeseries', data=data, unit='m', starting_time=0.0, rate=1.0) assert isinstance(show_text_fields(ts), widgets.Widget) class ProcessingModuleTestCase(unittest.TestCase): def setUp(self): spatial_series = SpatialSeries(name='position', data=np.linspace(0, 1, 20), rate=50., reference_frame='starting gate') self.position = Position(spatial_series=spatial_series) def test_processing_module(self): start_time = datetime(2020, 1, 29, 11, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='Test Session', identifier='NWBPM', session_start_time=start_time) behavior_module = ProcessingModule(name='behavior', description='preprocessed behavioral data') nwbfile.add_processing_module(behavior_module) nwbfile.processing['behavior'].add(self.position) processing_module(nwbfile.processing['behavior'], default_neurodata_vis_spec) def test_nwb2widget(self): nwb2widget(self.position, default_neurodata_vis_spec) def test_fig2widget(): data = np.random.rand(160, 3) fig = plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(fig2widget(fig), widgets.Widget) class Test_vis2widget: def test_vis2widget_input_widget(self): wg = widgets.IntSlider( value=7, min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') assert isinstance(vis2widget(wg), widgets.Widget) def test_vis2widget_input_figure(self): data = np.random.rand(160,3) fig=plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(vis2widget(fig), widgets.Widget) def test_vis2widget_input_other(self): data = np.random.rand(160,3) with pytest.raises(ValueError, match="unsupported vis type"): vis2widget(data) def test_show_subject(): node = Subject(age='8', sex='m', species='macaque') show_fields(node) def test_show_dynamic_table(): d = {'col1': [1, 2], 'col2': [3, 4]} DT = DynamicTable.from_dataframe(df=pd.DataFrame(data=d), name='Test Dtable', table_description='no description') show_dynamic_table(DT) def test_df2accordion(): df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_df2accordion_single(): df = pd.DataFrame(np.array([1]), columns=['a']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_lazy_show_over_data(): list_ = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig assert isinstance(lazy_show_over_data(list_=list_,func_=func_fig),widgets.Widget)
none
1
2.165399
2
subliminal/video.py
orikad/subliminal
0
9068
# -*- coding: utf-8 -*- from __future__ import division from datetime import datetime, timedelta import logging import os from guessit import guessit logger = logging.getLogger(__name__) #: Video extensions VIDEO_EXTENSIONS = ('.3g2', '.3gp', '.3gp2', '.3gpp', '.60d', '.ajp', '.asf', '.asx', '.avchd', '.avi', '.bik', '.bix', '.box', '.cam', '.dat', '.divx', '.dmf', '.dv', '.dvr-ms', '.evo', '.flc', '.fli', '.flic', '.flv', '.flx', '.gvi', '.gvp', '.h264', '.m1v', '.m2p', '.m2ts', '.m2v', '.m4e', '.m4v', '.mjp', '.mjpeg', '.mjpg', '.mkv', '.moov', '.mov', '.movhd', '.movie', '.movx', '.mp4', '.mpe', '.mpeg', '.mpg', '.mpv', '.mpv2', '.mxf', '.nsv', '.nut', '.ogg', '.ogm' '.ogv', '.omf', '.ps', '.qt', '.ram', '.rm', '.rmvb', '.swf', '.ts', '.vfw', '.vid', '.video', '.viv', '.vivo', '.vob', '.vro', '.wm', '.wmv', '.wmx', '.wrap', '.wvx', '.wx', '.x264', '.xvid') class Video(object): """Base class for videos. Represent a video, existing or not. :param str name: name or path of the video. :param str format: format of the video (HDTV, WEB-DL, BluRay, ...). :param str release_group: release group of the video. :param str resolution: resolution of the video stream (480p, 720p, 1080p or 1080i). :param str video_codec: codec of the video stream. :param str audio_codec: codec of the main audio stream. :param str imdb_id: IMDb id of the video. :param dict hashes: hashes of the video file by provider names. :param int size: size of the video file in bytes. :param set subtitle_languages: existing subtitle languages. """ def __init__(self, name, format=None, release_group=None, resolution=None, video_codec=None, audio_codec=None, imdb_id=None, hashes=None, size=None, subtitle_languages=None): #: Name or path of the video self.name = name #: Format of the video (HDTV, WEB-DL, BluRay, ...) self.format = format #: Release group of the video self.release_group = release_group #: Resolution of the video stream (480p, 720p, 1080p or 1080i) self.resolution = resolution #: Codec of the video stream self.video_codec = video_codec #: Codec of the main audio stream self.audio_codec = audio_codec #: IMDb id of the video self.imdb_id = imdb_id #: Hashes of the video file by provider names self.hashes = hashes or {} #: Size of the video file in bytes self.size = size #: Existing subtitle languages self.subtitle_languages = subtitle_languages or set() @property def exists(self): """Test whether the video exists""" return os.path.exists(self.name) @property def age(self): """Age of the video""" if self.exists: return datetime.utcnow() - datetime.utcfromtimestamp(os.path.getmtime(self.name)) return timedelta() @classmethod def fromguess(cls, name, guess): """Create an :class:`Episode` or a :class:`Movie` with the given `name` based on the `guess`. :param str name: name of the video. :param dict guess: guessed data. :raise: :class:`ValueError` if the `type` of the `guess` is invalid """ if guess['type'] == 'episode': return Episode.fromguess(name, guess) if guess['type'] == 'movie': return Movie.fromguess(name, guess) raise ValueError('The guess must be an episode or a movie guess') @classmethod def fromname(cls, name, options=None): """Shortcut for :meth:`fromguess` with a `guess` guessed from the `name`. :param str name: name of the video. """ if options is not None: return cls.fromguess(name, guessit(name, options=options)) else: return cls.fromguess(name, guessit(name)) def __repr__(self): return '<%s [%r]>' % (self.__class__.__name__, self.name) def __hash__(self): return hash(self.name) class Episode(Video): """Episode :class:`Video`. :param str series: series of the episode. :param int season: season number of the episode. :param int episode: episode number of the episode. :param str title: title of the episode. :param int year: year of the series. :param bool original_series: whether the series is the first with this name. :param int tvdb_id: TVDB id of the episode. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, series, season, episode, title=None, year=None, original_series=True, tvdb_id=None, series_tvdb_id=None, series_imdb_id=None, **kwargs): super(Episode, self).__init__(name, **kwargs) #: Series of the episode self.series = series #: Season number of the episode self.season = season #: Episode number of the episode self.episode = episode #: Title of the episode self.title = title #: Year of series self.year = year #: The series is the first with this name self.original_series = original_series #: TVDB id of the episode self.tvdb_id = tvdb_id #: TVDB id of the series self.series_tvdb_id = series_tvdb_id #: IMDb id of the series self.series_imdb_id = series_imdb_id @classmethod def fromguess(cls, name, guess): if guess['type'] != 'episode': raise ValueError('The guess must be an episode guess') if 'title' not in guess or 'episode' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], guess.get('season', 1), guess['episode'], title=guess.get('episode_title'), year=guess.get('year'), format=guess.get('format'), original_series='year' not in guess, release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'episode'})) def __repr__(self): if self.year is None: return '<%s [%r, %dx%d]>' % (self.__class__.__name__, self.series, self.season, self.episode) return '<%s [%r, %d, %dx%d]>' % (self.__class__.__name__, self.series, self.year, self.season, self.episode) class Movie(Video): """Movie :class:`Video`. :param str title: title of the movie. :param int year: year of the movie. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, title, year=None, **kwargs): super(Movie, self).__init__(name, **kwargs) #: Title of the movie self.title = title #: Year of the movie self.year = year @classmethod def fromguess(cls, name, guess): if guess['type'] != 'movie': raise ValueError('The guess must be a movie guess') if 'title' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], format=guess.get('format'), release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec'), year=guess.get('year')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'movie'})) def __repr__(self): if self.year is None: return '<%s [%r]>' % (self.__class__.__name__, self.title) return '<%s [%r, %d]>' % (self.__class__.__name__, self.title, self.year)
# -*- coding: utf-8 -*- from __future__ import division from datetime import datetime, timedelta import logging import os from guessit import guessit logger = logging.getLogger(__name__) #: Video extensions VIDEO_EXTENSIONS = ('.3g2', '.3gp', '.3gp2', '.3gpp', '.60d', '.ajp', '.asf', '.asx', '.avchd', '.avi', '.bik', '.bix', '.box', '.cam', '.dat', '.divx', '.dmf', '.dv', '.dvr-ms', '.evo', '.flc', '.fli', '.flic', '.flv', '.flx', '.gvi', '.gvp', '.h264', '.m1v', '.m2p', '.m2ts', '.m2v', '.m4e', '.m4v', '.mjp', '.mjpeg', '.mjpg', '.mkv', '.moov', '.mov', '.movhd', '.movie', '.movx', '.mp4', '.mpe', '.mpeg', '.mpg', '.mpv', '.mpv2', '.mxf', '.nsv', '.nut', '.ogg', '.ogm' '.ogv', '.omf', '.ps', '.qt', '.ram', '.rm', '.rmvb', '.swf', '.ts', '.vfw', '.vid', '.video', '.viv', '.vivo', '.vob', '.vro', '.wm', '.wmv', '.wmx', '.wrap', '.wvx', '.wx', '.x264', '.xvid') class Video(object): """Base class for videos. Represent a video, existing or not. :param str name: name or path of the video. :param str format: format of the video (HDTV, WEB-DL, BluRay, ...). :param str release_group: release group of the video. :param str resolution: resolution of the video stream (480p, 720p, 1080p or 1080i). :param str video_codec: codec of the video stream. :param str audio_codec: codec of the main audio stream. :param str imdb_id: IMDb id of the video. :param dict hashes: hashes of the video file by provider names. :param int size: size of the video file in bytes. :param set subtitle_languages: existing subtitle languages. """ def __init__(self, name, format=None, release_group=None, resolution=None, video_codec=None, audio_codec=None, imdb_id=None, hashes=None, size=None, subtitle_languages=None): #: Name or path of the video self.name = name #: Format of the video (HDTV, WEB-DL, BluRay, ...) self.format = format #: Release group of the video self.release_group = release_group #: Resolution of the video stream (480p, 720p, 1080p or 1080i) self.resolution = resolution #: Codec of the video stream self.video_codec = video_codec #: Codec of the main audio stream self.audio_codec = audio_codec #: IMDb id of the video self.imdb_id = imdb_id #: Hashes of the video file by provider names self.hashes = hashes or {} #: Size of the video file in bytes self.size = size #: Existing subtitle languages self.subtitle_languages = subtitle_languages or set() @property def exists(self): """Test whether the video exists""" return os.path.exists(self.name) @property def age(self): """Age of the video""" if self.exists: return datetime.utcnow() - datetime.utcfromtimestamp(os.path.getmtime(self.name)) return timedelta() @classmethod def fromguess(cls, name, guess): """Create an :class:`Episode` or a :class:`Movie` with the given `name` based on the `guess`. :param str name: name of the video. :param dict guess: guessed data. :raise: :class:`ValueError` if the `type` of the `guess` is invalid """ if guess['type'] == 'episode': return Episode.fromguess(name, guess) if guess['type'] == 'movie': return Movie.fromguess(name, guess) raise ValueError('The guess must be an episode or a movie guess') @classmethod def fromname(cls, name, options=None): """Shortcut for :meth:`fromguess` with a `guess` guessed from the `name`. :param str name: name of the video. """ if options is not None: return cls.fromguess(name, guessit(name, options=options)) else: return cls.fromguess(name, guessit(name)) def __repr__(self): return '<%s [%r]>' % (self.__class__.__name__, self.name) def __hash__(self): return hash(self.name) class Episode(Video): """Episode :class:`Video`. :param str series: series of the episode. :param int season: season number of the episode. :param int episode: episode number of the episode. :param str title: title of the episode. :param int year: year of the series. :param bool original_series: whether the series is the first with this name. :param int tvdb_id: TVDB id of the episode. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, series, season, episode, title=None, year=None, original_series=True, tvdb_id=None, series_tvdb_id=None, series_imdb_id=None, **kwargs): super(Episode, self).__init__(name, **kwargs) #: Series of the episode self.series = series #: Season number of the episode self.season = season #: Episode number of the episode self.episode = episode #: Title of the episode self.title = title #: Year of series self.year = year #: The series is the first with this name self.original_series = original_series #: TVDB id of the episode self.tvdb_id = tvdb_id #: TVDB id of the series self.series_tvdb_id = series_tvdb_id #: IMDb id of the series self.series_imdb_id = series_imdb_id @classmethod def fromguess(cls, name, guess): if guess['type'] != 'episode': raise ValueError('The guess must be an episode guess') if 'title' not in guess or 'episode' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], guess.get('season', 1), guess['episode'], title=guess.get('episode_title'), year=guess.get('year'), format=guess.get('format'), original_series='year' not in guess, release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'episode'})) def __repr__(self): if self.year is None: return '<%s [%r, %dx%d]>' % (self.__class__.__name__, self.series, self.season, self.episode) return '<%s [%r, %d, %dx%d]>' % (self.__class__.__name__, self.series, self.year, self.season, self.episode) class Movie(Video): """Movie :class:`Video`. :param str title: title of the movie. :param int year: year of the movie. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, title, year=None, **kwargs): super(Movie, self).__init__(name, **kwargs) #: Title of the movie self.title = title #: Year of the movie self.year = year @classmethod def fromguess(cls, name, guess): if guess['type'] != 'movie': raise ValueError('The guess must be a movie guess') if 'title' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], format=guess.get('format'), release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec'), year=guess.get('year')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'movie'})) def __repr__(self): if self.year is None: return '<%s [%r]>' % (self.__class__.__name__, self.title) return '<%s [%r, %d]>' % (self.__class__.__name__, self.title, self.year)
en
0.731312
# -*- coding: utf-8 -*- #: Video extensions Base class for videos. Represent a video, existing or not. :param str name: name or path of the video. :param str format: format of the video (HDTV, WEB-DL, BluRay, ...). :param str release_group: release group of the video. :param str resolution: resolution of the video stream (480p, 720p, 1080p or 1080i). :param str video_codec: codec of the video stream. :param str audio_codec: codec of the main audio stream. :param str imdb_id: IMDb id of the video. :param dict hashes: hashes of the video file by provider names. :param int size: size of the video file in bytes. :param set subtitle_languages: existing subtitle languages. #: Name or path of the video #: Format of the video (HDTV, WEB-DL, BluRay, ...) #: Release group of the video #: Resolution of the video stream (480p, 720p, 1080p or 1080i) #: Codec of the video stream #: Codec of the main audio stream #: IMDb id of the video #: Hashes of the video file by provider names #: Size of the video file in bytes #: Existing subtitle languages Test whether the video exists Age of the video Create an :class:`Episode` or a :class:`Movie` with the given `name` based on the `guess`. :param str name: name of the video. :param dict guess: guessed data. :raise: :class:`ValueError` if the `type` of the `guess` is invalid Shortcut for :meth:`fromguess` with a `guess` guessed from the `name`. :param str name: name of the video. Episode :class:`Video`. :param str series: series of the episode. :param int season: season number of the episode. :param int episode: episode number of the episode. :param str title: title of the episode. :param int year: year of the series. :param bool original_series: whether the series is the first with this name. :param int tvdb_id: TVDB id of the episode. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. #: Series of the episode #: Season number of the episode #: Episode number of the episode #: Title of the episode #: Year of series #: The series is the first with this name #: TVDB id of the episode #: TVDB id of the series #: IMDb id of the series Movie :class:`Video`. :param str title: title of the movie. :param int year: year of the movie. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. #: Title of the movie #: Year of the movie
1.662921
2
backend/app/migrations/0001_initial.py
juniorosorio47/client-order
0
9069
<gh_stars>0 # Generated by Django 3.2.7 on 2021-10-18 23:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('total', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='app.client')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ('price', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('inventory', models.IntegerField(default=0)), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='OrderProduct', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.product')), ], options={ 'unique_together': {('order', 'product')}, }, ), migrations.AddField( model_name='order', name='products', field=models.ManyToManyField(through='app.OrderProduct', to='app.Product'), ), migrations.AddField( model_name='order', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), ]
# Generated by Django 3.2.7 on 2021-10-18 23:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('total', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='app.client')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ('price', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('inventory', models.IntegerField(default=0)), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='OrderProduct', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.product')), ], options={ 'unique_together': {('order', 'product')}, }, ), migrations.AddField( model_name='order', name='products', field=models.ManyToManyField(through='app.OrderProduct', to='app.Product'), ), migrations.AddField( model_name='order', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), ]
en
0.891659
# Generated by Django 3.2.7 on 2021-10-18 23:21
1.74556
2
nemo/collections/nlp/models/machine_translation/mt_enc_dec_config.py
vadam5/NeMo
1
9070
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional, Tuple from omegaconf.omegaconf import MISSING from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModelConfig from nemo.collections.nlp.modules.common.token_classifier import TokenClassifierConfig from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig from nemo.collections.nlp.modules.common.transformer.transformer import ( NeMoTransformerConfig, NeMoTransformerEncoderConfig, ) from nemo.core.config.modelPT import ModelConfig, OptimConfig, SchedConfig @dataclass class MTSchedConfig(SchedConfig): name: str = 'InverseSquareRootAnnealing' warmup_ratio: Optional[float] = None last_epoch: int = -1 # TODO: Refactor this dataclass to to support more optimizers (it pins the optimizer to Adam-like optimizers). @dataclass class MTOptimConfig(OptimConfig): name: str = 'adam' lr: float = 1e-3 betas: Tuple[float, float] = (0.9, 0.98) weight_decay: float = 0.0 sched: Optional[MTSchedConfig] = MTSchedConfig() @dataclass class MTEncDecModelConfig(EncDecNLPModelConfig): # machine translation configurations num_val_examples: int = 3 num_test_examples: int = 3 max_generation_delta: int = 10 label_smoothing: Optional[float] = 0.0 beam_size: int = 4 len_pen: float = 0.0 src_language: str = 'en' tgt_language: str = 'en' find_unused_parameters: Optional[bool] = True shared_tokenizer: Optional[bool] = True preproc_out_dir: Optional[str] = None # network architecture configuration encoder_tokenizer: Any = MISSING encoder: Any = MISSING decoder_tokenizer: Any = MISSING decoder: Any = MISSING head: TokenClassifierConfig = TokenClassifierConfig(log_softmax=True) # dataset configurations train_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=True, shuffle=True, cache_ids=False, use_cache=False, ) validation_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) test_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) optim: Optional[OptimConfig] = MTOptimConfig() @dataclass class AAYNBaseConfig(MTEncDecModelConfig): # Attention is All You Need Base Configuration encoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') decoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') encoder: NeMoTransformerEncoderConfig = NeMoTransformerEncoderConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, ) decoder: NeMoTransformerConfig = NeMoTransformerConfig( library='nemo', model_name=None, pretrained=False, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, )
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional, Tuple from omegaconf.omegaconf import MISSING from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModelConfig from nemo.collections.nlp.modules.common.token_classifier import TokenClassifierConfig from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig from nemo.collections.nlp.modules.common.transformer.transformer import ( NeMoTransformerConfig, NeMoTransformerEncoderConfig, ) from nemo.core.config.modelPT import ModelConfig, OptimConfig, SchedConfig @dataclass class MTSchedConfig(SchedConfig): name: str = 'InverseSquareRootAnnealing' warmup_ratio: Optional[float] = None last_epoch: int = -1 # TODO: Refactor this dataclass to to support more optimizers (it pins the optimizer to Adam-like optimizers). @dataclass class MTOptimConfig(OptimConfig): name: str = 'adam' lr: float = 1e-3 betas: Tuple[float, float] = (0.9, 0.98) weight_decay: float = 0.0 sched: Optional[MTSchedConfig] = MTSchedConfig() @dataclass class MTEncDecModelConfig(EncDecNLPModelConfig): # machine translation configurations num_val_examples: int = 3 num_test_examples: int = 3 max_generation_delta: int = 10 label_smoothing: Optional[float] = 0.0 beam_size: int = 4 len_pen: float = 0.0 src_language: str = 'en' tgt_language: str = 'en' find_unused_parameters: Optional[bool] = True shared_tokenizer: Optional[bool] = True preproc_out_dir: Optional[str] = None # network architecture configuration encoder_tokenizer: Any = MISSING encoder: Any = MISSING decoder_tokenizer: Any = MISSING decoder: Any = MISSING head: TokenClassifierConfig = TokenClassifierConfig(log_softmax=True) # dataset configurations train_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=True, shuffle=True, cache_ids=False, use_cache=False, ) validation_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) test_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) optim: Optional[OptimConfig] = MTOptimConfig() @dataclass class AAYNBaseConfig(MTEncDecModelConfig): # Attention is All You Need Base Configuration encoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') decoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') encoder: NeMoTransformerEncoderConfig = NeMoTransformerEncoderConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, ) decoder: NeMoTransformerConfig = NeMoTransformerConfig( library='nemo', model_name=None, pretrained=False, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, )
en
0.820391
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Refactor this dataclass to to support more optimizers (it pins the optimizer to Adam-like optimizers). # machine translation configurations # network architecture configuration # dataset configurations # Attention is All You Need Base Configuration
1.731961
2
shadowsocksr_cli/main.py
MaxSherry/ssr-command-client
0
9071
""" @author: tyrantlucifer @contact: <EMAIL> @blog: https://tyrantlucifer.com @file: main.py @time: 2021/2/18 21:36 @desc: shadowsocksr-cli入口函数 """ import argparse import traceback from shadowsocksr_cli.functions import * def get_parser(): parser = argparse.ArgumentParser(description=color.blue("The shadowsocksr command client based Python."), epilog=color.yellow('Powered by ') + color.green('tyrantlucifer') + color.yellow( ". If you have any questions,you can send e-mails to ") + color.green( "<EMAIL>")) parser.add_argument("-l", "--list", action="store_true", help="show ssr list") parser.add_argument("-p", "--port", default=1080, metavar="local_port", type=int, help="assign local proxy port,use with -s") parser.add_argument("-s", "--start", metavar="ssr_id", type=int, help="start ssr proxy") parser.add_argument("-S", "--stop", nargs='?', const=-1, metavar="ssr_id", type=int, help="stop ssr proxy") parser.add_argument("-u", "--update", action="store_true", help="update ssr list") parser.add_argument("-v", "--version", action="store_true", help="display version") parser.add_argument("--generate-clash", action="store_true", help="generate clash config yaml") parser.add_argument("--display-json", metavar="ssr_id", type=int, help="display ssr json info") parser.add_argument("--test-speed", type=int, metavar="ssr_id", help="test ssr nodes download and upload speed") parser.add_argument("--fast-node", action="store_true", help="find most fast by delay and start ssr proxy") parser.add_argument("--setting-url", metavar="ssr_subscribe_url", help="setting ssr subscribe url") parser.add_argument("--setting-address", metavar="ssr_local_address", help="setting ssr local address") parser.add_argument("--list-url", action="store_true", help="list ssr subscribe url") parser.add_argument("--add-url", metavar="ssr_subscribe_url", help="add ssr subscribe url") parser.add_argument("--remove-url", metavar="ssr_subscribe_url", help="remove ssr subscribe url") parser.add_argument("--list-address", action="store_true", help="list ssr local address") parser.add_argument("--parse-url", metavar="ssr_url", help="pares ssr url") parser.add_argument("--append-ssr", metavar="ssr_file_path", help="append ssr nodes from file") parser.add_argument("-b", action="store_true", help="append_ssr file is base64") parser.add_argument("--clear-ssr", metavar="ssr_id", nargs="?", const="fail", help="if ssr_id is not empty, clear ssr node by ssr_id, else clear fail nodes") parser.add_argument("-all", action="store_true", help="clear all ssr node") parser.add_argument("--add-ssr", metavar="ssr_url", help="add ssr node") parser.add_argument("--test-again", metavar="ssr_node_id", type=int, help="test ssr node again") parser.add_argument("--print-qrcode", metavar="ssr_node_id", type=int, help="print ssr node qrcode") parser.add_argument("--http", metavar="action[start stop status]", help="Manager local http server") parser.add_argument("--http-port", metavar="http server port", default=80, type=int, help="assign local http server port") parser.add_argument("--setting-global-proxy", action="store_true", help="setting system global proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--setting-pac-proxy", action="store_true", help="setting system pac proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--close-system-proxy", action="store_true", help="close system proxy,only support on " + color.red('Ubuntu Desktop')) return parser def main(): parser = get_parser() args = parser.parse_args() if args.list: DisplayShadowsocksr.display_shadowsocksr_list() elif args.update: UpdateConfigurations.update_subscribe() elif args.fast_node: HandleShadowsocksr.select_fast_node(args.port) elif args.start is not None: HandleShadowsocksr.start(ssr_id=args.start, local_port=args.port) elif args.stop is not None: HandleShadowsocksr.stop(ssr_id=args.stop, local_port=args.port) elif args.version: DisplayShadowsocksr.display_version() elif args.setting_url: UpdateConfigurations.reset_subscribe_url(args.setting_url) elif args.append_ssr: if not os.path.isfile(args.append_ssr): logger.error(f'append_ssr file {args.append_ssr} is not exists') return with open(args.append_ssr, 'r', encoding='UTF-8') as f: txt = f.read() if args.b: txt = ParseShadowsocksr.base64_decode(txt) ssr_set = set() for line in txt.splitlines(): for ssr in re.findall(r'ssr://[0-9a-zA-Z=-_/+]+', line): ssr_set.add(ssr) for ssr in ssr_set: try: UpdateConfigurations.append_ssr_node(ssr) except Exception as e: logger.error(f'add ssr node error {ssr}') logger.error(traceback.format_exc()) elif args.clear_ssr: UpdateConfigurations.clear_ssr_nodes(args.clear_ssr, args.all) elif args.setting_address: UpdateConfigurations.update_local_address(args.setting_address) elif args.list_url: DisplayShadowsocksr.display_subscribe_url() elif args.add_url: UpdateConfigurations.add_subscribe_url(args.add_url) elif args.remove_url: UpdateConfigurations.remove_subscribe_url(args.remove_url) elif args.list_address: DisplayShadowsocksr.display_local_address() elif args.parse_url: DisplayShadowsocksr.display_shadowsocksr_json_by_url(args.parse_url) elif args.add_ssr: UpdateConfigurations.add_shadowsocksr_by_url(args.add_ssr) elif args.test_again is not None: UpdateConfigurations.update_shadowsocksr_connect_status(ssr_id=args.test_again) elif args.print_qrcode is not None: DisplayShadowsocksr.display_qrcode(ssr_id=args.print_qrcode) elif args.setting_global_proxy: UpdateSystemProxy.open_global_proxy(args.port, args.http_port) elif args.setting_pac_proxy: UpdateSystemProxy.open_pac_proxy(args.port, args.http_port) elif args.close_system_proxy: UpdateSystemProxy.close_proxy(args.port, args.http_port) elif args.test_speed is not None: DisplayShadowsocksr.display_shadowsocksr_speed(ssr_id=args.test_speed) elif args.display_json is not None: DisplayShadowsocksr.display_shadowsocksr_json(ssr_id=args.display_json) elif args.generate_clash: GenerateClashConfig.generate_clash_config() elif args.http: HandleHttpServer.handle_http_server(args.http, args.port, args.http_port) else: parser.print_help() if __name__ == "__main__": main()
""" @author: tyrantlucifer @contact: <EMAIL> @blog: https://tyrantlucifer.com @file: main.py @time: 2021/2/18 21:36 @desc: shadowsocksr-cli入口函数 """ import argparse import traceback from shadowsocksr_cli.functions import * def get_parser(): parser = argparse.ArgumentParser(description=color.blue("The shadowsocksr command client based Python."), epilog=color.yellow('Powered by ') + color.green('tyrantlucifer') + color.yellow( ". If you have any questions,you can send e-mails to ") + color.green( "<EMAIL>")) parser.add_argument("-l", "--list", action="store_true", help="show ssr list") parser.add_argument("-p", "--port", default=1080, metavar="local_port", type=int, help="assign local proxy port,use with -s") parser.add_argument("-s", "--start", metavar="ssr_id", type=int, help="start ssr proxy") parser.add_argument("-S", "--stop", nargs='?', const=-1, metavar="ssr_id", type=int, help="stop ssr proxy") parser.add_argument("-u", "--update", action="store_true", help="update ssr list") parser.add_argument("-v", "--version", action="store_true", help="display version") parser.add_argument("--generate-clash", action="store_true", help="generate clash config yaml") parser.add_argument("--display-json", metavar="ssr_id", type=int, help="display ssr json info") parser.add_argument("--test-speed", type=int, metavar="ssr_id", help="test ssr nodes download and upload speed") parser.add_argument("--fast-node", action="store_true", help="find most fast by delay and start ssr proxy") parser.add_argument("--setting-url", metavar="ssr_subscribe_url", help="setting ssr subscribe url") parser.add_argument("--setting-address", metavar="ssr_local_address", help="setting ssr local address") parser.add_argument("--list-url", action="store_true", help="list ssr subscribe url") parser.add_argument("--add-url", metavar="ssr_subscribe_url", help="add ssr subscribe url") parser.add_argument("--remove-url", metavar="ssr_subscribe_url", help="remove ssr subscribe url") parser.add_argument("--list-address", action="store_true", help="list ssr local address") parser.add_argument("--parse-url", metavar="ssr_url", help="pares ssr url") parser.add_argument("--append-ssr", metavar="ssr_file_path", help="append ssr nodes from file") parser.add_argument("-b", action="store_true", help="append_ssr file is base64") parser.add_argument("--clear-ssr", metavar="ssr_id", nargs="?", const="fail", help="if ssr_id is not empty, clear ssr node by ssr_id, else clear fail nodes") parser.add_argument("-all", action="store_true", help="clear all ssr node") parser.add_argument("--add-ssr", metavar="ssr_url", help="add ssr node") parser.add_argument("--test-again", metavar="ssr_node_id", type=int, help="test ssr node again") parser.add_argument("--print-qrcode", metavar="ssr_node_id", type=int, help="print ssr node qrcode") parser.add_argument("--http", metavar="action[start stop status]", help="Manager local http server") parser.add_argument("--http-port", metavar="http server port", default=80, type=int, help="assign local http server port") parser.add_argument("--setting-global-proxy", action="store_true", help="setting system global proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--setting-pac-proxy", action="store_true", help="setting system pac proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--close-system-proxy", action="store_true", help="close system proxy,only support on " + color.red('Ubuntu Desktop')) return parser def main(): parser = get_parser() args = parser.parse_args() if args.list: DisplayShadowsocksr.display_shadowsocksr_list() elif args.update: UpdateConfigurations.update_subscribe() elif args.fast_node: HandleShadowsocksr.select_fast_node(args.port) elif args.start is not None: HandleShadowsocksr.start(ssr_id=args.start, local_port=args.port) elif args.stop is not None: HandleShadowsocksr.stop(ssr_id=args.stop, local_port=args.port) elif args.version: DisplayShadowsocksr.display_version() elif args.setting_url: UpdateConfigurations.reset_subscribe_url(args.setting_url) elif args.append_ssr: if not os.path.isfile(args.append_ssr): logger.error(f'append_ssr file {args.append_ssr} is not exists') return with open(args.append_ssr, 'r', encoding='UTF-8') as f: txt = f.read() if args.b: txt = ParseShadowsocksr.base64_decode(txt) ssr_set = set() for line in txt.splitlines(): for ssr in re.findall(r'ssr://[0-9a-zA-Z=-_/+]+', line): ssr_set.add(ssr) for ssr in ssr_set: try: UpdateConfigurations.append_ssr_node(ssr) except Exception as e: logger.error(f'add ssr node error {ssr}') logger.error(traceback.format_exc()) elif args.clear_ssr: UpdateConfigurations.clear_ssr_nodes(args.clear_ssr, args.all) elif args.setting_address: UpdateConfigurations.update_local_address(args.setting_address) elif args.list_url: DisplayShadowsocksr.display_subscribe_url() elif args.add_url: UpdateConfigurations.add_subscribe_url(args.add_url) elif args.remove_url: UpdateConfigurations.remove_subscribe_url(args.remove_url) elif args.list_address: DisplayShadowsocksr.display_local_address() elif args.parse_url: DisplayShadowsocksr.display_shadowsocksr_json_by_url(args.parse_url) elif args.add_ssr: UpdateConfigurations.add_shadowsocksr_by_url(args.add_ssr) elif args.test_again is not None: UpdateConfigurations.update_shadowsocksr_connect_status(ssr_id=args.test_again) elif args.print_qrcode is not None: DisplayShadowsocksr.display_qrcode(ssr_id=args.print_qrcode) elif args.setting_global_proxy: UpdateSystemProxy.open_global_proxy(args.port, args.http_port) elif args.setting_pac_proxy: UpdateSystemProxy.open_pac_proxy(args.port, args.http_port) elif args.close_system_proxy: UpdateSystemProxy.close_proxy(args.port, args.http_port) elif args.test_speed is not None: DisplayShadowsocksr.display_shadowsocksr_speed(ssr_id=args.test_speed) elif args.display_json is not None: DisplayShadowsocksr.display_shadowsocksr_json(ssr_id=args.display_json) elif args.generate_clash: GenerateClashConfig.generate_clash_config() elif args.http: HandleHttpServer.handle_http_server(args.http, args.port, args.http_port) else: parser.print_help() if __name__ == "__main__": main()
en
0.230887
@author: tyrantlucifer @contact: <EMAIL> @blog: https://tyrantlucifer.com @file: main.py @time: 2021/2/18 21:36 @desc: shadowsocksr-cli入口函数
2.475671
2
examples/Python 2.7/Client_Complete.py
jcjveraa/EDDN
100
9072
<gh_stars>10-100 import zlib import zmq import simplejson import sys, os, datetime, time """ " Configuration """ __relayEDDN = 'tcp://eddn.edcd.io:9500' #__timeoutEDDN = 600000 # 10 minuts __timeoutEDDN = 60000 # 1 minut # Set False to listen to production stream; True to listen to debug stream __debugEDDN = False; # Set to False if you do not want verbose logging __logVerboseFile = os.path.dirname(__file__) + '/Logs_Verbose_EDDN_%DATE%.htm' #__logVerboseFile = False # Set to False if you do not want JSON logging __logJSONFile = os.path.dirname(__file__) + '/Logs_JSON_EDDN_%DATE%.log' #__logJSONFile = False # A sample list of authorised softwares __authorisedSoftwares = [ "EDCE", "ED-TD.SPACE", "EliteOCR", "Maddavo's Market Share", "RegulatedNoise", "RegulatedNoise__DJ", "E:D Market Connector [Windows]" ] # Used this to excludes yourself for example has you don't want to handle your own messages ^^ __excludedSoftwares = [ 'My Awesome Market Uploader' ] """ " Start """ def date(__format): d = datetime.datetime.utcnow() return d.strftime(__format) __oldTime = False def echoLog(__str): global __oldTime, __logVerboseFile if __logVerboseFile != False: __logVerboseFileParsed = __logVerboseFile.replace('%DATE%', str(date('%Y-%m-%d'))) if __logVerboseFile != False and not os.path.exists(__logVerboseFileParsed): f = open(__logVerboseFileParsed, 'w') f.write('<style type="text/css">html { white-space: pre; font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida Typewriter,monospace; }</style>') f.close() if (__oldTime == False) or (__oldTime != date('%H:%M:%S')): __oldTime = date('%H:%M:%S') __str = str(__oldTime) + ' | ' + str(__str) else: __str = ' ' + ' | ' + str(__str) print __str sys.stdout.flush() if __logVerboseFile != False: f = open(__logVerboseFileParsed, 'a') f.write(__str + '\n') f.close() def echoLogJSON(__json): global __logJSONFile if __logJSONFile != False: __logJSONFileParsed = __logJSONFile.replace('%DATE%', str(date('%Y-%m-%d'))) f = open(__logJSONFileParsed, 'a') f.write(str(__json) + '\n') f.close() def main(): echoLog('Starting EDDN Subscriber') echoLog('') context = zmq.Context() subscriber = context.socket(zmq.SUB) subscriber.setsockopt(zmq.SUBSCRIBE, "") subscriber.setsockopt(zmq.RCVTIMEO, __timeoutEDDN) while True: try: subscriber.connect(__relayEDDN) echoLog('Connect to ' + __relayEDDN) echoLog('') echoLog('') poller = zmq.Poller() poller.register(subscriber, zmq.POLLIN) while True: socks = dict(poller.poll(__timeoutEDDN)) if socks: if socks.get(subscriber) == zmq.POLLIN: __message = subscriber.recv(zmq.NOBLOCK) __message = zlib.decompress(__message) __json = simplejson.loads(__message) __converted = False # Handle commodity v1 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/1' + ('/test' if (__debugEDDN == True) else ''): echoLogJSON(__message) echoLog('Receiving commodity-v1 message...') echoLog(' - Converting to v3...') __temp = {} __temp['$schemaRef'] = 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else '') __temp['header'] = __json['header'] __temp['message'] = {} __temp['message']['systemName'] = __json['message']['systemName'] __temp['message']['stationName'] = __json['message']['stationName'] __temp['message']['timestamp'] = __json['message']['timestamp'] __temp['message']['commodities'] = [] __commodity = {} if 'itemName' in __json['message']: __commodity['name'] = __json['message']['itemName'] if 'buyPrice' in __json['message']: __commodity['buyPrice'] = __json['message']['buyPrice'] if 'stationStock' in __json['message']: __commodity['supply'] = __json['message']['stationStock'] if 'supplyLevel' in __json['message']: __commodity['supplyLevel'] = __json['message']['supplyLevel'] if 'sellPrice' in __json['message']: __commodity['sellPrice'] = __json['message']['sellPrice'] if 'demand' in __json['message']: __commodity['demand'] = __json['message']['demand'] if'demandLevel' in __json['message']: __commodity['demandLevel'] = __json['message']['demandLevel'] __temp['message']['commodities'].append(__commodity) __json = __temp del __temp, __commodity __converted = True # Handle commodity v3 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else ''): if __converted == False: echoLogJSON(__message) echoLog('Receiving commodity-v3 message...') __authorised = False __excluded = False if __json['header']['softwareName'] in __authorisedSoftwares: __authorised = True if __json['header']['softwareName'] in __excludedSoftwares: __excluded = True echoLog(' - Software: ' + __json['header']['softwareName'] + ' / ' + __json['header']['softwareVersion']) echoLog(' - ' + 'AUTHORISED' if (__authorised == True) else ('EXCLUDED' if (__excluded == True) else 'UNAUTHORISED') ) if __authorised == True and __excluded == False: # Do what you want with the data... # Have fun ! # For example echoLog(' - Timestamp: ' + __json['message']['timestamp']) echoLog(' - Uploader ID: ' + __json['header']['uploaderID']) echoLog(' - System Name: ' + __json['message']['systemName']) echoLog(' - Station Name: ' + __json['message']['stationName']) for __commodity in __json['message']['commodities']: echoLog(' - Name: ' + __commodity['name']) echoLog(' - Buy Price: ' + str(__commodity['buyPrice'])) echoLog(' - Supply: ' + str(__commodity['supply']) + ((' (' + __commodity['supplyLevel'] + ')') if 'supplyLevel' in __commodity else '') ) echoLog(' - Sell Price: ' + str(__commodity['sellPrice'])) echoLog(' - Demand: ' + str(__commodity['demand']) + ((' (' + __commodity['demandLevel'] + ')') if 'demandLevel' in __commodity else '') ) # End example del __authorised, __excluded echoLog('') echoLog('') del __converted else: print 'Disconnect from ' + __relayEDDN + ' (After timeout)' echoLog('') echoLog('') sys.stdout.flush() subscriber.disconnect(__relayEDDN) break except zmq.ZMQError, e: subscriber.disconnect(__relayEDDN) echoLog('') echoLog('Disconnect from ' + __relayEDDN + ' (After receiving ZMQError)') echoLog('ZMQSocketException: ' + str(e)) echoLog('') time.sleep(10) if __name__ == '__main__': main()
import zlib import zmq import simplejson import sys, os, datetime, time """ " Configuration """ __relayEDDN = 'tcp://eddn.edcd.io:9500' #__timeoutEDDN = 600000 # 10 minuts __timeoutEDDN = 60000 # 1 minut # Set False to listen to production stream; True to listen to debug stream __debugEDDN = False; # Set to False if you do not want verbose logging __logVerboseFile = os.path.dirname(__file__) + '/Logs_Verbose_EDDN_%DATE%.htm' #__logVerboseFile = False # Set to False if you do not want JSON logging __logJSONFile = os.path.dirname(__file__) + '/Logs_JSON_EDDN_%DATE%.log' #__logJSONFile = False # A sample list of authorised softwares __authorisedSoftwares = [ "EDCE", "ED-TD.SPACE", "EliteOCR", "Maddavo's Market Share", "RegulatedNoise", "RegulatedNoise__DJ", "E:D Market Connector [Windows]" ] # Used this to excludes yourself for example has you don't want to handle your own messages ^^ __excludedSoftwares = [ 'My Awesome Market Uploader' ] """ " Start """ def date(__format): d = datetime.datetime.utcnow() return d.strftime(__format) __oldTime = False def echoLog(__str): global __oldTime, __logVerboseFile if __logVerboseFile != False: __logVerboseFileParsed = __logVerboseFile.replace('%DATE%', str(date('%Y-%m-%d'))) if __logVerboseFile != False and not os.path.exists(__logVerboseFileParsed): f = open(__logVerboseFileParsed, 'w') f.write('<style type="text/css">html { white-space: pre; font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida Typewriter,monospace; }</style>') f.close() if (__oldTime == False) or (__oldTime != date('%H:%M:%S')): __oldTime = date('%H:%M:%S') __str = str(__oldTime) + ' | ' + str(__str) else: __str = ' ' + ' | ' + str(__str) print __str sys.stdout.flush() if __logVerboseFile != False: f = open(__logVerboseFileParsed, 'a') f.write(__str + '\n') f.close() def echoLogJSON(__json): global __logJSONFile if __logJSONFile != False: __logJSONFileParsed = __logJSONFile.replace('%DATE%', str(date('%Y-%m-%d'))) f = open(__logJSONFileParsed, 'a') f.write(str(__json) + '\n') f.close() def main(): echoLog('Starting EDDN Subscriber') echoLog('') context = zmq.Context() subscriber = context.socket(zmq.SUB) subscriber.setsockopt(zmq.SUBSCRIBE, "") subscriber.setsockopt(zmq.RCVTIMEO, __timeoutEDDN) while True: try: subscriber.connect(__relayEDDN) echoLog('Connect to ' + __relayEDDN) echoLog('') echoLog('') poller = zmq.Poller() poller.register(subscriber, zmq.POLLIN) while True: socks = dict(poller.poll(__timeoutEDDN)) if socks: if socks.get(subscriber) == zmq.POLLIN: __message = subscriber.recv(zmq.NOBLOCK) __message = zlib.decompress(__message) __json = simplejson.loads(__message) __converted = False # Handle commodity v1 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/1' + ('/test' if (__debugEDDN == True) else ''): echoLogJSON(__message) echoLog('Receiving commodity-v1 message...') echoLog(' - Converting to v3...') __temp = {} __temp['$schemaRef'] = 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else '') __temp['header'] = __json['header'] __temp['message'] = {} __temp['message']['systemName'] = __json['message']['systemName'] __temp['message']['stationName'] = __json['message']['stationName'] __temp['message']['timestamp'] = __json['message']['timestamp'] __temp['message']['commodities'] = [] __commodity = {} if 'itemName' in __json['message']: __commodity['name'] = __json['message']['itemName'] if 'buyPrice' in __json['message']: __commodity['buyPrice'] = __json['message']['buyPrice'] if 'stationStock' in __json['message']: __commodity['supply'] = __json['message']['stationStock'] if 'supplyLevel' in __json['message']: __commodity['supplyLevel'] = __json['message']['supplyLevel'] if 'sellPrice' in __json['message']: __commodity['sellPrice'] = __json['message']['sellPrice'] if 'demand' in __json['message']: __commodity['demand'] = __json['message']['demand'] if'demandLevel' in __json['message']: __commodity['demandLevel'] = __json['message']['demandLevel'] __temp['message']['commodities'].append(__commodity) __json = __temp del __temp, __commodity __converted = True # Handle commodity v3 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else ''): if __converted == False: echoLogJSON(__message) echoLog('Receiving commodity-v3 message...') __authorised = False __excluded = False if __json['header']['softwareName'] in __authorisedSoftwares: __authorised = True if __json['header']['softwareName'] in __excludedSoftwares: __excluded = True echoLog(' - Software: ' + __json['header']['softwareName'] + ' / ' + __json['header']['softwareVersion']) echoLog(' - ' + 'AUTHORISED' if (__authorised == True) else ('EXCLUDED' if (__excluded == True) else 'UNAUTHORISED') ) if __authorised == True and __excluded == False: # Do what you want with the data... # Have fun ! # For example echoLog(' - Timestamp: ' + __json['message']['timestamp']) echoLog(' - Uploader ID: ' + __json['header']['uploaderID']) echoLog(' - System Name: ' + __json['message']['systemName']) echoLog(' - Station Name: ' + __json['message']['stationName']) for __commodity in __json['message']['commodities']: echoLog(' - Name: ' + __commodity['name']) echoLog(' - Buy Price: ' + str(__commodity['buyPrice'])) echoLog(' - Supply: ' + str(__commodity['supply']) + ((' (' + __commodity['supplyLevel'] + ')') if 'supplyLevel' in __commodity else '') ) echoLog(' - Sell Price: ' + str(__commodity['sellPrice'])) echoLog(' - Demand: ' + str(__commodity['demand']) + ((' (' + __commodity['demandLevel'] + ')') if 'demandLevel' in __commodity else '') ) # End example del __authorised, __excluded echoLog('') echoLog('') del __converted else: print 'Disconnect from ' + __relayEDDN + ' (After timeout)' echoLog('') echoLog('') sys.stdout.flush() subscriber.disconnect(__relayEDDN) break except zmq.ZMQError, e: subscriber.disconnect(__relayEDDN) echoLog('') echoLog('Disconnect from ' + __relayEDDN + ' (After receiving ZMQError)') echoLog('ZMQSocketException: ' + str(e)) echoLog('') time.sleep(10) if __name__ == '__main__': main()
en
0.782613
" Configuration #__timeoutEDDN = 600000 # 10 minuts # 1 minut # Set False to listen to production stream; True to listen to debug stream # Set to False if you do not want verbose logging #__logVerboseFile = False # Set to False if you do not want JSON logging #__logJSONFile = False # A sample list of authorised softwares # Used this to excludes yourself for example has you don't want to handle your own messages ^^ " Start # Handle commodity v1 # Handle commodity v3 # Do what you want with the data... # Have fun ! # For example # End example
2.078486
2
zad1.py
nadkkka/H8PW
6
9073
def repleace_pattern(t,s,r): assert len(t) > 0 assert len(s) > 0 assert len(r) > 0 assert len(t) >= len(s) n = len(t) m = len(s) k = len(r) idx = -1 for i in range(0, n): if t[i] == s[0]: pattern = True for j in range(1,m): if t[i+j] != s[j]: pattern = False break if(pattern): idx=i break result = t print(idx) if(idx!=-1): result = [*t[0:idx],*r,*t[idx+m:n]] return result print (repleace_pattern([1,2,3,1,2,3,4],[1,2,3,4],[9,0]))
def repleace_pattern(t,s,r): assert len(t) > 0 assert len(s) > 0 assert len(r) > 0 assert len(t) >= len(s) n = len(t) m = len(s) k = len(r) idx = -1 for i in range(0, n): if t[i] == s[0]: pattern = True for j in range(1,m): if t[i+j] != s[j]: pattern = False break if(pattern): idx=i break result = t print(idx) if(idx!=-1): result = [*t[0:idx],*r,*t[idx+m:n]] return result print (repleace_pattern([1,2,3,1,2,3,4],[1,2,3,4],[9,0]))
none
1
2.955106
3
mycroft/client/enclosure/weather.py
Matjordan/mycroft-core
0
9074
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class EnclosureWeather: """ Listens for Enclosure API commands to display indicators of the weather. Performs the associated command on Arduino by writing on the Serial port. """ def __init__(self, bus, writer): self.bus = bus self.writer = writer self.__init_events() def __init_events(self): self.bus.on('enclosure.weather.display', self.display) def display(self, event=None): if event and event.data: # Convert img_code to icon img_code = event.data.get("img_code", None) icon = None if img_code == 0: # sunny icon = "IICEIBMDNLMDIBCEAA" elif img_code == 1: # partly cloudy icon = "IIEEGBGDHLHDHBGEEA" elif img_code == 2: # cloudy icon = "IIIBMDMDODODODMDIB" elif img_code == 3: # light rain icon = "IIMAOJOFPBPJPFOBMA" elif img_code == 4: # raining icon = "IIMIOFOBPFPDPJOFMA" elif img_code == 5: # storming icon = "IIAAIIMEODLBJAAAAA" elif img_code == 6: # snowing icon = "IIJEKCMBPHMBKCJEAA" elif img_code == 7: # wind/mist icon = "IIABIBIBIJIJJGJAGA" temp = event.data.get("temp", None) if icon is not None and temp is not None: icon = "x=2," + icon msg = "weather.display=" + str(temp) + "," + str(icon) self.writer.write(msg)
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class EnclosureWeather: """ Listens for Enclosure API commands to display indicators of the weather. Performs the associated command on Arduino by writing on the Serial port. """ def __init__(self, bus, writer): self.bus = bus self.writer = writer self.__init_events() def __init_events(self): self.bus.on('enclosure.weather.display', self.display) def display(self, event=None): if event and event.data: # Convert img_code to icon img_code = event.data.get("img_code", None) icon = None if img_code == 0: # sunny icon = "IICEIBMDNLMDIBCEAA" elif img_code == 1: # partly cloudy icon = "IIEEGBGDHLHDHBGEEA" elif img_code == 2: # cloudy icon = "IIIBMDMDODODODMDIB" elif img_code == 3: # light rain icon = "IIMAOJOFPBPJPFOBMA" elif img_code == 4: # raining icon = "IIMIOFOBPFPDPJOFMA" elif img_code == 5: # storming icon = "IIAAIIMEODLBJAAAAA" elif img_code == 6: # snowing icon = "IIJEKCMBPHMBKCJEAA" elif img_code == 7: # wind/mist icon = "IIABIBIBIJIJJGJAGA" temp = event.data.get("temp", None) if icon is not None and temp is not None: icon = "x=2," + icon msg = "weather.display=" + str(temp) + "," + str(icon) self.writer.write(msg)
en
0.855848
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Listens for Enclosure API commands to display indicators of the weather. Performs the associated command on Arduino by writing on the Serial port. # Convert img_code to icon # sunny # partly cloudy # cloudy # light rain # raining # storming # snowing # wind/mist
2.617499
3
tests/processing_components/test_image_iterators.py
cnwangfeng/algorithm-reference-library
22
9075
<reponame>cnwangfeng/algorithm-reference-library """Unit tests for image iteration """ import logging import unittest import numpy from data_models.polarisation import PolarisationFrame from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter from processing_components.image.operations import create_empty_image_like from processing_components.simulation.testing_support import create_test_image log = logging.getLogger(__name__) class TestImageIterators(unittest.TestCase): def test_raster(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster in [1, 2, 4, 8, 9]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster): assert patch.data.shape[3] == (m31model.data.shape[3] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[3], (m31model.data.shape[3] // nraster)) assert patch.data.shape[2] == (m31model.data.shape[2] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[2], (m31model.data.shape[2] // nraster)) patch.data *= 2.0 diff = m31model.data - 2.0 * m31original.data assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster assert numpy.max(numpy.abs(diff)) == 0.0, "Raster set failed for %d" % nraster def test_raster_exception(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster, overlap in [(-1, -1), (-1, 0), (2, 128), (1e6, 127)]: with self.assertRaises(AssertionError) as context: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster, overlap=overlap): patch.data *= 2.0 def test_raster_overlap(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_linear(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='linear'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_quadratic(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='quadratic'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_tukey(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='tukey'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_channelise(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8,1.1e8, 128)) for subimages in [128, 16, 8, 2, 1]: for slab in image_channel_iter(m31cube, subimages=subimages): assert slab.data.shape[0] == 128 // subimages def test_null(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8, 1.1e8, 128)) for i, im in enumerate(image_null_iter(m31cube)): assert i<1, "Null iterator returns more than one value" if __name__ == '__main__': unittest.main()
"""Unit tests for image iteration """ import logging import unittest import numpy from data_models.polarisation import PolarisationFrame from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter from processing_components.image.operations import create_empty_image_like from processing_components.simulation.testing_support import create_test_image log = logging.getLogger(__name__) class TestImageIterators(unittest.TestCase): def test_raster(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster in [1, 2, 4, 8, 9]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster): assert patch.data.shape[3] == (m31model.data.shape[3] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[3], (m31model.data.shape[3] // nraster)) assert patch.data.shape[2] == (m31model.data.shape[2] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[2], (m31model.data.shape[2] // nraster)) patch.data *= 2.0 diff = m31model.data - 2.0 * m31original.data assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster assert numpy.max(numpy.abs(diff)) == 0.0, "Raster set failed for %d" % nraster def test_raster_exception(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster, overlap in [(-1, -1), (-1, 0), (2, 128), (1e6, 127)]: with self.assertRaises(AssertionError) as context: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster, overlap=overlap): patch.data *= 2.0 def test_raster_overlap(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_linear(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='linear'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_quadratic(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='quadratic'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_tukey(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='tukey'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_channelise(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8,1.1e8, 128)) for subimages in [128, 16, 8, 2, 1]: for slab in image_channel_iter(m31cube, subimages=subimages): assert slab.data.shape[0] == 128 // subimages def test_null(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8, 1.1e8, 128)) for i, im in enumerate(image_null_iter(m31cube)): assert i<1, "Null iterator returns more than one value" if __name__ == '__main__': unittest.main()
en
0.788423
Unit tests for image iteration
2.709569
3
a_other_video/MCL-Motion-Focused-Contrastive-Learning/sts/motion_sts.py
alisure-fork/Video-Swin-Transformer
0
9076
<reponame>alisure-fork/Video-Swin-Transformer<filename>a_other_video/MCL-Motion-Focused-Contrastive-Learning/sts/motion_sts.py import cv2 import numpy as np from scipy import ndimage def compute_motion_boudary(flow_clip): mx = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) my = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) dx_all = [] dy_all = [] mb_x = 0 mb_y = 0 for flow_img in flow_clip: d_x = ndimage.convolve(flow_img, mx) d_y = ndimage.convolve(flow_img, my) dx_all.append(d_x) dy_all.append(d_y) mb_x += d_x mb_y += d_y dx_all = np.array(dx_all) dy_all = np.array(dy_all) return dx_all, dy_all, mb_x, mb_y def zero_boundary(frame_mag): frame_mag[:8, :] = 0 frame_mag[:, :8] = 0 frame_mag[-8:, :] = 0 frame_mag[:, -8:] = 0 return frame_mag def motion_mag_downsample(mag, size, input_size): block_size = input_size // size mask = np.zeros((size,size)) for i in range(size): for j in range(size): x_start = i * block_size x_end = x_start + block_size y_start = j * block_size y_end = y_start + block_size tmp_block = mag[x_start:x_end, y_start:y_end] block_mean = np.mean(tmp_block) mask[i, j] = block_mean return mask def motion_sts(flow_clip, size, input_size): dx_all, dy_all, dx_sum, dy_sum = compute_motion_boudary(flow_clip) mag, ang = cv2.cartToPolar(dx_sum, dy_sum, angleInDegrees=True) mag_down = motion_mag_downsample(mag, size, input_size) return mag_down
import cv2 import numpy as np from scipy import ndimage def compute_motion_boudary(flow_clip): mx = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) my = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) dx_all = [] dy_all = [] mb_x = 0 mb_y = 0 for flow_img in flow_clip: d_x = ndimage.convolve(flow_img, mx) d_y = ndimage.convolve(flow_img, my) dx_all.append(d_x) dy_all.append(d_y) mb_x += d_x mb_y += d_y dx_all = np.array(dx_all) dy_all = np.array(dy_all) return dx_all, dy_all, mb_x, mb_y def zero_boundary(frame_mag): frame_mag[:8, :] = 0 frame_mag[:, :8] = 0 frame_mag[-8:, :] = 0 frame_mag[:, -8:] = 0 return frame_mag def motion_mag_downsample(mag, size, input_size): block_size = input_size // size mask = np.zeros((size,size)) for i in range(size): for j in range(size): x_start = i * block_size x_end = x_start + block_size y_start = j * block_size y_end = y_start + block_size tmp_block = mag[x_start:x_end, y_start:y_end] block_mean = np.mean(tmp_block) mask[i, j] = block_mean return mask def motion_sts(flow_clip, size, input_size): dx_all, dy_all, dx_sum, dy_sum = compute_motion_boudary(flow_clip) mag, ang = cv2.cartToPolar(dx_sum, dy_sum, angleInDegrees=True) mag_down = motion_mag_downsample(mag, size, input_size) return mag_down
none
1
2.351971
2
tests/test_button.py
MSLNZ/msl-qt
1
9077
import os import sys import pytest from msl.qt import convert, Button, QtWidgets, QtCore, Qt def test_text(): b = Button(text='hello') assert b.text() == 'hello' assert b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextOnly def test_icon(): path = os.path.dirname(__file__) + '/gamma.png' gamma_size = QtCore.QSize(191, 291) int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 b = Button(icon=int_val) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == sizes[0] assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=path) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=convert.icon_to_base64(convert.to_qicon(path))) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly def test_icon_size(): int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 # # specify the size to the get_icon function # b = Button(icon=convert.to_qicon(int_val)) assert b.text() == '' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly assert b.iconSize() == sizes[0] b = Button(icon=convert.to_qicon(int_val, size=789)) assert b.iconSize() == QtCore.QSize(789, 789) b = Button(icon=convert.to_qicon(int_val, size=3.0)) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val, size=QtCore.QSize(50, 50))) assert b.iconSize() == QtCore.QSize(50, 50) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val, size=size)) # # use the icon_size kwarg # b = Button(icon=convert.to_qicon(int_val), icon_size=1234) assert b.iconSize() == QtCore.QSize(1234, 1234) b = Button(icon=convert.to_qicon(int_val), icon_size=3.0) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val), icon_size=(312, 312)) assert b.iconSize() == QtCore.QSize(312, 312) b = Button(icon=convert.to_qicon(int_val), icon_size=QtCore.QSize(500, 500)) assert b.iconSize() == QtCore.QSize(500, 500) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val), icon_size=size) def test_text_and_icon(): b = Button(text='hello', icon=QtWidgets.QStyle.SP_DriveNetIcon) assert b.text() == 'hello' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextUnderIcon b = Button(text='world', icon=QtWidgets.QStyle.SP_DriveNetIcon, is_text_under_icon=False) assert b.text() == 'world' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextBesideIcon def test_tooltip(): b = Button(tooltip='hello') assert b.text() == '' assert b.icon().isNull() assert b.toolTip() == 'hello' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly
import os import sys import pytest from msl.qt import convert, Button, QtWidgets, QtCore, Qt def test_text(): b = Button(text='hello') assert b.text() == 'hello' assert b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextOnly def test_icon(): path = os.path.dirname(__file__) + '/gamma.png' gamma_size = QtCore.QSize(191, 291) int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 b = Button(icon=int_val) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == sizes[0] assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=path) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=convert.icon_to_base64(convert.to_qicon(path))) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly def test_icon_size(): int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 # # specify the size to the get_icon function # b = Button(icon=convert.to_qicon(int_val)) assert b.text() == '' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly assert b.iconSize() == sizes[0] b = Button(icon=convert.to_qicon(int_val, size=789)) assert b.iconSize() == QtCore.QSize(789, 789) b = Button(icon=convert.to_qicon(int_val, size=3.0)) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val, size=QtCore.QSize(50, 50))) assert b.iconSize() == QtCore.QSize(50, 50) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val, size=size)) # # use the icon_size kwarg # b = Button(icon=convert.to_qicon(int_val), icon_size=1234) assert b.iconSize() == QtCore.QSize(1234, 1234) b = Button(icon=convert.to_qicon(int_val), icon_size=3.0) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val), icon_size=(312, 312)) assert b.iconSize() == QtCore.QSize(312, 312) b = Button(icon=convert.to_qicon(int_val), icon_size=QtCore.QSize(500, 500)) assert b.iconSize() == QtCore.QSize(500, 500) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val), icon_size=size) def test_text_and_icon(): b = Button(text='hello', icon=QtWidgets.QStyle.SP_DriveNetIcon) assert b.text() == 'hello' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextUnderIcon b = Button(text='world', icon=QtWidgets.QStyle.SP_DriveNetIcon, is_text_under_icon=False) assert b.text() == 'world' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextBesideIcon def test_tooltip(): b = Button(tooltip='hello') assert b.text() == '' assert b.icon().isNull() assert b.toolTip() == 'hello' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly
en
0.325497
# # specify the size to the get_icon function # # specifying a scale factor will use the largest available size # # use the icon_size kwarg # # specifying a scale factor will use the largest available size
2.176756
2
Exercicios/ex028.py
MateusBarboza99/Python-03-
0
9078
<filename>Exercicios/ex028.py from random import randint from time import sleep computador = randint(0, 5) # Faz o computador "PENSAR" print('-=-' * 20) print('Vou Pensar em Um Número Entre 0 e 5. Tente Adivinhar Paçoca...') print('-=-' * 20) jogador = int(input('Em que Número eu Pensei? ')) # Jogador tenta Adivinhar print('PROCESSANDO........') sleep(3) if jogador == computador: print('PARABÊNS! Você conseguiu me Vencer Paçoca') else: print('GANHEI! Eu Pensei no Número {} e não no {}!'.format(computador, jogador))
<filename>Exercicios/ex028.py from random import randint from time import sleep computador = randint(0, 5) # Faz o computador "PENSAR" print('-=-' * 20) print('Vou Pensar em Um Número Entre 0 e 5. Tente Adivinhar Paçoca...') print('-=-' * 20) jogador = int(input('Em que Número eu Pensei? ')) # Jogador tenta Adivinhar print('PROCESSANDO........') sleep(3) if jogador == computador: print('PARABÊNS! Você conseguiu me Vencer Paçoca') else: print('GANHEI! Eu Pensei no Número {} e não no {}!'.format(computador, jogador))
pt
0.782573
# Faz o computador "PENSAR" # Jogador tenta Adivinhar
3.945409
4
Student Database/input_details.py
manas1410/Miscellaneous-Development
0
9079
from tkinter import* import tkinter.font as font import sqlite3 name2='' regis2='' branch2='' def main(): inp=Tk() inp.geometry("430x300") inp.title("Enter The Details") inp.iconbitmap("logo/spectrumlogo.ico") f=font.Font(family='Bookman Old Style',size=15,weight='bold') f1=font.Font(family='Bookman Old Style',size=20,weight='bold') global n2 global reg2 global b2 det=Label(inp,text=" Enter The Details\n",font=f1,fg='magenta') det.grid(row=0,column=0,columnspan=2) n1=Label(inp,text=" Name:",font=f) n1.grid(row=1,column=0) n2=Entry(inp,width=40) n2.grid(row=1,column=1) reg1=Label(inp,text="Registration ID:",font=f) reg1.grid(row=2,column=0) reg2=Entry(inp,width=40) reg2.grid(row=2,column=1) b1=Label(inp,text=" Branch:",font=f) b1.grid(row=3,column=0) b2=Entry(inp,width=40) b2.grid(row=3,column=1) invalid=Label(inp,text=' ',fg='red') invalid.grid(row=4,columnspan=2) def submit(): name2=n2.get() regis2=reg2.get() branch2=b2.get() l=[name2,regis2,branch2] if (None in l or "" in l): invalid['text']="Please fill all the fields" else: db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() #insert into tabels c.execute("""UPDATE mark_list SET name=? WHERE name=?""",(name2,' ')) c.execute("""UPDATE mark_list SET registration_no=? WHERE registration_no=?""",(regis2,' ')) c.execute("""UPDATE mark_list SET branch=? WHERE branch=?""",(branch2,' ')) #commit_changes db.commit() #close connection db.close() inp.destroy() import subject subject.main() def back(): db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() c.execute("""DELETE from mark_list where name=' '""") #commit_changes db.commit() #close connection db.close() inp.destroy() import welcome welcome.main() #buttons sub1=Button(inp,text="Submit",borderwidth=3,padx=40,font=f,bg='green',command=submit) sub1.grid(row=5,column=0,columnspan=2) back1=Button(inp,text="Back",borderwidth=3,padx=20,font=f,bg='red',command=back) back1.grid(row=6,column=0,columnspan=2) inp.mainloop() if __name__=='__main__': main()
from tkinter import* import tkinter.font as font import sqlite3 name2='' regis2='' branch2='' def main(): inp=Tk() inp.geometry("430x300") inp.title("Enter The Details") inp.iconbitmap("logo/spectrumlogo.ico") f=font.Font(family='Bookman Old Style',size=15,weight='bold') f1=font.Font(family='Bookman Old Style',size=20,weight='bold') global n2 global reg2 global b2 det=Label(inp,text=" Enter The Details\n",font=f1,fg='magenta') det.grid(row=0,column=0,columnspan=2) n1=Label(inp,text=" Name:",font=f) n1.grid(row=1,column=0) n2=Entry(inp,width=40) n2.grid(row=1,column=1) reg1=Label(inp,text="Registration ID:",font=f) reg1.grid(row=2,column=0) reg2=Entry(inp,width=40) reg2.grid(row=2,column=1) b1=Label(inp,text=" Branch:",font=f) b1.grid(row=3,column=0) b2=Entry(inp,width=40) b2.grid(row=3,column=1) invalid=Label(inp,text=' ',fg='red') invalid.grid(row=4,columnspan=2) def submit(): name2=n2.get() regis2=reg2.get() branch2=b2.get() l=[name2,regis2,branch2] if (None in l or "" in l): invalid['text']="Please fill all the fields" else: db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() #insert into tabels c.execute("""UPDATE mark_list SET name=? WHERE name=?""",(name2,' ')) c.execute("""UPDATE mark_list SET registration_no=? WHERE registration_no=?""",(regis2,' ')) c.execute("""UPDATE mark_list SET branch=? WHERE branch=?""",(branch2,' ')) #commit_changes db.commit() #close connection db.close() inp.destroy() import subject subject.main() def back(): db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() c.execute("""DELETE from mark_list where name=' '""") #commit_changes db.commit() #close connection db.close() inp.destroy() import welcome welcome.main() #buttons sub1=Button(inp,text="Submit",borderwidth=3,padx=40,font=f,bg='green',command=submit) sub1.grid(row=5,column=0,columnspan=2) back1=Button(inp,text="Back",borderwidth=3,padx=20,font=f,bg='red',command=back) back1.grid(row=6,column=0,columnspan=2) inp.mainloop() if __name__=='__main__': main()
en
0.339318
#cursor #insert into tabels UPDATE mark_list SET name=? WHERE name=? UPDATE mark_list SET registration_no=? WHERE registration_no=? UPDATE mark_list SET branch=? WHERE branch=? #commit_changes #close connection #cursor DELETE from mark_list where name=' ' #commit_changes #close connection #buttons
3.26545
3
IQS5xx/IQS5xx.py
jakezimmerTHT/py_IQS5xx
1
9080
<reponame>jakezimmerTHT/py_IQS5xx<filename>IQS5xx/IQS5xx.py<gh_stars>1-10 import unittest import time import logging logging.basicConfig() from intelhex import IntelHex import Adafruit_GPIO.I2C as i2c from gpiozero import OutputDevice from gpiozero import DigitalInputDevice from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER from ctypes import create_string_buffer, Structure from fcntl import ioctl import struct import Adafruit_PureIO.smbus as smbus from Adafruit_PureIO.smbus import make_i2c_rdwr_data from IQS5xx_Defs import * def bytesToHexString(bytes): if isinstance(bytes, basestring): return ''.join('{:02x} '.format(ord(c)) for c in bytes) if isinstance(bytes, bytearray): return ''.join('{:02x} '.format(b) for b in bytes) raise ValueError("Must pass bytesToHexString() a string or bytearray") IQS5xx_DEFAULT_ADDRESS = 0x74 IQS5xx_MAX_ADDRESS = 0x78 CHECKSUM_DESCRIPTOR_START = 0x83C0 CHECKSUM_DESCRIPTOR_END = 0x83FF APP_START_ADDRESS = 0x8400 APP_END_ADDRESS = 0xBDFF #inclusive NV_SETTINGS_START = 0xBE00 NV_SETTINGS_END = 0xBFFF #inclusive FLASH_PADDING = 0x00 BLOCK_SIZE = 64 APP_SIZE_BLOCKS = (((APP_END_ADDRESS+1) - APP_START_ADDRESS) / BLOCK_SIZE) NV_SETTINGS_SIZE_BLOCKS = (((NV_SETTINGS_END+1) - NV_SETTINGS_START) / BLOCK_SIZE) BL_CMD_READ_VERSION = 0x00 BL_CMD_READ_64_BYTES = 0x01 BL_CMD_EXECUTE_APP = 0x02 # Write only, 0 bytes BL_CMD_RUN_CRC = 0x03 BL_CRC_FAIL = 0x01 BL_CRC_PASS = 0x00 BL_VERSION = 0x0200 def swapEndianess(uint16): return ((uint16 & 0xFF) << 8) | ((uint16 & 0xFF00) >> 8) def writeBytes(self, data): self._bus.write_bytes(self._address, bytes(data)) i2c.Device.writeBytes = writeBytes def readBytes(self, data): return self._bus.read_bytes(self._address, data) i2c.Device.readBytes = readBytes def writeRawListReadRawList(self, data, readLength): self.writeBytes(data) # This isn't using a repeat start return self.readBytes(readLength) i2c.Device.writeRawListReadRawList = writeRawListReadRawList def writeBytes_16BitAddress(self, address, data): addressBytes = struct.pack('>H', address) dataBytes = bytearray(data) bytes = addressBytes + dataBytes self.writeBytes(bytes) i2c.Device.writeBytes_16BitAddress = writeBytes_16BitAddress def readBytes_16BitAddress(self, address, length): assert self._bus._device is not None, 'Bus must be opened before operations are made against it!' # Build ctypes values to marshall between ioctl and Python. reg = c_uint16(swapEndianess(address)) result = create_string_buffer(length) # Build ioctl request. request = make_i2c_rdwr_data([ (self._address, 0, 2, cast(pointer(reg), POINTER(c_uint8))), # Write cmd register. (self._address, smbus.I2C_M_RD, length, cast(result, POINTER(c_uint8))) # Read data. ]) # Make ioctl call and return result data. ioctl(self._bus._device.fileno(), smbus.I2C_RDWR, request) return bytearray(result.raw) # Use .raw instead of .value which will stop at a null byte! i2c.Device.readBytes_16BitAddress = readBytes_16BitAddress def readByte_16BitAddress(self, address): result = self.readBytes_16BitAddress(address, 1) result = struct.unpack('>B', result)[0] return result i2c.Device.readByte_16BitAddress = readByte_16BitAddress def writeByte_16BitAddress(self, address, value, mask=0xFF): if mask is not 0xFF: register = self.readByte_16BitAddress(address) register &= ~mask register |= (value & mask) value = register format = '>HB' if (value > 0) else '>Hb' bytes = struct.pack(format, address, value) self.writeBytes(bytes) i2c.Device.writeByte_16BitAddress = writeByte_16BitAddress class IQS5xx(object): def __init__(self, resetPin, readyPin, address=IQS5xx_DEFAULT_ADDRESS): self.address = address self._resetPinNum = resetPin self._readyPinNum = readyPin self._resetPin = OutputDevice(pin=self._resetPinNum, active_high=False, initial_value=True) self._readypin = DigitalInputDevice(pin=self._readyPinNum, active_state=True, pull_up=None) def begin(self): self.releaseReset() time.sleep(0.01) self.waitUntilReady() self.acknowledgeReset() time.sleep(0.01) self.acknowledgeReset() time.sleep(0.01) self.endSession() time.sleep(0.020) @property def address(self): return self.__address @address.setter def address(self, value): if (value < IQS5xx_DEFAULT_ADDRESS) or (value > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) self.__address = value self._device = i2c.get_i2c_device(value) self._logger = logging.getLogger('IQS5xx.Address.{0:#0X}'.format(value)) def readUniqueID(self): return bytesToHexString(self._device.readBytes_16BitAddress(0xF000, 12)) def setupComplete(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, SETUP_COMPLETE, SETUP_COMPLETE) def setManualControl(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, MANUAL_CONTROL, MANUAL_CONTROL) self._device.writeByte_16BitAddress(SystemControl0_adr, 0x00, 0x07) # active mode def setTXPinMappings(self, pinList): assert isinstance(pinList, list), "TX pinList must be a list of integers" assert 0 <= len(pinList) <= 15, "TX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(TxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalTx_adr, len(pinList)) def setRXPinMappings(self, pinList): assert isinstance(pinList, list), "RX pinList must be a list of integers" assert 0 <= len(pinList) <= 10, "RX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(RxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalRx_adr, len(pinList)) def enableChannel(self, txChannel, rxChannel, enabled): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ActiveChannels_adr + (txChannel * 2) if rxChannel >= 8: mask = 1 << (rxChannel - 8) else: registerAddy += 1 mask = 1 << rxChannel value = mask if enabled else 0x00 self._device.writeByte_16BitAddress(registerAddy, value, mask) def setTXRXChannelCount(self, tx_count, rx_count): assert 0 <= txChannel <= 15, "tx_count must be less or equal tp 15" assert 0 <= rxChannel <= 10, "rx_count must be less than or equal to 10" self._device.writeByte_16BitAddress(TotalTx_adr, txChannel) self._device.writeByte_16BitAddress(TotalRx_adr, rxChannel) def swapXY(self, swapped): value = SWITCH_XY_AXIS if swapped else 0x00 self._device.writeByte_16BitAddress(XYConfig0_adr, value, SWITCH_XY_AXIS) def setAtiGlobalC(self, globalC): self._device.writeByte_16BitAddress(GlobalATIC_adr, globalC) def setChannel_ATI_C_Adjustment(self, txChannel, rxChannel, adjustment): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ATICAdjust_adr + (txChannel * 10) + rxChannel self._device.writeByte_16BitAddress(registerAddy, adjustment) def setTouchMultipliers(self, set, clear): self._device.writeByte_16BitAddress(GlobalTouchSet_adr, set) self._device.writeByte_16BitAddress(GlobalTouchClear_adr, clear) def rxFloat(self, floatWhenInactive): value = RX_FLOAT if floatWhenInactive else 0x00 self._device.writeByte_16BitAddress(HardwareSettingsA_adr, value, RX_FLOAT) def runAtiAlgorithm(self): self._device.writeByte_16BitAddress(SystemControl0_adr, AUTO_ATI, AUTO_ATI) def acknowledgeReset(self): self._device.writeByte_16BitAddress(SystemControl0_adr, ACK_RESET, ACK_RESET) def atiErrorDetected(self): reg = self._device.readByte_16BitAddress(SystemInfo0_adr) return bool(reg & ATI_ERROR) def reseed(self): self._device.writeByte_16BitAddress(SystemControl0_adr, RESEED, RESEED) def endSession(self): self._device.writeByte_16BitAddress(EndWindow_adr, 0x00) time.sleep(0.001) def readVersionNumbers(self): bytes = self._device.readBytes_16BitAddress(ProductNumber_adr, 6) fields = struct.unpack(">HHBB",bytes) return {"product":fields[0], "project":fields[1], "major":fields[2], "minor":fields[3]} def bootloaderAvailable(self): BOOTLOADER_AVAILABLE = 0xA5 NO_BOOTLOADER = 0xEE result = self._device.readByte_16BitAddress(BLStatus_adr) # result = ord(result) if result == BOOTLOADER_AVAILABLE: return True elif result == NO_BOOTLOADER: return False else: raise ValueError("Unexpected value returned for bootloader status: {0:#0X}".format(result)) def holdReset(self, millis=None): self._resetPin.on() if millis != None: time.sleep(millis/1000.0) self.releaseReset() def releaseReset(self): self._resetPin.off() def isReady(self): return self._readypin.is_active def waitUntilReady(self, timeout=None): self._readypin.wait_for_active(timeout) def updateFirmware(self, hexFilePath, newDeviceAddress=None): hexFile = IntelHex(source = hexFilePath) hexFile.padding = FLASH_PADDING appBinary = hexFile.tobinarray(start=APP_START_ADDRESS, end=NV_SETTINGS_END) crcBinary = hexFile.tobinarray(start=CHECKSUM_DESCRIPTOR_START, end=CHECKSUM_DESCRIPTOR_END) if newDeviceAddress: self._logger.debug("Modifying the last byte in NV settings to change Device I2C Addrress to {0:#0X}".format(newDeviceAddress)) if (newDeviceAddress < IQS5xx_DEFAULT_ADDRESS) or (newDeviceAddress > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) appBinary[-1] = newDeviceAddress # Step 1 - Enter Bootloader self._logger.debug("Entering Bootloader") bootloaderAddress = 0x40 ^ self.address bootloaderDevice = i2c.get_i2c_device(bootloaderAddress) self.holdReset(100) bootloaderEntered = False for i in range(10): try: version = bootloaderDevice.readU16(BL_CMD_READ_VERSION, little_endian=False) bootloaderEntered = True except: pass if not bootloaderEntered: raise IOError("Timeout while trying to enter bootlaoder") self._logger.debug("Bootloader entered successfully") # Step 2 - Read and verify the bootloader version number self._logger.debug("Reading Bootloader version") if version != BL_VERSION: raise Exception("Incompatible bootloader version detected: {0:#0X}".format(version)) self._logger.debug("Bootloader version is compatible: 0x%02X",version) # Step 3 - Write the new application firmware and settings self._logger.debug("Starting to write Application and NV settings") for blockNum in range(APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS): blockAddress = APP_START_ADDRESS + (blockNum * BLOCK_SIZE) self._logger.debug('Writing 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS ,blockAddress)) data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = appBinary[blockNum*BLOCK_SIZE : (blockNum+1)*BLOCK_SIZE] bootloaderDevice.writeBytes(data) time.sleep(.010) # give the device time to write to flash # Step 4 - Write the checksum descriptor section self._logger.debug("Writing CRC section") blockAddress = CHECKSUM_DESCRIPTOR_START data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = crcBinary[0:] bootloaderDevice.writeBytes(data) time.sleep(0.010) # give the device time to write to flash # Step 5 - Perform CRC and read back settins section time.sleep(0.1) self._logger.debug("Performing CRC calculation") bootloaderDevice.writeRaw8(BL_CMD_RUN_CRC) time.sleep(0.2) crcStatus = bootloaderDevice.readRaw8() if crcStatus != BL_CRC_PASS: raise Exception("CRC Failure") self._logger.debug("CRC Success") self._logger.debug("Reading back NV settings and comparing") for blockNum in range(NV_SETTINGS_SIZE_BLOCKS): blockAddress = NV_SETTINGS_START + (blockNum * BLOCK_SIZE) self._logger.debug('Reading 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, NV_SETTINGS_SIZE_BLOCKS, blockAddress)) data = bytearray(3) data[0] = BL_CMD_READ_64_BYTES data[1] = (blockAddress >> 8) & 0xFF data[2] = blockAddress & 0xFF reply = bootloaderDevice.writeRawListReadRawList(data, BLOCK_SIZE) expectedReply = appBinary[(APP_SIZE_BLOCKS+blockNum)*BLOCK_SIZE : (APP_SIZE_BLOCKS+blockNum+1)*BLOCK_SIZE].tostring() if reply != expectedReply: raise Exception("Unexpected values while reading back NV Setting: {0} \nExpected values: {1}".format(bytesToHexString(reply), bytesToHexString(expectedReply))) self._logger.debug("NV Settings match expected values") # Step 6 - Execute application self._logger.debug("Execute Application") bootloaderDevice.writeRaw8(BL_CMD_EXECUTE_APP) if newDeviceAddress: self.address = newDeviceAddress class TestIQS5xx(unittest.TestCase): hexFile = "IQS550_B000_Trackpad_40_15_2_2_BL.HEX" possibleAddresses = [0x74, 0x75, 0x76, 0x77] desiredAddress = 0x74 device = None def setUp(self): if not self.__class__.device: self.__class__.device = IQS5xx(17, 27) for address in self.__class__.possibleAddresses: self.__class__.device.address = address self.__class__.device._logger.setLevel(logging.DEBUG) try: self.__class__.device.waitUntilReady(1) self.__class__.device.bootloaderAvailable() break except: if address == self.__class__.possibleAddresses[-1]: raise IOError("Couldn't communicate with the controller") if self.__class__.device.address != self.__class__.desiredAddress: self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def tearDown(self): if self.__class__.device.address != self.__class__.desiredAddress: print("Cleaning up by reprogramming the controller to the default address") self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def test_bootloaderAvailable(self): self.assertTrue(self.__class__.device.bootloaderAvailable()) # @unittest.skip # def test_update(self): # self.__class__.device.updateFirmware(self.__class__.hexFile) # # @unittest.skip # def test_update_and_changeaddress(self): # newAddy = 0x77 # self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=newAddy) # self.assertEqual(self.__class__.device.address, newAddy) # time.sleep(0.1) # self.assertTrue(self.__class__.device.bootloaderAvailable()) if __name__ == '__main__': unittest.main()
import unittest import time import logging logging.basicConfig() from intelhex import IntelHex import Adafruit_GPIO.I2C as i2c from gpiozero import OutputDevice from gpiozero import DigitalInputDevice from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER from ctypes import create_string_buffer, Structure from fcntl import ioctl import struct import Adafruit_PureIO.smbus as smbus from Adafruit_PureIO.smbus import make_i2c_rdwr_data from IQS5xx_Defs import * def bytesToHexString(bytes): if isinstance(bytes, basestring): return ''.join('{:02x} '.format(ord(c)) for c in bytes) if isinstance(bytes, bytearray): return ''.join('{:02x} '.format(b) for b in bytes) raise ValueError("Must pass bytesToHexString() a string or bytearray") IQS5xx_DEFAULT_ADDRESS = 0x74 IQS5xx_MAX_ADDRESS = 0x78 CHECKSUM_DESCRIPTOR_START = 0x83C0 CHECKSUM_DESCRIPTOR_END = 0x83FF APP_START_ADDRESS = 0x8400 APP_END_ADDRESS = 0xBDFF #inclusive NV_SETTINGS_START = 0xBE00 NV_SETTINGS_END = 0xBFFF #inclusive FLASH_PADDING = 0x00 BLOCK_SIZE = 64 APP_SIZE_BLOCKS = (((APP_END_ADDRESS+1) - APP_START_ADDRESS) / BLOCK_SIZE) NV_SETTINGS_SIZE_BLOCKS = (((NV_SETTINGS_END+1) - NV_SETTINGS_START) / BLOCK_SIZE) BL_CMD_READ_VERSION = 0x00 BL_CMD_READ_64_BYTES = 0x01 BL_CMD_EXECUTE_APP = 0x02 # Write only, 0 bytes BL_CMD_RUN_CRC = 0x03 BL_CRC_FAIL = 0x01 BL_CRC_PASS = 0x00 BL_VERSION = 0x0200 def swapEndianess(uint16): return ((uint16 & 0xFF) << 8) | ((uint16 & 0xFF00) >> 8) def writeBytes(self, data): self._bus.write_bytes(self._address, bytes(data)) i2c.Device.writeBytes = writeBytes def readBytes(self, data): return self._bus.read_bytes(self._address, data) i2c.Device.readBytes = readBytes def writeRawListReadRawList(self, data, readLength): self.writeBytes(data) # This isn't using a repeat start return self.readBytes(readLength) i2c.Device.writeRawListReadRawList = writeRawListReadRawList def writeBytes_16BitAddress(self, address, data): addressBytes = struct.pack('>H', address) dataBytes = bytearray(data) bytes = addressBytes + dataBytes self.writeBytes(bytes) i2c.Device.writeBytes_16BitAddress = writeBytes_16BitAddress def readBytes_16BitAddress(self, address, length): assert self._bus._device is not None, 'Bus must be opened before operations are made against it!' # Build ctypes values to marshall between ioctl and Python. reg = c_uint16(swapEndianess(address)) result = create_string_buffer(length) # Build ioctl request. request = make_i2c_rdwr_data([ (self._address, 0, 2, cast(pointer(reg), POINTER(c_uint8))), # Write cmd register. (self._address, smbus.I2C_M_RD, length, cast(result, POINTER(c_uint8))) # Read data. ]) # Make ioctl call and return result data. ioctl(self._bus._device.fileno(), smbus.I2C_RDWR, request) return bytearray(result.raw) # Use .raw instead of .value which will stop at a null byte! i2c.Device.readBytes_16BitAddress = readBytes_16BitAddress def readByte_16BitAddress(self, address): result = self.readBytes_16BitAddress(address, 1) result = struct.unpack('>B', result)[0] return result i2c.Device.readByte_16BitAddress = readByte_16BitAddress def writeByte_16BitAddress(self, address, value, mask=0xFF): if mask is not 0xFF: register = self.readByte_16BitAddress(address) register &= ~mask register |= (value & mask) value = register format = '>HB' if (value > 0) else '>Hb' bytes = struct.pack(format, address, value) self.writeBytes(bytes) i2c.Device.writeByte_16BitAddress = writeByte_16BitAddress class IQS5xx(object): def __init__(self, resetPin, readyPin, address=IQS5xx_DEFAULT_ADDRESS): self.address = address self._resetPinNum = resetPin self._readyPinNum = readyPin self._resetPin = OutputDevice(pin=self._resetPinNum, active_high=False, initial_value=True) self._readypin = DigitalInputDevice(pin=self._readyPinNum, active_state=True, pull_up=None) def begin(self): self.releaseReset() time.sleep(0.01) self.waitUntilReady() self.acknowledgeReset() time.sleep(0.01) self.acknowledgeReset() time.sleep(0.01) self.endSession() time.sleep(0.020) @property def address(self): return self.__address @address.setter def address(self, value): if (value < IQS5xx_DEFAULT_ADDRESS) or (value > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) self.__address = value self._device = i2c.get_i2c_device(value) self._logger = logging.getLogger('IQS5xx.Address.{0:#0X}'.format(value)) def readUniqueID(self): return bytesToHexString(self._device.readBytes_16BitAddress(0xF000, 12)) def setupComplete(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, SETUP_COMPLETE, SETUP_COMPLETE) def setManualControl(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, MANUAL_CONTROL, MANUAL_CONTROL) self._device.writeByte_16BitAddress(SystemControl0_adr, 0x00, 0x07) # active mode def setTXPinMappings(self, pinList): assert isinstance(pinList, list), "TX pinList must be a list of integers" assert 0 <= len(pinList) <= 15, "TX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(TxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalTx_adr, len(pinList)) def setRXPinMappings(self, pinList): assert isinstance(pinList, list), "RX pinList must be a list of integers" assert 0 <= len(pinList) <= 10, "RX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(RxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalRx_adr, len(pinList)) def enableChannel(self, txChannel, rxChannel, enabled): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ActiveChannels_adr + (txChannel * 2) if rxChannel >= 8: mask = 1 << (rxChannel - 8) else: registerAddy += 1 mask = 1 << rxChannel value = mask if enabled else 0x00 self._device.writeByte_16BitAddress(registerAddy, value, mask) def setTXRXChannelCount(self, tx_count, rx_count): assert 0 <= txChannel <= 15, "tx_count must be less or equal tp 15" assert 0 <= rxChannel <= 10, "rx_count must be less than or equal to 10" self._device.writeByte_16BitAddress(TotalTx_adr, txChannel) self._device.writeByte_16BitAddress(TotalRx_adr, rxChannel) def swapXY(self, swapped): value = SWITCH_XY_AXIS if swapped else 0x00 self._device.writeByte_16BitAddress(XYConfig0_adr, value, SWITCH_XY_AXIS) def setAtiGlobalC(self, globalC): self._device.writeByte_16BitAddress(GlobalATIC_adr, globalC) def setChannel_ATI_C_Adjustment(self, txChannel, rxChannel, adjustment): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ATICAdjust_adr + (txChannel * 10) + rxChannel self._device.writeByte_16BitAddress(registerAddy, adjustment) def setTouchMultipliers(self, set, clear): self._device.writeByte_16BitAddress(GlobalTouchSet_adr, set) self._device.writeByte_16BitAddress(GlobalTouchClear_adr, clear) def rxFloat(self, floatWhenInactive): value = RX_FLOAT if floatWhenInactive else 0x00 self._device.writeByte_16BitAddress(HardwareSettingsA_adr, value, RX_FLOAT) def runAtiAlgorithm(self): self._device.writeByte_16BitAddress(SystemControl0_adr, AUTO_ATI, AUTO_ATI) def acknowledgeReset(self): self._device.writeByte_16BitAddress(SystemControl0_adr, ACK_RESET, ACK_RESET) def atiErrorDetected(self): reg = self._device.readByte_16BitAddress(SystemInfo0_adr) return bool(reg & ATI_ERROR) def reseed(self): self._device.writeByte_16BitAddress(SystemControl0_adr, RESEED, RESEED) def endSession(self): self._device.writeByte_16BitAddress(EndWindow_adr, 0x00) time.sleep(0.001) def readVersionNumbers(self): bytes = self._device.readBytes_16BitAddress(ProductNumber_adr, 6) fields = struct.unpack(">HHBB",bytes) return {"product":fields[0], "project":fields[1], "major":fields[2], "minor":fields[3]} def bootloaderAvailable(self): BOOTLOADER_AVAILABLE = 0xA5 NO_BOOTLOADER = 0xEE result = self._device.readByte_16BitAddress(BLStatus_adr) # result = ord(result) if result == BOOTLOADER_AVAILABLE: return True elif result == NO_BOOTLOADER: return False else: raise ValueError("Unexpected value returned for bootloader status: {0:#0X}".format(result)) def holdReset(self, millis=None): self._resetPin.on() if millis != None: time.sleep(millis/1000.0) self.releaseReset() def releaseReset(self): self._resetPin.off() def isReady(self): return self._readypin.is_active def waitUntilReady(self, timeout=None): self._readypin.wait_for_active(timeout) def updateFirmware(self, hexFilePath, newDeviceAddress=None): hexFile = IntelHex(source = hexFilePath) hexFile.padding = FLASH_PADDING appBinary = hexFile.tobinarray(start=APP_START_ADDRESS, end=NV_SETTINGS_END) crcBinary = hexFile.tobinarray(start=CHECKSUM_DESCRIPTOR_START, end=CHECKSUM_DESCRIPTOR_END) if newDeviceAddress: self._logger.debug("Modifying the last byte in NV settings to change Device I2C Addrress to {0:#0X}".format(newDeviceAddress)) if (newDeviceAddress < IQS5xx_DEFAULT_ADDRESS) or (newDeviceAddress > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) appBinary[-1] = newDeviceAddress # Step 1 - Enter Bootloader self._logger.debug("Entering Bootloader") bootloaderAddress = 0x40 ^ self.address bootloaderDevice = i2c.get_i2c_device(bootloaderAddress) self.holdReset(100) bootloaderEntered = False for i in range(10): try: version = bootloaderDevice.readU16(BL_CMD_READ_VERSION, little_endian=False) bootloaderEntered = True except: pass if not bootloaderEntered: raise IOError("Timeout while trying to enter bootlaoder") self._logger.debug("Bootloader entered successfully") # Step 2 - Read and verify the bootloader version number self._logger.debug("Reading Bootloader version") if version != BL_VERSION: raise Exception("Incompatible bootloader version detected: {0:#0X}".format(version)) self._logger.debug("Bootloader version is compatible: 0x%02X",version) # Step 3 - Write the new application firmware and settings self._logger.debug("Starting to write Application and NV settings") for blockNum in range(APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS): blockAddress = APP_START_ADDRESS + (blockNum * BLOCK_SIZE) self._logger.debug('Writing 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS ,blockAddress)) data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = appBinary[blockNum*BLOCK_SIZE : (blockNum+1)*BLOCK_SIZE] bootloaderDevice.writeBytes(data) time.sleep(.010) # give the device time to write to flash # Step 4 - Write the checksum descriptor section self._logger.debug("Writing CRC section") blockAddress = CHECKSUM_DESCRIPTOR_START data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = crcBinary[0:] bootloaderDevice.writeBytes(data) time.sleep(0.010) # give the device time to write to flash # Step 5 - Perform CRC and read back settins section time.sleep(0.1) self._logger.debug("Performing CRC calculation") bootloaderDevice.writeRaw8(BL_CMD_RUN_CRC) time.sleep(0.2) crcStatus = bootloaderDevice.readRaw8() if crcStatus != BL_CRC_PASS: raise Exception("CRC Failure") self._logger.debug("CRC Success") self._logger.debug("Reading back NV settings and comparing") for blockNum in range(NV_SETTINGS_SIZE_BLOCKS): blockAddress = NV_SETTINGS_START + (blockNum * BLOCK_SIZE) self._logger.debug('Reading 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, NV_SETTINGS_SIZE_BLOCKS, blockAddress)) data = bytearray(3) data[0] = BL_CMD_READ_64_BYTES data[1] = (blockAddress >> 8) & 0xFF data[2] = blockAddress & 0xFF reply = bootloaderDevice.writeRawListReadRawList(data, BLOCK_SIZE) expectedReply = appBinary[(APP_SIZE_BLOCKS+blockNum)*BLOCK_SIZE : (APP_SIZE_BLOCKS+blockNum+1)*BLOCK_SIZE].tostring() if reply != expectedReply: raise Exception("Unexpected values while reading back NV Setting: {0} \nExpected values: {1}".format(bytesToHexString(reply), bytesToHexString(expectedReply))) self._logger.debug("NV Settings match expected values") # Step 6 - Execute application self._logger.debug("Execute Application") bootloaderDevice.writeRaw8(BL_CMD_EXECUTE_APP) if newDeviceAddress: self.address = newDeviceAddress class TestIQS5xx(unittest.TestCase): hexFile = "IQS550_B000_Trackpad_40_15_2_2_BL.HEX" possibleAddresses = [0x74, 0x75, 0x76, 0x77] desiredAddress = 0x74 device = None def setUp(self): if not self.__class__.device: self.__class__.device = IQS5xx(17, 27) for address in self.__class__.possibleAddresses: self.__class__.device.address = address self.__class__.device._logger.setLevel(logging.DEBUG) try: self.__class__.device.waitUntilReady(1) self.__class__.device.bootloaderAvailable() break except: if address == self.__class__.possibleAddresses[-1]: raise IOError("Couldn't communicate with the controller") if self.__class__.device.address != self.__class__.desiredAddress: self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def tearDown(self): if self.__class__.device.address != self.__class__.desiredAddress: print("Cleaning up by reprogramming the controller to the default address") self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def test_bootloaderAvailable(self): self.assertTrue(self.__class__.device.bootloaderAvailable()) # @unittest.skip # def test_update(self): # self.__class__.device.updateFirmware(self.__class__.hexFile) # # @unittest.skip # def test_update_and_changeaddress(self): # newAddy = 0x77 # self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=newAddy) # self.assertEqual(self.__class__.device.address, newAddy) # time.sleep(0.1) # self.assertTrue(self.__class__.device.bootloaderAvailable()) if __name__ == '__main__': unittest.main()
en
0.461483
#inclusive #inclusive # Write only, 0 bytes # This isn't using a repeat start # Build ctypes values to marshall between ioctl and Python. # Build ioctl request. # Write cmd register. # Read data. # Make ioctl call and return result data. # Use .raw instead of .value which will stop at a null byte! #0X}'.format(value)) # active mode # result = ord(result) #0X}".format(result)) #0X}".format(newDeviceAddress)) # Step 1 - Enter Bootloader # Step 2 - Read and verify the bootloader version number #0X}".format(version)) # Step 3 - Write the new application firmware and settings #0X}'.format(blockNum+1, APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS ,blockAddress)) # give the device time to write to flash # Step 4 - Write the checksum descriptor section # give the device time to write to flash # Step 5 - Perform CRC and read back settins section #0X}'.format(blockNum+1, NV_SETTINGS_SIZE_BLOCKS, blockAddress)) # Step 6 - Execute application # @unittest.skip # def test_update(self): # self.__class__.device.updateFirmware(self.__class__.hexFile) # # @unittest.skip # def test_update_and_changeaddress(self): # newAddy = 0x77 # self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=newAddy) # self.assertEqual(self.__class__.device.address, newAddy) # time.sleep(0.1) # self.assertTrue(self.__class__.device.bootloaderAvailable())
1.958284
2
code/loader/lock.py
IBCNServices/StardogStreamReasoning
5
9081
<reponame>IBCNServices/StardogStreamReasoning import threading class RWLock: """Synchronization object used in a solution of so-called second readers-writers problem. In this problem, many readers can simultaneously access a share, and a writer has an exclusive access to this share. Additionally, the following constraints should be met: 1) no reader should be kept waiting if the share is currently opened for reading unless a writer is also waiting for the share, 2) no writer should be kept waiting for the share longer than absolutely necessary. The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] with a modification -- adding an additional lock (C{self.__readers_queue}) -- in accordance with [2]. Sources: [1] <NAME>: "The little book of semaphores", Version 2.1.5, 2008 [2] <NAME>, <NAME>, <NAME>: "Concurrent Control with 'Readers' and 'Writers'", Communications of the ACM, 1971 (via [3]) [3] http://en.wikipedia.org/wiki/Readers-writers_problem """ def __init__(self): self.__read_switch = _LightSwitch() self.__write_switch = _LightSwitch() self.__no_readers = threading.Lock() self.__no_writers = threading.Lock() self.__readers_queue = threading.Lock() """A lock giving an even higher priority to the writer in certain cases (see [2] for a discussion)""" def reader_acquire(self): self.__readers_queue.acquire() self.__no_readers.acquire() self.__read_switch.acquire(self.__no_writers) self.__no_readers.release() self.__readers_queue.release() def reader_release(self): self.__read_switch.release(self.__no_writers) def writer_acquire(self): self.__write_switch.acquire(self.__no_readers) self.__no_writers.acquire() def writer_release(self): self.__no_writers.release() self.__write_switch.release(self.__no_readers) class _LightSwitch: """An auxiliary "light switch"-like object. The first thread turns on the "switch", the last one turns it off (see [1, sec. 4.2.2] for details).""" def __init__(self): self.__counter = 0 self.__mutex = threading.Lock() def acquire(self, lock): self.__mutex.acquire() self.__counter += 1 if self.__counter == 1: lock.acquire() self.__mutex.release() def release(self, lock): self.__mutex.acquire() self.__counter -= 1 if self.__counter == 0: lock.release() self.__mutex.release()
import threading class RWLock: """Synchronization object used in a solution of so-called second readers-writers problem. In this problem, many readers can simultaneously access a share, and a writer has an exclusive access to this share. Additionally, the following constraints should be met: 1) no reader should be kept waiting if the share is currently opened for reading unless a writer is also waiting for the share, 2) no writer should be kept waiting for the share longer than absolutely necessary. The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] with a modification -- adding an additional lock (C{self.__readers_queue}) -- in accordance with [2]. Sources: [1] <NAME>: "The little book of semaphores", Version 2.1.5, 2008 [2] <NAME>, <NAME>, <NAME>: "Concurrent Control with 'Readers' and 'Writers'", Communications of the ACM, 1971 (via [3]) [3] http://en.wikipedia.org/wiki/Readers-writers_problem """ def __init__(self): self.__read_switch = _LightSwitch() self.__write_switch = _LightSwitch() self.__no_readers = threading.Lock() self.__no_writers = threading.Lock() self.__readers_queue = threading.Lock() """A lock giving an even higher priority to the writer in certain cases (see [2] for a discussion)""" def reader_acquire(self): self.__readers_queue.acquire() self.__no_readers.acquire() self.__read_switch.acquire(self.__no_writers) self.__no_readers.release() self.__readers_queue.release() def reader_release(self): self.__read_switch.release(self.__no_writers) def writer_acquire(self): self.__write_switch.acquire(self.__no_readers) self.__no_writers.acquire() def writer_release(self): self.__no_writers.release() self.__write_switch.release(self.__no_readers) class _LightSwitch: """An auxiliary "light switch"-like object. The first thread turns on the "switch", the last one turns it off (see [1, sec. 4.2.2] for details).""" def __init__(self): self.__counter = 0 self.__mutex = threading.Lock() def acquire(self, lock): self.__mutex.acquire() self.__counter += 1 if self.__counter == 1: lock.acquire() self.__mutex.release() def release(self, lock): self.__mutex.acquire() self.__counter -= 1 if self.__counter == 0: lock.release() self.__mutex.release()
en
0.912033
Synchronization object used in a solution of so-called second readers-writers problem. In this problem, many readers can simultaneously access a share, and a writer has an exclusive access to this share. Additionally, the following constraints should be met: 1) no reader should be kept waiting if the share is currently opened for reading unless a writer is also waiting for the share, 2) no writer should be kept waiting for the share longer than absolutely necessary. The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] with a modification -- adding an additional lock (C{self.__readers_queue}) -- in accordance with [2]. Sources: [1] <NAME>: "The little book of semaphores", Version 2.1.5, 2008 [2] <NAME>, <NAME>, <NAME>: "Concurrent Control with 'Readers' and 'Writers'", Communications of the ACM, 1971 (via [3]) [3] http://en.wikipedia.org/wiki/Readers-writers_problem A lock giving an even higher priority to the writer in certain cases (see [2] for a discussion) An auxiliary "light switch"-like object. The first thread turns on the "switch", the last one turns it off (see [1, sec. 4.2.2] for details).
3.485101
3
src/pyfmodex/channel_group.py
Loodoor/UnamedPy
1
9082
<gh_stars>1-10 from .fmodobject import * from .globalvars import dll as _dll from .globalvars import get_class class ChannelGroup(FmodObject): def add_dsp(self, dsp): check_type(dsp, get_class("DSP")) c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_AddDSP", d._ptr, byref(c_ptr)) return get_class("DSPConnection")(c_ptr) def add_group(self, group): check_type(group, ChannelGroup) self._call_fmod("FMOD_ChannelGroup_AddGroup", group._ptr) @property def _occlusion(self): direct = c_float() reverb = c_float() self._call_fmod("FMOD_ChannelGroup_Get3DOcclusion", byref(direct), byref(reverb)) return direct.value, reverb.value @_occlusion.setter def _occlusion(self, occs): self._call_fmod("FMOD_ChannelGroup_Set3DOcclusion", c_float(occs[0]), c_float(occs[1])) @property def direct_occlusion(self): return self._occlusion[0] @direct_occlusion.setter def direct_occlusion(self, occ): self._occlusion = (occ, self._occlusion[1]) @property def reverb_occlusion(self): return self._occlusion[1] @reverb_occlusion.setter def reverb_occlusion(self, occ): self._occlusion = (self._occlusion[0], occ) def get_channel(self, idx): c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetChannel", idx, byref(c_ptr)) return channel.Channel(c_ptr) @property def dsp_head(self): dsp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetDSPHead", byref(dsp_ptr)) return get_class("DSP")(dsp_ptr) def get_group(self, idx): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetGroup", idx) return ChannelGroup(grp_ptr) @property def mute(self): mute = c_bool() self._call_fmod("FMOD_ChannelGroup_GetMute", byref(mute)) return mute.value @mute.setter def mute(self, m): self._call_fmod("FMOD_Channel_SetMute", m) @property def name(self): buf = create_string_buffer(512) self._call_fmod("FMOD_ChannelGroup_GetName", buf, 512) return buf.value @property def num_channels(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumChannels", byref(num)) return num.value @property def num_groups(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumGroups", byref(num)) return num.value @property def parent_group(self): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetParentGroup", byref(grp_ptr)) return ChannelGroup(grp_ptr) @property def paused(self): paused = c_bool() self._call_fmod("FMOD_ChannelGroup_GetPaused", byref(paused)) return paused.value @paused.setter def paused(self, p): self._call_fmod("FMOD_ChannelGroup_SetPaused", p) @property def pitch(self): pitch = c_float() self._call_fmod("FMOD_ChannelGroup_GetPitch", byref(pitch)) return pitch.value @property def pitch(self, p): self._call_fmod("FMOD_ChannelGroup_SetPitch", p) def get_spectrum(self, numvalues, channeloffset, window): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetSpectrum", byref(arri), numvalues, channeloffset, window) return list(arri) @property def system_object(self): sptr = c_void_p() self._call_fmod("FMOD_channelGroup_GetSystemObject", byref(sptr)) return get_class("System")(sptr, False) @property def volume(self): vol = c_float() self._call_fmod("FMOD_ChannelGroup_GetVolume", byref(vol)) return vol.value @volume.setter def volume(self, vol): self._call_fmod("FMOD_ChannelGroup_SetVolume", c_float(vol)) def get_wave_data(self, numvalues, channeloffset): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetWaveData", byref(arri), numvalues, channeloffset) return list(arri) def override_3d_attributes(self, pos=0, vel=0): self._call_fmod("FMOD_ChannelGroup_Override3DAttributes", pos, vel) def override_frequency(self, freq): self._call_fmod("FMOD_ChannelGroup_OverrideFrequency", c_float(freq)) def override_pan(self, pan): self._call_fmod("FMOD_ChannelGroup_OverridePan", c_float(pan)) def override_reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) self._call_fmod("FMOD_ChannelGroup_OverrideReverbProperties", props) def override_speaker_mix(self, frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright): self._call_fmod("FMOD_ChannelGroup_OverrideSpeakerMix", frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright) def override_volume(self, vol): self._call_fmod("FMOD_ChannelGroup_OverrideVolume", c_float(vol)) def release(self): self._call_fmod("FMOD_ChannelGroup_Release") def stop(self): self._call_fmod("FMOD_ChannelGroup_Stop") @property def reverb_properties(self): props = REVERB_CHANNELPROPERTIES() ckresult(_dll.FMOD_ChannelGroup_GetReverbProperties(self._ptr, byref(props))) return props @reverb_properties.setter def reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) ckresult(_dll.FMOD_ChannelGroup_SetReverbProperties(self._ptr, byref(props)))
from .fmodobject import * from .globalvars import dll as _dll from .globalvars import get_class class ChannelGroup(FmodObject): def add_dsp(self, dsp): check_type(dsp, get_class("DSP")) c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_AddDSP", d._ptr, byref(c_ptr)) return get_class("DSPConnection")(c_ptr) def add_group(self, group): check_type(group, ChannelGroup) self._call_fmod("FMOD_ChannelGroup_AddGroup", group._ptr) @property def _occlusion(self): direct = c_float() reverb = c_float() self._call_fmod("FMOD_ChannelGroup_Get3DOcclusion", byref(direct), byref(reverb)) return direct.value, reverb.value @_occlusion.setter def _occlusion(self, occs): self._call_fmod("FMOD_ChannelGroup_Set3DOcclusion", c_float(occs[0]), c_float(occs[1])) @property def direct_occlusion(self): return self._occlusion[0] @direct_occlusion.setter def direct_occlusion(self, occ): self._occlusion = (occ, self._occlusion[1]) @property def reverb_occlusion(self): return self._occlusion[1] @reverb_occlusion.setter def reverb_occlusion(self, occ): self._occlusion = (self._occlusion[0], occ) def get_channel(self, idx): c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetChannel", idx, byref(c_ptr)) return channel.Channel(c_ptr) @property def dsp_head(self): dsp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetDSPHead", byref(dsp_ptr)) return get_class("DSP")(dsp_ptr) def get_group(self, idx): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetGroup", idx) return ChannelGroup(grp_ptr) @property def mute(self): mute = c_bool() self._call_fmod("FMOD_ChannelGroup_GetMute", byref(mute)) return mute.value @mute.setter def mute(self, m): self._call_fmod("FMOD_Channel_SetMute", m) @property def name(self): buf = create_string_buffer(512) self._call_fmod("FMOD_ChannelGroup_GetName", buf, 512) return buf.value @property def num_channels(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumChannels", byref(num)) return num.value @property def num_groups(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumGroups", byref(num)) return num.value @property def parent_group(self): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetParentGroup", byref(grp_ptr)) return ChannelGroup(grp_ptr) @property def paused(self): paused = c_bool() self._call_fmod("FMOD_ChannelGroup_GetPaused", byref(paused)) return paused.value @paused.setter def paused(self, p): self._call_fmod("FMOD_ChannelGroup_SetPaused", p) @property def pitch(self): pitch = c_float() self._call_fmod("FMOD_ChannelGroup_GetPitch", byref(pitch)) return pitch.value @property def pitch(self, p): self._call_fmod("FMOD_ChannelGroup_SetPitch", p) def get_spectrum(self, numvalues, channeloffset, window): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetSpectrum", byref(arri), numvalues, channeloffset, window) return list(arri) @property def system_object(self): sptr = c_void_p() self._call_fmod("FMOD_channelGroup_GetSystemObject", byref(sptr)) return get_class("System")(sptr, False) @property def volume(self): vol = c_float() self._call_fmod("FMOD_ChannelGroup_GetVolume", byref(vol)) return vol.value @volume.setter def volume(self, vol): self._call_fmod("FMOD_ChannelGroup_SetVolume", c_float(vol)) def get_wave_data(self, numvalues, channeloffset): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetWaveData", byref(arri), numvalues, channeloffset) return list(arri) def override_3d_attributes(self, pos=0, vel=0): self._call_fmod("FMOD_ChannelGroup_Override3DAttributes", pos, vel) def override_frequency(self, freq): self._call_fmod("FMOD_ChannelGroup_OverrideFrequency", c_float(freq)) def override_pan(self, pan): self._call_fmod("FMOD_ChannelGroup_OverridePan", c_float(pan)) def override_reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) self._call_fmod("FMOD_ChannelGroup_OverrideReverbProperties", props) def override_speaker_mix(self, frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright): self._call_fmod("FMOD_ChannelGroup_OverrideSpeakerMix", frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright) def override_volume(self, vol): self._call_fmod("FMOD_ChannelGroup_OverrideVolume", c_float(vol)) def release(self): self._call_fmod("FMOD_ChannelGroup_Release") def stop(self): self._call_fmod("FMOD_ChannelGroup_Stop") @property def reverb_properties(self): props = REVERB_CHANNELPROPERTIES() ckresult(_dll.FMOD_ChannelGroup_GetReverbProperties(self._ptr, byref(props))) return props @reverb_properties.setter def reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) ckresult(_dll.FMOD_ChannelGroup_SetReverbProperties(self._ptr, byref(props)))
none
1
2.128802
2
program.py
siddhi117/ADB_Homework
0
9083
import sqlite3 from bottle import route, run,debug,template,request,redirect @route('/todo') def todo_list(): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT id, task FROM todo WHERE status LIKE '1'") result = c.fetchall() c.close() output = template('make_table', rows=result) return output @route('/new', method='GET') def new_item(): if request.GET.save: new = request.GET.task.strip() conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("INSERT INTO todo (task,status) VALUES (?,?)", (new,1)) new_id = c.lastrowid conn.commit() c.close() redirect('/todo') #return '<p>The new task was inserted into the database, the ID is %s</p>' % new_id else: return template('new_task.tpl') @route('/do_insert' , method='GET') def get_id(): redirect('/new') @route('/edit/<no:int>', method='GET') def edit_item(no): if request.GET.save: edit = request.GET.task.strip() status = request.GET.status.strip() if status == 'open': status = 1 else: status = 0 conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("UPDATE todo SET task = ?, status = ? WHERE id LIKE ?", (edit, status, no)) conn.commit() return '<p>The item number %s was successfully updated</p>' % no else: conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT task FROM todo WHERE id LIKE ?", (str(no))) cur_data = c.fetchone() return template('edit_task', old=cur_data, no=no) @route('/find_edit' , method='GET') def get_id(): id_edit = request.GET.editdata.strip() redirect('/edit/' + id_edit) @route('/delete/<no:int>', method='GET') def delete_item(no): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("DELETE FROM todo WHERE id LIKE ?", (str(no))) conn.commit() redirect('/todo') @route('/find_delete' , method='GET') def get_id(): id_delete = request.GET.deletedata.strip() redirect('/delete/' + id_delete) debug(True) run(reloader=True)
import sqlite3 from bottle import route, run,debug,template,request,redirect @route('/todo') def todo_list(): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT id, task FROM todo WHERE status LIKE '1'") result = c.fetchall() c.close() output = template('make_table', rows=result) return output @route('/new', method='GET') def new_item(): if request.GET.save: new = request.GET.task.strip() conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("INSERT INTO todo (task,status) VALUES (?,?)", (new,1)) new_id = c.lastrowid conn.commit() c.close() redirect('/todo') #return '<p>The new task was inserted into the database, the ID is %s</p>' % new_id else: return template('new_task.tpl') @route('/do_insert' , method='GET') def get_id(): redirect('/new') @route('/edit/<no:int>', method='GET') def edit_item(no): if request.GET.save: edit = request.GET.task.strip() status = request.GET.status.strip() if status == 'open': status = 1 else: status = 0 conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("UPDATE todo SET task = ?, status = ? WHERE id LIKE ?", (edit, status, no)) conn.commit() return '<p>The item number %s was successfully updated</p>' % no else: conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT task FROM todo WHERE id LIKE ?", (str(no))) cur_data = c.fetchone() return template('edit_task', old=cur_data, no=no) @route('/find_edit' , method='GET') def get_id(): id_edit = request.GET.editdata.strip() redirect('/edit/' + id_edit) @route('/delete/<no:int>', method='GET') def delete_item(no): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("DELETE FROM todo WHERE id LIKE ?", (str(no))) conn.commit() redirect('/todo') @route('/find_delete' , method='GET') def get_id(): id_delete = request.GET.deletedata.strip() redirect('/delete/' + id_delete) debug(True) run(reloader=True)
en
0.936858
#return '<p>The new task was inserted into the database, the ID is %s</p>' % new_id
2.714779
3
pipeline/metadata/maxmind.py
censoredplanet/censoredplanet-analysis
6
9084
<gh_stars>1-10 """Module to initialize Maxmind databases and lookup IP metadata.""" import logging import os from typing import Optional, Tuple, NamedTuple import geoip2.database from pipeline.metadata.mmdb_reader import mmdb_reader MAXMIND_CITY = 'GeoLite2-City.mmdb' MAXMIND_ASN = 'GeoLite2-ASN.mmdb' # Tuple(netblock, asn, as_name, country) # ex: ("1.0.0.1/24", 13335, "CLOUDFLARENET", "AU") MaxmindReturnValues = NamedTuple('MaxmindReturnValues', [('netblock', Optional[str]), ('asn', int), ('as_name', Optional[str]), ('country', Optional[str])]) class MaxmindIpMetadata(): """Lookup database for Maxmind ASN and country metadata.""" def __init__(self, maxmind_folder: str) -> None: """Create a Maxmind Database. Args: maxmind_folder: a folder containing maxmind files. Either a gcs filepath or a local system folder. """ maxmind_city_path = os.path.join(maxmind_folder, MAXMIND_CITY) maxmind_asn_path = os.path.join(maxmind_folder, MAXMIND_ASN) self.maxmind_city = mmdb_reader(maxmind_city_path) self.maxmind_asn = mmdb_reader(maxmind_asn_path) def lookup(self, ip: str) -> MaxmindReturnValues: """Lookup metadata infomation about an IP. Args: ip: string of the format 1.1.1.1 (ipv4 only) Returns: MaxmindReturnValues Raises: KeyError: when the IP's ASN can't be found """ (asn, as_name, netblock) = self._get_maxmind_asn(ip) country = self._get_country_code(ip) if not asn: raise KeyError(f"No Maxmind entry for {ip}") return MaxmindReturnValues(netblock, asn, as_name, country) def _get_country_code(self, vp_ip: str) -> Optional[str]: """Get country code for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: 2-letter ISO country code """ try: vp_info = self.maxmind_city.city(vp_ip) return vp_info.country.iso_code except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None def _get_maxmind_asn( self, vp_ip: str) -> Tuple[Optional[int], Optional[str], Optional[str]]: """Get ASN information for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: Tuple containing AS num, AS org, and netblock """ try: vp_info = self.maxmind_asn.asn(vp_ip) asn = vp_info.autonomous_system_number as_name = vp_info.autonomous_system_organization if vp_info.network: netblock: Optional[str] = vp_info.network.with_prefixlen else: netblock = None return asn, as_name, netblock except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None, None, None class FakeMaxmindIpMetadata(MaxmindIpMetadata): """A fake lookup table for testing MaxmindIpMetadata.""" # pylint: disable=super-init-not-called def __init__(self) -> None: pass # pylint: disable=no-self-use def lookup(self, _: str) -> MaxmindReturnValues: return MaxmindReturnValues('192.168.127.12/16', 1221, 'ASN-TELSTRA', 'AU')
"""Module to initialize Maxmind databases and lookup IP metadata.""" import logging import os from typing import Optional, Tuple, NamedTuple import geoip2.database from pipeline.metadata.mmdb_reader import mmdb_reader MAXMIND_CITY = 'GeoLite2-City.mmdb' MAXMIND_ASN = 'GeoLite2-ASN.mmdb' # Tuple(netblock, asn, as_name, country) # ex: ("1.0.0.1/24", 13335, "CLOUDFLARENET", "AU") MaxmindReturnValues = NamedTuple('MaxmindReturnValues', [('netblock', Optional[str]), ('asn', int), ('as_name', Optional[str]), ('country', Optional[str])]) class MaxmindIpMetadata(): """Lookup database for Maxmind ASN and country metadata.""" def __init__(self, maxmind_folder: str) -> None: """Create a Maxmind Database. Args: maxmind_folder: a folder containing maxmind files. Either a gcs filepath or a local system folder. """ maxmind_city_path = os.path.join(maxmind_folder, MAXMIND_CITY) maxmind_asn_path = os.path.join(maxmind_folder, MAXMIND_ASN) self.maxmind_city = mmdb_reader(maxmind_city_path) self.maxmind_asn = mmdb_reader(maxmind_asn_path) def lookup(self, ip: str) -> MaxmindReturnValues: """Lookup metadata infomation about an IP. Args: ip: string of the format 1.1.1.1 (ipv4 only) Returns: MaxmindReturnValues Raises: KeyError: when the IP's ASN can't be found """ (asn, as_name, netblock) = self._get_maxmind_asn(ip) country = self._get_country_code(ip) if not asn: raise KeyError(f"No Maxmind entry for {ip}") return MaxmindReturnValues(netblock, asn, as_name, country) def _get_country_code(self, vp_ip: str) -> Optional[str]: """Get country code for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: 2-letter ISO country code """ try: vp_info = self.maxmind_city.city(vp_ip) return vp_info.country.iso_code except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None def _get_maxmind_asn( self, vp_ip: str) -> Tuple[Optional[int], Optional[str], Optional[str]]: """Get ASN information for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: Tuple containing AS num, AS org, and netblock """ try: vp_info = self.maxmind_asn.asn(vp_ip) asn = vp_info.autonomous_system_number as_name = vp_info.autonomous_system_organization if vp_info.network: netblock: Optional[str] = vp_info.network.with_prefixlen else: netblock = None return asn, as_name, netblock except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None, None, None class FakeMaxmindIpMetadata(MaxmindIpMetadata): """A fake lookup table for testing MaxmindIpMetadata.""" # pylint: disable=super-init-not-called def __init__(self) -> None: pass # pylint: disable=no-self-use def lookup(self, _: str) -> MaxmindReturnValues: return MaxmindReturnValues('192.168.127.12/16', 1221, 'ASN-TELSTRA', 'AU')
en
0.615686
Module to initialize Maxmind databases and lookup IP metadata. # Tuple(netblock, asn, as_name, country) # ex: ("1.0.0.1/24", 13335, "CLOUDFLARENET", "AU") Lookup database for Maxmind ASN and country metadata. Create a Maxmind Database. Args: maxmind_folder: a folder containing maxmind files. Either a gcs filepath or a local system folder. Lookup metadata infomation about an IP. Args: ip: string of the format 1.1.1.1 (ipv4 only) Returns: MaxmindReturnValues Raises: KeyError: when the IP's ASN can't be found Get country code for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: 2-letter ISO country code Get ASN information for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: Tuple containing AS num, AS org, and netblock A fake lookup table for testing MaxmindIpMetadata. # pylint: disable=super-init-not-called # pylint: disable=no-self-use
2.630947
3
examples/plot_graph.py
huyvo/gevent-websocket-py3.5
0
9085
from __future__ import print_function """ This example generates random data and plots a graph in the browser. Run it using Gevent directly using: $ python plot_graph.py Or with an Gunicorn wrapper: $ gunicorn -k "geventwebsocket.gunicorn.workers.GeventWebSocketWorker" \ plot_graph:resource """ import gevent import random from geventwebsocket import WebSocketServer, WebSocketApplication, Resource from geventwebsocket._compat import range_type class PlotApplication(WebSocketApplication): def on_open(self): for i in range_type(10000): self.ws.send("0 %s %s\n" % (i, random.random())) gevent.sleep(0.1) def on_close(self, reason): print("Connection Closed!!!", reason) def static_wsgi_app(environ, start_response): start_response("200 OK", [("Content-Type", "text/html")]) return open("plot_graph.html").readlines() resource = Resource([ ('/', static_wsgi_app), ('/data', PlotApplication) ]) if __name__ == "__main__": server = WebSocketServer(('', 8000), resource, debug=True) server.serve_forever()
from __future__ import print_function """ This example generates random data and plots a graph in the browser. Run it using Gevent directly using: $ python plot_graph.py Or with an Gunicorn wrapper: $ gunicorn -k "geventwebsocket.gunicorn.workers.GeventWebSocketWorker" \ plot_graph:resource """ import gevent import random from geventwebsocket import WebSocketServer, WebSocketApplication, Resource from geventwebsocket._compat import range_type class PlotApplication(WebSocketApplication): def on_open(self): for i in range_type(10000): self.ws.send("0 %s %s\n" % (i, random.random())) gevent.sleep(0.1) def on_close(self, reason): print("Connection Closed!!!", reason) def static_wsgi_app(environ, start_response): start_response("200 OK", [("Content-Type", "text/html")]) return open("plot_graph.html").readlines() resource = Resource([ ('/', static_wsgi_app), ('/data', PlotApplication) ]) if __name__ == "__main__": server = WebSocketServer(('', 8000), resource, debug=True) server.serve_forever()
en
0.378002
This example generates random data and plots a graph in the browser. Run it using Gevent directly using: $ python plot_graph.py Or with an Gunicorn wrapper: $ gunicorn -k "geventwebsocket.gunicorn.workers.GeventWebSocketWorker" \ plot_graph:resource
3.253254
3
nas_big_data/combo/best/combo_4gpu_8_agebo/predict.py
deephyper/NASBigData
3
9086
<gh_stars>1-10 import os import numpy as np import tensorflow as tf from nas_big_data.combo.load_data import load_data_npz_gz from deephyper.nas.run.util import create_dir from deephyper.nas.train_utils import selectMetric os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in range(4)]) HERE = os.path.dirname(os.path.abspath(__file__)) fname = HERE.split("/")[-1] output_dir = "logs" create_dir(output_dir) X_test, y_test = load_data_npz_gz(test=True) dependencies = { "r2":selectMetric("r2") } model = tf.keras.models.load_model(f"best_model_{fname}.h5", custom_objects=dependencies) model.compile( metrics=["mse", "mae", selectMetric("r2")] ) score = model.evaluate(X_test, y_test) score_names = ["loss", "mse", "mae", "r2"] print("score:") output = " ".join([f"{sn}:{sv:.3f}" for sn,sv in zip(score_names, score)]) print(output)
import os import numpy as np import tensorflow as tf from nas_big_data.combo.load_data import load_data_npz_gz from deephyper.nas.run.util import create_dir from deephyper.nas.train_utils import selectMetric os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in range(4)]) HERE = os.path.dirname(os.path.abspath(__file__)) fname = HERE.split("/")[-1] output_dir = "logs" create_dir(output_dir) X_test, y_test = load_data_npz_gz(test=True) dependencies = { "r2":selectMetric("r2") } model = tf.keras.models.load_model(f"best_model_{fname}.h5", custom_objects=dependencies) model.compile( metrics=["mse", "mae", selectMetric("r2")] ) score = model.evaluate(X_test, y_test) score_names = ["loss", "mse", "mae", "r2"] print("score:") output = " ".join([f"{sn}:{sv:.3f}" for sn,sv in zip(score_names, score)]) print(output)
none
1
2.229583
2
ship/utils/utilfunctions.py
duncan-r/SHIP
6
9087
""" Summary: Utility Functions that could be helpful in any part of the API. All functions that are likely to be called across a number of classes and Functions in the API should be grouped here for convenience. Author: <NAME> Created: 01 Apr 2016 Copyright: <NAME> 2016 TODO: This module, like a lot of other probably, needs reviewing for how 'Pythonic' t is. There are a lot of places where generators, comprehensions, maps, etc should be used to speed things up and make them a bit clearer. More importantly there are a lot of places using '==' compare that should be using 'in' etc. This could cause bugs and must be fixed soon. Updates: """ from __future__ import unicode_literals import re import os import operator import logging logger = logging.getLogger(__name__) """logging references with a __name__ set to this module.""" # def resolveSeDecorator(se_vals, path): # """Decorator function for replacing Scen/Evt placholders. # # Checks fro scenario and event placeholders in the return value of a # function and replaces them with corresponding values if found. # # Args: # se_vals(dict): standard scenario/event dictionary in the format: # {'scenario': { # """ # def seDecorator(func): # def seWrapper(*args, **kwargs): # result = func(*args, **kwargs) # # if '~' in result: # # Check for scenarion stuff # for key, val in self.se_vals['scenario'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # # Check for event stuff # for key, val in self.se_vals['event'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # return result # return seWrapper # return seDecorator def formatFloat(value, no_of_dps, ignore_empty_str=True): """Format a float as a string to given number of decimal places. Args: value(float): the value to format. no_of_dps(int): number of decimal places to format to. ignore_empty_str(True): return a stripped blank string if set to True. Return: str - the formatted float. Raises: ValueError - if value param is not type float. """ if ignore_empty_str and not isNumeric(value) and str(value).strip() == '': return str(value).strip() if not isNumeric(value): raise ValueError decimal_format = '%0.' + str(no_of_dps) + 'f' value = decimal_format % float(value) return value def checkFileType(file_path, ext): """Checks a file to see that it has the right extension. Args: file_path (str): The file path to check. ext (List): list containing the extension types to match the file against. Returns: True if the extension matches the ext variable given or False if not. """ file_ext = os.path.splitext(file_path)[1] logger.info('File ext = ' + file_ext) for e in ext: if e == file_ext: return True else: return False def isNumeric(s): """Tests if string is a number or not. Simply tries to convert it and catches the error if launched. Args: s (str): string to test number compatibility. Returns: Bool - True if number. False if not. """ try: float(s) return True except (ValueError, TypeError): return False def encodeStr(value): try: value = unicode(value, "utf-8") return value except (UnicodeDecodeError, NameError, TypeError): return value def isString(value): """Tests a given value to see if it is an instance of basestring or not. Note: This function should be used whenever testing this as it accounts for both Python 2.7+ and 3.2+ variations of string. Args: value: the variable to test. Returns: Bool - True if value is a unicode str (basestring type) """ try: return isinstance(value, basestring) except NameError: return isinstance(value, str) # if not isinstance(value, basestring): # return False # # return True def isList(value): """Test a given value to see if it is a list or not. Args: value: the variable to test for list type. Returns: True if value is of type list; False otherwise. """ if not isinstance(value, list): return False return True def arrayToString(self, str_array): """Convert a list to a String Creates one string by adding each part of the array to one string using ', '.join() Args: str_array (List): to convert into single string. Returns: str - representaion of the array joined together. Raises: ValueError: if not contents of list are instances of basestring. """ if not isinstance(str_array[0], basestring): raise ValueError('Array values are not strings') out_string = '' out_string = ', '.join(str_array) return out_string def findSubstringInList(substr, the_list): """Returns a list containing the indices that a substring was found at. Uses a generator to quickly find all indices that str appears in. Args: substr (str): the sub string to search for. the_list (List): a list containing the strings to search. Returns: tuple - containing: * a list with the indices that the substring was found in (this list can be empty if no matches were found). * an integer containing the number of elements it was found in. """ indices = [i for i, s in enumerate(the_list) if substr in s] return indices, len(indices) def findMax(val1, val2): """Returns tuple containing min, max of two values Args: val1: first integer or float. val2: second integer or float. Returns: tuple - containing: * lower value * higher value * False if not same or True if the same. """ if val1 == val2: return val1, val2, True elif val1 > val2: return val2, val1, False else: return val1, val2, False def fileExtensionWithoutPeriod(filepath, name_only=False): """Extracts the extension without '.' from filepath. The extension will always be converted to lower case before returning. Args: filepath (str): A full filepath if name_only=False. Otherwise a file name with extension if name_only=True. name_only (bool): True if filepath is only filename.extension. """ if name_only: file, ext = os.path.splitext(filepath) else: path, filename = os.path.split(filepath) file, ext = os.path.splitext(filename) ext = ext[1:] return ext.lower() def findWholeWord(w): """Find a whole word amoungst a string.""" return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def convertRunOptionsToSEDict(options): """Converts tuflow command line options to scenario/event dict. Tuflow uses command line option (e.g. -s1 blah -e1 blah) to set scenario values which can either be provided on the command line or through the FMP run form. The TuflowLoader can use these arguments but requires a slightly different setup. This function converts the command line string into the scenarion and event dictionary expected by the TuflowLoader. Args: options(str): command line options. Return: dict - {'scenario': {'s1': blah}, 'event': {'e1': blah}} Raises: AttributeError: if both -s and -s1 or -e and -e1 occurr in the options string. -x and -x1 are treated as the same variable by tuflow and one of the values would be ignored. """ if ' -s ' in options and ' -s1 ' in options: raise AttributeError if ' -e ' in options and ' -e2 ' in options: raise AttributeError outvals = {'scenario': {}, 'event': {}} vals = options.split(" ") for i in range(len(vals)): if vals[i].startswith('-s'): outvals['scenario'][vals[i][1:]] = vals[i + 1] elif vals[i].startswith('-e'): outvals['event'][vals[i][1:]] = vals[i + 1] return outvals def getSEResolvedFilename(filename, se_vals): """Replace a tuflow placeholder filename with the scenario/event values. Replaces all of the placholder values (e.g. ~s1~_~e1~) in a tuflow filename with the corresponding values provided in the run options string. If the run options flags are not found in the filename their values will be appended to the end of the string. The setup of the returned filename is always the same: - First replace all placeholders with corresponding flag values. - s1 == s and e1 == e. - Append additional e values to end with '_' before first and '+' before others. - Append additional s values to end with '_' before first and '+' before others. Args: filename(str): the filename to update. se_vals(str): the run options string containing the 's' and 'e' flags and their corresponding values. Return: str - the updated filename. """ if not 'scenario' in se_vals.keys(): se_vals['scenario'] = {} if not 'event' in se_vals.keys(): se_vals['event'] = {} # Format the key value pairs into a list and combine the scenario and # event list together and sort them into e, e1, e2, s, s1, s2 order. scen_keys = ['-' + a for a in se_vals['scenario'].keys()] scen_vals = se_vals['scenario'].values() event_keys = ['-' + a for a in se_vals['event'].keys()] event_vals = se_vals['event'].values() scen = [list(a) for a in zip(scen_keys, scen_vals)] event = [list(a) for a in zip(event_keys, event_vals)] se_vals = scen + event vals = sorted(se_vals, key=operator.itemgetter(0)) # Build a new filename by replacing or adding the flag values outname = filename in_e = False for v in vals: placeholder = ''.join(['~', v[0][1:], '~']) if placeholder in filename: outname = outname.replace(placeholder, v[1]) elif v[0] == '-e1' and '~e~' in filename and not '-e' in se_vals: outname = outname.replace('~e~', v[1]) elif v[0] == '-s1' and '~s~' in filename and not '-s' in se_vals: outname = outname.replace('~s~', v[1]) # DEBUG - CHECK THIS IS TRUE! elif v[0] == '-e' and '~e1~' in filename: outname = outname.replace('~e1~', v[1]) elif v[0] == '-s' and '~s1~' in filename: outname = outname.replace('~s1~', v[1]) else: if v[0].startswith('-e'): if not in_e: prefix = '_' else: prefix = '+' in_e = True elif v[0].startswith('-s'): if in_e: prefix = '_' else: prefix = '+' in_e = False outname += prefix + v[1] return outname def enum(*sequential, **named): """Creates a new enum using the values handed to it. Taken from <NAME> on StackOverflow: http://stackoverflow.com/questions/36932/how-can-i-represent-an-enum-in-python Examples: Can be created and accessed using: >>> Numbers = enum('ZERO', 'ONE', 'TWO') >>> Numbers.ZERO 0 >>> Numbers.ONE 1 Or reverse the process o get the name from the value: >>> Numbers.reverse_mapping['three'] 'THREE' """ enums = dict(zip(sequential, range(len(sequential))), **named) reverse = dict((value, key) for key, value in enums.items()) enums['reverse_mapping'] = reverse return type(str('Enum'), (), enums) class FileQueue(object): """Queueing class for storing data to go into the database """ def __init__(self): self.items = [] def isEmpty(self): """Returns True if list is empty """ return self.items == [] def enqueue(self, item): """Add an item to the queue """ self.items.insert(0, item) def dequeue(self): """Pop an item from the front of the queue. """ return self.items.pop() def size(self): """Get the size of the queue """ return len(self.items) class LoadStack(object): """Stack class for loading logic.""" def __init__(self, max_size=-1): self.items = [] self.max_size = max_size def isEmpty(self): """Return True if stack is empty.""" return self.items == [] def add(self, item): """Add an item to the stack. Args: item: the item to add to the stack. Raises: IndexError: if max_size has been set and adding another item would make the stack bigger than max size. """ if not self.max_size == -1: if len(self.items) + 1 > self.max_size: raise IndexError self.items.append(item) def pop(self): """Get an item From the stack. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items.pop() def peek(self): """See what the next item on the stack is, but don't remove it. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items[-1] def size(self): """Return the number of items in the stack.""" return len(self.items)
""" Summary: Utility Functions that could be helpful in any part of the API. All functions that are likely to be called across a number of classes and Functions in the API should be grouped here for convenience. Author: <NAME> Created: 01 Apr 2016 Copyright: <NAME> 2016 TODO: This module, like a lot of other probably, needs reviewing for how 'Pythonic' t is. There are a lot of places where generators, comprehensions, maps, etc should be used to speed things up and make them a bit clearer. More importantly there are a lot of places using '==' compare that should be using 'in' etc. This could cause bugs and must be fixed soon. Updates: """ from __future__ import unicode_literals import re import os import operator import logging logger = logging.getLogger(__name__) """logging references with a __name__ set to this module.""" # def resolveSeDecorator(se_vals, path): # """Decorator function for replacing Scen/Evt placholders. # # Checks fro scenario and event placeholders in the return value of a # function and replaces them with corresponding values if found. # # Args: # se_vals(dict): standard scenario/event dictionary in the format: # {'scenario': { # """ # def seDecorator(func): # def seWrapper(*args, **kwargs): # result = func(*args, **kwargs) # # if '~' in result: # # Check for scenarion stuff # for key, val in self.se_vals['scenario'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # # Check for event stuff # for key, val in self.se_vals['event'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # return result # return seWrapper # return seDecorator def formatFloat(value, no_of_dps, ignore_empty_str=True): """Format a float as a string to given number of decimal places. Args: value(float): the value to format. no_of_dps(int): number of decimal places to format to. ignore_empty_str(True): return a stripped blank string if set to True. Return: str - the formatted float. Raises: ValueError - if value param is not type float. """ if ignore_empty_str and not isNumeric(value) and str(value).strip() == '': return str(value).strip() if not isNumeric(value): raise ValueError decimal_format = '%0.' + str(no_of_dps) + 'f' value = decimal_format % float(value) return value def checkFileType(file_path, ext): """Checks a file to see that it has the right extension. Args: file_path (str): The file path to check. ext (List): list containing the extension types to match the file against. Returns: True if the extension matches the ext variable given or False if not. """ file_ext = os.path.splitext(file_path)[1] logger.info('File ext = ' + file_ext) for e in ext: if e == file_ext: return True else: return False def isNumeric(s): """Tests if string is a number or not. Simply tries to convert it and catches the error if launched. Args: s (str): string to test number compatibility. Returns: Bool - True if number. False if not. """ try: float(s) return True except (ValueError, TypeError): return False def encodeStr(value): try: value = unicode(value, "utf-8") return value except (UnicodeDecodeError, NameError, TypeError): return value def isString(value): """Tests a given value to see if it is an instance of basestring or not. Note: This function should be used whenever testing this as it accounts for both Python 2.7+ and 3.2+ variations of string. Args: value: the variable to test. Returns: Bool - True if value is a unicode str (basestring type) """ try: return isinstance(value, basestring) except NameError: return isinstance(value, str) # if not isinstance(value, basestring): # return False # # return True def isList(value): """Test a given value to see if it is a list or not. Args: value: the variable to test for list type. Returns: True if value is of type list; False otherwise. """ if not isinstance(value, list): return False return True def arrayToString(self, str_array): """Convert a list to a String Creates one string by adding each part of the array to one string using ', '.join() Args: str_array (List): to convert into single string. Returns: str - representaion of the array joined together. Raises: ValueError: if not contents of list are instances of basestring. """ if not isinstance(str_array[0], basestring): raise ValueError('Array values are not strings') out_string = '' out_string = ', '.join(str_array) return out_string def findSubstringInList(substr, the_list): """Returns a list containing the indices that a substring was found at. Uses a generator to quickly find all indices that str appears in. Args: substr (str): the sub string to search for. the_list (List): a list containing the strings to search. Returns: tuple - containing: * a list with the indices that the substring was found in (this list can be empty if no matches were found). * an integer containing the number of elements it was found in. """ indices = [i for i, s in enumerate(the_list) if substr in s] return indices, len(indices) def findMax(val1, val2): """Returns tuple containing min, max of two values Args: val1: first integer or float. val2: second integer or float. Returns: tuple - containing: * lower value * higher value * False if not same or True if the same. """ if val1 == val2: return val1, val2, True elif val1 > val2: return val2, val1, False else: return val1, val2, False def fileExtensionWithoutPeriod(filepath, name_only=False): """Extracts the extension without '.' from filepath. The extension will always be converted to lower case before returning. Args: filepath (str): A full filepath if name_only=False. Otherwise a file name with extension if name_only=True. name_only (bool): True if filepath is only filename.extension. """ if name_only: file, ext = os.path.splitext(filepath) else: path, filename = os.path.split(filepath) file, ext = os.path.splitext(filename) ext = ext[1:] return ext.lower() def findWholeWord(w): """Find a whole word amoungst a string.""" return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def convertRunOptionsToSEDict(options): """Converts tuflow command line options to scenario/event dict. Tuflow uses command line option (e.g. -s1 blah -e1 blah) to set scenario values which can either be provided on the command line or through the FMP run form. The TuflowLoader can use these arguments but requires a slightly different setup. This function converts the command line string into the scenarion and event dictionary expected by the TuflowLoader. Args: options(str): command line options. Return: dict - {'scenario': {'s1': blah}, 'event': {'e1': blah}} Raises: AttributeError: if both -s and -s1 or -e and -e1 occurr in the options string. -x and -x1 are treated as the same variable by tuflow and one of the values would be ignored. """ if ' -s ' in options and ' -s1 ' in options: raise AttributeError if ' -e ' in options and ' -e2 ' in options: raise AttributeError outvals = {'scenario': {}, 'event': {}} vals = options.split(" ") for i in range(len(vals)): if vals[i].startswith('-s'): outvals['scenario'][vals[i][1:]] = vals[i + 1] elif vals[i].startswith('-e'): outvals['event'][vals[i][1:]] = vals[i + 1] return outvals def getSEResolvedFilename(filename, se_vals): """Replace a tuflow placeholder filename with the scenario/event values. Replaces all of the placholder values (e.g. ~s1~_~e1~) in a tuflow filename with the corresponding values provided in the run options string. If the run options flags are not found in the filename their values will be appended to the end of the string. The setup of the returned filename is always the same: - First replace all placeholders with corresponding flag values. - s1 == s and e1 == e. - Append additional e values to end with '_' before first and '+' before others. - Append additional s values to end with '_' before first and '+' before others. Args: filename(str): the filename to update. se_vals(str): the run options string containing the 's' and 'e' flags and their corresponding values. Return: str - the updated filename. """ if not 'scenario' in se_vals.keys(): se_vals['scenario'] = {} if not 'event' in se_vals.keys(): se_vals['event'] = {} # Format the key value pairs into a list and combine the scenario and # event list together and sort them into e, e1, e2, s, s1, s2 order. scen_keys = ['-' + a for a in se_vals['scenario'].keys()] scen_vals = se_vals['scenario'].values() event_keys = ['-' + a for a in se_vals['event'].keys()] event_vals = se_vals['event'].values() scen = [list(a) for a in zip(scen_keys, scen_vals)] event = [list(a) for a in zip(event_keys, event_vals)] se_vals = scen + event vals = sorted(se_vals, key=operator.itemgetter(0)) # Build a new filename by replacing or adding the flag values outname = filename in_e = False for v in vals: placeholder = ''.join(['~', v[0][1:], '~']) if placeholder in filename: outname = outname.replace(placeholder, v[1]) elif v[0] == '-e1' and '~e~' in filename and not '-e' in se_vals: outname = outname.replace('~e~', v[1]) elif v[0] == '-s1' and '~s~' in filename and not '-s' in se_vals: outname = outname.replace('~s~', v[1]) # DEBUG - CHECK THIS IS TRUE! elif v[0] == '-e' and '~e1~' in filename: outname = outname.replace('~e1~', v[1]) elif v[0] == '-s' and '~s1~' in filename: outname = outname.replace('~s1~', v[1]) else: if v[0].startswith('-e'): if not in_e: prefix = '_' else: prefix = '+' in_e = True elif v[0].startswith('-s'): if in_e: prefix = '_' else: prefix = '+' in_e = False outname += prefix + v[1] return outname def enum(*sequential, **named): """Creates a new enum using the values handed to it. Taken from <NAME> on StackOverflow: http://stackoverflow.com/questions/36932/how-can-i-represent-an-enum-in-python Examples: Can be created and accessed using: >>> Numbers = enum('ZERO', 'ONE', 'TWO') >>> Numbers.ZERO 0 >>> Numbers.ONE 1 Or reverse the process o get the name from the value: >>> Numbers.reverse_mapping['three'] 'THREE' """ enums = dict(zip(sequential, range(len(sequential))), **named) reverse = dict((value, key) for key, value in enums.items()) enums['reverse_mapping'] = reverse return type(str('Enum'), (), enums) class FileQueue(object): """Queueing class for storing data to go into the database """ def __init__(self): self.items = [] def isEmpty(self): """Returns True if list is empty """ return self.items == [] def enqueue(self, item): """Add an item to the queue """ self.items.insert(0, item) def dequeue(self): """Pop an item from the front of the queue. """ return self.items.pop() def size(self): """Get the size of the queue """ return len(self.items) class LoadStack(object): """Stack class for loading logic.""" def __init__(self, max_size=-1): self.items = [] self.max_size = max_size def isEmpty(self): """Return True if stack is empty.""" return self.items == [] def add(self, item): """Add an item to the stack. Args: item: the item to add to the stack. Raises: IndexError: if max_size has been set and adding another item would make the stack bigger than max size. """ if not self.max_size == -1: if len(self.items) + 1 > self.max_size: raise IndexError self.items.append(item) def pop(self): """Get an item From the stack. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items.pop() def peek(self): """See what the next item on the stack is, but don't remove it. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items[-1] def size(self): """Return the number of items in the stack.""" return len(self.items)
en
0.725658
Summary: Utility Functions that could be helpful in any part of the API. All functions that are likely to be called across a number of classes and Functions in the API should be grouped here for convenience. Author: <NAME> Created: 01 Apr 2016 Copyright: <NAME> 2016 TODO: This module, like a lot of other probably, needs reviewing for how 'Pythonic' t is. There are a lot of places where generators, comprehensions, maps, etc should be used to speed things up and make them a bit clearer. More importantly there are a lot of places using '==' compare that should be using 'in' etc. This could cause bugs and must be fixed soon. Updates: logging references with a __name__ set to this module. # def resolveSeDecorator(se_vals, path): # """Decorator function for replacing Scen/Evt placholders. # # Checks fro scenario and event placeholders in the return value of a # function and replaces them with corresponding values if found. # # Args: # se_vals(dict): standard scenario/event dictionary in the format: # {'scenario': { # """ # def seDecorator(func): # def seWrapper(*args, **kwargs): # result = func(*args, **kwargs) # # if '~' in result: # # Check for scenarion stuff # for key, val in self.se_vals['scenario'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # # Check for event stuff # for key, val in self.se_vals['event'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # return result # return seWrapper # return seDecorator Format a float as a string to given number of decimal places. Args: value(float): the value to format. no_of_dps(int): number of decimal places to format to. ignore_empty_str(True): return a stripped blank string if set to True. Return: str - the formatted float. Raises: ValueError - if value param is not type float. Checks a file to see that it has the right extension. Args: file_path (str): The file path to check. ext (List): list containing the extension types to match the file against. Returns: True if the extension matches the ext variable given or False if not. Tests if string is a number or not. Simply tries to convert it and catches the error if launched. Args: s (str): string to test number compatibility. Returns: Bool - True if number. False if not. Tests a given value to see if it is an instance of basestring or not. Note: This function should be used whenever testing this as it accounts for both Python 2.7+ and 3.2+ variations of string. Args: value: the variable to test. Returns: Bool - True if value is a unicode str (basestring type) # if not isinstance(value, basestring): # return False # # return True Test a given value to see if it is a list or not. Args: value: the variable to test for list type. Returns: True if value is of type list; False otherwise. Convert a list to a String Creates one string by adding each part of the array to one string using ', '.join() Args: str_array (List): to convert into single string. Returns: str - representaion of the array joined together. Raises: ValueError: if not contents of list are instances of basestring. Returns a list containing the indices that a substring was found at. Uses a generator to quickly find all indices that str appears in. Args: substr (str): the sub string to search for. the_list (List): a list containing the strings to search. Returns: tuple - containing: * a list with the indices that the substring was found in (this list can be empty if no matches were found). * an integer containing the number of elements it was found in. Returns tuple containing min, max of two values Args: val1: first integer or float. val2: second integer or float. Returns: tuple - containing: * lower value * higher value * False if not same or True if the same. Extracts the extension without '.' from filepath. The extension will always be converted to lower case before returning. Args: filepath (str): A full filepath if name_only=False. Otherwise a file name with extension if name_only=True. name_only (bool): True if filepath is only filename.extension. Find a whole word amoungst a string. Converts tuflow command line options to scenario/event dict. Tuflow uses command line option (e.g. -s1 blah -e1 blah) to set scenario values which can either be provided on the command line or through the FMP run form. The TuflowLoader can use these arguments but requires a slightly different setup. This function converts the command line string into the scenarion and event dictionary expected by the TuflowLoader. Args: options(str): command line options. Return: dict - {'scenario': {'s1': blah}, 'event': {'e1': blah}} Raises: AttributeError: if both -s and -s1 or -e and -e1 occurr in the options string. -x and -x1 are treated as the same variable by tuflow and one of the values would be ignored. Replace a tuflow placeholder filename with the scenario/event values. Replaces all of the placholder values (e.g. ~s1~_~e1~) in a tuflow filename with the corresponding values provided in the run options string. If the run options flags are not found in the filename their values will be appended to the end of the string. The setup of the returned filename is always the same: - First replace all placeholders with corresponding flag values. - s1 == s and e1 == e. - Append additional e values to end with '_' before first and '+' before others. - Append additional s values to end with '_' before first and '+' before others. Args: filename(str): the filename to update. se_vals(str): the run options string containing the 's' and 'e' flags and their corresponding values. Return: str - the updated filename. # Format the key value pairs into a list and combine the scenario and # event list together and sort them into e, e1, e2, s, s1, s2 order. # Build a new filename by replacing or adding the flag values # DEBUG - CHECK THIS IS TRUE! Creates a new enum using the values handed to it. Taken from <NAME> on StackOverflow: http://stackoverflow.com/questions/36932/how-can-i-represent-an-enum-in-python Examples: Can be created and accessed using: >>> Numbers = enum('ZERO', 'ONE', 'TWO') >>> Numbers.ZERO 0 >>> Numbers.ONE 1 Or reverse the process o get the name from the value: >>> Numbers.reverse_mapping['three'] 'THREE' Queueing class for storing data to go into the database Returns True if list is empty Add an item to the queue Pop an item from the front of the queue. Get the size of the queue Stack class for loading logic. Return True if stack is empty. Add an item to the stack. Args: item: the item to add to the stack. Raises: IndexError: if max_size has been set and adding another item would make the stack bigger than max size. Get an item From the stack. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. See what the next item on the stack is, but don't remove it. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. Return the number of items in the stack.
2.971061
3
src/ansible_navigator/ui_framework/content_defs.py
goneri/ansible-navigator
0
9088
<filename>src/ansible_navigator/ui_framework/content_defs.py<gh_stars>0 """Definitions of UI content objects.""" from dataclasses import asdict from dataclasses import dataclass from enum import Enum from typing import Dict from typing import Generic from typing import TypeVar from ..utils.compatibility import TypeAlias from ..utils.serialize import SerializationFormat class ContentView(Enum): """The content view.""" FULL = "full" NORMAL = "normal" T = TypeVar("T") # pylint:disable=invalid-name # https://github.com/PyCQA/pylint/pull/5221 DictType: TypeAlias = Dict[str, T] @dataclass class ContentBase(Generic[T]): r"""The base class for all content dataclasses presented in the UI. It should be noted, that while the return type is defined as ``T`` for the serialization functions below, mypy will not catch in incorrect definition of ``T`` at this time. This is because of how ``asdict()`` is typed: @overload def asdict(obj: Any) -> dict[str, Any]: ... @overload def asdict(obj: Any, \*, dict_factory: Callable[[list[tuple[str, Any]]], _T]) -> _T: ... Which result in mypy believing the outcome of asdict is dict[str, Any] and letting it silently pass through an incorrect ``T``. ``Mypy`` identifies this as a known issue: https://mypy.readthedocs.io/en/stable/additional_features.html#caveats-known-issues """ def asdict( self, content_view: ContentView, serialization_format: SerializationFormat, ) -> DictType: """Convert thy self into a dictionary. :param content_view: The content view :param serialization_format: The serialization format :returns: A dictionary created from self """ converter_map = { (ContentView.FULL, SerializationFormat.JSON): self.serialize_json_full, (ContentView.FULL, SerializationFormat.YAML): self.serialize_yaml_full, (ContentView.NORMAL, SerializationFormat.JSON): self.serialize_json_normal, (ContentView.NORMAL, SerializationFormat.YAML): self.serialize_yaml_normal, } try: dump_self_as_dict = converter_map[content_view, serialization_format] except KeyError: return asdict(self) else: return dump_self_as_dict() def serialize_json_full(self) -> DictType: """Provide dictionary for ``JSON`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_json_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_full(self) -> DictType: """Provide dictionary for ``YAML`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def get(self, attribute: str): """Allow this dataclass to be treated like a dictionary. This is a work around until the UI fully supports dataclasses at which time this can be removed. Default is intentionally not implemented as a safeguard to enure this is not more work than necessary to remove in the future and will only return attributes in existence. :param attribute: The attribute to get :returns: The gotten attribute """ return getattr(self, attribute)
<filename>src/ansible_navigator/ui_framework/content_defs.py<gh_stars>0 """Definitions of UI content objects.""" from dataclasses import asdict from dataclasses import dataclass from enum import Enum from typing import Dict from typing import Generic from typing import TypeVar from ..utils.compatibility import TypeAlias from ..utils.serialize import SerializationFormat class ContentView(Enum): """The content view.""" FULL = "full" NORMAL = "normal" T = TypeVar("T") # pylint:disable=invalid-name # https://github.com/PyCQA/pylint/pull/5221 DictType: TypeAlias = Dict[str, T] @dataclass class ContentBase(Generic[T]): r"""The base class for all content dataclasses presented in the UI. It should be noted, that while the return type is defined as ``T`` for the serialization functions below, mypy will not catch in incorrect definition of ``T`` at this time. This is because of how ``asdict()`` is typed: @overload def asdict(obj: Any) -> dict[str, Any]: ... @overload def asdict(obj: Any, \*, dict_factory: Callable[[list[tuple[str, Any]]], _T]) -> _T: ... Which result in mypy believing the outcome of asdict is dict[str, Any] and letting it silently pass through an incorrect ``T``. ``Mypy`` identifies this as a known issue: https://mypy.readthedocs.io/en/stable/additional_features.html#caveats-known-issues """ def asdict( self, content_view: ContentView, serialization_format: SerializationFormat, ) -> DictType: """Convert thy self into a dictionary. :param content_view: The content view :param serialization_format: The serialization format :returns: A dictionary created from self """ converter_map = { (ContentView.FULL, SerializationFormat.JSON): self.serialize_json_full, (ContentView.FULL, SerializationFormat.YAML): self.serialize_yaml_full, (ContentView.NORMAL, SerializationFormat.JSON): self.serialize_json_normal, (ContentView.NORMAL, SerializationFormat.YAML): self.serialize_yaml_normal, } try: dump_self_as_dict = converter_map[content_view, serialization_format] except KeyError: return asdict(self) else: return dump_self_as_dict() def serialize_json_full(self) -> DictType: """Provide dictionary for ``JSON`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_json_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_full(self) -> DictType: """Provide dictionary for ``YAML`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def get(self, attribute: str): """Allow this dataclass to be treated like a dictionary. This is a work around until the UI fully supports dataclasses at which time this can be removed. Default is intentionally not implemented as a safeguard to enure this is not more work than necessary to remove in the future and will only return attributes in existence. :param attribute: The attribute to get :returns: The gotten attribute """ return getattr(self, attribute)
en
0.824268
Definitions of UI content objects. The content view. # pylint:disable=invalid-name # https://github.com/PyCQA/pylint/pull/5221 The base class for all content dataclasses presented in the UI. It should be noted, that while the return type is defined as ``T`` for the serialization functions below, mypy will not catch in incorrect definition of ``T`` at this time. This is because of how ``asdict()`` is typed: @overload def asdict(obj: Any) -> dict[str, Any]: ... @overload def asdict(obj: Any, \*, dict_factory: Callable[[list[tuple[str, Any]]], _T]) -> _T: ... Which result in mypy believing the outcome of asdict is dict[str, Any] and letting it silently pass through an incorrect ``T``. ``Mypy`` identifies this as a known issue: https://mypy.readthedocs.io/en/stable/additional_features.html#caveats-known-issues Convert thy self into a dictionary. :param content_view: The content view :param serialization_format: The serialization format :returns: A dictionary created from self Provide dictionary for ``JSON`` with all attributes. :returns: A dictionary created from self Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self Provide dictionary for ``YAML`` with all attributes. :returns: A dictionary created from self Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self Allow this dataclass to be treated like a dictionary. This is a work around until the UI fully supports dataclasses at which time this can be removed. Default is intentionally not implemented as a safeguard to enure this is not more work than necessary to remove in the future and will only return attributes in existence. :param attribute: The attribute to get :returns: The gotten attribute
2.283492
2
FWCore/MessageService/test/u28_cerr_cfg.py
SWuchterl/cmssw
6
9089
# u28_cerr_cfg.py: # # Non-regression test configuration file for MessageLogger service: # distinct threshold level for linked destination, where # import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") import FWCore.Framework.test.cmsExceptionsFatal_cff process.options = FWCore.Framework.test.cmsExceptionsFatal_cff.options process.load("FWCore.MessageService.test.Services_cff") process.MessageLogger = cms.Service("MessageLogger", categories = cms.untracked.vstring('preEventProcessing'), destinations = cms.untracked.vstring('cerr'), statistics = cms.untracked.vstring('cerr_stats'), cerr_stats = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), output = cms.untracked.string('cerr') ), u28_output = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), noTimeStamps = cms.untracked.bool(True), preEventProcessing = cms.untracked.PSet( limit = cms.untracked.int32(0) ) ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(3) ) process.source = cms.Source("EmptySource") process.sendSomeMessages = cms.EDAnalyzer("UnitTestClient_A") process.p = cms.Path(process.sendSomeMessages)
# u28_cerr_cfg.py: # # Non-regression test configuration file for MessageLogger service: # distinct threshold level for linked destination, where # import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") import FWCore.Framework.test.cmsExceptionsFatal_cff process.options = FWCore.Framework.test.cmsExceptionsFatal_cff.options process.load("FWCore.MessageService.test.Services_cff") process.MessageLogger = cms.Service("MessageLogger", categories = cms.untracked.vstring('preEventProcessing'), destinations = cms.untracked.vstring('cerr'), statistics = cms.untracked.vstring('cerr_stats'), cerr_stats = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), output = cms.untracked.string('cerr') ), u28_output = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), noTimeStamps = cms.untracked.bool(True), preEventProcessing = cms.untracked.PSet( limit = cms.untracked.int32(0) ) ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(3) ) process.source = cms.Source("EmptySource") process.sendSomeMessages = cms.EDAnalyzer("UnitTestClient_A") process.p = cms.Path(process.sendSomeMessages)
en
0.646996
# u28_cerr_cfg.py: # # Non-regression test configuration file for MessageLogger service: # distinct threshold level for linked destination, where #
1.595888
2
content/browse/utils.py
Revibe-Music/core-services
2
9090
<filename>content/browse/utils.py """ Created:04 Mar. 2020 Author: <NAME> """ from revibe._helpers import const from administration.utils import retrieve_variable from content.models import Song, Album, Artist from content.serializers import v1 as cnt_ser_v1 # ----------------------------------------------------------------------------- # _DEFAULT_LIMIT = 50 # limit_variable = retrieve_variable() # try: # limit_variable = int(limit_variable) # _DEFAULT_LIMIT = max(min(limit_variable, 100), 10) # except ValueError as ve: # print("Could not read browse section default limit variable") # print(ve) def _DEFAULT_LIMIT(): limit_variable = retrieve_variable("browse_section_default_limit", 50) try: limit_variable = int(limit_variable) return max(min(limit_variable, 100), 10) except ValueError as ve: print("Could not read browse section default limit variable") print(ve) return 50 _name = "name" _type = "type" _results = "results" _endpoint = "endpoint" def _browse_song(annotation, limit=None, platform=const.REVIBE_STRING, **options): limit = limit if limit else _DEFAULT_LIMIT() songs = Song.display_objects.filter(platform=platform).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.SongSerializer(songs, many=True).data return options def _browse_album(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() albums = Album.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.AlbumSerializer(albums, many=True).data return options def _browse_artist(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() artists = Artist.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.ArtistSerializer(artists, many=True).data return options
<filename>content/browse/utils.py """ Created:04 Mar. 2020 Author: <NAME> """ from revibe._helpers import const from administration.utils import retrieve_variable from content.models import Song, Album, Artist from content.serializers import v1 as cnt_ser_v1 # ----------------------------------------------------------------------------- # _DEFAULT_LIMIT = 50 # limit_variable = retrieve_variable() # try: # limit_variable = int(limit_variable) # _DEFAULT_LIMIT = max(min(limit_variable, 100), 10) # except ValueError as ve: # print("Could not read browse section default limit variable") # print(ve) def _DEFAULT_LIMIT(): limit_variable = retrieve_variable("browse_section_default_limit", 50) try: limit_variable = int(limit_variable) return max(min(limit_variable, 100), 10) except ValueError as ve: print("Could not read browse section default limit variable") print(ve) return 50 _name = "name" _type = "type" _results = "results" _endpoint = "endpoint" def _browse_song(annotation, limit=None, platform=const.REVIBE_STRING, **options): limit = limit if limit else _DEFAULT_LIMIT() songs = Song.display_objects.filter(platform=platform).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.SongSerializer(songs, many=True).data return options def _browse_album(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() albums = Album.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.AlbumSerializer(albums, many=True).data return options def _browse_artist(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() artists = Artist.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.ArtistSerializer(artists, many=True).data return options
en
0.40492
Created:04 Mar. 2020 Author: <NAME> # ----------------------------------------------------------------------------- # _DEFAULT_LIMIT = 50 # limit_variable = retrieve_variable() # try: # limit_variable = int(limit_variable) # _DEFAULT_LIMIT = max(min(limit_variable, 100), 10) # except ValueError as ve: # print("Could not read browse section default limit variable") # print(ve)
2.095323
2
Segmentation/model.py
vasetrendafilov/ComputerVision
0
9091
""" Authors: <NAME>, <NAME> E-mail: <EMAIL>, <EMAIL> Course: Mashinski vid, FEEIT, Spring 2021 Date: 09.03.2021 Description: function library model operations: construction, loading, saving Python version: 3.6 """ # python imports from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate from keras.models import Model, model_from_json def load_model(model_path, weights_path): """ loads a pre-trained model configuration and calculated weights :param model_path: path of the serialized model configuration file (.json) [string] :param weights_path: path of the serialized model weights file (.h5) [string] :return: model - keras model object """ # --- load model configuration --- json_file = open(model_path, 'r') model_json = json_file.read() json_file.close() model = model_from_json(model_json) # load model architecture model.load_weights(weights_path) # load weights return model def construct_model_unet_orig(input_shape): """ construct semantic segmentation model architecture (encoder-decoder) :param input_shape: list of input dimensions (height, width, depth) [tuple] :return: model - Keras model object """ input = Input(shape=input_shape) # --- encoder --- conv1 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(input) conv11 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPool2D(pool_size=(2, 2))(conv11) conv2 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv22 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPool2D(pool_size=(2, 2))(conv22) conv3 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv33 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPool2D(pool_size=(2, 2))(conv33) conv4 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv44 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) pool4 = MaxPool2D(pool_size=(2, 2))(conv44) # --- decoder --- conv5 = Conv2D(filters=1024, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4) conv55 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up1 = UpSampling2D(size=(2, 2))(conv55) merge1 = Concatenate(axis=3)([conv44, up1]) deconv1 = Conv2DTranspose(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge1) deconv11 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv1) up2 = UpSampling2D(size=(2, 2))(deconv11) merge2 = Concatenate(axis=3)([conv33, up2]) deconv2 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge2) deconv22 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv2) up3 = UpSampling2D(size=(2, 2))(deconv22) merge3 = Concatenate(axis=3)([conv22, up3]) deconv3 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge3) deconv33 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv3) up4 = UpSampling2D(size=(2, 2))(deconv33) merge4 = Concatenate(axis=3)([conv11, up4]) deconv4 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge4) deconv44 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv4) output = Conv2DTranspose(filters=input_shape[2], kernel_size=1, padding='same', activation='sigmoid')(deconv44) model = Model(input=input, output=output) return model
""" Authors: <NAME>, <NAME> E-mail: <EMAIL>, <EMAIL> Course: Mashinski vid, FEEIT, Spring 2021 Date: 09.03.2021 Description: function library model operations: construction, loading, saving Python version: 3.6 """ # python imports from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate from keras.models import Model, model_from_json def load_model(model_path, weights_path): """ loads a pre-trained model configuration and calculated weights :param model_path: path of the serialized model configuration file (.json) [string] :param weights_path: path of the serialized model weights file (.h5) [string] :return: model - keras model object """ # --- load model configuration --- json_file = open(model_path, 'r') model_json = json_file.read() json_file.close() model = model_from_json(model_json) # load model architecture model.load_weights(weights_path) # load weights return model def construct_model_unet_orig(input_shape): """ construct semantic segmentation model architecture (encoder-decoder) :param input_shape: list of input dimensions (height, width, depth) [tuple] :return: model - Keras model object """ input = Input(shape=input_shape) # --- encoder --- conv1 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(input) conv11 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPool2D(pool_size=(2, 2))(conv11) conv2 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv22 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPool2D(pool_size=(2, 2))(conv22) conv3 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv33 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPool2D(pool_size=(2, 2))(conv33) conv4 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv44 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) pool4 = MaxPool2D(pool_size=(2, 2))(conv44) # --- decoder --- conv5 = Conv2D(filters=1024, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4) conv55 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up1 = UpSampling2D(size=(2, 2))(conv55) merge1 = Concatenate(axis=3)([conv44, up1]) deconv1 = Conv2DTranspose(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge1) deconv11 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv1) up2 = UpSampling2D(size=(2, 2))(deconv11) merge2 = Concatenate(axis=3)([conv33, up2]) deconv2 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge2) deconv22 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv2) up3 = UpSampling2D(size=(2, 2))(deconv22) merge3 = Concatenate(axis=3)([conv22, up3]) deconv3 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge3) deconv33 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv3) up4 = UpSampling2D(size=(2, 2))(deconv33) merge4 = Concatenate(axis=3)([conv11, up4]) deconv4 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge4) deconv44 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv4) output = Conv2DTranspose(filters=input_shape[2], kernel_size=1, padding='same', activation='sigmoid')(deconv44) model = Model(input=input, output=output) return model
en
0.728724
Authors: <NAME>, <NAME> E-mail: <EMAIL>, <EMAIL> Course: Mashinski vid, FEEIT, Spring 2021 Date: 09.03.2021 Description: function library model operations: construction, loading, saving Python version: 3.6 # python imports loads a pre-trained model configuration and calculated weights :param model_path: path of the serialized model configuration file (.json) [string] :param weights_path: path of the serialized model weights file (.h5) [string] :return: model - keras model object # --- load model configuration --- # load model architecture # load weights construct semantic segmentation model architecture (encoder-decoder) :param input_shape: list of input dimensions (height, width, depth) [tuple] :return: model - Keras model object # --- encoder --- # --- decoder ---
2.841247
3
Day24_Python/part1.py
Rog3rSm1th/PolyglotOfCode
7
9092
<reponame>Rog3rSm1th/PolyglotOfCode #!/usr/bin/env python3 #-*- coding: utf-8 -*- from itertools import combinations def solve(packages, groups): total = sum(packages) result = 9999999999999999 # we should use `for i in range(1, len(packages) - 2)` but it would # make the computation significantly slower for i in range(1, 7): for c in combinations(packages, i): if sum(c) == total / groups: quantum_entanglement = reduce(lambda a, b: a * b, list(c)) result = min(result, quantum_entanglement) return result packages = [int(num) for num in open('input.txt')] print(solve(packages, 3))
#!/usr/bin/env python3 #-*- coding: utf-8 -*- from itertools import combinations def solve(packages, groups): total = sum(packages) result = 9999999999999999 # we should use `for i in range(1, len(packages) - 2)` but it would # make the computation significantly slower for i in range(1, 7): for c in combinations(packages, i): if sum(c) == total / groups: quantum_entanglement = reduce(lambda a, b: a * b, list(c)) result = min(result, quantum_entanglement) return result packages = [int(num) for num in open('input.txt')] print(solve(packages, 3))
en
0.731337
#!/usr/bin/env python3 #-*- coding: utf-8 -*- # we should use `for i in range(1, len(packages) - 2)` but it would # make the computation significantly slower
3.045598
3
generate-album.py
atomicparade/photo-album
0
9093
<filename>generate-album.py import configparser import math import re import urllib from pathlib import Path from PIL import Image def get_images(image_directory, thumbnail_directory, thumbnail_size): thumbnail_directory = Path(thumbnail_directory) for file in [file for file in thumbnail_directory.glob('*')]: file.unlink() thumbnail_directory.mkdir(mode=0o755, exist_ok=True) files = [file for file in Path(image_directory).glob('*')] images = [] for file in files: thumbnail_name = Path(thumbnail_directory, file.stem + '.jpg') image = Image.open(file) image.thumbnail(thumbnail_size) top_left = (0, 0) if image.width < thumbnail_size[0]: top_left = (math.floor(abs(image.width - thumbnail_size[0]) / 2), top_left[1]) if image.height < thumbnail_size[1]: top_left = (top_left[0], math.floor(abs(image.height - thumbnail_size[1]) / 2)) final_image = Image.new('RGB', thumbnail_size, (0, 0, 0)) final_image.paste(image, top_left) final_image.save(thumbnail_name, 'jpeg') if '_' in file.stem: description = file.stem.split('_', maxsplit=1)[1] else: description = file.stem images.append({ 'path': str(file), 'thumbnail': thumbnail_name, 'description': description, 'stem': file.stem }) def get_image_file_number(image): if re.match(r'^(\d+)', image['stem']) is not None: return int(re.split(r'^(\d+)', image['stem'])[1]) else: return 999 images = sorted(images, key=get_image_file_number) return images def write_html(file, images, page_title, thumbnail_size): file.write(f'''\ <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>{page_title}</title> <link rel="stylesheet" type="text/css" href="album.css"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> </head> <body> <h1>{page_title}</h1> <div id="album"> \ ''') # write thumbnails for image, idx in zip(images, range(1, len(images) + 1)): thumbnail_path = urllib.parse.quote(str(image['thumbnail']).replace('\\', '/')) file.write(f'''\ <p id="thumbnail-{idx}" class="thumbnail"><img src="{thumbnail_path}" alt="{image['description']}" width="{thumbnail_size[0]}" height="{thumbnail_size[1]}"></p>\ ''') file.write(f'''\ <div id="large-view"> <p id="instructions" class="image">Hover over an image</p> ''') # write images for image, idx in zip(images, range(1, len(images) + 1)): image_path = urllib.parse.quote(str(image['path']).replace('\\', '/')) file.write(f'''\ <p id="image-{idx}" class="image"><img src="{image_path}" alt="{image['description']}"><br>{image['description']}</p> ''') file.write(f'''\ </div> </div> </body> </html> ''') def write_css(file, images): file.write('''\ @media print { body { font-family: sans-serif; } .thumbnail { display: none; } #instructions { display: none; } .image img { max-width: 100%; margin-bottom: 1em; } } @media screen and (max-width: 768px), /* Tablets and smartphones */ screen and (hover: none) { body { background: #333; color: #eee; font-family: sans-serif; margin: 1em; padding: 0; } h1 { margin-top: 0; } .thumbnail { display: none; } #instructions { display: none; } .image:nth-child(2) img { margin-top: 0; } .image img { max-width: calc(100vw - 3em); } } @media screen and (min-width: 769px) and (hover: hover), /* IE10 and IE11 (they don't support (hover: hover) */ screen and (min-width: 769px) and (-ms-high-contrast: none), screen and (min-width: 769px) and (-ms-high-contrast: active) { body { background: #333; color: #eee; font-family: sans-serif; margin: 2em 60% 2em 4em; padding: 0; } .album { display: flex; flex-direction: row; flex-wrap: wrap; } .thumbnail { display: inline-block;; margin: 0 .5em .2em 0; } .image { background: #333; display: none; position: fixed; top: 2em; left: 40%; text-align: center; height: 90vh; width: calc(60% - 4em); } .image img { display: block; max-height: 92%; max-width: 100%; margin: 0 auto; } #instructions { display: block; top: 4em; } ''') if len(images) > 0: for idx in range(1, len(images) + 1): file.write(f'''\ #thumbnail-{idx}:hover ~ #large-view #image-{idx}\ ''') if idx < len(images): file.write('''\ , ''') file.write('''\ { display: block; } ''') file.write('''\ } ''') def main(): config = configparser.ConfigParser() config.read('./config') image_directory = config['settings']['image_directory'] output_css = config['settings']['output_css'] output_html = config['settings']['output_html'] page_title = config['settings']['page_title'] thumbnail_directory = config['settings']['thumbnail_directory'] thumbnail_width = int(config['settings']['thumbnail_width']) thumbnail_height = int(config['settings']['thumbnail_height']) thumbnail_size = (thumbnail_width, thumbnail_height) out_html = open(output_html, 'w') out_css = open(output_css, 'w') images = get_images(image_directory, thumbnail_directory, thumbnail_size) write_html(out_html, images, page_title, thumbnail_size) write_css(out_css, images) out_html.close() out_css.close() if __name__ == '__main__': main()
<filename>generate-album.py import configparser import math import re import urllib from pathlib import Path from PIL import Image def get_images(image_directory, thumbnail_directory, thumbnail_size): thumbnail_directory = Path(thumbnail_directory) for file in [file for file in thumbnail_directory.glob('*')]: file.unlink() thumbnail_directory.mkdir(mode=0o755, exist_ok=True) files = [file for file in Path(image_directory).glob('*')] images = [] for file in files: thumbnail_name = Path(thumbnail_directory, file.stem + '.jpg') image = Image.open(file) image.thumbnail(thumbnail_size) top_left = (0, 0) if image.width < thumbnail_size[0]: top_left = (math.floor(abs(image.width - thumbnail_size[0]) / 2), top_left[1]) if image.height < thumbnail_size[1]: top_left = (top_left[0], math.floor(abs(image.height - thumbnail_size[1]) / 2)) final_image = Image.new('RGB', thumbnail_size, (0, 0, 0)) final_image.paste(image, top_left) final_image.save(thumbnail_name, 'jpeg') if '_' in file.stem: description = file.stem.split('_', maxsplit=1)[1] else: description = file.stem images.append({ 'path': str(file), 'thumbnail': thumbnail_name, 'description': description, 'stem': file.stem }) def get_image_file_number(image): if re.match(r'^(\d+)', image['stem']) is not None: return int(re.split(r'^(\d+)', image['stem'])[1]) else: return 999 images = sorted(images, key=get_image_file_number) return images def write_html(file, images, page_title, thumbnail_size): file.write(f'''\ <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>{page_title}</title> <link rel="stylesheet" type="text/css" href="album.css"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> </head> <body> <h1>{page_title}</h1> <div id="album"> \ ''') # write thumbnails for image, idx in zip(images, range(1, len(images) + 1)): thumbnail_path = urllib.parse.quote(str(image['thumbnail']).replace('\\', '/')) file.write(f'''\ <p id="thumbnail-{idx}" class="thumbnail"><img src="{thumbnail_path}" alt="{image['description']}" width="{thumbnail_size[0]}" height="{thumbnail_size[1]}"></p>\ ''') file.write(f'''\ <div id="large-view"> <p id="instructions" class="image">Hover over an image</p> ''') # write images for image, idx in zip(images, range(1, len(images) + 1)): image_path = urllib.parse.quote(str(image['path']).replace('\\', '/')) file.write(f'''\ <p id="image-{idx}" class="image"><img src="{image_path}" alt="{image['description']}"><br>{image['description']}</p> ''') file.write(f'''\ </div> </div> </body> </html> ''') def write_css(file, images): file.write('''\ @media print { body { font-family: sans-serif; } .thumbnail { display: none; } #instructions { display: none; } .image img { max-width: 100%; margin-bottom: 1em; } } @media screen and (max-width: 768px), /* Tablets and smartphones */ screen and (hover: none) { body { background: #333; color: #eee; font-family: sans-serif; margin: 1em; padding: 0; } h1 { margin-top: 0; } .thumbnail { display: none; } #instructions { display: none; } .image:nth-child(2) img { margin-top: 0; } .image img { max-width: calc(100vw - 3em); } } @media screen and (min-width: 769px) and (hover: hover), /* IE10 and IE11 (they don't support (hover: hover) */ screen and (min-width: 769px) and (-ms-high-contrast: none), screen and (min-width: 769px) and (-ms-high-contrast: active) { body { background: #333; color: #eee; font-family: sans-serif; margin: 2em 60% 2em 4em; padding: 0; } .album { display: flex; flex-direction: row; flex-wrap: wrap; } .thumbnail { display: inline-block;; margin: 0 .5em .2em 0; } .image { background: #333; display: none; position: fixed; top: 2em; left: 40%; text-align: center; height: 90vh; width: calc(60% - 4em); } .image img { display: block; max-height: 92%; max-width: 100%; margin: 0 auto; } #instructions { display: block; top: 4em; } ''') if len(images) > 0: for idx in range(1, len(images) + 1): file.write(f'''\ #thumbnail-{idx}:hover ~ #large-view #image-{idx}\ ''') if idx < len(images): file.write('''\ , ''') file.write('''\ { display: block; } ''') file.write('''\ } ''') def main(): config = configparser.ConfigParser() config.read('./config') image_directory = config['settings']['image_directory'] output_css = config['settings']['output_css'] output_html = config['settings']['output_html'] page_title = config['settings']['page_title'] thumbnail_directory = config['settings']['thumbnail_directory'] thumbnail_width = int(config['settings']['thumbnail_width']) thumbnail_height = int(config['settings']['thumbnail_height']) thumbnail_size = (thumbnail_width, thumbnail_height) out_html = open(output_html, 'w') out_css = open(output_css, 'w') images = get_images(image_directory, thumbnail_directory, thumbnail_size) write_html(out_html, images, page_title, thumbnail_size) write_css(out_css, images) out_html.close() out_css.close() if __name__ == '__main__': main()
en
0.223412
\ <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>{page_title}</title> <link rel="stylesheet" type="text/css" href="album.css"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> </head> <body> <h1>{page_title}</h1> <div id="album"> \ # write thumbnails \ <p id="thumbnail-{idx}" class="thumbnail"><img src="{thumbnail_path}" alt="{image['description']}" width="{thumbnail_size[0]}" height="{thumbnail_size[1]}"></p>\ \ <div id="large-view"> <p id="instructions" class="image">Hover over an image</p> # write images \ <p id="image-{idx}" class="image"><img src="{image_path}" alt="{image['description']}"><br>{image['description']}</p> \ </div> </div> </body> </html> \ @media print { body { font-family: sans-serif; } .thumbnail { display: none; } #instructions { display: none; } .image img { max-width: 100%; margin-bottom: 1em; } } @media screen and (max-width: 768px), /* Tablets and smartphones */ screen and (hover: none) { body { background: #333; color: #eee; font-family: sans-serif; margin: 1em; padding: 0; } h1 { margin-top: 0; } .thumbnail { display: none; } #instructions { display: none; } .image:nth-child(2) img { margin-top: 0; } .image img { max-width: calc(100vw - 3em); } } @media screen and (min-width: 769px) and (hover: hover), /* IE10 and IE11 (they don't support (hover: hover) */ screen and (min-width: 769px) and (-ms-high-contrast: none), screen and (min-width: 769px) and (-ms-high-contrast: active) { body { background: #333; color: #eee; font-family: sans-serif; margin: 2em 60% 2em 4em; padding: 0; } .album { display: flex; flex-direction: row; flex-wrap: wrap; } .thumbnail { display: inline-block;; margin: 0 .5em .2em 0; } .image { background: #333; display: none; position: fixed; top: 2em; left: 40%; text-align: center; height: 90vh; width: calc(60% - 4em); } .image img { display: block; max-height: 92%; max-width: 100%; margin: 0 auto; } #instructions { display: block; top: 4em; } \ #thumbnail-{idx}:hover ~ #large-view #image-{idx}\ \ , \ { display: block; } \ }
3.07302
3
tests/test_sne_truth.py
LSSTDESC/sims_TruthCatalog
2
9094
""" Unit tests for SNIa truth catalog code. """ import os import unittest import sqlite3 import numpy as np import pandas as pd from desc.sims_truthcatalog import SNeTruthWriter, SNSynthPhotFactory class SNSynthPhotFactoryTestCase(unittest.TestCase): """ Test case class for SNIa synthetic photometry factory class. """ def test_SNSythPhotFactory(self): """ Test some flux calculations using the underlying SNObject and SyntheticPhotometry classes. """ sp_factory = SNSynthPhotFactory(z=0.6322702169418335, t0=61719.9950436545, x0=4.2832710977804034e-06, x1=-1.207738485943195, c=-0.0069750402968899936, snra=55.26407314527358, sndec=-40.81575605788344) mjds = (61689.150791, 61697.354470, 61712.258685) bands = ('z', 'i', 'r') fluxes = (2.6401569864737633, 71.18561504923377, 1048.0327802379868) for mjd, band, flux in zip(mjds, bands, fluxes): sp = sp_factory.create(mjd) self.assertAlmostEqual(sp.calcFlux(band), flux) class SNeTruthWriterTestCase(unittest.TestCase): """ Test case class for SNIa truth catalog generation class. """ def setUp(self): self.outfile = 'test_sne_truth_cat.db' self.data_dir = os.path.join(os.environ['SIMS_TRUTHCATALOG_DIR'], 'data') sn_db_file = os.path.join(self.data_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF_small.db') self.sne_truth_writer = SNeTruthWriter(self.outfile, sn_db_file) def tearDown(self): if os.path.isfile(self.outfile): os.remove(self.outfile) def test_truth_summary(self): """Test that the truth_summary columns are filled out as expected.""" self.sne_truth_writer.write() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from truth_summary', conn) zeros = np.zeros(len(df)) ones = np.ones(len(df)) np.testing.assert_equal(df['is_variable'], ones) np.testing.assert_equal(df['is_pointsource'], ones) for band in 'ugrizy': flux_col = f'flux_{band}' np.testing.assert_equal(df[flux_col], zeros) flux_col += '_noMW' np.testing.assert_equal(df[flux_col], zeros) def test_auxiliary_truth(self): """ Test that the columns from the sne_params table are transcribed correctly. """ self.sne_truth_writer.write_auxiliary_truth() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_auxiliary_info', conn) np.testing.assert_equal(self.sne_truth_writer.sne_df['snid_in'], df['id'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['galaxy_id'], df['host_galaxy'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['snra_in'], df['ra'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['t0_in'], df['t0'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['z_in'], df['redshift'].to_numpy()) def test_variability_truth(self): """ Test some expected values for a SNIa in the test SNe catalog using a small opsim db table. """ opsim_db_file = os.path.join(self.data_dir, 'minion_1016_desc_dithered_v4_small.db') self.sne_truth_writer.write_variability_truth(opsim_db_file, max_rows=60) with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_variability_truth', conn) my_object = 'MS_10195_1375' self.assertIn(my_object, df['id'].to_list()) my_df = df.query(f'id == "{my_object}"') for visit in (1425850, 1433860, 1495410): self.assertIn(visit, my_df['obsHistID'].to_list()) if __name__ == '__main__': unittest.main()
""" Unit tests for SNIa truth catalog code. """ import os import unittest import sqlite3 import numpy as np import pandas as pd from desc.sims_truthcatalog import SNeTruthWriter, SNSynthPhotFactory class SNSynthPhotFactoryTestCase(unittest.TestCase): """ Test case class for SNIa synthetic photometry factory class. """ def test_SNSythPhotFactory(self): """ Test some flux calculations using the underlying SNObject and SyntheticPhotometry classes. """ sp_factory = SNSynthPhotFactory(z=0.6322702169418335, t0=61719.9950436545, x0=4.2832710977804034e-06, x1=-1.207738485943195, c=-0.0069750402968899936, snra=55.26407314527358, sndec=-40.81575605788344) mjds = (61689.150791, 61697.354470, 61712.258685) bands = ('z', 'i', 'r') fluxes = (2.6401569864737633, 71.18561504923377, 1048.0327802379868) for mjd, band, flux in zip(mjds, bands, fluxes): sp = sp_factory.create(mjd) self.assertAlmostEqual(sp.calcFlux(band), flux) class SNeTruthWriterTestCase(unittest.TestCase): """ Test case class for SNIa truth catalog generation class. """ def setUp(self): self.outfile = 'test_sne_truth_cat.db' self.data_dir = os.path.join(os.environ['SIMS_TRUTHCATALOG_DIR'], 'data') sn_db_file = os.path.join(self.data_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF_small.db') self.sne_truth_writer = SNeTruthWriter(self.outfile, sn_db_file) def tearDown(self): if os.path.isfile(self.outfile): os.remove(self.outfile) def test_truth_summary(self): """Test that the truth_summary columns are filled out as expected.""" self.sne_truth_writer.write() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from truth_summary', conn) zeros = np.zeros(len(df)) ones = np.ones(len(df)) np.testing.assert_equal(df['is_variable'], ones) np.testing.assert_equal(df['is_pointsource'], ones) for band in 'ugrizy': flux_col = f'flux_{band}' np.testing.assert_equal(df[flux_col], zeros) flux_col += '_noMW' np.testing.assert_equal(df[flux_col], zeros) def test_auxiliary_truth(self): """ Test that the columns from the sne_params table are transcribed correctly. """ self.sne_truth_writer.write_auxiliary_truth() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_auxiliary_info', conn) np.testing.assert_equal(self.sne_truth_writer.sne_df['snid_in'], df['id'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['galaxy_id'], df['host_galaxy'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['snra_in'], df['ra'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['t0_in'], df['t0'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['z_in'], df['redshift'].to_numpy()) def test_variability_truth(self): """ Test some expected values for a SNIa in the test SNe catalog using a small opsim db table. """ opsim_db_file = os.path.join(self.data_dir, 'minion_1016_desc_dithered_v4_small.db') self.sne_truth_writer.write_variability_truth(opsim_db_file, max_rows=60) with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_variability_truth', conn) my_object = 'MS_10195_1375' self.assertIn(my_object, df['id'].to_list()) my_df = df.query(f'id == "{my_object}"') for visit in (1425850, 1433860, 1495410): self.assertIn(visit, my_df['obsHistID'].to_list()) if __name__ == '__main__': unittest.main()
en
0.762134
Unit tests for SNIa truth catalog code. Test case class for SNIa synthetic photometry factory class. Test some flux calculations using the underlying SNObject and SyntheticPhotometry classes. Test case class for SNIa truth catalog generation class. Test that the truth_summary columns are filled out as expected. Test that the columns from the sne_params table are transcribed correctly. Test some expected values for a SNIa in the test SNe catalog using a small opsim db table.
2.369221
2
testsite/management/commands/load_test_transactions.py
gikoluo/djaodjin-saas
0
9095
# Copyright (c) 2018, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime, logging, random from django.conf import settings from django.core.management.base import BaseCommand from django.db.utils import IntegrityError from django.template.defaultfilters import slugify from django.utils.timezone import utc from saas.backends.razorpay_processor import RazorpayBackend from saas.models import Plan, Transaction, get_broker from saas.utils import datetime_or_now from saas.settings import PROCESSOR_ID LOGGER = logging.getLogger(__name__) class Command(BaseCommand): """ Load the database with random transactions (testing purposes). """ USE_OF_SERVICE = 0 PAY_BALANCE = 1 REDEEM = 2 REFUND = 3 CHARGEBACK = 4 WRITEOFF = 5 FIRST_NAMES = ( 'Anthony', 'Alexander', 'Alexis', 'Alicia', 'Ashley', 'Benjamin', 'Bruce', 'Chloe', 'Christopher', 'Daniel', 'David', 'Edward', 'Emily', 'Emma', 'Ethan', 'Grace', 'Isabella', 'Jacob', 'James', 'Jayden', 'Jennifer', 'John', 'Julia', 'Lily', 'Lucie', 'Luis', 'Matthew', 'Michael', 'Olivia', 'Ryan', 'Samantha', 'Samuel', 'Scott', 'Sophia', 'Williom', ) LAST_NAMES = ( 'Smith', 'Johnson', 'Williams', 'Jones', 'Brown', 'Davis', 'Miller', 'Wilson', 'Moore', 'Taylor', 'Anderson', 'Thomas', 'Jackson', 'White', 'Harris', 'Martin', 'Thompson', 'Garcia', 'Martinez', 'Robinson', 'Clark', 'Rogriguez', 'Lewis', 'Lee', 'Walker', 'Hall', 'Allen', 'Young', 'Hernandez', 'King', 'Wright', 'Lopez', 'Hill', 'Green', 'Baker', 'Gonzalez', 'Nelson', 'Mitchell', 'Perez', 'Roberts', 'Turner', 'Philips', 'Campbell', 'Parker', 'Collins', 'Stewart', 'Sanchez', 'Morris', 'Rogers', 'Reed', 'Cook', 'Bell', 'Cooper', 'Richardson', 'Cox', 'Ward', 'Peterson', ) def add_arguments(self, parser): parser.add_argument('--provider', action='store', dest='provider', default=settings.SAAS['BROKER']['GET_INSTANCE'], help='create sample subscribers on this provider') def handle(self, *args, **options): #pylint: disable=too-many-locals,too-many-statements from saas.managers.metrics import month_periods # avoid import loop from saas.models import (Charge, ChargeItem, Organization, Plan, Subscription) RazorpayBackend.bypass_api = True now = datetime.datetime.utcnow().replace(tzinfo=utc) from_date = now from_date = datetime.datetime( year=from_date.year, month=from_date.month, day=1) if args: from_date = datetime.datetime.strptime( args[0], '%Y-%m-%d') # Create a set of 3 plans broker = get_broker() Plan.objects.get_or_create( slug='basic', defaults={ 'title': "Basic", 'description': "Basic Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 1000, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='medium', defaults={ 'title': "Medium", 'description': "Medium Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='premium', defaults={ 'title': "Premium", 'description': "Premium Plan", 'period_amount': 18900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 81, 'organization': broker, 'is_active': True }) # Create Income transactions that represents a growing bussiness. provider = Organization.objects.get(slug=options['provider']) processor = Organization.objects.get(pk=PROCESSOR_ID) for end_period in month_periods(from_date=from_date): nb_new_customers = random.randint(0, 9) for _ in range(nb_new_customers): queryset = Plan.objects.filter( organization=provider, period_amount__gt=0) plan = queryset[random.randint(0, queryset.count() - 1)] created = False trials = 0 while not created: try: first_name = self.FIRST_NAMES[random.randint( 0, len(self.FIRST_NAMES)-1)] last_name = self.LAST_NAMES[random.randint( 0, len(self.LAST_NAMES)-1)] full_name = '%s %s' % (first_name, last_name) slug = slugify('demo%d' % random.randint(1, 1000)) customer, created = Organization.objects.get_or_create( slug=slug, full_name=full_name) #pylint: disable=catching-non-exception except IntegrityError: trials = trials + 1 if trials > 10: raise RuntimeError( 'impossible to create a new customer after 10 trials.') Organization.objects.filter(pk=customer.id).update( created_at=end_period) subscription = Subscription.objects.create( organization=customer, plan=plan, ends_at=now + datetime.timedelta(days=31)) Subscription.objects.filter( pk=subscription.id).update(created_at=end_period) # Insert some churn in % churn_rate = 2 all_subscriptions = Subscription.objects.filter( plan__organization=provider) nb_churn_customers = (all_subscriptions.count() * churn_rate // 100) subscriptions = random.sample(list(all_subscriptions), all_subscriptions.count() - nb_churn_customers) for subscription in subscriptions: nb_periods = random.randint(1, 6) transaction_item = Transaction.objects.new_subscription_order( subscription, nb_natural_periods=nb_periods, created_at=end_period) if transaction_item.dest_amount < 50: continue transaction_item.orig_amount = transaction_item.dest_amount transaction_item.orig_unit = transaction_item.dest_unit transaction_item.save() charge = Charge.objects.create( created_at=transaction_item.created_at, amount=transaction_item.dest_amount, customer=subscription.organization, description='Charge for %d periods' % nb_periods, last4=1241, exp_date=datetime_or_now(), processor=processor, processor_key=str(transaction_item.pk), # XXX We can't do that yet because of # ``PROCESSOR_BACKEND.charge_distribution(self)`` # unit=transaction_item.dest_unit, state=Charge.CREATED) charge.created_at = transaction_item.created_at charge.save() ChargeItem.objects.create( invoiced=transaction_item, charge=charge) charge.payment_successful() churned = all_subscriptions.exclude( pk__in=[subscription.pk for subscription in subscriptions]) for subscription in churned: subscription.ends_at = end_period subscription.save() self.stdout.write("%d new and %d churned customers at %s" % ( nb_new_customers, nb_churn_customers, end_period))
# Copyright (c) 2018, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime, logging, random from django.conf import settings from django.core.management.base import BaseCommand from django.db.utils import IntegrityError from django.template.defaultfilters import slugify from django.utils.timezone import utc from saas.backends.razorpay_processor import RazorpayBackend from saas.models import Plan, Transaction, get_broker from saas.utils import datetime_or_now from saas.settings import PROCESSOR_ID LOGGER = logging.getLogger(__name__) class Command(BaseCommand): """ Load the database with random transactions (testing purposes). """ USE_OF_SERVICE = 0 PAY_BALANCE = 1 REDEEM = 2 REFUND = 3 CHARGEBACK = 4 WRITEOFF = 5 FIRST_NAMES = ( 'Anthony', 'Alexander', 'Alexis', 'Alicia', 'Ashley', 'Benjamin', 'Bruce', 'Chloe', 'Christopher', 'Daniel', 'David', 'Edward', 'Emily', 'Emma', 'Ethan', 'Grace', 'Isabella', 'Jacob', 'James', 'Jayden', 'Jennifer', 'John', 'Julia', 'Lily', 'Lucie', 'Luis', 'Matthew', 'Michael', 'Olivia', 'Ryan', 'Samantha', 'Samuel', 'Scott', 'Sophia', 'Williom', ) LAST_NAMES = ( 'Smith', 'Johnson', 'Williams', 'Jones', 'Brown', 'Davis', 'Miller', 'Wilson', 'Moore', 'Taylor', 'Anderson', 'Thomas', 'Jackson', 'White', 'Harris', 'Martin', 'Thompson', 'Garcia', 'Martinez', 'Robinson', 'Clark', 'Rogriguez', 'Lewis', 'Lee', 'Walker', 'Hall', 'Allen', 'Young', 'Hernandez', 'King', 'Wright', 'Lopez', 'Hill', 'Green', 'Baker', 'Gonzalez', 'Nelson', 'Mitchell', 'Perez', 'Roberts', 'Turner', 'Philips', 'Campbell', 'Parker', 'Collins', 'Stewart', 'Sanchez', 'Morris', 'Rogers', 'Reed', 'Cook', 'Bell', 'Cooper', 'Richardson', 'Cox', 'Ward', 'Peterson', ) def add_arguments(self, parser): parser.add_argument('--provider', action='store', dest='provider', default=settings.SAAS['BROKER']['GET_INSTANCE'], help='create sample subscribers on this provider') def handle(self, *args, **options): #pylint: disable=too-many-locals,too-many-statements from saas.managers.metrics import month_periods # avoid import loop from saas.models import (Charge, ChargeItem, Organization, Plan, Subscription) RazorpayBackend.bypass_api = True now = datetime.datetime.utcnow().replace(tzinfo=utc) from_date = now from_date = datetime.datetime( year=from_date.year, month=from_date.month, day=1) if args: from_date = datetime.datetime.strptime( args[0], '%Y-%m-%d') # Create a set of 3 plans broker = get_broker() Plan.objects.get_or_create( slug='basic', defaults={ 'title': "Basic", 'description': "Basic Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 1000, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='medium', defaults={ 'title': "Medium", 'description': "Medium Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='premium', defaults={ 'title': "Premium", 'description': "Premium Plan", 'period_amount': 18900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 81, 'organization': broker, 'is_active': True }) # Create Income transactions that represents a growing bussiness. provider = Organization.objects.get(slug=options['provider']) processor = Organization.objects.get(pk=PROCESSOR_ID) for end_period in month_periods(from_date=from_date): nb_new_customers = random.randint(0, 9) for _ in range(nb_new_customers): queryset = Plan.objects.filter( organization=provider, period_amount__gt=0) plan = queryset[random.randint(0, queryset.count() - 1)] created = False trials = 0 while not created: try: first_name = self.FIRST_NAMES[random.randint( 0, len(self.FIRST_NAMES)-1)] last_name = self.LAST_NAMES[random.randint( 0, len(self.LAST_NAMES)-1)] full_name = '%s %s' % (first_name, last_name) slug = slugify('demo%d' % random.randint(1, 1000)) customer, created = Organization.objects.get_or_create( slug=slug, full_name=full_name) #pylint: disable=catching-non-exception except IntegrityError: trials = trials + 1 if trials > 10: raise RuntimeError( 'impossible to create a new customer after 10 trials.') Organization.objects.filter(pk=customer.id).update( created_at=end_period) subscription = Subscription.objects.create( organization=customer, plan=plan, ends_at=now + datetime.timedelta(days=31)) Subscription.objects.filter( pk=subscription.id).update(created_at=end_period) # Insert some churn in % churn_rate = 2 all_subscriptions = Subscription.objects.filter( plan__organization=provider) nb_churn_customers = (all_subscriptions.count() * churn_rate // 100) subscriptions = random.sample(list(all_subscriptions), all_subscriptions.count() - nb_churn_customers) for subscription in subscriptions: nb_periods = random.randint(1, 6) transaction_item = Transaction.objects.new_subscription_order( subscription, nb_natural_periods=nb_periods, created_at=end_period) if transaction_item.dest_amount < 50: continue transaction_item.orig_amount = transaction_item.dest_amount transaction_item.orig_unit = transaction_item.dest_unit transaction_item.save() charge = Charge.objects.create( created_at=transaction_item.created_at, amount=transaction_item.dest_amount, customer=subscription.organization, description='Charge for %d periods' % nb_periods, last4=1241, exp_date=datetime_or_now(), processor=processor, processor_key=str(transaction_item.pk), # XXX We can't do that yet because of # ``PROCESSOR_BACKEND.charge_distribution(self)`` # unit=transaction_item.dest_unit, state=Charge.CREATED) charge.created_at = transaction_item.created_at charge.save() ChargeItem.objects.create( invoiced=transaction_item, charge=charge) charge.payment_successful() churned = all_subscriptions.exclude( pk__in=[subscription.pk for subscription in subscriptions]) for subscription in churned: subscription.ends_at = end_period subscription.save() self.stdout.write("%d new and %d churned customers at %s" % ( nb_new_customers, nb_churn_customers, end_period))
en
0.70082
# Copyright (c) 2018, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Load the database with random transactions (testing purposes). #pylint: disable=too-many-locals,too-many-statements # avoid import loop # Create a set of 3 plans # Create Income transactions that represents a growing bussiness. #pylint: disable=catching-non-exception # Insert some churn in % # XXX We can't do that yet because of # ``PROCESSOR_BACKEND.charge_distribution(self)`` # unit=transaction_item.dest_unit,
1.5163
2
seq2seq_pt/s2s/xutils.py
magic282/SEASS
36
9096
<reponame>magic282/SEASS<gh_stars>10-100 import sys import struct def save_sf_model(model): name_dicts = {'encoder.word_lut.weight': 'SrcWordEmbed_Embed_W', 'encoder.forward_gru.linear_input.weight': 'EncGRUL2R_GRU_W', 'encoder.forward_gru.linear_input.bias': 'EncGRUL2R_GRU_B', 'encoder.forward_gru.linear_hidden.weight': 'EncGRUL2R_GRU_U', 'encoder.backward_gru.linear_input.weight': 'EncGRUR2L_GRU_W', 'encoder.backward_gru.linear_input.bias': 'EncGRUR2L_GRU_B', 'encoder.backward_gru.linear_hidden.weight': 'EncGRUR2L_GRU_U', 'decoder.word_lut.weight': 'TrgWordEmbed_Embed_W', 'decoder.rnn.layers.0.linear_input.weight': 'DecGRU_GRU_W', 'decoder.rnn.layers.0.linear_input.bias': 'DecGRU_GRU_B', 'decoder.rnn.layers.0.linear_hidden.weight': 'DecGRU_GRU_U', 'decoder.attn.linear_pre.weight': 'Alignment_ConcatAtt_W', 'decoder.attn.linear_pre.bias': 'Alignment_ConcatAtt_B', 'decoder.attn.linear_q.weight': 'Alignment_ConcatAtt_U', 'decoder.attn.linear_v.weight': 'Alignment_ConcatAtt_v', 'decoder.readout.weight': 'Readout_Linear_W', 'decoder.readout.bias': 'Readout_Linear_b', 'decIniter.initer.weight': 'DecInitial_Linear_W', 'decIniter.initer.bias': 'DecInitial_Linear_b', 'generator.0.weight': 'Scoring_Linear_W', 'generator.0.bias': 'Scoring_Linear_b', } nParams = sum([p.nelement() for p in model.parameters()]) # logger.info('* number of parameters: %d' % nParams) b_count = 0 of = open('model', 'wb') for name, param in model.named_parameters(): # logger.info('[{0}] [{1}] [{2}]'.format(name, param.size(), param.nelement())) SF_name = name_dicts[name] # print(SF_name) byte_name = bytes(SF_name, 'utf-16-le') name_size = len(byte_name) byte_name_size = name_size.to_bytes(4, sys.byteorder) of.write(byte_name_size) of.write(byte_name) b_count += len(byte_name_size) b_count += len(byte_name) d = param.data.cpu() if param.dim() == 1: d = d.unsqueeze(0) elif not SF_name.endswith('Embed_W'): d = d.transpose(0, 1).contiguous() for dim in d.size(): dim_byte = dim.to_bytes(4, sys.byteorder) of.write(dim_byte) b_count += len(dim_byte) datas = d.view(-1).numpy().tolist() float_array = struct.pack('f' * len(datas), *datas) b_count += len(float_array) of.write(float_array) of.close() # print('Total write {0} bytes'.format(b_count))
import sys import struct def save_sf_model(model): name_dicts = {'encoder.word_lut.weight': 'SrcWordEmbed_Embed_W', 'encoder.forward_gru.linear_input.weight': 'EncGRUL2R_GRU_W', 'encoder.forward_gru.linear_input.bias': 'EncGRUL2R_GRU_B', 'encoder.forward_gru.linear_hidden.weight': 'EncGRUL2R_GRU_U', 'encoder.backward_gru.linear_input.weight': 'EncGRUR2L_GRU_W', 'encoder.backward_gru.linear_input.bias': 'EncGRUR2L_GRU_B', 'encoder.backward_gru.linear_hidden.weight': 'EncGRUR2L_GRU_U', 'decoder.word_lut.weight': 'TrgWordEmbed_Embed_W', 'decoder.rnn.layers.0.linear_input.weight': 'DecGRU_GRU_W', 'decoder.rnn.layers.0.linear_input.bias': 'DecGRU_GRU_B', 'decoder.rnn.layers.0.linear_hidden.weight': 'DecGRU_GRU_U', 'decoder.attn.linear_pre.weight': 'Alignment_ConcatAtt_W', 'decoder.attn.linear_pre.bias': 'Alignment_ConcatAtt_B', 'decoder.attn.linear_q.weight': 'Alignment_ConcatAtt_U', 'decoder.attn.linear_v.weight': 'Alignment_ConcatAtt_v', 'decoder.readout.weight': 'Readout_Linear_W', 'decoder.readout.bias': 'Readout_Linear_b', 'decIniter.initer.weight': 'DecInitial_Linear_W', 'decIniter.initer.bias': 'DecInitial_Linear_b', 'generator.0.weight': 'Scoring_Linear_W', 'generator.0.bias': 'Scoring_Linear_b', } nParams = sum([p.nelement() for p in model.parameters()]) # logger.info('* number of parameters: %d' % nParams) b_count = 0 of = open('model', 'wb') for name, param in model.named_parameters(): # logger.info('[{0}] [{1}] [{2}]'.format(name, param.size(), param.nelement())) SF_name = name_dicts[name] # print(SF_name) byte_name = bytes(SF_name, 'utf-16-le') name_size = len(byte_name) byte_name_size = name_size.to_bytes(4, sys.byteorder) of.write(byte_name_size) of.write(byte_name) b_count += len(byte_name_size) b_count += len(byte_name) d = param.data.cpu() if param.dim() == 1: d = d.unsqueeze(0) elif not SF_name.endswith('Embed_W'): d = d.transpose(0, 1).contiguous() for dim in d.size(): dim_byte = dim.to_bytes(4, sys.byteorder) of.write(dim_byte) b_count += len(dim_byte) datas = d.view(-1).numpy().tolist() float_array = struct.pack('f' * len(datas), *datas) b_count += len(float_array) of.write(float_array) of.close() # print('Total write {0} bytes'.format(b_count))
en
0.166999
# logger.info('* number of parameters: %d' % nParams) # logger.info('[{0}] [{1}] [{2}]'.format(name, param.size(), param.nelement())) # print(SF_name) # print('Total write {0} bytes'.format(b_count))
1.909983
2
pml-services/pml_storage.py
Novartis/Project-Mona-Lisa
3
9097
<reponame>Novartis/Project-Mona-Lisa # Copyright 2017 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. from __future__ import print_function import boto3 from boto3.dynamodb.conditions import Key from random import randint import os import base64 class PMLStorage: """ Project Mona Lisa Storage class. """ def __init__(self, storage_name): self.storage_name = storage_name def get_bucket(self): """ Returns: (obj): The boto3 AWS S3 bucket object. """ s3 = boto3.resource('s3', region_name='TODO') return s3.Bucket(self.storage_name) def get_item_from_storage(self, item_key): """ Get method for a image data in ML-PRJ image storage. Args: bucket_name (str): name for the storage. item_key (str): key or filename for the item in storage. Returns: item (obj) """ # get the image data in the S3 bucket img_obj = self.get_bucket().Object(item_key) return str(img_obj.get()['Body'].read()) def post_item_in_storage(self, key, body, type='png'): """ Posting collected image data in storage. Args: key (str): The unique key. body (obj): the bulk data to be stored. type (str): file suffix. The default is 'png'. Returns: bool: True if successful, otherwise, an error will be thrown. """ self.get_bucket().put_object( Key=key+str('.')+type, Body=body, ServerSideEncryption='AES256', ContentType='img/'+type, ) return True def download_imgs(self, load_fns, save_dir): """ Downloads all files in <load_fns> from storage to the directory <save_dir>. Args: load_fns (list(str)): A list of strings of the filenames of the files to be downloaded. save_dir (str): A string of the source directory to save the files. Formatted as: /full/path/to/dir ... without a '/' character at the end of the <save_dir>. Returns: bool: True if successful, otherwise, an error will be thrown. """ print('downloading images from s3 . . .') bucket = self.get_bucket() pre_existing_fns = os.listdir(save_dir) count = 0 for filename in load_fns: count += 1 print(count) if filename in pre_existing_fns: continue bucket.download_file(filename, save_dir + '/' + filename) return True def get_all_filenames(self): """ Gets all filenames in storage. Returns: list(str): A list of all of the filenames in the bucket, as a list of strings. """ iterobjs = self.get_bucket().objects.all() filenames = [obj.key for obj in iterobjs] return filenames def remove_items(self, filenames): """ Removes, from storage, all files from <filenames>. Args: filenames list(str): List of filenames, where each filename is a string, of the filename contained in the bucket. Returns: bool: True if successful, otherwise an error is thrown. """ bucket = self.get_bucket() fn_objects = [{'Key': fn} for fn in filenames] bucket.delete_objects( Delete={ 'Objects': fn_objects } ) return True
# Copyright 2017 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. from __future__ import print_function import boto3 from boto3.dynamodb.conditions import Key from random import randint import os import base64 class PMLStorage: """ Project Mona Lisa Storage class. """ def __init__(self, storage_name): self.storage_name = storage_name def get_bucket(self): """ Returns: (obj): The boto3 AWS S3 bucket object. """ s3 = boto3.resource('s3', region_name='TODO') return s3.Bucket(self.storage_name) def get_item_from_storage(self, item_key): """ Get method for a image data in ML-PRJ image storage. Args: bucket_name (str): name for the storage. item_key (str): key or filename for the item in storage. Returns: item (obj) """ # get the image data in the S3 bucket img_obj = self.get_bucket().Object(item_key) return str(img_obj.get()['Body'].read()) def post_item_in_storage(self, key, body, type='png'): """ Posting collected image data in storage. Args: key (str): The unique key. body (obj): the bulk data to be stored. type (str): file suffix. The default is 'png'. Returns: bool: True if successful, otherwise, an error will be thrown. """ self.get_bucket().put_object( Key=key+str('.')+type, Body=body, ServerSideEncryption='AES256', ContentType='img/'+type, ) return True def download_imgs(self, load_fns, save_dir): """ Downloads all files in <load_fns> from storage to the directory <save_dir>. Args: load_fns (list(str)): A list of strings of the filenames of the files to be downloaded. save_dir (str): A string of the source directory to save the files. Formatted as: /full/path/to/dir ... without a '/' character at the end of the <save_dir>. Returns: bool: True if successful, otherwise, an error will be thrown. """ print('downloading images from s3 . . .') bucket = self.get_bucket() pre_existing_fns = os.listdir(save_dir) count = 0 for filename in load_fns: count += 1 print(count) if filename in pre_existing_fns: continue bucket.download_file(filename, save_dir + '/' + filename) return True def get_all_filenames(self): """ Gets all filenames in storage. Returns: list(str): A list of all of the filenames in the bucket, as a list of strings. """ iterobjs = self.get_bucket().objects.all() filenames = [obj.key for obj in iterobjs] return filenames def remove_items(self, filenames): """ Removes, from storage, all files from <filenames>. Args: filenames list(str): List of filenames, where each filename is a string, of the filename contained in the bucket. Returns: bool: True if successful, otherwise an error is thrown. """ bucket = self.get_bucket() fn_objects = [{'Key': fn} for fn in filenames] bucket.delete_objects( Delete={ 'Objects': fn_objects } ) return True
en
0.760313
# Copyright 2017 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Project Mona Lisa Storage class. Returns: (obj): The boto3 AWS S3 bucket object. Get method for a image data in ML-PRJ image storage. Args: bucket_name (str): name for the storage. item_key (str): key or filename for the item in storage. Returns: item (obj) # get the image data in the S3 bucket Posting collected image data in storage. Args: key (str): The unique key. body (obj): the bulk data to be stored. type (str): file suffix. The default is 'png'. Returns: bool: True if successful, otherwise, an error will be thrown. Downloads all files in <load_fns> from storage to the directory <save_dir>. Args: load_fns (list(str)): A list of strings of the filenames of the files to be downloaded. save_dir (str): A string of the source directory to save the files. Formatted as: /full/path/to/dir ... without a '/' character at the end of the <save_dir>. Returns: bool: True if successful, otherwise, an error will be thrown. Gets all filenames in storage. Returns: list(str): A list of all of the filenames in the bucket, as a list of strings. Removes, from storage, all files from <filenames>. Args: filenames list(str): List of filenames, where each filename is a string, of the filename contained in the bucket. Returns: bool: True if successful, otherwise an error is thrown.
2.057537
2
binan.py
Nightleaf0512/PythonCryptoCurriencyPriceChecker
0
9098
<gh_stars>0 from binance.client import Client import PySimpleGUI as sg api_key = "your_binance_apikey" secret_key = "your_binance_secretkey" client = Client(api_key=api_key, api_secret=secret_key) # price def get_price(coin): return round(float(client.get_symbol_ticker(symbol=f"{coin}USDT")['price']), 5) def column_layout_price(coin): col =[[sg.Text(f"{get_price(coin)}", font=("Arial", 9, 'bold'), size=(10,1), pad=(15,10), key=coin)]] return col # 24h percentchange def price_change_24h(coin): return round(float(client.get_ticker(symbol=f"{coin}USDT")["priceChangePercent"]), 2) def column_layout_change(coin): if price_change_24h(coin) == 0: return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="black", key=f"{coin}change")]] elif price_change_24h(coin) > 0: return [[sg.Text(f"+{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="green", key=f"{coin}change")]] return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="red", key=f"{coin}change")]] def update_24h_change(coin): if price_change_24h(coin) == 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="black") elif price_change_24h(coin) > 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="green") elif price_change_24h(coin) < 0: window[f"{coin}change"].update(f"{price_change_24h(coin)}%", text_color="red") # GUI sg.theme('DefaultNoMoreNagging') # Tabs def tabs(coin): tab_layout = [[sg.Image("{}.png".format(coin), size=(50,50)), sg.Text("Price", font=("Arial", 10, 'bold'), size=(7,1), pad=(40,40)), sg.Text("24h change", font=("Arial", 10, 'bold'), size=(10,1), pad=(10,40))], [sg.Text(f"{coin}/USDT", font=("Arial", 9, 'bold')), sg.Column(column_layout_price(coin)), sg.Column(column_layout_change(coin))]] return tab_layout # Layout layout = [[sg.Text("Crypto Currencies", font=("Arial", 10, 'bold'))], [sg.TabGroup([[sg.Tab("BTC", tabs("BTC"), border_width="18"), sg.Tab("XRP", tabs("XRP"), border_width="18"), sg.Tab("DOGE", tabs("DOGE"), border_width="18")]])]] window = sg.Window("NightLeaf Crypto", layout) def coin_window(*coins): for coin in coins: globals()[f"{coin}_last_price"] = 1 while True: event,values = window.read(timeout=600) if event == sg.WIN_CLOSED: break for coin in coins: update_24h_change(coin) price = get_price(coin) if price != globals()[f"{coin}_last_price"]: if price > globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠕", text_color="green") elif price < globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠗", text_color="red") globals()[f"{coin}_last_price"] = price a_list =["BTC", "XRP", "DOGE"] coin_window(*a_list)
from binance.client import Client import PySimpleGUI as sg api_key = "your_binance_apikey" secret_key = "your_binance_secretkey" client = Client(api_key=api_key, api_secret=secret_key) # price def get_price(coin): return round(float(client.get_symbol_ticker(symbol=f"{coin}USDT")['price']), 5) def column_layout_price(coin): col =[[sg.Text(f"{get_price(coin)}", font=("Arial", 9, 'bold'), size=(10,1), pad=(15,10), key=coin)]] return col # 24h percentchange def price_change_24h(coin): return round(float(client.get_ticker(symbol=f"{coin}USDT")["priceChangePercent"]), 2) def column_layout_change(coin): if price_change_24h(coin) == 0: return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="black", key=f"{coin}change")]] elif price_change_24h(coin) > 0: return [[sg.Text(f"+{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="green", key=f"{coin}change")]] return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="red", key=f"{coin}change")]] def update_24h_change(coin): if price_change_24h(coin) == 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="black") elif price_change_24h(coin) > 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="green") elif price_change_24h(coin) < 0: window[f"{coin}change"].update(f"{price_change_24h(coin)}%", text_color="red") # GUI sg.theme('DefaultNoMoreNagging') # Tabs def tabs(coin): tab_layout = [[sg.Image("{}.png".format(coin), size=(50,50)), sg.Text("Price", font=("Arial", 10, 'bold'), size=(7,1), pad=(40,40)), sg.Text("24h change", font=("Arial", 10, 'bold'), size=(10,1), pad=(10,40))], [sg.Text(f"{coin}/USDT", font=("Arial", 9, 'bold')), sg.Column(column_layout_price(coin)), sg.Column(column_layout_change(coin))]] return tab_layout # Layout layout = [[sg.Text("Crypto Currencies", font=("Arial", 10, 'bold'))], [sg.TabGroup([[sg.Tab("BTC", tabs("BTC"), border_width="18"), sg.Tab("XRP", tabs("XRP"), border_width="18"), sg.Tab("DOGE", tabs("DOGE"), border_width="18")]])]] window = sg.Window("NightLeaf Crypto", layout) def coin_window(*coins): for coin in coins: globals()[f"{coin}_last_price"] = 1 while True: event,values = window.read(timeout=600) if event == sg.WIN_CLOSED: break for coin in coins: update_24h_change(coin) price = get_price(coin) if price != globals()[f"{coin}_last_price"]: if price > globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠕", text_color="green") elif price < globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠗", text_color="red") globals()[f"{coin}_last_price"] = price a_list =["BTC", "XRP", "DOGE"] coin_window(*a_list)
en
0.49165
# price # 24h percentchange # GUI # Tabs # Layout
3.007778
3
saleor/graphql/ushop/bulk_mutations.py
nlkhagva/saleor
0
9099
<reponame>nlkhagva/saleor import graphene from ...unurshop.ushop import models from ..core.mutations import BaseBulkMutation, ModelBulkDeleteMutation class UshopBulkDelete(ModelBulkDeleteMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to delete." ) class Meta: description = "Deletes shops." model = models.Shop permissions = ("page.manage_pages",) class UshopBulkPublish(BaseBulkMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to (un)publish." ) is_published = graphene.Boolean( required=True, description="Determine if ushops will be published or not." ) class Meta: description = "Publish ushops." model = models.Shop permissions = ("page.manage_pages",) @classmethod def bulk_action(cls, queryset, is_published): queryset.update(is_published=is_published)
import graphene from ...unurshop.ushop import models from ..core.mutations import BaseBulkMutation, ModelBulkDeleteMutation class UshopBulkDelete(ModelBulkDeleteMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to delete." ) class Meta: description = "Deletes shops." model = models.Shop permissions = ("page.manage_pages",) class UshopBulkPublish(BaseBulkMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to (un)publish." ) is_published = graphene.Boolean( required=True, description="Determine if ushops will be published or not." ) class Meta: description = "Publish ushops." model = models.Shop permissions = ("page.manage_pages",) @classmethod def bulk_action(cls, queryset, is_published): queryset.update(is_published=is_published)
none
1
2.221384
2