max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
openskill/statistics.py
CalColson/openskill.py
120
9400
<gh_stars>100-1000 import sys import scipy.stats normal = scipy.stats.norm(0, 1) def phi_major(x): return normal.cdf(x) def phi_minor(x): return normal.pdf(x) def v(x, t): xt = x - t denom = phi_major(xt) return -xt if (denom < sys.float_info.epsilon) else phi_minor(xt) / denom def w(x, t): xt = x - t denom = phi_major(xt) if denom < sys.float_info.epsilon: return 1 if (x < 0) else 0 return v(x, t) * (v(x, t) + xt) def vt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < 1e-5: if x < 0: return -x - t return -x + t a = phi_minor(-t - xx) - phi_minor(t - xx) return (-a if x < 0 else a) / b def wt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < sys.float_info.epsilon: return 1.0 return ((t - xx) * phi_minor(t - xx) + (t + xx) * phi_minor(-t - xx)) / b + vt( x, t ) * vt(x, t)
import sys import scipy.stats normal = scipy.stats.norm(0, 1) def phi_major(x): return normal.cdf(x) def phi_minor(x): return normal.pdf(x) def v(x, t): xt = x - t denom = phi_major(xt) return -xt if (denom < sys.float_info.epsilon) else phi_minor(xt) / denom def w(x, t): xt = x - t denom = phi_major(xt) if denom < sys.float_info.epsilon: return 1 if (x < 0) else 0 return v(x, t) * (v(x, t) + xt) def vt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < 1e-5: if x < 0: return -x - t return -x + t a = phi_minor(-t - xx) - phi_minor(t - xx) return (-a if x < 0 else a) / b def wt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < sys.float_info.epsilon: return 1.0 return ((t - xx) * phi_minor(t - xx) + (t + xx) * phi_minor(-t - xx)) / b + vt( x, t ) * vt(x, t)
none
1
2.50236
3
src/openalea/container/graph.py
revesansparole/oacontainer
0
9401
# -*- coding: utf-8 -*- # # Graph : graph package # # Copyright or Copr. 2006 INRIA - CIRAD - INRA # # File author(s): <NAME> <<EMAIL>> # # Distributed under the Cecill-C License. # See accompanying file LICENSE.txt or copy at # http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html # # VPlants WebSite : https://gforge.inria.fr/projects/vplants/ # """This module provide a simple pure python implementation for a graph interface does not implement copy concept """ from id_dict import IdDict class GraphError(Exception): """ base class of all graph exceptions """ class InvalidEdge(GraphError, KeyError): """ exception raised when a wrong edge id is provided """ class InvalidVertex(GraphError, KeyError): """ exception raised when a wrong vertex id is provided """ class Graph(object): """Directed graph with multiple links in this implementation : - vertices are tuple of edge_in,edge_out - edges are tuple of source,target """ def __init__(self, graph=None, idgenerator="set"): """constructor if graph is not none make a copy of the topological structure of graph (i.e. don't use the same id) args: - graph (Graph): the graph to copy, default=None - idgenerator (str): type of idgenerator to use, default 'set' """ self._vertices = IdDict(idgenerator=idgenerator) self._edges = IdDict(idgenerator=idgenerator) if graph is not None: self.extend(graph) # ########################################################## # # Graph concept # # ########################################################## def source(self, eid): """Retrieve the source vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][0] except KeyError: raise InvalidEdge(eid) def target(self, eid): """Retrieve the target vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][1] except KeyError: raise InvalidEdge(eid) def edge_vertices(self, eid): """Retrieve both source and target vertex of an edge args: - eid (int): edge id return: - (int, int): source id, target id """ try: return self._edges[eid] except KeyError: raise InvalidEdge(eid) def edge(self, source, target): """Find the matching edge with same source and same target return None if it don't succeed args: - source (int): source vertex - target (int): target vertex return: - (int): edge id with same source and target - (None): if search is unsuccessful """ if target not in self: raise InvalidVertex(target) for eid in self.out_edges(source): if self.target(eid) == target: return eid return None def __contains__(self, vid): """magic alias for `has_vertex` """ return self.has_vertex(vid) def has_vertex(self, vid): """test whether a vertex belong to the graph args: - vid (int): id of vertex return: - (bool) """ return vid in self._vertices def has_edge(self, eid): """test whether an edge belong to the graph args: - eid (int): id of edge return: - (bool) """ return eid in self._edges def is_valid(self): """Test the validity of the graph return: - (bool) """ return True # ########################################################## # # Vertex List Graph Concept # # ########################################################## def vertices(self): """Iterator on all vertices return: - (iter of int) """ return iter(self._vertices) def __iter__(self): """Magic alias for `vertices` """ return iter(self._vertices) def nb_vertices(self): """Total number of vertices in the graph return: - (int) """ return len(self._vertices) def __len__(self): """Magic alias for `nb_vertices` """ return self.nb_vertices() def in_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.source(eid) for eid in self._vertices[vid][0]] return iter(set(neighbors_list)) def out_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.target(eid) for eid in self._vertices[vid][1]] return iter(set(neighbors_list)) def neighbors(self, vid): """Iterator on all neighbors of vid both in and out args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ neighbors_list = list(self.in_neighbors(vid)) neighbors_list.extend(self.out_neighbors(vid)) return iter(set(neighbors_list)) def nb_in_neighbors(self, vid): """Number of in neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.in_neighbors(vid)) return len(neighbors_set) def nb_out_neighbors(self, vid): """Number of out neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.out_neighbors(vid)) return len(neighbors_set) def nb_neighbors(self, vid): """Total number of both in and out neighbors of vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.neighbors(vid)) return len(neighbors_set) # ########################################################## # # Edge List Graph Concept # # ########################################################## def _iter_edges(self, vid): """ internal function that perform 'edges' with vid not None """ link_in, link_out = self._vertices[vid] for eid in link_in: yield eid for eid in link_out: yield eid def edges(self, vid=None): """Iterate on all edges connected to a given vertex. If vid is None (default), iterate on all edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (iter of int): iterator on edge ids """ if vid is None: return iter(self._edges) if vid not in self: raise InvalidVertex(vid) return self._iter_edges(vid) def nb_edges(self, vid=None): """Number of edges connected to a given vertex. If vid is None (default), total number of edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (int) """ if vid is None: return len(self._edges) if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) + len(self._vertices[vid][1]) def in_edges(self, vid): """Iterate on all edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][0]: yield eid def out_edges(self, vid): """Iterate on all edges away from a given vertex. args: - vid (int): vertex source of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][1]: yield eid def nb_in_edges(self, vid): """Number of edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) def nb_out_edges(self, vid): """Number of edges away from a given vertex. args: - vid (int): vertex source of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][1]) # ########################################################## # # Mutable Vertex Graph concept # # ########################################################## def add_vertex(self, vid=None): """Add a vertex to the graph. If vid is not provided create a new vid args: - vid (int): id to use. If None (default) will generate a new one return: - vid (int): id used for the new vertex """ try: return self._vertices.add((set(), set()), vid) except KeyError: raise InvalidVertex(vid) def remove_vertex(self, vid): """Remove a specified vertex of the graph. Also remove all edge attached to it. args: - vid (int): id of vertex to remove """ if vid not in self: raise InvalidVertex(vid) link_in, link_out = self._vertices[vid] for edge in list(link_in): self.remove_edge(edge) for edge in list(link_out): self.remove_edge(edge) del self._vertices[vid] def clear(self): """Remove all vertices and edges don't change references to objects """ self._edges.clear() self._vertices.clear() # ########################################################## # # Mutable Edge Graph concept # # ########################################################## def add_edge(self, sid, tid, eid=None): """Add an edge to the graph. If eid is not provided generate a new one. args: - sid (int): id of source vertex - tid (int): id of target vertex - eid (int): id to use. If None (default) will generate a new one return: - eid (int): id used for new edge """ if sid not in self: raise InvalidVertex(sid) if tid not in self: raise InvalidVertex(tid) try: eid = self._edges.add((sid, tid), eid) except KeyError: raise InvalidEdge(eid) self._vertices[sid][1].add(eid) self._vertices[tid][0].add(eid) return eid def remove_edge(self, eid): """Remove a specified edge from the graph. args: - eid (int): id of edge to remove """ if not self.has_edge(eid): raise InvalidEdge(eid) sid, tid = self._edges[eid] self._vertices[sid][1].remove(eid) self._vertices[tid][0].remove(eid) del self._edges[eid] def clear_edges(self): """Remove all the edges of the graph don't change references to objects """ self._edges.clear() for vid, (in_set, out_set) in self._vertices.iteritems(): in_set.clear() out_set.clear() # ########################################################## # # Extend Graph concept # # ########################################################## def extend(self, graph): """Add the specified graph to self, create new vid and eid args: - graph (Graph): the graph to add return: - (dict of (int, int)): mapping between vertex id in graph and vertex id in extended self - (dict of (int, int)): mapping between edge id in graph and edge id in extended self """ # vertex adding trans_vid = {} for vid in list(graph.vertices()): trans_vid[vid] = self.add_vertex() # edge adding trans_eid = {} for eid in list(graph.edges()): sid = trans_vid[graph.source(eid)] tid = trans_vid[graph.target(eid)] trans_eid[eid] = self.add_edge(sid, tid) return trans_vid, trans_eid def sub_graph(self, vids): """ """ raise NotImplemented # from copy import deepcopy # vids = set(vids) # # result = deepcopy(self) # result._vertices.clear() # result._edges.clear() # # for key, edges in self._vertices.items(): # if key in vids: # inedges, outedges = edges # sortedinedges = set( # [eid for eid in inedges if self.source(eid) in vids]) # sortedoutedges = set( # [eid for eid in outedges if self.target(eid) in vids]) # result._vertices.add((sortedinedges, sortedoutedges), key) # for eid in sortedoutedges: # result._edges.add(self._edges[eid], eid) # # return result
# -*- coding: utf-8 -*- # # Graph : graph package # # Copyright or Copr. 2006 INRIA - CIRAD - INRA # # File author(s): <NAME> <<EMAIL>> # # Distributed under the Cecill-C License. # See accompanying file LICENSE.txt or copy at # http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html # # VPlants WebSite : https://gforge.inria.fr/projects/vplants/ # """This module provide a simple pure python implementation for a graph interface does not implement copy concept """ from id_dict import IdDict class GraphError(Exception): """ base class of all graph exceptions """ class InvalidEdge(GraphError, KeyError): """ exception raised when a wrong edge id is provided """ class InvalidVertex(GraphError, KeyError): """ exception raised when a wrong vertex id is provided """ class Graph(object): """Directed graph with multiple links in this implementation : - vertices are tuple of edge_in,edge_out - edges are tuple of source,target """ def __init__(self, graph=None, idgenerator="set"): """constructor if graph is not none make a copy of the topological structure of graph (i.e. don't use the same id) args: - graph (Graph): the graph to copy, default=None - idgenerator (str): type of idgenerator to use, default 'set' """ self._vertices = IdDict(idgenerator=idgenerator) self._edges = IdDict(idgenerator=idgenerator) if graph is not None: self.extend(graph) # ########################################################## # # Graph concept # # ########################################################## def source(self, eid): """Retrieve the source vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][0] except KeyError: raise InvalidEdge(eid) def target(self, eid): """Retrieve the target vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][1] except KeyError: raise InvalidEdge(eid) def edge_vertices(self, eid): """Retrieve both source and target vertex of an edge args: - eid (int): edge id return: - (int, int): source id, target id """ try: return self._edges[eid] except KeyError: raise InvalidEdge(eid) def edge(self, source, target): """Find the matching edge with same source and same target return None if it don't succeed args: - source (int): source vertex - target (int): target vertex return: - (int): edge id with same source and target - (None): if search is unsuccessful """ if target not in self: raise InvalidVertex(target) for eid in self.out_edges(source): if self.target(eid) == target: return eid return None def __contains__(self, vid): """magic alias for `has_vertex` """ return self.has_vertex(vid) def has_vertex(self, vid): """test whether a vertex belong to the graph args: - vid (int): id of vertex return: - (bool) """ return vid in self._vertices def has_edge(self, eid): """test whether an edge belong to the graph args: - eid (int): id of edge return: - (bool) """ return eid in self._edges def is_valid(self): """Test the validity of the graph return: - (bool) """ return True # ########################################################## # # Vertex List Graph Concept # # ########################################################## def vertices(self): """Iterator on all vertices return: - (iter of int) """ return iter(self._vertices) def __iter__(self): """Magic alias for `vertices` """ return iter(self._vertices) def nb_vertices(self): """Total number of vertices in the graph return: - (int) """ return len(self._vertices) def __len__(self): """Magic alias for `nb_vertices` """ return self.nb_vertices() def in_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.source(eid) for eid in self._vertices[vid][0]] return iter(set(neighbors_list)) def out_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.target(eid) for eid in self._vertices[vid][1]] return iter(set(neighbors_list)) def neighbors(self, vid): """Iterator on all neighbors of vid both in and out args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ neighbors_list = list(self.in_neighbors(vid)) neighbors_list.extend(self.out_neighbors(vid)) return iter(set(neighbors_list)) def nb_in_neighbors(self, vid): """Number of in neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.in_neighbors(vid)) return len(neighbors_set) def nb_out_neighbors(self, vid): """Number of out neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.out_neighbors(vid)) return len(neighbors_set) def nb_neighbors(self, vid): """Total number of both in and out neighbors of vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.neighbors(vid)) return len(neighbors_set) # ########################################################## # # Edge List Graph Concept # # ########################################################## def _iter_edges(self, vid): """ internal function that perform 'edges' with vid not None """ link_in, link_out = self._vertices[vid] for eid in link_in: yield eid for eid in link_out: yield eid def edges(self, vid=None): """Iterate on all edges connected to a given vertex. If vid is None (default), iterate on all edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (iter of int): iterator on edge ids """ if vid is None: return iter(self._edges) if vid not in self: raise InvalidVertex(vid) return self._iter_edges(vid) def nb_edges(self, vid=None): """Number of edges connected to a given vertex. If vid is None (default), total number of edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (int) """ if vid is None: return len(self._edges) if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) + len(self._vertices[vid][1]) def in_edges(self, vid): """Iterate on all edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][0]: yield eid def out_edges(self, vid): """Iterate on all edges away from a given vertex. args: - vid (int): vertex source of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][1]: yield eid def nb_in_edges(self, vid): """Number of edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) def nb_out_edges(self, vid): """Number of edges away from a given vertex. args: - vid (int): vertex source of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][1]) # ########################################################## # # Mutable Vertex Graph concept # # ########################################################## def add_vertex(self, vid=None): """Add a vertex to the graph. If vid is not provided create a new vid args: - vid (int): id to use. If None (default) will generate a new one return: - vid (int): id used for the new vertex """ try: return self._vertices.add((set(), set()), vid) except KeyError: raise InvalidVertex(vid) def remove_vertex(self, vid): """Remove a specified vertex of the graph. Also remove all edge attached to it. args: - vid (int): id of vertex to remove """ if vid not in self: raise InvalidVertex(vid) link_in, link_out = self._vertices[vid] for edge in list(link_in): self.remove_edge(edge) for edge in list(link_out): self.remove_edge(edge) del self._vertices[vid] def clear(self): """Remove all vertices and edges don't change references to objects """ self._edges.clear() self._vertices.clear() # ########################################################## # # Mutable Edge Graph concept # # ########################################################## def add_edge(self, sid, tid, eid=None): """Add an edge to the graph. If eid is not provided generate a new one. args: - sid (int): id of source vertex - tid (int): id of target vertex - eid (int): id to use. If None (default) will generate a new one return: - eid (int): id used for new edge """ if sid not in self: raise InvalidVertex(sid) if tid not in self: raise InvalidVertex(tid) try: eid = self._edges.add((sid, tid), eid) except KeyError: raise InvalidEdge(eid) self._vertices[sid][1].add(eid) self._vertices[tid][0].add(eid) return eid def remove_edge(self, eid): """Remove a specified edge from the graph. args: - eid (int): id of edge to remove """ if not self.has_edge(eid): raise InvalidEdge(eid) sid, tid = self._edges[eid] self._vertices[sid][1].remove(eid) self._vertices[tid][0].remove(eid) del self._edges[eid] def clear_edges(self): """Remove all the edges of the graph don't change references to objects """ self._edges.clear() for vid, (in_set, out_set) in self._vertices.iteritems(): in_set.clear() out_set.clear() # ########################################################## # # Extend Graph concept # # ########################################################## def extend(self, graph): """Add the specified graph to self, create new vid and eid args: - graph (Graph): the graph to add return: - (dict of (int, int)): mapping between vertex id in graph and vertex id in extended self - (dict of (int, int)): mapping between edge id in graph and edge id in extended self """ # vertex adding trans_vid = {} for vid in list(graph.vertices()): trans_vid[vid] = self.add_vertex() # edge adding trans_eid = {} for eid in list(graph.edges()): sid = trans_vid[graph.source(eid)] tid = trans_vid[graph.target(eid)] trans_eid[eid] = self.add_edge(sid, tid) return trans_vid, trans_eid def sub_graph(self, vids): """ """ raise NotImplemented # from copy import deepcopy # vids = set(vids) # # result = deepcopy(self) # result._vertices.clear() # result._edges.clear() # # for key, edges in self._vertices.items(): # if key in vids: # inedges, outedges = edges # sortedinedges = set( # [eid for eid in inedges if self.source(eid) in vids]) # sortedoutedges = set( # [eid for eid in outedges if self.target(eid) in vids]) # result._vertices.add((sortedinedges, sortedoutedges), key) # for eid in sortedoutedges: # result._edges.add(self._edges[eid], eid) # # return result
en
0.482161
# -*- coding: utf-8 -*- # # Graph : graph package # # Copyright or Copr. 2006 INRIA - CIRAD - INRA # # File author(s): <NAME> <<EMAIL>> # # Distributed under the Cecill-C License. # See accompanying file LICENSE.txt or copy at # http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html # # VPlants WebSite : https://gforge.inria.fr/projects/vplants/ # This module provide a simple pure python implementation for a graph interface does not implement copy concept base class of all graph exceptions exception raised when a wrong edge id is provided exception raised when a wrong vertex id is provided Directed graph with multiple links in this implementation : - vertices are tuple of edge_in,edge_out - edges are tuple of source,target constructor if graph is not none make a copy of the topological structure of graph (i.e. don't use the same id) args: - graph (Graph): the graph to copy, default=None - idgenerator (str): type of idgenerator to use, default 'set' # ########################################################## # # Graph concept # # ########################################################## Retrieve the source vertex of an edge args: - eid (int): edge id return: - (int): vertex id Retrieve the target vertex of an edge args: - eid (int): edge id return: - (int): vertex id Retrieve both source and target vertex of an edge args: - eid (int): edge id return: - (int, int): source id, target id Find the matching edge with same source and same target return None if it don't succeed args: - source (int): source vertex - target (int): target vertex return: - (int): edge id with same source and target - (None): if search is unsuccessful magic alias for `has_vertex` test whether a vertex belong to the graph args: - vid (int): id of vertex return: - (bool) test whether an edge belong to the graph args: - eid (int): id of edge return: - (bool) Test the validity of the graph return: - (bool) # ########################################################## # # Vertex List Graph Concept # # ########################################################## Iterator on all vertices return: - (iter of int) Magic alias for `vertices` Total number of vertices in the graph return: - (int) Magic alias for `nb_vertices` Iterator on the neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (iter of int): iter of vertex id Iterator on the neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (iter of int): iter of vertex id Iterator on all neighbors of vid both in and out args: - vid (int): vertex id return: - (iter of int): iter of vertex id Number of in neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (int) Number of out neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (int) Total number of both in and out neighbors of vid args: - vid (int): vertex id return: - (int) # ########################################################## # # Edge List Graph Concept # # ########################################################## internal function that perform 'edges' with vid not None Iterate on all edges connected to a given vertex. If vid is None (default), iterate on all edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (iter of int): iterator on edge ids Number of edges connected to a given vertex. If vid is None (default), total number of edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (int) Iterate on all edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (iter of int): iterator on edge ids Iterate on all edges away from a given vertex. args: - vid (int): vertex source of edges return: - (iter of int): iterator on edge ids Number of edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (int) Number of edges away from a given vertex. args: - vid (int): vertex source of edges return: - (int) # ########################################################## # # Mutable Vertex Graph concept # # ########################################################## Add a vertex to the graph. If vid is not provided create a new vid args: - vid (int): id to use. If None (default) will generate a new one return: - vid (int): id used for the new vertex Remove a specified vertex of the graph. Also remove all edge attached to it. args: - vid (int): id of vertex to remove Remove all vertices and edges don't change references to objects # ########################################################## # # Mutable Edge Graph concept # # ########################################################## Add an edge to the graph. If eid is not provided generate a new one. args: - sid (int): id of source vertex - tid (int): id of target vertex - eid (int): id to use. If None (default) will generate a new one return: - eid (int): id used for new edge Remove a specified edge from the graph. args: - eid (int): id of edge to remove Remove all the edges of the graph don't change references to objects # ########################################################## # # Extend Graph concept # # ########################################################## Add the specified graph to self, create new vid and eid args: - graph (Graph): the graph to add return: - (dict of (int, int)): mapping between vertex id in graph and vertex id in extended self - (dict of (int, int)): mapping between edge id in graph and edge id in extended self # vertex adding # edge adding # from copy import deepcopy # vids = set(vids) # # result = deepcopy(self) # result._vertices.clear() # result._edges.clear() # # for key, edges in self._vertices.items(): # if key in vids: # inedges, outedges = edges # sortedinedges = set( # [eid for eid in inedges if self.source(eid) in vids]) # sortedoutedges = set( # [eid for eid in outedges if self.target(eid) in vids]) # result._vertices.add((sortedinedges, sortedoutedges), key) # for eid in sortedoutedges: # result._edges.add(self._edges[eid], eid) # # return result
2.900468
3
nets/mobilenet_v2_ssd.py
GT-AcerZhang/PaddlePaddle-SSD
47
9402
import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr class MobileNetV2SSD: def __init__(self, img, num_classes, img_shape): self.img = img self.num_classes = num_classes self.img_shape = img_shape def ssd_net(self, scale=1.0): # 300x300 bottleneck_params_list = [(1, 16, 1, 1), (6, 24, 2, 2), (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1)] # conv1 input = self.conv_bn_layer(input=self.img, num_filters=int(32 * scale), filter_size=3, stride=2, padding=1, if_act=True) # bottleneck sequences in_c = int(32 * scale) for layer_setting in bottleneck_params_list: t, c, n, s = layer_setting input = self.invresi_blocks(input=input, in_c=in_c, t=t, c=int(c * scale), n=n, s=s) in_c = int(c * scale) # 19x19 module11 = input tmp = self.invresi_blocks(input=input, in_c=in_c, t=6, c=int(160 * scale), n=3, s=2) # 10x10 module13 = self.invresi_blocks(input=tmp, in_c=int(160 * scale), t=6, c=int(320 * scale), n=1, s=1) module14 = self.extra_block(module13, 256, 512, 1) # 5x5 module15 = self.extra_block(module14, 128, 256, 1) # 3x3 module16 = self.extra_block(module15, 128, 256, 1) # 2x2 module17 = self.extra_block(module16, 64, 128, 1) mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head( inputs=[module11, module13, module14, module15, module16, module17], image=self.img, num_classes=self.num_classes, min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], base_size=self.img_shape[2], offset=0.5, flip=True) return mbox_locs, mbox_confs, box, box_var def conv_bn_layer(self, input, filter_size, num_filters, stride, padding, num_groups=1, if_act=True, use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) bn = fluid.layers.batch_norm(input=conv) if if_act: return fluid.layers.relu6(bn) else: return bn def shortcut(self, input, data_residual): return fluid.layers.elementwise_add(input, data_residual) def inverted_residual_unit(self, input, num_in_filter, num_filters, ifshortcut, stride, filter_size, padding, expansion_factor): num_expfilter = int(round(num_in_filter * expansion_factor)) channel_expand = self.conv_bn_layer(input=input, num_filters=num_expfilter, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True) bottleneck_conv = self.conv_bn_layer(input=channel_expand, num_filters=num_expfilter, filter_size=filter_size, stride=stride, padding=padding, num_groups=num_expfilter, if_act=True, use_cudnn=False) linear_out = self.conv_bn_layer(input=bottleneck_conv, num_filters=num_filters, filter_size=1, stride=1, padding=0, num_groups=1, if_act=False) if ifshortcut: out = self.shortcut(input=input, data_residual=linear_out) return out else: return linear_out def invresi_blocks(self, input, in_c, t, c, n, s): first_block = self.inverted_residual_unit(input=input, num_in_filter=in_c, num_filters=c, ifshortcut=False, stride=s, filter_size=3, padding=1, expansion_factor=t) last_residual_block = first_block last_c = c for i in range(1, n): last_residual_block = self.inverted_residual_unit(input=last_residual_block, num_in_filter=last_c, num_filters=c, ifshortcut=True, stride=1, filter_size=3, padding=1, expansion_factor=t) return last_residual_block def conv_bn(self, input, filter_size, num_filters, stride, padding, num_groups=1, act='relu', use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def extra_block(self, input, num_filters1, num_filters2, num_groups): # 1x1 conv pointwise_conv = self.conv_bn(input=input, filter_size=1, num_filters=int(num_filters1), stride=1, num_groups=int(num_groups), padding=0) # 3x3 conv normal_conv = self.conv_bn(input=pointwise_conv, filter_size=3, num_filters=int(num_filters2), stride=2, num_groups=int(num_groups), padding=1) return normal_conv def build_ssd(img, num_classes, img_shape): ssd_model = MobileNetV2SSD(img, num_classes, img_shape) return ssd_model.ssd_net() if __name__ == '__main__': data = fluid.data(name='data', shape=[None, 3, 300, 300]) build_ssd(data, 21, img_shape=[3, 300, 300])
import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr class MobileNetV2SSD: def __init__(self, img, num_classes, img_shape): self.img = img self.num_classes = num_classes self.img_shape = img_shape def ssd_net(self, scale=1.0): # 300x300 bottleneck_params_list = [(1, 16, 1, 1), (6, 24, 2, 2), (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1)] # conv1 input = self.conv_bn_layer(input=self.img, num_filters=int(32 * scale), filter_size=3, stride=2, padding=1, if_act=True) # bottleneck sequences in_c = int(32 * scale) for layer_setting in bottleneck_params_list: t, c, n, s = layer_setting input = self.invresi_blocks(input=input, in_c=in_c, t=t, c=int(c * scale), n=n, s=s) in_c = int(c * scale) # 19x19 module11 = input tmp = self.invresi_blocks(input=input, in_c=in_c, t=6, c=int(160 * scale), n=3, s=2) # 10x10 module13 = self.invresi_blocks(input=tmp, in_c=int(160 * scale), t=6, c=int(320 * scale), n=1, s=1) module14 = self.extra_block(module13, 256, 512, 1) # 5x5 module15 = self.extra_block(module14, 128, 256, 1) # 3x3 module16 = self.extra_block(module15, 128, 256, 1) # 2x2 module17 = self.extra_block(module16, 64, 128, 1) mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head( inputs=[module11, module13, module14, module15, module16, module17], image=self.img, num_classes=self.num_classes, min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], base_size=self.img_shape[2], offset=0.5, flip=True) return mbox_locs, mbox_confs, box, box_var def conv_bn_layer(self, input, filter_size, num_filters, stride, padding, num_groups=1, if_act=True, use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) bn = fluid.layers.batch_norm(input=conv) if if_act: return fluid.layers.relu6(bn) else: return bn def shortcut(self, input, data_residual): return fluid.layers.elementwise_add(input, data_residual) def inverted_residual_unit(self, input, num_in_filter, num_filters, ifshortcut, stride, filter_size, padding, expansion_factor): num_expfilter = int(round(num_in_filter * expansion_factor)) channel_expand = self.conv_bn_layer(input=input, num_filters=num_expfilter, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True) bottleneck_conv = self.conv_bn_layer(input=channel_expand, num_filters=num_expfilter, filter_size=filter_size, stride=stride, padding=padding, num_groups=num_expfilter, if_act=True, use_cudnn=False) linear_out = self.conv_bn_layer(input=bottleneck_conv, num_filters=num_filters, filter_size=1, stride=1, padding=0, num_groups=1, if_act=False) if ifshortcut: out = self.shortcut(input=input, data_residual=linear_out) return out else: return linear_out def invresi_blocks(self, input, in_c, t, c, n, s): first_block = self.inverted_residual_unit(input=input, num_in_filter=in_c, num_filters=c, ifshortcut=False, stride=s, filter_size=3, padding=1, expansion_factor=t) last_residual_block = first_block last_c = c for i in range(1, n): last_residual_block = self.inverted_residual_unit(input=last_residual_block, num_in_filter=last_c, num_filters=c, ifshortcut=True, stride=1, filter_size=3, padding=1, expansion_factor=t) return last_residual_block def conv_bn(self, input, filter_size, num_filters, stride, padding, num_groups=1, act='relu', use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def extra_block(self, input, num_filters1, num_filters2, num_groups): # 1x1 conv pointwise_conv = self.conv_bn(input=input, filter_size=1, num_filters=int(num_filters1), stride=1, num_groups=int(num_groups), padding=0) # 3x3 conv normal_conv = self.conv_bn(input=pointwise_conv, filter_size=3, num_filters=int(num_filters2), stride=2, num_groups=int(num_groups), padding=1) return normal_conv def build_ssd(img, num_classes, img_shape): ssd_model = MobileNetV2SSD(img, num_classes, img_shape) return ssd_model.ssd_net() if __name__ == '__main__': data = fluid.data(name='data', shape=[None, 3, 300, 300]) build_ssd(data, 21, img_shape=[3, 300, 300])
en
0.385212
# 300x300 # conv1 # bottleneck sequences # 19x19 # 10x10 # 5x5 # 3x3 # 2x2 # 1x1 conv # 3x3 conv
2.411921
2
oneflow/python/test/ops/test_object_bbox_scale.py
caishenghang/oneflow
2
9403
<gh_stars>1-10 """ Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os import random import cv2 import numpy as np import oneflow as flow import oneflow.typing as oft def _random_sample_images(anno_file, image_dir, batch_size): from pycocotools.coco import COCO image_files = [] image_ids = [] batch_group_id = -1 coco = COCO(anno_file) img_ids = coco.getImgIds() while len(image_files) < batch_size: rand_img_id = random.choice(img_ids) img_h = coco.imgs[rand_img_id]["height"] img_w = coco.imgs[rand_img_id]["width"] group_id = int(img_h / img_w) if batch_group_id == -1: batch_group_id = group_id if group_id != batch_group_id: continue anno_ids = coco.getAnnIds(imgIds=[rand_img_id]) if len(anno_ids) == 0: continue image_files.append(os.path.join(image_dir, coco.imgs[rand_img_id]["file_name"])) image_ids.append(rand_img_id) assert len(image_files) == len(image_ids) images = [cv2.imread(image_file).astype(np.single) for image_file in image_files] bbox_list = _get_images_bbox_list(coco, image_ids) return images, bbox_list def _get_images_bbox_list(coco, image_ids): bbox_list = [] for img_id in image_ids: anno_ids = coco.getAnnIds(imgIds=[img_id]) anno_ids = list( filter(lambda anno_id: coco.anns[anno_id]["iscrowd"] == 0, anno_ids) ) bbox_array = np.array( [coco.anns[anno_id]["bbox"] for anno_id in anno_ids], dtype=np.single ) bbox_list.append(bbox_array) return bbox_list def _get_images_static_shape(images): image_shapes = [image.shape for image in images] image_static_shape = np.amax(image_shapes, axis=0) assert isinstance( image_static_shape, np.ndarray ), "image_shapes: {}, image_static_shape: {}".format( str(image_shapes), str(image_static_shape) ) image_static_shape = image_static_shape.tolist() image_static_shape.insert(0, len(image_shapes)) return image_static_shape def _get_bbox_static_shape(bbox_list): bbox_shapes = [bbox.shape for bbox in bbox_list] bbox_static_shape = np.amax(bbox_shapes, axis=0) assert isinstance( bbox_static_shape, np.ndarray ), "bbox_shapes: {}, bbox_static_shape: {}".format( str(bbox_shapes), str(bbox_static_shape) ) bbox_static_shape = bbox_static_shape.tolist() bbox_static_shape.insert(0, len(bbox_list)) return bbox_static_shape def _of_target_resize_bbox_scale(images, bbox_list, target_size, max_size): image_shape = _get_images_static_shape(images) bbox_shape = _get_bbox_static_shape(bbox_list) flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function(function_config=func_config) def target_resize_bbox_scale_job( image_def: oft.ListListNumpy.Placeholder( shape=tuple(image_shape), dtype=flow.float ), bbox_def: oft.ListListNumpy.Placeholder( shape=tuple(bbox_shape), dtype=flow.float ), ): images_buffer = flow.tensor_list_to_tensor_buffer(image_def) resized_images_buffer, new_size, scale = flow.image_target_resize( images_buffer, target_size=target_size, max_size=max_size ) bbox_buffer = flow.tensor_list_to_tensor_buffer(bbox_def) scaled_bbox = flow.object_bbox_scale(bbox_buffer, scale) scaled_bbox_list = flow.tensor_buffer_to_tensor_list( scaled_bbox, shape=bbox_shape[1:], dtype=flow.float ) return scaled_bbox_list, new_size input_image_list = [np.expand_dims(image, axis=0) for image in images] input_bbox_list = [np.expand_dims(bbox, axis=0) for bbox in bbox_list] output_bbox_list, output_image_size = target_resize_bbox_scale_job( [input_image_list], [input_bbox_list] ).get() return output_bbox_list.numpy_lists()[0], output_image_size.numpy_list()[0] def _compare_bbox_scale( test_case, anno_file, image_dir, batch_size, target_size, max_size, print_debug_info=False, ): images, bbox_list = _random_sample_images(anno_file, image_dir, batch_size) of_bbox_list, image_size_list = _of_target_resize_bbox_scale( images, bbox_list, target_size, max_size ) for image, bbox, of_bbox, image_size in zip( images, bbox_list, of_bbox_list, image_size_list ): w, h = image_size oh, ow = image.shape[0:2] scale_h = h / oh scale_w = w / ow bbox[:, 0] *= scale_w bbox[:, 1] *= scale_h bbox[:, 2] *= scale_w bbox[:, 3] *= scale_h test_case.assertTrue(np.allclose(bbox, of_bbox)) @flow.unittest.skip_unless_1n1d() class TestObjectBboxScale(flow.unittest.TestCase): def test_object_bbox_scale(test_case): _compare_bbox_scale( test_case, "/dataset/mscoco_2017/annotations/instances_val2017.json", "/dataset/mscoco_2017/val2017", 4, 800, 1333, ) if __name__ == "__main__": unittest.main()
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os import random import cv2 import numpy as np import oneflow as flow import oneflow.typing as oft def _random_sample_images(anno_file, image_dir, batch_size): from pycocotools.coco import COCO image_files = [] image_ids = [] batch_group_id = -1 coco = COCO(anno_file) img_ids = coco.getImgIds() while len(image_files) < batch_size: rand_img_id = random.choice(img_ids) img_h = coco.imgs[rand_img_id]["height"] img_w = coco.imgs[rand_img_id]["width"] group_id = int(img_h / img_w) if batch_group_id == -1: batch_group_id = group_id if group_id != batch_group_id: continue anno_ids = coco.getAnnIds(imgIds=[rand_img_id]) if len(anno_ids) == 0: continue image_files.append(os.path.join(image_dir, coco.imgs[rand_img_id]["file_name"])) image_ids.append(rand_img_id) assert len(image_files) == len(image_ids) images = [cv2.imread(image_file).astype(np.single) for image_file in image_files] bbox_list = _get_images_bbox_list(coco, image_ids) return images, bbox_list def _get_images_bbox_list(coco, image_ids): bbox_list = [] for img_id in image_ids: anno_ids = coco.getAnnIds(imgIds=[img_id]) anno_ids = list( filter(lambda anno_id: coco.anns[anno_id]["iscrowd"] == 0, anno_ids) ) bbox_array = np.array( [coco.anns[anno_id]["bbox"] for anno_id in anno_ids], dtype=np.single ) bbox_list.append(bbox_array) return bbox_list def _get_images_static_shape(images): image_shapes = [image.shape for image in images] image_static_shape = np.amax(image_shapes, axis=0) assert isinstance( image_static_shape, np.ndarray ), "image_shapes: {}, image_static_shape: {}".format( str(image_shapes), str(image_static_shape) ) image_static_shape = image_static_shape.tolist() image_static_shape.insert(0, len(image_shapes)) return image_static_shape def _get_bbox_static_shape(bbox_list): bbox_shapes = [bbox.shape for bbox in bbox_list] bbox_static_shape = np.amax(bbox_shapes, axis=0) assert isinstance( bbox_static_shape, np.ndarray ), "bbox_shapes: {}, bbox_static_shape: {}".format( str(bbox_shapes), str(bbox_static_shape) ) bbox_static_shape = bbox_static_shape.tolist() bbox_static_shape.insert(0, len(bbox_list)) return bbox_static_shape def _of_target_resize_bbox_scale(images, bbox_list, target_size, max_size): image_shape = _get_images_static_shape(images) bbox_shape = _get_bbox_static_shape(bbox_list) flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function(function_config=func_config) def target_resize_bbox_scale_job( image_def: oft.ListListNumpy.Placeholder( shape=tuple(image_shape), dtype=flow.float ), bbox_def: oft.ListListNumpy.Placeholder( shape=tuple(bbox_shape), dtype=flow.float ), ): images_buffer = flow.tensor_list_to_tensor_buffer(image_def) resized_images_buffer, new_size, scale = flow.image_target_resize( images_buffer, target_size=target_size, max_size=max_size ) bbox_buffer = flow.tensor_list_to_tensor_buffer(bbox_def) scaled_bbox = flow.object_bbox_scale(bbox_buffer, scale) scaled_bbox_list = flow.tensor_buffer_to_tensor_list( scaled_bbox, shape=bbox_shape[1:], dtype=flow.float ) return scaled_bbox_list, new_size input_image_list = [np.expand_dims(image, axis=0) for image in images] input_bbox_list = [np.expand_dims(bbox, axis=0) for bbox in bbox_list] output_bbox_list, output_image_size = target_resize_bbox_scale_job( [input_image_list], [input_bbox_list] ).get() return output_bbox_list.numpy_lists()[0], output_image_size.numpy_list()[0] def _compare_bbox_scale( test_case, anno_file, image_dir, batch_size, target_size, max_size, print_debug_info=False, ): images, bbox_list = _random_sample_images(anno_file, image_dir, batch_size) of_bbox_list, image_size_list = _of_target_resize_bbox_scale( images, bbox_list, target_size, max_size ) for image, bbox, of_bbox, image_size in zip( images, bbox_list, of_bbox_list, image_size_list ): w, h = image_size oh, ow = image.shape[0:2] scale_h = h / oh scale_w = w / ow bbox[:, 0] *= scale_w bbox[:, 1] *= scale_h bbox[:, 2] *= scale_w bbox[:, 3] *= scale_h test_case.assertTrue(np.allclose(bbox, of_bbox)) @flow.unittest.skip_unless_1n1d() class TestObjectBboxScale(flow.unittest.TestCase): def test_object_bbox_scale(test_case): _compare_bbox_scale( test_case, "/dataset/mscoco_2017/annotations/instances_val2017.json", "/dataset/mscoco_2017/val2017", 4, 800, 1333, ) if __name__ == "__main__": unittest.main()
en
0.864155
Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
1.950223
2
vagrant/kafka/bin/init.py
BertRaeymaekers/scrapbook
0
9404
#! /usr/bin/env python3 import json import os.path import jinja2 DEFAULT_PARAMS = { "ansible_user": "vagrant" } if __name__ == "__main__": # Reading configuration here = os.path.dirname(os.path.realpath(__file__ + "/../")) with open(here + "/config.json", "r") as rf: config = json.load(rf) print(json.dumps(config, sort_keys=True, indent=4)) # Generating an inventory file with open(here + "/playbook/inventory/hosts", "w") as inventory: inventory.write("[kafka]\n") for host in config["hosts"]: # Setting default values and updating them when more specific. params = dict() params.update(DEFAULT_PARAMS) params.update(config["params"]) params.update(config["hosts"][host]) # Setting some extra ansible paramters. params["ansible_ssh_host"] = params["ip"] inventory.write("%s\t%s\n" % (host, " ".join(("%s=%s" % (k,v) for k,v in params.items())))) # Generating the Vagrantfile env = jinja2.Environment(loader=jinja2.FileSystemLoader(here + "/templates/")) template = env.get_template('Vagrantfile.j2') template.stream(**config).dump(here + '/vagrant/Vagrantfile') # Generating group vars for kafka with open(here + "/playbook/group_vars/kafka.yml", "w") as gv: gv.write("---\n") gv.write("hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" %s: '%s.%s'\n" % (params["ip"], params["hostname"], config["params"]["domain" ])) gv.write("kafka:\n") gv.write(" hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" - %s.%s\n" % (params["hostname"], config["params"]["domain" ]))
#! /usr/bin/env python3 import json import os.path import jinja2 DEFAULT_PARAMS = { "ansible_user": "vagrant" } if __name__ == "__main__": # Reading configuration here = os.path.dirname(os.path.realpath(__file__ + "/../")) with open(here + "/config.json", "r") as rf: config = json.load(rf) print(json.dumps(config, sort_keys=True, indent=4)) # Generating an inventory file with open(here + "/playbook/inventory/hosts", "w") as inventory: inventory.write("[kafka]\n") for host in config["hosts"]: # Setting default values and updating them when more specific. params = dict() params.update(DEFAULT_PARAMS) params.update(config["params"]) params.update(config["hosts"][host]) # Setting some extra ansible paramters. params["ansible_ssh_host"] = params["ip"] inventory.write("%s\t%s\n" % (host, " ".join(("%s=%s" % (k,v) for k,v in params.items())))) # Generating the Vagrantfile env = jinja2.Environment(loader=jinja2.FileSystemLoader(here + "/templates/")) template = env.get_template('Vagrantfile.j2') template.stream(**config).dump(here + '/vagrant/Vagrantfile') # Generating group vars for kafka with open(here + "/playbook/group_vars/kafka.yml", "w") as gv: gv.write("---\n") gv.write("hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" %s: '%s.%s'\n" % (params["ip"], params["hostname"], config["params"]["domain" ])) gv.write("kafka:\n") gv.write(" hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" - %s.%s\n" % (params["hostname"], config["params"]["domain" ]))
en
0.482628
#! /usr/bin/env python3 # Reading configuration # Generating an inventory file # Setting default values and updating them when more specific. # Setting some extra ansible paramters. # Generating the Vagrantfile # Generating group vars for kafka
2.40611
2
harvest/models/beastsimulator.py
lmaurits/harvest
1
9405
<reponame>lmaurits/harvest import os import harvest.dataframe from harvest.models.simulator import Simulator class BeastSimulator(Simulator): def __init__(self, tree, n_features): Simulator.__init__(self, tree, n_features) def generate_beast_xml(self): # Subclasses should implement this return None def generate_data(self): # Generate BEAST XML file to do simulation xml = self.generate_beast_xml() temp_filename = xml.write_file(overwrite=True) # Run BEAST simulation os.system("beast %s > /dev/null" % temp_filename) # Delete BEAST XML file os.remove(temp_filename) # Read simulated data data = harvest.dataframe.read_from_beast_xml(xml.output_filename) # Delete simualted data os.remove(xml.output_filename) self.data = data self.data.datatype = self.datatype
import os import harvest.dataframe from harvest.models.simulator import Simulator class BeastSimulator(Simulator): def __init__(self, tree, n_features): Simulator.__init__(self, tree, n_features) def generate_beast_xml(self): # Subclasses should implement this return None def generate_data(self): # Generate BEAST XML file to do simulation xml = self.generate_beast_xml() temp_filename = xml.write_file(overwrite=True) # Run BEAST simulation os.system("beast %s > /dev/null" % temp_filename) # Delete BEAST XML file os.remove(temp_filename) # Read simulated data data = harvest.dataframe.read_from_beast_xml(xml.output_filename) # Delete simualted data os.remove(xml.output_filename) self.data = data self.data.datatype = self.datatype
en
0.758773
# Subclasses should implement this # Generate BEAST XML file to do simulation # Run BEAST simulation # Delete BEAST XML file # Read simulated data # Delete simualted data
2.762112
3
assimilator.py
DutChen18/slime-clusters-cuda
0
9406
# pylint: skip-file import os from assimilator import * from Boinc import boinc_project_path class SlimeClustersAssimilator(Assimilator): def __init__(self): Assimilator.__init__(self) def assimilate_handler(self, wu, results, canonical_result): if canonical_result == None: return src_file = self.get_file_path(canonical_result) dst_dir = boinc_project_path.project_path('slime-clusters') dst_file = os.path.join(dst_dir, 'results.txt') if not os.path.exists(dst_dir): os.makedirs(dst_dir) with open(src_file, 'r') as src, open(dst_file, 'a') as dst: dst.writelines(src.readlines()) if __name__ == "__main__": SlimeClustersAssimilator().run()
# pylint: skip-file import os from assimilator import * from Boinc import boinc_project_path class SlimeClustersAssimilator(Assimilator): def __init__(self): Assimilator.__init__(self) def assimilate_handler(self, wu, results, canonical_result): if canonical_result == None: return src_file = self.get_file_path(canonical_result) dst_dir = boinc_project_path.project_path('slime-clusters') dst_file = os.path.join(dst_dir, 'results.txt') if not os.path.exists(dst_dir): os.makedirs(dst_dir) with open(src_file, 'r') as src, open(dst_file, 'a') as dst: dst.writelines(src.readlines()) if __name__ == "__main__": SlimeClustersAssimilator().run()
en
0.409619
# pylint: skip-file
2.320321
2
modin/core/execution/ray/implementations/cudf_on_ray/dataframe/dataframe.py
Rubtsowa/modin
0
9407
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Module houses class that implements ``PandasOnRayDataframe`` class using cuDF.""" import numpy as np import ray from ..partitioning.partition import cuDFOnRayDataframePartition from ..partitioning.partition_manager import cuDFOnRayDataframePartitionManager from modin.core.execution.ray.implementations.pandas_on_ray.dataframe.dataframe import ( PandasOnRayDataframe, ) from modin.error_message import ErrorMessage class cuDFOnRayDataframe(PandasOnRayDataframe): """ The class implements the interface in ``PandasOnRayDataframe`` using cuDF. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. """ _partition_mgr_cls = cuDFOnRayDataframePartitionManager def synchronize_labels(self, axis=None): """ Synchronize labels by applying the index object (Index or Columns) to the partitions eagerly. Parameters ---------- axis : {0, 1, None}, default: None The axis to apply to. If None, it applies to both axes. """ ErrorMessage.catch_bugs_and_request_email( axis is not None and axis not in [0, 1] ) cum_row_lengths = np.cumsum([0] + self._row_lengths) cum_col_widths = np.cumsum([0] + self._column_widths) def apply_idx_objs(df, idx, cols, axis): # cudf does not support set_axis. It only supports rename with 1-to-1 mapping. # Therefore, we need to create the dictionary that have the relationship between # current index and new ones. idx = {df.index[i]: idx[i] for i in range(len(idx))} cols = {df.index[i]: cols[i] for i in range(len(cols))} if axis == 0: return df.rename(index=idx) elif axis == 1: return df.rename(columns=cols) else: return df.rename(index=idx, columns=cols) keys = np.array( [ [ self._partitions[i][j].apply( apply_idx_objs, idx=self.index[ slice(cum_row_lengths[i], cum_row_lengths[i + 1]) ], cols=self.columns[ slice(cum_col_widths[j], cum_col_widths[j + 1]) ], axis=axis, ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._partitions = np.array( [ [ cuDFOnRayDataframePartition( self._partitions[i][j].get_gpu_manager(), keys[i][j], self._partitions[i][j]._length_cache, self._partitions[i][j]._width_cache, ) for j in range(len(keys[i])) ] for i in range(len(keys)) ] ) def mask( self, row_indices=None, row_numeric_idx=None, col_indices=None, col_numeric_idx=None, ): """ Lazily select columns or rows from given indices. Parameters ---------- row_indices : list of hashable, optional The row labels to extract. row_numeric_idx : list of int, optional The row indices to extract. col_indices : list of hashable, optional The column labels to extract. col_numeric_idx : list of int, optional The column indices to extract. Returns ------- cuDFOnRayDataframe A new ``cuDFOnRayDataframe`` from the mask provided. Notes ----- If both `row_indices` and `row_numeric_idx` are set, `row_indices` will be used. The same rule applied to `col_indices` and `col_numeric_idx`. """ if isinstance(row_numeric_idx, slice) and ( row_numeric_idx == slice(None) or row_numeric_idx == slice(0, None) ): row_numeric_idx = None if isinstance(col_numeric_idx, slice) and ( col_numeric_idx == slice(None) or col_numeric_idx == slice(0, None) ): col_numeric_idx = None if ( row_indices is None and row_numeric_idx is None and col_indices is None and col_numeric_idx is None ): return self.copy() if row_indices is not None: row_numeric_idx = self.index.get_indexer_for(row_indices) if row_numeric_idx is not None: row_partitions_list = self._get_dict_of_block_index(0, row_numeric_idx) if isinstance(row_numeric_idx, slice): # Row lengths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_row_lengths = [ len(range(*idx.indices(self._row_lengths[p]))) for p, idx in row_partitions_list.items() ] # Use the slice to calculate the new row index new_index = self.index[row_numeric_idx] else: new_row_lengths = [len(idx) for _, idx in row_partitions_list.items()] new_index = self.index[sorted(row_numeric_idx)] else: row_partitions_list = { i: slice(None) for i in range(len(self._row_lengths)) } new_row_lengths = self._row_lengths new_index = self.index if col_indices is not None: col_numeric_idx = self.columns.get_indexer_for(col_indices) if col_numeric_idx is not None: col_partitions_list = self._get_dict_of_block_index(1, col_numeric_idx) if isinstance(col_numeric_idx, slice): # Column widths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_col_widths = [ len(range(*idx.indices(self._column_widths[p]))) for p, idx in col_partitions_list.items() ] # Use the slice to calculate the new columns new_columns = self.columns[col_numeric_idx] assert sum(new_col_widths) == len( new_columns ), "{} != {}.\n{}\n{}\n{}".format( sum(new_col_widths), len(new_columns), col_numeric_idx, self._column_widths, col_partitions_list, ) if self._dtypes is not None: new_dtypes = self.dtypes[col_numeric_idx] else: new_dtypes = None else: new_col_widths = [len(idx) for _, idx in col_partitions_list.items()] new_columns = self.columns[sorted(col_numeric_idx)] if self._dtypes is not None: new_dtypes = self.dtypes.iloc[sorted(col_numeric_idx)] else: new_dtypes = None else: col_partitions_list = { i: slice(None) for i in range(len(self._column_widths)) } new_col_widths = self._column_widths new_columns = self.columns if self._dtypes is not None: new_dtypes = self.dtypes else: new_dtypes = None key_and_gpus = np.array( [ [ [ self._partitions[row_idx][col_idx].mask( row_internal_indices, col_internal_indices ), self._partitions[row_idx][col_idx].get_gpu_manager(), ] for col_idx, col_internal_indices in col_partitions_list.items() if isinstance(col_internal_indices, slice) or len(col_internal_indices) > 0 ] for row_idx, row_internal_indices in row_partitions_list.items() if isinstance(row_internal_indices, slice) or len(row_internal_indices) > 0 ] ) shape = key_and_gpus.shape[:2] keys = ray.get(key_and_gpus[:, :, 0].flatten().tolist()) gpu_managers = key_and_gpus[:, :, 1].flatten().tolist() new_partitions = self._partition_mgr_cls._create_partitions( keys, gpu_managers ).reshape(shape) intermediate = self.__constructor__( new_partitions, new_index, new_columns, new_row_lengths, new_col_widths, new_dtypes, ) # Check if monotonically increasing, return if it is. Fast track code path for # common case to keep it fast. if ( row_numeric_idx is None or isinstance(row_numeric_idx, slice) or len(row_numeric_idx) == 1 or np.all(row_numeric_idx[1:] >= row_numeric_idx[:-1]) ) and ( col_numeric_idx is None or isinstance(col_numeric_idx, slice) or len(col_numeric_idx) == 1 or np.all(col_numeric_idx[1:] >= col_numeric_idx[:-1]) ): return intermediate # The new labels are often smaller than the old labels, so we can't reuse the # original order values because those were mapped to the original data. We have # to reorder here based on the expected order from within the data. # We create a dictionary mapping the position of the numeric index with respect # to all others, then recreate that order by mapping the new order values from # the old. This information is sent to `_reorder_labels`. if row_numeric_idx is not None: row_order_mapping = dict( zip(sorted(row_numeric_idx), range(len(row_numeric_idx))) ) new_row_order = [row_order_mapping[idx] for idx in row_numeric_idx] else: new_row_order = None if col_numeric_idx is not None: col_order_mapping = dict( zip(sorted(col_numeric_idx), range(len(col_numeric_idx))) ) new_col_order = [col_order_mapping[idx] for idx in col_numeric_idx] else: new_col_order = None return intermediate._reorder_labels( row_numeric_idx=new_row_order, col_numeric_idx=new_col_order )
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Module houses class that implements ``PandasOnRayDataframe`` class using cuDF.""" import numpy as np import ray from ..partitioning.partition import cuDFOnRayDataframePartition from ..partitioning.partition_manager import cuDFOnRayDataframePartitionManager from modin.core.execution.ray.implementations.pandas_on_ray.dataframe.dataframe import ( PandasOnRayDataframe, ) from modin.error_message import ErrorMessage class cuDFOnRayDataframe(PandasOnRayDataframe): """ The class implements the interface in ``PandasOnRayDataframe`` using cuDF. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. """ _partition_mgr_cls = cuDFOnRayDataframePartitionManager def synchronize_labels(self, axis=None): """ Synchronize labels by applying the index object (Index or Columns) to the partitions eagerly. Parameters ---------- axis : {0, 1, None}, default: None The axis to apply to. If None, it applies to both axes. """ ErrorMessage.catch_bugs_and_request_email( axis is not None and axis not in [0, 1] ) cum_row_lengths = np.cumsum([0] + self._row_lengths) cum_col_widths = np.cumsum([0] + self._column_widths) def apply_idx_objs(df, idx, cols, axis): # cudf does not support set_axis. It only supports rename with 1-to-1 mapping. # Therefore, we need to create the dictionary that have the relationship between # current index and new ones. idx = {df.index[i]: idx[i] for i in range(len(idx))} cols = {df.index[i]: cols[i] for i in range(len(cols))} if axis == 0: return df.rename(index=idx) elif axis == 1: return df.rename(columns=cols) else: return df.rename(index=idx, columns=cols) keys = np.array( [ [ self._partitions[i][j].apply( apply_idx_objs, idx=self.index[ slice(cum_row_lengths[i], cum_row_lengths[i + 1]) ], cols=self.columns[ slice(cum_col_widths[j], cum_col_widths[j + 1]) ], axis=axis, ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._partitions = np.array( [ [ cuDFOnRayDataframePartition( self._partitions[i][j].get_gpu_manager(), keys[i][j], self._partitions[i][j]._length_cache, self._partitions[i][j]._width_cache, ) for j in range(len(keys[i])) ] for i in range(len(keys)) ] ) def mask( self, row_indices=None, row_numeric_idx=None, col_indices=None, col_numeric_idx=None, ): """ Lazily select columns or rows from given indices. Parameters ---------- row_indices : list of hashable, optional The row labels to extract. row_numeric_idx : list of int, optional The row indices to extract. col_indices : list of hashable, optional The column labels to extract. col_numeric_idx : list of int, optional The column indices to extract. Returns ------- cuDFOnRayDataframe A new ``cuDFOnRayDataframe`` from the mask provided. Notes ----- If both `row_indices` and `row_numeric_idx` are set, `row_indices` will be used. The same rule applied to `col_indices` and `col_numeric_idx`. """ if isinstance(row_numeric_idx, slice) and ( row_numeric_idx == slice(None) or row_numeric_idx == slice(0, None) ): row_numeric_idx = None if isinstance(col_numeric_idx, slice) and ( col_numeric_idx == slice(None) or col_numeric_idx == slice(0, None) ): col_numeric_idx = None if ( row_indices is None and row_numeric_idx is None and col_indices is None and col_numeric_idx is None ): return self.copy() if row_indices is not None: row_numeric_idx = self.index.get_indexer_for(row_indices) if row_numeric_idx is not None: row_partitions_list = self._get_dict_of_block_index(0, row_numeric_idx) if isinstance(row_numeric_idx, slice): # Row lengths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_row_lengths = [ len(range(*idx.indices(self._row_lengths[p]))) for p, idx in row_partitions_list.items() ] # Use the slice to calculate the new row index new_index = self.index[row_numeric_idx] else: new_row_lengths = [len(idx) for _, idx in row_partitions_list.items()] new_index = self.index[sorted(row_numeric_idx)] else: row_partitions_list = { i: slice(None) for i in range(len(self._row_lengths)) } new_row_lengths = self._row_lengths new_index = self.index if col_indices is not None: col_numeric_idx = self.columns.get_indexer_for(col_indices) if col_numeric_idx is not None: col_partitions_list = self._get_dict_of_block_index(1, col_numeric_idx) if isinstance(col_numeric_idx, slice): # Column widths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_col_widths = [ len(range(*idx.indices(self._column_widths[p]))) for p, idx in col_partitions_list.items() ] # Use the slice to calculate the new columns new_columns = self.columns[col_numeric_idx] assert sum(new_col_widths) == len( new_columns ), "{} != {}.\n{}\n{}\n{}".format( sum(new_col_widths), len(new_columns), col_numeric_idx, self._column_widths, col_partitions_list, ) if self._dtypes is not None: new_dtypes = self.dtypes[col_numeric_idx] else: new_dtypes = None else: new_col_widths = [len(idx) for _, idx in col_partitions_list.items()] new_columns = self.columns[sorted(col_numeric_idx)] if self._dtypes is not None: new_dtypes = self.dtypes.iloc[sorted(col_numeric_idx)] else: new_dtypes = None else: col_partitions_list = { i: slice(None) for i in range(len(self._column_widths)) } new_col_widths = self._column_widths new_columns = self.columns if self._dtypes is not None: new_dtypes = self.dtypes else: new_dtypes = None key_and_gpus = np.array( [ [ [ self._partitions[row_idx][col_idx].mask( row_internal_indices, col_internal_indices ), self._partitions[row_idx][col_idx].get_gpu_manager(), ] for col_idx, col_internal_indices in col_partitions_list.items() if isinstance(col_internal_indices, slice) or len(col_internal_indices) > 0 ] for row_idx, row_internal_indices in row_partitions_list.items() if isinstance(row_internal_indices, slice) or len(row_internal_indices) > 0 ] ) shape = key_and_gpus.shape[:2] keys = ray.get(key_and_gpus[:, :, 0].flatten().tolist()) gpu_managers = key_and_gpus[:, :, 1].flatten().tolist() new_partitions = self._partition_mgr_cls._create_partitions( keys, gpu_managers ).reshape(shape) intermediate = self.__constructor__( new_partitions, new_index, new_columns, new_row_lengths, new_col_widths, new_dtypes, ) # Check if monotonically increasing, return if it is. Fast track code path for # common case to keep it fast. if ( row_numeric_idx is None or isinstance(row_numeric_idx, slice) or len(row_numeric_idx) == 1 or np.all(row_numeric_idx[1:] >= row_numeric_idx[:-1]) ) and ( col_numeric_idx is None or isinstance(col_numeric_idx, slice) or len(col_numeric_idx) == 1 or np.all(col_numeric_idx[1:] >= col_numeric_idx[:-1]) ): return intermediate # The new labels are often smaller than the old labels, so we can't reuse the # original order values because those were mapped to the original data. We have # to reorder here based on the expected order from within the data. # We create a dictionary mapping the position of the numeric index with respect # to all others, then recreate that order by mapping the new order values from # the old. This information is sent to `_reorder_labels`. if row_numeric_idx is not None: row_order_mapping = dict( zip(sorted(row_numeric_idx), range(len(row_numeric_idx))) ) new_row_order = [row_order_mapping[idx] for idx in row_numeric_idx] else: new_row_order = None if col_numeric_idx is not None: col_order_mapping = dict( zip(sorted(col_numeric_idx), range(len(col_numeric_idx))) ) new_col_order = [col_order_mapping[idx] for idx in col_numeric_idx] else: new_col_order = None return intermediate._reorder_labels( row_numeric_idx=new_row_order, col_numeric_idx=new_col_order )
en
0.803408
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. Module houses class that implements ``PandasOnRayDataframe`` class using cuDF. The class implements the interface in ``PandasOnRayDataframe`` using cuDF. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. Synchronize labels by applying the index object (Index or Columns) to the partitions eagerly. Parameters ---------- axis : {0, 1, None}, default: None The axis to apply to. If None, it applies to both axes. # cudf does not support set_axis. It only supports rename with 1-to-1 mapping. # Therefore, we need to create the dictionary that have the relationship between # current index and new ones. Lazily select columns or rows from given indices. Parameters ---------- row_indices : list of hashable, optional The row labels to extract. row_numeric_idx : list of int, optional The row indices to extract. col_indices : list of hashable, optional The column labels to extract. col_numeric_idx : list of int, optional The column indices to extract. Returns ------- cuDFOnRayDataframe A new ``cuDFOnRayDataframe`` from the mask provided. Notes ----- If both `row_indices` and `row_numeric_idx` are set, `row_indices` will be used. The same rule applied to `col_indices` and `col_numeric_idx`. # Row lengths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. # Use the slice to calculate the new row index # Column widths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. # Use the slice to calculate the new columns # Check if monotonically increasing, return if it is. Fast track code path for # common case to keep it fast. # The new labels are often smaller than the old labels, so we can't reuse the # original order values because those were mapped to the original data. We have # to reorder here based on the expected order from within the data. # We create a dictionary mapping the position of the numeric index with respect # to all others, then recreate that order by mapping the new order values from # the old. This information is sent to `_reorder_labels`.
1.90013
2
Exoplanet_Population.py
mw5868/University
0
9408
from astropy.table import Table, Column import matplotlib.pyplot as plt #url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=csv" url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets" # This API returns Hostname, RA and Dec t = Table.read(url, format="csv") t_b = t[t["pl_letter"] == "b"] t_c = t[t["pl_letter"] == "c"] t_d = t[t["pl_letter"] == "d"] t_e = t[t["pl_letter"] == "e"] t_f = t[t["pl_letter"] == "f"] t_g = t[t["pl_letter"] == "g"] t_h = t[t["pl_letter"] == "h"] t_i = t[t["pl_letter"] == "i"] fig = plt.figure() ax = fig.add_subplot(1,1,1,aspect="equal") ax.scatter(t_b["ra"],t_b["dec"],color="Black",label = "2 Planets") ax.scatter(t_c["ra"],t_c["dec"],color="red", label = "3 Planets") ax.scatter(t_d["ra"],t_d["dec"],color="blue", label = "4 Planets") ax.scatter(t_e["ra"],t_e["dec"],color="green", label = "5 Planets") ax.scatter(t_f["ra"],t_f["dec"],color="yellow", label = "6 Planets") ax.scatter(t_g["ra"],t_g["dec"],color="purple", label = "7 Planets") ax.scatter(t_h["ra"],t_h["dec"],color="orange", label = "8 Planets") ax.scatter(t_i["ra"],t_i["dec"],color="cyan", label = "9 Planets") ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_xlim(360,0) ax.set_ylim(-90,90) ax.set_ylabel("DEC") ax.set_xlabel("RA") ax.set_title("Positions of Explanets by number of planets in system") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show()
from astropy.table import Table, Column import matplotlib.pyplot as plt #url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=csv" url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets" # This API returns Hostname, RA and Dec t = Table.read(url, format="csv") t_b = t[t["pl_letter"] == "b"] t_c = t[t["pl_letter"] == "c"] t_d = t[t["pl_letter"] == "d"] t_e = t[t["pl_letter"] == "e"] t_f = t[t["pl_letter"] == "f"] t_g = t[t["pl_letter"] == "g"] t_h = t[t["pl_letter"] == "h"] t_i = t[t["pl_letter"] == "i"] fig = plt.figure() ax = fig.add_subplot(1,1,1,aspect="equal") ax.scatter(t_b["ra"],t_b["dec"],color="Black",label = "2 Planets") ax.scatter(t_c["ra"],t_c["dec"],color="red", label = "3 Planets") ax.scatter(t_d["ra"],t_d["dec"],color="blue", label = "4 Planets") ax.scatter(t_e["ra"],t_e["dec"],color="green", label = "5 Planets") ax.scatter(t_f["ra"],t_f["dec"],color="yellow", label = "6 Planets") ax.scatter(t_g["ra"],t_g["dec"],color="purple", label = "7 Planets") ax.scatter(t_h["ra"],t_h["dec"],color="orange", label = "8 Planets") ax.scatter(t_i["ra"],t_i["dec"],color="cyan", label = "9 Planets") ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_xlim(360,0) ax.set_ylim(-90,90) ax.set_ylabel("DEC") ax.set_xlabel("RA") ax.set_title("Positions of Explanets by number of planets in system") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show()
en
0.395562
#url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=csv" # This API returns Hostname, RA and Dec
2.720666
3
pykuna/errors.py
marthoc/pykuna
4
9409
<filename>pykuna/errors.py class KunaError(Exception): pass class AuthenticationError(KunaError): """Raised when authentication fails.""" pass class UnauthorizedError(KunaError): """Raised when an API call fails as unauthorized (401).""" pass
<filename>pykuna/errors.py class KunaError(Exception): pass class AuthenticationError(KunaError): """Raised when authentication fails.""" pass class UnauthorizedError(KunaError): """Raised when an API call fails as unauthorized (401).""" pass
en
0.868191
Raised when authentication fails. Raised when an API call fails as unauthorized (401).
2.303569
2
src/pe_problem74.py
henrimitte/Project-Euler
0
9410
<filename>src/pe_problem74.py from tools import factorial def solve(): fa = tuple(factorial(x) for x in range(10)) def _sum_factorial_of_digits(n: int) -> int: s = 0 while n > 0: s += fa[n % 10] n //= 10 return s limit = 1000000 loops = [0 for x in range(limit)] for i in range(limit): if not loops[i]: loop_not_found = True chain = [i] n = i while loop_not_found: n = _sum_factorial_of_digits(n) if n in chain: loop_not_found = False else: chain.append(n) loops[i] = len(chain) sixty = sum(filter(lambda v: v == 60, loops)) // 60 print(sixty) if __name__ == '__main__': solve()
<filename>src/pe_problem74.py from tools import factorial def solve(): fa = tuple(factorial(x) for x in range(10)) def _sum_factorial_of_digits(n: int) -> int: s = 0 while n > 0: s += fa[n % 10] n //= 10 return s limit = 1000000 loops = [0 for x in range(limit)] for i in range(limit): if not loops[i]: loop_not_found = True chain = [i] n = i while loop_not_found: n = _sum_factorial_of_digits(n) if n in chain: loop_not_found = False else: chain.append(n) loops[i] = len(chain) sixty = sum(filter(lambda v: v == 60, loops)) // 60 print(sixty) if __name__ == '__main__': solve()
none
1
3.402893
3
thingsboard_gateway/connectors/modbus/modbus_connector.py
ferguscan/thingsboard-gateway
0
9411
<filename>thingsboard_gateway/connectors/modbus/modbus_connector.py # Copyright 2022. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from threading import Thread from time import sleep, time from queue import Queue from random import choice from string import ascii_lowercase from thingsboard_gateway.tb_utility.tb_utility import TBUtility # Try import Pymodbus library or install it and import try: from pymodbus.constants import Defaults except ImportError: print("Modbus library not found - installing...") TBUtility.install_package("pymodbus", ">=2.3.0") TBUtility.install_package('pyserial') from pymodbus.constants import Defaults try: from twisted.internet import reactor except ImportError: TBUtility.install_package('twisted') from twisted.internet import reactor from twisted.internet import reactor from pymodbus.bit_write_message import WriteSingleCoilResponse, WriteMultipleCoilsResponse from pymodbus.register_write_message import WriteMultipleRegistersResponse, WriteSingleRegisterResponse from pymodbus.register_read_message import ReadRegistersResponseBase from pymodbus.bit_read_message import ReadBitsResponseBase from pymodbus.client.sync import ModbusTcpClient, ModbusUdpClient, ModbusSerialClient from pymodbus.client.sync import ModbusRtuFramer, ModbusSocketFramer, ModbusAsciiFramer from pymodbus.exceptions import ConnectionException from pymodbus.server.asynchronous import StartTcpServer, StartUdpServer, StartSerialServer, StopServer from pymodbus.device import ModbusDeviceIdentification from pymodbus.version import version from pymodbus.datastore import ModbusSlaveContext, ModbusServerContext from pymodbus.datastore import ModbusSparseDataBlock from thingsboard_gateway.connectors.connector import Connector, log from thingsboard_gateway.connectors.modbus.constants import * from thingsboard_gateway.connectors.modbus.slave import Slave from thingsboard_gateway.connectors.modbus.backward_compability_adapter import BackwardCompatibilityAdapter from thingsboard_gateway.connectors.modbus.bytes_modbus_downlink_converter import BytesModbusDownlinkConverter CONVERTED_DATA_SECTIONS = [ATTRIBUTES_PARAMETER, TELEMETRY_PARAMETER] FRAMER_TYPE = { 'rtu': ModbusRtuFramer, 'socket': ModbusSocketFramer, 'ascii': ModbusAsciiFramer } SLAVE_TYPE = { 'tcp': StartTcpServer, 'udp': StartUdpServer, 'serial': StartSerialServer } FUNCTION_TYPE = { 'coils_initializer': 'co', 'holding_registers': 'hr', 'input_registers': 'ir', 'discrete_inputs': 'di' } FUNCTION_CODE_WRITE = { 'holding_registers': (6, 16), 'coils_initializer': (5, 15) } FUNCTION_CODE_READ = { 'holding_registers': 3, 'coils_initializer': 1, 'input_registers': 4, 'discrete_inputs': 2 } class ModbusConnector(Connector, Thread): process_requests = Queue(-1) def __init__(self, gateway, config, connector_type): self.statistics = {STATISTIC_MESSAGE_RECEIVED_PARAMETER: 0, STATISTIC_MESSAGE_SENT_PARAMETER: 0} super().__init__() self.__gateway = gateway self._connector_type = connector_type self.__backward_compatibility_adapter = BackwardCompatibilityAdapter(config, gateway.get_config_path()) self.__config = self.__backward_compatibility_adapter.convert() self.setName(self.__config.get("name", 'Modbus Default ' + ''.join(choice(ascii_lowercase) for _ in range(5)))) self.__connected = False self.__stopped = False self.daemon = True if self.__config.get('slave'): self.__slave_thread = Thread(target=self.__configure_and_run_slave, args=(self.__config['slave'],), daemon=True, name='Gateway as a slave') self.__slave_thread.start() if config['slave'].get('sendDataToThingsBoard', False): self.__modify_main_config() self.__slaves = [] self.__load_slaves() def is_connected(self): return self.__connected def open(self): self.__stopped = False self.start() def run(self): self.__connected = True while True: if not self.__stopped and not ModbusConnector.process_requests.empty(): thread = Thread(target=self.__process_slaves, daemon=True) thread.start() if self.__stopped: break sleep(.2) @staticmethod def __configure_and_run_slave(config): identity = None if config.get('identity'): identity = ModbusDeviceIdentification() identity.VendorName = config['identity'].get('vendorName', '') identity.ProductCode = config['identity'].get('productCode', '') identity.VendorUrl = config['identity'].get('vendorUrl', '') identity.ProductName = config['identity'].get('productName', '') identity.ModelName = config['identity'].get('ModelName', '') identity.MajorMinorRevision = version.short() blocks = {} for (key, value) in config.get('values').items(): values = {} converter = BytesModbusDownlinkConverter({}) for item in value: for section in ('attributes', 'timeseries', 'attributeUpdates', 'rpc'): for val in item.get(section, []): function_code = FUNCTION_CODE_WRITE[key][0] if val['objectsCount'] <= 1 else \ FUNCTION_CODE_WRITE[key][1] converted_value = converter.convert( {**val, 'device': config.get('deviceName', 'Gateway'), 'functionCode': function_code, 'byteOrder': config['byteOrder'], 'wordOrder': config['wordOrder']}, {'data': {'params': val['value']}}) values[val['address'] + 1] = converted_value blocks[FUNCTION_TYPE[key]] = ModbusSparseDataBlock(values) context = ModbusServerContext(slaves=ModbusSlaveContext(**blocks), single=True) SLAVE_TYPE[config['type']](context, identity=identity, address=(config.get('host'), config.get('port')) if ( config['type'] == 'tcp' or 'udp') else None, port=config.get('port') if config['type'] == 'serial' else None, framer=FRAMER_TYPE[config['method']]) def __modify_main_config(self): config = self.__config['slave'] values = config.pop('values') device = config for (register, reg_values) in values.items(): for value in reg_values: for section in ('attributes', 'timeseries', 'attributeUpdates', 'rpc'): if not device.get(section): device[section] = [] for item in value.get(section, []): device[section].append({**item, 'functionCode': FUNCTION_CODE_READ[ register] if section not in ('attributeUpdates', 'rpc') else item['functionCode']}) self.__config['master']['slaves'].append(device) def __load_slaves(self): self.__slaves = [ Slave(**{**device, 'connector': self, 'gateway': self.__gateway, 'callback': ModbusConnector.callback}) for device in self.__config.get('master', {'slaves': []}).get('slaves', [])] @classmethod def callback(cls, slave): cls.process_requests.put(slave) @property def connector_type(self): return self._connector_type def __convert_and_save_data(self, config_tuple): device, current_device_config, config, device_responses = config_tuple converted_data = {} try: converted_data = device.config[UPLINK_PREFIX + CONVERTER_PARAMETER].convert( config=config, data=device_responses) except Exception as e: log.error(e) to_send = {DEVICE_NAME_PARAMETER: converted_data[DEVICE_NAME_PARAMETER], DEVICE_TYPE_PARAMETER: converted_data[DEVICE_TYPE_PARAMETER], TELEMETRY_PARAMETER: [], ATTRIBUTES_PARAMETER: [] } if current_device_config.get('sendDataOnlyOnChange'): self.statistics[STATISTIC_MESSAGE_RECEIVED_PARAMETER] += 1 for converted_data_section in CONVERTED_DATA_SECTIONS: for current_section_dict in converted_data[converted_data_section]: for key, value in current_section_dict.items(): if device.config[LAST_PREFIX + converted_data_section].get(key) is None or \ device.config[LAST_PREFIX + converted_data_section][key] != value: device.config[LAST_PREFIX + converted_data_section][key] = value to_send[converted_data_section].append({key: value}) elif converted_data and current_device_config.get('sendDataOnlyOnChange') is None or \ not current_device_config.get('sendDataOnlyOnChange'): self.statistics[STATISTIC_MESSAGE_RECEIVED_PARAMETER] += 1 for converted_data_section in CONVERTED_DATA_SECTIONS: device.config[LAST_PREFIX + converted_data_section] = converted_data[ converted_data_section] to_send[converted_data_section] = converted_data[converted_data_section] if to_send.get(ATTRIBUTES_PARAMETER) or to_send.get(TELEMETRY_PARAMETER): self.__gateway.send_to_storage(self.get_name(), to_send) self.statistics[STATISTIC_MESSAGE_SENT_PARAMETER] += 1 def close(self): self.__stopped = True self.__stop_connections_to_masters() if reactor.running: StopServer() log.info('%s has been stopped.', self.get_name()) def get_name(self): return self.name def __process_slaves(self): # TODO: write documentation device = ModbusConnector.process_requests.get() device_responses = {'timeseries': {}, 'attributes': {}} current_device_config = {} try: for config_section in device_responses: if device.config.get(config_section) is not None: current_device_config = device.config self.__connect_to_current_master(device) if not device.config['master'].is_socket_open() or not len( current_device_config[config_section]): continue # Reading data from device for interested_data in range(len(current_device_config[config_section])): current_data = current_device_config[config_section][interested_data] current_data[DEVICE_NAME_PARAMETER] = device input_data = self.__function_to_device(device, current_data) device_responses[config_section][current_data[TAG_PARAMETER]] = { "data_sent": current_data, "input_data": input_data} log.debug("Checking %s for device %s", config_section, device) log.debug('Device response: ', device_responses) if device_responses.get('timeseries') or device_responses.get('attributes'): self.__convert_and_save_data((device, current_device_config, { **current_device_config, BYTE_ORDER_PARAMETER: current_device_config.get(BYTE_ORDER_PARAMETER, device.byte_order), WORD_ORDER_PARAMETER: current_device_config.get(WORD_ORDER_PARAMETER, device.word_order) }, device_responses)) except ConnectionException: sleep(5) log.error("Connection lost! Reconnecting...") except Exception as e: log.exception(e) def __connect_to_current_master(self, device=None): # TODO: write documentation connect_attempt_count = 5 connect_attempt_time_ms = 100 wait_after_failed_attempts_ms = 300000 if device.config.get('master') is None: device.config['master'], device.config['available_functions'] = self.__configure_master(device.config) if connect_attempt_count < 1: connect_attempt_count = 1 connect_attempt_time_ms = device.config.get('connectAttemptTimeMs', connect_attempt_time_ms) if connect_attempt_time_ms < 500: connect_attempt_time_ms = 500 wait_after_failed_attempts_ms = device.config.get('waitAfterFailedAttemptsMs', wait_after_failed_attempts_ms) if wait_after_failed_attempts_ms < 1000: wait_after_failed_attempts_ms = 1000 current_time = time() * 1000 if not device.config['master'].is_socket_open(): if device.config['connection_attempt'] >= connect_attempt_count and current_time - device.config[ 'last_connection_attempt_time'] >= wait_after_failed_attempts_ms: device.config['connection_attempt'] = 0 while not device.config['master'].is_socket_open() \ and device.config['connection_attempt'] < connect_attempt_count \ and current_time - device.config.get('last_connection_attempt_time', 0) >= connect_attempt_time_ms: device.config['connection_attempt'] = device.config[ 'connection_attempt'] + 1 device.config['last_connection_attempt_time'] = current_time log.debug("Modbus trying connect to %s", device) device.config['master'].connect() if device.config['connection_attempt'] == connect_attempt_count: log.warn("Maximum attempt count (%i) for device \"%s\" - encountered.", connect_attempt_count, device) if device.config['connection_attempt'] >= 0 and device.config['master'].is_socket_open(): device.config['connection_attempt'] = 0 device.config['last_connection_attempt_time'] = current_time @staticmethod def __configure_master(config): current_config = config current_config["rtu"] = FRAMER_TYPE[current_config['method']] if current_config.get('type') == 'tcp': master = ModbusTcpClient(current_config["host"], current_config["port"], current_config["rtu"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"]) elif current_config.get(TYPE_PARAMETER) == 'udp': master = ModbusUdpClient(current_config["host"], current_config["port"], current_config["rtu"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"]) elif current_config.get(TYPE_PARAMETER) == 'serial': master = ModbusSerialClient(method=current_config["method"], port=current_config["port"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"], baudrate=current_config["baudrate"], stopbits=current_config["stopbits"], bytesize=current_config["bytesize"], parity=current_config["parity"], strict=current_config["strict"]) else: raise Exception("Invalid Modbus transport type.") available_functions = { 1: master.read_coils, 2: master.read_discrete_inputs, 3: master.read_holding_registers, 4: master.read_input_registers, 5: master.write_coil, 6: master.write_register, 15: master.write_coils, 16: master.write_registers, } return master, available_functions def __stop_connections_to_masters(self): for slave in self.__slaves: if slave.config.get('master') is not None and slave.config.get('master').is_socket_open(): slave.config['master'].close() @staticmethod def __function_to_device(device, config): function_code = config.get('functionCode') result = None if function_code == 1: result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], count=config.get(OBJECTS_COUNT_PARAMETER, config.get("registersCount", config.get( "registerCount", 1))) * 8, unit=device.config['unitId']) elif function_code in (2, 3, 4): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], count=config.get(OBJECTS_COUNT_PARAMETER, config.get("registersCount", config.get( "registerCount", 1))), unit=device.config['unitId']) elif function_code in (5, 15): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], value=config[PAYLOAD_PARAMETER], unit=device.config['unitId'] * 8) elif function_code in (6, 16): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], values=config[PAYLOAD_PARAMETER], unit=device.config['unitId']) else: log.error("Unknown Modbus function with code: %s", function_code) log.debug("With result %s", str(result)) if "Exception" in str(result): log.exception(result) return result def on_attributes_update(self, content): try: device = tuple(filter(lambda slave: slave.name == content[DEVICE_SECTION_PARAMETER], self.__slaves))[0] for attribute_updates_command_config in device.config['attributeUpdates']: for attribute_updated in content[DATA_PARAMETER]: if attribute_updates_command_config[TAG_PARAMETER] == attribute_updated: to_process = { DEVICE_SECTION_PARAMETER: content[DEVICE_SECTION_PARAMETER], DATA_PARAMETER: { RPC_METHOD_PARAMETER: attribute_updated, RPC_PARAMS_PARAMETER: content[DATA_PARAMETER][attribute_updated] } } attribute_updates_command_config['byteOrder'] = device.byte_order or 'LITTLE' attribute_updates_command_config['wordOrder'] = device.word_order or 'LITTLE' self.__process_request(to_process, attribute_updates_command_config, request_type='attributeUpdates') except Exception as e: log.exception(e) def server_side_rpc_handler(self, server_rpc_request): try: if server_rpc_request.get(DEVICE_SECTION_PARAMETER) is not None: log.debug("Modbus connector received rpc request for %s with server_rpc_request: %s", server_rpc_request[DEVICE_SECTION_PARAMETER], server_rpc_request) device = tuple( filter( lambda slave: slave.name == server_rpc_request[DEVICE_SECTION_PARAMETER], self.__slaves ) )[0] if isinstance(device.config[RPC_SECTION], dict): rpc_command_config = device.config[RPC_SECTION].get( server_rpc_request[DATA_PARAMETER][RPC_METHOD_PARAMETER]) if rpc_command_config is not None: self.__process_request(server_rpc_request, rpc_command_config) elif isinstance(device.config[RPC_SECTION], list): for rpc_command_config in device.config[RPC_SECTION]: if rpc_command_config[TAG_PARAMETER] == server_rpc_request[DATA_PARAMETER][ RPC_METHOD_PARAMETER]: self.__process_request(server_rpc_request, rpc_command_config) break else: log.error("Received rpc request, but method %s not found in config for %s.", server_rpc_request[DATA_PARAMETER].get(RPC_METHOD_PARAMETER), self.get_name()) self.__gateway.send_rpc_reply(server_rpc_request[DEVICE_SECTION_PARAMETER], server_rpc_request[DATA_PARAMETER][RPC_ID_PARAMETER], {server_rpc_request[DATA_PARAMETER][ RPC_METHOD_PARAMETER]: "METHOD NOT FOUND!"}) else: log.debug("Received RPC to connector: %r", server_rpc_request) except Exception as e: log.exception(e) def __process_request(self, content, rpc_command_config, request_type='RPC'): log.debug('Processing %s request', request_type) if rpc_command_config is not None: device = tuple(filter(lambda slave: slave.name == content[DEVICE_SECTION_PARAMETER], self.__slaves))[0] rpc_command_config[UNIT_ID_PARAMETER] = device.config['unitId'] rpc_command_config[BYTE_ORDER_PARAMETER] = device.config.get("byteOrder", "LITTLE") rpc_command_config[WORD_ORDER_PARAMETER] = device.config.get("wordOrder", "LITTLE") self.__connect_to_current_master(device) if rpc_command_config.get(FUNCTION_CODE_PARAMETER) in (6, 16): converted_data = device.config[DOWNLINK_PREFIX + CONVERTER_PARAMETER].convert(rpc_command_config, content) try: rpc_command_config[PAYLOAD_PARAMETER] = converted_data[0] except IndexError and TypeError: rpc_command_config[PAYLOAD_PARAMETER] = converted_data elif rpc_command_config.get(FUNCTION_CODE_PARAMETER) in (5, 15): converted_data = device.config[DOWNLINK_PREFIX + CONVERTER_PARAMETER].convert(rpc_command_config, content) rpc_command_config[PAYLOAD_PARAMETER] = converted_data try: response = self.__function_to_device(device, rpc_command_config) except Exception as e: log.exception(e) response = e if isinstance(response, (ReadRegistersResponseBase, ReadBitsResponseBase)): to_converter = { RPC_SECTION: {content[DATA_PARAMETER][RPC_METHOD_PARAMETER]: {"data_sent": rpc_command_config, "input_data": response}}} response = device.config[ UPLINK_PREFIX + CONVERTER_PARAMETER].convert( config={**device.config, BYTE_ORDER_PARAMETER: device.byte_order, WORD_ORDER_PARAMETER: device.word_order }, data=to_converter) log.debug("Received %s method: %s, result: %r", request_type, content[DATA_PARAMETER][RPC_METHOD_PARAMETER], response) elif isinstance(response, (WriteMultipleRegistersResponse, WriteMultipleCoilsResponse, WriteSingleCoilResponse, WriteSingleRegisterResponse)): log.debug("Write %r", str(response)) response = {"success": True} if content.get(RPC_ID_PARAMETER) or ( content.get(DATA_PARAMETER) is not None and content[DATA_PARAMETER].get(RPC_ID_PARAMETER)): if isinstance(response, Exception): self.__gateway.send_rpc_reply(content[DEVICE_SECTION_PARAMETER], content[DATA_PARAMETER][RPC_ID_PARAMETER], {content[DATA_PARAMETER][RPC_METHOD_PARAMETER]: str(response)}) else: self.__gateway.send_rpc_reply(content[DEVICE_SECTION_PARAMETER], content[DATA_PARAMETER][RPC_ID_PARAMETER], response) log.debug("%r", response)
<filename>thingsboard_gateway/connectors/modbus/modbus_connector.py # Copyright 2022. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from threading import Thread from time import sleep, time from queue import Queue from random import choice from string import ascii_lowercase from thingsboard_gateway.tb_utility.tb_utility import TBUtility # Try import Pymodbus library or install it and import try: from pymodbus.constants import Defaults except ImportError: print("Modbus library not found - installing...") TBUtility.install_package("pymodbus", ">=2.3.0") TBUtility.install_package('pyserial') from pymodbus.constants import Defaults try: from twisted.internet import reactor except ImportError: TBUtility.install_package('twisted') from twisted.internet import reactor from twisted.internet import reactor from pymodbus.bit_write_message import WriteSingleCoilResponse, WriteMultipleCoilsResponse from pymodbus.register_write_message import WriteMultipleRegistersResponse, WriteSingleRegisterResponse from pymodbus.register_read_message import ReadRegistersResponseBase from pymodbus.bit_read_message import ReadBitsResponseBase from pymodbus.client.sync import ModbusTcpClient, ModbusUdpClient, ModbusSerialClient from pymodbus.client.sync import ModbusRtuFramer, ModbusSocketFramer, ModbusAsciiFramer from pymodbus.exceptions import ConnectionException from pymodbus.server.asynchronous import StartTcpServer, StartUdpServer, StartSerialServer, StopServer from pymodbus.device import ModbusDeviceIdentification from pymodbus.version import version from pymodbus.datastore import ModbusSlaveContext, ModbusServerContext from pymodbus.datastore import ModbusSparseDataBlock from thingsboard_gateway.connectors.connector import Connector, log from thingsboard_gateway.connectors.modbus.constants import * from thingsboard_gateway.connectors.modbus.slave import Slave from thingsboard_gateway.connectors.modbus.backward_compability_adapter import BackwardCompatibilityAdapter from thingsboard_gateway.connectors.modbus.bytes_modbus_downlink_converter import BytesModbusDownlinkConverter CONVERTED_DATA_SECTIONS = [ATTRIBUTES_PARAMETER, TELEMETRY_PARAMETER] FRAMER_TYPE = { 'rtu': ModbusRtuFramer, 'socket': ModbusSocketFramer, 'ascii': ModbusAsciiFramer } SLAVE_TYPE = { 'tcp': StartTcpServer, 'udp': StartUdpServer, 'serial': StartSerialServer } FUNCTION_TYPE = { 'coils_initializer': 'co', 'holding_registers': 'hr', 'input_registers': 'ir', 'discrete_inputs': 'di' } FUNCTION_CODE_WRITE = { 'holding_registers': (6, 16), 'coils_initializer': (5, 15) } FUNCTION_CODE_READ = { 'holding_registers': 3, 'coils_initializer': 1, 'input_registers': 4, 'discrete_inputs': 2 } class ModbusConnector(Connector, Thread): process_requests = Queue(-1) def __init__(self, gateway, config, connector_type): self.statistics = {STATISTIC_MESSAGE_RECEIVED_PARAMETER: 0, STATISTIC_MESSAGE_SENT_PARAMETER: 0} super().__init__() self.__gateway = gateway self._connector_type = connector_type self.__backward_compatibility_adapter = BackwardCompatibilityAdapter(config, gateway.get_config_path()) self.__config = self.__backward_compatibility_adapter.convert() self.setName(self.__config.get("name", 'Modbus Default ' + ''.join(choice(ascii_lowercase) for _ in range(5)))) self.__connected = False self.__stopped = False self.daemon = True if self.__config.get('slave'): self.__slave_thread = Thread(target=self.__configure_and_run_slave, args=(self.__config['slave'],), daemon=True, name='Gateway as a slave') self.__slave_thread.start() if config['slave'].get('sendDataToThingsBoard', False): self.__modify_main_config() self.__slaves = [] self.__load_slaves() def is_connected(self): return self.__connected def open(self): self.__stopped = False self.start() def run(self): self.__connected = True while True: if not self.__stopped and not ModbusConnector.process_requests.empty(): thread = Thread(target=self.__process_slaves, daemon=True) thread.start() if self.__stopped: break sleep(.2) @staticmethod def __configure_and_run_slave(config): identity = None if config.get('identity'): identity = ModbusDeviceIdentification() identity.VendorName = config['identity'].get('vendorName', '') identity.ProductCode = config['identity'].get('productCode', '') identity.VendorUrl = config['identity'].get('vendorUrl', '') identity.ProductName = config['identity'].get('productName', '') identity.ModelName = config['identity'].get('ModelName', '') identity.MajorMinorRevision = version.short() blocks = {} for (key, value) in config.get('values').items(): values = {} converter = BytesModbusDownlinkConverter({}) for item in value: for section in ('attributes', 'timeseries', 'attributeUpdates', 'rpc'): for val in item.get(section, []): function_code = FUNCTION_CODE_WRITE[key][0] if val['objectsCount'] <= 1 else \ FUNCTION_CODE_WRITE[key][1] converted_value = converter.convert( {**val, 'device': config.get('deviceName', 'Gateway'), 'functionCode': function_code, 'byteOrder': config['byteOrder'], 'wordOrder': config['wordOrder']}, {'data': {'params': val['value']}}) values[val['address'] + 1] = converted_value blocks[FUNCTION_TYPE[key]] = ModbusSparseDataBlock(values) context = ModbusServerContext(slaves=ModbusSlaveContext(**blocks), single=True) SLAVE_TYPE[config['type']](context, identity=identity, address=(config.get('host'), config.get('port')) if ( config['type'] == 'tcp' or 'udp') else None, port=config.get('port') if config['type'] == 'serial' else None, framer=FRAMER_TYPE[config['method']]) def __modify_main_config(self): config = self.__config['slave'] values = config.pop('values') device = config for (register, reg_values) in values.items(): for value in reg_values: for section in ('attributes', 'timeseries', 'attributeUpdates', 'rpc'): if not device.get(section): device[section] = [] for item in value.get(section, []): device[section].append({**item, 'functionCode': FUNCTION_CODE_READ[ register] if section not in ('attributeUpdates', 'rpc') else item['functionCode']}) self.__config['master']['slaves'].append(device) def __load_slaves(self): self.__slaves = [ Slave(**{**device, 'connector': self, 'gateway': self.__gateway, 'callback': ModbusConnector.callback}) for device in self.__config.get('master', {'slaves': []}).get('slaves', [])] @classmethod def callback(cls, slave): cls.process_requests.put(slave) @property def connector_type(self): return self._connector_type def __convert_and_save_data(self, config_tuple): device, current_device_config, config, device_responses = config_tuple converted_data = {} try: converted_data = device.config[UPLINK_PREFIX + CONVERTER_PARAMETER].convert( config=config, data=device_responses) except Exception as e: log.error(e) to_send = {DEVICE_NAME_PARAMETER: converted_data[DEVICE_NAME_PARAMETER], DEVICE_TYPE_PARAMETER: converted_data[DEVICE_TYPE_PARAMETER], TELEMETRY_PARAMETER: [], ATTRIBUTES_PARAMETER: [] } if current_device_config.get('sendDataOnlyOnChange'): self.statistics[STATISTIC_MESSAGE_RECEIVED_PARAMETER] += 1 for converted_data_section in CONVERTED_DATA_SECTIONS: for current_section_dict in converted_data[converted_data_section]: for key, value in current_section_dict.items(): if device.config[LAST_PREFIX + converted_data_section].get(key) is None or \ device.config[LAST_PREFIX + converted_data_section][key] != value: device.config[LAST_PREFIX + converted_data_section][key] = value to_send[converted_data_section].append({key: value}) elif converted_data and current_device_config.get('sendDataOnlyOnChange') is None or \ not current_device_config.get('sendDataOnlyOnChange'): self.statistics[STATISTIC_MESSAGE_RECEIVED_PARAMETER] += 1 for converted_data_section in CONVERTED_DATA_SECTIONS: device.config[LAST_PREFIX + converted_data_section] = converted_data[ converted_data_section] to_send[converted_data_section] = converted_data[converted_data_section] if to_send.get(ATTRIBUTES_PARAMETER) or to_send.get(TELEMETRY_PARAMETER): self.__gateway.send_to_storage(self.get_name(), to_send) self.statistics[STATISTIC_MESSAGE_SENT_PARAMETER] += 1 def close(self): self.__stopped = True self.__stop_connections_to_masters() if reactor.running: StopServer() log.info('%s has been stopped.', self.get_name()) def get_name(self): return self.name def __process_slaves(self): # TODO: write documentation device = ModbusConnector.process_requests.get() device_responses = {'timeseries': {}, 'attributes': {}} current_device_config = {} try: for config_section in device_responses: if device.config.get(config_section) is not None: current_device_config = device.config self.__connect_to_current_master(device) if not device.config['master'].is_socket_open() or not len( current_device_config[config_section]): continue # Reading data from device for interested_data in range(len(current_device_config[config_section])): current_data = current_device_config[config_section][interested_data] current_data[DEVICE_NAME_PARAMETER] = device input_data = self.__function_to_device(device, current_data) device_responses[config_section][current_data[TAG_PARAMETER]] = { "data_sent": current_data, "input_data": input_data} log.debug("Checking %s for device %s", config_section, device) log.debug('Device response: ', device_responses) if device_responses.get('timeseries') or device_responses.get('attributes'): self.__convert_and_save_data((device, current_device_config, { **current_device_config, BYTE_ORDER_PARAMETER: current_device_config.get(BYTE_ORDER_PARAMETER, device.byte_order), WORD_ORDER_PARAMETER: current_device_config.get(WORD_ORDER_PARAMETER, device.word_order) }, device_responses)) except ConnectionException: sleep(5) log.error("Connection lost! Reconnecting...") except Exception as e: log.exception(e) def __connect_to_current_master(self, device=None): # TODO: write documentation connect_attempt_count = 5 connect_attempt_time_ms = 100 wait_after_failed_attempts_ms = 300000 if device.config.get('master') is None: device.config['master'], device.config['available_functions'] = self.__configure_master(device.config) if connect_attempt_count < 1: connect_attempt_count = 1 connect_attempt_time_ms = device.config.get('connectAttemptTimeMs', connect_attempt_time_ms) if connect_attempt_time_ms < 500: connect_attempt_time_ms = 500 wait_after_failed_attempts_ms = device.config.get('waitAfterFailedAttemptsMs', wait_after_failed_attempts_ms) if wait_after_failed_attempts_ms < 1000: wait_after_failed_attempts_ms = 1000 current_time = time() * 1000 if not device.config['master'].is_socket_open(): if device.config['connection_attempt'] >= connect_attempt_count and current_time - device.config[ 'last_connection_attempt_time'] >= wait_after_failed_attempts_ms: device.config['connection_attempt'] = 0 while not device.config['master'].is_socket_open() \ and device.config['connection_attempt'] < connect_attempt_count \ and current_time - device.config.get('last_connection_attempt_time', 0) >= connect_attempt_time_ms: device.config['connection_attempt'] = device.config[ 'connection_attempt'] + 1 device.config['last_connection_attempt_time'] = current_time log.debug("Modbus trying connect to %s", device) device.config['master'].connect() if device.config['connection_attempt'] == connect_attempt_count: log.warn("Maximum attempt count (%i) for device \"%s\" - encountered.", connect_attempt_count, device) if device.config['connection_attempt'] >= 0 and device.config['master'].is_socket_open(): device.config['connection_attempt'] = 0 device.config['last_connection_attempt_time'] = current_time @staticmethod def __configure_master(config): current_config = config current_config["rtu"] = FRAMER_TYPE[current_config['method']] if current_config.get('type') == 'tcp': master = ModbusTcpClient(current_config["host"], current_config["port"], current_config["rtu"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"]) elif current_config.get(TYPE_PARAMETER) == 'udp': master = ModbusUdpClient(current_config["host"], current_config["port"], current_config["rtu"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"]) elif current_config.get(TYPE_PARAMETER) == 'serial': master = ModbusSerialClient(method=current_config["method"], port=current_config["port"], timeout=current_config["timeout"], retry_on_empty=current_config["retry_on_empty"], retry_on_invalid=current_config["retry_on_invalid"], retries=current_config["retries"], baudrate=current_config["baudrate"], stopbits=current_config["stopbits"], bytesize=current_config["bytesize"], parity=current_config["parity"], strict=current_config["strict"]) else: raise Exception("Invalid Modbus transport type.") available_functions = { 1: master.read_coils, 2: master.read_discrete_inputs, 3: master.read_holding_registers, 4: master.read_input_registers, 5: master.write_coil, 6: master.write_register, 15: master.write_coils, 16: master.write_registers, } return master, available_functions def __stop_connections_to_masters(self): for slave in self.__slaves: if slave.config.get('master') is not None and slave.config.get('master').is_socket_open(): slave.config['master'].close() @staticmethod def __function_to_device(device, config): function_code = config.get('functionCode') result = None if function_code == 1: result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], count=config.get(OBJECTS_COUNT_PARAMETER, config.get("registersCount", config.get( "registerCount", 1))) * 8, unit=device.config['unitId']) elif function_code in (2, 3, 4): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], count=config.get(OBJECTS_COUNT_PARAMETER, config.get("registersCount", config.get( "registerCount", 1))), unit=device.config['unitId']) elif function_code in (5, 15): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], value=config[PAYLOAD_PARAMETER], unit=device.config['unitId'] * 8) elif function_code in (6, 16): result = device.config['available_functions'][function_code](address=config[ADDRESS_PARAMETER], values=config[PAYLOAD_PARAMETER], unit=device.config['unitId']) else: log.error("Unknown Modbus function with code: %s", function_code) log.debug("With result %s", str(result)) if "Exception" in str(result): log.exception(result) return result def on_attributes_update(self, content): try: device = tuple(filter(lambda slave: slave.name == content[DEVICE_SECTION_PARAMETER], self.__slaves))[0] for attribute_updates_command_config in device.config['attributeUpdates']: for attribute_updated in content[DATA_PARAMETER]: if attribute_updates_command_config[TAG_PARAMETER] == attribute_updated: to_process = { DEVICE_SECTION_PARAMETER: content[DEVICE_SECTION_PARAMETER], DATA_PARAMETER: { RPC_METHOD_PARAMETER: attribute_updated, RPC_PARAMS_PARAMETER: content[DATA_PARAMETER][attribute_updated] } } attribute_updates_command_config['byteOrder'] = device.byte_order or 'LITTLE' attribute_updates_command_config['wordOrder'] = device.word_order or 'LITTLE' self.__process_request(to_process, attribute_updates_command_config, request_type='attributeUpdates') except Exception as e: log.exception(e) def server_side_rpc_handler(self, server_rpc_request): try: if server_rpc_request.get(DEVICE_SECTION_PARAMETER) is not None: log.debug("Modbus connector received rpc request for %s with server_rpc_request: %s", server_rpc_request[DEVICE_SECTION_PARAMETER], server_rpc_request) device = tuple( filter( lambda slave: slave.name == server_rpc_request[DEVICE_SECTION_PARAMETER], self.__slaves ) )[0] if isinstance(device.config[RPC_SECTION], dict): rpc_command_config = device.config[RPC_SECTION].get( server_rpc_request[DATA_PARAMETER][RPC_METHOD_PARAMETER]) if rpc_command_config is not None: self.__process_request(server_rpc_request, rpc_command_config) elif isinstance(device.config[RPC_SECTION], list): for rpc_command_config in device.config[RPC_SECTION]: if rpc_command_config[TAG_PARAMETER] == server_rpc_request[DATA_PARAMETER][ RPC_METHOD_PARAMETER]: self.__process_request(server_rpc_request, rpc_command_config) break else: log.error("Received rpc request, but method %s not found in config for %s.", server_rpc_request[DATA_PARAMETER].get(RPC_METHOD_PARAMETER), self.get_name()) self.__gateway.send_rpc_reply(server_rpc_request[DEVICE_SECTION_PARAMETER], server_rpc_request[DATA_PARAMETER][RPC_ID_PARAMETER], {server_rpc_request[DATA_PARAMETER][ RPC_METHOD_PARAMETER]: "METHOD NOT FOUND!"}) else: log.debug("Received RPC to connector: %r", server_rpc_request) except Exception as e: log.exception(e) def __process_request(self, content, rpc_command_config, request_type='RPC'): log.debug('Processing %s request', request_type) if rpc_command_config is not None: device = tuple(filter(lambda slave: slave.name == content[DEVICE_SECTION_PARAMETER], self.__slaves))[0] rpc_command_config[UNIT_ID_PARAMETER] = device.config['unitId'] rpc_command_config[BYTE_ORDER_PARAMETER] = device.config.get("byteOrder", "LITTLE") rpc_command_config[WORD_ORDER_PARAMETER] = device.config.get("wordOrder", "LITTLE") self.__connect_to_current_master(device) if rpc_command_config.get(FUNCTION_CODE_PARAMETER) in (6, 16): converted_data = device.config[DOWNLINK_PREFIX + CONVERTER_PARAMETER].convert(rpc_command_config, content) try: rpc_command_config[PAYLOAD_PARAMETER] = converted_data[0] except IndexError and TypeError: rpc_command_config[PAYLOAD_PARAMETER] = converted_data elif rpc_command_config.get(FUNCTION_CODE_PARAMETER) in (5, 15): converted_data = device.config[DOWNLINK_PREFIX + CONVERTER_PARAMETER].convert(rpc_command_config, content) rpc_command_config[PAYLOAD_PARAMETER] = converted_data try: response = self.__function_to_device(device, rpc_command_config) except Exception as e: log.exception(e) response = e if isinstance(response, (ReadRegistersResponseBase, ReadBitsResponseBase)): to_converter = { RPC_SECTION: {content[DATA_PARAMETER][RPC_METHOD_PARAMETER]: {"data_sent": rpc_command_config, "input_data": response}}} response = device.config[ UPLINK_PREFIX + CONVERTER_PARAMETER].convert( config={**device.config, BYTE_ORDER_PARAMETER: device.byte_order, WORD_ORDER_PARAMETER: device.word_order }, data=to_converter) log.debug("Received %s method: %s, result: %r", request_type, content[DATA_PARAMETER][RPC_METHOD_PARAMETER], response) elif isinstance(response, (WriteMultipleRegistersResponse, WriteMultipleCoilsResponse, WriteSingleCoilResponse, WriteSingleRegisterResponse)): log.debug("Write %r", str(response)) response = {"success": True} if content.get(RPC_ID_PARAMETER) or ( content.get(DATA_PARAMETER) is not None and content[DATA_PARAMETER].get(RPC_ID_PARAMETER)): if isinstance(response, Exception): self.__gateway.send_rpc_reply(content[DEVICE_SECTION_PARAMETER], content[DATA_PARAMETER][RPC_ID_PARAMETER], {content[DATA_PARAMETER][RPC_METHOD_PARAMETER]: str(response)}) else: self.__gateway.send_rpc_reply(content[DEVICE_SECTION_PARAMETER], content[DATA_PARAMETER][RPC_ID_PARAMETER], response) log.debug("%r", response)
en
0.781446
# Copyright 2022. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Try import Pymodbus library or install it and import # TODO: write documentation # Reading data from device # TODO: write documentation
1.949008
2
specs/test_gru_on_flat_babyai.py
xwu20/wmg_agent
23
9412
<reponame>xwu20/wmg_agent<filename>specs/test_gru_on_flat_babyai.py # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ### CONTROLS (non-tunable) ### # general TYPE_OF_RUN = test_episodes # train, test, test_episodes, render NUM_EPISODES_TO_TEST = 1000 MIN_FINAL_REWARD_FOR_SUCCESS = 1.0 LOAD_MODEL_FROM = models/gru_flat_babyai.pth SAVE_MODELS_TO = None # worker.py ENV = BabyAI_Env ENV_RANDOM_SEED = 1 AGENT_RANDOM_SEED = 1 REPORTING_INTERVAL = 1 TOTAL_STEPS = 1 ANNEAL_LR = False # A3cAgent AGENT_NET = GRU_Network # BabyAI_Env BABYAI_ENV_LEVEL = BabyAI-GoToLocal-v0 USE_SUCCESS_RATE = True SUCCESS_RATE_THRESHOLD = 0.99 HELDOUT_TESTING = False NUM_TEST_EPISODES = 10000 OBS_ENCODER = Flat BINARY_REWARD = True ### HYPERPARAMETERS (tunable) ### # A3cAgent A3C_T_MAX = 4 LEARNING_RATE = 4e-05 DISCOUNT_FACTOR = 0.9 GRADIENT_CLIP = 512.0 ENTROPY_TERM_STRENGTH = 0.02 ADAM_EPS = 1e-12 REWARD_SCALE = 2.0 WEIGHT_DECAY = 0. # RNNs NUM_RNN_UNITS = 96 OBS_EMBED_SIZE = 512 AC_HIDDEN_LAYER_SIZE = 4096
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ### CONTROLS (non-tunable) ### # general TYPE_OF_RUN = test_episodes # train, test, test_episodes, render NUM_EPISODES_TO_TEST = 1000 MIN_FINAL_REWARD_FOR_SUCCESS = 1.0 LOAD_MODEL_FROM = models/gru_flat_babyai.pth SAVE_MODELS_TO = None # worker.py ENV = BabyAI_Env ENV_RANDOM_SEED = 1 AGENT_RANDOM_SEED = 1 REPORTING_INTERVAL = 1 TOTAL_STEPS = 1 ANNEAL_LR = False # A3cAgent AGENT_NET = GRU_Network # BabyAI_Env BABYAI_ENV_LEVEL = BabyAI-GoToLocal-v0 USE_SUCCESS_RATE = True SUCCESS_RATE_THRESHOLD = 0.99 HELDOUT_TESTING = False NUM_TEST_EPISODES = 10000 OBS_ENCODER = Flat BINARY_REWARD = True ### HYPERPARAMETERS (tunable) ### # A3cAgent A3C_T_MAX = 4 LEARNING_RATE = 4e-05 DISCOUNT_FACTOR = 0.9 GRADIENT_CLIP = 512.0 ENTROPY_TERM_STRENGTH = 0.02 ADAM_EPS = 1e-12 REWARD_SCALE = 2.0 WEIGHT_DECAY = 0. # RNNs NUM_RNN_UNITS = 96 OBS_EMBED_SIZE = 512 AC_HIDDEN_LAYER_SIZE = 4096
en
0.514611
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ### CONTROLS (non-tunable) ### # general # train, test, test_episodes, render # worker.py # A3cAgent # BabyAI_Env ### HYPERPARAMETERS (tunable) ### # A3cAgent # RNNs
1.254636
1
haskell/private/actions/runghc.bzl
meisterT/rules_haskell
0
9413
<gh_stars>0 """runghc support""" load(":private/context.bzl", "render_env") load(":private/packages.bzl", "expose_packages", "pkg_info_to_compile_flags") load( ":private/path_utils.bzl", "link_libraries", "ln", "target_unique_name", ) load( ":private/set.bzl", "set", ) load(":providers.bzl", "get_ghci_extra_libs") load("@bazel_skylib//lib:shell.bzl", "shell") def build_haskell_runghc( hs, runghc_wrapper, user_compile_flags, extra_args, hs_info, cc_info, output, package_databases, version, lib_info = None): """Build runghc script. Args: hs: Haskell context. hs_info: HaskellInfo. package_databases: package caches excluding the cache file of the package we're creating a runghc for. lib_info: If we're building runghc for a library target, pass HaskellLibraryInfo here, otherwise it should be None. Returns: None. """ (pkg_info_inputs, args) = pkg_info_to_compile_flags( hs, pkg_info = expose_packages( package_ids = hs.package_ids, package_databases = package_databases, version = version, ), prefix = "runghc-", ) if lib_info != None: for idir in set.to_list(hs_info.import_dirs): args += ["-i{0}".format(idir)] (ghci_extra_libs, ghc_env) = get_ghci_extra_libs( hs, cc_info, path_prefix = "$RULES_HASKELL_EXEC_ROOT", ) link_libraries(ghci_extra_libs, args) runghc_file = hs.actions.declare_file(target_unique_name(hs, "runghc")) # Extra arguments. # `compiler flags` is the default set of arguments for runghc, # augmented by `extra_args`. # The ordering is important, first compiler flags (from toolchain # and local rule), then from `extra_args`. This way the more # specific arguments are listed last, and then have more priority in # GHC. # Note that most flags for GHCI do have their negative value, so a # negative flag in `extra_args` can disable a positive flag set # in `user_compile_flags`, such as `-XNoOverloadedStrings` will disable # `-XOverloadedStrings`. args += hs.toolchain.compiler_flags + user_compile_flags + hs.toolchain.repl_ghci_args # ghc args need to be wrapped up in "--ghc-arg=" when passing to runghc runcompile_flags = ["--ghc-arg=%s" % a for a in args] runcompile_flags += extra_args hs.actions.expand_template( template = runghc_wrapper, output = runghc_file, substitutions = { "{ENV}": render_env(ghc_env), "{TOOL}": hs.tools.runghc.path, "{CC}": hs.toolchain.cc_wrapper.executable.path, "{ARGS}": " ".join([shell.quote(a) for a in runcompile_flags]), }, is_executable = True, ) # XXX We create a symlink here because we need to force # hs.tools.runghc and the best way to do that is # to use hs.actions.run. That action, in turn must produce # a result, so using ln seems to be the only sane choice. extra_inputs = depset(transitive = [ depset([ hs.tools.runghc, runghc_file, ]), package_databases, pkg_info_inputs, ghci_extra_libs, hs_info.source_files, hs.toolchain.cc_wrapper.runfiles.files, ]) ln(hs, runghc_file, output, extra_inputs)
"""runghc support""" load(":private/context.bzl", "render_env") load(":private/packages.bzl", "expose_packages", "pkg_info_to_compile_flags") load( ":private/path_utils.bzl", "link_libraries", "ln", "target_unique_name", ) load( ":private/set.bzl", "set", ) load(":providers.bzl", "get_ghci_extra_libs") load("@bazel_skylib//lib:shell.bzl", "shell") def build_haskell_runghc( hs, runghc_wrapper, user_compile_flags, extra_args, hs_info, cc_info, output, package_databases, version, lib_info = None): """Build runghc script. Args: hs: Haskell context. hs_info: HaskellInfo. package_databases: package caches excluding the cache file of the package we're creating a runghc for. lib_info: If we're building runghc for a library target, pass HaskellLibraryInfo here, otherwise it should be None. Returns: None. """ (pkg_info_inputs, args) = pkg_info_to_compile_flags( hs, pkg_info = expose_packages( package_ids = hs.package_ids, package_databases = package_databases, version = version, ), prefix = "runghc-", ) if lib_info != None: for idir in set.to_list(hs_info.import_dirs): args += ["-i{0}".format(idir)] (ghci_extra_libs, ghc_env) = get_ghci_extra_libs( hs, cc_info, path_prefix = "$RULES_HASKELL_EXEC_ROOT", ) link_libraries(ghci_extra_libs, args) runghc_file = hs.actions.declare_file(target_unique_name(hs, "runghc")) # Extra arguments. # `compiler flags` is the default set of arguments for runghc, # augmented by `extra_args`. # The ordering is important, first compiler flags (from toolchain # and local rule), then from `extra_args`. This way the more # specific arguments are listed last, and then have more priority in # GHC. # Note that most flags for GHCI do have their negative value, so a # negative flag in `extra_args` can disable a positive flag set # in `user_compile_flags`, such as `-XNoOverloadedStrings` will disable # `-XOverloadedStrings`. args += hs.toolchain.compiler_flags + user_compile_flags + hs.toolchain.repl_ghci_args # ghc args need to be wrapped up in "--ghc-arg=" when passing to runghc runcompile_flags = ["--ghc-arg=%s" % a for a in args] runcompile_flags += extra_args hs.actions.expand_template( template = runghc_wrapper, output = runghc_file, substitutions = { "{ENV}": render_env(ghc_env), "{TOOL}": hs.tools.runghc.path, "{CC}": hs.toolchain.cc_wrapper.executable.path, "{ARGS}": " ".join([shell.quote(a) for a in runcompile_flags]), }, is_executable = True, ) # XXX We create a symlink here because we need to force # hs.tools.runghc and the best way to do that is # to use hs.actions.run. That action, in turn must produce # a result, so using ln seems to be the only sane choice. extra_inputs = depset(transitive = [ depset([ hs.tools.runghc, runghc_file, ]), package_databases, pkg_info_inputs, ghci_extra_libs, hs_info.source_files, hs.toolchain.cc_wrapper.runfiles.files, ]) ln(hs, runghc_file, output, extra_inputs)
en
0.753155
runghc support Build runghc script. Args: hs: Haskell context. hs_info: HaskellInfo. package_databases: package caches excluding the cache file of the package we're creating a runghc for. lib_info: If we're building runghc for a library target, pass HaskellLibraryInfo here, otherwise it should be None. Returns: None. # Extra arguments. # `compiler flags` is the default set of arguments for runghc, # augmented by `extra_args`. # The ordering is important, first compiler flags (from toolchain # and local rule), then from `extra_args`. This way the more # specific arguments are listed last, and then have more priority in # GHC. # Note that most flags for GHCI do have their negative value, so a # negative flag in `extra_args` can disable a positive flag set # in `user_compile_flags`, such as `-XNoOverloadedStrings` will disable # `-XOverloadedStrings`. # ghc args need to be wrapped up in "--ghc-arg=" when passing to runghc # XXX We create a symlink here because we need to force # hs.tools.runghc and the best way to do that is # to use hs.actions.run. That action, in turn must produce # a result, so using ln seems to be the only sane choice.
2.051249
2
tests/dicom/test_header_tweaks.py
pymedphys/pymedphys-archive-2019
1
9414
# Copyright (C) 2019 Cancer Care Associates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import uuid import numpy as np import pydicom from pymedphys._dicom.create import dicom_dataset_from_dict from pymedphys._dicom.header import ( RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density, ) from pymedphys._dicom.utilities import remove_file HERE = os.path.dirname(__file__) ORIGINAL_DICOM_FILENAME = os.path.join( HERE, "scratch", "original-{}.dcm".format(str(uuid.uuid4())) ) ADJUSTED_DICOM_FILENAME = os.path.join( HERE, "scratch", "adjusted-{}.dcm".format(str(uuid.uuid4())) ) def compare_dicom_cli(command, original, expected): pydicom.write_file(ORIGINAL_DICOM_FILENAME, original) try: subprocess.check_call(command) cli_adjusted_ds = pydicom.read_file(ADJUSTED_DICOM_FILENAME, force=True) assert str(cli_adjusted_ds) == str(expected) finally: remove_file(ORIGINAL_DICOM_FILENAME) remove_file(ADJUSTED_DICOM_FILENAME) def test_adjust_machine_name(): new_name = "new_name" original_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": "hello"}, {"TreatmentMachineName": "george"}, ] } ) expected_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": new_name}, {"TreatmentMachineName": new_name}, ] } ) adjusted_ds = adjust_machine_name(original_ds, new_name) assert adjusted_ds != original_ds assert adjusted_ds == expected_ds command = "pymedphys dicom adjust-machine-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, new_name, ] compare_dicom_cli(command, original_ds, expected_ds) def test_electron_density_append(): adjustment_map = { "to_be_changed 1": 1.0, "to_be_changed 2": 0.5, "to_be_changed 3": 1.5, } excess_adjustment_map = {**adjustment_map, **{"this_structure_doesnt_exist": 1.0}} original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ {"ROINumber": 1, "ROIName": "to_be_changed 1"}, {"ROINumber": 2, "ROIName": "dont_change_me"}, {"ROINumber": 10, "ROIName": "to_be_changed 2"}, {"ROINumber": 99, "ROIName": "to_be_changed 3"}, ], "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, } ], }, {"ReferencedROINumber": 2}, {"ReferencedROINumber": 10}, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": 0, } ], }, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, }, { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 1" ], }, ], }, {"ReferencedROINumber": 2}, { "ReferencedROINumber": 10, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 2" ], } ], }, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 3" ], } ], }, ] }, template_ds=original_ds, ) adjusted_ds = adjust_rel_elec_density(original_ds, adjustment_map) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) adjusted_with_excess_ds = adjust_rel_elec_density( original_ds, excess_adjustment_map, ignore_missing_structure=True ) assert adjusted_with_excess_ds != original_ds assert str(expected_ds) == str(adjusted_with_excess_ds) excess_adjustment_map_as_list = [ ["{}".format(key), item] for key, item in excess_adjustment_map.items() ] excess_adjustment_map_flat = np.concatenate(excess_adjustment_map_as_list).tolist() command = ( "pymedphys dicom adjust-RED -i ".split() + [ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME] + excess_adjustment_map_flat ) compare_dicom_cli(command, original_ds, expected_ds) def test_structure_name_parse(): structure_names = [ "a RED=1", "b", "c", "d RED=2.2", "e red = 3", "f", "g Red: 4.7", "h RED=0.5 ", ] expected_adjustment_map = { "a RED=1": 1, "d RED=2.2": 2.2, "e red = 3": 3, "g Red: 4.7": 4.7, "h RED=0.5 ": 0.5, } adjustment_map = RED_adjustment_map_from_structure_names(structure_names) assert expected_adjustment_map == adjustment_map def test_structure_name_based_RED_append(): electron_density_to_use = 0.5 original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ { "ROINumber": 1, "ROIName": "a_structure RED={}".format(electron_density_to_use), }, {"ROINumber": 2, "ROIName": "dont_change_me"}, ], "RTROIObservationsSequence": [ {"ReferencedROINumber": 1}, {"ReferencedROINumber": 2}, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": electron_density_to_use, } ], }, {"ReferencedROINumber": 2}, ] }, template_ds=original_ds, ) adjusted_ds = adjust_RED_by_structure_name(original_ds) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) command = "pymedphys dicom adjust-RED-by-structure-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, ] compare_dicom_cli(command, original_ds, expected_ds)
# Copyright (C) 2019 Cancer Care Associates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import uuid import numpy as np import pydicom from pymedphys._dicom.create import dicom_dataset_from_dict from pymedphys._dicom.header import ( RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density, ) from pymedphys._dicom.utilities import remove_file HERE = os.path.dirname(__file__) ORIGINAL_DICOM_FILENAME = os.path.join( HERE, "scratch", "original-{}.dcm".format(str(uuid.uuid4())) ) ADJUSTED_DICOM_FILENAME = os.path.join( HERE, "scratch", "adjusted-{}.dcm".format(str(uuid.uuid4())) ) def compare_dicom_cli(command, original, expected): pydicom.write_file(ORIGINAL_DICOM_FILENAME, original) try: subprocess.check_call(command) cli_adjusted_ds = pydicom.read_file(ADJUSTED_DICOM_FILENAME, force=True) assert str(cli_adjusted_ds) == str(expected) finally: remove_file(ORIGINAL_DICOM_FILENAME) remove_file(ADJUSTED_DICOM_FILENAME) def test_adjust_machine_name(): new_name = "new_name" original_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": "hello"}, {"TreatmentMachineName": "george"}, ] } ) expected_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": new_name}, {"TreatmentMachineName": new_name}, ] } ) adjusted_ds = adjust_machine_name(original_ds, new_name) assert adjusted_ds != original_ds assert adjusted_ds == expected_ds command = "pymedphys dicom adjust-machine-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, new_name, ] compare_dicom_cli(command, original_ds, expected_ds) def test_electron_density_append(): adjustment_map = { "to_be_changed 1": 1.0, "to_be_changed 2": 0.5, "to_be_changed 3": 1.5, } excess_adjustment_map = {**adjustment_map, **{"this_structure_doesnt_exist": 1.0}} original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ {"ROINumber": 1, "ROIName": "to_be_changed 1"}, {"ROINumber": 2, "ROIName": "dont_change_me"}, {"ROINumber": 10, "ROIName": "to_be_changed 2"}, {"ROINumber": 99, "ROIName": "to_be_changed 3"}, ], "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, } ], }, {"ReferencedROINumber": 2}, {"ReferencedROINumber": 10}, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": 0, } ], }, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, }, { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 1" ], }, ], }, {"ReferencedROINumber": 2}, { "ReferencedROINumber": 10, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 2" ], } ], }, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 3" ], } ], }, ] }, template_ds=original_ds, ) adjusted_ds = adjust_rel_elec_density(original_ds, adjustment_map) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) adjusted_with_excess_ds = adjust_rel_elec_density( original_ds, excess_adjustment_map, ignore_missing_structure=True ) assert adjusted_with_excess_ds != original_ds assert str(expected_ds) == str(adjusted_with_excess_ds) excess_adjustment_map_as_list = [ ["{}".format(key), item] for key, item in excess_adjustment_map.items() ] excess_adjustment_map_flat = np.concatenate(excess_adjustment_map_as_list).tolist() command = ( "pymedphys dicom adjust-RED -i ".split() + [ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME] + excess_adjustment_map_flat ) compare_dicom_cli(command, original_ds, expected_ds) def test_structure_name_parse(): structure_names = [ "a RED=1", "b", "c", "d RED=2.2", "e red = 3", "f", "g Red: 4.7", "h RED=0.5 ", ] expected_adjustment_map = { "a RED=1": 1, "d RED=2.2": 2.2, "e red = 3": 3, "g Red: 4.7": 4.7, "h RED=0.5 ": 0.5, } adjustment_map = RED_adjustment_map_from_structure_names(structure_names) assert expected_adjustment_map == adjustment_map def test_structure_name_based_RED_append(): electron_density_to_use = 0.5 original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ { "ROINumber": 1, "ROIName": "a_structure RED={}".format(electron_density_to_use), }, {"ROINumber": 2, "ROIName": "dont_change_me"}, ], "RTROIObservationsSequence": [ {"ReferencedROINumber": 1}, {"ReferencedROINumber": 2}, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": electron_density_to_use, } ], }, {"ReferencedROINumber": 2}, ] }, template_ds=original_ds, ) adjusted_ds = adjust_RED_by_structure_name(original_ds) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) command = "pymedphys dicom adjust-RED-by-structure-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, ] compare_dicom_cli(command, original_ds, expected_ds)
en
0.852217
# Copyright (C) 2019 Cancer Care Associates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
2.129616
2
tests/components/http/test_data_validator.py
itewk/home-assistant
23
9415
<gh_stars>10-100 """Test data validator decorator.""" from unittest.mock import Mock from aiohttp import web import voluptuous as vol from homeassistant.components.http import HomeAssistantView from homeassistant.components.http.data_validator import RequestDataValidator async def get_client(aiohttp_client, validator): """Generate a client that hits a view decorated with validator.""" app = web.Application() app["hass"] = Mock(is_running=True) class TestView(HomeAssistantView): url = "/" name = "test" requires_auth = False @validator async def post(self, request, data): """Test method.""" return b"" TestView().register(app, app.router) client = await aiohttp_client(app) return client async def test_validator(aiohttp_client): """Test the validator.""" client = await get_client( aiohttp_client, RequestDataValidator(vol.Schema({vol.Required("test"): str})) ) resp = await client.post("/", json={"test": "bla"}) assert resp.status == 200 resp = await client.post("/", json={"test": 100}) assert resp.status == 400 resp = await client.post("/") assert resp.status == 400 async def test_validator_allow_empty(aiohttp_client): """Test the validator with empty data.""" client = await get_client( aiohttp_client, RequestDataValidator( vol.Schema( { # Although we allow empty, our schema should still be able # to validate an empty dict. vol.Optional("test"): str } ), allow_empty=True, ), ) resp = await client.post("/", json={"test": "bla"}) assert resp.status == 200 resp = await client.post("/", json={"test": 100}) assert resp.status == 400 resp = await client.post("/") assert resp.status == 200
"""Test data validator decorator.""" from unittest.mock import Mock from aiohttp import web import voluptuous as vol from homeassistant.components.http import HomeAssistantView from homeassistant.components.http.data_validator import RequestDataValidator async def get_client(aiohttp_client, validator): """Generate a client that hits a view decorated with validator.""" app = web.Application() app["hass"] = Mock(is_running=True) class TestView(HomeAssistantView): url = "/" name = "test" requires_auth = False @validator async def post(self, request, data): """Test method.""" return b"" TestView().register(app, app.router) client = await aiohttp_client(app) return client async def test_validator(aiohttp_client): """Test the validator.""" client = await get_client( aiohttp_client, RequestDataValidator(vol.Schema({vol.Required("test"): str})) ) resp = await client.post("/", json={"test": "bla"}) assert resp.status == 200 resp = await client.post("/", json={"test": 100}) assert resp.status == 400 resp = await client.post("/") assert resp.status == 400 async def test_validator_allow_empty(aiohttp_client): """Test the validator with empty data.""" client = await get_client( aiohttp_client, RequestDataValidator( vol.Schema( { # Although we allow empty, our schema should still be able # to validate an empty dict. vol.Optional("test"): str } ), allow_empty=True, ), ) resp = await client.post("/", json={"test": "bla"}) assert resp.status == 200 resp = await client.post("/", json={"test": 100}) assert resp.status == 400 resp = await client.post("/") assert resp.status == 200
en
0.715168
Test data validator decorator. Generate a client that hits a view decorated with validator. Test method. Test the validator. Test the validator with empty data. # Although we allow empty, our schema should still be able # to validate an empty dict.
2.825898
3
Conversely_Frontend/app/Server/ukjp/templates.py
sam-aldis/Conversley
0
9416
import days STAGE_INIT = 0 STAGE_CHALLENGE_INIT = 1 STAGE_BOOKED = 2 def createJSONTemplate(data): pass messages = [ "Hey {{first_name}}, thankyou for your enquiry to be one of our Transformation Challengers", "We have 2 Challenges available for you:\n\nThe 8 Week Bikini Challenge which helps you shed 3-9kg of unwanted body fat, flattens your tummy and tones your arms, abs, legs and butt.\n\nOr our 9in6 Challenge which helps you drop 9+kgs of pure fat in just 6 Weeks.", "Please choose which challenge information you would like below..." ] callbacks = { "INIT_8WBC" : [ { "type": "message", "text" : "Thank you {{first_name}},\n\ The FREE 8 Week Bikini Challenge is a done for you - step by step PROVEN program that helps you lose the 3-7kg of unwanted body fat, flatten your tummy and tone your arms, legs and butt.\n\ \n\ This is your chance to transform your body in just 8 weeks for FREE" }, { "type" : "message", "text" : "In exchange for the program being FREE....we ask that you allow us to share your transformation story on our Facebook fan page for marketing purposes to help motivate and inspire the ladies of Perth. \n\ (Please note, a small refundable deposit applies to keep you motivated throughout the 8 weeks)" }, { "type": "message", "text": "The challenge is starting Monday 12th of June and to start your 8 Week Bikini Challenge, we just require you to attend the upcoming information meeting at the facility to quickly go over the program in person. \n\ \n\ There is absolutely no high pressure sales or obligation to join. Simply a meet and chat.\n\ \n\ To RSVP to the meeting click a suitable date below" }, { "type" : "json", "template" : "init_8wbc" } ], "INIT_9IN6" : [ { "type" : "message", "text" : "Thank you {{first_name}},\n\ The 9in6 Transformation Challenge is a done for you - step by step PROVEN program that helps you lose 9kg kilos of unwanted body fat, flatten your tummy and tone your arms, legs and butt in just 6 weeks.\n\ \ \nThis is your chance to transform your body in just 6 weeks for FREE!" }, { "type" : "message", "text" : "In exchange for the program, we ask that you allow us to showcase your transformation story on our Facebook fan page for marketing purposes to help motivate and inspire the ladies of Perth. When you complete the program its FREE. \n\ Please note, a small refundable \"incentive deposit\" applies to keep you motivated throughout the 6 weeks." }, { "type" : "message", "text" : "The challenge is starting Monday 12th of June and to start your 9kg 6-week challenge, we require you to attend the upcoming information meeting where we explain the program in person. \n\ \n\ There is absolutely no high pressure sales or obligation to join at the end, just an opportunity for you learn about the program and how you can lose 9kg in 6 weeks for FREE\n\ \n\ To RSVP to the meeting click a suitable date below" }, { "type" : "json", "template" : "init_9in6" } ], "TIME_TABLE_8WBC" : [ { "type" : "message", "text" : "Sure here's our lesson time table.." }, { "type" : "file", "url" : "http://thetransformationcentre.com.au/img/timetable.pdf" }, { "type" : "json", "template" : "init_8wbc" } ] } def build_json_templates(): JSON_TEMPLATES = { "init" :{ "template_type" : "generic", "elements" : [ { "title" : "The Transformation Centre", "image_url" : "http://thetransformationcentre.com.au/img/spinner/1.png", "subtitle":"Choose one of our Challenges below", "buttons":[ { "type":"postback", "payload":"INIT_8WBC", "title":"8 Week Bikini Challenge" },{ "type":"postback", "title":"9kg 6 Week Challenge", "payload":"INIT_9IN6" } ] } ] }, "init_8wbc" : { "template_type" : "generic", "elements" : [ { "title" : "8 Week Bikini Challenge Meeting", "subtitle":"RSVP by clicking a suitable data below", "buttons":[ # { # "type":"postback", # "payload":"BOOK_CONSULT_8WBC_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } # }, { "type":"postback", "title": "Sat 10th June 09.45", "payload":"BOOK_CONSULT_8WBC_DATE_10.05.2017_DAY_SATURDAY_TIME_0945" } ] } ] }, "init_9in6" : { "template_type" : "generic", "elements" : [ { "title" : "9kg 6 Week Challenge Info Meeting", "subtitle":"RSVP by clicking a suitable date below", "buttons":[ # { # "type":"postback", # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } { "type":"postback", "title": "Sat 10th June 09.45", "payload":"BOOK_CONSULT_8WBC_DATE_10.05.2017_DAY_SATURDAY_TIME_0945" } # ,{ # "type":"postback", # "title": days.getAppointmentDates(2)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[0] + " " + days.getAppointmentDates(2)[1], # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(2)[2] + "_DAY_" + days.getAppointmentDates(2)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[1] # } ] } ] } } return JSON_TEMPLATES
import days STAGE_INIT = 0 STAGE_CHALLENGE_INIT = 1 STAGE_BOOKED = 2 def createJSONTemplate(data): pass messages = [ "Hey {{first_name}}, thankyou for your enquiry to be one of our Transformation Challengers", "We have 2 Challenges available for you:\n\nThe 8 Week Bikini Challenge which helps you shed 3-9kg of unwanted body fat, flattens your tummy and tones your arms, abs, legs and butt.\n\nOr our 9in6 Challenge which helps you drop 9+kgs of pure fat in just 6 Weeks.", "Please choose which challenge information you would like below..." ] callbacks = { "INIT_8WBC" : [ { "type": "message", "text" : "Thank you {{first_name}},\n\ The FREE 8 Week Bikini Challenge is a done for you - step by step PROVEN program that helps you lose the 3-7kg of unwanted body fat, flatten your tummy and tone your arms, legs and butt.\n\ \n\ This is your chance to transform your body in just 8 weeks for FREE" }, { "type" : "message", "text" : "In exchange for the program being FREE....we ask that you allow us to share your transformation story on our Facebook fan page for marketing purposes to help motivate and inspire the ladies of Perth. \n\ (Please note, a small refundable deposit applies to keep you motivated throughout the 8 weeks)" }, { "type": "message", "text": "The challenge is starting Monday 12th of June and to start your 8 Week Bikini Challenge, we just require you to attend the upcoming information meeting at the facility to quickly go over the program in person. \n\ \n\ There is absolutely no high pressure sales or obligation to join. Simply a meet and chat.\n\ \n\ To RSVP to the meeting click a suitable date below" }, { "type" : "json", "template" : "init_8wbc" } ], "INIT_9IN6" : [ { "type" : "message", "text" : "Thank you {{first_name}},\n\ The 9in6 Transformation Challenge is a done for you - step by step PROVEN program that helps you lose 9kg kilos of unwanted body fat, flatten your tummy and tone your arms, legs and butt in just 6 weeks.\n\ \ \nThis is your chance to transform your body in just 6 weeks for FREE!" }, { "type" : "message", "text" : "In exchange for the program, we ask that you allow us to showcase your transformation story on our Facebook fan page for marketing purposes to help motivate and inspire the ladies of Perth. When you complete the program its FREE. \n\ Please note, a small refundable \"incentive deposit\" applies to keep you motivated throughout the 6 weeks." }, { "type" : "message", "text" : "The challenge is starting Monday 12th of June and to start your 9kg 6-week challenge, we require you to attend the upcoming information meeting where we explain the program in person. \n\ \n\ There is absolutely no high pressure sales or obligation to join at the end, just an opportunity for you learn about the program and how you can lose 9kg in 6 weeks for FREE\n\ \n\ To RSVP to the meeting click a suitable date below" }, { "type" : "json", "template" : "init_9in6" } ], "TIME_TABLE_8WBC" : [ { "type" : "message", "text" : "Sure here's our lesson time table.." }, { "type" : "file", "url" : "http://thetransformationcentre.com.au/img/timetable.pdf" }, { "type" : "json", "template" : "init_8wbc" } ] } def build_json_templates(): JSON_TEMPLATES = { "init" :{ "template_type" : "generic", "elements" : [ { "title" : "The Transformation Centre", "image_url" : "http://thetransformationcentre.com.au/img/spinner/1.png", "subtitle":"Choose one of our Challenges below", "buttons":[ { "type":"postback", "payload":"INIT_8WBC", "title":"8 Week Bikini Challenge" },{ "type":"postback", "title":"9kg 6 Week Challenge", "payload":"INIT_9IN6" } ] } ] }, "init_8wbc" : { "template_type" : "generic", "elements" : [ { "title" : "8 Week Bikini Challenge Meeting", "subtitle":"RSVP by clicking a suitable data below", "buttons":[ # { # "type":"postback", # "payload":"BOOK_CONSULT_8WBC_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } # }, { "type":"postback", "title": "Sat 10th June 09.45", "payload":"BOOK_CONSULT_8WBC_DATE_10.05.2017_DAY_SATURDAY_TIME_0945" } ] } ] }, "init_9in6" : { "template_type" : "generic", "elements" : [ { "title" : "9kg 6 Week Challenge Info Meeting", "subtitle":"RSVP by clicking a suitable date below", "buttons":[ # { # "type":"postback", # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } { "type":"postback", "title": "Sat 10th June 09.45", "payload":"BOOK_CONSULT_8WBC_DATE_10.05.2017_DAY_SATURDAY_TIME_0945" } # ,{ # "type":"postback", # "title": days.getAppointmentDates(2)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[0] + " " + days.getAppointmentDates(2)[1], # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(2)[2] + "_DAY_" + days.getAppointmentDates(2)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[1] # } ] } ] } } return JSON_TEMPLATES
en
0.655803
# { # "type":"postback", # "payload":"BOOK_CONSULT_8WBC_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } # }, # { # "type":"postback", # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(1)[2] + "_DAY_" + days.getAppointmentDates(1)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[1], # "title":days.getAppointmentDates(1)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(1)[0])[0] + " " + days.getAppointmentDates(1)[1] # } # ,{ # "type":"postback", # "title": days.getAppointmentDates(2)[0].title() + " " + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[0] + " " + days.getAppointmentDates(2)[1], # "payload":"BOOK_CONSULT_9KG6WK_DATE_" + days.getAppointmentDates(2)[2] + "_DAY_" + days.getAppointmentDates(2)[0] + "_TIME_" + days.getAppointmentTimesForDay(days.getAppointmentDates(2)[0])[1] # }
2.185561
2
var/spack/repos/builtin/packages/pagmo2/package.py
jeanbez/spack
0
9417
<reponame>jeanbez/spack # Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Pagmo2(CMakePackage): """Parallel Global Multiobjective Optimizer (and its Python alter ego PyGMO) is a C++ / Python platform to perform parallel computations of optimisation tasks (global and local) via the asynchronous generalized island model.""" homepage = "https://esa.github.io/pagmo2/" url = "https://github.com/esa/pagmo2/archive/v2.18.0.tar.gz" git = "https://github.com/esa/pagmo2.git" maintainers = ['liuyangzhuan'] version('master', branch='master') version('2.18.0', sha256='5ad40bf3aa91857a808d6b632d9e1020341a33f1a4115d7a2b78b78fd063ae31') depends_on('boost+system+serialization+thread') depends_on('intel-tbb') depends_on('mpi') depends_on('[email protected]:', type='build') variant('shared', default=True, description='Build shared libraries') def cmake_args(self): spec = self.spec args = [ '-DCMAKE_C_COMPILER=%s' % spec['mpi'].mpicc, '-DCMAKE_CXX_COMPILER=%s' % spec['mpi'].mpicxx, self.define_from_variant('BUILD_SHARED_LIBS', 'shared'), ] return args
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Pagmo2(CMakePackage): """Parallel Global Multiobjective Optimizer (and its Python alter ego PyGMO) is a C++ / Python platform to perform parallel computations of optimisation tasks (global and local) via the asynchronous generalized island model.""" homepage = "https://esa.github.io/pagmo2/" url = "https://github.com/esa/pagmo2/archive/v2.18.0.tar.gz" git = "https://github.com/esa/pagmo2.git" maintainers = ['liuyangzhuan'] version('master', branch='master') version('2.18.0', sha256='5ad40bf3aa91857a808d6b632d9e1020341a33f1a4115d7a2b78b78fd063ae31') depends_on('boost+system+serialization+thread') depends_on('intel-tbb') depends_on('mpi') depends_on('[email protected]:', type='build') variant('shared', default=True, description='Build shared libraries') def cmake_args(self): spec = self.spec args = [ '-DCMAKE_C_COMPILER=%s' % spec['mpi'].mpicc, '-DCMAKE_CXX_COMPILER=%s' % spec['mpi'].mpicxx, self.define_from_variant('BUILD_SHARED_LIBS', 'shared'), ] return args
en
0.726431
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) Parallel Global Multiobjective Optimizer (and its Python alter ego PyGMO) is a C++ / Python platform to perform parallel computations of optimisation tasks (global and local) via the asynchronous generalized island model.
1.471621
1
interferogram/sentinel/fetchCalES.py
earthobservatory/ariamh-pub
4
9418
#!/usr/bin/env python3 import os, sys, re, json, requests, datetime, tarfile, argparse from pprint import pprint import numpy as np from utils.UrlUtils import UrlUtils server = 'https://qc.sentinel1.eo.esa.int/' cal_re = re.compile(r'S1\w_AUX_CAL') def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Fetch calibration auxiliary files ingested into HySDS') parser.add_argument('-o', '--output', dest='outdir', type=str, default='.', help='Path to output directory') parser.add_argument('-d', '--dry-run', dest='dry_run', action='store_true', help="Don't download anything; just output the URLs") return parser.parse_args() def download_file(url, outdir='.', session=None): ''' Download file to specified directory. ''' if session is None: session = requests.session() path = "%s.tgz" % os.path.join(outdir, os.path.basename(url)) print('Downloading URL: ', url) request = session.get(url, stream=True, verify=False) request.raise_for_status() with open(path,'wb') as f: for chunk in request.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() return path def untar_file(path, outdir): ''' Extract aux cal files. ''' if not tarfile.is_tarfile(path): raise RuntimeError("%s is not a tarfile." % path) with tarfile.open(path) as f: f.extractall(outdir) def get_active_ids(es_url): """Query for the active calibration IDs.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": "S1_AUX_CAL_ACTIVE"}}, ] } }, "sort":[ { "starttime": { "order": "desc" } } ] } es_index = "grq_*_s1-aux_cal_active" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() #pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find S1_AUX_CAL_ACTIVE at %s." % search_url) return result['hits']['hits'][0]['_source']['metadata']['active_ids'] else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def get_cal_url(id, es_url): """Query for the active calibration url.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": id}}, ] } }, "fields": ["urls", "metadata.archive_filename"] } es_index = "grq_*_s1-aux_cal" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find %s at %s." % (id, search_url)) urls = result['hits']['hits'][0]['fields']['urls'] archive_fname = result['hits']['hits'][0]['fields']['metadata.archive_filename'][0] url = [x for x in urls if x.startswith('http')][0] #print(urls) #print(url) #print(archive_fname) return os.path.join(url, archive_fname) else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def fetch(outdir, dry_run): # get endpoint configurations uu = UrlUtils() es_url = uu.rest_url # get active calibration ids active_ids = get_active_ids(es_url) print(active_ids) # get urls for active calibration files cal_urls = [get_cal_url(i, es_url) for i in active_ids] print(cal_urls) if len(cal_urls) == 0: print('Failed to find calibration auxiliary files') if dry_run: print('\n'.join(cal_urls)) else: if not os.path.isdir(outdir): os.makedirs(outdir) for cal_url in cal_urls: try: cal_file = download_file(cal_url, outdir) except: print('Failed to download URL: ', cal_url) raise try: cal_dir = untar_file(cal_file, outdir) except: print('Failed to untar: ', cal_file) raise os.unlink(cal_file) if __name__ == '__main__': inps = cmdLineParse() fetch(inps.outdir, inps.dry_run)
#!/usr/bin/env python3 import os, sys, re, json, requests, datetime, tarfile, argparse from pprint import pprint import numpy as np from utils.UrlUtils import UrlUtils server = 'https://qc.sentinel1.eo.esa.int/' cal_re = re.compile(r'S1\w_AUX_CAL') def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Fetch calibration auxiliary files ingested into HySDS') parser.add_argument('-o', '--output', dest='outdir', type=str, default='.', help='Path to output directory') parser.add_argument('-d', '--dry-run', dest='dry_run', action='store_true', help="Don't download anything; just output the URLs") return parser.parse_args() def download_file(url, outdir='.', session=None): ''' Download file to specified directory. ''' if session is None: session = requests.session() path = "%s.tgz" % os.path.join(outdir, os.path.basename(url)) print('Downloading URL: ', url) request = session.get(url, stream=True, verify=False) request.raise_for_status() with open(path,'wb') as f: for chunk in request.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() return path def untar_file(path, outdir): ''' Extract aux cal files. ''' if not tarfile.is_tarfile(path): raise RuntimeError("%s is not a tarfile." % path) with tarfile.open(path) as f: f.extractall(outdir) def get_active_ids(es_url): """Query for the active calibration IDs.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": "S1_AUX_CAL_ACTIVE"}}, ] } }, "sort":[ { "starttime": { "order": "desc" } } ] } es_index = "grq_*_s1-aux_cal_active" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() #pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find S1_AUX_CAL_ACTIVE at %s." % search_url) return result['hits']['hits'][0]['_source']['metadata']['active_ids'] else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def get_cal_url(id, es_url): """Query for the active calibration url.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": id}}, ] } }, "fields": ["urls", "metadata.archive_filename"] } es_index = "grq_*_s1-aux_cal" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find %s at %s." % (id, search_url)) urls = result['hits']['hits'][0]['fields']['urls'] archive_fname = result['hits']['hits'][0]['fields']['metadata.archive_filename'][0] url = [x for x in urls if x.startswith('http')][0] #print(urls) #print(url) #print(archive_fname) return os.path.join(url, archive_fname) else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def fetch(outdir, dry_run): # get endpoint configurations uu = UrlUtils() es_url = uu.rest_url # get active calibration ids active_ids = get_active_ids(es_url) print(active_ids) # get urls for active calibration files cal_urls = [get_cal_url(i, es_url) for i in active_ids] print(cal_urls) if len(cal_urls) == 0: print('Failed to find calibration auxiliary files') if dry_run: print('\n'.join(cal_urls)) else: if not os.path.isdir(outdir): os.makedirs(outdir) for cal_url in cal_urls: try: cal_file = download_file(cal_url, outdir) except: print('Failed to download URL: ', cal_url) raise try: cal_dir = untar_file(cal_file, outdir) except: print('Failed to untar: ', cal_file) raise os.unlink(cal_file) if __name__ == '__main__': inps = cmdLineParse() fetch(inps.outdir, inps.dry_run)
en
0.564127
#!/usr/bin/env python3 Command line parser. Download file to specified directory. Extract aux cal files. Query for the active calibration IDs. #pprint(result) Query for the active calibration url. #print(urls) #print(url) #print(archive_fname) # get endpoint configurations # get active calibration ids # get urls for active calibration files
2.735443
3
www/conservancy/urls.py
stain/conservancy-website
0
9419
# Copyright 2005-2008, <NAME> # Copyright 2010, 2012 <NAME> # This software's license gives you freedom; you can copy, convey, # propagate, redistribute, modify and/or redistribute modified versions of # this program under the terms of the GNU Affero General Public License # (AGPL) as published by the Free Software Foundation (FSF), either # version 3 of the License, or (at your option) any later version of the # AGPL published by the FSF. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero # General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program in a file in the toplevel directory called # "AGPLv3". If not, see <http://www.gnu.org/licenses/>. from django.conf.urls import url, include from django.contrib import admin, admindocs from conservancy import feeds, frontpage, sponsors import conservancy.apps.fundgoal.views as fundgoal_views import conservancy.static.views as static_views admin.autodiscover() urlpatterns = [ url(r'^$', frontpage.view), url(r'^sponsors$', frontpage.view), url(r'^sponsors/$', sponsors.view), url(r'^sponsors/index.html$', sponsors.view), url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', admin.site.urls), url(r'^feeds/blog/?$', feeds.BlogFeed()), url(r'^feeds/news/?$', feeds.PressReleaseFeed()), url(r'^feeds/omnibus/?$', feeds.OmnibusFeed()), url(r'^feeds/?$', feeds.view), url(r'^news(/|$)', include('conservancy.apps.news.urls')), url(r'^blog(/|$)', include('conservancy.apps.blog.urls')), # formerly static templated things... (dirs with templates) url(r'^error/(40[134]|500)(?:/index\.html|/|)$', static_views.handler), url(r'^error', static_views.index), url(r'^about', static_views.index), url(r'^donate', static_views.index), url(r'^copyleft-compliance', static_views.index, {'fundraiser_sought' : 'vmware-match-0'}), url(r'^projects', static_views.index), url(r'^npoacct', static_views.index, {'fundraiser_sought' : 'npoacct'}), url(r'^contractpatch', include('conservancy.apps.contractpatch.urls')), url(r'^overview', static_views.index), url(r'^privacy-policy', static_views.index), url(r'^supporter', include('conservancy.apps.supporter.urls')), url(r'^fundraiser_data', fundgoal_views.view), ]
# Copyright 2005-2008, <NAME> # Copyright 2010, 2012 <NAME> # This software's license gives you freedom; you can copy, convey, # propagate, redistribute, modify and/or redistribute modified versions of # this program under the terms of the GNU Affero General Public License # (AGPL) as published by the Free Software Foundation (FSF), either # version 3 of the License, or (at your option) any later version of the # AGPL published by the FSF. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero # General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program in a file in the toplevel directory called # "AGPLv3". If not, see <http://www.gnu.org/licenses/>. from django.conf.urls import url, include from django.contrib import admin, admindocs from conservancy import feeds, frontpage, sponsors import conservancy.apps.fundgoal.views as fundgoal_views import conservancy.static.views as static_views admin.autodiscover() urlpatterns = [ url(r'^$', frontpage.view), url(r'^sponsors$', frontpage.view), url(r'^sponsors/$', sponsors.view), url(r'^sponsors/index.html$', sponsors.view), url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', admin.site.urls), url(r'^feeds/blog/?$', feeds.BlogFeed()), url(r'^feeds/news/?$', feeds.PressReleaseFeed()), url(r'^feeds/omnibus/?$', feeds.OmnibusFeed()), url(r'^feeds/?$', feeds.view), url(r'^news(/|$)', include('conservancy.apps.news.urls')), url(r'^blog(/|$)', include('conservancy.apps.blog.urls')), # formerly static templated things... (dirs with templates) url(r'^error/(40[134]|500)(?:/index\.html|/|)$', static_views.handler), url(r'^error', static_views.index), url(r'^about', static_views.index), url(r'^donate', static_views.index), url(r'^copyleft-compliance', static_views.index, {'fundraiser_sought' : 'vmware-match-0'}), url(r'^projects', static_views.index), url(r'^npoacct', static_views.index, {'fundraiser_sought' : 'npoacct'}), url(r'^contractpatch', include('conservancy.apps.contractpatch.urls')), url(r'^overview', static_views.index), url(r'^privacy-policy', static_views.index), url(r'^supporter', include('conservancy.apps.supporter.urls')), url(r'^fundraiser_data', fundgoal_views.view), ]
en
0.865558
# Copyright 2005-2008, <NAME> # Copyright 2010, 2012 <NAME> # This software's license gives you freedom; you can copy, convey, # propagate, redistribute, modify and/or redistribute modified versions of # this program under the terms of the GNU Affero General Public License # (AGPL) as published by the Free Software Foundation (FSF), either # version 3 of the License, or (at your option) any later version of the # AGPL published by the FSF. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero # General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program in a file in the toplevel directory called # "AGPLv3". If not, see <http://www.gnu.org/licenses/>. # formerly static templated things... (dirs with templates)
1.674073
2
graphene_spike_tests/acceptances/test_query.py
FabienArcellier/spike-graphene-flask
1
9420
import unittest from unittest.mock import Mock from graphene import Schema from graphene.test import Client from graphene_spike.query import Query class MainTest(unittest.TestCase): def setUp(self): self.schema = Schema(query=Query) self.client = client = Client(self.schema) def test_hello_should_work_without_argument(self): # Assign query_string = '{ hello }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 18 !"}) def test_hello_should_write_the_giving_name(self): # Assign query_string = '{ hello(name: "Fabien") }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello Fabien, you have 18 !"}) def test_hello_should_write_the_giving_age(self): # Assign query_string = '{ hello(age: 24) }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 24 !"}) def test_goodbye_should_giving_a_response(self): # Assign query_string = '{ goodbye }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"goodbye": "See ya!"})
import unittest from unittest.mock import Mock from graphene import Schema from graphene.test import Client from graphene_spike.query import Query class MainTest(unittest.TestCase): def setUp(self): self.schema = Schema(query=Query) self.client = client = Client(self.schema) def test_hello_should_work_without_argument(self): # Assign query_string = '{ hello }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 18 !"}) def test_hello_should_write_the_giving_name(self): # Assign query_string = '{ hello(name: "Fabien") }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello Fabien, you have 18 !"}) def test_hello_should_write_the_giving_age(self): # Assign query_string = '{ hello(age: 24) }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 24 !"}) def test_goodbye_should_giving_a_response(self): # Assign query_string = '{ goodbye }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"goodbye": "See ya!"})
en
0.563217
# Assign # Acts # Assert # Assign # Acts # Assert # Assign # Acts # Assert # Assign # Acts # Assert
2.928337
3
clikan.py
davidventasmarin/clikan
0
9421
<gh_stars>0 from rich import print from rich.console import Console from rich.table import Table import click from click_default_group import DefaultGroup import yaml import os ##from terminaltables import SingleTable import sys from textwrap import wrap import collections import datetime import configparser import pkg_resources # part of setuptools VERSION = pkg_resources.require("clikan")[0].version class Config(object): """The config in this example only holds aliases.""" def __init__(self): self.path = os.getcwd() self.aliases = {} def read_config(self, filename): parser = configparser.RawConfigParser() parser.read([filename]) try: self.aliases.update(parser.items('aliases')) except configparser.NoSectionError: pass pass_config = click.make_pass_decorator(Config, ensure=True) class AliasedGroup(DefaultGroup): """This subclass of a group supports looking up aliases in a config file and with a bit of magic. """ def get_command(self, ctx, cmd_name): # Step one: bulitin commands as normal rv = click.Group.get_command(self, ctx, cmd_name) if rv is not None: return rv # Step two: find the config object and ensure it's there. This # will create the config object is missing. cfg = ctx.ensure_object(Config) # Step three: lookup an explicit command aliase in the config if cmd_name in cfg.aliases: actual_cmd = cfg.aliases[cmd_name] return click.Group.get_command(self, ctx, actual_cmd) # Alternative option: if we did not find an explicit alias we # allow automatic abbreviation of the command. "status" for # instance will match "st". We only allow that however if # there is only one command. matches = [x for x in self.list_commands(ctx) if x.lower().startswith(cmd_name.lower())] if not matches: return None elif len(matches) == 1: return click.Group.get_command(self, ctx, matches[0]) ctx.fail('Too many matches: %s' % ', '.join(sorted(matches))) def read_config(ctx, param, value): """Callback that is used whenever --config is passed. We use this to always load the correct config. This means that the config is loaded even if the group itself never executes so our aliases stay always available. """ cfg = ctx.ensure_object(Config) if value is None: value = os.path.join(os.path.dirname(__file__), 'aliases.ini') cfg.read_config(value) return value @click.version_option(VERSION) @click.command(cls=AliasedGroup, default='show', default_if_no_args=True) def clikan(): """clikan: CLI personal kanban """ @clikan.command() def configure(): """Place default config file in CLIKAN_HOME or HOME""" home = get_clikan_home() data_path = os.path.join(home, ".clikan.dat") config_path = os.path.join(home, ".clikan.yaml") if (os.path.exists(config_path) and not click.confirm('Config file exists. Do you want to overwrite?')): return with open(config_path, 'w') as outfile: conf = {'clikan_data': data_path} yaml.dump(conf, outfile, default_flow_style=False) click.echo("Creating %s" % config_path) @clikan.command() @click.argument('task') def add(task): """Add a task in todo""" if len(task) > 40: click.echo('Task must be shorter than 40 chars. Brevity counts.') else: config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) if ('limits' in config and 'todo' in config['limits'] and int(config['limits']['todo']) <= len(todos)): click.echo('No new todos, limit reached already.') else: od = collections.OrderedDict(sorted(dd['data'].items())) new_id = 1 if bool(od): new_id = next(reversed(od)) + 1 entry = ['todo', task, timestamp(), timestamp()] dd['data'].update({new_id: entry}) click.echo("Creating new task w/ id: %d -> %s" % (new_id, task)) write_data(config, dd) @clikan.command() @click.argument('id') def delete(id): """Delete task""" config = read_config_yaml() dd = read_data(config) item = dd['data'].get(int(id)) if item is None: click.echo('No existing task with that id.') else: item[0] = 'deleted' item[2] = timestamp() dd['deleted'].update({int(id): item}) dd['data'].pop(int(id)) write_data(config, dd) click.echo('Removed task %d.' % int(id)) @clikan.command() @click.argument('id') def promote(id): """Promote task""" config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) item = dd['data'].get(int(id)) if item[0] == 'todo': if ('limits' in config and 'wip' in config['limits'] and int(config['limits']['wip']) <= len(inprogs)): click.echo('No new tasks, limit reached already.') else: click.echo('Promoting task %s to in-progress.' % id) dd['data'][int(id)] = ['inprogress', item[1], timestamp(), item[3]] write_data(config, dd) elif item[0] == 'inprogress': click.echo('Promoting task %s to done.' % id) dd['data'][int(id)] = ['done', item[1], timestamp(), item[3]] write_data(config, dd) else: click.echo('Already done, can not promote %s' % id) @clikan.command() @click.argument('id') def regress(id): """Regress task""" config = read_config_yaml() dd = read_data(config) item = dd['data'].get(int(id)) if item[0] == 'done': click.echo('Regressing task %s to in-progress.' % id) dd['data'][int(id)] = ['inprogress', item[1], timestamp(), item[3]] write_data(config, dd) elif item[0] == 'inprogress': click.echo('Regressing task %s to todo.' % id) dd['data'][int(id)] = ['todo', item[1], timestamp(), item[3]] write_data(config, dd) else: click.echo('Already in todo, can not regress %s' % id) @clikan.command() def show(): console = Console() """Show tasks in clikan""" config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) if 'limits' in config and 'done' in config['limits']: dones = dones[0:int(config['limits']['done'])] else: dones = dones[0:10] todos = '\n'.join([str(x) for x in todos]) inprogs = '\n'.join([str(x) for x in inprogs]) dones = '\n'.join([str(x) for x in dones]) # td = [ # ['todo', 'in-progress', '[bold magenta]done[/bold magenta]'], # ['', '', ''], # ] #table = SingleTable(td, 'clikan v.{}'.format(VERSION)) # table.inner_heading_row_border = False # table.inner_row_border = True # table.justify_columns = {0: 'center', 1: 'center', 2: 'center'} table = Table(show_header=True, show_footer=True) table.add_column("[bold yellow]todo[/bold yellow]", no_wrap=True, footer="clikan") table.add_column('[bold green]in-progress[/bold green]', no_wrap=True) table.add_column('[bold magenta]done[/bold magenta]', no_wrap=True, footer="v.{}".format(VERSION)) # def wrap_lines(lines, column_index): # max_width = table.column_max_width(column_index) # packed = [line for line in lines if line.strip() != ''] # wrapped = [wrap(line, max_width, break_long_words=False, # replace_whitespace=False) for line in packed] # return '\n'.join(['\n'.join(w) for w in wrapped]) # for index, section in enumerate((todos, inprogs, dones)): # table.table_data[1][index] = wrap_lines(section.splitlines(), index) table.add_row(todos, inprogs, dones) console.print(table) #print(table.table) def read_data(config): """Read the existing data from the config datasource""" try: with open(config["clikan_data"], 'r') as stream: try: return yaml.load(stream, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print("Ensure %s exists, as you specified it " "as the clikan data file." % config['clikan_data']) print(exc) except IOError: click.echo("No data, initializing data file.") write_data(config, {"data": {}, "deleted": {}}) with open(config["clikan_data"], 'r') as stream: return yaml.load(stream, Loader=yaml.FullLoader) def write_data(config, data): """Write the data to the config datasource""" with open(config["clikan_data"], 'w') as outfile: yaml.dump(data, outfile, default_flow_style=False) def get_clikan_home(): home = os.environ.get('CLIKAN_HOME') if not home: home = os.path.expanduser('~') return home def read_config_yaml(): """Read the app config from ~/.clikan.yaml""" try: home = get_clikan_home() with open(home + "/.clikan.yaml", 'r') as stream: try: return yaml.load(stream, Loader=yaml.FullLoader) except yaml.YAMLError: print("Ensure %s/.clikan.yaml is valid, expected YAML." % home) sys.exit() except IOError: print("Ensure %s/.clikan.yaml exists and is valid." % home) sys.exit() def split_items(config, dd): todos = [] inprogs = [] dones = [] for key, value in dd['data'].items(): if value[0] == 'todo': todos.append("[%d] %s" % (key, value[1])) elif value[0] == 'inprogress': inprogs.append("[%d] %s" % (key, value[1])) else: dones.insert(0, "[%d] %s" % (key, value[1])) return todos, inprogs, dones def timestamp(): return '{:%Y-%b-%d %H:%M:%S}'.format(datetime.datetime.now())
from rich import print from rich.console import Console from rich.table import Table import click from click_default_group import DefaultGroup import yaml import os ##from terminaltables import SingleTable import sys from textwrap import wrap import collections import datetime import configparser import pkg_resources # part of setuptools VERSION = pkg_resources.require("clikan")[0].version class Config(object): """The config in this example only holds aliases.""" def __init__(self): self.path = os.getcwd() self.aliases = {} def read_config(self, filename): parser = configparser.RawConfigParser() parser.read([filename]) try: self.aliases.update(parser.items('aliases')) except configparser.NoSectionError: pass pass_config = click.make_pass_decorator(Config, ensure=True) class AliasedGroup(DefaultGroup): """This subclass of a group supports looking up aliases in a config file and with a bit of magic. """ def get_command(self, ctx, cmd_name): # Step one: bulitin commands as normal rv = click.Group.get_command(self, ctx, cmd_name) if rv is not None: return rv # Step two: find the config object and ensure it's there. This # will create the config object is missing. cfg = ctx.ensure_object(Config) # Step three: lookup an explicit command aliase in the config if cmd_name in cfg.aliases: actual_cmd = cfg.aliases[cmd_name] return click.Group.get_command(self, ctx, actual_cmd) # Alternative option: if we did not find an explicit alias we # allow automatic abbreviation of the command. "status" for # instance will match "st". We only allow that however if # there is only one command. matches = [x for x in self.list_commands(ctx) if x.lower().startswith(cmd_name.lower())] if not matches: return None elif len(matches) == 1: return click.Group.get_command(self, ctx, matches[0]) ctx.fail('Too many matches: %s' % ', '.join(sorted(matches))) def read_config(ctx, param, value): """Callback that is used whenever --config is passed. We use this to always load the correct config. This means that the config is loaded even if the group itself never executes so our aliases stay always available. """ cfg = ctx.ensure_object(Config) if value is None: value = os.path.join(os.path.dirname(__file__), 'aliases.ini') cfg.read_config(value) return value @click.version_option(VERSION) @click.command(cls=AliasedGroup, default='show', default_if_no_args=True) def clikan(): """clikan: CLI personal kanban """ @clikan.command() def configure(): """Place default config file in CLIKAN_HOME or HOME""" home = get_clikan_home() data_path = os.path.join(home, ".clikan.dat") config_path = os.path.join(home, ".clikan.yaml") if (os.path.exists(config_path) and not click.confirm('Config file exists. Do you want to overwrite?')): return with open(config_path, 'w') as outfile: conf = {'clikan_data': data_path} yaml.dump(conf, outfile, default_flow_style=False) click.echo("Creating %s" % config_path) @clikan.command() @click.argument('task') def add(task): """Add a task in todo""" if len(task) > 40: click.echo('Task must be shorter than 40 chars. Brevity counts.') else: config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) if ('limits' in config and 'todo' in config['limits'] and int(config['limits']['todo']) <= len(todos)): click.echo('No new todos, limit reached already.') else: od = collections.OrderedDict(sorted(dd['data'].items())) new_id = 1 if bool(od): new_id = next(reversed(od)) + 1 entry = ['todo', task, timestamp(), timestamp()] dd['data'].update({new_id: entry}) click.echo("Creating new task w/ id: %d -> %s" % (new_id, task)) write_data(config, dd) @clikan.command() @click.argument('id') def delete(id): """Delete task""" config = read_config_yaml() dd = read_data(config) item = dd['data'].get(int(id)) if item is None: click.echo('No existing task with that id.') else: item[0] = 'deleted' item[2] = timestamp() dd['deleted'].update({int(id): item}) dd['data'].pop(int(id)) write_data(config, dd) click.echo('Removed task %d.' % int(id)) @clikan.command() @click.argument('id') def promote(id): """Promote task""" config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) item = dd['data'].get(int(id)) if item[0] == 'todo': if ('limits' in config and 'wip' in config['limits'] and int(config['limits']['wip']) <= len(inprogs)): click.echo('No new tasks, limit reached already.') else: click.echo('Promoting task %s to in-progress.' % id) dd['data'][int(id)] = ['inprogress', item[1], timestamp(), item[3]] write_data(config, dd) elif item[0] == 'inprogress': click.echo('Promoting task %s to done.' % id) dd['data'][int(id)] = ['done', item[1], timestamp(), item[3]] write_data(config, dd) else: click.echo('Already done, can not promote %s' % id) @clikan.command() @click.argument('id') def regress(id): """Regress task""" config = read_config_yaml() dd = read_data(config) item = dd['data'].get(int(id)) if item[0] == 'done': click.echo('Regressing task %s to in-progress.' % id) dd['data'][int(id)] = ['inprogress', item[1], timestamp(), item[3]] write_data(config, dd) elif item[0] == 'inprogress': click.echo('Regressing task %s to todo.' % id) dd['data'][int(id)] = ['todo', item[1], timestamp(), item[3]] write_data(config, dd) else: click.echo('Already in todo, can not regress %s' % id) @clikan.command() def show(): console = Console() """Show tasks in clikan""" config = read_config_yaml() dd = read_data(config) todos, inprogs, dones = split_items(config, dd) if 'limits' in config and 'done' in config['limits']: dones = dones[0:int(config['limits']['done'])] else: dones = dones[0:10] todos = '\n'.join([str(x) for x in todos]) inprogs = '\n'.join([str(x) for x in inprogs]) dones = '\n'.join([str(x) for x in dones]) # td = [ # ['todo', 'in-progress', '[bold magenta]done[/bold magenta]'], # ['', '', ''], # ] #table = SingleTable(td, 'clikan v.{}'.format(VERSION)) # table.inner_heading_row_border = False # table.inner_row_border = True # table.justify_columns = {0: 'center', 1: 'center', 2: 'center'} table = Table(show_header=True, show_footer=True) table.add_column("[bold yellow]todo[/bold yellow]", no_wrap=True, footer="clikan") table.add_column('[bold green]in-progress[/bold green]', no_wrap=True) table.add_column('[bold magenta]done[/bold magenta]', no_wrap=True, footer="v.{}".format(VERSION)) # def wrap_lines(lines, column_index): # max_width = table.column_max_width(column_index) # packed = [line for line in lines if line.strip() != ''] # wrapped = [wrap(line, max_width, break_long_words=False, # replace_whitespace=False) for line in packed] # return '\n'.join(['\n'.join(w) for w in wrapped]) # for index, section in enumerate((todos, inprogs, dones)): # table.table_data[1][index] = wrap_lines(section.splitlines(), index) table.add_row(todos, inprogs, dones) console.print(table) #print(table.table) def read_data(config): """Read the existing data from the config datasource""" try: with open(config["clikan_data"], 'r') as stream: try: return yaml.load(stream, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print("Ensure %s exists, as you specified it " "as the clikan data file." % config['clikan_data']) print(exc) except IOError: click.echo("No data, initializing data file.") write_data(config, {"data": {}, "deleted": {}}) with open(config["clikan_data"], 'r') as stream: return yaml.load(stream, Loader=yaml.FullLoader) def write_data(config, data): """Write the data to the config datasource""" with open(config["clikan_data"], 'w') as outfile: yaml.dump(data, outfile, default_flow_style=False) def get_clikan_home(): home = os.environ.get('CLIKAN_HOME') if not home: home = os.path.expanduser('~') return home def read_config_yaml(): """Read the app config from ~/.clikan.yaml""" try: home = get_clikan_home() with open(home + "/.clikan.yaml", 'r') as stream: try: return yaml.load(stream, Loader=yaml.FullLoader) except yaml.YAMLError: print("Ensure %s/.clikan.yaml is valid, expected YAML." % home) sys.exit() except IOError: print("Ensure %s/.clikan.yaml exists and is valid." % home) sys.exit() def split_items(config, dd): todos = [] inprogs = [] dones = [] for key, value in dd['data'].items(): if value[0] == 'todo': todos.append("[%d] %s" % (key, value[1])) elif value[0] == 'inprogress': inprogs.append("[%d] %s" % (key, value[1])) else: dones.insert(0, "[%d] %s" % (key, value[1])) return todos, inprogs, dones def timestamp(): return '{:%Y-%b-%d %H:%M:%S}'.format(datetime.datetime.now())
en
0.594157
##from terminaltables import SingleTable # part of setuptools The config in this example only holds aliases. This subclass of a group supports looking up aliases in a config file and with a bit of magic. # Step one: bulitin commands as normal # Step two: find the config object and ensure it's there. This # will create the config object is missing. # Step three: lookup an explicit command aliase in the config # Alternative option: if we did not find an explicit alias we # allow automatic abbreviation of the command. "status" for # instance will match "st". We only allow that however if # there is only one command. Callback that is used whenever --config is passed. We use this to always load the correct config. This means that the config is loaded even if the group itself never executes so our aliases stay always available. clikan: CLI personal kanban Place default config file in CLIKAN_HOME or HOME Add a task in todo Delete task Promote task Regress task Show tasks in clikan # td = [ # ['todo', 'in-progress', '[bold magenta]done[/bold magenta]'], # ['', '', ''], # ] #table = SingleTable(td, 'clikan v.{}'.format(VERSION)) # table.inner_heading_row_border = False # table.inner_row_border = True # table.justify_columns = {0: 'center', 1: 'center', 2: 'center'} # def wrap_lines(lines, column_index): # max_width = table.column_max_width(column_index) # packed = [line for line in lines if line.strip() != ''] # wrapped = [wrap(line, max_width, break_long_words=False, # replace_whitespace=False) for line in packed] # return '\n'.join(['\n'.join(w) for w in wrapped]) # for index, section in enumerate((todos, inprogs, dones)): # table.table_data[1][index] = wrap_lines(section.splitlines(), index) #print(table.table) Read the existing data from the config datasource Write the data to the config datasource Read the app config from ~/.clikan.yaml
2.407381
2
social_auth_ragtag_id/backends.py
RagtagOpen/python-social-auth-ragtag-id
0
9422
<gh_stars>0 from social_core.backends.oauth import BaseOAuth2 class RagtagOAuth2(BaseOAuth2): """Ragtag ID OAuth authentication backend""" name = "ragtag" AUTHORIZATION_URL = "https://id.ragtag.org/oauth/authorize/" ACCESS_TOKEN_URL = "https://id.ragtag.org/oauth/token/" ACCESS_TOKEN_METHOD = "POST" REVOKE_TOKEN_URL = "https://id.ragtag.org/oauth/revoke_token/" SCOPE_SEPARATOR = " " ID_KEY = "id" def get_user_details(self, response): """Return user details from Ragtag ID account""" return { "username": response.get("username"), "email": response.get("email"), "first_name": response.get("first_name"), "last_name": response.get("last_name"), } def user_data(self, access_token, *args, **kwargs): """Fetches user data from id.ragtag.org""" return self.get_json( "https://id.ragtag.org/api/me/", headers={"Authorization": "Bearer {}".format(access_token)}, ) def auth_params(self, state=None): params = super(RagtagOAuth2, self).auth_params(state=state) approval_prompt = self.setting("APPROVAL_PROMPT", "auto") if not approval_prompt == "auto": params["approval_prompt"] = self.setting("APPROVAL_PROMPT", "") return params
from social_core.backends.oauth import BaseOAuth2 class RagtagOAuth2(BaseOAuth2): """Ragtag ID OAuth authentication backend""" name = "ragtag" AUTHORIZATION_URL = "https://id.ragtag.org/oauth/authorize/" ACCESS_TOKEN_URL = "https://id.ragtag.org/oauth/token/" ACCESS_TOKEN_METHOD = "POST" REVOKE_TOKEN_URL = "https://id.ragtag.org/oauth/revoke_token/" SCOPE_SEPARATOR = " " ID_KEY = "id" def get_user_details(self, response): """Return user details from Ragtag ID account""" return { "username": response.get("username"), "email": response.get("email"), "first_name": response.get("first_name"), "last_name": response.get("last_name"), } def user_data(self, access_token, *args, **kwargs): """Fetches user data from id.ragtag.org""" return self.get_json( "https://id.ragtag.org/api/me/", headers={"Authorization": "Bearer {}".format(access_token)}, ) def auth_params(self, state=None): params = super(RagtagOAuth2, self).auth_params(state=state) approval_prompt = self.setting("APPROVAL_PROMPT", "auto") if not approval_prompt == "auto": params["approval_prompt"] = self.setting("APPROVAL_PROMPT", "") return params
en
0.666773
Ragtag ID OAuth authentication backend Return user details from Ragtag ID account Fetches user data from id.ragtag.org
2.586159
3
panel/api/models/provider.py
angeelgarr/DCPanel
7
9423
from django.db import models from django.contrib import admin class Provider(models.Model): name = models.CharField(max_length=50) domain = models.CharField(max_length=50) class Meta: ordering = ['name'] app_label = 'api' def __str__(self): return self.domain @admin.register(Provider) class ProviderAdmin(admin.ModelAdmin): list_display = ('name', 'domain')
from django.db import models from django.contrib import admin class Provider(models.Model): name = models.CharField(max_length=50) domain = models.CharField(max_length=50) class Meta: ordering = ['name'] app_label = 'api' def __str__(self): return self.domain @admin.register(Provider) class ProviderAdmin(admin.ModelAdmin): list_display = ('name', 'domain')
none
1
2.265037
2
trial/src/sender.py
siddharthumakarthikeyan/Cable-Driven-Parallel-Robots-CDPR-Modelling
9
9424
#!/usr/bin/env python # license removed for brevity import rospy from std_msgs.msg import String from gazebo_msgs.msg import LinkState def talker(): pub = rospy.Publisher('/gazebo/set_link_state', LinkState, queue_size=10) ppp = LinkState() rospy.init_node('talker', anonymous=True) rate = rospy.Rate(100) # 10hz i = 1 while not rospy.is_shutdown(): ppp.link_name = "platform" ppp.pose.position.x = 0.1 ppp.pose.position.y = 0.1 ppp.pose.position.z = 1 ppp.pose.orientation.x = 0 ppp.pose.orientation.y = 0 ppp.pose.orientation.z = 0 ppp.pose.orientation.w = 0 i = i+1 rospy.loginfo(ppp) pub.publish(ppp) rate.sleep() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
#!/usr/bin/env python # license removed for brevity import rospy from std_msgs.msg import String from gazebo_msgs.msg import LinkState def talker(): pub = rospy.Publisher('/gazebo/set_link_state', LinkState, queue_size=10) ppp = LinkState() rospy.init_node('talker', anonymous=True) rate = rospy.Rate(100) # 10hz i = 1 while not rospy.is_shutdown(): ppp.link_name = "platform" ppp.pose.position.x = 0.1 ppp.pose.position.y = 0.1 ppp.pose.position.z = 1 ppp.pose.orientation.x = 0 ppp.pose.orientation.y = 0 ppp.pose.orientation.z = 0 ppp.pose.orientation.w = 0 i = i+1 rospy.loginfo(ppp) pub.publish(ppp) rate.sleep() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
en
0.434489
#!/usr/bin/env python # license removed for brevity # 10hz
2.294635
2
discriminator_dataset.py
kimmokal/CC-Art-Critics
0
9425
import torch from os import listdir, path from PIL import Image import torchvision class DiscriminatorDataset(torch.utils.data.Dataset): def __init__(self): super(DiscriminatorDataset, self).__init__() currentDir = path.dirname(__file__) abstractDir = path.join(currentDir, 'image_data/abstract') realisticDir = path.join(currentDir, 'image_data/realistic') abstractFiles = [path.join(abstractDir, f) for f in listdir( abstractDir) if path.isfile(path.join(abstractDir, f))] realisticFiles = [path.join(realisticDir, f) for f in listdir( realisticDir) if path.isfile(path.join(realisticDir, f))] self.abstractFilesLen = len(abstractFiles) self.allFiles = abstractFiles + realisticFiles def __len__(self): return len(self.allFiles) def __getitem__(self, index): filename = self.allFiles[index] pilImage = Image.open(filename).convert("RGB") return (torchvision.transforms.ToTensor()(pilImage), 1 if index < self.abstractFilesLen else 0)
import torch from os import listdir, path from PIL import Image import torchvision class DiscriminatorDataset(torch.utils.data.Dataset): def __init__(self): super(DiscriminatorDataset, self).__init__() currentDir = path.dirname(__file__) abstractDir = path.join(currentDir, 'image_data/abstract') realisticDir = path.join(currentDir, 'image_data/realistic') abstractFiles = [path.join(abstractDir, f) for f in listdir( abstractDir) if path.isfile(path.join(abstractDir, f))] realisticFiles = [path.join(realisticDir, f) for f in listdir( realisticDir) if path.isfile(path.join(realisticDir, f))] self.abstractFilesLen = len(abstractFiles) self.allFiles = abstractFiles + realisticFiles def __len__(self): return len(self.allFiles) def __getitem__(self, index): filename = self.allFiles[index] pilImage = Image.open(filename).convert("RGB") return (torchvision.transforms.ToTensor()(pilImage), 1 if index < self.abstractFilesLen else 0)
none
1
2.620354
3
emailmeld/sender.py
ionata/django-emailmeld
0
9426
<filename>emailmeld/sender.py<gh_stars>0 from django.core.mail.message import EmailMessage, EmailMultiAlternatives from django.utils.translation import ugettext_lazy as _ from django.template.loader import render_to_string from django.utils.safestring import mark_safe def send_mail_task(subject, message, from_email, recipient_list): message = EmailMessage("Discover Special Value - {0}".format(subject), message, from_email, recipient_list) message.send() def send_html_mail_task(subject, text_message, html_message, from_email, recipient_list, template='email/email_base.html'): if template is not None: html_message = render_to_string(template, {'content': mark_safe(html_message)}) # render html into an email template message = EmailMultiAlternatives("Discover Special Value - {0}".format(subject), html_message, from_email, recipient_list) message.content_subtype = "html" message.attach_alternative(text_message, "text/plain") message.send()
<filename>emailmeld/sender.py<gh_stars>0 from django.core.mail.message import EmailMessage, EmailMultiAlternatives from django.utils.translation import ugettext_lazy as _ from django.template.loader import render_to_string from django.utils.safestring import mark_safe def send_mail_task(subject, message, from_email, recipient_list): message = EmailMessage("Discover Special Value - {0}".format(subject), message, from_email, recipient_list) message.send() def send_html_mail_task(subject, text_message, html_message, from_email, recipient_list, template='email/email_base.html'): if template is not None: html_message = render_to_string(template, {'content': mark_safe(html_message)}) # render html into an email template message = EmailMultiAlternatives("Discover Special Value - {0}".format(subject), html_message, from_email, recipient_list) message.content_subtype = "html" message.attach_alternative(text_message, "text/plain") message.send()
en
0.576305
# render html into an email template
2.229854
2
tests/test_hap_server.py
sander-vd/HAP-python
3
9427
"""Tests for the HAPServer.""" from socket import timeout from unittest.mock import Mock, MagicMock, patch import pytest from pyhap import hap_server @patch('pyhap.hap_server.HAPServer.server_bind', new=MagicMock()) @patch('pyhap.hap_server.HAPServer.server_activate', new=MagicMock()) def test_finish_request_pops_socket(): """Test that ``finish_request`` always clears the connection after a request.""" amock = Mock() client_addr = ('192.168.1.1', 55555) server_addr = ('', 51826) # Positive case: The request is handled server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: MagicMock()) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request fails with a timeout def raises(*args): raise timeout() server = hap_server.HAPServer(server_addr, amock, handler_type=raises) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request raises some other exception server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: 1 / 0) server.connections[client_addr] = amock with pytest.raises(Exception): server.finish_request(amock, client_addr) assert len(server.connections) == 0
"""Tests for the HAPServer.""" from socket import timeout from unittest.mock import Mock, MagicMock, patch import pytest from pyhap import hap_server @patch('pyhap.hap_server.HAPServer.server_bind', new=MagicMock()) @patch('pyhap.hap_server.HAPServer.server_activate', new=MagicMock()) def test_finish_request_pops_socket(): """Test that ``finish_request`` always clears the connection after a request.""" amock = Mock() client_addr = ('192.168.1.1', 55555) server_addr = ('', 51826) # Positive case: The request is handled server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: MagicMock()) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request fails with a timeout def raises(*args): raise timeout() server = hap_server.HAPServer(server_addr, amock, handler_type=raises) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request raises some other exception server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: 1 / 0) server.connections[client_addr] = amock with pytest.raises(Exception): server.finish_request(amock, client_addr) assert len(server.connections) == 0
en
0.83912
Tests for the HAPServer. Test that ``finish_request`` always clears the connection after a request. # Positive case: The request is handled # Negative case: The request fails with a timeout # Negative case: The request raises some other exception
2.710465
3
app/views/main.py
charlesashby/marketvault-front-end
0
9428
<filename>app/views/main.py from flask import render_template, Blueprint, request from app.utils.search import MySQLClient from app.utils.preprocessor import TextPreprocessor mainbp = Blueprint("main", __name__) @mainbp.route("/search", methods=["GET"]) @mainbp.route("/", methods=["GET"]) def home(): stores_by_page = 10 topic = request.args.get("topic") category = request.args.get("category") daily_visitors = request.args.get("dailyvisitors") alexa_rank = request.args.get("alexarank") page = request.args.get("page") or 0 if all([topic is None, category is None, daily_visitors is None, alexa_rank is None]): stores = MySQLClient.random_stores(page * stores_by_page, stores_by_page) else: stores = MySQLClient.search_stores(category, daily_visitors, alexa_rank, topic, page * stores_by_page, stores_by_page) stores = [ { "url": store.url, "description": TextPreprocessor.clean_str(store.description), "title": TextPreprocessor.clean_str(store.title), "alexa_rank": store.alexa_rank, "category": store.category, "average_product_price": store.average_product_price, "daily_visitors": store.daily_visitors } for store in stores ] return render_template("search/index.html", stores=stores) @mainbp.route("/search/topics", methods=["GET"]) def search_topics(): substring = request.args.get("q") return [ { "id": topic.id, "text": topic.text } for topic in MySQLClient.search_topic_by_substring(substring) ]
<filename>app/views/main.py from flask import render_template, Blueprint, request from app.utils.search import MySQLClient from app.utils.preprocessor import TextPreprocessor mainbp = Blueprint("main", __name__) @mainbp.route("/search", methods=["GET"]) @mainbp.route("/", methods=["GET"]) def home(): stores_by_page = 10 topic = request.args.get("topic") category = request.args.get("category") daily_visitors = request.args.get("dailyvisitors") alexa_rank = request.args.get("alexarank") page = request.args.get("page") or 0 if all([topic is None, category is None, daily_visitors is None, alexa_rank is None]): stores = MySQLClient.random_stores(page * stores_by_page, stores_by_page) else: stores = MySQLClient.search_stores(category, daily_visitors, alexa_rank, topic, page * stores_by_page, stores_by_page) stores = [ { "url": store.url, "description": TextPreprocessor.clean_str(store.description), "title": TextPreprocessor.clean_str(store.title), "alexa_rank": store.alexa_rank, "category": store.category, "average_product_price": store.average_product_price, "daily_visitors": store.daily_visitors } for store in stores ] return render_template("search/index.html", stores=stores) @mainbp.route("/search/topics", methods=["GET"]) def search_topics(): substring = request.args.get("q") return [ { "id": topic.id, "text": topic.text } for topic in MySQLClient.search_topic_by_substring(substring) ]
none
1
2.650454
3
bag_testbenches/ckt_dsn/analog/amplifier/opamp_two_stage.py
tinapiao/Software-IC-Automation
0
9429
<gh_stars>0 # -*- coding: utf-8 -*- """This module contains design algorithm for a traditional two stage operational amplifier.""" from typing import TYPE_CHECKING, List, Optional, Dict, Any, Tuple, Sequence from copy import deepcopy import numpy as np import scipy.optimize as sciopt from bag.math import gcd from bag.data.lti import LTICircuit, get_stability_margins, get_w_crossings, get_w_3db from bag.util.search import FloatBinaryIterator, BinaryIterator, minimize_cost_golden from bag.simulation.core import MeasurementManager from verification.mos.query import MOSDBDiscrete from .components import LoadDiodePFB, InputGm if TYPE_CHECKING: from verification.ac.core import ACTB class TailStage1(object): """Tail transistor of the first stage op amp. Due to layout restrictions, the tail transistor needs to have the same number of fingers and stack number as the input transistor. This method finds the optimal width/intent. """ def __init__(self, mos_db): # type: (MOSDBDiscrete) -> None self._db = mos_db self._intent_list = mos_db.get_dsn_param_values('intent') self._valid_widths = mos_db.width_list self._best_op = None def design(self, itarg_list, # type: List[float] vd_list, # type: List[float] vout_amp_list, # type: List[float] vb, # type: float l, # type: float seg, # type: int stack, # type: int ): # type: (...) -> None vgs_idx = self._db.get_fun_arg_index('vgs') self._best_op = best_score = None for intent in self._intent_list: for w in self._valid_widths: self._db.set_dsn_params(l=l, w=w, intent=intent, stack=stack) ib = self._db.get_function_list('ibias') gds = self._db.get_function_list('gds') vgs_min, vgs_max = ib[0].get_input_range(vgs_idx) vg_min = vgs_min + vb vg_max = vgs_max + vb # find vgs for each corner vgs_list, gds1_list, gds2_list = self._solve_vgs(itarg_list, vout_amp_list, vd_list, ib, gds, seg, vb, vg_min, vg_max) if vgs_list is not None: cur_score = max(gds2_list) if self._best_op is None or cur_score < best_score: best_score = cur_score self._best_op = (w, intent, seg, stack, vb, vgs_list, vout_amp_list, gds1_list, gds2_list) def _solve_vgs(self, itarg_list, vout_list, vd_list, ib_list, gds_list, seg, vb, vg_min, vg_max): vgs_list, gds1_list, gds2_list = [], [], [] for itarg, vout, vd, ibf, gdsf in zip(itarg_list, vout_list, vd_list, ib_list, gds_list): def zero_fun(vg): farg = self._db.get_fun_arg(vbs=vb - vd, vds=vd - vb, vgs=vg - vb) return seg * ibf(farg) - itarg v1, v2 = zero_fun(vg_min), zero_fun(vg_max) if v1 < 0 and v2 < 0 or v1 > 0 and v2 > 0: # no solution return None, None, None vg_sol = sciopt.brentq(zero_fun, vg_min, vg_max) # type: float vgs_opt = vg_sol - vb arg1 = self._db.get_fun_arg(vbs=vb - vd, vds=vd - vb, vgs=vgs_opt) arg2 = self._db.get_fun_arg(vbs=vb - vd, vds=vout - vb, vgs=vgs_opt) vgs_list.append(vgs_opt) gds1_list.append(seg * gdsf(arg1)) gds2_list.append(seg * gdsf(arg2)) return vgs_list, gds1_list, gds2_list def get_dsn_info(self): # type: () -> Optional[Dict[str, Any]] if self._best_op is None: return None w, intent, seg, stack, vb, vgs_list, vout_list, gds1_list, gds2_list = self._best_op self._db.set_dsn_params(w=w, intent=intent, stack=stack) cdd = self._db.get_function_list('cdd') cdd2_list = [] for vgs, vout, cddf in zip(vgs_list, vout_list, cdd): arg = self._db.get_fun_arg(vbs=0, vds=vout - vb, vgs=vgs) cur_cdd = cddf(arg) # type: float cdd2_list.append(seg * cur_cdd) return dict( w=w, intent=intent, vgs=vgs_list, gds1=gds1_list, gds2=gds2_list, cdd2=cdd2_list, ) class StageOneCurrentError(Exception): pass class OpAmpTwoStage(object): """A two stage fully differential operational amplifier. The first stage is a differential amplifier with diode + positive feedback load, the second stage is a psuedo-differential common source amplifier. This topology has the following advantages: 1. large output swing. 2. Common mode feedback is only required for the second stage. """ def __init__(self, nch_db, pch_db): # type: (MOSDBDiscrete, MOSDBDiscrete) -> None self._nch_db = nch_db self._pch_db = pch_db self._amp_info = None def design(self, i1_unit, # type: List[float] i1_min_size, # type: int vg_list, # type: List[float] vout_list, # type: List[float] cpar1, # type: float cload, # type: float f_unit, # type: float phase_margin, # type: float res_var, # type: float l, # type: float vstar_gm_min, # type: float ft_load_scale, # type: float vds_tail_min, # type: float seg_gm_min, # type: int vdd, # type: float pmos_input=True, # type: bool max_ref_ratio=20, # type: int load_stack_list=None, # type: Optional[List[int]] ): # type: (...) -> None # binary search for minimum stage 1 current, i1_size_iter = BinaryIterator(i1_min_size, None) i1_size_opt, opt_info = None, None while i1_size_iter.has_next(): i1_size = i1_size_iter.get_next() print('trying i1_size = %d' % i1_size) try: self._design_with_itarg(i1_size, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) success = True except StageOneCurrentError as err: print(err) success = False if success: print('success') opt_info = self._amp_info i1_size_opt = i1_size i1_size_iter.down() else: i1_size_iter.up() # linear search to find optimal scale2 scale2_int_max = int(opt_info['scale2']) if scale2_int_max == opt_info['scale2']: scale2_int_max -= 1 last_i1_size = i1_size_opt print('i1_size = %d, scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) for scale2_test in range(scale2_int_max, 0, -1): i1_size_test = int(np.floor(i1_size_opt * (1 + opt_info['scale2']) / (1 + scale2_test))) if i1_size_test <= last_i1_size or scale2_test == opt_info['scale2']: continue print('testing i1_size = %d, scale2 = %.4g' % (i1_size_test, scale2_test)) try: self._design_with_itarg(i1_size_test, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) except StageOneCurrentError as err: print(err) continue if self._amp_info['scale2'] <= scale2_test: # found new minimum. close in to find optimal i1 size opt_info = self._amp_info i1_size_opt = i1_size_test print('update: i1_size = %d, scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) i1_size_iter = BinaryIterator(last_i1_size + 1, i1_size_test) while i1_size_iter.has_next(): i1_size_cur_opt = i1_size_iter.get_next() print('testing i1_size = %d' % i1_size_cur_opt) try: self._design_with_itarg(i1_size_cur_opt, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) if self._amp_info['scale2'] <= opt_info['scale2']: opt_info = self._amp_info i1_size_opt = i1_size_cur_opt print('update: i1_size = %d, ' 'scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) i1_size_iter.down() else: i1_size_iter.up() except StageOneCurrentError as err: print(err) i1_size_iter.up() last_i1_size = i1_size_test self._amp_info = opt_info def _design_with_itarg(self, i1_size, # type: int i1_unit, # type: List[float] vg_list, # type: List[float] vout_list, # type: List[float] cpar1, # type: float cload, # type: float f_unit, # type: float phase_margin, # type: float res_var, # type: float l, # type: float vstar_gm_min, # type: float ft_load_scale, # type: float vds_tail_min, # type: float seg_gm_min, # type: int vdd, # type: float pmos_input, # type: bool max_ref_ratio, # type: int load_stack_list, # type: Optional[List[int]] ): # type: (...) -> None itarg_list = [i1 * i1_size for i1 in i1_unit] if pmos_input: load_db = self._nch_db gm_db = self._pch_db vds2_list = vout_list vb_gm = vdd vb_load = 0 else: load_db = self._pch_db gm_db = self._nch_db vds2_list = [vo - vdd for vo in vout_list] vb_gm = 0 vb_load = vdd load = LoadDiodePFB(load_db) gm = InputGm(gm_db) tail1 = TailStage1(gm_db) # design load print('designing load') load.design(itarg_list, vds2_list, ft_load_scale * f_unit, stack_list=load_stack_list) load_info = load.get_dsn_info() vgs_load_list = load_info['vgs'] gds_load_list = load_info['gds1'] gm2_list = load_info['gm2'] stack_diode = load_info['stack_diode'] stack_ngm = load_info['stack_ngm'] seg_diode = load_info['seg_diode'] seg_ngm = load_info['seg_ngm'] if pmos_input: vmid_list = vgs_load_list else: vmid_list = [vdd - vgs for vgs in vgs_load_list] # design input gm print('designing input gm') gm.design(itarg_list, vg_list, vmid_list, gds_load_list, vb_gm, vstar_gm_min, vds_tail_min, seg_min=seg_gm_min, stack_list=[stack_ngm]) gm_info = gm.get_dsn_info() gm1_list = gm_info['gm'] gds_in_list = gm_info['gds'] vtail_list = gm_info['vs'] seg_gm = gm_info['seg'] stack_gm = gm_info['stack'] gds1_list = [gds_in + gds_load for gds_in, gds_load in zip(gds_in_list, gds_load_list)] gain1_list = [gm1 / gds1 for gm1, gds1 in zip(gm1_list, gds1_list)] # design stage 1 tail print('designing tail') tail1.design(itarg_list, vtail_list, vout_list, vb_gm, l, seg_gm, stack_gm) tail1_info = tail1.get_dsn_info() vbias_list = [vgs_tail + vb_gm for vgs_tail in tail1_info['vgs']] # design stage 2 gm w_dict = {'load': load_info['w'], 'in': gm_info['w'], 'tail': tail1_info['w']} th_dict = {'load': load_info['intent'], 'in': gm_info['intent'], 'tail': tail1_info['intent']} stack_dict = {'tail': stack_gm, 'in': stack_gm, 'diode': stack_diode, 'ngm': stack_ngm} seg_dict = {'tail1': seg_gm, 'in': seg_gm, 'diode1': seg_diode, 'ngm1': seg_ngm, } print('designing stage 2') stage2_results = self._design_stage2(gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, f_unit, max_ref_ratio) scale2 = seg_dict['diode2'] / seg_dict['diode1'] scaler = seg_dict['ref'] / seg_dict['tail1'] itot_list = [(2 * (1 + scale2) + scaler) * itarg for itarg in itarg_list] layout_info = dict( w_dict=w_dict, th_dict=th_dict, stack_dict=stack_dict, seg_dict=seg_dict, ) self._amp_info = dict( i1_size=i1_size, scale2=scale2, scaler=scaler, vtail=vtail_list, vmid=vmid_list, vbias=vbias_list, itot=itot_list, vstar=gm_info['vstar'], cin=gm_info['cgg'], gm1=gm1_list, gds1=gds1_list, gain1=gain1_list, rfb=stage2_results['rz'], cfb=stage2_results['cf'], gain_tot=stage2_results['gain'], f_3db=stage2_results['f_3db'], f_unit=stage2_results['f_unity'], phase_margin=stage2_results['phase_margin'], layout_info=layout_info, ) print('done') def get_dsn_info(self): # type: () -> Optional[Dict[str, Any]] return self._amp_info def get_specs_verification(self, top_specs): # type: (Dict[str, Any]) -> Dict[str, Any] top_specs = deepcopy(top_specs) dsn_specs = top_specs['dsn_specs'] ibias = dsn_specs['i1_unit'][0] * self._amp_info['i1_size'] * self._amp_info['scaler'] vdd = dsn_specs['vdd'] vindc = dsn_specs['vg_list'][0] voutdc = dsn_specs['vout_list'][0] f_unit = dsn_specs['f_unit'] gain_max = max(self._amp_info['gain_tot']) f_bw_log = int(np.floor(np.log10(f_unit / gain_max))) f_unit_log = int(np.ceil(np.log10(f_unit))) top_specs['layout_params'].update(self._amp_info['layout_info']) meas = top_specs['measurements'][0] meas['cfb'] = self._amp_info['cfb'] meas['rfb'] = self._amp_info['rfb'] ac_tb = meas['testbenches']['ac'] ac_tb['fstart'] = 10 ** (f_bw_log - 1) ac_tb['fstop'] = 10 ** (f_unit_log + 1) ac_sim_vars = ac_tb['sim_vars'] ac_sim_vars['vdd'] = vdd ac_sim_vars['cload'] = dsn_specs['cload'] ac_sim_vars['vincm'] = vindc ac_sim_vars['voutcm'] = voutdc ac_sim_vars['ibias'] = ibias ac_sim_vars['vdd'] = vdd ac_sim_vars['vinac'] = 1.0 ac_sim_vars['vindc'] = 0.0 """ top_specs['tb_dc']['tb_params']['vimax'] = vdd top_specs['tb_dc']['tb_params']['vimin'] = -vdd top_specs['tb_dc']['tb_params']['vindc'] = vindc top_specs['tb_dc']['tb_params']['voutcm'] = voutdc top_specs['tb_dc']['tb_params']['ibias'] = ibias top_specs['tb_dc']['tb_params']['vdd'] = vdd top_specs['tb_dc']['tb_params']['voutref'] = voutdc top_specs['tb_dc']['tb_params']['vout_start'] = -vdd + 0.15 top_specs['tb_dc']['tb_params']['vout_stop'] = vdd - 0.15 """ return top_specs def _design_stage2(self, gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, f_unit, max_ref_ratio): seg_tail1 = seg_dict['tail1'] seg_diode1 = seg_dict['diode1'] seg_ngm1 = seg_dict['ngm1'] # step 1: find stage 2 unit size seg_gcd = gcd(gcd(seg_tail1, seg_diode1), seg_ngm1) if seg_gcd % 2 != 0: raise ValueError('All segment numbers must be even.') # divide seg_gcd by 2 to make sure all generated segment numbers are even seg_gcd //= 2 # make sure we have enough tail fingers for common mode feedback min_size = 2 if seg_tail1 // seg_gcd == 2 else 1 def ac_results_fun(cur_size): seg_dict['tail2'] = seg_tail1 // seg_gcd * cur_size seg_dict['diode2'] = seg_diode1 // seg_gcd * cur_size seg_dict['ngm2'] = seg_ngm1 // seg_gcd * cur_size cur_scale2 = cur_size / seg_gcd cur_gm2_list = [gm2 * cur_scale2 for gm2 in gm2_list] ac_results = self._find_rz_cf(gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, cur_gm2_list, res_var, phase_margin) return ac_results def funity_fun(cur_size): ac_results_tmp = ac_results_fun(cur_size) fu_list = ac_results_tmp[0] if fu_list is None: return -1 # noinspection PyTypeChecker ans = min(fu_list) return ans # find min_size such that amplifier is stable min_bin_iter = BinaryIterator(min_size, None) while min_bin_iter.has_next(): test_size = min_bin_iter.get_next() test_fu = funity_fun(test_size) if test_fu >= 0: min_bin_iter.save() min_bin_iter.down() else: min_bin_iter.up() min_result = minimize_cost_golden(funity_fun, f_unit, offset=min_bin_iter.get_last_save()) if min_result.x is None: msg = 'Insufficient stage 1 current. funity_max=%.4g' raise StageOneCurrentError(msg % min_result.vmax) funity_list, rz_nom, cf_min, gain_list, f3db_list, pm_list = ac_results_fun(min_result.x) seg_tail2_tot = seg_dict['tail2'] seg_tail2 = (seg_tail2_tot // 4) * 2 seg_tailcm = seg_tail2_tot - seg_tail2 seg_tail_tot = 2 * (seg_dict['tail1'] + seg_tail2) seg_dict['tail2'] = seg_tail2 seg_dict['tailcm'] = seg_tailcm seg_dict['ref'] = max(2, -((-seg_tail_tot // max_ref_ratio) // 2) * 2) return dict( rz=rz_nom, cf=cf_min, gain=gain_list, f_3db=f3db_list, f_unity=funity_list, phase_margin=pm_list, ) @classmethod def _get_stage2_ss(cls, gm2_list, gds2_list, c2_list, cg2_list, cload, seg_gcd, cur_size): cur_gm2_list, cur_gds2_list, cur_c2_list, cur_cg2_list = [], [], [], [] for gm2, gds2, c2, cg2 in zip(gm2_list, gds2_list, c2_list, cg2_list): cur_gm2_list.append(gm2 * cur_size / seg_gcd) cur_gds2_list.append(gds2 * cur_size / seg_gcd) cur_c2_list.append(cload + c2 * cur_size / seg_gcd) cur_cg2_list.append(cg2 * cur_size / seg_gcd) return cur_gm2_list, cur_gds2_list, cur_c2_list, cur_cg2_list def _find_rz_cf(self, gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, cap_tol=1e-15, cap_step=10e-15, cap_min=1e-15, cap_max=1e-9): """Find minimum miller cap that stabilizes the system. NOTE: This function assume phase of system for any miller cap value will not loop around 360, otherwise it may get the phase margin wrong. This assumption should be valid for this op amp. """ gz_worst = float(min(gm2_list)) gz_nom = gz_worst * (1 - res_var) # find maximum Cf needed to stabilize all corners cf_min = cap_min for env_idx, (vtail, vg, vmid, vout, vbias) in \ enumerate(zip(vtail_list, vg_list, vmid_list, vout_list, vbias_list)): cir = self._make_circuit(env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz_worst) bin_iter = FloatBinaryIterator(cf_min, None, cap_tol, search_step=cap_step) while bin_iter.has_next(): cur_cf = bin_iter.get_next() cir.add_cap(cur_cf, 'outp', 'xp') cir.add_cap(cur_cf, 'outn', 'xn') num, den = cir.get_num_den('in', 'out') cur_pm, _ = get_stability_margins(num, den) if cur_pm < phase_margin: if cur_cf > cap_max: # no way to make amplifier stable, just return return None, None, None, None, None, None bin_iter.up() else: bin_iter.save() bin_iter.down() cir.add_cap(-cur_cf, 'outp', 'xp') cir.add_cap(-cur_cf, 'outn', 'xn') # bin_iter is guaranteed to save at least one value, so don't need to worry about # cf_min being None cf_min = bin_iter.get_last_save() # find gain, unity gain bandwidth, and phase margin across corners gain_list, f3db_list, funity_list, pm_list = [], [], [], [] for env_idx, (vtail, vg, vmid, vout, vbias) in \ enumerate(zip(vtail_list, vg_list, vmid_list, vout_list, vbias_list)): cir = self._make_circuit(env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz_nom) cir.add_cap(cf_min, 'outp', 'xp') cir.add_cap(cf_min, 'outn', 'xn') num, den = cir.get_num_den('in', 'out') pn = np.poly1d(num) pd = np.poly1d(den) gain_list.append(abs(pn(0) / pd(0))) f3db_list.append(get_w_3db(num, den) / 2 / np.pi) funity_list.append(get_w_crossings(num, den)[0] / 2 / np.pi) pm_list.append(get_stability_margins(num, den)[0]) return funity_list, 1 / gz_nom, cf_min, gain_list, f3db_list, pm_list @classmethod def _make_circuit(cls, env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz, neg_cap=False, no_fb=False): cur_env = gm_db.env_list[env_idx] gm_db.set_dsn_params(w=w_dict['tail'], intent=th_dict['tail'], stack=stack_dict['tail']) tail1_params = gm_db.query(env=cur_env, vbs=0, vds=vtail - vb_gm, vgs=vbias - vb_gm) tail2_params = gm_db.query(env=cur_env, vbs=0, vds=vout - vb_gm, vgs=vbias - vb_gm) gm_db.set_dsn_params(w=w_dict['in'], intent=th_dict['in'], stack=stack_dict['in']) gm1_params = gm_db.query(env=cur_env, vbs=vb_gm - vtail, vds=vmid - vtail, vgs=vg - vtail) load_db.set_dsn_params(w=w_dict['load'], intent=th_dict['load'], stack=stack_dict['diode']) diode1_params = load_db.query(env=cur_env, vbs=0, vds=vmid - vb_load, vgs=vmid - vb_load) diode2_params = load_db.query(env=cur_env, vbs=0, vds=vout - vb_load, vgs=vmid - vb_load) load_db.set_dsn_params(stack=stack_dict['ngm']) ngm1_params = load_db.query(env=cur_env, vbs=0, vds=vmid - vb_load, vgs=vmid - vb_load) ngm2_params = load_db.query(env=cur_env, vbs=0, vds=vout - vb_load, vgs=vmid - vb_load) cir = LTICircuit() # stage 1 cir.add_transistor(tail1_params, 'tail', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail1'], neg_cap=neg_cap) cir.add_transistor(gm1_params, 'midp', 'inn', 'tail', 'gnd', fg=seg_dict['in'], neg_cap=neg_cap) cir.add_transistor(gm1_params, 'midn', 'inp', 'tail', 'gnd', fg=seg_dict['in'], neg_cap=neg_cap) cir.add_transistor(diode1_params, 'midp', 'midp', 'gnd', 'gnd', fg=seg_dict['diode1'], neg_cap=neg_cap) cir.add_transistor(diode1_params, 'midn', 'midn', 'gnd', 'gnd', fg=seg_dict['diode1'], neg_cap=neg_cap) cir.add_transistor(ngm1_params, 'midn', 'midp', 'gnd', 'gnd', fg=seg_dict['ngm1'], neg_cap=neg_cap) cir.add_transistor(ngm1_params, 'midp', 'midn', 'gnd', 'gnd', fg=seg_dict['ngm1'], neg_cap=neg_cap) # stage 2 cir.add_transistor(tail2_params, 'outp', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail2'], neg_cap=neg_cap) cir.add_transistor(tail2_params, 'outn', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail2'], neg_cap=neg_cap) cir.add_transistor(diode2_params, 'outp', 'midn', 'gnd', 'gnd', fg=seg_dict['diode2'], neg_cap=neg_cap) cir.add_transistor(diode2_params, 'outn', 'midp', 'gnd', 'gnd', fg=seg_dict['diode2'], neg_cap=neg_cap) cir.add_transistor(ngm2_params, 'outp', 'midn', 'gnd', 'gnd', fg=seg_dict['ngm2'], neg_cap=neg_cap) cir.add_transistor(ngm2_params, 'outn', 'midp', 'gnd', 'gnd', fg=seg_dict['ngm2'], neg_cap=neg_cap) # parasitic cap cir.add_cap(cpar1, 'midp', 'gnd') cir.add_cap(cpar1, 'midn', 'gnd') # load cap cir.add_cap(cload, 'outp', 'gnd') cir.add_cap(cload, 'outn', 'gnd') # feedback resistors if not no_fb: cir.add_conductance(gz, 'xp', 'midn') cir.add_conductance(gz, 'xn', 'midp') # diff-to-single conversion cir.add_vcvs(0.5, 'inp', 'gnd', 'in', 'gnd') cir.add_vcvs(-0.5, 'inn', 'gnd', 'in', 'gnd') cir.add_vcvs(1, 'out', 'gnd', 'outp', 'outn') return cir class OpAmpTwoStageChar(MeasurementManager): def __init__(self, data_dir, # type: str meas_name, # type: str impl_lib, # type: str specs, # type: Dict[str, Any] wrapper_lookup, # type: Dict[str, str] sim_view_list, # type: Sequence[Tuple[str, str]] env_list, # type: Sequence[str] ): MeasurementManager.__init__(self, data_dir, meas_name, impl_lib, specs, wrapper_lookup, sim_view_list, env_list) def get_initial_state(self): # type: () -> str """Returns the initial FSM state.""" return 'ac0' def get_testbench_info(self, state, prev_output): rfb0 = self.specs['rfb'] cfb0 = self.specs['cfb'] find_cfb = self.specs.get('find_cfb', True) res_var = self.specs['res_var'] cmin_scale = self.specs['cmin_scale'] cmax_scale = self.specs['cmax_scale'] num_pts = self.specs['num_pts'] tmp = super(OpAmpTwoStageChar, self).get_testbench_info('ac', prev_output) tb_name, tb_type, tb_specs, tb_params = tmp if state == 'ac0' and find_cfb: cfb_list = np.linspace(cfb0 * cmin_scale, cfb0 * cmax_scale, num_pts).tolist() tb_specs['sim_vars']['rfb'] = rfb0 * (1 - res_var) tb_specs['sim_vars']['cfb'] = cfb_list else: if find_cfb: cfb = self.get_state_output('ac0')['cfb'] else: cfb = cfb0 tb_specs['sim_vars']['rfb'] = rfb0 tb_specs['sim_vars']['cfb'] = cfb return tb_name, tb_type, tb_specs, tb_params def process_output(self, state, data, tb_manager): # type: (str, Dict[str, Any], ACTB) -> Tuple[bool, str, Dict[str, Any]] phase_margin = self.specs['phase_margin'] find_cfb = self.specs.get('find_cfb', True) output_list = ['vout'] results = tb_manager.get_ugb_and_pm(data, output_list) if state == 'ac0' and find_cfb: done = False next_state = 'ac1' cfb = self._find_min_cfb(phase_margin, results) output = dict(cfb=cfb) else: done = True next_state = '' if find_cfb: cfb = self.get_state_output('ac0')['cfb'] else: cfb = self.specs['cfb'] gain_results = tb_manager.get_gain_and_w3db(data, output_list, output_dict=results) corner_list = results['corner'].tolist() gain_list = gain_results['gain_vout'].tolist() bw_list = gain_results['w3db_vout'].tolist() funity_list = results['funity_vout'].tolist() pm_list = results['pm_vout'].tolist() output = dict(cfb=cfb, corners=corner_list, gain=gain_list, bw=bw_list, funity=funity_list, pm=pm_list) return done, next_state, output @classmethod def _find_min_cfb(cls, phase_margin, results): axis_names = ['corner', 'cfb'] corner_list = results['corner'] corner_sort_arg = np.argsort(corner_list) # type: Sequence[int] # rearrange array axis sweep_vars = results['sweep_params']['pm_vout'] order = [sweep_vars.index(name) for name in axis_names] pm_data = np.transpose(results['pm_vout'], axes=order) # determine minimum cfb cfb_vec = results['cfb'] cfb_idx_min = 0 for corner_idx in corner_sort_arg: bin_iter = BinaryIterator(cfb_idx_min, cfb_vec.size) while bin_iter.has_next(): cur_cfb_idx = bin_iter.get_next() pm = pm_data[corner_idx, cur_cfb_idx] if pm >= phase_margin: bin_iter.save() bin_iter.down() else: bin_iter.up() cfb_idx_min = bin_iter.get_last_save() if cfb_idx_min is None: # No solution; cannot make amplifier stable break if cfb_idx_min is None: raise ValueError('Cannot determine cfb.') else: cfb = cfb_vec[cfb_idx_min] return cfb.item()
# -*- coding: utf-8 -*- """This module contains design algorithm for a traditional two stage operational amplifier.""" from typing import TYPE_CHECKING, List, Optional, Dict, Any, Tuple, Sequence from copy import deepcopy import numpy as np import scipy.optimize as sciopt from bag.math import gcd from bag.data.lti import LTICircuit, get_stability_margins, get_w_crossings, get_w_3db from bag.util.search import FloatBinaryIterator, BinaryIterator, minimize_cost_golden from bag.simulation.core import MeasurementManager from verification.mos.query import MOSDBDiscrete from .components import LoadDiodePFB, InputGm if TYPE_CHECKING: from verification.ac.core import ACTB class TailStage1(object): """Tail transistor of the first stage op amp. Due to layout restrictions, the tail transistor needs to have the same number of fingers and stack number as the input transistor. This method finds the optimal width/intent. """ def __init__(self, mos_db): # type: (MOSDBDiscrete) -> None self._db = mos_db self._intent_list = mos_db.get_dsn_param_values('intent') self._valid_widths = mos_db.width_list self._best_op = None def design(self, itarg_list, # type: List[float] vd_list, # type: List[float] vout_amp_list, # type: List[float] vb, # type: float l, # type: float seg, # type: int stack, # type: int ): # type: (...) -> None vgs_idx = self._db.get_fun_arg_index('vgs') self._best_op = best_score = None for intent in self._intent_list: for w in self._valid_widths: self._db.set_dsn_params(l=l, w=w, intent=intent, stack=stack) ib = self._db.get_function_list('ibias') gds = self._db.get_function_list('gds') vgs_min, vgs_max = ib[0].get_input_range(vgs_idx) vg_min = vgs_min + vb vg_max = vgs_max + vb # find vgs for each corner vgs_list, gds1_list, gds2_list = self._solve_vgs(itarg_list, vout_amp_list, vd_list, ib, gds, seg, vb, vg_min, vg_max) if vgs_list is not None: cur_score = max(gds2_list) if self._best_op is None or cur_score < best_score: best_score = cur_score self._best_op = (w, intent, seg, stack, vb, vgs_list, vout_amp_list, gds1_list, gds2_list) def _solve_vgs(self, itarg_list, vout_list, vd_list, ib_list, gds_list, seg, vb, vg_min, vg_max): vgs_list, gds1_list, gds2_list = [], [], [] for itarg, vout, vd, ibf, gdsf in zip(itarg_list, vout_list, vd_list, ib_list, gds_list): def zero_fun(vg): farg = self._db.get_fun_arg(vbs=vb - vd, vds=vd - vb, vgs=vg - vb) return seg * ibf(farg) - itarg v1, v2 = zero_fun(vg_min), zero_fun(vg_max) if v1 < 0 and v2 < 0 or v1 > 0 and v2 > 0: # no solution return None, None, None vg_sol = sciopt.brentq(zero_fun, vg_min, vg_max) # type: float vgs_opt = vg_sol - vb arg1 = self._db.get_fun_arg(vbs=vb - vd, vds=vd - vb, vgs=vgs_opt) arg2 = self._db.get_fun_arg(vbs=vb - vd, vds=vout - vb, vgs=vgs_opt) vgs_list.append(vgs_opt) gds1_list.append(seg * gdsf(arg1)) gds2_list.append(seg * gdsf(arg2)) return vgs_list, gds1_list, gds2_list def get_dsn_info(self): # type: () -> Optional[Dict[str, Any]] if self._best_op is None: return None w, intent, seg, stack, vb, vgs_list, vout_list, gds1_list, gds2_list = self._best_op self._db.set_dsn_params(w=w, intent=intent, stack=stack) cdd = self._db.get_function_list('cdd') cdd2_list = [] for vgs, vout, cddf in zip(vgs_list, vout_list, cdd): arg = self._db.get_fun_arg(vbs=0, vds=vout - vb, vgs=vgs) cur_cdd = cddf(arg) # type: float cdd2_list.append(seg * cur_cdd) return dict( w=w, intent=intent, vgs=vgs_list, gds1=gds1_list, gds2=gds2_list, cdd2=cdd2_list, ) class StageOneCurrentError(Exception): pass class OpAmpTwoStage(object): """A two stage fully differential operational amplifier. The first stage is a differential amplifier with diode + positive feedback load, the second stage is a psuedo-differential common source amplifier. This topology has the following advantages: 1. large output swing. 2. Common mode feedback is only required for the second stage. """ def __init__(self, nch_db, pch_db): # type: (MOSDBDiscrete, MOSDBDiscrete) -> None self._nch_db = nch_db self._pch_db = pch_db self._amp_info = None def design(self, i1_unit, # type: List[float] i1_min_size, # type: int vg_list, # type: List[float] vout_list, # type: List[float] cpar1, # type: float cload, # type: float f_unit, # type: float phase_margin, # type: float res_var, # type: float l, # type: float vstar_gm_min, # type: float ft_load_scale, # type: float vds_tail_min, # type: float seg_gm_min, # type: int vdd, # type: float pmos_input=True, # type: bool max_ref_ratio=20, # type: int load_stack_list=None, # type: Optional[List[int]] ): # type: (...) -> None # binary search for minimum stage 1 current, i1_size_iter = BinaryIterator(i1_min_size, None) i1_size_opt, opt_info = None, None while i1_size_iter.has_next(): i1_size = i1_size_iter.get_next() print('trying i1_size = %d' % i1_size) try: self._design_with_itarg(i1_size, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) success = True except StageOneCurrentError as err: print(err) success = False if success: print('success') opt_info = self._amp_info i1_size_opt = i1_size i1_size_iter.down() else: i1_size_iter.up() # linear search to find optimal scale2 scale2_int_max = int(opt_info['scale2']) if scale2_int_max == opt_info['scale2']: scale2_int_max -= 1 last_i1_size = i1_size_opt print('i1_size = %d, scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) for scale2_test in range(scale2_int_max, 0, -1): i1_size_test = int(np.floor(i1_size_opt * (1 + opt_info['scale2']) / (1 + scale2_test))) if i1_size_test <= last_i1_size or scale2_test == opt_info['scale2']: continue print('testing i1_size = %d, scale2 = %.4g' % (i1_size_test, scale2_test)) try: self._design_with_itarg(i1_size_test, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) except StageOneCurrentError as err: print(err) continue if self._amp_info['scale2'] <= scale2_test: # found new minimum. close in to find optimal i1 size opt_info = self._amp_info i1_size_opt = i1_size_test print('update: i1_size = %d, scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) i1_size_iter = BinaryIterator(last_i1_size + 1, i1_size_test) while i1_size_iter.has_next(): i1_size_cur_opt = i1_size_iter.get_next() print('testing i1_size = %d' % i1_size_cur_opt) try: self._design_with_itarg(i1_size_cur_opt, i1_unit, vg_list, vout_list, cpar1, cload, f_unit, phase_margin, res_var, l, vstar_gm_min, ft_load_scale, vds_tail_min, seg_gm_min, vdd, pmos_input, max_ref_ratio, load_stack_list) if self._amp_info['scale2'] <= opt_info['scale2']: opt_info = self._amp_info i1_size_opt = i1_size_cur_opt print('update: i1_size = %d, ' 'scale2 = %.4g' % (i1_size_opt, opt_info['scale2'])) i1_size_iter.down() else: i1_size_iter.up() except StageOneCurrentError as err: print(err) i1_size_iter.up() last_i1_size = i1_size_test self._amp_info = opt_info def _design_with_itarg(self, i1_size, # type: int i1_unit, # type: List[float] vg_list, # type: List[float] vout_list, # type: List[float] cpar1, # type: float cload, # type: float f_unit, # type: float phase_margin, # type: float res_var, # type: float l, # type: float vstar_gm_min, # type: float ft_load_scale, # type: float vds_tail_min, # type: float seg_gm_min, # type: int vdd, # type: float pmos_input, # type: bool max_ref_ratio, # type: int load_stack_list, # type: Optional[List[int]] ): # type: (...) -> None itarg_list = [i1 * i1_size for i1 in i1_unit] if pmos_input: load_db = self._nch_db gm_db = self._pch_db vds2_list = vout_list vb_gm = vdd vb_load = 0 else: load_db = self._pch_db gm_db = self._nch_db vds2_list = [vo - vdd for vo in vout_list] vb_gm = 0 vb_load = vdd load = LoadDiodePFB(load_db) gm = InputGm(gm_db) tail1 = TailStage1(gm_db) # design load print('designing load') load.design(itarg_list, vds2_list, ft_load_scale * f_unit, stack_list=load_stack_list) load_info = load.get_dsn_info() vgs_load_list = load_info['vgs'] gds_load_list = load_info['gds1'] gm2_list = load_info['gm2'] stack_diode = load_info['stack_diode'] stack_ngm = load_info['stack_ngm'] seg_diode = load_info['seg_diode'] seg_ngm = load_info['seg_ngm'] if pmos_input: vmid_list = vgs_load_list else: vmid_list = [vdd - vgs for vgs in vgs_load_list] # design input gm print('designing input gm') gm.design(itarg_list, vg_list, vmid_list, gds_load_list, vb_gm, vstar_gm_min, vds_tail_min, seg_min=seg_gm_min, stack_list=[stack_ngm]) gm_info = gm.get_dsn_info() gm1_list = gm_info['gm'] gds_in_list = gm_info['gds'] vtail_list = gm_info['vs'] seg_gm = gm_info['seg'] stack_gm = gm_info['stack'] gds1_list = [gds_in + gds_load for gds_in, gds_load in zip(gds_in_list, gds_load_list)] gain1_list = [gm1 / gds1 for gm1, gds1 in zip(gm1_list, gds1_list)] # design stage 1 tail print('designing tail') tail1.design(itarg_list, vtail_list, vout_list, vb_gm, l, seg_gm, stack_gm) tail1_info = tail1.get_dsn_info() vbias_list = [vgs_tail + vb_gm for vgs_tail in tail1_info['vgs']] # design stage 2 gm w_dict = {'load': load_info['w'], 'in': gm_info['w'], 'tail': tail1_info['w']} th_dict = {'load': load_info['intent'], 'in': gm_info['intent'], 'tail': tail1_info['intent']} stack_dict = {'tail': stack_gm, 'in': stack_gm, 'diode': stack_diode, 'ngm': stack_ngm} seg_dict = {'tail1': seg_gm, 'in': seg_gm, 'diode1': seg_diode, 'ngm1': seg_ngm, } print('designing stage 2') stage2_results = self._design_stage2(gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, f_unit, max_ref_ratio) scale2 = seg_dict['diode2'] / seg_dict['diode1'] scaler = seg_dict['ref'] / seg_dict['tail1'] itot_list = [(2 * (1 + scale2) + scaler) * itarg for itarg in itarg_list] layout_info = dict( w_dict=w_dict, th_dict=th_dict, stack_dict=stack_dict, seg_dict=seg_dict, ) self._amp_info = dict( i1_size=i1_size, scale2=scale2, scaler=scaler, vtail=vtail_list, vmid=vmid_list, vbias=vbias_list, itot=itot_list, vstar=gm_info['vstar'], cin=gm_info['cgg'], gm1=gm1_list, gds1=gds1_list, gain1=gain1_list, rfb=stage2_results['rz'], cfb=stage2_results['cf'], gain_tot=stage2_results['gain'], f_3db=stage2_results['f_3db'], f_unit=stage2_results['f_unity'], phase_margin=stage2_results['phase_margin'], layout_info=layout_info, ) print('done') def get_dsn_info(self): # type: () -> Optional[Dict[str, Any]] return self._amp_info def get_specs_verification(self, top_specs): # type: (Dict[str, Any]) -> Dict[str, Any] top_specs = deepcopy(top_specs) dsn_specs = top_specs['dsn_specs'] ibias = dsn_specs['i1_unit'][0] * self._amp_info['i1_size'] * self._amp_info['scaler'] vdd = dsn_specs['vdd'] vindc = dsn_specs['vg_list'][0] voutdc = dsn_specs['vout_list'][0] f_unit = dsn_specs['f_unit'] gain_max = max(self._amp_info['gain_tot']) f_bw_log = int(np.floor(np.log10(f_unit / gain_max))) f_unit_log = int(np.ceil(np.log10(f_unit))) top_specs['layout_params'].update(self._amp_info['layout_info']) meas = top_specs['measurements'][0] meas['cfb'] = self._amp_info['cfb'] meas['rfb'] = self._amp_info['rfb'] ac_tb = meas['testbenches']['ac'] ac_tb['fstart'] = 10 ** (f_bw_log - 1) ac_tb['fstop'] = 10 ** (f_unit_log + 1) ac_sim_vars = ac_tb['sim_vars'] ac_sim_vars['vdd'] = vdd ac_sim_vars['cload'] = dsn_specs['cload'] ac_sim_vars['vincm'] = vindc ac_sim_vars['voutcm'] = voutdc ac_sim_vars['ibias'] = ibias ac_sim_vars['vdd'] = vdd ac_sim_vars['vinac'] = 1.0 ac_sim_vars['vindc'] = 0.0 """ top_specs['tb_dc']['tb_params']['vimax'] = vdd top_specs['tb_dc']['tb_params']['vimin'] = -vdd top_specs['tb_dc']['tb_params']['vindc'] = vindc top_specs['tb_dc']['tb_params']['voutcm'] = voutdc top_specs['tb_dc']['tb_params']['ibias'] = ibias top_specs['tb_dc']['tb_params']['vdd'] = vdd top_specs['tb_dc']['tb_params']['voutref'] = voutdc top_specs['tb_dc']['tb_params']['vout_start'] = -vdd + 0.15 top_specs['tb_dc']['tb_params']['vout_stop'] = vdd - 0.15 """ return top_specs def _design_stage2(self, gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, f_unit, max_ref_ratio): seg_tail1 = seg_dict['tail1'] seg_diode1 = seg_dict['diode1'] seg_ngm1 = seg_dict['ngm1'] # step 1: find stage 2 unit size seg_gcd = gcd(gcd(seg_tail1, seg_diode1), seg_ngm1) if seg_gcd % 2 != 0: raise ValueError('All segment numbers must be even.') # divide seg_gcd by 2 to make sure all generated segment numbers are even seg_gcd //= 2 # make sure we have enough tail fingers for common mode feedback min_size = 2 if seg_tail1 // seg_gcd == 2 else 1 def ac_results_fun(cur_size): seg_dict['tail2'] = seg_tail1 // seg_gcd * cur_size seg_dict['diode2'] = seg_diode1 // seg_gcd * cur_size seg_dict['ngm2'] = seg_ngm1 // seg_gcd * cur_size cur_scale2 = cur_size / seg_gcd cur_gm2_list = [gm2 * cur_scale2 for gm2 in gm2_list] ac_results = self._find_rz_cf(gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, cur_gm2_list, res_var, phase_margin) return ac_results def funity_fun(cur_size): ac_results_tmp = ac_results_fun(cur_size) fu_list = ac_results_tmp[0] if fu_list is None: return -1 # noinspection PyTypeChecker ans = min(fu_list) return ans # find min_size such that amplifier is stable min_bin_iter = BinaryIterator(min_size, None) while min_bin_iter.has_next(): test_size = min_bin_iter.get_next() test_fu = funity_fun(test_size) if test_fu >= 0: min_bin_iter.save() min_bin_iter.down() else: min_bin_iter.up() min_result = minimize_cost_golden(funity_fun, f_unit, offset=min_bin_iter.get_last_save()) if min_result.x is None: msg = 'Insufficient stage 1 current. funity_max=%.4g' raise StageOneCurrentError(msg % min_result.vmax) funity_list, rz_nom, cf_min, gain_list, f3db_list, pm_list = ac_results_fun(min_result.x) seg_tail2_tot = seg_dict['tail2'] seg_tail2 = (seg_tail2_tot // 4) * 2 seg_tailcm = seg_tail2_tot - seg_tail2 seg_tail_tot = 2 * (seg_dict['tail1'] + seg_tail2) seg_dict['tail2'] = seg_tail2 seg_dict['tailcm'] = seg_tailcm seg_dict['ref'] = max(2, -((-seg_tail_tot // max_ref_ratio) // 2) * 2) return dict( rz=rz_nom, cf=cf_min, gain=gain_list, f_3db=f3db_list, f_unity=funity_list, phase_margin=pm_list, ) @classmethod def _get_stage2_ss(cls, gm2_list, gds2_list, c2_list, cg2_list, cload, seg_gcd, cur_size): cur_gm2_list, cur_gds2_list, cur_c2_list, cur_cg2_list = [], [], [], [] for gm2, gds2, c2, cg2 in zip(gm2_list, gds2_list, c2_list, cg2_list): cur_gm2_list.append(gm2 * cur_size / seg_gcd) cur_gds2_list.append(gds2 * cur_size / seg_gcd) cur_c2_list.append(cload + c2 * cur_size / seg_gcd) cur_cg2_list.append(cg2 * cur_size / seg_gcd) return cur_gm2_list, cur_gds2_list, cur_c2_list, cur_cg2_list def _find_rz_cf(self, gm_db, load_db, vtail_list, vg_list, vmid_list, vout_list, vbias_list, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gm2_list, res_var, phase_margin, cap_tol=1e-15, cap_step=10e-15, cap_min=1e-15, cap_max=1e-9): """Find minimum miller cap that stabilizes the system. NOTE: This function assume phase of system for any miller cap value will not loop around 360, otherwise it may get the phase margin wrong. This assumption should be valid for this op amp. """ gz_worst = float(min(gm2_list)) gz_nom = gz_worst * (1 - res_var) # find maximum Cf needed to stabilize all corners cf_min = cap_min for env_idx, (vtail, vg, vmid, vout, vbias) in \ enumerate(zip(vtail_list, vg_list, vmid_list, vout_list, vbias_list)): cir = self._make_circuit(env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz_worst) bin_iter = FloatBinaryIterator(cf_min, None, cap_tol, search_step=cap_step) while bin_iter.has_next(): cur_cf = bin_iter.get_next() cir.add_cap(cur_cf, 'outp', 'xp') cir.add_cap(cur_cf, 'outn', 'xn') num, den = cir.get_num_den('in', 'out') cur_pm, _ = get_stability_margins(num, den) if cur_pm < phase_margin: if cur_cf > cap_max: # no way to make amplifier stable, just return return None, None, None, None, None, None bin_iter.up() else: bin_iter.save() bin_iter.down() cir.add_cap(-cur_cf, 'outp', 'xp') cir.add_cap(-cur_cf, 'outn', 'xn') # bin_iter is guaranteed to save at least one value, so don't need to worry about # cf_min being None cf_min = bin_iter.get_last_save() # find gain, unity gain bandwidth, and phase margin across corners gain_list, f3db_list, funity_list, pm_list = [], [], [], [] for env_idx, (vtail, vg, vmid, vout, vbias) in \ enumerate(zip(vtail_list, vg_list, vmid_list, vout_list, vbias_list)): cir = self._make_circuit(env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz_nom) cir.add_cap(cf_min, 'outp', 'xp') cir.add_cap(cf_min, 'outn', 'xn') num, den = cir.get_num_den('in', 'out') pn = np.poly1d(num) pd = np.poly1d(den) gain_list.append(abs(pn(0) / pd(0))) f3db_list.append(get_w_3db(num, den) / 2 / np.pi) funity_list.append(get_w_crossings(num, den)[0] / 2 / np.pi) pm_list.append(get_stability_margins(num, den)[0]) return funity_list, 1 / gz_nom, cf_min, gain_list, f3db_list, pm_list @classmethod def _make_circuit(cls, env_idx, gm_db, load_db, vtail, vg, vmid, vout, vbias, vb_gm, vb_load, cload, cpar1, w_dict, th_dict, stack_dict, seg_dict, gz, neg_cap=False, no_fb=False): cur_env = gm_db.env_list[env_idx] gm_db.set_dsn_params(w=w_dict['tail'], intent=th_dict['tail'], stack=stack_dict['tail']) tail1_params = gm_db.query(env=cur_env, vbs=0, vds=vtail - vb_gm, vgs=vbias - vb_gm) tail2_params = gm_db.query(env=cur_env, vbs=0, vds=vout - vb_gm, vgs=vbias - vb_gm) gm_db.set_dsn_params(w=w_dict['in'], intent=th_dict['in'], stack=stack_dict['in']) gm1_params = gm_db.query(env=cur_env, vbs=vb_gm - vtail, vds=vmid - vtail, vgs=vg - vtail) load_db.set_dsn_params(w=w_dict['load'], intent=th_dict['load'], stack=stack_dict['diode']) diode1_params = load_db.query(env=cur_env, vbs=0, vds=vmid - vb_load, vgs=vmid - vb_load) diode2_params = load_db.query(env=cur_env, vbs=0, vds=vout - vb_load, vgs=vmid - vb_load) load_db.set_dsn_params(stack=stack_dict['ngm']) ngm1_params = load_db.query(env=cur_env, vbs=0, vds=vmid - vb_load, vgs=vmid - vb_load) ngm2_params = load_db.query(env=cur_env, vbs=0, vds=vout - vb_load, vgs=vmid - vb_load) cir = LTICircuit() # stage 1 cir.add_transistor(tail1_params, 'tail', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail1'], neg_cap=neg_cap) cir.add_transistor(gm1_params, 'midp', 'inn', 'tail', 'gnd', fg=seg_dict['in'], neg_cap=neg_cap) cir.add_transistor(gm1_params, 'midn', 'inp', 'tail', 'gnd', fg=seg_dict['in'], neg_cap=neg_cap) cir.add_transistor(diode1_params, 'midp', 'midp', 'gnd', 'gnd', fg=seg_dict['diode1'], neg_cap=neg_cap) cir.add_transistor(diode1_params, 'midn', 'midn', 'gnd', 'gnd', fg=seg_dict['diode1'], neg_cap=neg_cap) cir.add_transistor(ngm1_params, 'midn', 'midp', 'gnd', 'gnd', fg=seg_dict['ngm1'], neg_cap=neg_cap) cir.add_transistor(ngm1_params, 'midp', 'midn', 'gnd', 'gnd', fg=seg_dict['ngm1'], neg_cap=neg_cap) # stage 2 cir.add_transistor(tail2_params, 'outp', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail2'], neg_cap=neg_cap) cir.add_transistor(tail2_params, 'outn', 'gnd', 'gnd', 'gnd', fg=seg_dict['tail2'], neg_cap=neg_cap) cir.add_transistor(diode2_params, 'outp', 'midn', 'gnd', 'gnd', fg=seg_dict['diode2'], neg_cap=neg_cap) cir.add_transistor(diode2_params, 'outn', 'midp', 'gnd', 'gnd', fg=seg_dict['diode2'], neg_cap=neg_cap) cir.add_transistor(ngm2_params, 'outp', 'midn', 'gnd', 'gnd', fg=seg_dict['ngm2'], neg_cap=neg_cap) cir.add_transistor(ngm2_params, 'outn', 'midp', 'gnd', 'gnd', fg=seg_dict['ngm2'], neg_cap=neg_cap) # parasitic cap cir.add_cap(cpar1, 'midp', 'gnd') cir.add_cap(cpar1, 'midn', 'gnd') # load cap cir.add_cap(cload, 'outp', 'gnd') cir.add_cap(cload, 'outn', 'gnd') # feedback resistors if not no_fb: cir.add_conductance(gz, 'xp', 'midn') cir.add_conductance(gz, 'xn', 'midp') # diff-to-single conversion cir.add_vcvs(0.5, 'inp', 'gnd', 'in', 'gnd') cir.add_vcvs(-0.5, 'inn', 'gnd', 'in', 'gnd') cir.add_vcvs(1, 'out', 'gnd', 'outp', 'outn') return cir class OpAmpTwoStageChar(MeasurementManager): def __init__(self, data_dir, # type: str meas_name, # type: str impl_lib, # type: str specs, # type: Dict[str, Any] wrapper_lookup, # type: Dict[str, str] sim_view_list, # type: Sequence[Tuple[str, str]] env_list, # type: Sequence[str] ): MeasurementManager.__init__(self, data_dir, meas_name, impl_lib, specs, wrapper_lookup, sim_view_list, env_list) def get_initial_state(self): # type: () -> str """Returns the initial FSM state.""" return 'ac0' def get_testbench_info(self, state, prev_output): rfb0 = self.specs['rfb'] cfb0 = self.specs['cfb'] find_cfb = self.specs.get('find_cfb', True) res_var = self.specs['res_var'] cmin_scale = self.specs['cmin_scale'] cmax_scale = self.specs['cmax_scale'] num_pts = self.specs['num_pts'] tmp = super(OpAmpTwoStageChar, self).get_testbench_info('ac', prev_output) tb_name, tb_type, tb_specs, tb_params = tmp if state == 'ac0' and find_cfb: cfb_list = np.linspace(cfb0 * cmin_scale, cfb0 * cmax_scale, num_pts).tolist() tb_specs['sim_vars']['rfb'] = rfb0 * (1 - res_var) tb_specs['sim_vars']['cfb'] = cfb_list else: if find_cfb: cfb = self.get_state_output('ac0')['cfb'] else: cfb = cfb0 tb_specs['sim_vars']['rfb'] = rfb0 tb_specs['sim_vars']['cfb'] = cfb return tb_name, tb_type, tb_specs, tb_params def process_output(self, state, data, tb_manager): # type: (str, Dict[str, Any], ACTB) -> Tuple[bool, str, Dict[str, Any]] phase_margin = self.specs['phase_margin'] find_cfb = self.specs.get('find_cfb', True) output_list = ['vout'] results = tb_manager.get_ugb_and_pm(data, output_list) if state == 'ac0' and find_cfb: done = False next_state = 'ac1' cfb = self._find_min_cfb(phase_margin, results) output = dict(cfb=cfb) else: done = True next_state = '' if find_cfb: cfb = self.get_state_output('ac0')['cfb'] else: cfb = self.specs['cfb'] gain_results = tb_manager.get_gain_and_w3db(data, output_list, output_dict=results) corner_list = results['corner'].tolist() gain_list = gain_results['gain_vout'].tolist() bw_list = gain_results['w3db_vout'].tolist() funity_list = results['funity_vout'].tolist() pm_list = results['pm_vout'].tolist() output = dict(cfb=cfb, corners=corner_list, gain=gain_list, bw=bw_list, funity=funity_list, pm=pm_list) return done, next_state, output @classmethod def _find_min_cfb(cls, phase_margin, results): axis_names = ['corner', 'cfb'] corner_list = results['corner'] corner_sort_arg = np.argsort(corner_list) # type: Sequence[int] # rearrange array axis sweep_vars = results['sweep_params']['pm_vout'] order = [sweep_vars.index(name) for name in axis_names] pm_data = np.transpose(results['pm_vout'], axes=order) # determine minimum cfb cfb_vec = results['cfb'] cfb_idx_min = 0 for corner_idx in corner_sort_arg: bin_iter = BinaryIterator(cfb_idx_min, cfb_vec.size) while bin_iter.has_next(): cur_cfb_idx = bin_iter.get_next() pm = pm_data[corner_idx, cur_cfb_idx] if pm >= phase_margin: bin_iter.save() bin_iter.down() else: bin_iter.up() cfb_idx_min = bin_iter.get_last_save() if cfb_idx_min is None: # No solution; cannot make amplifier stable break if cfb_idx_min is None: raise ValueError('Cannot determine cfb.') else: cfb = cfb_vec[cfb_idx_min] return cfb.item()
en
0.679913
# -*- coding: utf-8 -*- This module contains design algorithm for a traditional two stage operational amplifier. Tail transistor of the first stage op amp. Due to layout restrictions, the tail transistor needs to have the same number of fingers and stack number as the input transistor. This method finds the optimal width/intent. # type: (MOSDBDiscrete) -> None # type: List[float] # type: List[float] # type: List[float] # type: float # type: float # type: int # type: int # type: (...) -> None # find vgs for each corner # no solution # type: float # type: () -> Optional[Dict[str, Any]] # type: float A two stage fully differential operational amplifier. The first stage is a differential amplifier with diode + positive feedback load, the second stage is a psuedo-differential common source amplifier. This topology has the following advantages: 1. large output swing. 2. Common mode feedback is only required for the second stage. # type: (MOSDBDiscrete, MOSDBDiscrete) -> None # type: List[float] # type: int # type: List[float] # type: List[float] # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: int # type: float # type: bool # type: int # type: Optional[List[int]] # type: (...) -> None # binary search for minimum stage 1 current, # linear search to find optimal scale2 # found new minimum. close in to find optimal i1 size # type: int # type: List[float] # type: List[float] # type: List[float] # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: float # type: int # type: float # type: bool # type: int # type: Optional[List[int]] # type: (...) -> None # design load # design input gm # design stage 1 tail # design stage 2 gm # type: () -> Optional[Dict[str, Any]] # type: (Dict[str, Any]) -> Dict[str, Any] top_specs['tb_dc']['tb_params']['vimax'] = vdd top_specs['tb_dc']['tb_params']['vimin'] = -vdd top_specs['tb_dc']['tb_params']['vindc'] = vindc top_specs['tb_dc']['tb_params']['voutcm'] = voutdc top_specs['tb_dc']['tb_params']['ibias'] = ibias top_specs['tb_dc']['tb_params']['vdd'] = vdd top_specs['tb_dc']['tb_params']['voutref'] = voutdc top_specs['tb_dc']['tb_params']['vout_start'] = -vdd + 0.15 top_specs['tb_dc']['tb_params']['vout_stop'] = vdd - 0.15 # step 1: find stage 2 unit size # divide seg_gcd by 2 to make sure all generated segment numbers are even # make sure we have enough tail fingers for common mode feedback # noinspection PyTypeChecker # find min_size such that amplifier is stable Find minimum miller cap that stabilizes the system. NOTE: This function assume phase of system for any miller cap value will not loop around 360, otherwise it may get the phase margin wrong. This assumption should be valid for this op amp. # find maximum Cf needed to stabilize all corners # no way to make amplifier stable, just return # bin_iter is guaranteed to save at least one value, so don't need to worry about # cf_min being None # find gain, unity gain bandwidth, and phase margin across corners # stage 1 # stage 2 # parasitic cap # load cap # feedback resistors # diff-to-single conversion # type: str # type: str # type: str # type: Dict[str, Any] # type: Dict[str, str] # type: Sequence[Tuple[str, str]] # type: Sequence[str] # type: () -> str Returns the initial FSM state. # type: (str, Dict[str, Any], ACTB) -> Tuple[bool, str, Dict[str, Any]] # type: Sequence[int] # rearrange array axis # determine minimum cfb # No solution; cannot make amplifier stable
2.785902
3
alipay/aop/api/domain/AlipayMerchantAuthDeleteModel.py
antopen/alipay-sdk-python-all
0
9430
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayMerchantAuthDeleteModel(object): def __init__(self): self._channel_code = None self._operator_id = None self._role = None self._scene_code = None self._user_id_list = None @property def channel_code(self): return self._channel_code @channel_code.setter def channel_code(self, value): self._channel_code = value @property def operator_id(self): return self._operator_id @operator_id.setter def operator_id(self, value): self._operator_id = value @property def role(self): return self._role @role.setter def role(self, value): self._role = value @property def scene_code(self): return self._scene_code @scene_code.setter def scene_code(self, value): self._scene_code = value @property def user_id_list(self): return self._user_id_list @user_id_list.setter def user_id_list(self, value): if isinstance(value, list): self._user_id_list = list() for i in value: self._user_id_list.append(i) def to_alipay_dict(self): params = dict() if self.channel_code: if hasattr(self.channel_code, 'to_alipay_dict'): params['channel_code'] = self.channel_code.to_alipay_dict() else: params['channel_code'] = self.channel_code if self.operator_id: if hasattr(self.operator_id, 'to_alipay_dict'): params['operator_id'] = self.operator_id.to_alipay_dict() else: params['operator_id'] = self.operator_id if self.role: if hasattr(self.role, 'to_alipay_dict'): params['role'] = self.role.to_alipay_dict() else: params['role'] = self.role if self.scene_code: if hasattr(self.scene_code, 'to_alipay_dict'): params['scene_code'] = self.scene_code.to_alipay_dict() else: params['scene_code'] = self.scene_code if self.user_id_list: if isinstance(self.user_id_list, list): for i in range(0, len(self.user_id_list)): element = self.user_id_list[i] if hasattr(element, 'to_alipay_dict'): self.user_id_list[i] = element.to_alipay_dict() if hasattr(self.user_id_list, 'to_alipay_dict'): params['user_id_list'] = self.user_id_list.to_alipay_dict() else: params['user_id_list'] = self.user_id_list return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayMerchantAuthDeleteModel() if 'channel_code' in d: o.channel_code = d['channel_code'] if 'operator_id' in d: o.operator_id = d['operator_id'] if 'role' in d: o.role = d['role'] if 'scene_code' in d: o.scene_code = d['scene_code'] if 'user_id_list' in d: o.user_id_list = d['user_id_list'] return o
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayMerchantAuthDeleteModel(object): def __init__(self): self._channel_code = None self._operator_id = None self._role = None self._scene_code = None self._user_id_list = None @property def channel_code(self): return self._channel_code @channel_code.setter def channel_code(self, value): self._channel_code = value @property def operator_id(self): return self._operator_id @operator_id.setter def operator_id(self, value): self._operator_id = value @property def role(self): return self._role @role.setter def role(self, value): self._role = value @property def scene_code(self): return self._scene_code @scene_code.setter def scene_code(self, value): self._scene_code = value @property def user_id_list(self): return self._user_id_list @user_id_list.setter def user_id_list(self, value): if isinstance(value, list): self._user_id_list = list() for i in value: self._user_id_list.append(i) def to_alipay_dict(self): params = dict() if self.channel_code: if hasattr(self.channel_code, 'to_alipay_dict'): params['channel_code'] = self.channel_code.to_alipay_dict() else: params['channel_code'] = self.channel_code if self.operator_id: if hasattr(self.operator_id, 'to_alipay_dict'): params['operator_id'] = self.operator_id.to_alipay_dict() else: params['operator_id'] = self.operator_id if self.role: if hasattr(self.role, 'to_alipay_dict'): params['role'] = self.role.to_alipay_dict() else: params['role'] = self.role if self.scene_code: if hasattr(self.scene_code, 'to_alipay_dict'): params['scene_code'] = self.scene_code.to_alipay_dict() else: params['scene_code'] = self.scene_code if self.user_id_list: if isinstance(self.user_id_list, list): for i in range(0, len(self.user_id_list)): element = self.user_id_list[i] if hasattr(element, 'to_alipay_dict'): self.user_id_list[i] = element.to_alipay_dict() if hasattr(self.user_id_list, 'to_alipay_dict'): params['user_id_list'] = self.user_id_list.to_alipay_dict() else: params['user_id_list'] = self.user_id_list return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayMerchantAuthDeleteModel() if 'channel_code' in d: o.channel_code = d['channel_code'] if 'operator_id' in d: o.operator_id = d['operator_id'] if 'role' in d: o.role = d['role'] if 'scene_code' in d: o.scene_code = d['scene_code'] if 'user_id_list' in d: o.user_id_list = d['user_id_list'] return o
en
0.352855
#!/usr/bin/env python # -*- coding: utf-8 -*-
1.933715
2
test/torchaudio_unittest/models/emformer/emformer_cpu_test.py
LaudateCorpus1/audio
0
9431
import torch from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.models.emformer.emformer_test_impl import EmformerTestImpl class EmformerFloat32CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class EmformerFloat64CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
import torch from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.models.emformer.emformer_test_impl import EmformerTestImpl class EmformerFloat32CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class EmformerFloat64CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
none
1
2.387281
2
src/nba_analysis/pipelines/data_processing/pipeline.py
stanton119/nba-analysis
0
9432
<reponame>stanton119/nba-analysis """ Two pipelines: * full history * update latest season * Only updates latest season year """ from functools import partial import itertools from kedro.pipeline import Pipeline, node from nba_analysis.pipelines.data_processing import basketball_reference from . import nodes def create_pipeline(**kwargs): season_range = range(2018, 2021) download_nodes = [ node( func=partial(nodes.download_season_data, season=season), inputs=[], outputs=f"season_data_{season}", name=f"download_season_data_{season}_node", ) for season in season_range ] # month_range = ['october','november','december','january','february','march','april','may','june','july','august','september'] # download_game_log_nodes = [ # node( # func=partial(nodes.download_game_log_data, season=season, month=month), # inputs=[], # outputs=f"game_log_data_{season}_{month}", # name=f"download_game_log_data_{season}_{month}_node", # ) # for season, month in itertools.product(season_range,month_range) # ] download_game_log_nodes = [ node( func=partial( basketball_reference.get_full_season_game_log, season=season ), inputs=[], outputs=f"game_log_data_{season}", name=f"download_game_log_data_{season}_node", ) for season in season_range ] process_game_log_nodes = [ node( func=basketball_reference.process_df_game_log, inputs=f"game_log_data_{season}", outputs=f"game_log_data_{season}_int", name=f"process_game_log_data_{season}_node", ) for season in season_range ] return Pipeline( [ *download_nodes, node( func=nodes.process_season_data, inputs=[f"season_data_{season}" for season in season_range], outputs="cleaned_season_data", name="process_season_data_node", ), *download_game_log_nodes, *process_game_log_nodes, ] )
""" Two pipelines: * full history * update latest season * Only updates latest season year """ from functools import partial import itertools from kedro.pipeline import Pipeline, node from nba_analysis.pipelines.data_processing import basketball_reference from . import nodes def create_pipeline(**kwargs): season_range = range(2018, 2021) download_nodes = [ node( func=partial(nodes.download_season_data, season=season), inputs=[], outputs=f"season_data_{season}", name=f"download_season_data_{season}_node", ) for season in season_range ] # month_range = ['october','november','december','january','february','march','april','may','june','july','august','september'] # download_game_log_nodes = [ # node( # func=partial(nodes.download_game_log_data, season=season, month=month), # inputs=[], # outputs=f"game_log_data_{season}_{month}", # name=f"download_game_log_data_{season}_{month}_node", # ) # for season, month in itertools.product(season_range,month_range) # ] download_game_log_nodes = [ node( func=partial( basketball_reference.get_full_season_game_log, season=season ), inputs=[], outputs=f"game_log_data_{season}", name=f"download_game_log_data_{season}_node", ) for season in season_range ] process_game_log_nodes = [ node( func=basketball_reference.process_df_game_log, inputs=f"game_log_data_{season}", outputs=f"game_log_data_{season}_int", name=f"process_game_log_data_{season}_node", ) for season in season_range ] return Pipeline( [ *download_nodes, node( func=nodes.process_season_data, inputs=[f"season_data_{season}" for season in season_range], outputs="cleaned_season_data", name="process_season_data_node", ), *download_game_log_nodes, *process_game_log_nodes, ] )
en
0.463724
Two pipelines: * full history * update latest season * Only updates latest season year # month_range = ['october','november','december','january','february','march','april','may','june','july','august','september'] # download_game_log_nodes = [ # node( # func=partial(nodes.download_game_log_data, season=season, month=month), # inputs=[], # outputs=f"game_log_data_{season}_{month}", # name=f"download_game_log_data_{season}_{month}_node", # ) # for season, month in itertools.product(season_range,month_range) # ]
2.69307
3
IceSpringMusicPlayer/plugins/IceSpringHelloWorldPlugin/helloWorldPlugin.py
baijifeilong/rawsteelp
0
9433
<filename>IceSpringMusicPlayer/plugins/IceSpringHelloWorldPlugin/helloWorldPlugin.py # Created by <EMAIL> at 2022/1/21 17:13 import typing from IceSpringRealOptional.typingUtils import gg from PySide2 import QtWidgets, QtCore from IceSpringMusicPlayer import tt from IceSpringMusicPlayer.common.pluginMixin import PluginMixin from IceSpringMusicPlayer.common.pluginWidgetMixin import PluginWidgetMixin from IceSpringMusicPlayer.tt import Text class HelloWorldPlugin(QtWidgets.QWidget, PluginMixin, PluginWidgetMixin): @classmethod def getPluginName(cls) -> Text: return tt.HelloWorldPlugin_Name @classmethod def getPluginReplacers(cls) -> typing.Dict[Text, typing.Callable[[], PluginWidgetMixin]]: return {tt.HelloWorldWidget_Name: lambda: cls()} def __init__(self): super().__init__() label = QtWidgets.QLabel("Hello World") label.setAlignment(gg(QtCore.Qt.AlignmentFlag.AlignCenter)) self.setLayout(QtWidgets.QGridLayout()) self.layout().addWidget(label)
<filename>IceSpringMusicPlayer/plugins/IceSpringHelloWorldPlugin/helloWorldPlugin.py # Created by <EMAIL> at 2022/1/21 17:13 import typing from IceSpringRealOptional.typingUtils import gg from PySide2 import QtWidgets, QtCore from IceSpringMusicPlayer import tt from IceSpringMusicPlayer.common.pluginMixin import PluginMixin from IceSpringMusicPlayer.common.pluginWidgetMixin import PluginWidgetMixin from IceSpringMusicPlayer.tt import Text class HelloWorldPlugin(QtWidgets.QWidget, PluginMixin, PluginWidgetMixin): @classmethod def getPluginName(cls) -> Text: return tt.HelloWorldPlugin_Name @classmethod def getPluginReplacers(cls) -> typing.Dict[Text, typing.Callable[[], PluginWidgetMixin]]: return {tt.HelloWorldWidget_Name: lambda: cls()} def __init__(self): super().__init__() label = QtWidgets.QLabel("Hello World") label.setAlignment(gg(QtCore.Qt.AlignmentFlag.AlignCenter)) self.setLayout(QtWidgets.QGridLayout()) self.layout().addWidget(label)
en
0.51972
# Created by <EMAIL> at 2022/1/21 17:13
1.926301
2
SWHT/Ylm.py
2baOrNot2ba/SWHT
0
9434
<gh_stars>0 """ An implementation on spherical harmonics in python becasue scipy.special.sph_harm in scipy<=0.13 is very slow Originally written by <NAME> https://github.com/scipy/scipy/issues/1280 """ import numpy as np def xfact(m): # computes (2m-1)!!/sqrt((2m)!) res = 1. for i in xrange(1, 2*m+1): if i % 2: res *= i # (2m-1)!! res /= np.sqrt(i) # sqrt((2m)!) return res def lplm_n(l, m, x): # associated legendre polynomials normalized as in Ylm, from Numerical Recipes 6.7 l,m = int(l),int(m) assert 0<=m<=l and np.all(np.abs(x)<=1.) norm = np.sqrt(2. * l + 1.) / np.sqrt(4. * np.pi) if m == 0: pmm = norm * np.ones_like(x) else: pmm = (-1.)**m * norm * xfact(m) * (1.-x**2.)**(m/2.) if l == m: return pmm pmmp1 = x * pmm * np.sqrt(2.*m+1.) if l == m+1: return pmmp1 for ll in xrange(m+2, l+1): pll = (x*(2.*ll-1.)*pmmp1 - np.sqrt( (ll-1.)**2. - m**2.)*pmm)/np.sqrt(ll**2.-m**2.) pmm = pmmp1 pmmp1 = pll return pll def Ylm(l, m, phi, theta): # spherical harmonics # theta is from 0 to pi with pi/2 on equator l,m = int(l),int(m) assert 0 <= np.abs(m) <=l if m > 0: return lplm_n(l, m, np.cos(theta)) * np.exp(1J * m * phi) elif m < 0: return (-1.)**m * lplm_n(l, -m, np.cos(theta)) * np.exp(1J * m * phi) return lplm_n(l, m, np.cos(theta)) * np.ones_like(phi) def Ylmr(l, m, phi, theta): # real spherical harmonics # theta is from 0 to pi with pi/2 on equator l,m = int(l),int(m) assert 0 <= np.abs(m) <=l if m > 0: return lplm_n(l, m, np.cos(theta)) * np.cos(m * phi) * np.sqrt(2.) elif m < 0: return (-1.)**m * lplm_n(l, -m, np.cos(theta)) * np.sin(-m * phi) * np.sqrt(2.) return lplm_n(l, m, np.cos(theta)) * np.ones_like(phi) if __name__ == "__main__": from scipy.special import sph_harm from scipy.misc import factorial2, factorial from timeit import Timer def ref_xfact(m): return factorial2(2*m-1)/np.sqrt(factorial(2*m)) print "Time: xfact(10)", Timer("xfact(10)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: ref_xfact(10)", Timer("ref_xfact(10)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: xfact(80)", Timer("xfact(80)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: ref_xfact(80)", Timer("ref_xfact(80)", "from __main__ import xfact, ref_xfact").timeit(100) print "m", "xfact", "ref_xfact" for m in range(10) + range(80,90): a = xfact(m) b = ref_xfact(m) print m, a, b phi, theta = np.ogrid[0:2*np.pi:10j,-np.pi/2:np.pi/2:10j] print "Time: Ylm(1,1,phi,theta)", Timer("Ylm(1,1,phi,theta)", "from __main__ import Ylm, sph_harm, phi, theta").timeit(10) print "Time: sph_harm(1,1,phi,theta)", Timer("sph_harm(1,1,phi,theta)", "from __main__ import Ylm, sph_harm, phi, theta").timeit(10) print "l", "m", "max|Ylm-sph_harm|" for l in xrange(0,10): for m in xrange(-l,l+1): a = Ylm(l,m,phi,theta) b = sph_harm(m,l,phi,theta) print l,m, np.amax(np.abs(a-b))
""" An implementation on spherical harmonics in python becasue scipy.special.sph_harm in scipy<=0.13 is very slow Originally written by <NAME> https://github.com/scipy/scipy/issues/1280 """ import numpy as np def xfact(m): # computes (2m-1)!!/sqrt((2m)!) res = 1. for i in xrange(1, 2*m+1): if i % 2: res *= i # (2m-1)!! res /= np.sqrt(i) # sqrt((2m)!) return res def lplm_n(l, m, x): # associated legendre polynomials normalized as in Ylm, from Numerical Recipes 6.7 l,m = int(l),int(m) assert 0<=m<=l and np.all(np.abs(x)<=1.) norm = np.sqrt(2. * l + 1.) / np.sqrt(4. * np.pi) if m == 0: pmm = norm * np.ones_like(x) else: pmm = (-1.)**m * norm * xfact(m) * (1.-x**2.)**(m/2.) if l == m: return pmm pmmp1 = x * pmm * np.sqrt(2.*m+1.) if l == m+1: return pmmp1 for ll in xrange(m+2, l+1): pll = (x*(2.*ll-1.)*pmmp1 - np.sqrt( (ll-1.)**2. - m**2.)*pmm)/np.sqrt(ll**2.-m**2.) pmm = pmmp1 pmmp1 = pll return pll def Ylm(l, m, phi, theta): # spherical harmonics # theta is from 0 to pi with pi/2 on equator l,m = int(l),int(m) assert 0 <= np.abs(m) <=l if m > 0: return lplm_n(l, m, np.cos(theta)) * np.exp(1J * m * phi) elif m < 0: return (-1.)**m * lplm_n(l, -m, np.cos(theta)) * np.exp(1J * m * phi) return lplm_n(l, m, np.cos(theta)) * np.ones_like(phi) def Ylmr(l, m, phi, theta): # real spherical harmonics # theta is from 0 to pi with pi/2 on equator l,m = int(l),int(m) assert 0 <= np.abs(m) <=l if m > 0: return lplm_n(l, m, np.cos(theta)) * np.cos(m * phi) * np.sqrt(2.) elif m < 0: return (-1.)**m * lplm_n(l, -m, np.cos(theta)) * np.sin(-m * phi) * np.sqrt(2.) return lplm_n(l, m, np.cos(theta)) * np.ones_like(phi) if __name__ == "__main__": from scipy.special import sph_harm from scipy.misc import factorial2, factorial from timeit import Timer def ref_xfact(m): return factorial2(2*m-1)/np.sqrt(factorial(2*m)) print "Time: xfact(10)", Timer("xfact(10)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: ref_xfact(10)", Timer("ref_xfact(10)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: xfact(80)", Timer("xfact(80)", "from __main__ import xfact, ref_xfact").timeit(100) print "Time: ref_xfact(80)", Timer("ref_xfact(80)", "from __main__ import xfact, ref_xfact").timeit(100) print "m", "xfact", "ref_xfact" for m in range(10) + range(80,90): a = xfact(m) b = ref_xfact(m) print m, a, b phi, theta = np.ogrid[0:2*np.pi:10j,-np.pi/2:np.pi/2:10j] print "Time: Ylm(1,1,phi,theta)", Timer("Ylm(1,1,phi,theta)", "from __main__ import Ylm, sph_harm, phi, theta").timeit(10) print "Time: sph_harm(1,1,phi,theta)", Timer("sph_harm(1,1,phi,theta)", "from __main__ import Ylm, sph_harm, phi, theta").timeit(10) print "l", "m", "max|Ylm-sph_harm|" for l in xrange(0,10): for m in xrange(-l,l+1): a = Ylm(l,m,phi,theta) b = sph_harm(m,l,phi,theta) print l,m, np.amax(np.abs(a-b))
en
0.881431
An implementation on spherical harmonics in python becasue scipy.special.sph_harm in scipy<=0.13 is very slow Originally written by <NAME> https://github.com/scipy/scipy/issues/1280 # computes (2m-1)!!/sqrt((2m)!) # (2m-1)!! # sqrt((2m)!) # associated legendre polynomials normalized as in Ylm, from Numerical Recipes 6.7 # spherical harmonics # theta is from 0 to pi with pi/2 on equator # real spherical harmonics # theta is from 0 to pi with pi/2 on equator
2.771571
3
0673.GCBA-HOTEL_STAFF.py
alphacastio/connectors-gcba
1
9435
<filename>0673.GCBA-HOTEL_STAFF.py #!/usr/bin/env python # coding: utf-8 # In[9]: import requests import pandas as pd from lxml import etree from bs4 import BeautifulSoup import datetime import io import numpy as np from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) # In[10]: url1 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2020/11/Eoh_PnoA_0811.xlsx" df1 = pd.read_excel(url1) df1[:2] = df1[:2].ffill(1) df1.columns = "Personal No Asalariado - " + df1.iloc[1] + " - " + df1.iloc[2] df1 = df1.drop(df1.columns[[1]], axis = 1) df1 = df1.drop(index=1) df1 = df1.drop(index=0) df1 = df1.drop(index=2) df1 = df1.dropna(subset = [df1.columns[3]]) #df1 = df1.iloc[2: , 3:-2] #df1 = df1[~df1.iloc[:, 0].astype(str).str.isdigit()] df1 = df1[df1.columns.dropna()] df1.index = pd.date_range(start='1/1/2008', periods=len(df1), freq = "QS") df1.index.name = "Date" #df1 = df1[df1.columns.drop(list(df1.filter(regex='Participación')))] df1 # In[11]: url2 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2018/05/Eoh_PA_0811.xlsx" df2 = pd.read_excel(url2) df2[:2] = df2[:2].ffill(1) df2.columns = "Personal Asalariado - " + df2.iloc[1] + " - " + df2.iloc[2] df2 = df2.drop(df2.columns[[1]], axis = 1) df2 = df2.drop(index=1) df2 = df2.drop(index=0) df2 = df2.drop(index=2) df2 = df2.dropna(subset = [df2.columns[3]]) #df2 = df2.iloc[2: , 3:-2] #df2 = df2[~df2.iloc[:, 0].astype(str).str.isdigit()] df2 = df2[df2.columns.dropna()] df2.index = pd.date_range(start='1/1/2008', periods=len(df2), freq = "QS") df2.index.name = "Date" df3 = df1.merge(df2, right_index=True, left_index=True) alphacast.datasets.dataset(7432).upload_data_from_df(df3, deleteMissingFromDB = True, onConflictUpdateDB = True, uploadIndex=True)
<filename>0673.GCBA-HOTEL_STAFF.py #!/usr/bin/env python # coding: utf-8 # In[9]: import requests import pandas as pd from lxml import etree from bs4 import BeautifulSoup import datetime import io import numpy as np from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) # In[10]: url1 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2020/11/Eoh_PnoA_0811.xlsx" df1 = pd.read_excel(url1) df1[:2] = df1[:2].ffill(1) df1.columns = "Personal No Asalariado - " + df1.iloc[1] + " - " + df1.iloc[2] df1 = df1.drop(df1.columns[[1]], axis = 1) df1 = df1.drop(index=1) df1 = df1.drop(index=0) df1 = df1.drop(index=2) df1 = df1.dropna(subset = [df1.columns[3]]) #df1 = df1.iloc[2: , 3:-2] #df1 = df1[~df1.iloc[:, 0].astype(str).str.isdigit()] df1 = df1[df1.columns.dropna()] df1.index = pd.date_range(start='1/1/2008', periods=len(df1), freq = "QS") df1.index.name = "Date" #df1 = df1[df1.columns.drop(list(df1.filter(regex='Participación')))] df1 # In[11]: url2 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2018/05/Eoh_PA_0811.xlsx" df2 = pd.read_excel(url2) df2[:2] = df2[:2].ffill(1) df2.columns = "Personal Asalariado - " + df2.iloc[1] + " - " + df2.iloc[2] df2 = df2.drop(df2.columns[[1]], axis = 1) df2 = df2.drop(index=1) df2 = df2.drop(index=0) df2 = df2.drop(index=2) df2 = df2.dropna(subset = [df2.columns[3]]) #df2 = df2.iloc[2: , 3:-2] #df2 = df2[~df2.iloc[:, 0].astype(str).str.isdigit()] df2 = df2[df2.columns.dropna()] df2.index = pd.date_range(start='1/1/2008', periods=len(df2), freq = "QS") df2.index.name = "Date" df3 = df1.merge(df2, right_index=True, left_index=True) alphacast.datasets.dataset(7432).upload_data_from_df(df3, deleteMissingFromDB = True, onConflictUpdateDB = True, uploadIndex=True)
en
0.12904
#!/usr/bin/env python # coding: utf-8 # In[9]: # In[10]: #df1 = df1.iloc[2: , 3:-2] #df1 = df1[~df1.iloc[:, 0].astype(str).str.isdigit()] #df1 = df1[df1.columns.drop(list(df1.filter(regex='Participación')))] # In[11]: #df2 = df2.iloc[2: , 3:-2] #df2 = df2[~df2.iloc[:, 0].astype(str).str.isdigit()]
2.64759
3
simpleGmatch4py.py
aravi11/approxGed
0
9436
<reponame>aravi11/approxGed # import the GED using the munkres algorithm import gmatch4py as gm import networkx as nx import collections import csv import pickle from collections import OrderedDict import json import concurrent.futures as cf import time iter = 0 def getFinishedStatus(): iter +=1 print('*******\t' + str(iter)+ "\t*******") def getGraphDiff(files): dotFile_data_path = './DotFiles/' file1 = files.split(',')[0] file2 = files.split(',')[1] g1_name = file1.split('.')[0] # gets the name of first dotFile without its extension g2_name = file2.split('.')[0] # gets the name of second dotFile without its extension #print("\n Started pair: "+ str(g1_name) + ', ' + str(g2_name)) graph_1 = nx.drawing.nx_pydot.read_dot(str(dotFile_data_path) + str(file1)) graph_2 = nx.drawing.nx_pydot.read_dot(str(dotFile_data_path) + str(file2)) jsonData = getJsonData(graph_1, graph_2) dumpJson(jsonData, g1_name, g2_name) #print("\n >>>Finished pair: "+ str(g1_name) + ', ' + str(g2_name)) #getFinishedStatus() #print('Total time : '+str(totalTime)+ '\n') ''' def runParallelCode(pairList): with cf.ProcessPoolExecutor(max_workers =2) as executor: try: for future in cf.as_completed((executor.map(getGraphDiff, pairList, timeout=5000000)), timeout=5000000): print(str(type(future.result()))) if str(type(future.result())) == "<class 'NoneType'>": pass else: print(future.result(timeout=5000000)) except cf._base.TimeoutError: print("Time limit exceeded") pass ''' def runParallelCode(pairList): with cf.ProcessPoolExecutor(max_workers =2) as executor: try: result = executor.map(getGraphDiff, pairList, timeout=5000000) for r in result: if str(type(r)) == "<class 'NoneType'>": pass else: print(r) except cf._base.TimeoutError: print("Time limit exceeded") pass def getJsonData(graph_1,graph_2): g1_edgeList = [] g2_edgeList = [] # convert the node labels which are strings to sorted integers without affecting the node attributes. sortedIntGraph_1 = nx.relabel.convert_node_labels_to_integers(graph_1, first_label=0, ordering='sorted', label_attribute=None) sortedIntGraph_2 = nx.relabel.convert_node_labels_to_integers(graph_2, first_label=0, ordering='sorted', label_attribute=None) g1_edgeTuple = list(sortedIntGraph_1.edges(data=False)) g2_edgeTuple = list(sortedIntGraph_2.edges(data=False)) # get graph edge lists for i in g1_edgeTuple: g1_edgeList.append(list(i)) for i in g2_edgeTuple: g2_edgeList.append(list(i)) # get graph attributes in the ascending order as the node labels nodeLabelList_g1 = [] nodeLabelList_g2 = [] nodeList_g1 = list(sortedIntGraph_1.nodes(data=True)) nodeList_g2 = list(sortedIntGraph_2.nodes(data=True)) for i in range(len(nodeList_g1)): if nodeList_g1[i][0] == i: nodeLabelList_g1.insert(i, nodeList_g1[i][1].get('label').replace('"', '')) for i in range(len(nodeList_g2)): if nodeList_g2[i][0] == i: nodeLabelList_g2.insert(i, nodeList_g2[i][1].get('label').replace('"', '')) # get graph edit distance #ged = nx.graph_edit_distance(sortedIntGraph_1, sortedIntGraph_2, node_match=return_eq) Commented since its too time expensive #Gmatch4py code for calculating ged #abs_ged = gm.BP_2(1,1,1,1) ged=gm.GraphEditDistance(1,1,1,1) # all edit costs are equal to 1 #hed = gm.HED(1,1,1,1) result = ged.compare([sortedIntGraph_1, sortedIntGraph_2], None) # generate the json files jsonDict = {} jsonDict["graph_1"] = g1_edgeList jsonDict["graph_2"] = g2_edgeList jsonDict["labels_1"] = nodeLabelList_g1 jsonDict["labels_2"] = nodeLabelList_g2 jsonDict["ged"] = int(result[0][1]) #print(jsonDict) return jsonDict def return_eq(node1, node2): #function to compare the node labels return node1['label']==node2['label'] def dumpJson(jsonFile, g1, g2): #function to dump the Json files outPath = './outFiles/' with open(str(outPath)+ str(g1) + '::::'+ str(g2) + '.json', 'w') as fp: json.dump(jsonFile, fp) def main(): #main function from where the program starts dotFileList= [] #dotFile_data_path = './DotFiles/test' with open('./filenames.txt', 'r') as csvFile: reader = csv.reader(csvFile) for row in reader: dotName = str(row).replace('[', '').replace(']','').replace("'","").strip() dotFileList.append(dotName) print("Total number of graph files: " + str(len(dotFileList))) counter = 0 len_dotFileList = len(dotFileList) totalGraphJsons = len_dotFileList * len_dotFileList #total number of graph similarity json samples print("Total Graph Similarity json samples: " + str(int(totalGraphJsons))) pairList = [] #Code for generating graph Similarity json. Takes a non-symmetric pair of graphs from a list and returns their json data for dotFile_i in dotFileList: for dotFile_j in dotFileList: pairList.append(str(dotFile_i + ','+ str(dotFile_j))) print("<<<<<<<<<<<<<<<<<<<<<< " + str(len(pairList))) runParallelCode(pairList) if __name__ == '__main__': start_time = time.time() main() print("--- %s seconds ---" % (time.time() - start_time))
# import the GED using the munkres algorithm import gmatch4py as gm import networkx as nx import collections import csv import pickle from collections import OrderedDict import json import concurrent.futures as cf import time iter = 0 def getFinishedStatus(): iter +=1 print('*******\t' + str(iter)+ "\t*******") def getGraphDiff(files): dotFile_data_path = './DotFiles/' file1 = files.split(',')[0] file2 = files.split(',')[1] g1_name = file1.split('.')[0] # gets the name of first dotFile without its extension g2_name = file2.split('.')[0] # gets the name of second dotFile without its extension #print("\n Started pair: "+ str(g1_name) + ', ' + str(g2_name)) graph_1 = nx.drawing.nx_pydot.read_dot(str(dotFile_data_path) + str(file1)) graph_2 = nx.drawing.nx_pydot.read_dot(str(dotFile_data_path) + str(file2)) jsonData = getJsonData(graph_1, graph_2) dumpJson(jsonData, g1_name, g2_name) #print("\n >>>Finished pair: "+ str(g1_name) + ', ' + str(g2_name)) #getFinishedStatus() #print('Total time : '+str(totalTime)+ '\n') ''' def runParallelCode(pairList): with cf.ProcessPoolExecutor(max_workers =2) as executor: try: for future in cf.as_completed((executor.map(getGraphDiff, pairList, timeout=5000000)), timeout=5000000): print(str(type(future.result()))) if str(type(future.result())) == "<class 'NoneType'>": pass else: print(future.result(timeout=5000000)) except cf._base.TimeoutError: print("Time limit exceeded") pass ''' def runParallelCode(pairList): with cf.ProcessPoolExecutor(max_workers =2) as executor: try: result = executor.map(getGraphDiff, pairList, timeout=5000000) for r in result: if str(type(r)) == "<class 'NoneType'>": pass else: print(r) except cf._base.TimeoutError: print("Time limit exceeded") pass def getJsonData(graph_1,graph_2): g1_edgeList = [] g2_edgeList = [] # convert the node labels which are strings to sorted integers without affecting the node attributes. sortedIntGraph_1 = nx.relabel.convert_node_labels_to_integers(graph_1, first_label=0, ordering='sorted', label_attribute=None) sortedIntGraph_2 = nx.relabel.convert_node_labels_to_integers(graph_2, first_label=0, ordering='sorted', label_attribute=None) g1_edgeTuple = list(sortedIntGraph_1.edges(data=False)) g2_edgeTuple = list(sortedIntGraph_2.edges(data=False)) # get graph edge lists for i in g1_edgeTuple: g1_edgeList.append(list(i)) for i in g2_edgeTuple: g2_edgeList.append(list(i)) # get graph attributes in the ascending order as the node labels nodeLabelList_g1 = [] nodeLabelList_g2 = [] nodeList_g1 = list(sortedIntGraph_1.nodes(data=True)) nodeList_g2 = list(sortedIntGraph_2.nodes(data=True)) for i in range(len(nodeList_g1)): if nodeList_g1[i][0] == i: nodeLabelList_g1.insert(i, nodeList_g1[i][1].get('label').replace('"', '')) for i in range(len(nodeList_g2)): if nodeList_g2[i][0] == i: nodeLabelList_g2.insert(i, nodeList_g2[i][1].get('label').replace('"', '')) # get graph edit distance #ged = nx.graph_edit_distance(sortedIntGraph_1, sortedIntGraph_2, node_match=return_eq) Commented since its too time expensive #Gmatch4py code for calculating ged #abs_ged = gm.BP_2(1,1,1,1) ged=gm.GraphEditDistance(1,1,1,1) # all edit costs are equal to 1 #hed = gm.HED(1,1,1,1) result = ged.compare([sortedIntGraph_1, sortedIntGraph_2], None) # generate the json files jsonDict = {} jsonDict["graph_1"] = g1_edgeList jsonDict["graph_2"] = g2_edgeList jsonDict["labels_1"] = nodeLabelList_g1 jsonDict["labels_2"] = nodeLabelList_g2 jsonDict["ged"] = int(result[0][1]) #print(jsonDict) return jsonDict def return_eq(node1, node2): #function to compare the node labels return node1['label']==node2['label'] def dumpJson(jsonFile, g1, g2): #function to dump the Json files outPath = './outFiles/' with open(str(outPath)+ str(g1) + '::::'+ str(g2) + '.json', 'w') as fp: json.dump(jsonFile, fp) def main(): #main function from where the program starts dotFileList= [] #dotFile_data_path = './DotFiles/test' with open('./filenames.txt', 'r') as csvFile: reader = csv.reader(csvFile) for row in reader: dotName = str(row).replace('[', '').replace(']','').replace("'","").strip() dotFileList.append(dotName) print("Total number of graph files: " + str(len(dotFileList))) counter = 0 len_dotFileList = len(dotFileList) totalGraphJsons = len_dotFileList * len_dotFileList #total number of graph similarity json samples print("Total Graph Similarity json samples: " + str(int(totalGraphJsons))) pairList = [] #Code for generating graph Similarity json. Takes a non-symmetric pair of graphs from a list and returns their json data for dotFile_i in dotFileList: for dotFile_j in dotFileList: pairList.append(str(dotFile_i + ','+ str(dotFile_j))) print("<<<<<<<<<<<<<<<<<<<<<< " + str(len(pairList))) runParallelCode(pairList) if __name__ == '__main__': start_time = time.time() main() print("--- %s seconds ---" % (time.time() - start_time))
en
0.636795
# import the GED using the munkres algorithm # gets the name of first dotFile without its extension # gets the name of second dotFile without its extension #print("\n Started pair: "+ str(g1_name) + ', ' + str(g2_name)) #print("\n >>>Finished pair: "+ str(g1_name) + ', ' + str(g2_name)) #getFinishedStatus() #print('Total time : '+str(totalTime)+ '\n') def runParallelCode(pairList): with cf.ProcessPoolExecutor(max_workers =2) as executor: try: for future in cf.as_completed((executor.map(getGraphDiff, pairList, timeout=5000000)), timeout=5000000): print(str(type(future.result()))) if str(type(future.result())) == "<class 'NoneType'>": pass else: print(future.result(timeout=5000000)) except cf._base.TimeoutError: print("Time limit exceeded") pass # convert the node labels which are strings to sorted integers without affecting the node attributes. # get graph edge lists # get graph attributes in the ascending order as the node labels # get graph edit distance #ged = nx.graph_edit_distance(sortedIntGraph_1, sortedIntGraph_2, node_match=return_eq) Commented since its too time expensive #Gmatch4py code for calculating ged #abs_ged = gm.BP_2(1,1,1,1) # all edit costs are equal to 1 #hed = gm.HED(1,1,1,1) # generate the json files #print(jsonDict) #function to compare the node labels #function to dump the Json files #main function from where the program starts #dotFile_data_path = './DotFiles/test' #total number of graph similarity json samples #Code for generating graph Similarity json. Takes a non-symmetric pair of graphs from a list and returns their json data
2.166478
2
src/blockdiag/utils/rst/nodes.py
Dridi/blockdiag
0
9437
<reponame>Dridi/blockdiag<filename>src/blockdiag/utils/rst/nodes.py # -*- coding: utf-8 -*- # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from hashlib import sha1 from docutils import nodes import blockdiag.parser import blockdiag.builder import blockdiag.drawer class blockdiag(nodes.General, nodes.Element): name = 'blockdiag' processor = blockdiag def to_diagram(self): try: tree = self.processor.parser.parse_string(self['code']) except: code = '%s { %s }' % (self.name, self['code']) tree = self.processor.parser.parse_string(code) self['code'] = code # replace if succeeded return self.processor.builder.ScreenNodeBuilder.build(tree) def to_drawer(self, image_format, filename, fontmap, **kwargs): diagram = self.to_diagram() return self.processor.drawer.DiagramDraw(image_format, diagram, filename, fontmap=fontmap, **kwargs) def get_path(self, **options): options.update(self['options']) hashseed = (self['code'] + str(options)).encode('utf-8') hashed = sha1(hashseed).hexdigest() filename = "%s-%s.%s" % (self.name, hashed, options['format'].lower()) outputdir = options.get('outputdir') if outputdir: filename = os.path.join(outputdir, filename) return filename
# -*- coding: utf-8 -*- # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from hashlib import sha1 from docutils import nodes import blockdiag.parser import blockdiag.builder import blockdiag.drawer class blockdiag(nodes.General, nodes.Element): name = 'blockdiag' processor = blockdiag def to_diagram(self): try: tree = self.processor.parser.parse_string(self['code']) except: code = '%s { %s }' % (self.name, self['code']) tree = self.processor.parser.parse_string(code) self['code'] = code # replace if succeeded return self.processor.builder.ScreenNodeBuilder.build(tree) def to_drawer(self, image_format, filename, fontmap, **kwargs): diagram = self.to_diagram() return self.processor.drawer.DiagramDraw(image_format, diagram, filename, fontmap=fontmap, **kwargs) def get_path(self, **options): options.update(self['options']) hashseed = (self['code'] + str(options)).encode('utf-8') hashed = sha1(hashseed).hexdigest() filename = "%s-%s.%s" % (self.name, hashed, options['format'].lower()) outputdir = options.get('outputdir') if outputdir: filename = os.path.join(outputdir, filename) return filename
en
0.836079
# -*- coding: utf-8 -*- # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # replace if succeeded
2.254815
2
python-advanced/chp1/main.py
emiliachojak/bio-projects
2
9438
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Thu Dec 19 20:00:00 2019 @author: <NAME> @e-mail: <EMAIL> """ tax_dict = { 'Pan troglodytes' : 'Hominoidea', 'Pongo abelii' : 'Hominoidea', 'Hominoidea' : 'Simiiformes', 'Simiiformes' : 'Haplorrhini', 'Tarsius tarsier' : 'Tarsiiformes', 'Haplorrhini' : 'Primates', 'Tarsiiformes' : 'Haplorrhini', 'Loris tardigradus' : 'Lorisidae', 'Lorisidae' : 'Strepsirrhini', 'Strepsirrhini' : 'Primates', 'Allocebus trichotis' : 'Lemuriformes', 'Lemuriformes' : 'Strepsirrhini', 'Galago alleni' : 'Lorisiformes', 'Lorisiformes' : 'Strepsirrhini', 'Galago moholi' : 'Lorisiformes' } def find_ancestors(taxon): if taxon == 'Primates': return [taxon] parent = tax_dict[taxon] parent_ancestors = find_ancestors(parent) return [taxon] + parent_ancestors def find_ancestors_for_many(taxon_list): many_parents = [] for taxon in taxon_list: many_parents.append(find_ancestors(taxon)) return many_parents def last_common_ancestor(many_parents): for parent in many_parents[0]: is_ok = True for parent_list in many_parents: if parent not in parent_list: is_ok = False if is_ok == True: return parent print(last_common_ancestor(find_ancestors_for_many(["Galago alleni", "Galago moholi"])))
# -*- coding: utf-8 -*- """ Created on Thu Dec 19 20:00:00 2019 @author: <NAME> @e-mail: <EMAIL> """ tax_dict = { 'Pan troglodytes' : 'Hominoidea', 'Pongo abelii' : 'Hominoidea', 'Hominoidea' : 'Simiiformes', 'Simiiformes' : 'Haplorrhini', 'Tarsius tarsier' : 'Tarsiiformes', 'Haplorrhini' : 'Primates', 'Tarsiiformes' : 'Haplorrhini', 'Loris tardigradus' : 'Lorisidae', 'Lorisidae' : 'Strepsirrhini', 'Strepsirrhini' : 'Primates', 'Allocebus trichotis' : 'Lemuriformes', 'Lemuriformes' : 'Strepsirrhini', 'Galago alleni' : 'Lorisiformes', 'Lorisiformes' : 'Strepsirrhini', 'Galago moholi' : 'Lorisiformes' } def find_ancestors(taxon): if taxon == 'Primates': return [taxon] parent = tax_dict[taxon] parent_ancestors = find_ancestors(parent) return [taxon] + parent_ancestors def find_ancestors_for_many(taxon_list): many_parents = [] for taxon in taxon_list: many_parents.append(find_ancestors(taxon)) return many_parents def last_common_ancestor(many_parents): for parent in many_parents[0]: is_ok = True for parent_list in many_parents: if parent not in parent_list: is_ok = False if is_ok == True: return parent print(last_common_ancestor(find_ancestors_for_many(["Galago alleni", "Galago moholi"])))
en
0.499979
# -*- coding: utf-8 -*- Created on Thu Dec 19 20:00:00 2019 @author: <NAME> @e-mail: <EMAIL>
2.884366
3
Python/csv/1.py
LeishenKOBE/good-good-study
0
9439
<filename>Python/csv/1.py<gh_stars>0 import csv # with open('./1.csv', newline='', encoding='utf-8') as f: # reader = csv.reader(f) # for row in reader: # print(row) with open('./1.csv', 'a', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(['4', '猫砂', '25', '1022', '886']) writer.writerow(['5', '猫罐头', '18', '2234', '3121'])
<filename>Python/csv/1.py<gh_stars>0 import csv # with open('./1.csv', newline='', encoding='utf-8') as f: # reader = csv.reader(f) # for row in reader: # print(row) with open('./1.csv', 'a', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(['4', '猫砂', '25', '1022', '886']) writer.writerow(['5', '猫罐头', '18', '2234', '3121'])
en
0.77788
# with open('./1.csv', newline='', encoding='utf-8') as f: # reader = csv.reader(f) # for row in reader: # print(row)
3.252731
3
src/solana/rpc/responses.py
broper2/solana-py
1
9440
"""This module contains code for parsing RPC responses.""" from dataclasses import dataclass, field from typing import Union, Tuple, Any, Dict, List, Optional, Literal from apischema import alias from apischema.conversions import as_str from solana.publickey import PublicKey from solana.transaction import TransactionSignature as_str(PublicKey) TransactionErrorResult = Optional[dict] @dataclass class TransactionErr: """Container for possible transaction errors.""" err: TransactionErrorResult @dataclass class Context: """RPC result context.""" slot: int @dataclass class WithContext: """Base class for RPC result including context.""" context: Context @dataclass class AccountInfo: """Account information.""" lamports: int owner: PublicKey data: Union[Literal[""], Tuple[str, str], Dict[str, Any]] executable: bool rent_epoch: int = field(metadata=alias("rentEpoch")) @dataclass class AccountInfoAndContext(WithContext): """Account info and RPC result context.""" value: AccountInfo @dataclass class SubscriptionNotificationBase: """Base class for RPC subscription notifications.""" subscription: int result: Any @dataclass class AccountNotification(SubscriptionNotificationBase): """Account subscription notification.""" result: AccountInfoAndContext @dataclass class LogItem(TransactionErr): """Container for logs from logSubscribe.""" signature: TransactionSignature logs: Optional[List[str]] @dataclass class LogItemAndContext(WithContext): """Log item with RPC result context.""" value: LogItem @dataclass class LogsNotification(SubscriptionNotificationBase): """Logs subscription notification.""" result: LogItemAndContext @dataclass class ProgramAccount: """Program account pubkey and account info.""" pubkey: PublicKey account: AccountInfo @dataclass class ProgramAccountAndContext(WithContext): """Program subscription data with RPC result context.""" value: ProgramAccount @dataclass class ProgramNotification(SubscriptionNotificationBase): """Program subscription notification.""" result: ProgramAccountAndContext @dataclass class SignatureErrAndContext(WithContext): """Signature subscription error info with RPC result context.""" value: TransactionErr @dataclass class SignatureNotification(SubscriptionNotificationBase): """Signature subscription notification.""" result: SignatureErrAndContext @dataclass class SlotBase: """Base class for slot container.""" slot: int @dataclass class SlotInfo(SlotBase): """Slot info.""" parent: int root: int @dataclass class SlotNotification(SubscriptionNotificationBase): """Slot subscription notification.""" result: SlotInfo @dataclass class RootNotification(SubscriptionNotificationBase): """Root subscription notification.""" result: int @dataclass class SlotAndTimestampBase(SlotBase): """Base class for a slot with timestamp.""" timestamp: int @dataclass class FirstShredReceived(SlotAndTimestampBase): """First shread received update.""" type: Literal["firstShredReceived"] @dataclass class Completed(SlotAndTimestampBase): """Slot completed update.""" type: Literal["completed"] @dataclass class CreatedBank(SlotAndTimestampBase): """Created bank update.""" parent: int type: Literal["createdBank"] @dataclass class SlotTransactionStats: """Slot transaction stats.""" num_transaction_entries: int = field(metadata=alias("numTransactionEntries")) num_successful_transactions: int = field(metadata=alias("numSuccessfulTransactions")) num_failed_transactions: int = field(metadata=alias("numFailedTransactions")) max_transactions_per_entry: int = field(metadata=alias("maxTransactionsPerEntry")) @dataclass class Frozen(SlotAndTimestampBase): """Slot frozen update.""" stats: SlotTransactionStats type: Literal["frozen"] @dataclass class Dead(SlotAndTimestampBase): """Dead slot update.""" err: str type: Literal["dead"] @dataclass class OptimisticConfirmation(SlotAndTimestampBase): """Optimistic confirmation update.""" type: Literal["optimisticConfirmation"] @dataclass class Root(SlotAndTimestampBase): """Root update.""" type: Literal["root"] SlotsUpdatesItem = Union[FirstShredReceived, Completed, CreatedBank, Frozen, Dead, OptimisticConfirmation, Root] @dataclass class SlotsUpdatesNotification(SubscriptionNotificationBase): """Slots updates notification.""" result: SlotsUpdatesItem @dataclass class VoteItem: """Vote data.""" hash: str slots: List[int] timestamp: Optional[int] @dataclass class VoteNotification(SubscriptionNotificationBase): """Vote update notification.""" result: VoteItem SubscriptionNotification = Union[ AccountNotification, LogsNotification, ProgramNotification, SignatureNotification, SlotNotification, RootNotification, SlotsUpdatesNotification, VoteNotification, ]
"""This module contains code for parsing RPC responses.""" from dataclasses import dataclass, field from typing import Union, Tuple, Any, Dict, List, Optional, Literal from apischema import alias from apischema.conversions import as_str from solana.publickey import PublicKey from solana.transaction import TransactionSignature as_str(PublicKey) TransactionErrorResult = Optional[dict] @dataclass class TransactionErr: """Container for possible transaction errors.""" err: TransactionErrorResult @dataclass class Context: """RPC result context.""" slot: int @dataclass class WithContext: """Base class for RPC result including context.""" context: Context @dataclass class AccountInfo: """Account information.""" lamports: int owner: PublicKey data: Union[Literal[""], Tuple[str, str], Dict[str, Any]] executable: bool rent_epoch: int = field(metadata=alias("rentEpoch")) @dataclass class AccountInfoAndContext(WithContext): """Account info and RPC result context.""" value: AccountInfo @dataclass class SubscriptionNotificationBase: """Base class for RPC subscription notifications.""" subscription: int result: Any @dataclass class AccountNotification(SubscriptionNotificationBase): """Account subscription notification.""" result: AccountInfoAndContext @dataclass class LogItem(TransactionErr): """Container for logs from logSubscribe.""" signature: TransactionSignature logs: Optional[List[str]] @dataclass class LogItemAndContext(WithContext): """Log item with RPC result context.""" value: LogItem @dataclass class LogsNotification(SubscriptionNotificationBase): """Logs subscription notification.""" result: LogItemAndContext @dataclass class ProgramAccount: """Program account pubkey and account info.""" pubkey: PublicKey account: AccountInfo @dataclass class ProgramAccountAndContext(WithContext): """Program subscription data with RPC result context.""" value: ProgramAccount @dataclass class ProgramNotification(SubscriptionNotificationBase): """Program subscription notification.""" result: ProgramAccountAndContext @dataclass class SignatureErrAndContext(WithContext): """Signature subscription error info with RPC result context.""" value: TransactionErr @dataclass class SignatureNotification(SubscriptionNotificationBase): """Signature subscription notification.""" result: SignatureErrAndContext @dataclass class SlotBase: """Base class for slot container.""" slot: int @dataclass class SlotInfo(SlotBase): """Slot info.""" parent: int root: int @dataclass class SlotNotification(SubscriptionNotificationBase): """Slot subscription notification.""" result: SlotInfo @dataclass class RootNotification(SubscriptionNotificationBase): """Root subscription notification.""" result: int @dataclass class SlotAndTimestampBase(SlotBase): """Base class for a slot with timestamp.""" timestamp: int @dataclass class FirstShredReceived(SlotAndTimestampBase): """First shread received update.""" type: Literal["firstShredReceived"] @dataclass class Completed(SlotAndTimestampBase): """Slot completed update.""" type: Literal["completed"] @dataclass class CreatedBank(SlotAndTimestampBase): """Created bank update.""" parent: int type: Literal["createdBank"] @dataclass class SlotTransactionStats: """Slot transaction stats.""" num_transaction_entries: int = field(metadata=alias("numTransactionEntries")) num_successful_transactions: int = field(metadata=alias("numSuccessfulTransactions")) num_failed_transactions: int = field(metadata=alias("numFailedTransactions")) max_transactions_per_entry: int = field(metadata=alias("maxTransactionsPerEntry")) @dataclass class Frozen(SlotAndTimestampBase): """Slot frozen update.""" stats: SlotTransactionStats type: Literal["frozen"] @dataclass class Dead(SlotAndTimestampBase): """Dead slot update.""" err: str type: Literal["dead"] @dataclass class OptimisticConfirmation(SlotAndTimestampBase): """Optimistic confirmation update.""" type: Literal["optimisticConfirmation"] @dataclass class Root(SlotAndTimestampBase): """Root update.""" type: Literal["root"] SlotsUpdatesItem = Union[FirstShredReceived, Completed, CreatedBank, Frozen, Dead, OptimisticConfirmation, Root] @dataclass class SlotsUpdatesNotification(SubscriptionNotificationBase): """Slots updates notification.""" result: SlotsUpdatesItem @dataclass class VoteItem: """Vote data.""" hash: str slots: List[int] timestamp: Optional[int] @dataclass class VoteNotification(SubscriptionNotificationBase): """Vote update notification.""" result: VoteItem SubscriptionNotification = Union[ AccountNotification, LogsNotification, ProgramNotification, SignatureNotification, SlotNotification, RootNotification, SlotsUpdatesNotification, VoteNotification, ]
en
0.646626
This module contains code for parsing RPC responses. Container for possible transaction errors. RPC result context. Base class for RPC result including context. Account information. Account info and RPC result context. Base class for RPC subscription notifications. Account subscription notification. Container for logs from logSubscribe. Log item with RPC result context. Logs subscription notification. Program account pubkey and account info. Program subscription data with RPC result context. Program subscription notification. Signature subscription error info with RPC result context. Signature subscription notification. Base class for slot container. Slot info. Slot subscription notification. Root subscription notification. Base class for a slot with timestamp. First shread received update. Slot completed update. Created bank update. Slot transaction stats. Slot frozen update. Dead slot update. Optimistic confirmation update. Root update. Slots updates notification. Vote data. Vote update notification.
2.321556
2
python/data_structures/binheap.py
adriennekarnoski/data-structures
1
9441
<gh_stars>1-10 """Build a binary min heap object.""" from math import floor class BinaryHeap(object): """Create a Binary Heap object as a Min Heap.""" def __init__(self): """Initialize the heap list to be used by Binary Heap.""" self._heap_list = [] def push(self, val): """Add new value to heap list and run check heap method.""" self._heap_list.append(val) if len(self._heap_list) == 2: self._small_heap() self._check_heap() def _small_heap(self): heap = self._heap_list if heap[0] > heap[1]: heap[0], heap[1] = heap[1], heap[0] return heap def _check_heap(self): """Check all the children are less than their parents.""" heap = self._heap_list index = floor((len(heap) - 1) / 2) i = 0 while i < index: l = (2 * i) + 1 if heap[i] > heap[l]: heap[i], heap[l] = heap[l], heap[i] try: r = (2 * i) + 2 if heap[i] > heap[r]: heap[i], heap[r] = heap[r], heap[i] except IndexError: # pragma: no cover pass i += 1 return heap def pop(self): """Remove top value of heap and run check heap method.""" try: heap = self._heap_list index = len(heap) - 1 heap[0], heap[index] = heap[index], heap[0] self._heap_list.pop() if len(self._heap_list) == 2: self._small_heap() self._check_heap() return heap except IndexError: raise IndexError('Nothing available to pop') def _display(self): # pragma: no cover """Make it easier during testing.""" for item in self._heap_list: print(item)
"""Build a binary min heap object.""" from math import floor class BinaryHeap(object): """Create a Binary Heap object as a Min Heap.""" def __init__(self): """Initialize the heap list to be used by Binary Heap.""" self._heap_list = [] def push(self, val): """Add new value to heap list and run check heap method.""" self._heap_list.append(val) if len(self._heap_list) == 2: self._small_heap() self._check_heap() def _small_heap(self): heap = self._heap_list if heap[0] > heap[1]: heap[0], heap[1] = heap[1], heap[0] return heap def _check_heap(self): """Check all the children are less than their parents.""" heap = self._heap_list index = floor((len(heap) - 1) / 2) i = 0 while i < index: l = (2 * i) + 1 if heap[i] > heap[l]: heap[i], heap[l] = heap[l], heap[i] try: r = (2 * i) + 2 if heap[i] > heap[r]: heap[i], heap[r] = heap[r], heap[i] except IndexError: # pragma: no cover pass i += 1 return heap def pop(self): """Remove top value of heap and run check heap method.""" try: heap = self._heap_list index = len(heap) - 1 heap[0], heap[index] = heap[index], heap[0] self._heap_list.pop() if len(self._heap_list) == 2: self._small_heap() self._check_heap() return heap except IndexError: raise IndexError('Nothing available to pop') def _display(self): # pragma: no cover """Make it easier during testing.""" for item in self._heap_list: print(item)
en
0.876177
Build a binary min heap object. Create a Binary Heap object as a Min Heap. Initialize the heap list to be used by Binary Heap. Add new value to heap list and run check heap method. Check all the children are less than their parents. # pragma: no cover Remove top value of heap and run check heap method. # pragma: no cover Make it easier during testing.
4.12915
4
vesper/archive_settings.py
RichardLitt/Vesper
29
9442
""" Vesper archive settings. The Vesper server serves the Vesper archive that is in the directory in which the server starts. The archive settings are the composition of a set of default settings (hard-coded in this module) and settings (optionally) specified in the file "Archive Settings.yaml" in the archive directory. """ from pathlib import Path import os import sys from vesper.util.settings import Settings from vesper.util.settings_type import SettingsType import vesper.archive_paths as archive_paths _DEFAULT_SETTINGS = Settings.create_from_yaml(''' database: engine: SQLite ''') _SETTINGS_TYPE = SettingsType('Archive Settings', _DEFAULT_SETTINGS) _SETTINGS_FILE_NAME = 'Archive Settings.yaml' def _create_settings(): archive_dir_path = Path(os.getcwd()) settings = _load_settings_file(archive_dir_path) archive_paths.initialize(archive_dir_path, settings) return settings def _load_settings_file(archive_dir_path): file_path = archive_dir_path / _SETTINGS_FILE_NAME if not file_path.exists(): # settings file doex not exist return _SETTINGS_TYPE.defaults else: # settings file exists try: return _SETTINGS_TYPE.create_settings_from_yaml_file(file_path) except Exception as e: print(( 'Load failed for settings file "{}". Error message ' 'was: {}').format(file_path, str(e))) sys.exit(1) archive_settings = _create_settings()
""" Vesper archive settings. The Vesper server serves the Vesper archive that is in the directory in which the server starts. The archive settings are the composition of a set of default settings (hard-coded in this module) and settings (optionally) specified in the file "Archive Settings.yaml" in the archive directory. """ from pathlib import Path import os import sys from vesper.util.settings import Settings from vesper.util.settings_type import SettingsType import vesper.archive_paths as archive_paths _DEFAULT_SETTINGS = Settings.create_from_yaml(''' database: engine: SQLite ''') _SETTINGS_TYPE = SettingsType('Archive Settings', _DEFAULT_SETTINGS) _SETTINGS_FILE_NAME = 'Archive Settings.yaml' def _create_settings(): archive_dir_path = Path(os.getcwd()) settings = _load_settings_file(archive_dir_path) archive_paths.initialize(archive_dir_path, settings) return settings def _load_settings_file(archive_dir_path): file_path = archive_dir_path / _SETTINGS_FILE_NAME if not file_path.exists(): # settings file doex not exist return _SETTINGS_TYPE.defaults else: # settings file exists try: return _SETTINGS_TYPE.create_settings_from_yaml_file(file_path) except Exception as e: print(( 'Load failed for settings file "{}". Error message ' 'was: {}').format(file_path, str(e))) sys.exit(1) archive_settings = _create_settings()
en
0.839428
Vesper archive settings. The Vesper server serves the Vesper archive that is in the directory in which the server starts. The archive settings are the composition of a set of default settings (hard-coded in this module) and settings (optionally) specified in the file "Archive Settings.yaml" in the archive directory. database: engine: SQLite # settings file doex not exist # settings file exists
2.557775
3
autotf/model/vgg16.py
DAIM-ML/autotf
8
9443
<filename>autotf/model/vgg16.py<gh_stars>1-10 #-*- coding=utf-8 -*- from __future__ import division, print_function, absolute_import from base_model import BaseModel from helper import * import tensorflow as tf import pickle import numpy as np import time class Vgg16(BaseModel): default_param = { "loss" : "square_loss", "metrics" : ["loss"], "optimizer" : "sgd", "learning_rate" : 1e-2, "batch_size" : 100, "num_epochs" : 25, "keep_prob":0.75 } def __init__(self,classnum): self.class_num = classnum self.model = None self.sess = tf.Session() self.scope = {} self.summary = [] def conv2d(self,layer_name,inputs, out_channels, kernel_size, strides=1, padding='SAME'): in_channels = inputs.get_shape()[-1] with tf.variable_scope(layer_name) as scope: self.scope[layer_name] = scope w = tf.get_variable(name='weights', trainable=True, shape=[kernel_size, kernel_size, in_channels, out_channels], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='biases', trainable=True, shape=[out_channels], initializer=tf.constant_initializer(0.0)) inputs = tf.nn.conv2d(inputs, w, [1, strides, strides, 1], padding=padding, name='conv') inputs = tf.nn.bias_add(inputs, b, name='bias_add') inputs = tf.nn.relu(inputs, name='relu') return inputs def max_pool(self, layer_name, inputs, pool_size, strides, padding='SAME'): with tf.name_scope(layer_name): return tf.nn.max_pool(inputs, [1, pool_size, pool_size, 1], [1, strides, strides, 1], padding=padding, name=layer_name) def avg_pool(self, layer_name, inputs, pool_size, strides, padding='SAME'): with tf.name_scope(layer_name): return tf.nn.avg_pool(inputs, [1, pool_size, pool_size, 1], [1, strides, strides, 1], padding=padding, name=layer_name) def lrn(self, layer_name, inputs, depth_radius=5, alpha=0.0001, beta=0.75): with tf.name_scope(layer_name): return tf.nn.local_response_normalization(name='pool1_norm1', input=inputs, depth_radius=depth_radius, alpha=alpha, beta=beta) def concat(self, layer_name, inputs): with tf.name_scope(layer_name): one_by_one = inputs[0] three_by_three = inputs[1] five_by_five = inputs[2] pooling = inputs[3] return tf.concat([one_by_one, three_by_three, five_by_five, pooling], axis=3) def dropout(self, layer_name, inputs, keep_prob): # dropout_rate = 1 - keep_prob with tf.name_scope(layer_name): return tf.nn.dropout(name=layer_name, x=inputs, keep_prob=keep_prob) def bn(self, layer_name, inputs, epsilon=1e-3): with tf.name_scope(layer_name): batch_mean, batch_var = tf.nn.moments(inputs, [0]) inputs = tf.nn.batch_normalization(inputs, mean=batch_mean, variance=batch_var, offset=None, scale=None, variance_epsilon=epsilon) return inputs def fc(self, layer_name, inputs, out_nodes): shape = inputs.get_shape() if len(shape) == 4: # x is 4D tensor size = shape[1].value * shape[2].value * shape[3].value else: # x has already flattened size = shape[-1].value with tf.variable_scope(layer_name) as scope: self.scope[layer_name] = scope w = tf.get_variable('weights', shape=[size, out_nodes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable('biases', shape=[out_nodes], initializer=tf.constant_initializer(0.0)) flat_x = tf.reshape(inputs, [-1, size]) inputs = tf.nn.bias_add(tf.matmul(flat_x, w), b) inputs = tf.nn.relu(inputs) return inputs def build_model(self): # 训练数据 self.inputs = tf.placeholder(tf.float32, shape=[None, 224, 224, 3]) # 训练标签数据 self.labels = tf.placeholder(tf.float32, shape=[None, self.class_num]) # dropout self.keep_prob = tf.placeholder(tf.float32) self.conv1_1 = self.conv2d("conv1_1",self.inputs,64,3) self.conv1_2 = self.conv2d("conv1_2",self.conv1_1, 64,3) self.pool1 = self.max_pool('pool1',self.conv1_2,pool_size=2,strides=2) #112*112*64 self.conv2_1 = self.conv2d("conv2_1",self.pool1, 128,3) self.conv2_2 = self.conv2d( "conv2_2",self.conv2_1, 128,3) self.pool2 = self.max_pool("pool2",self.conv2_2,pool_size=2,strides=2) #56*56*128 self.conv3_1 = self.conv2d("conv3_1",self.pool2, 256,3) self.conv3_2 = self.conv2d("conv3_2",self.conv3_1, 256,3) self.conv3_3 = self.conv2d("conv3_3",self.conv3_2, 256, 3) self.pool3 = self.max_pool("pool3",self.conv3_3,pool_size=2,strides=2) #28*28*256 self.conv4_1 = self.conv2d("conv4_1",self.pool3, 512, 3) self.conv4_2 = self.conv2d("conv4_2",self.conv4_1, 512, 3) self.conv4_3 = self.conv2d("conv4_3",self.conv4_2, 512, 3) self.pool4 = self.max_pool("pool4",self.conv4_3, pool_size=2,strides=2) #14*14*512 self.conv5_1 = self.conv2d("conv5_1",self.pool4, 512, 3) self.conv5_2 = self.conv2d("conv5_2",self.conv5_1, 512, 3) self.conv5_3 = self.conv2d("conv5_3",self.conv5_2, 512, 3) self.pool5 = self.max_pool( 'pool5',self.conv5_3,pool_size=2,strides=2) #7*7*512 self.fc6 = self.fc("fc6",self.pool5,4096) # 25088 = 7*7*512 self.relu6 = tf.nn.dropout(self.fc6, self.keep_prob) self.fc7 = self.fc("fc7",self.relu6,4096) self.relu7 = tf.nn.dropout(self.fc7, self.keep_prob) self.pred = self.fc("fc8",self.relu7, self.class_num) def set_parameter(self, param): for name in self.default_param: if name not in param: param[name] = self.default_param[name] self.build_model() # 定义交叉熵损失函数 self.keep_prob_value = param["keep_prob"] loss_fun = param["loss"] self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.pred, labels=self.labels)) optimizer = param["optimizer"] self.learning_rate = param["learning_rate"] self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss) self.correct_prediction = tf.equal(tf.argmax(self.pred, 1), tf.argmax(self.labels, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.batch_size = param["batch_size"] self.num_epochs = param["num_epochs"] def get_batch(self, feed_data): X = feed_data["inputs"] Y = feed_data["labels"] totalbatch = int(len(X)/self.batch_size)+1 if (totalbatch * self.batch_size == len(X)): totalbatch = totalbatch - 1 for i in range(0,totalbatch): startindex = i*self.batch_size endindex = (i+1)*self.batch_size batch_xs = X[startindex:endindex] batch_ys = Y[startindex:endindex] yield { "batch_xs" : batch_xs, "batch_ys" : batch_ys } def train(self, feed_data): self.sess.run(tf.global_variables_initializer()) trainstep = 0 for epoch in range(self.num_epochs): avg_cost = 0.0 totalaccuracy = 0.0 for batch in self.get_batch(feed_data): feed_dict = { self.inputs : batch["batch_xs"], self.labels : batch["batch_ys"], self.keep_prob: self.keep_prob_value, } _, loss, acc = self.sess.run([self.optimizer, self.loss,self.accuracy], feed_dict=feed_dict) totalaccuracy += acc*len(batch["batch_xs"]) avg_cost += loss trainstep = trainstep + 1 totalaccuracy /= len(feed_data['inputs']) print("train_step"+"\t"+str(trainstep)+"\t"+"epoch:"+"\t"+str(epoch+1)+"\t"+"accuracy:"+"\t"+str(totalaccuracy)+"\t"+"loss:"+"\t"+str(avg_cost)) def model_load(self,path): saver = tf.train.Saver() saver.restore(self.sess, path) return def model_save(self,path): saver = tf.train.Saver() saver.save(self.sess, path) return def evaluate(self, feed_data): avg_loss = 0.0 totalaccuracy = 0.0 totallen = len(feed_data["inputs"]) for batch in self.get_batch(feed_data): feed_dict = { self.inputs: batch["batch_xs"], self.labels: batch["batch_ys"], self.keep_prob:self.keep_prob_value } loss, acc = self.sess.run([self.loss, self.accuracy], feed_dict=feed_dict) totalaccuracy += acc * len(batch["batch_xs"]) avg_loss += loss avg_loss /= totallen totalaccuracy /= len(feed_data['inputs']) res = {"accuracy":totalaccuracy,"loss":avg_loss} return res def predict(self, feed_data): res = [] for batch in self.get_batch(feed_data): feed_dict = { self.inputs: batch["batch_xs"] } pred = self.sess.run(self.pred, feed_dict=feed_dict) res.extend(pred.tolist()) return res
<filename>autotf/model/vgg16.py<gh_stars>1-10 #-*- coding=utf-8 -*- from __future__ import division, print_function, absolute_import from base_model import BaseModel from helper import * import tensorflow as tf import pickle import numpy as np import time class Vgg16(BaseModel): default_param = { "loss" : "square_loss", "metrics" : ["loss"], "optimizer" : "sgd", "learning_rate" : 1e-2, "batch_size" : 100, "num_epochs" : 25, "keep_prob":0.75 } def __init__(self,classnum): self.class_num = classnum self.model = None self.sess = tf.Session() self.scope = {} self.summary = [] def conv2d(self,layer_name,inputs, out_channels, kernel_size, strides=1, padding='SAME'): in_channels = inputs.get_shape()[-1] with tf.variable_scope(layer_name) as scope: self.scope[layer_name] = scope w = tf.get_variable(name='weights', trainable=True, shape=[kernel_size, kernel_size, in_channels, out_channels], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='biases', trainable=True, shape=[out_channels], initializer=tf.constant_initializer(0.0)) inputs = tf.nn.conv2d(inputs, w, [1, strides, strides, 1], padding=padding, name='conv') inputs = tf.nn.bias_add(inputs, b, name='bias_add') inputs = tf.nn.relu(inputs, name='relu') return inputs def max_pool(self, layer_name, inputs, pool_size, strides, padding='SAME'): with tf.name_scope(layer_name): return tf.nn.max_pool(inputs, [1, pool_size, pool_size, 1], [1, strides, strides, 1], padding=padding, name=layer_name) def avg_pool(self, layer_name, inputs, pool_size, strides, padding='SAME'): with tf.name_scope(layer_name): return tf.nn.avg_pool(inputs, [1, pool_size, pool_size, 1], [1, strides, strides, 1], padding=padding, name=layer_name) def lrn(self, layer_name, inputs, depth_radius=5, alpha=0.0001, beta=0.75): with tf.name_scope(layer_name): return tf.nn.local_response_normalization(name='pool1_norm1', input=inputs, depth_radius=depth_radius, alpha=alpha, beta=beta) def concat(self, layer_name, inputs): with tf.name_scope(layer_name): one_by_one = inputs[0] three_by_three = inputs[1] five_by_five = inputs[2] pooling = inputs[3] return tf.concat([one_by_one, three_by_three, five_by_five, pooling], axis=3) def dropout(self, layer_name, inputs, keep_prob): # dropout_rate = 1 - keep_prob with tf.name_scope(layer_name): return tf.nn.dropout(name=layer_name, x=inputs, keep_prob=keep_prob) def bn(self, layer_name, inputs, epsilon=1e-3): with tf.name_scope(layer_name): batch_mean, batch_var = tf.nn.moments(inputs, [0]) inputs = tf.nn.batch_normalization(inputs, mean=batch_mean, variance=batch_var, offset=None, scale=None, variance_epsilon=epsilon) return inputs def fc(self, layer_name, inputs, out_nodes): shape = inputs.get_shape() if len(shape) == 4: # x is 4D tensor size = shape[1].value * shape[2].value * shape[3].value else: # x has already flattened size = shape[-1].value with tf.variable_scope(layer_name) as scope: self.scope[layer_name] = scope w = tf.get_variable('weights', shape=[size, out_nodes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable('biases', shape=[out_nodes], initializer=tf.constant_initializer(0.0)) flat_x = tf.reshape(inputs, [-1, size]) inputs = tf.nn.bias_add(tf.matmul(flat_x, w), b) inputs = tf.nn.relu(inputs) return inputs def build_model(self): # 训练数据 self.inputs = tf.placeholder(tf.float32, shape=[None, 224, 224, 3]) # 训练标签数据 self.labels = tf.placeholder(tf.float32, shape=[None, self.class_num]) # dropout self.keep_prob = tf.placeholder(tf.float32) self.conv1_1 = self.conv2d("conv1_1",self.inputs,64,3) self.conv1_2 = self.conv2d("conv1_2",self.conv1_1, 64,3) self.pool1 = self.max_pool('pool1',self.conv1_2,pool_size=2,strides=2) #112*112*64 self.conv2_1 = self.conv2d("conv2_1",self.pool1, 128,3) self.conv2_2 = self.conv2d( "conv2_2",self.conv2_1, 128,3) self.pool2 = self.max_pool("pool2",self.conv2_2,pool_size=2,strides=2) #56*56*128 self.conv3_1 = self.conv2d("conv3_1",self.pool2, 256,3) self.conv3_2 = self.conv2d("conv3_2",self.conv3_1, 256,3) self.conv3_3 = self.conv2d("conv3_3",self.conv3_2, 256, 3) self.pool3 = self.max_pool("pool3",self.conv3_3,pool_size=2,strides=2) #28*28*256 self.conv4_1 = self.conv2d("conv4_1",self.pool3, 512, 3) self.conv4_2 = self.conv2d("conv4_2",self.conv4_1, 512, 3) self.conv4_3 = self.conv2d("conv4_3",self.conv4_2, 512, 3) self.pool4 = self.max_pool("pool4",self.conv4_3, pool_size=2,strides=2) #14*14*512 self.conv5_1 = self.conv2d("conv5_1",self.pool4, 512, 3) self.conv5_2 = self.conv2d("conv5_2",self.conv5_1, 512, 3) self.conv5_3 = self.conv2d("conv5_3",self.conv5_2, 512, 3) self.pool5 = self.max_pool( 'pool5',self.conv5_3,pool_size=2,strides=2) #7*7*512 self.fc6 = self.fc("fc6",self.pool5,4096) # 25088 = 7*7*512 self.relu6 = tf.nn.dropout(self.fc6, self.keep_prob) self.fc7 = self.fc("fc7",self.relu6,4096) self.relu7 = tf.nn.dropout(self.fc7, self.keep_prob) self.pred = self.fc("fc8",self.relu7, self.class_num) def set_parameter(self, param): for name in self.default_param: if name not in param: param[name] = self.default_param[name] self.build_model() # 定义交叉熵损失函数 self.keep_prob_value = param["keep_prob"] loss_fun = param["loss"] self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.pred, labels=self.labels)) optimizer = param["optimizer"] self.learning_rate = param["learning_rate"] self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss) self.correct_prediction = tf.equal(tf.argmax(self.pred, 1), tf.argmax(self.labels, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.batch_size = param["batch_size"] self.num_epochs = param["num_epochs"] def get_batch(self, feed_data): X = feed_data["inputs"] Y = feed_data["labels"] totalbatch = int(len(X)/self.batch_size)+1 if (totalbatch * self.batch_size == len(X)): totalbatch = totalbatch - 1 for i in range(0,totalbatch): startindex = i*self.batch_size endindex = (i+1)*self.batch_size batch_xs = X[startindex:endindex] batch_ys = Y[startindex:endindex] yield { "batch_xs" : batch_xs, "batch_ys" : batch_ys } def train(self, feed_data): self.sess.run(tf.global_variables_initializer()) trainstep = 0 for epoch in range(self.num_epochs): avg_cost = 0.0 totalaccuracy = 0.0 for batch in self.get_batch(feed_data): feed_dict = { self.inputs : batch["batch_xs"], self.labels : batch["batch_ys"], self.keep_prob: self.keep_prob_value, } _, loss, acc = self.sess.run([self.optimizer, self.loss,self.accuracy], feed_dict=feed_dict) totalaccuracy += acc*len(batch["batch_xs"]) avg_cost += loss trainstep = trainstep + 1 totalaccuracy /= len(feed_data['inputs']) print("train_step"+"\t"+str(trainstep)+"\t"+"epoch:"+"\t"+str(epoch+1)+"\t"+"accuracy:"+"\t"+str(totalaccuracy)+"\t"+"loss:"+"\t"+str(avg_cost)) def model_load(self,path): saver = tf.train.Saver() saver.restore(self.sess, path) return def model_save(self,path): saver = tf.train.Saver() saver.save(self.sess, path) return def evaluate(self, feed_data): avg_loss = 0.0 totalaccuracy = 0.0 totallen = len(feed_data["inputs"]) for batch in self.get_batch(feed_data): feed_dict = { self.inputs: batch["batch_xs"], self.labels: batch["batch_ys"], self.keep_prob:self.keep_prob_value } loss, acc = self.sess.run([self.loss, self.accuracy], feed_dict=feed_dict) totalaccuracy += acc * len(batch["batch_xs"]) avg_loss += loss avg_loss /= totallen totalaccuracy /= len(feed_data['inputs']) res = {"accuracy":totalaccuracy,"loss":avg_loss} return res def predict(self, feed_data): res = [] for batch in self.get_batch(feed_data): feed_dict = { self.inputs: batch["batch_xs"] } pred = self.sess.run(self.pred, feed_dict=feed_dict) res.extend(pred.tolist()) return res
en
0.583058
#-*- coding=utf-8 -*- # dropout_rate = 1 - keep_prob # x is 4D tensor # x has already flattened # 训练数据 # 训练标签数据 # dropout #112*112*64 #56*56*128 #28*28*256 #14*14*512 #7*7*512 # 25088 = 7*7*512 # 定义交叉熵损失函数
2.259641
2
LEGEND/modules/_exec.py
RAJESHSAINI2113/LEGENDX
2
9444
import subprocess from LEGEND import tbot as bot from LEGEND import tbot as borg from LEGEND.events import register from LEGEND import OWNER_ID, SUDO_USERS import asyncio import traceback import io import os import sys import time from telethon.tl import functions from telethon.tl import types from telethon.tl.types import * from telethon.errors import * @register(pattern="^/bash (.*)") async def msg(event): if event.sender_id == OWNER_ID: pass else: return PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id time.time() + PROCESS_RUN_TIME process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() e = stderr.decode() if not e: e = "No Error" o = stdout.decode() if not o: o = "**Tip**: \n`If you want to see the results of your code, I suggest printing them to stdout.`" else: _o = o.split("\n") o = "`\n".join(_o) await event.reply(f"**QUERY:**\n__Command:__\n`{cmd}` \n__PID:__\n`{process.pid}`\n\n**stderr:** \n`{e}`\n**Output:**\n{o}" ) @register(pattern="^/eval") async def _(event): if event.sender_id == OWNER_ID: pass elif event.sender_id in SUDO_USERS: pass else: return cmd = event.text.split(" ", maxsplit=1)[1] reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id old_stderr = sys.stderr old_stdout = sys.stdout redirected_output = sys.stdout = io.StringIO() redirected_error = sys.stderr = io.StringIO() stdout, stderr, exc = None, None, None try: await aexec(cmd, event) except Exception: exc = traceback.format_exc() stdout = redirected_output.getvalue() stderr = redirected_error.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr evaluation = "" if exc: evaluation = exc elif stderr: evaluation = stderr elif stdout: evaluation = stdout else: evaluation = "Success" final_output = "**EVAL**: `{}` \n\n **OUTPUT**: \n`{}` \n".format(cmd, evaluation) MAX_MESSAGE_SIZE_LIMIT = 4095 if len(final_output) > MAX_MESSAGE_SIZE_LIMIT: with io.BytesIO(str.encode(final_output)) as out_file: out_file.name = "eval.text" await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id, ) else: await event.reply(final_output) async def aexec(code, smessatatus): message = event = smessatatus def p(_x): return print(slitu.yaml_format(_x)) reply = await event.get_reply_message() exec( "async def __aexec(message, reply, client, p): " + "\n event = smessatatus = message" + "".join(f"\n {l}" for l in code.split("\n")) ) return await locals()["__aexec"](message, reply, bot, p)
import subprocess from LEGEND import tbot as bot from LEGEND import tbot as borg from LEGEND.events import register from LEGEND import OWNER_ID, SUDO_USERS import asyncio import traceback import io import os import sys import time from telethon.tl import functions from telethon.tl import types from telethon.tl.types import * from telethon.errors import * @register(pattern="^/bash (.*)") async def msg(event): if event.sender_id == OWNER_ID: pass else: return PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id time.time() + PROCESS_RUN_TIME process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() e = stderr.decode() if not e: e = "No Error" o = stdout.decode() if not o: o = "**Tip**: \n`If you want to see the results of your code, I suggest printing them to stdout.`" else: _o = o.split("\n") o = "`\n".join(_o) await event.reply(f"**QUERY:**\n__Command:__\n`{cmd}` \n__PID:__\n`{process.pid}`\n\n**stderr:** \n`{e}`\n**Output:**\n{o}" ) @register(pattern="^/eval") async def _(event): if event.sender_id == OWNER_ID: pass elif event.sender_id in SUDO_USERS: pass else: return cmd = event.text.split(" ", maxsplit=1)[1] reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id old_stderr = sys.stderr old_stdout = sys.stdout redirected_output = sys.stdout = io.StringIO() redirected_error = sys.stderr = io.StringIO() stdout, stderr, exc = None, None, None try: await aexec(cmd, event) except Exception: exc = traceback.format_exc() stdout = redirected_output.getvalue() stderr = redirected_error.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr evaluation = "" if exc: evaluation = exc elif stderr: evaluation = stderr elif stdout: evaluation = stdout else: evaluation = "Success" final_output = "**EVAL**: `{}` \n\n **OUTPUT**: \n`{}` \n".format(cmd, evaluation) MAX_MESSAGE_SIZE_LIMIT = 4095 if len(final_output) > MAX_MESSAGE_SIZE_LIMIT: with io.BytesIO(str.encode(final_output)) as out_file: out_file.name = "eval.text" await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id, ) else: await event.reply(final_output) async def aexec(code, smessatatus): message = event = smessatatus def p(_x): return print(slitu.yaml_format(_x)) reply = await event.get_reply_message() exec( "async def __aexec(message, reply, client, p): " + "\n event = smessatatus = message" + "".join(f"\n {l}" for l in code.split("\n")) ) return await locals()["__aexec"](message, reply, bot, p)
none
1
1.930555
2
src/tools/pch.py
MaxSac/build
11,356
9445
# Status: Being ported by Steven Watanabe # Base revision: 47077 # # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME> # Copyright (c) 2008 <NAME> # # Use, modification and distribution is subject to the Boost Software # License Version 1.0. (See accompanying file LICENSE_1_0.txt or # http://www.boost.org/LICENSE_1_0.txt) ##### Using Precompiled Headers (Quick Guide) ##### # # Make precompiled mypch.hpp: # # import pch ; # # cpp-pch mypch # : # sources # mypch.hpp # : # requiremnts # <toolset>msvc:<source>mypch.cpp # ; # # Add cpp-pch to sources: # # exe hello # : main.cpp hello.cpp mypch # ; from b2.build import type, feature, generators from b2.tools import builtin type.register('PCH', ['pch']) type.register('C_PCH', [], 'PCH') type.register('CPP_PCH', [], 'PCH') # Control precompiled header (PCH) generation. feature.feature('pch', ['on', 'off'], ['propagated']) feature.feature('pch-header', [], ['free', 'dependency']) feature.feature('pch-file', [], ['free', 'dependency']) class PchGenerator(generators.Generator): """ Base PCH generator. The 'run' method has the logic to prevent this generator from being run unless it's being used for a top-level PCH target. """ def action_class(self): return builtin.CompileAction def run(self, project, name, prop_set, sources): if not name: # Unless this generator is invoked as the top-most generator for a # main target, fail. This allows using 'H' type as input type for # this generator, while preventing Boost.Build to try this generator # when not explicitly asked for. # # One bad example is msvc, where pch generator produces both PCH # target and OBJ target, so if there's any header generated (like by # bison, or by msidl), we'd try to use pch generator to get OBJ from # that H, which is completely wrong. By restricting this generator # only to pch main target, such problem is solved. pass else: r = self.run_pch(project, name, prop_set.add_raw(['<define>BOOST_BUILD_PCH_ENABLED']), sources) return generators.add_usage_requirements( r, ['<define>BOOST_BUILD_PCH_ENABLED']) # This rule must be overridden by the derived classes. def run_pch(self, project, name, prop_set, sources): pass # NOTE: requirements are empty, default pch generator can be applied when # pch=off. generators.register(builtin.DummyGenerator( "pch.default-c-pch-generator", False, [], ['C_PCH'], [])) generators.register(builtin.DummyGenerator( "pch.default-cpp-pch-generator", False, [], ['CPP_PCH'], []))
# Status: Being ported by Steven Watanabe # Base revision: 47077 # # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME> # Copyright (c) 2008 <NAME> # # Use, modification and distribution is subject to the Boost Software # License Version 1.0. (See accompanying file LICENSE_1_0.txt or # http://www.boost.org/LICENSE_1_0.txt) ##### Using Precompiled Headers (Quick Guide) ##### # # Make precompiled mypch.hpp: # # import pch ; # # cpp-pch mypch # : # sources # mypch.hpp # : # requiremnts # <toolset>msvc:<source>mypch.cpp # ; # # Add cpp-pch to sources: # # exe hello # : main.cpp hello.cpp mypch # ; from b2.build import type, feature, generators from b2.tools import builtin type.register('PCH', ['pch']) type.register('C_PCH', [], 'PCH') type.register('CPP_PCH', [], 'PCH') # Control precompiled header (PCH) generation. feature.feature('pch', ['on', 'off'], ['propagated']) feature.feature('pch-header', [], ['free', 'dependency']) feature.feature('pch-file', [], ['free', 'dependency']) class PchGenerator(generators.Generator): """ Base PCH generator. The 'run' method has the logic to prevent this generator from being run unless it's being used for a top-level PCH target. """ def action_class(self): return builtin.CompileAction def run(self, project, name, prop_set, sources): if not name: # Unless this generator is invoked as the top-most generator for a # main target, fail. This allows using 'H' type as input type for # this generator, while preventing Boost.Build to try this generator # when not explicitly asked for. # # One bad example is msvc, where pch generator produces both PCH # target and OBJ target, so if there's any header generated (like by # bison, or by msidl), we'd try to use pch generator to get OBJ from # that H, which is completely wrong. By restricting this generator # only to pch main target, such problem is solved. pass else: r = self.run_pch(project, name, prop_set.add_raw(['<define>BOOST_BUILD_PCH_ENABLED']), sources) return generators.add_usage_requirements( r, ['<define>BOOST_BUILD_PCH_ENABLED']) # This rule must be overridden by the derived classes. def run_pch(self, project, name, prop_set, sources): pass # NOTE: requirements are empty, default pch generator can be applied when # pch=off. generators.register(builtin.DummyGenerator( "pch.default-c-pch-generator", False, [], ['C_PCH'], [])) generators.register(builtin.DummyGenerator( "pch.default-cpp-pch-generator", False, [], ['CPP_PCH'], []))
en
0.802147
# Status: Being ported by Steven Watanabe # Base revision: 47077 # # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME> # Copyright (c) 2008 <NAME> # # Use, modification and distribution is subject to the Boost Software # License Version 1.0. (See accompanying file LICENSE_1_0.txt or # http://www.boost.org/LICENSE_1_0.txt) ##### Using Precompiled Headers (Quick Guide) ##### # # Make precompiled mypch.hpp: # # import pch ; # # cpp-pch mypch # : # sources # mypch.hpp # : # requiremnts # <toolset>msvc:<source>mypch.cpp # ; # # Add cpp-pch to sources: # # exe hello # : main.cpp hello.cpp mypch # ; # Control precompiled header (PCH) generation. Base PCH generator. The 'run' method has the logic to prevent this generator from being run unless it's being used for a top-level PCH target. # Unless this generator is invoked as the top-most generator for a # main target, fail. This allows using 'H' type as input type for # this generator, while preventing Boost.Build to try this generator # when not explicitly asked for. # # One bad example is msvc, where pch generator produces both PCH # target and OBJ target, so if there's any header generated (like by # bison, or by msidl), we'd try to use pch generator to get OBJ from # that H, which is completely wrong. By restricting this generator # only to pch main target, such problem is solved. # This rule must be overridden by the derived classes. # NOTE: requirements are empty, default pch generator can be applied when # pch=off.
1.802533
2
packages/pytest-simcore/src/pytest_simcore/helpers/utils_login.py
GitHK/osparc-simcore-forked
0
9446
import re from typing import Dict from aiohttp import web from yarl import URL from simcore_service_webserver.db_models import UserRole, UserStatus from simcore_service_webserver.login.cfg import cfg, get_storage from simcore_service_webserver.login.registration import create_invitation from simcore_service_webserver.login.utils import encrypt_password, get_random_string from .utils_assert import assert_status TEST_MARKS = re.compile(r"TEST (\w+):(.*)") def parse_test_marks(text): """Checs for marks as TEST name:123123 TEST link:some-value """ marks = {} for m in TEST_MARKS.finditer(text): key, value = m.groups() marks[key] = value.strip() return marks def parse_link(text): link = parse_test_marks(text)["link"] return URL(link).path async def create_user(data=None) -> Dict: data = data or {} password = <PASSWORD>(10) params = { "name": get_random_string(10), "email": <EMAIL>".format(get_random_string(10)), "password_hash": <PASSWORD>(password), } params.update(data) params.setdefault("status", UserStatus.ACTIVE.name) params.setdefault("role", UserRole.USER.name) params.setdefault("created_ip", "127.0.0.1") user = await cfg.STORAGE.create_user(params) user["raw_password"] = password return user async def log_client_in(client, user_data=None, *, enable_check=True) -> Dict: # creates user directly in db user = await create_user(user_data) # login url = client.app.router["auth_login"].url_for() r = await client.post( url, json={ "email": user["email"], "password": user["<PASSWORD>_password"], }, ) if enable_check: await assert_status(r, web.HTTPOk, cfg.MSG_LOGGED_IN) return user class NewUser: def __init__(self, params=None, app: web.Application = None): self.params = params self.user = None self.db = get_storage(app) if app else cfg.STORAGE # FIXME: async def __aenter__(self): self.user = await create_user(self.params) return self.user async def __aexit__(self, *args): await self.db.delete_user(self.user) class LoggedUser(NewUser): def __init__(self, client, params=None, *, check_if_succeeds=True): super().__init__(params, client.app) self.client = client self.enable_check = check_if_succeeds async def __aenter__(self): self.user = await log_client_in( self.client, self.params, enable_check=self.enable_check ) return self.user class NewInvitation(NewUser): def __init__(self, client, guest="", host=None): super().__init__(host, client.app) self.client = client self.guest = guest or get_random_string(10) self.confirmation = None async def __aenter__(self): # creates host user self.user = await create_user(self.params) self.confirmation = await create_invitation(self.user, self.guest, self.db) return self.confirmation async def __aexit__(self, *args): if await self.db.get_confirmation(self.confirmation): await self.db.delete_confirmation(self.confirmation)
import re from typing import Dict from aiohttp import web from yarl import URL from simcore_service_webserver.db_models import UserRole, UserStatus from simcore_service_webserver.login.cfg import cfg, get_storage from simcore_service_webserver.login.registration import create_invitation from simcore_service_webserver.login.utils import encrypt_password, get_random_string from .utils_assert import assert_status TEST_MARKS = re.compile(r"TEST (\w+):(.*)") def parse_test_marks(text): """Checs for marks as TEST name:123123 TEST link:some-value """ marks = {} for m in TEST_MARKS.finditer(text): key, value = m.groups() marks[key] = value.strip() return marks def parse_link(text): link = parse_test_marks(text)["link"] return URL(link).path async def create_user(data=None) -> Dict: data = data or {} password = <PASSWORD>(10) params = { "name": get_random_string(10), "email": <EMAIL>".format(get_random_string(10)), "password_hash": <PASSWORD>(password), } params.update(data) params.setdefault("status", UserStatus.ACTIVE.name) params.setdefault("role", UserRole.USER.name) params.setdefault("created_ip", "127.0.0.1") user = await cfg.STORAGE.create_user(params) user["raw_password"] = password return user async def log_client_in(client, user_data=None, *, enable_check=True) -> Dict: # creates user directly in db user = await create_user(user_data) # login url = client.app.router["auth_login"].url_for() r = await client.post( url, json={ "email": user["email"], "password": user["<PASSWORD>_password"], }, ) if enable_check: await assert_status(r, web.HTTPOk, cfg.MSG_LOGGED_IN) return user class NewUser: def __init__(self, params=None, app: web.Application = None): self.params = params self.user = None self.db = get_storage(app) if app else cfg.STORAGE # FIXME: async def __aenter__(self): self.user = await create_user(self.params) return self.user async def __aexit__(self, *args): await self.db.delete_user(self.user) class LoggedUser(NewUser): def __init__(self, client, params=None, *, check_if_succeeds=True): super().__init__(params, client.app) self.client = client self.enable_check = check_if_succeeds async def __aenter__(self): self.user = await log_client_in( self.client, self.params, enable_check=self.enable_check ) return self.user class NewInvitation(NewUser): def __init__(self, client, guest="", host=None): super().__init__(host, client.app) self.client = client self.guest = guest or get_random_string(10) self.confirmation = None async def __aenter__(self): # creates host user self.user = await create_user(self.params) self.confirmation = await create_invitation(self.user, self.guest, self.db) return self.confirmation async def __aexit__(self, *args): if await self.db.get_confirmation(self.confirmation): await self.db.delete_confirmation(self.confirmation)
en
0.819756
Checs for marks as TEST name:123123 TEST link:some-value # creates user directly in db # login # FIXME: # creates host user
2.213646
2
indra/tests/test_sparser.py
jmuhlich/indra
0
9447
<reponame>jmuhlich/indra from indra import sparser xml_str1 = ''' <article pmid="54321"> <interpretation> <sentence-text>MEK1 phosphorylates ERK1</sentence-text> <sem> <ref category="phosphorylate"> <var name="agent"> <ref category="protein"> <var name="name">MP2K1_HUMAN</var> <var name="uid">UP:MP2K1_HUMAN</var> </ref> </var> <var name="substrate"> <ref category="protein"> <var name="name">MK03_HUMAN</var> <var name="uid">UP:MK03_HUMAN</var> </ref> </var> <var name="present"><ref category="present"></ref></var> </ref> </sem> </interpretation> </article> ''' xml_str2 = ''' <article pmid="12345"> <interpretation> <sentence-text>Hence ASPP2 can be phosphorylated at serine 827 by MAPK1 in vitro</sentence-text> <sem> <ref category="phosphorylate"> <var name="subordinate-conjunction"> <ref category="subordinate-conjunction"><var name="word">hence</var></ref></var> <var name="substrate"> <ref category="protein"> <var name="name">ASPP2_HUMAN</var> <var name="uid">UP:ASPP2_HUMAN</var> </ref> </var> <var name="agent"> <ref category="protein"> <var name="context"> <ref category="in-vitro"></ref> </var> <var name="uid">UP:MK01_HUMAN</var> <var name="name">MK01_HUMAN</var> </ref> </var> <var name="site"> <ref category="residue-on-protein"> <var name="amino-acid"> <ref category="amino-acid"><var name="name">serine</var></ref> </var> <var name="position"> 827</var> </ref> </var> <var name="modal"><ref category="can"></ref></var> </ref> </sem> </interpretation> </article> ''' def test_invalid_xml(): sp = sparser.process_xml('xyz') assert(sp is None) def test_phosphorylation(): sp = sparser.process_xml(xml_str1) assert(len(sp.statements) == 1) assert(sp.statements[0].enz.name == 'MAP2K1') assert(sp.statements[0].sub.name == 'MAPK3') assert(len(sp.statements[0].evidence) == 1) ev = sp.statements[0].evidence[0] assert(ev.pmid == '54321') assert(ev.text) assert(ev.source_api == 'sparser') def test_phosphorylation2(): sp = sparser.process_xml(xml_str2) assert(len(sp.statements) == 1) assert(sp.statements[0].enz.name == 'MAPK1') assert(sp.statements[0].sub.name == 'TP53BP2') assert(sp.statements[0].residue == 'S') assert(sp.statements[0].position == '827') assert (len(sp.statements[0].evidence) == 1) ev = sp.statements[0].evidence[0] assert (ev.pmid == '12345') assert (ev.text) assert (ev.source_api == 'sparser')
from indra import sparser xml_str1 = ''' <article pmid="54321"> <interpretation> <sentence-text>MEK1 phosphorylates ERK1</sentence-text> <sem> <ref category="phosphorylate"> <var name="agent"> <ref category="protein"> <var name="name">MP2K1_HUMAN</var> <var name="uid">UP:MP2K1_HUMAN</var> </ref> </var> <var name="substrate"> <ref category="protein"> <var name="name">MK03_HUMAN</var> <var name="uid">UP:MK03_HUMAN</var> </ref> </var> <var name="present"><ref category="present"></ref></var> </ref> </sem> </interpretation> </article> ''' xml_str2 = ''' <article pmid="12345"> <interpretation> <sentence-text>Hence ASPP2 can be phosphorylated at serine 827 by MAPK1 in vitro</sentence-text> <sem> <ref category="phosphorylate"> <var name="subordinate-conjunction"> <ref category="subordinate-conjunction"><var name="word">hence</var></ref></var> <var name="substrate"> <ref category="protein"> <var name="name">ASPP2_HUMAN</var> <var name="uid">UP:ASPP2_HUMAN</var> </ref> </var> <var name="agent"> <ref category="protein"> <var name="context"> <ref category="in-vitro"></ref> </var> <var name="uid">UP:MK01_HUMAN</var> <var name="name">MK01_HUMAN</var> </ref> </var> <var name="site"> <ref category="residue-on-protein"> <var name="amino-acid"> <ref category="amino-acid"><var name="name">serine</var></ref> </var> <var name="position"> 827</var> </ref> </var> <var name="modal"><ref category="can"></ref></var> </ref> </sem> </interpretation> </article> ''' def test_invalid_xml(): sp = sparser.process_xml('xyz') assert(sp is None) def test_phosphorylation(): sp = sparser.process_xml(xml_str1) assert(len(sp.statements) == 1) assert(sp.statements[0].enz.name == 'MAP2K1') assert(sp.statements[0].sub.name == 'MAPK3') assert(len(sp.statements[0].evidence) == 1) ev = sp.statements[0].evidence[0] assert(ev.pmid == '54321') assert(ev.text) assert(ev.source_api == 'sparser') def test_phosphorylation2(): sp = sparser.process_xml(xml_str2) assert(len(sp.statements) == 1) assert(sp.statements[0].enz.name == 'MAPK1') assert(sp.statements[0].sub.name == 'TP53BP2') assert(sp.statements[0].residue == 'S') assert(sp.statements[0].position == '827') assert (len(sp.statements[0].evidence) == 1) ev = sp.statements[0].evidence[0] assert (ev.pmid == '12345') assert (ev.text) assert (ev.source_api == 'sparser')
en
0.235092
<article pmid="54321"> <interpretation> <sentence-text>MEK1 phosphorylates ERK1</sentence-text> <sem> <ref category="phosphorylate"> <var name="agent"> <ref category="protein"> <var name="name">MP2K1_HUMAN</var> <var name="uid">UP:MP2K1_HUMAN</var> </ref> </var> <var name="substrate"> <ref category="protein"> <var name="name">MK03_HUMAN</var> <var name="uid">UP:MK03_HUMAN</var> </ref> </var> <var name="present"><ref category="present"></ref></var> </ref> </sem> </interpretation> </article> <article pmid="12345"> <interpretation> <sentence-text>Hence ASPP2 can be phosphorylated at serine 827 by MAPK1 in vitro</sentence-text> <sem> <ref category="phosphorylate"> <var name="subordinate-conjunction"> <ref category="subordinate-conjunction"><var name="word">hence</var></ref></var> <var name="substrate"> <ref category="protein"> <var name="name">ASPP2_HUMAN</var> <var name="uid">UP:ASPP2_HUMAN</var> </ref> </var> <var name="agent"> <ref category="protein"> <var name="context"> <ref category="in-vitro"></ref> </var> <var name="uid">UP:MK01_HUMAN</var> <var name="name">MK01_HUMAN</var> </ref> </var> <var name="site"> <ref category="residue-on-protein"> <var name="amino-acid"> <ref category="amino-acid"><var name="name">serine</var></ref> </var> <var name="position"> 827</var> </ref> </var> <var name="modal"><ref category="can"></ref></var> </ref> </sem> </interpretation> </article>
2.14343
2
examples/quickstart/run_example.py
siforrer/coreali
0
9448
""" Simple Example using coreali to access a register model. Needs no h^ardware""" # Import dependencies and compile register model with systemrdl-compiler from systemrdl import RDLCompiler import coreali import numpy as np import os from coreali import RegisterModel rdlc = RDLCompiler() rdlc.compile_file(os.path.dirname(__file__)+"/../systemrdl/logger.rdl") root = rdlc.elaborate() # Generate hierarchical register model rio = coreali.registerio.RegIoNoHW(np.zeros([256], np.uint8())) logger = RegisterModel(root, rio) # Use the generated register model logger.Ctrl.read() logger.LogMem.write(0,[1,2,3]) logger.LogMem.read() logger.LogMem[1].write(0,[11,12,13]) print(logger)
""" Simple Example using coreali to access a register model. Needs no h^ardware""" # Import dependencies and compile register model with systemrdl-compiler from systemrdl import RDLCompiler import coreali import numpy as np import os from coreali import RegisterModel rdlc = RDLCompiler() rdlc.compile_file(os.path.dirname(__file__)+"/../systemrdl/logger.rdl") root = rdlc.elaborate() # Generate hierarchical register model rio = coreali.registerio.RegIoNoHW(np.zeros([256], np.uint8())) logger = RegisterModel(root, rio) # Use the generated register model logger.Ctrl.read() logger.LogMem.write(0,[1,2,3]) logger.LogMem.read() logger.LogMem[1].write(0,[11,12,13]) print(logger)
en
0.66028
Simple Example using coreali to access a register model. Needs no h^ardware # Import dependencies and compile register model with systemrdl-compiler # Generate hierarchical register model # Use the generated register model
2.169975
2
src/python/pants/base/specs.py
mcguigan/pants
0
9449
<reponame>mcguigan/pants # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import re from abc import ABC, ABCMeta, abstractmethod from dataclasses import dataclass from typing import ( TYPE_CHECKING, Dict, Iterable, Iterator, List, Optional, Sequence, Tuple, Union, cast, ) from pants.engine.fs import PathGlobs from pants.engine.objects import Collection from pants.option.custom_types import GlobExpansionConjunction from pants.option.global_options import GlobMatchErrorBehavior from pants.util.collections import assert_single_element from pants.util.dirutil import fast_relpath_optional, recursive_dirname from pants.util.filtering import create_filters, wrap_filters from pants.util.memo import memoized_property from pants.util.meta import frozen_after_init if TYPE_CHECKING: from pants.engine.mapper import AddressFamily, AddressMapper class Spec(ABC): """A specification for what Pants should operate on.""" @abstractmethod def to_spec_string(self) -> str: """Return the normalized string representation of this spec.""" class AddressSpec(Spec, metaclass=ABCMeta): """Represents address selectors as passed from the command line. Supports `Single` target addresses as well as `Sibling` (:) and `Descendant` (::) selector forms. Note: In general, 'spec' should not be a user visible term, it is usually appropriate to substitute 'address' for a spec resolved to an address, or 'address selector' if you are referring to an unresolved spec string. """ class AddressFamilyResolutionError(Exception): pass @abstractmethod def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: """Given a dict of (namespace path) -> AddressFamily, return the values matching this address spec. :raises: :class:`AddressSpec.AddressFamilyResolutionError` if no address families matched this spec. """ @classmethod def address_families_for_dir( cls, address_families_dict: Dict[str, "AddressFamily"], spec_dir_path: str ) -> List["AddressFamily"]: """Implementation of `matching_address_families()` for address specs matching at most one directory.""" maybe_af = address_families_dict.get(spec_dir_path, None) if maybe_af is None: raise cls.AddressFamilyResolutionError( 'Path "{}" does not contain any BUILD files.' .format(spec_dir_path)) return [maybe_af] class AddressResolutionError(Exception): pass @abstractmethod def address_target_pairs_from_address_families(self, address_families: List["AddressFamily"]): """Given a list of AddressFamily, return (address, target) pairs matching this address spec. :raises: :class:`SingleAddress._SingleAddressResolutionError` for resolution errors with a :class:`SingleAddress` instance. :raises: :class:`AddressSpec.AddressResolutionError` if no targets could be found otherwise, if the address spec type requires a non-empty set of targets. :return: list of (Address, Target) pairs. """ @classmethod def all_address_target_pairs(cls, address_families): """Implementation of `address_target_pairs_from_address_families()` which does no filtering.""" addr_tgt_pairs = [] for af in address_families: addr_tgt_pairs.extend(af.addressables.items()) return addr_tgt_pairs @abstractmethod def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: """Generate glob patterns matching exactly all the BUILD files this address spec covers.""" @classmethod def globs_in_single_dir(cls, spec_dir_path: str, address_mapper: "AddressMapper") -> List[str]: """Implementation of `make_glob_patterns()` which only allows a single base directory.""" return [os.path.join(spec_dir_path, pat) for pat in address_mapper.build_patterns] @dataclass(frozen=True) class SingleAddress(AddressSpec): """An AddressSpec for a single address.""" directory: str name: str def __post_init__(self) -> None: if self.directory is None: raise ValueError(f'A SingleAddress must have a directory. Got: {self}') if self.name is None: raise ValueError(f'A SingleAddress must have a name. Got: {self}') def to_spec_string(self) -> str: return '{}:{}'.format(self.directory, self.name) def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"] ) -> List["AddressFamily"]: return self.address_families_for_dir(address_families_dict, self.directory) class _SingleAddressResolutionError(Exception): def __init__(self, single_address_family: "AddressFamily", name: str) -> None: super().__init__() self.single_address_family = single_address_family self.name = name def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): """Return the pair for the single target matching the single AddressFamily, or error. :raises: :class:`SingleAddress._SingleAddressResolutionError` if no targets could be found for a :class:`SingleAddress` instance. :return: list of (Address, Target) pairs with exactly one element. """ single_af = assert_single_element(address_families) addr_tgt_pairs = [ (addr, tgt) for addr, tgt in single_af.addressables.items() if addr.target_name == self.name ] if len(addr_tgt_pairs) == 0: raise self._SingleAddressResolutionError(single_af, self.name) # There will be at most one target with a given name in a single AddressFamily. assert(len(addr_tgt_pairs) == 1) return addr_tgt_pairs def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return self.globs_in_single_dir(self.directory, address_mapper) @dataclass(frozen=True) class SiblingAddresses(AddressSpec): """An AddressSpec representing all addresses located directly within the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}:' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return self.address_families_for_dir(address_families_dict, self.directory) def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): return self.all_address_target_pairs(address_families) def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return self.globs_in_single_dir(self.directory, address_mapper) @dataclass(frozen=True) class DescendantAddresses(AddressSpec): """An AddressSpec representing all addresses located recursively under the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}::' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return [ af for ns, af in address_families_dict.items() if fast_relpath_optional(ns, self.directory) is not None ] def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): addr_tgt_pairs = self.all_address_target_pairs(address_families) if len(addr_tgt_pairs) == 0: raise self.AddressResolutionError('AddressSpec {} does not match any targets.'.format(self)) return addr_tgt_pairs def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return [os.path.join(self.directory, '**', pat) for pat in address_mapper.build_patterns] @dataclass(frozen=True) class AscendantAddresses(AddressSpec): """An AddressSpec representing all addresses located recursively _above_ the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}^' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return [ af for ns, af in address_families_dict.items() if fast_relpath_optional(self.directory, ns) is not None ] def address_target_pairs_from_address_families(self, address_families): return self.all_address_target_pairs(address_families) def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return [ os.path.join(f, pattern) for pattern in address_mapper.build_patterns for f in recursive_dirname(self.directory) ] _specificity = { SingleAddress: 0, SiblingAddresses: 1, AscendantAddresses: 2, DescendantAddresses: 3, type(None): 99 } def more_specific( address_spec1: Optional[AddressSpec], address_spec2: Optional[AddressSpec] ) -> AddressSpec: """Returns which of the two specs is more specific. This is useful when a target matches multiple specs, and we want to associate it with the "most specific" one, which will make the most intuitive sense to the user. """ # Note that if either of spec1 or spec2 is None, the other will be returned. if address_spec1 is None and address_spec2 is None: raise ValueError('internal error: both specs provided to more_specific() were None') return cast( AddressSpec, address_spec1 if _specificity[type(address_spec1)] < _specificity[type(address_spec2)] else address_spec2 ) @frozen_after_init @dataclass(unsafe_hash=True) class AddressSpecsMatcher: """Contains filters for the output of a AddressSpecs match. This class is separated out from `AddressSpecs` to allow for both stuctural equality of the `tags` and `exclude_patterns`, and for caching of their compiled forms using `@memoized_property` (which uses the hash of the class instance in its key, and results in a very large key when used with `AddressSpecs` directly). """ tags: Tuple[str, ...] exclude_patterns: Tuple[str, ...] def __init__( self, tags: Optional[Iterable[str]] = None, exclude_patterns: Optional[Iterable[str]] = None, ) -> None: self.tags = tuple(tags or []) self.exclude_patterns = tuple(exclude_patterns or []) @memoized_property def _exclude_compiled_regexps(self): return [re.compile(pattern) for pattern in set(self.exclude_patterns or [])] def _excluded_by_pattern(self, address): return any(p.search(address.spec) is not None for p in self._exclude_compiled_regexps) @memoized_property def _target_tag_matches(self): def filter_for_tag(tag): return lambda t: tag in [str(t_tag) for t_tag in t.kwargs().get("tags", [])] return wrap_filters(create_filters(self.tags, filter_for_tag)) def matches_target_address_pair(self, address, target): """ :param Address address: An Address to match :param HydratedTarget target: The Target for the address. :return: True if the given Address/HydratedTarget are included by this matcher. """ return self._target_tag_matches(target) and not self._excluded_by_pattern(address) @frozen_after_init @dataclass(unsafe_hash=True) class AddressSpecs: """A collection of `AddressSpec`s representing AddressSpec subclasses, and a AddressSpecsMatcher to filter results.""" dependencies: Tuple[AddressSpec, ...] matcher: AddressSpecsMatcher def __init__( self, dependencies: Iterable[AddressSpec], tags: Optional[Iterable[str]] = None, exclude_patterns: Optional[Iterable[str]] = None, ) -> None: self.dependencies = tuple(dependencies) self.matcher = AddressSpecsMatcher(tags=tags, exclude_patterns=exclude_patterns) def __iter__(self) -> Iterator[AddressSpec]: return iter(self.dependencies) class FilesystemSpec(Spec, metaclass=ABCMeta): pass @dataclass(frozen=True) class FilesystemLiteralSpec(FilesystemSpec): """A literal file name, e.g. `foo.py`.""" file: str def to_spec_string(self) -> str: return self.file @dataclass(frozen=True) class FilesystemGlobSpec(FilesystemSpec): """A spec with a glob or globs, e.g. `*.py` and `**/*.java`.""" glob: str def to_spec_string(self) -> str: return self.glob @dataclass(frozen=True) class FilesystemIgnoreSpec(FilesystemSpec): """A spec to ignore certain files or globs.""" glob: str def __post_init__(self) -> None: if self.glob.startswith("!"): raise ValueError(f"The `glob` for {self} should not start with `!`.") def to_spec_string(self) -> str: return f"!{self.glob}" class FilesystemSpecs(Collection[FilesystemSpec]): @memoized_property def includes(self) -> Tuple[Union[FilesystemLiteralSpec, FilesystemGlobSpec], ...]: return tuple( spec for spec in self.dependencies if isinstance(spec, (FilesystemGlobSpec, FilesystemLiteralSpec)) ) @memoized_property def ignores(self) -> Tuple[FilesystemIgnoreSpec, ...]: return tuple(spec for spec in self.dependencies if isinstance(spec, FilesystemIgnoreSpec)) @staticmethod def _generate_path_globs(specs: Iterable[FilesystemSpec]) -> PathGlobs: return PathGlobs( globs=(s.to_spec_string() for s in specs), # We error on unmatched globs for consistency with unmatched address specs. This also # ensures that scripts don't silently do the wrong thing. glob_match_error_behavior=GlobMatchErrorBehavior.error, # We validate that _every_ glob is valid. conjunction=GlobExpansionConjunction.all_match, description_of_origin="file arguments", ) def path_globs_for_spec( self, spec: Union[FilesystemLiteralSpec, FilesystemGlobSpec] ) -> PathGlobs: """Generate PathGlobs for the specific spec, automatically including the instance's FilesystemIgnoreSpecs. """ return self._generate_path_globs(specs=(spec, *self.ignores)) def to_path_globs(self) -> PathGlobs: """Generate a single PathGlobs for the instance.""" return self._generate_path_globs(specs=(*self.includes, *self.ignores)) class AmbiguousSpecs(Exception): pass @dataclass(frozen=True) class Specs: address_specs: AddressSpecs filesystem_specs: FilesystemSpecs def __post_init__(self) -> None: if self.address_specs.dependencies and self.filesystem_specs.dependencies: raise AmbiguousSpecs( "Both address specs and filesystem specs given. Please use only one type of spec.\n\n" f"Address specs: {', '.join(spec.to_spec_string() for spec in self.address_specs)}\n" f"Filesystem specs: {', '.join(spec.to_spec_string() for spec in self.filesystem_specs)}" ) @property def provided_specs(self) -> Union[AddressSpecs, FilesystemSpecs]: """Return whichever types of specs was provided by the user. It is guaranteed that there will only ever be AddressSpecs or FilesystemSpecs, but not both, through validation in the constructor.""" return ( self.filesystem_specs if self.filesystem_specs.dependencies else self.address_specs )
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import re from abc import ABC, ABCMeta, abstractmethod from dataclasses import dataclass from typing import ( TYPE_CHECKING, Dict, Iterable, Iterator, List, Optional, Sequence, Tuple, Union, cast, ) from pants.engine.fs import PathGlobs from pants.engine.objects import Collection from pants.option.custom_types import GlobExpansionConjunction from pants.option.global_options import GlobMatchErrorBehavior from pants.util.collections import assert_single_element from pants.util.dirutil import fast_relpath_optional, recursive_dirname from pants.util.filtering import create_filters, wrap_filters from pants.util.memo import memoized_property from pants.util.meta import frozen_after_init if TYPE_CHECKING: from pants.engine.mapper import AddressFamily, AddressMapper class Spec(ABC): """A specification for what Pants should operate on.""" @abstractmethod def to_spec_string(self) -> str: """Return the normalized string representation of this spec.""" class AddressSpec(Spec, metaclass=ABCMeta): """Represents address selectors as passed from the command line. Supports `Single` target addresses as well as `Sibling` (:) and `Descendant` (::) selector forms. Note: In general, 'spec' should not be a user visible term, it is usually appropriate to substitute 'address' for a spec resolved to an address, or 'address selector' if you are referring to an unresolved spec string. """ class AddressFamilyResolutionError(Exception): pass @abstractmethod def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: """Given a dict of (namespace path) -> AddressFamily, return the values matching this address spec. :raises: :class:`AddressSpec.AddressFamilyResolutionError` if no address families matched this spec. """ @classmethod def address_families_for_dir( cls, address_families_dict: Dict[str, "AddressFamily"], spec_dir_path: str ) -> List["AddressFamily"]: """Implementation of `matching_address_families()` for address specs matching at most one directory.""" maybe_af = address_families_dict.get(spec_dir_path, None) if maybe_af is None: raise cls.AddressFamilyResolutionError( 'Path "{}" does not contain any BUILD files.' .format(spec_dir_path)) return [maybe_af] class AddressResolutionError(Exception): pass @abstractmethod def address_target_pairs_from_address_families(self, address_families: List["AddressFamily"]): """Given a list of AddressFamily, return (address, target) pairs matching this address spec. :raises: :class:`SingleAddress._SingleAddressResolutionError` for resolution errors with a :class:`SingleAddress` instance. :raises: :class:`AddressSpec.AddressResolutionError` if no targets could be found otherwise, if the address spec type requires a non-empty set of targets. :return: list of (Address, Target) pairs. """ @classmethod def all_address_target_pairs(cls, address_families): """Implementation of `address_target_pairs_from_address_families()` which does no filtering.""" addr_tgt_pairs = [] for af in address_families: addr_tgt_pairs.extend(af.addressables.items()) return addr_tgt_pairs @abstractmethod def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: """Generate glob patterns matching exactly all the BUILD files this address spec covers.""" @classmethod def globs_in_single_dir(cls, spec_dir_path: str, address_mapper: "AddressMapper") -> List[str]: """Implementation of `make_glob_patterns()` which only allows a single base directory.""" return [os.path.join(spec_dir_path, pat) for pat in address_mapper.build_patterns] @dataclass(frozen=True) class SingleAddress(AddressSpec): """An AddressSpec for a single address.""" directory: str name: str def __post_init__(self) -> None: if self.directory is None: raise ValueError(f'A SingleAddress must have a directory. Got: {self}') if self.name is None: raise ValueError(f'A SingleAddress must have a name. Got: {self}') def to_spec_string(self) -> str: return '{}:{}'.format(self.directory, self.name) def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"] ) -> List["AddressFamily"]: return self.address_families_for_dir(address_families_dict, self.directory) class _SingleAddressResolutionError(Exception): def __init__(self, single_address_family: "AddressFamily", name: str) -> None: super().__init__() self.single_address_family = single_address_family self.name = name def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): """Return the pair for the single target matching the single AddressFamily, or error. :raises: :class:`SingleAddress._SingleAddressResolutionError` if no targets could be found for a :class:`SingleAddress` instance. :return: list of (Address, Target) pairs with exactly one element. """ single_af = assert_single_element(address_families) addr_tgt_pairs = [ (addr, tgt) for addr, tgt in single_af.addressables.items() if addr.target_name == self.name ] if len(addr_tgt_pairs) == 0: raise self._SingleAddressResolutionError(single_af, self.name) # There will be at most one target with a given name in a single AddressFamily. assert(len(addr_tgt_pairs) == 1) return addr_tgt_pairs def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return self.globs_in_single_dir(self.directory, address_mapper) @dataclass(frozen=True) class SiblingAddresses(AddressSpec): """An AddressSpec representing all addresses located directly within the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}:' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return self.address_families_for_dir(address_families_dict, self.directory) def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): return self.all_address_target_pairs(address_families) def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return self.globs_in_single_dir(self.directory, address_mapper) @dataclass(frozen=True) class DescendantAddresses(AddressSpec): """An AddressSpec representing all addresses located recursively under the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}::' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return [ af for ns, af in address_families_dict.items() if fast_relpath_optional(ns, self.directory) is not None ] def address_target_pairs_from_address_families(self, address_families: Sequence["AddressFamily"]): addr_tgt_pairs = self.all_address_target_pairs(address_families) if len(addr_tgt_pairs) == 0: raise self.AddressResolutionError('AddressSpec {} does not match any targets.'.format(self)) return addr_tgt_pairs def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return [os.path.join(self.directory, '**', pat) for pat in address_mapper.build_patterns] @dataclass(frozen=True) class AscendantAddresses(AddressSpec): """An AddressSpec representing all addresses located recursively _above_ the given directory.""" directory: str def to_spec_string(self) -> str: return f'{self.directory}^' def matching_address_families( self, address_families_dict: Dict[str, "AddressFamily"], ) -> List["AddressFamily"]: return [ af for ns, af in address_families_dict.items() if fast_relpath_optional(self.directory, ns) is not None ] def address_target_pairs_from_address_families(self, address_families): return self.all_address_target_pairs(address_families) def make_glob_patterns(self, address_mapper: "AddressMapper") -> List[str]: return [ os.path.join(f, pattern) for pattern in address_mapper.build_patterns for f in recursive_dirname(self.directory) ] _specificity = { SingleAddress: 0, SiblingAddresses: 1, AscendantAddresses: 2, DescendantAddresses: 3, type(None): 99 } def more_specific( address_spec1: Optional[AddressSpec], address_spec2: Optional[AddressSpec] ) -> AddressSpec: """Returns which of the two specs is more specific. This is useful when a target matches multiple specs, and we want to associate it with the "most specific" one, which will make the most intuitive sense to the user. """ # Note that if either of spec1 or spec2 is None, the other will be returned. if address_spec1 is None and address_spec2 is None: raise ValueError('internal error: both specs provided to more_specific() were None') return cast( AddressSpec, address_spec1 if _specificity[type(address_spec1)] < _specificity[type(address_spec2)] else address_spec2 ) @frozen_after_init @dataclass(unsafe_hash=True) class AddressSpecsMatcher: """Contains filters for the output of a AddressSpecs match. This class is separated out from `AddressSpecs` to allow for both stuctural equality of the `tags` and `exclude_patterns`, and for caching of their compiled forms using `@memoized_property` (which uses the hash of the class instance in its key, and results in a very large key when used with `AddressSpecs` directly). """ tags: Tuple[str, ...] exclude_patterns: Tuple[str, ...] def __init__( self, tags: Optional[Iterable[str]] = None, exclude_patterns: Optional[Iterable[str]] = None, ) -> None: self.tags = tuple(tags or []) self.exclude_patterns = tuple(exclude_patterns or []) @memoized_property def _exclude_compiled_regexps(self): return [re.compile(pattern) for pattern in set(self.exclude_patterns or [])] def _excluded_by_pattern(self, address): return any(p.search(address.spec) is not None for p in self._exclude_compiled_regexps) @memoized_property def _target_tag_matches(self): def filter_for_tag(tag): return lambda t: tag in [str(t_tag) for t_tag in t.kwargs().get("tags", [])] return wrap_filters(create_filters(self.tags, filter_for_tag)) def matches_target_address_pair(self, address, target): """ :param Address address: An Address to match :param HydratedTarget target: The Target for the address. :return: True if the given Address/HydratedTarget are included by this matcher. """ return self._target_tag_matches(target) and not self._excluded_by_pattern(address) @frozen_after_init @dataclass(unsafe_hash=True) class AddressSpecs: """A collection of `AddressSpec`s representing AddressSpec subclasses, and a AddressSpecsMatcher to filter results.""" dependencies: Tuple[AddressSpec, ...] matcher: AddressSpecsMatcher def __init__( self, dependencies: Iterable[AddressSpec], tags: Optional[Iterable[str]] = None, exclude_patterns: Optional[Iterable[str]] = None, ) -> None: self.dependencies = tuple(dependencies) self.matcher = AddressSpecsMatcher(tags=tags, exclude_patterns=exclude_patterns) def __iter__(self) -> Iterator[AddressSpec]: return iter(self.dependencies) class FilesystemSpec(Spec, metaclass=ABCMeta): pass @dataclass(frozen=True) class FilesystemLiteralSpec(FilesystemSpec): """A literal file name, e.g. `foo.py`.""" file: str def to_spec_string(self) -> str: return self.file @dataclass(frozen=True) class FilesystemGlobSpec(FilesystemSpec): """A spec with a glob or globs, e.g. `*.py` and `**/*.java`.""" glob: str def to_spec_string(self) -> str: return self.glob @dataclass(frozen=True) class FilesystemIgnoreSpec(FilesystemSpec): """A spec to ignore certain files or globs.""" glob: str def __post_init__(self) -> None: if self.glob.startswith("!"): raise ValueError(f"The `glob` for {self} should not start with `!`.") def to_spec_string(self) -> str: return f"!{self.glob}" class FilesystemSpecs(Collection[FilesystemSpec]): @memoized_property def includes(self) -> Tuple[Union[FilesystemLiteralSpec, FilesystemGlobSpec], ...]: return tuple( spec for spec in self.dependencies if isinstance(spec, (FilesystemGlobSpec, FilesystemLiteralSpec)) ) @memoized_property def ignores(self) -> Tuple[FilesystemIgnoreSpec, ...]: return tuple(spec for spec in self.dependencies if isinstance(spec, FilesystemIgnoreSpec)) @staticmethod def _generate_path_globs(specs: Iterable[FilesystemSpec]) -> PathGlobs: return PathGlobs( globs=(s.to_spec_string() for s in specs), # We error on unmatched globs for consistency with unmatched address specs. This also # ensures that scripts don't silently do the wrong thing. glob_match_error_behavior=GlobMatchErrorBehavior.error, # We validate that _every_ glob is valid. conjunction=GlobExpansionConjunction.all_match, description_of_origin="file arguments", ) def path_globs_for_spec( self, spec: Union[FilesystemLiteralSpec, FilesystemGlobSpec] ) -> PathGlobs: """Generate PathGlobs for the specific spec, automatically including the instance's FilesystemIgnoreSpecs. """ return self._generate_path_globs(specs=(spec, *self.ignores)) def to_path_globs(self) -> PathGlobs: """Generate a single PathGlobs for the instance.""" return self._generate_path_globs(specs=(*self.includes, *self.ignores)) class AmbiguousSpecs(Exception): pass @dataclass(frozen=True) class Specs: address_specs: AddressSpecs filesystem_specs: FilesystemSpecs def __post_init__(self) -> None: if self.address_specs.dependencies and self.filesystem_specs.dependencies: raise AmbiguousSpecs( "Both address specs and filesystem specs given. Please use only one type of spec.\n\n" f"Address specs: {', '.join(spec.to_spec_string() for spec in self.address_specs)}\n" f"Filesystem specs: {', '.join(spec.to_spec_string() for spec in self.filesystem_specs)}" ) @property def provided_specs(self) -> Union[AddressSpecs, FilesystemSpecs]: """Return whichever types of specs was provided by the user. It is guaranteed that there will only ever be AddressSpecs or FilesystemSpecs, but not both, through validation in the constructor.""" return ( self.filesystem_specs if self.filesystem_specs.dependencies else self.address_specs )
en
0.859224
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). A specification for what Pants should operate on. Return the normalized string representation of this spec. Represents address selectors as passed from the command line. Supports `Single` target addresses as well as `Sibling` (:) and `Descendant` (::) selector forms. Note: In general, 'spec' should not be a user visible term, it is usually appropriate to substitute 'address' for a spec resolved to an address, or 'address selector' if you are referring to an unresolved spec string. Given a dict of (namespace path) -> AddressFamily, return the values matching this address spec. :raises: :class:`AddressSpec.AddressFamilyResolutionError` if no address families matched this spec. Implementation of `matching_address_families()` for address specs matching at most one directory. Given a list of AddressFamily, return (address, target) pairs matching this address spec. :raises: :class:`SingleAddress._SingleAddressResolutionError` for resolution errors with a :class:`SingleAddress` instance. :raises: :class:`AddressSpec.AddressResolutionError` if no targets could be found otherwise, if the address spec type requires a non-empty set of targets. :return: list of (Address, Target) pairs. Implementation of `address_target_pairs_from_address_families()` which does no filtering. Generate glob patterns matching exactly all the BUILD files this address spec covers. Implementation of `make_glob_patterns()` which only allows a single base directory. An AddressSpec for a single address. Return the pair for the single target matching the single AddressFamily, or error. :raises: :class:`SingleAddress._SingleAddressResolutionError` if no targets could be found for a :class:`SingleAddress` instance. :return: list of (Address, Target) pairs with exactly one element. # There will be at most one target with a given name in a single AddressFamily. An AddressSpec representing all addresses located directly within the given directory. An AddressSpec representing all addresses located recursively under the given directory. An AddressSpec representing all addresses located recursively _above_ the given directory. Returns which of the two specs is more specific. This is useful when a target matches multiple specs, and we want to associate it with the "most specific" one, which will make the most intuitive sense to the user. # Note that if either of spec1 or spec2 is None, the other will be returned. Contains filters for the output of a AddressSpecs match. This class is separated out from `AddressSpecs` to allow for both stuctural equality of the `tags` and `exclude_patterns`, and for caching of their compiled forms using `@memoized_property` (which uses the hash of the class instance in its key, and results in a very large key when used with `AddressSpecs` directly). :param Address address: An Address to match :param HydratedTarget target: The Target for the address. :return: True if the given Address/HydratedTarget are included by this matcher. A collection of `AddressSpec`s representing AddressSpec subclasses, and a AddressSpecsMatcher to filter results. A literal file name, e.g. `foo.py`. A spec with a glob or globs, e.g. `*.py` and `**/*.java`. A spec to ignore certain files or globs. # We error on unmatched globs for consistency with unmatched address specs. This also # ensures that scripts don't silently do the wrong thing. # We validate that _every_ glob is valid. Generate PathGlobs for the specific spec, automatically including the instance's FilesystemIgnoreSpecs. Generate a single PathGlobs for the instance. Return whichever types of specs was provided by the user. It is guaranteed that there will only ever be AddressSpecs or FilesystemSpecs, but not both, through validation in the constructor.
2.243697
2
Mock/MockRequesterMixin.py
GordiigPinny/ApiRequesters
0
9450
import json import requests from enum import Enum from typing import Dict from ..exceptions import JsonDecodeError, UnexpectedResponse, RequestError, BaseApiRequestError class MockRequesterMixin: """ Набор методов для моков реквестеров """ class ERRORS(Enum): ERROR_TOKEN = 'error' BAD_CODE_400_TOKEN = 'bad<PASSWORD>00' BAD_CODE_401_TOKEN = '<PASSWORD>' BAD_CODE_403_TOKEN = '<PASSWORD>' BAD_CODE_404_TOKEN = '<PASSWORD>' class ERRORS_KEYS(Enum): AUTH = 'auth_error' APP_AUTH = 'app_auth_error' USERS = 'users_error' AWARDS = 'awards_error' PLACES = 'places_error' STATS = 'stats_error' MEDIA = 'media_error' class ROLES(Enum): ANON = 'anon' USER = 'user' MODERATOR = 'moderator' SUPERUSER = 'superuser' @classmethod def get_all_roles_tuple(cls): return tuple([x.value for x in cls.ROLES]) @classmethod def get_all_registered_roles_tuple(cls): all_roles = list(cls.get_all_roles_tuple()) all_roles.remove(cls.ROLES.ANON.value) return tuple(all_roles) @classmethod def get_all_errors_tuple(cls): return tuple([x.value for x in cls.ERRORS]) def get_token_dict(self, token: str) -> Dict[str, str]: return json.loads(token) def get_role_part(self, token: str) -> str: return self.get_token_dict(token)['role'] def get_auth_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.AUTH.value] def get_app_auth_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.APP_AUTH.value] def get_awards_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.AWARDS.value] def get_places_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.PLACES.value] def get_users_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.USERS.value] def get_stats_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.STATS.value] def get_media_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.MEDIA.value] # Этот метод оверрайдить во всех классах-моках для выборки нужной ошибки из токена def get_mine_error_part(self, token): raise NotImplementedError # Этот метод оверрайдить во всех классах-моках для отправки джосн-ответа def get_object_on_success(self, token=None): raise NotImplementedError # Этот оверрайдить, если дсоны на GET/POST отличаются def get_list_object_on_success(self, token=None): return self.get_object_on_success(token) def get_coded_response(self, code: int) -> requests.Response: resp = requests.Response() resp.status_code = code return resp def raise_coded_error(self, code: int): resp = self.get_coded_response(code) raise UnexpectedResponse(resp) def _handle_errors(self, token): """ Обработка ошибок, переданных в с токеном """ token = self.get_mine_error_part(token) if token == self.ERRORS.ERROR_TOKEN.value: raise BaseApiRequestError() elif token == self.ERRORS.BAD_CODE_400_TOKEN.value: self.raise_coded_error(400) elif token == self.ERRORS.BAD_CODE_401_TOKEN.value: self.raise_coded_error(401) elif token == self.ERRORS.BAD_CODE_403_TOKEN.value: self.raise_coded_error(403) elif token == self.ERRORS.BAD_CODE_404_TOKEN.value: self.raise_coded_error(404) def _mock_token_handler(self, token: str, list_object=False): """ Базовый метод обработки моковых токенов """ self._handle_errors(token) if list_object: return requests.Response(), self.get_list_object_on_success(token) else: return requests.Response(), self.get_object_on_success(token)
import json import requests from enum import Enum from typing import Dict from ..exceptions import JsonDecodeError, UnexpectedResponse, RequestError, BaseApiRequestError class MockRequesterMixin: """ Набор методов для моков реквестеров """ class ERRORS(Enum): ERROR_TOKEN = 'error' BAD_CODE_400_TOKEN = 'bad<PASSWORD>00' BAD_CODE_401_TOKEN = '<PASSWORD>' BAD_CODE_403_TOKEN = '<PASSWORD>' BAD_CODE_404_TOKEN = '<PASSWORD>' class ERRORS_KEYS(Enum): AUTH = 'auth_error' APP_AUTH = 'app_auth_error' USERS = 'users_error' AWARDS = 'awards_error' PLACES = 'places_error' STATS = 'stats_error' MEDIA = 'media_error' class ROLES(Enum): ANON = 'anon' USER = 'user' MODERATOR = 'moderator' SUPERUSER = 'superuser' @classmethod def get_all_roles_tuple(cls): return tuple([x.value for x in cls.ROLES]) @classmethod def get_all_registered_roles_tuple(cls): all_roles = list(cls.get_all_roles_tuple()) all_roles.remove(cls.ROLES.ANON.value) return tuple(all_roles) @classmethod def get_all_errors_tuple(cls): return tuple([x.value for x in cls.ERRORS]) def get_token_dict(self, token: str) -> Dict[str, str]: return json.loads(token) def get_role_part(self, token: str) -> str: return self.get_token_dict(token)['role'] def get_auth_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.AUTH.value] def get_app_auth_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.APP_AUTH.value] def get_awards_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.AWARDS.value] def get_places_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.PLACES.value] def get_users_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.USERS.value] def get_stats_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.STATS.value] def get_media_error_part(self, token: str) -> str: return self.get_token_dict(token)[self.ERRORS_KEYS.MEDIA.value] # Этот метод оверрайдить во всех классах-моках для выборки нужной ошибки из токена def get_mine_error_part(self, token): raise NotImplementedError # Этот метод оверрайдить во всех классах-моках для отправки джосн-ответа def get_object_on_success(self, token=None): raise NotImplementedError # Этот оверрайдить, если дсоны на GET/POST отличаются def get_list_object_on_success(self, token=None): return self.get_object_on_success(token) def get_coded_response(self, code: int) -> requests.Response: resp = requests.Response() resp.status_code = code return resp def raise_coded_error(self, code: int): resp = self.get_coded_response(code) raise UnexpectedResponse(resp) def _handle_errors(self, token): """ Обработка ошибок, переданных в с токеном """ token = self.get_mine_error_part(token) if token == self.ERRORS.ERROR_TOKEN.value: raise BaseApiRequestError() elif token == self.ERRORS.BAD_CODE_400_TOKEN.value: self.raise_coded_error(400) elif token == self.ERRORS.BAD_CODE_401_TOKEN.value: self.raise_coded_error(401) elif token == self.ERRORS.BAD_CODE_403_TOKEN.value: self.raise_coded_error(403) elif token == self.ERRORS.BAD_CODE_404_TOKEN.value: self.raise_coded_error(404) def _mock_token_handler(self, token: str, list_object=False): """ Базовый метод обработки моковых токенов """ self._handle_errors(token) if list_object: return requests.Response(), self.get_list_object_on_success(token) else: return requests.Response(), self.get_object_on_success(token)
ru
0.997452
Набор методов для моков реквестеров # Этот метод оверрайдить во всех классах-моках для выборки нужной ошибки из токена # Этот метод оверрайдить во всех классах-моках для отправки джосн-ответа # Этот оверрайдить, если дсоны на GET/POST отличаются Обработка ошибок, переданных в с токеном Базовый метод обработки моковых токенов
2.496151
2
tests/test_parse.py
vkleen/skidl
700
9451
<gh_stars>100-1000 # -*- coding: utf-8 -*- # The MIT License (MIT) - Copyright (c) 2016-2021 <NAME>. import pytest from skidl import netlist_to_skidl from .setup_teardown import get_filename, setup_function, teardown_function def test_parser_1(): netlist_to_skidl(get_filename("Arduino_Uno_R3_From_Scratch.net"))
# -*- coding: utf-8 -*- # The MIT License (MIT) - Copyright (c) 2016-2021 <NAME>. import pytest from skidl import netlist_to_skidl from .setup_teardown import get_filename, setup_function, teardown_function def test_parser_1(): netlist_to_skidl(get_filename("Arduino_Uno_R3_From_Scratch.net"))
en
0.675338
# -*- coding: utf-8 -*- # The MIT License (MIT) - Copyright (c) 2016-2021 <NAME>.
1.975225
2
Projects/envirohat-monitor/clear-screen.py
pkbullock/RaspberryPi
0
9452
#!/usr/bin/env python3 import ST7735 import sys st7735 = ST7735.ST7735( port=0, cs=1, dc=9, backlight=12, rotation=270, spi_speed_hz=10000000 ) # Reset the display st7735.begin() st7735.reset() st7735.set_backlight(0) print "\nDone." # Exit cleanly sys.exit(0)
#!/usr/bin/env python3 import ST7735 import sys st7735 = ST7735.ST7735( port=0, cs=1, dc=9, backlight=12, rotation=270, spi_speed_hz=10000000 ) # Reset the display st7735.begin() st7735.reset() st7735.set_backlight(0) print "\nDone." # Exit cleanly sys.exit(0)
en
0.282549
#!/usr/bin/env python3 # Reset the display # Exit cleanly
2.342625
2
Scripts/nominatintest.py
carlosdenner/business_atlas
0
9453
<reponame>carlosdenner/business_atlas from geopy.geocoders import Nominatim from requests.models import LocationParseError geolocator = Nominatim(user_agent="geoapiExercises") Latitude = 25.594095 Longitude = 85.137566 def location(Latitude, Longitude): lat = str(Latitude) long = str(Longitude) print(lat + long) local = lat + "," + long print(local) if(len(local) > 3): location = geolocator.reverse(local) locStr = str(location) print(locStr) splitted = locStr.split(',') country = splitted[len(splitted) - 1] print(country) print("==============país==============") return country else: return "" location(Latitude, Longitude) # Display
from geopy.geocoders import Nominatim from requests.models import LocationParseError geolocator = Nominatim(user_agent="geoapiExercises") Latitude = 25.594095 Longitude = 85.137566 def location(Latitude, Longitude): lat = str(Latitude) long = str(Longitude) print(lat + long) local = lat + "," + long print(local) if(len(local) > 3): location = geolocator.reverse(local) locStr = str(location) print(locStr) splitted = locStr.split(',') country = splitted[len(splitted) - 1] print(country) print("==============país==============") return country else: return "" location(Latitude, Longitude) # Display
none
1
3.111395
3
gamesystem.py
cristilianojr/JOKENPOH
1
9454
<reponame>cristilianojr/JOKENPOH import random from tkinter import PhotoImage """ Esse arquivo define os estados do game """ def ia_chocer(): """IA faz a escolha de um numero aleatório""" posibility = ['rock', 'paper', 'scissor'] value = posibility[random.randint(0, 2)] return value def battle_verification(player_choice, ia_choice): state_victoryorlose = '' if player_choice == 'rock': if ia_choice == 'rock': state_victoryorlose = 'draw' elif ia_choice == 'scissor': state_victoryorlose = 'victory' elif ia_choice == 'paper': state_victoryorlose = 'defeat' elif player_choice == 'scissor': if ia_choice == 'rock': state_victoryorlose = 'defeat' elif ia_choice == 'scissor': state_victoryorlose = 'draw' elif ia_choice == 'paper': state_victoryorlose = 'victory' elif player_choice == 'paper': if ia_choice == 'rock': state_victoryorlose = 'victory' elif ia_choice == 'scissor': state_victoryorlose = 'defeat' elif ia_choice == 'paper': state_victoryorlose = 'draw' return state_victoryorlose
import random from tkinter import PhotoImage """ Esse arquivo define os estados do game """ def ia_chocer(): """IA faz a escolha de um numero aleatório""" posibility = ['rock', 'paper', 'scissor'] value = posibility[random.randint(0, 2)] return value def battle_verification(player_choice, ia_choice): state_victoryorlose = '' if player_choice == 'rock': if ia_choice == 'rock': state_victoryorlose = 'draw' elif ia_choice == 'scissor': state_victoryorlose = 'victory' elif ia_choice == 'paper': state_victoryorlose = 'defeat' elif player_choice == 'scissor': if ia_choice == 'rock': state_victoryorlose = 'defeat' elif ia_choice == 'scissor': state_victoryorlose = 'draw' elif ia_choice == 'paper': state_victoryorlose = 'victory' elif player_choice == 'paper': if ia_choice == 'rock': state_victoryorlose = 'victory' elif ia_choice == 'scissor': state_victoryorlose = 'defeat' elif ia_choice == 'paper': state_victoryorlose = 'draw' return state_victoryorlose
pt
0.994861
Esse arquivo define os estados do game IA faz a escolha de um numero aleatório
3.385682
3
train/filelocks.py
mister-bailey/MagNET
0
9455
from filelock import FileLock, Timeout import os import time class ProcessFileLock(FileLock): """ FileLock that is unique per path in each process (for, eg., reentrance) """ locks = {} def __new__(cls, path, *args, **kwargs): if path in ProcessFileLock.locks: return ProcessFileLock.locks[path] else: lock = super().__new__(cls, path, *args, **kwargs) lock.__new_init__(path, *args, **kwargs) ProcessFileLock.locks[path] = lock return lock def __new_init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __init__(self, *args, **kwargs): pass class ExplosiveFileLock(ProcessFileLock): def acquire(self, *args, **kwargs): r = super().acquire(*args, **kwargs) if self._lock_counter > 1: raise BlockingIOError(f"Process attempted to reacquire lock for {self._lock_file}") return r class HistoriesLock(FileLock): def __init__(self, dir, ensemble=None): super().__init__(os.path.join(dir, "histories.lock")) self.ensemble = ensemble def release(self, **kwargs): super().release() if self.ensemble and self._lock_counter == 0: self.ensemble.close_histories() class SamplesLock(FileLock): def __init__(self, dir, ensemble=None): super().__init__(os.path.join(dir, "samples.lock")) self.ensemble = ensemble def release(self, **kwargs): if self.ensemble and self._lock_counter == 1: self.ensemble._test_samples.close() self.ensemble._test_samples = None super().release() def __enter__(self): print("Acquiring samples lock... ", end='') super().__enter__() if self.ensemble._test_samples is None: from sample_hyperparameters import TrainableSampleGenerator self.ensemble._test_samples = TrainableSampleGenerator(self.ensemble.config.exploration.sample_file, configs=self.ensemble.config_files, stub=self.ensemble.stub) print("Done.") return self.ensemble._test_samples class ExistLock: """ Locks on the existence of the given file. No guarantees of atomicity! Unique per process, for reentry """ locks={} def __new__(cls, path, *args, **kwargs): if path in ExistLock.locks: lock = ExistLock.locks[path] #print(f"Reloading ExistLock('{path}')") #print(f" Lock counter = {lock._lock_counter}") return lock else: #print(f"Creating new ExistLock('{path}')") lock = super().__new__(cls) lock.__new_init__(path, *args, **kwargs) ExistLock.locks[path] = lock return lock def __new_init__(self, path, block=True, timeout=None, polling_interval=.05): self.path = path if not block: timeout == 0.0 else: self.timeout=timeout self.polling_interval=polling_interval self._lock_counter = 0 def acquire(self, block=None, timeout=None): """ Not atomic. Should probably happen within the context of an atomic lock. """ if block == False: timeout = 0.0 if timeout is None: timeout = self.timeout #print(f"Trying to acquire ExistLock('{self.path}')...") #print(f" Lock counter = {self._lock_counter}") start_time = time.time() while os.path.isfile(self.path): if self._lock_counter > 0: self._lock_counter += 1 #print(f"Acquired, lock counter = {self._lock_counter}") return True if timeout is None or time.time() - start_time < timeout: time.sleep(self.polling_interval) else: return False with open(self.path, 'w'): self._lock_counter = 1 #print(f"Acquired, lock counter = {self._lock_counter}") return True def release(self): self._lock_counter = min(0, self._lock_counter - 1) if self._lock_counter == 0 and os.path.isfile(self.path): os.remove(self.path) def __enter__(self): if self.acquire(): return self else: raise Timeout(f"Failed to acquire ExistLock for file {self.path}") def __exit__(self, type, value, traceback): self.release()
from filelock import FileLock, Timeout import os import time class ProcessFileLock(FileLock): """ FileLock that is unique per path in each process (for, eg., reentrance) """ locks = {} def __new__(cls, path, *args, **kwargs): if path in ProcessFileLock.locks: return ProcessFileLock.locks[path] else: lock = super().__new__(cls, path, *args, **kwargs) lock.__new_init__(path, *args, **kwargs) ProcessFileLock.locks[path] = lock return lock def __new_init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __init__(self, *args, **kwargs): pass class ExplosiveFileLock(ProcessFileLock): def acquire(self, *args, **kwargs): r = super().acquire(*args, **kwargs) if self._lock_counter > 1: raise BlockingIOError(f"Process attempted to reacquire lock for {self._lock_file}") return r class HistoriesLock(FileLock): def __init__(self, dir, ensemble=None): super().__init__(os.path.join(dir, "histories.lock")) self.ensemble = ensemble def release(self, **kwargs): super().release() if self.ensemble and self._lock_counter == 0: self.ensemble.close_histories() class SamplesLock(FileLock): def __init__(self, dir, ensemble=None): super().__init__(os.path.join(dir, "samples.lock")) self.ensemble = ensemble def release(self, **kwargs): if self.ensemble and self._lock_counter == 1: self.ensemble._test_samples.close() self.ensemble._test_samples = None super().release() def __enter__(self): print("Acquiring samples lock... ", end='') super().__enter__() if self.ensemble._test_samples is None: from sample_hyperparameters import TrainableSampleGenerator self.ensemble._test_samples = TrainableSampleGenerator(self.ensemble.config.exploration.sample_file, configs=self.ensemble.config_files, stub=self.ensemble.stub) print("Done.") return self.ensemble._test_samples class ExistLock: """ Locks on the existence of the given file. No guarantees of atomicity! Unique per process, for reentry """ locks={} def __new__(cls, path, *args, **kwargs): if path in ExistLock.locks: lock = ExistLock.locks[path] #print(f"Reloading ExistLock('{path}')") #print(f" Lock counter = {lock._lock_counter}") return lock else: #print(f"Creating new ExistLock('{path}')") lock = super().__new__(cls) lock.__new_init__(path, *args, **kwargs) ExistLock.locks[path] = lock return lock def __new_init__(self, path, block=True, timeout=None, polling_interval=.05): self.path = path if not block: timeout == 0.0 else: self.timeout=timeout self.polling_interval=polling_interval self._lock_counter = 0 def acquire(self, block=None, timeout=None): """ Not atomic. Should probably happen within the context of an atomic lock. """ if block == False: timeout = 0.0 if timeout is None: timeout = self.timeout #print(f"Trying to acquire ExistLock('{self.path}')...") #print(f" Lock counter = {self._lock_counter}") start_time = time.time() while os.path.isfile(self.path): if self._lock_counter > 0: self._lock_counter += 1 #print(f"Acquired, lock counter = {self._lock_counter}") return True if timeout is None or time.time() - start_time < timeout: time.sleep(self.polling_interval) else: return False with open(self.path, 'w'): self._lock_counter = 1 #print(f"Acquired, lock counter = {self._lock_counter}") return True def release(self): self._lock_counter = min(0, self._lock_counter - 1) if self._lock_counter == 0 and os.path.isfile(self.path): os.remove(self.path) def __enter__(self): if self.acquire(): return self else: raise Timeout(f"Failed to acquire ExistLock for file {self.path}") def __exit__(self, type, value, traceback): self.release()
en
0.654314
FileLock that is unique per path in each process (for, eg., reentrance) Locks on the existence of the given file. No guarantees of atomicity! Unique per process, for reentry #print(f"Reloading ExistLock('{path}')") #print(f" Lock counter = {lock._lock_counter}") #print(f"Creating new ExistLock('{path}')") Not atomic. Should probably happen within the context of an atomic lock. #print(f"Trying to acquire ExistLock('{self.path}')...") #print(f" Lock counter = {self._lock_counter}") #print(f"Acquired, lock counter = {self._lock_counter}") #print(f"Acquired, lock counter = {self._lock_counter}")
3.000469
3
python/testData/quickFixes/PyRenameElementQuickFixTest/renameAwaitClassInPy36_after.py
jnthn/intellij-community
2
9456
class A_NEW_NAME(object): pass
class A_NEW_NAME(object): pass
none
1
1.257428
1
speedcom/tests/__init__.py
emissible/emissilbe
1
9457
<reponame>emissible/emissilbe #from . import context #from . import test_NNModels #from . import test_data_extract #from . import test_speedcom #from . import test_utilities
#from . import context #from . import test_NNModels #from . import test_data_extract #from . import test_speedcom #from . import test_utilities
en
0.178629
#from . import context #from . import test_NNModels #from . import test_data_extract #from . import test_speedcom #from . import test_utilities
1.022959
1
todo/management/serializers/tasks.py
Sanguet/todo-challenge
0
9458
# Django REST Framework from rest_framework import serializers # Model from todo.management.models import Task # Utils from todo.utils.tasks import TaskMetrics from todo.utils.serializer_fields import CompleteNameUser class TaskModelSerializer(serializers.ModelSerializer): """Modelo serializer del circulo""" user = CompleteNameUser(many=False) class Meta: """Meta class""" model = Task fields = ( 'id', 'user', 'title', 'date_to_finish', 'is_finalize', 'description', 'created', 'priority', 'color' ) read_only_fields = ( 'id', 'user', 'created', ) def create(self, data): """Creacion de la tarea""" # Sacamos los datos que ya tenemos en el context user = self.context['request'].user data['is_finalize'] = False # Creamos la tarea task = Task.objects.create( user=user, **data ) # Puntos al perfil TaskMetrics(action='Create', user=user) return task def update(self, instance, data): """Actualizacion de la tarea""" # Extraemos el user del contexto y mandamos la funcion update user = self.context['request'].user new_is_finalize = data.get('is_finalize', instance.is_finalize) if new_is_finalize != instance.is_finalize: TaskMetrics(action='Update', user=user, is_finalize=new_is_finalize) # Actualizamos los datos normales super(TaskModelSerializer, self).update(instance, data) return instance
# Django REST Framework from rest_framework import serializers # Model from todo.management.models import Task # Utils from todo.utils.tasks import TaskMetrics from todo.utils.serializer_fields import CompleteNameUser class TaskModelSerializer(serializers.ModelSerializer): """Modelo serializer del circulo""" user = CompleteNameUser(many=False) class Meta: """Meta class""" model = Task fields = ( 'id', 'user', 'title', 'date_to_finish', 'is_finalize', 'description', 'created', 'priority', 'color' ) read_only_fields = ( 'id', 'user', 'created', ) def create(self, data): """Creacion de la tarea""" # Sacamos los datos que ya tenemos en el context user = self.context['request'].user data['is_finalize'] = False # Creamos la tarea task = Task.objects.create( user=user, **data ) # Puntos al perfil TaskMetrics(action='Create', user=user) return task def update(self, instance, data): """Actualizacion de la tarea""" # Extraemos el user del contexto y mandamos la funcion update user = self.context['request'].user new_is_finalize = data.get('is_finalize', instance.is_finalize) if new_is_finalize != instance.is_finalize: TaskMetrics(action='Update', user=user, is_finalize=new_is_finalize) # Actualizamos los datos normales super(TaskModelSerializer, self).update(instance, data) return instance
es
0.836195
# Django REST Framework # Model # Utils Modelo serializer del circulo Meta class Creacion de la tarea # Sacamos los datos que ya tenemos en el context # Creamos la tarea # Puntos al perfil Actualizacion de la tarea # Extraemos el user del contexto y mandamos la funcion update # Actualizamos los datos normales
2.237841
2
outlier_detector.py
Sean-Ker/data_homework
0
9459
<gh_stars>0 import numpy as np import pandas as pd from sklearn.decomposition import PCA ''' A function that detects outliers, where k is a tandard deviation threshold hyperparameter preferablly (2, 2.5, 3). The algo could handle multivariable data frames with any number of features d. For that manner, it first reduces the dimensionality to 2 using PCA, makes sure that the matrix is positive definite and calculates the Mahalanobis Distance with a threshold value. Returns a series of n rows back. ''' def outlier_detector(data, k=2.5): # Calculate Principal Component Analysis pca = PCA(n_components=data.shape[1], svd_solver='full') df = pd.DataFrame(pca.fit_transform( data), index=data.index, columns=data.columns) # Calculate covariance and its inverse matrices cov_matrix = np.cov(df.values, rowvar=False) inv_cov = np.linalg.inv(cov_matrix) mean = df.values.mean(axis=0) # Check matrices are positive definite: https://en.wikipedia.org/wiki/Definiteness_of_a_matrix assert is_pos_def(cov_matrix) and is_pos_def(inv_cov) # Calculate Mahalanobis Distance https://en.wikipedia.org/wiki/Mahalanobis_distance md = mahalanobis_dist(inv_cov, mean, df.values, verbose=False) threshold = np.mean(md) * k # res = pd.DataFrame(index=data.index,columns=data.columns) return data[md > threshold] # https://www.youtube.com/watch?v=spNpfmWZBmg&t=0s def mahalanobis_dist(inv_cov_matrix, mean_distr, data, verbose=False): diff = data - mean_distr md = [] for i in range(len(diff)): md.append(np.sqrt(diff[i].dot(inv_cov_matrix).dot(diff[i]))) return np.array(md) # Check that matrix is positive definite def is_pos_def(A): if np.allclose(A, A.T): try: np.linalg.cholesky(A) return True except np.linalg.LinAlgError: return False else: return False
import numpy as np import pandas as pd from sklearn.decomposition import PCA ''' A function that detects outliers, where k is a tandard deviation threshold hyperparameter preferablly (2, 2.5, 3). The algo could handle multivariable data frames with any number of features d. For that manner, it first reduces the dimensionality to 2 using PCA, makes sure that the matrix is positive definite and calculates the Mahalanobis Distance with a threshold value. Returns a series of n rows back. ''' def outlier_detector(data, k=2.5): # Calculate Principal Component Analysis pca = PCA(n_components=data.shape[1], svd_solver='full') df = pd.DataFrame(pca.fit_transform( data), index=data.index, columns=data.columns) # Calculate covariance and its inverse matrices cov_matrix = np.cov(df.values, rowvar=False) inv_cov = np.linalg.inv(cov_matrix) mean = df.values.mean(axis=0) # Check matrices are positive definite: https://en.wikipedia.org/wiki/Definiteness_of_a_matrix assert is_pos_def(cov_matrix) and is_pos_def(inv_cov) # Calculate Mahalanobis Distance https://en.wikipedia.org/wiki/Mahalanobis_distance md = mahalanobis_dist(inv_cov, mean, df.values, verbose=False) threshold = np.mean(md) * k # res = pd.DataFrame(index=data.index,columns=data.columns) return data[md > threshold] # https://www.youtube.com/watch?v=spNpfmWZBmg&t=0s def mahalanobis_dist(inv_cov_matrix, mean_distr, data, verbose=False): diff = data - mean_distr md = [] for i in range(len(diff)): md.append(np.sqrt(diff[i].dot(inv_cov_matrix).dot(diff[i]))) return np.array(md) # Check that matrix is positive definite def is_pos_def(A): if np.allclose(A, A.T): try: np.linalg.cholesky(A) return True except np.linalg.LinAlgError: return False else: return False
en
0.732611
A function that detects outliers, where k is a tandard deviation threshold hyperparameter preferablly (2, 2.5, 3). The algo could handle multivariable data frames with any number of features d. For that manner, it first reduces the dimensionality to 2 using PCA, makes sure that the matrix is positive definite and calculates the Mahalanobis Distance with a threshold value. Returns a series of n rows back. # Calculate Principal Component Analysis # Calculate covariance and its inverse matrices # Check matrices are positive definite: https://en.wikipedia.org/wiki/Definiteness_of_a_matrix # Calculate Mahalanobis Distance https://en.wikipedia.org/wiki/Mahalanobis_distance # res = pd.DataFrame(index=data.index,columns=data.columns) # https://www.youtube.com/watch?v=spNpfmWZBmg&t=0s # Check that matrix is positive definite
3.749184
4
arc113/b.py
nishio/atcoder
1
9460
<filename>arc113/b.py # included from snippets/main.py def debug(*x, msg=""): import sys print(msg, *x, file=sys.stderr) def solve(SOLVE_PARAMS): pass def main(): A, B, C = map(int, input().split()) doubling = [B % 20] for i in range(32): doubling.append( (doubling[-1] ** 2) % 20 ) BC = 1 for i in range(32): if C % 2: BC *= doubling[i] BC %= 20 C //= 2 if BC == 0: BC = 20 ret = (A % 10) ** BC ret %= 10 print(ret) # tests T1 = """ 4 3 2 """ TEST_T1 = """ >>> as_input(T1) >>> main() 4 """ T2 = """ 1 2 3 """ TEST_T2 = """ >>> as_input(T2) >>> main() 1 """ T3 = """ 3141592 6535897 9323846 """ TEST_T3 = """ >>> as_input(T3) >>> main() 2 """ T4 = """ 2 10 1 """ TEST_T4 = """ >>> as_input(T4) >>> main() 4 """ T5 = """ 2 20 1 """ TEST_T5 = """ >>> as_input(T5) >>> main() 6 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): print(k) doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") if __name__ == "__main__": import sys input = sys.stdin.buffer.readline read = sys.stdin.buffer.read sys.setrecursionlimit(10 ** 6) if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main() sys.exit() # end of snippets/main.py
<filename>arc113/b.py # included from snippets/main.py def debug(*x, msg=""): import sys print(msg, *x, file=sys.stderr) def solve(SOLVE_PARAMS): pass def main(): A, B, C = map(int, input().split()) doubling = [B % 20] for i in range(32): doubling.append( (doubling[-1] ** 2) % 20 ) BC = 1 for i in range(32): if C % 2: BC *= doubling[i] BC %= 20 C //= 2 if BC == 0: BC = 20 ret = (A % 10) ** BC ret %= 10 print(ret) # tests T1 = """ 4 3 2 """ TEST_T1 = """ >>> as_input(T1) >>> main() 4 """ T2 = """ 1 2 3 """ TEST_T2 = """ >>> as_input(T2) >>> main() 1 """ T3 = """ 3141592 6535897 9323846 """ TEST_T3 = """ >>> as_input(T3) >>> main() 2 """ T4 = """ 2 10 1 """ TEST_T4 = """ >>> as_input(T4) >>> main() 4 """ T5 = """ 2 20 1 """ TEST_T5 = """ >>> as_input(T5) >>> main() 6 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): print(k) doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") if __name__ == "__main__": import sys input = sys.stdin.buffer.readline read = sys.stdin.buffer.read sys.setrecursionlimit(10 ** 6) if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main() sys.exit() # end of snippets/main.py
en
0.466126
# included from snippets/main.py # tests 4 3 2 >>> as_input(T1) >>> main() 4 1 2 3 >>> as_input(T2) >>> main() 1 3141592 6535897 9323846 >>> as_input(T3) >>> main() 2 2 10 1 >>> as_input(T4) >>> main() 4 2 20 1 >>> as_input(T5) >>> main() 6 # end of snippets/main.py
3.062367
3
pythonG/objects.py
ezan2000/Cssi_2018
0
9461
ezan = { 'name': 'ezan', 'age': 18, 'hair': 'brown', 'cool': True , } print(ezan) class Person(object): #use class to make object def __init__( self, name, age ,hair, color, hungry) : #initialize #first object inside of a class is self self.name = 'ezan' self.age = 18 self.hair = 'brown' self.cool = True def eat(self,food): print("EAT {f}".format(f = food)) self.hungry = food def play(self, game): print("Play {p}".format(p = game)) self.play = game def birth(self,person): kids = Person(name = " lail", age = 18, hair = 'black', color = 'blue', hungry = True) ezan = Person( name = "ezan", age = 18, hair = "black", cool = True, hungry = False) print(ezan.name) print('I am hungry') Austin = Person(name = 'austin', age = 18, hair = "Shrek", cool = False, hungry = True)
ezan = { 'name': 'ezan', 'age': 18, 'hair': 'brown', 'cool': True , } print(ezan) class Person(object): #use class to make object def __init__( self, name, age ,hair, color, hungry) : #initialize #first object inside of a class is self self.name = 'ezan' self.age = 18 self.hair = 'brown' self.cool = True def eat(self,food): print("EAT {f}".format(f = food)) self.hungry = food def play(self, game): print("Play {p}".format(p = game)) self.play = game def birth(self,person): kids = Person(name = " lail", age = 18, hair = 'black', color = 'blue', hungry = True) ezan = Person( name = "ezan", age = 18, hair = "black", cool = True, hungry = False) print(ezan.name) print('I am hungry') Austin = Person(name = 'austin', age = 18, hair = "Shrek", cool = False, hungry = True)
en
0.598228
#use class to make object #initialize #first object inside of a class is self
4.119486
4
62/main.py
pauvrepetit/leetcode
0
9462
<gh_stars>0 # 62. 不同路径 # 组合数,杨辉三角 yanghui = [[0 for i in range(202)] for j in range(202)] def comb(n, k): if yanghui[n][k] == 0: yanghui[n][k] = (comb(n-1, k-1) + comb(n-1, k)) return yanghui[n][k] class Solution: def uniquePaths(self, m: int, n: int) -> int: for i in range(202): yanghui[i][0] = 1 yanghui[i][i] = 1 return comb(m+n-2, min(m, n)-1)
# 62. 不同路径 # 组合数,杨辉三角 yanghui = [[0 for i in range(202)] for j in range(202)] def comb(n, k): if yanghui[n][k] == 0: yanghui[n][k] = (comb(n-1, k-1) + comb(n-1, k)) return yanghui[n][k] class Solution: def uniquePaths(self, m: int, n: int) -> int: for i in range(202): yanghui[i][0] = 1 yanghui[i][i] = 1 return comb(m+n-2, min(m, n)-1)
zh
0.950997
# 62. 不同路径 # 组合数,杨辉三角
3.265578
3
GermanOK/run.py
romainledru/GermanOK
0
9463
<filename>GermanOK/run.py from Pages import * app = App() app.mainloop()
<filename>GermanOK/run.py from Pages import * app = App() app.mainloop()
none
1
1.258839
1
cauldron/cli/server/routes/ui_statuses.py
JohnnyPeng18/cauldron
90
9464
<filename>cauldron/cli/server/routes/ui_statuses.py import flask from cauldron.cli.server import run as server_runner from cauldron.ui import arguments from cauldron.ui import statuses @server_runner.APPLICATION.route('/ui-status', methods=['POST']) def ui_status(): args = arguments.from_request() last_timestamp = args.get('last_timestamp', 0) force = args.get('force', False) results = statuses.get_status(last_timestamp, force) return flask.jsonify(results)
<filename>cauldron/cli/server/routes/ui_statuses.py import flask from cauldron.cli.server import run as server_runner from cauldron.ui import arguments from cauldron.ui import statuses @server_runner.APPLICATION.route('/ui-status', methods=['POST']) def ui_status(): args = arguments.from_request() last_timestamp = args.get('last_timestamp', 0) force = args.get('force', False) results = statuses.get_status(last_timestamp, force) return flask.jsonify(results)
none
1
1.975831
2
google_search.py
Jaram2019/minwoo
0
9465
<filename>google_search.py import requests from bs4 import BeautifulSoup import re rq = requests.get("https://play.google.com/store/apps/category/GAME_MUSIC?hl=ko") rqctnt = rq.content soup = BeautifulSoup(rqctnt,"html.parser") soup = soup.find_all(attrs={'class':'title'}) blacklsit = ["앱","영화/TV","음악","도서","기기","엔터테인먼트","음악"] for link in soup: if link.text.strip() in blacklsit: pass else: print(link.text.strip())
<filename>google_search.py import requests from bs4 import BeautifulSoup import re rq = requests.get("https://play.google.com/store/apps/category/GAME_MUSIC?hl=ko") rqctnt = rq.content soup = BeautifulSoup(rqctnt,"html.parser") soup = soup.find_all(attrs={'class':'title'}) blacklsit = ["앱","영화/TV","음악","도서","기기","엔터테인먼트","음악"] for link in soup: if link.text.strip() in blacklsit: pass else: print(link.text.strip())
none
1
3.016088
3
pygall/tests/test_photos.py
bbinet/PyGall
1
9466
<filename>pygall/tests/test_photos.py from unittest import TestCase from pyramid import testing class PhotosTests(TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): testing.tearDown()
<filename>pygall/tests/test_photos.py from unittest import TestCase from pyramid import testing class PhotosTests(TestCase): def setUp(self): self.config = testing.setUp() def tearDown(self): testing.tearDown()
none
1
1.800436
2
Chapter_4/lists_data_type.py
alenasf/AutomateTheBoringStuff
0
9467
#Negative Indexes spam = ['cat', 'bat', 'rat', 'elephant'] spam[-1] # elepant spam[-3] # bat # Getting a List from another List with Slices spam = ['cat', 'bat', 'rat', 'elephant'] spam[0:4] # ['cat', 'bat', 'rat', 'elephant'] spam[1:3] # ['bat', 'rat'] spam[0:-1] # ['cat', 'bat', 'rat'] spam[:2] # ['cat', 'bat'] spam[1:] # ['bat', 'rat', 'elephant'] spam[:] # ['cat', 'bat', 'rat', 'elephant'] # Getting a List's length with the len() Function spam = ['cat', 'dog', 'moose'] len(spam) # 3 # Changing Values in a List with Indexes spam = ['cat', 'bat', 'rat', 'elephant'] spam[1] = 'aardvark' spam # ['cat', 'aardvark', 'rat', 'elephant'] spam[2]=spam[1] spam # ['cat', 'aardvark', 'aardvark', 'elephant'] spam[-1] = 12345 spam # ['cat', 'aardvark', 'aardvark', 12345] # List Concatenation and List Replication [1, 2, 3] + ['A', 'B', 'C'] # [1, 2, 3, 'A', 'B', 'C'] ['X', 'Y', 'Z'] * 3 #['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z'] spam = [1, 2, 3] spam = spam + ['A', 'B', 'C'] # [1, 2, 3, 'A', 'B', 'C'] # Removing Values From Lists with del Statements spam = ['cat', 'bat', 'rat', 'elephant'] del spam[2] spam # ['cat', 'bat', 'elephant'] del spam[2] spam # ['cat', 'bat'] # Using for Loops with Lists for i in range(4): print(i) supplies = ['pens', 'staplers', 'flamethrowers', 'binders'] for i in range(len(supplies)): print('Index ' + str(i) + ' in supplies is: ' + supplies[i]) # The in and not in Operators 'howdy' in ['hello', 'hi', 'howdy', 'heyas'] # True spam = ['hello', 'hi', 'howdy', 'heyas'] 'cat' in spam # False 'howdy' not in spam # False # Type in a pet name and then check wether the name is in a list of pets myPets = ['Zophie', 'Pooka', 'Fat-tail'] print('Enter a pet name:') name = input() if name not in myPets: print('I do not have a pet named ' + name) else: print(name + ' is my pet.') # The Multiple Assignment Trick cat = ['fat', 'gray', 'loud'] size = cat[0] color = cat[1] disposition = cat[2] # type this line cat = ['fat', 'gray', 'loud'] size, color, disposition = cat # Using the enumerate() Function with Lists # enumerate() Function is useful when you need both the item and item's index in loop's block supplies = ['pens', 'staplers', 'flamethrowers', 'binders'] for index, item in enumerate(supplies): print('Index ' + str(index) + ' in supplies is: ' + item) # Using the random.choice() and random.shuffle() Function with Lists import random pets = ['Dog', 'Cat', 'Moose'] random.choice(pets) random.choice(pets) random.choice(pets) # random.choice(someList) to be a shorter form of someList[random.randint(0, len(someList)-1)] import random people = ['Alice', 'Bob', 'Carol', 'David'] random.shuffle(people) people # ['Bob', 'Carol', 'David', 'Alice'] random.shuffle(people) people # random list of people #Augmented Assignment Operators spam += 1 # spam = spam + 1 spam -= 1 # spam = spam - 1 spam *= 1 # spam = spam * 1 spam /= 1 #spam = spam / 1 spam %= 1 #spam = spam % 1
#Negative Indexes spam = ['cat', 'bat', 'rat', 'elephant'] spam[-1] # elepant spam[-3] # bat # Getting a List from another List with Slices spam = ['cat', 'bat', 'rat', 'elephant'] spam[0:4] # ['cat', 'bat', 'rat', 'elephant'] spam[1:3] # ['bat', 'rat'] spam[0:-1] # ['cat', 'bat', 'rat'] spam[:2] # ['cat', 'bat'] spam[1:] # ['bat', 'rat', 'elephant'] spam[:] # ['cat', 'bat', 'rat', 'elephant'] # Getting a List's length with the len() Function spam = ['cat', 'dog', 'moose'] len(spam) # 3 # Changing Values in a List with Indexes spam = ['cat', 'bat', 'rat', 'elephant'] spam[1] = 'aardvark' spam # ['cat', 'aardvark', 'rat', 'elephant'] spam[2]=spam[1] spam # ['cat', 'aardvark', 'aardvark', 'elephant'] spam[-1] = 12345 spam # ['cat', 'aardvark', 'aardvark', 12345] # List Concatenation and List Replication [1, 2, 3] + ['A', 'B', 'C'] # [1, 2, 3, 'A', 'B', 'C'] ['X', 'Y', 'Z'] * 3 #['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z'] spam = [1, 2, 3] spam = spam + ['A', 'B', 'C'] # [1, 2, 3, 'A', 'B', 'C'] # Removing Values From Lists with del Statements spam = ['cat', 'bat', 'rat', 'elephant'] del spam[2] spam # ['cat', 'bat', 'elephant'] del spam[2] spam # ['cat', 'bat'] # Using for Loops with Lists for i in range(4): print(i) supplies = ['pens', 'staplers', 'flamethrowers', 'binders'] for i in range(len(supplies)): print('Index ' + str(i) + ' in supplies is: ' + supplies[i]) # The in and not in Operators 'howdy' in ['hello', 'hi', 'howdy', 'heyas'] # True spam = ['hello', 'hi', 'howdy', 'heyas'] 'cat' in spam # False 'howdy' not in spam # False # Type in a pet name and then check wether the name is in a list of pets myPets = ['Zophie', 'Pooka', 'Fat-tail'] print('Enter a pet name:') name = input() if name not in myPets: print('I do not have a pet named ' + name) else: print(name + ' is my pet.') # The Multiple Assignment Trick cat = ['fat', 'gray', 'loud'] size = cat[0] color = cat[1] disposition = cat[2] # type this line cat = ['fat', 'gray', 'loud'] size, color, disposition = cat # Using the enumerate() Function with Lists # enumerate() Function is useful when you need both the item and item's index in loop's block supplies = ['pens', 'staplers', 'flamethrowers', 'binders'] for index, item in enumerate(supplies): print('Index ' + str(index) + ' in supplies is: ' + item) # Using the random.choice() and random.shuffle() Function with Lists import random pets = ['Dog', 'Cat', 'Moose'] random.choice(pets) random.choice(pets) random.choice(pets) # random.choice(someList) to be a shorter form of someList[random.randint(0, len(someList)-1)] import random people = ['Alice', 'Bob', 'Carol', 'David'] random.shuffle(people) people # ['Bob', 'Carol', 'David', 'Alice'] random.shuffle(people) people # random list of people #Augmented Assignment Operators spam += 1 # spam = spam + 1 spam -= 1 # spam = spam - 1 spam *= 1 # spam = spam * 1 spam /= 1 #spam = spam / 1 spam %= 1 #spam = spam % 1
en
0.598289
#Negative Indexes # elepant # bat # Getting a List from another List with Slices # ['cat', 'bat', 'rat', 'elephant'] # ['bat', 'rat'] # ['cat', 'bat', 'rat'] # ['cat', 'bat'] # ['bat', 'rat', 'elephant'] # ['cat', 'bat', 'rat', 'elephant'] # Getting a List's length with the len() Function # 3 # Changing Values in a List with Indexes # ['cat', 'aardvark', 'rat', 'elephant'] # ['cat', 'aardvark', 'aardvark', 'elephant'] # ['cat', 'aardvark', 'aardvark', 12345] # List Concatenation and List Replication # [1, 2, 3, 'A', 'B', 'C'] #['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z'] # [1, 2, 3, 'A', 'B', 'C'] # Removing Values From Lists with del Statements # ['cat', 'bat', 'elephant'] # ['cat', 'bat'] # Using for Loops with Lists # The in and not in Operators # True # False # False # Type in a pet name and then check wether the name is in a list of pets # The Multiple Assignment Trick # type this line # Using the enumerate() Function with Lists # enumerate() Function is useful when you need both the item and item's index in loop's block # Using the random.choice() and random.shuffle() Function with Lists # random.choice(someList) to be a shorter form of someList[random.randint(0, len(someList)-1)] # ['Bob', 'Carol', 'David', 'Alice'] # random list of people #Augmented Assignment Operators # spam = spam + 1 # spam = spam - 1 # spam = spam * 1 #spam = spam / 1 #spam = spam % 1
3.747716
4
WebVisualizations/data.py
chuhaovince/Web-Design-Challenge
0
9468
import pandas as pd path = "Resources/cities.csv" data = pd.read_csv(path) data_html = data.to_html("data.html", bold_rows = True)
import pandas as pd path = "Resources/cities.csv" data = pd.read_csv(path) data_html = data.to_html("data.html", bold_rows = True)
none
1
2.609541
3
qemu/scripts/codeconverter/codeconverter/test_patching.py
hyunjoy/scripts
44
9469
# Copyright (C) 2020 Red Hat Inc. # # Authors: # <NAME> <<EMAIL>> # # This work is licensed under the terms of the GNU GPL, version 2. See # the COPYING file in the top-level directory. from tempfile import NamedTemporaryFile from .patching import FileInfo, FileMatch, Patch, FileList from .regexps import * class BasicPattern(FileMatch): regexp = '[abc]{3}' @property def name(self): return self.group(0) def replacement(self) -> str: # replace match with the middle character repeated 5 times return self.group(0)[1].upper()*5 def test_pattern_patching(): of = NamedTemporaryFile('wt') of.writelines(['one line\n', 'this pattern will be patched: defbbahij\n', 'third line\n', 'another pattern: jihaabfed']) of.flush() files = FileList() f = FileInfo(files, of.name) f.load() matches = f.matches_of_type(BasicPattern) assert len(matches) == 2 p2 = matches[1] # manually add patch, to see if .append() works: f.patches.append(p2.append('XXX')) # apply all patches: f.gen_patches(matches) patched = f.get_patched_content() assert patched == ('one line\n'+ 'this pattern will be patched: defBBBBBhij\n'+ 'third line\n'+ 'another pattern: jihAAAAAXXXfed') class Function(FileMatch): regexp = S(r'BEGIN\s+', NAMED('name', RE_IDENTIFIER), r'\n', r'(.*\n)*?END\n') class Statement(FileMatch): regexp = S(r'^\s*', NAMED('name', RE_IDENTIFIER), r'\(\)\n') def test_container_match(): of = NamedTemporaryFile('wt') of.writelines(['statement1()\n', 'statement2()\n', 'BEGIN function1\n', ' statement3()\n', ' statement4()\n', 'END\n', 'BEGIN function2\n', ' statement5()\n', ' statement6()\n', 'END\n', 'statement7()\n']) of.flush() files = FileList() f = FileInfo(files, of.name) f.load() assert len(f.matches_of_type(Function)) == 2 print(' '.join(m.name for m in f.matches_of_type(Statement))) assert len(f.matches_of_type(Statement)) == 7 f1 = f.find_match(Function, 'function1') f2 = f.find_match(Function, 'function2') st1 = f.find_match(Statement, 'statement1') st2 = f.find_match(Statement, 'statement2') st3 = f.find_match(Statement, 'statement3') st4 = f.find_match(Statement, 'statement4') st5 = f.find_match(Statement, 'statement5') st6 = f.find_match(Statement, 'statement6') st7 = f.find_match(Statement, 'statement7') assert not f1.contains(st1) assert not f1.contains(st2) assert not f1.contains(st2) assert f1.contains(st3) assert f1.contains(st4) assert not f1.contains(st5) assert not f1.contains(st6) assert not f1.contains(st7) assert not f2.contains(st1) assert not f2.contains(st2) assert not f2.contains(st2) assert not f2.contains(st3) assert not f2.contains(st4) assert f2.contains(st5) assert f2.contains(st6) assert not f2.contains(st7)
# Copyright (C) 2020 Red Hat Inc. # # Authors: # <NAME> <<EMAIL>> # # This work is licensed under the terms of the GNU GPL, version 2. See # the COPYING file in the top-level directory. from tempfile import NamedTemporaryFile from .patching import FileInfo, FileMatch, Patch, FileList from .regexps import * class BasicPattern(FileMatch): regexp = '[abc]{3}' @property def name(self): return self.group(0) def replacement(self) -> str: # replace match with the middle character repeated 5 times return self.group(0)[1].upper()*5 def test_pattern_patching(): of = NamedTemporaryFile('wt') of.writelines(['one line\n', 'this pattern will be patched: defbbahij\n', 'third line\n', 'another pattern: jihaabfed']) of.flush() files = FileList() f = FileInfo(files, of.name) f.load() matches = f.matches_of_type(BasicPattern) assert len(matches) == 2 p2 = matches[1] # manually add patch, to see if .append() works: f.patches.append(p2.append('XXX')) # apply all patches: f.gen_patches(matches) patched = f.get_patched_content() assert patched == ('one line\n'+ 'this pattern will be patched: defBBBBBhij\n'+ 'third line\n'+ 'another pattern: jihAAAAAXXXfed') class Function(FileMatch): regexp = S(r'BEGIN\s+', NAMED('name', RE_IDENTIFIER), r'\n', r'(.*\n)*?END\n') class Statement(FileMatch): regexp = S(r'^\s*', NAMED('name', RE_IDENTIFIER), r'\(\)\n') def test_container_match(): of = NamedTemporaryFile('wt') of.writelines(['statement1()\n', 'statement2()\n', 'BEGIN function1\n', ' statement3()\n', ' statement4()\n', 'END\n', 'BEGIN function2\n', ' statement5()\n', ' statement6()\n', 'END\n', 'statement7()\n']) of.flush() files = FileList() f = FileInfo(files, of.name) f.load() assert len(f.matches_of_type(Function)) == 2 print(' '.join(m.name for m in f.matches_of_type(Statement))) assert len(f.matches_of_type(Statement)) == 7 f1 = f.find_match(Function, 'function1') f2 = f.find_match(Function, 'function2') st1 = f.find_match(Statement, 'statement1') st2 = f.find_match(Statement, 'statement2') st3 = f.find_match(Statement, 'statement3') st4 = f.find_match(Statement, 'statement4') st5 = f.find_match(Statement, 'statement5') st6 = f.find_match(Statement, 'statement6') st7 = f.find_match(Statement, 'statement7') assert not f1.contains(st1) assert not f1.contains(st2) assert not f1.contains(st2) assert f1.contains(st3) assert f1.contains(st4) assert not f1.contains(st5) assert not f1.contains(st6) assert not f1.contains(st7) assert not f2.contains(st1) assert not f2.contains(st2) assert not f2.contains(st2) assert not f2.contains(st3) assert not f2.contains(st4) assert f2.contains(st5) assert f2.contains(st6) assert not f2.contains(st7)
en
0.811475
# Copyright (C) 2020 Red Hat Inc. # # Authors: # <NAME> <<EMAIL>> # # This work is licensed under the terms of the GNU GPL, version 2. See # the COPYING file in the top-level directory. # replace match with the middle character repeated 5 times # manually add patch, to see if .append() works: # apply all patches:
2.523169
3
Traversy Media/Python Django Dev to Deployment/Python Fundamentals/Tuples and Sets.py
Anim-101/CourseHub
3
9470
# # Simple Tuple # fruits = ('Apple', 'Orange', 'Mango') # # Using Constructor # fruits = tuple(('Apple', 'Orange', 'Mango')) # # Getting a Single Value # print(fruits[1]) # Trying to change based on position # fruits[1] = 'Grape' # Tuples with one value should have trailing comma # fruits = ('Apple') # fruits = ('Apple',) # # Getting length of a tupel # print(len(fruits)) # ## Set fruits = {'Apple', 'Orange', 'Mango', 'Apple'} # Checking if in Set print('Apple' in fruits) # Add to Set fruits.add('Grape') # Removing from Set fruits.remove('Grape') # Clearing Set fruits.clear() # Delete set del fruits print(fruits)
# # Simple Tuple # fruits = ('Apple', 'Orange', 'Mango') # # Using Constructor # fruits = tuple(('Apple', 'Orange', 'Mango')) # # Getting a Single Value # print(fruits[1]) # Trying to change based on position # fruits[1] = 'Grape' # Tuples with one value should have trailing comma # fruits = ('Apple') # fruits = ('Apple',) # # Getting length of a tupel # print(len(fruits)) # ## Set fruits = {'Apple', 'Orange', 'Mango', 'Apple'} # Checking if in Set print('Apple' in fruits) # Add to Set fruits.add('Grape') # Removing from Set fruits.remove('Grape') # Clearing Set fruits.clear() # Delete set del fruits print(fruits)
en
0.695713
# # Simple Tuple # fruits = ('Apple', 'Orange', 'Mango') # # Using Constructor # fruits = tuple(('Apple', 'Orange', 'Mango')) # # Getting a Single Value # print(fruits[1]) # Trying to change based on position # fruits[1] = 'Grape' # Tuples with one value should have trailing comma # fruits = ('Apple') # fruits = ('Apple',) # # Getting length of a tupel # print(len(fruits)) # ## Set # Checking if in Set # Add to Set # Removing from Set # Clearing Set # Delete set
4.086753
4
nerblackbox/modules/ner_training/metrics/ner_metrics.py
flxst/nerblackbox
0
9471
<filename>nerblackbox/modules/ner_training/metrics/ner_metrics.py from dataclasses import dataclass from dataclasses import asdict from typing import List, Tuple, Callable import numpy as np from sklearn.metrics import accuracy_score as accuracy_sklearn from sklearn.metrics import precision_score as precision_sklearn from sklearn.metrics import recall_score as recall_sklearn from sklearn.metrics import precision_recall_fscore_support as prf_sklearn from sklearn.exceptions import UndefinedMetricWarning import warnings from seqeval.metrics import precision_score as precision_seqeval from seqeval.metrics import recall_score as recall_seqeval from seqeval.metrics import f1_score as f1_seqeval from seqeval.scheme import IOB2, BILOU from nerblackbox.modules.ner_training.annotation_tags.tags import Tags class NerMetrics: """ On the token level, the tags are evaluated in the given annotation scheme (e.g. plain, BIO) On the entity level, the tags are evaluated in the BIO scheme (after converting if needed) """ def __init__( self, true_flat, pred_flat, level, scheme, classes=None, class_index=None, verbose=False, ): """ :param true_flat: [np array] of shape [batch_size * seq_length] :param pred_flat: [np array] of shape [batch_size * seq_length] :param level: [str] 'token' or 'entity' :param scheme: [str] e.g. 'plain', 'bio' :param classes: [optional, list] of [str] labels to take into account for metrics -> if level = 'token' :param class_index: [optional, int] index to take into account for metrics -> if level = 'entity' :param verbose: [optional, bool] if True, show verbose output """ self.true_flat = true_flat # token -> plain. entity -> plain, bio, bilou self.pred_flat = pred_flat # token -> plain. entity -> plain, bio, bilou self.scheme = scheme # token -> plain. entity -> plain, bio, bilou self.classes = classes self.class_index = class_index self.level = level self.verbose = verbose if self.scheme == "bilou": self.scheme_entity = "bilou" self.scheme_entity_seqeval = BILOU else: # plain, bio self.scheme_entity = "bio" self.scheme_entity_seqeval = IOB2 self.results = Results() self.failure_value = -1 assert self.level in [ "token", "entity", ], f"ERROR! level = {self.level} unknown." if self.level == "entity": self.true_flat_bio: List[str] = Tags(self.true_flat,).convert_scheme( source_scheme=self.scheme, target_scheme=self.scheme_entity ) # entity -> bio, bilou self.pred_flat_bio: List[str] = Tags(self.pred_flat).convert_scheme( source_scheme=self.scheme, target_scheme=self.scheme_entity ) # entity -> bio, bilou # ASR self.pred_flat_bio_corrected: List[str] self.pred_flat_bio_corrected, self.results.asr_abidance = Tags( self.pred_flat_bio ).restore_annotation_scheme_consistency( scheme=self.scheme_entity ) # entity -> bio, bilou def results_as_dict(self): return asdict(self.results) def compute(self, _metrics): """ computes selected metrics ---------------------------------------------------------- :param _metrics: [list] of [str], e.g. ['acc, 'precision'] :return: - """ warnings.filterwarnings("error") if "acc" in _metrics: self.accuracy() if "precision" in _metrics or "recall" in _metrics or "f1" in _metrics: self._compute_well_defined_classes() if "precision" in _metrics or "f1" in _metrics: self.precision() if "recall" in _metrics or "f1" in _metrics: self.recall() if "f1" in _metrics: self.f1_score() if ( "asr_abidance" in _metrics or "asr_precision" in _metrics or "asr_recall" in _metrics or "asr_f1" in _metrics ): self.compute_asr_results() warnings.resetwarnings() def accuracy(self): """ computes accuracy of predictions (_np_logits) w.r.t. ground truth (_np_label_ids) --------------------------------------------------------------------------------- :return: acc [np float] """ self.results.acc = accuracy_sklearn( self.true_flat, self.pred_flat, normalize=True ) def precision(self): """ computes precision (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: precision_micro [np array] for all examples precision_macro [np array] for each class, then averaged """ if self.level == "token": self.results.precision_micro = self._token_evaluation( evaluation_function=precision_sklearn, average="micro" ) self.results.precision_macro = self._token_evaluation( evaluation_function=precision_sklearn, average="macro" ) elif self.level == "entity": self.results.precision_micro = self._entity_evaluation_micro( evaluation_function=precision_seqeval ) self.results.precision_macro = self._entity_evaluation_macro( evaluation_function=precision_seqeval, ) def recall(self): """ computes recall (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: recall_micro [np array] for all examples recall_macro [np array] for each class, then averaged """ if self.level == "token": self.results.recall_micro = self._token_evaluation( evaluation_function=recall_sklearn, average="micro" ) self.results.recall_macro = self._token_evaluation( evaluation_function=recall_sklearn, average="macro" ) elif self.level == "entity": self.results.recall_micro = self._entity_evaluation_micro( evaluation_function=recall_seqeval ) self.results.recall_macro = self._entity_evaluation_macro( evaluation_function=recall_seqeval ) def f1_score(self): """ computes f1 score (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: f1_score_micro [np array] for all examples f1_score_macro [np array] for each class, then averaged """ if self.level == "token": self.results.f1_micro = self._token_evaluation( evaluation_function=prf_sklearn, average="micro" ) self.results.f1_macro = self._token_evaluation( evaluation_function=prf_sklearn, average="macro" ) elif self.level == "entity": self.results.f1_micro, self.results.f1_macro = self._entity_evaluation_f1( evaluation_function=f1_seqeval, ) def compute_asr_results(self): """ computes - self.results.asr_precision_micro - self.results.asr_recall_micro - self.results.asr_f1_micro """ def _entity_evaluation_micro_asr(evaluation_function: Callable) -> float: """helper function""" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio_corrected], # corrected !!! average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value return metric self.results.asr_precision_micro = _entity_evaluation_micro_asr( evaluation_function=precision_seqeval ) self.results.asr_recall_micro = _entity_evaluation_micro_asr( evaluation_function=recall_seqeval ) self.results.asr_f1_micro = _entity_evaluation_micro_asr( evaluation_function=f1_seqeval ) def _token_evaluation(self, evaluation_function: Callable, average: str) -> float: """ compute precision/recall/f1 on token level Args: evaluation_function: precision_sklearn, recall_sklearn, prf_sklearn average: 'micro' or 'macro' Returns: metric: precision/recall on token level, 'micro' or 'macro' averaged """ assert evaluation_function in [ precision_sklearn, recall_sklearn, prf_sklearn, ], f"evaluation function = {evaluation_function} unknown / not allowed." assert average in ["micro", "macro"], f"average = {average} unknown." if self.classes is None or len(self.classes) > 1: # "all" / "fil" if evaluation_function != prf_sklearn: metric = evaluation_function( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division=0, ) else: _, _, metric, _ = prf_sklearn( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division=0, ) else: try: if evaluation_function != prf_sklearn: metric = evaluation_function( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division="warn", ) else: _, _, metric, _ = prf_sklearn( self.true_flat, self.pred_flat, labels=self.classes, average=average, warn_for=("precision", "recall", "f-score"), zero_division="warn", ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value return metric def _entity_evaluation_micro(self, evaluation_function: Callable) -> float: """ compute precision/recall micro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged """ assert evaluation_function in [ precision_seqeval, recall_seqeval, ], f"evaluation function = {evaluation_function} unknown / not allowed." if self.class_index is None: # "fil" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value else: # "ind" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division="warn", )[self.class_index] except UndefinedMetricWarning: try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division=0, )[self.class_index] except IndexError: metric = self.failure_value if metric == 0: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division=1, )[self.class_index] if metric == 1: metric = self.failure_value except IndexError: metric = self.failure_value return metric def _compute_well_defined_classes(self) -> None: """ Created Attributes: results.classindices_macro: list of indices of well-defined classes in terms of precision, recall, f1 results.numberofclasses_macro: number of well-defined classes in terms of precision, recall, f1 """ def _get_index_list( evaluation_function: Callable, true_array, pred_array, scheme_seqeval=None ): kwargs = ( {"mode": "strict", "scheme": scheme_seqeval} if scheme_seqeval is not None else {} ) try: metric_list = evaluation_function( true_array, pred_array, average=None, zero_division="warn", **kwargs, ) index_list = [i for i in range(len(metric_list))] except UndefinedMetricWarning: metric_list_all = evaluation_function( true_array, pred_array, average=None, zero_division=0, **kwargs, ) index_list = list() for index, metric_elem in enumerate(metric_list_all): if metric_elem != 0: index_list.append(index) else: metric_elem_alt = evaluation_function( true_array, pred_array, average=None, zero_division=1, **kwargs, )[index] if metric_elem_alt != 1: index_list.append(index) return index_list if self.level == "token": index_list_precision = _get_index_list( evaluation_function=precision_sklearn, true_array=self.true_flat, pred_array=self.pred_flat, ) index_list_recall = _get_index_list( evaluation_function=recall_sklearn, true_array=self.true_flat, pred_array=self.pred_flat, ) else: index_list_precision = _get_index_list( evaluation_function=precision_seqeval, true_array=[self.true_flat_bio], pred_array=[self.pred_flat_bio], scheme_seqeval=self.scheme_entity_seqeval, ) index_list_recall = _get_index_list( evaluation_function=recall_seqeval, true_array=[self.true_flat_bio], pred_array=[self.pred_flat_bio], scheme_seqeval=self.scheme_entity_seqeval, ) self.results.classindices_macro = tuple( [index for index in index_list_precision if index in index_list_recall] ) if self.level == "token": self.results.numberofclasses_macro = ( len(self.results.classindices_macro) - 1 ) # disregard "O" label else: self.results.numberofclasses_macro = len(self.results.classindices_macro) def _entity_evaluation_macro( self, evaluation_function: Callable, ) -> float: """ compute precision/recall macro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged on well-defined classes """ assert evaluation_function in [ precision_seqeval, recall_seqeval, ], f"evaluation function = {evaluation_function} unknown / not allowed." metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average="macro", zero_division=0, ) return metric def _entity_evaluation_f1( self, evaluation_function: Callable ) -> Tuple[float, float]: """ compute f1 micro or macro average on entity level Args: evaluation_function: f1_seqeval Returns: f1_micro: f1 on entity level, 'micro' averaged f1_macro: f1 on entity level, 'macro' averaged on well-defined classes """ assert evaluation_function in [ f1_seqeval ], f"evaluation function = {evaluation_function} unknown / not allowed." # ensure that precision and recall have been called: # self.precision() # self.recall() # f1_micro if ( self.results.precision_micro == self.failure_value or self.results.recall_micro == self.failure_value ): f1_micro = self.failure_value else: if self.class_index is None: # "fil" f1_micro = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) else: # "ind" f1_micro = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division="warn", )[self.class_index] # f1_macro if ( self.results.precision_macro == self.failure_value or self.results.recall_macro == self.failure_value ): f1_macro = self.failure_value else: if self.class_index is None: # "fil" metric_list = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, ) f1_macro = np.average(metric_list) else: # "ind" f1_macro = self.failure_value return f1_micro, f1_macro @dataclass class Results: acc: float = -1 precision_micro: float = -1 precision_macro: float = -1 recall_micro: float = -1 recall_macro: float = -1 f1_micro: float = -1 f1_macro: float = -1 classindices_macro: Tuple[float, ...] = () numberofclasses_macro: float = -1 asr_abidance: float = -1 asr_precision_micro: float = -1 asr_recall_micro: float = -1 asr_f1_micro: float = -1
<filename>nerblackbox/modules/ner_training/metrics/ner_metrics.py from dataclasses import dataclass from dataclasses import asdict from typing import List, Tuple, Callable import numpy as np from sklearn.metrics import accuracy_score as accuracy_sklearn from sklearn.metrics import precision_score as precision_sklearn from sklearn.metrics import recall_score as recall_sklearn from sklearn.metrics import precision_recall_fscore_support as prf_sklearn from sklearn.exceptions import UndefinedMetricWarning import warnings from seqeval.metrics import precision_score as precision_seqeval from seqeval.metrics import recall_score as recall_seqeval from seqeval.metrics import f1_score as f1_seqeval from seqeval.scheme import IOB2, BILOU from nerblackbox.modules.ner_training.annotation_tags.tags import Tags class NerMetrics: """ On the token level, the tags are evaluated in the given annotation scheme (e.g. plain, BIO) On the entity level, the tags are evaluated in the BIO scheme (after converting if needed) """ def __init__( self, true_flat, pred_flat, level, scheme, classes=None, class_index=None, verbose=False, ): """ :param true_flat: [np array] of shape [batch_size * seq_length] :param pred_flat: [np array] of shape [batch_size * seq_length] :param level: [str] 'token' or 'entity' :param scheme: [str] e.g. 'plain', 'bio' :param classes: [optional, list] of [str] labels to take into account for metrics -> if level = 'token' :param class_index: [optional, int] index to take into account for metrics -> if level = 'entity' :param verbose: [optional, bool] if True, show verbose output """ self.true_flat = true_flat # token -> plain. entity -> plain, bio, bilou self.pred_flat = pred_flat # token -> plain. entity -> plain, bio, bilou self.scheme = scheme # token -> plain. entity -> plain, bio, bilou self.classes = classes self.class_index = class_index self.level = level self.verbose = verbose if self.scheme == "bilou": self.scheme_entity = "bilou" self.scheme_entity_seqeval = BILOU else: # plain, bio self.scheme_entity = "bio" self.scheme_entity_seqeval = IOB2 self.results = Results() self.failure_value = -1 assert self.level in [ "token", "entity", ], f"ERROR! level = {self.level} unknown." if self.level == "entity": self.true_flat_bio: List[str] = Tags(self.true_flat,).convert_scheme( source_scheme=self.scheme, target_scheme=self.scheme_entity ) # entity -> bio, bilou self.pred_flat_bio: List[str] = Tags(self.pred_flat).convert_scheme( source_scheme=self.scheme, target_scheme=self.scheme_entity ) # entity -> bio, bilou # ASR self.pred_flat_bio_corrected: List[str] self.pred_flat_bio_corrected, self.results.asr_abidance = Tags( self.pred_flat_bio ).restore_annotation_scheme_consistency( scheme=self.scheme_entity ) # entity -> bio, bilou def results_as_dict(self): return asdict(self.results) def compute(self, _metrics): """ computes selected metrics ---------------------------------------------------------- :param _metrics: [list] of [str], e.g. ['acc, 'precision'] :return: - """ warnings.filterwarnings("error") if "acc" in _metrics: self.accuracy() if "precision" in _metrics or "recall" in _metrics or "f1" in _metrics: self._compute_well_defined_classes() if "precision" in _metrics or "f1" in _metrics: self.precision() if "recall" in _metrics or "f1" in _metrics: self.recall() if "f1" in _metrics: self.f1_score() if ( "asr_abidance" in _metrics or "asr_precision" in _metrics or "asr_recall" in _metrics or "asr_f1" in _metrics ): self.compute_asr_results() warnings.resetwarnings() def accuracy(self): """ computes accuracy of predictions (_np_logits) w.r.t. ground truth (_np_label_ids) --------------------------------------------------------------------------------- :return: acc [np float] """ self.results.acc = accuracy_sklearn( self.true_flat, self.pred_flat, normalize=True ) def precision(self): """ computes precision (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: precision_micro [np array] for all examples precision_macro [np array] for each class, then averaged """ if self.level == "token": self.results.precision_micro = self._token_evaluation( evaluation_function=precision_sklearn, average="micro" ) self.results.precision_macro = self._token_evaluation( evaluation_function=precision_sklearn, average="macro" ) elif self.level == "entity": self.results.precision_micro = self._entity_evaluation_micro( evaluation_function=precision_seqeval ) self.results.precision_macro = self._entity_evaluation_macro( evaluation_function=precision_seqeval, ) def recall(self): """ computes recall (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: recall_micro [np array] for all examples recall_macro [np array] for each class, then averaged """ if self.level == "token": self.results.recall_micro = self._token_evaluation( evaluation_function=recall_sklearn, average="micro" ) self.results.recall_macro = self._token_evaluation( evaluation_function=recall_sklearn, average="macro" ) elif self.level == "entity": self.results.recall_micro = self._entity_evaluation_micro( evaluation_function=recall_seqeval ) self.results.recall_macro = self._entity_evaluation_macro( evaluation_function=recall_seqeval ) def f1_score(self): """ computes f1 score (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: f1_score_micro [np array] for all examples f1_score_macro [np array] for each class, then averaged """ if self.level == "token": self.results.f1_micro = self._token_evaluation( evaluation_function=prf_sklearn, average="micro" ) self.results.f1_macro = self._token_evaluation( evaluation_function=prf_sklearn, average="macro" ) elif self.level == "entity": self.results.f1_micro, self.results.f1_macro = self._entity_evaluation_f1( evaluation_function=f1_seqeval, ) def compute_asr_results(self): """ computes - self.results.asr_precision_micro - self.results.asr_recall_micro - self.results.asr_f1_micro """ def _entity_evaluation_micro_asr(evaluation_function: Callable) -> float: """helper function""" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio_corrected], # corrected !!! average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value return metric self.results.asr_precision_micro = _entity_evaluation_micro_asr( evaluation_function=precision_seqeval ) self.results.asr_recall_micro = _entity_evaluation_micro_asr( evaluation_function=recall_seqeval ) self.results.asr_f1_micro = _entity_evaluation_micro_asr( evaluation_function=f1_seqeval ) def _token_evaluation(self, evaluation_function: Callable, average: str) -> float: """ compute precision/recall/f1 on token level Args: evaluation_function: precision_sklearn, recall_sklearn, prf_sklearn average: 'micro' or 'macro' Returns: metric: precision/recall on token level, 'micro' or 'macro' averaged """ assert evaluation_function in [ precision_sklearn, recall_sklearn, prf_sklearn, ], f"evaluation function = {evaluation_function} unknown / not allowed." assert average in ["micro", "macro"], f"average = {average} unknown." if self.classes is None or len(self.classes) > 1: # "all" / "fil" if evaluation_function != prf_sklearn: metric = evaluation_function( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division=0, ) else: _, _, metric, _ = prf_sklearn( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division=0, ) else: try: if evaluation_function != prf_sklearn: metric = evaluation_function( self.true_flat, self.pred_flat, labels=self.classes, average=average, zero_division="warn", ) else: _, _, metric, _ = prf_sklearn( self.true_flat, self.pred_flat, labels=self.classes, average=average, warn_for=("precision", "recall", "f-score"), zero_division="warn", ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value return metric def _entity_evaluation_micro(self, evaluation_function: Callable) -> float: """ compute precision/recall micro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged """ assert evaluation_function in [ precision_seqeval, recall_seqeval, ], f"evaluation function = {evaluation_function} unknown / not allowed." if self.class_index is None: # "fil" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) except UndefinedMetricWarning as e: if self.verbose: print(e) metric = self.failure_value else: # "ind" try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division="warn", )[self.class_index] except UndefinedMetricWarning: try: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division=0, )[self.class_index] except IndexError: metric = self.failure_value if metric == 0: metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division=1, )[self.class_index] if metric == 1: metric = self.failure_value except IndexError: metric = self.failure_value return metric def _compute_well_defined_classes(self) -> None: """ Created Attributes: results.classindices_macro: list of indices of well-defined classes in terms of precision, recall, f1 results.numberofclasses_macro: number of well-defined classes in terms of precision, recall, f1 """ def _get_index_list( evaluation_function: Callable, true_array, pred_array, scheme_seqeval=None ): kwargs = ( {"mode": "strict", "scheme": scheme_seqeval} if scheme_seqeval is not None else {} ) try: metric_list = evaluation_function( true_array, pred_array, average=None, zero_division="warn", **kwargs, ) index_list = [i for i in range(len(metric_list))] except UndefinedMetricWarning: metric_list_all = evaluation_function( true_array, pred_array, average=None, zero_division=0, **kwargs, ) index_list = list() for index, metric_elem in enumerate(metric_list_all): if metric_elem != 0: index_list.append(index) else: metric_elem_alt = evaluation_function( true_array, pred_array, average=None, zero_division=1, **kwargs, )[index] if metric_elem_alt != 1: index_list.append(index) return index_list if self.level == "token": index_list_precision = _get_index_list( evaluation_function=precision_sklearn, true_array=self.true_flat, pred_array=self.pred_flat, ) index_list_recall = _get_index_list( evaluation_function=recall_sklearn, true_array=self.true_flat, pred_array=self.pred_flat, ) else: index_list_precision = _get_index_list( evaluation_function=precision_seqeval, true_array=[self.true_flat_bio], pred_array=[self.pred_flat_bio], scheme_seqeval=self.scheme_entity_seqeval, ) index_list_recall = _get_index_list( evaluation_function=recall_seqeval, true_array=[self.true_flat_bio], pred_array=[self.pred_flat_bio], scheme_seqeval=self.scheme_entity_seqeval, ) self.results.classindices_macro = tuple( [index for index in index_list_precision if index in index_list_recall] ) if self.level == "token": self.results.numberofclasses_macro = ( len(self.results.classindices_macro) - 1 ) # disregard "O" label else: self.results.numberofclasses_macro = len(self.results.classindices_macro) def _entity_evaluation_macro( self, evaluation_function: Callable, ) -> float: """ compute precision/recall macro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged on well-defined classes """ assert evaluation_function in [ precision_seqeval, recall_seqeval, ], f"evaluation function = {evaluation_function} unknown / not allowed." metric = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average="macro", zero_division=0, ) return metric def _entity_evaluation_f1( self, evaluation_function: Callable ) -> Tuple[float, float]: """ compute f1 micro or macro average on entity level Args: evaluation_function: f1_seqeval Returns: f1_micro: f1 on entity level, 'micro' averaged f1_macro: f1 on entity level, 'macro' averaged on well-defined classes """ assert evaluation_function in [ f1_seqeval ], f"evaluation function = {evaluation_function} unknown / not allowed." # ensure that precision and recall have been called: # self.precision() # self.recall() # f1_micro if ( self.results.precision_micro == self.failure_value or self.results.recall_micro == self.failure_value ): f1_micro = self.failure_value else: if self.class_index is None: # "fil" f1_micro = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], average="micro", mode="strict", scheme=self.scheme_entity_seqeval, ) else: # "ind" f1_micro = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, zero_division="warn", )[self.class_index] # f1_macro if ( self.results.precision_macro == self.failure_value or self.results.recall_macro == self.failure_value ): f1_macro = self.failure_value else: if self.class_index is None: # "fil" metric_list = evaluation_function( [self.true_flat_bio], [self.pred_flat_bio], mode="strict", scheme=self.scheme_entity_seqeval, average=None, ) f1_macro = np.average(metric_list) else: # "ind" f1_macro = self.failure_value return f1_micro, f1_macro @dataclass class Results: acc: float = -1 precision_micro: float = -1 precision_macro: float = -1 recall_micro: float = -1 recall_macro: float = -1 f1_micro: float = -1 f1_macro: float = -1 classindices_macro: Tuple[float, ...] = () numberofclasses_macro: float = -1 asr_abidance: float = -1 asr_precision_micro: float = -1 asr_recall_micro: float = -1 asr_f1_micro: float = -1
en
0.530789
On the token level, the tags are evaluated in the given annotation scheme (e.g. plain, BIO) On the entity level, the tags are evaluated in the BIO scheme (after converting if needed) :param true_flat: [np array] of shape [batch_size * seq_length] :param pred_flat: [np array] of shape [batch_size * seq_length] :param level: [str] 'token' or 'entity' :param scheme: [str] e.g. 'plain', 'bio' :param classes: [optional, list] of [str] labels to take into account for metrics -> if level = 'token' :param class_index: [optional, int] index to take into account for metrics -> if level = 'entity' :param verbose: [optional, bool] if True, show verbose output # token -> plain. entity -> plain, bio, bilou # token -> plain. entity -> plain, bio, bilou # token -> plain. entity -> plain, bio, bilou # plain, bio # entity -> bio, bilou # entity -> bio, bilou # ASR # entity -> bio, bilou computes selected metrics ---------------------------------------------------------- :param _metrics: [list] of [str], e.g. ['acc, 'precision'] :return: - computes accuracy of predictions (_np_logits) w.r.t. ground truth (_np_label_ids) --------------------------------------------------------------------------------- :return: acc [np float] computes precision (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: precision_micro [np array] for all examples precision_macro [np array] for each class, then averaged computes recall (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: recall_micro [np array] for all examples recall_macro [np array] for each class, then averaged computes f1 score (macro/micro) of predictions (_pred_flat) w.r.t. ground truth (_true_flat) Returns: f1_score_micro [np array] for all examples f1_score_macro [np array] for each class, then averaged computes - self.results.asr_precision_micro - self.results.asr_recall_micro - self.results.asr_f1_micro helper function # corrected !!! compute precision/recall/f1 on token level Args: evaluation_function: precision_sklearn, recall_sklearn, prf_sklearn average: 'micro' or 'macro' Returns: metric: precision/recall on token level, 'micro' or 'macro' averaged # "all" / "fil" compute precision/recall micro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged # "fil" # "ind" Created Attributes: results.classindices_macro: list of indices of well-defined classes in terms of precision, recall, f1 results.numberofclasses_macro: number of well-defined classes in terms of precision, recall, f1 # disregard "O" label compute precision/recall macro average on entity level Args: evaluation_function: precision_seqeval, recall_seqeval Returns: metric: precision/recall on entity level, 'macro' averaged on well-defined classes compute f1 micro or macro average on entity level Args: evaluation_function: f1_seqeval Returns: f1_micro: f1 on entity level, 'micro' averaged f1_macro: f1 on entity level, 'macro' averaged on well-defined classes # ensure that precision and recall have been called: # self.precision() # self.recall() # f1_micro # "fil" # "ind" # f1_macro # "fil" # "ind"
2.54057
3
Assignments/hw4/rank_feat_by_chi_square.py
spacemanidol/CLMS572
0
9472
import sys def readInput(): labels, features, all_features, labelCount = [], [], [], {} l = sys.stdin.readline().strip().split(' ') while len(l)> 1: label = l[0] if label not in labelCount: labelCount[label] = 0 labelCount[label] += 1 labels.append(label) currFeat = set() for key in l[1:]: feature, _ = key.split(':') all_features.append(feature) currFeat.add(feature) features.append(currFeat) l = sys.stdin.readline().strip().split(' ') return [labels, features] , set(all_features), labelCount def rankByChiSquared(data, features, labelCount): labels = labelCount.keys() dataLength = len(data[0]) n = sum(labelCount.values()) results, featureOccourences, featureNonOccourences = [], {}, {} for feature in features: for label in labels: featureOccourences[label] = 0 #Initialize for i in range(dataLength): if feature in data[1][i]: featureOccourences[data[0][i]] += 1 # We could how many times the feature occours in the data for each label for label in labels: featureNonOccourences[label] = labelCount[label] - featureOccourences[label] #count of the times it doesnt appear for each label totalFeatureOccourences = sum(featureOccourences.values()) totalFeatureNonOccourences = sum(featureNonOccourences.values()) chi = sum([((featureOccourences[label]-(labelCount[label]*totalFeatureOccourences/n))**2/(labelCount[label]*totalFeatureOccourences/n) +(featureNonOccourences[label] - (labelCount[label] * totalFeatureNonOccourences/n))**2/(labelCount[label] * totalFeatureNonOccourences/n)) for label in labels]) #Chi squared calc results.append([feature, chi, totalFeatureOccourences]) #save the re [print('{} {:.5f} {}'.format(*score)) for score in sorted(results, key = lambda x:(-x[1], -x[2], x[0]), reverse=False)] #print features sorted by chi^2 value, count in text, alphabetically if __name__ == "__main__": data, all_features, labelCount= readInput() results = rankByChiSquared(data, all_features, labelCount)
import sys def readInput(): labels, features, all_features, labelCount = [], [], [], {} l = sys.stdin.readline().strip().split(' ') while len(l)> 1: label = l[0] if label not in labelCount: labelCount[label] = 0 labelCount[label] += 1 labels.append(label) currFeat = set() for key in l[1:]: feature, _ = key.split(':') all_features.append(feature) currFeat.add(feature) features.append(currFeat) l = sys.stdin.readline().strip().split(' ') return [labels, features] , set(all_features), labelCount def rankByChiSquared(data, features, labelCount): labels = labelCount.keys() dataLength = len(data[0]) n = sum(labelCount.values()) results, featureOccourences, featureNonOccourences = [], {}, {} for feature in features: for label in labels: featureOccourences[label] = 0 #Initialize for i in range(dataLength): if feature in data[1][i]: featureOccourences[data[0][i]] += 1 # We could how many times the feature occours in the data for each label for label in labels: featureNonOccourences[label] = labelCount[label] - featureOccourences[label] #count of the times it doesnt appear for each label totalFeatureOccourences = sum(featureOccourences.values()) totalFeatureNonOccourences = sum(featureNonOccourences.values()) chi = sum([((featureOccourences[label]-(labelCount[label]*totalFeatureOccourences/n))**2/(labelCount[label]*totalFeatureOccourences/n) +(featureNonOccourences[label] - (labelCount[label] * totalFeatureNonOccourences/n))**2/(labelCount[label] * totalFeatureNonOccourences/n)) for label in labels]) #Chi squared calc results.append([feature, chi, totalFeatureOccourences]) #save the re [print('{} {:.5f} {}'.format(*score)) for score in sorted(results, key = lambda x:(-x[1], -x[2], x[0]), reverse=False)] #print features sorted by chi^2 value, count in text, alphabetically if __name__ == "__main__": data, all_features, labelCount= readInput() results = rankByChiSquared(data, all_features, labelCount)
en
0.851235
#Initialize # We could how many times the feature occours in the data for each label #count of the times it doesnt appear for each label #Chi squared calc #save the re #print features sorted by chi^2 value, count in text, alphabetically
3.063529
3
Files/joinfiles.py
LeoCruzG/4chan-thread-downloader
0
9473
# Importamos la librería para leer archivos json import json # Abrimos el archivo master en modo lectura ('r') con todos los id de los archivos descargados with open('master.json', 'r') as f: # Guardamos en la variable lista el contenido de master lista = json.load(f) # En este ejemplo se representa cómo se asignaría a la lista archivos específicos #lista = ['2095303', '2169202'] # Abrimos el archivo tryall.json en modo lectura ('w'), si no está creado previamente # se crea en este momento, se puede cambiar nombre a este archivo with open('tryall.json', 'w') as outfile: # Iniciamos un contador para ir marcando cuántos archivos llevamos unidos contador = 0 # Esta variable ayuda a guardar el nombre del archivo anterior para # corroborar si no se está repitiendo con el anterior helper = 0 # Esta variable nos indica que tenemos que escribir dentro del documento lo que hay # dentro del archivo actual update = True # Recorremos toda la lista de archivos descargados for names in lista: # Abrimos cada archivo with open(f'{names}.json') as infile: # Leemos los primeras 3 líneas infile.readline() infile.readline() infile.readline() # Guardamos el contenido de la 4° que tiene el número del thread # en una variable temportal temp = infile.readline() # Comprobamos si helper tiene el mismo contenido que temp if helper != temp: # Si es diferente se puede hacer la actualización ya que no se va # a tener threads repetidos update = True # asignamos el nuevo contenido a la variable persistente helper = temp # Si tienen el mismo contenido entonces no se hace la actualización else: update = False # Abrimos nuevamente el archivo with open(f'{names}.json') as infile: # Si el post no está repetido entra if update == True: # Se escribe el contenido completo del thread en el archivo de salida outfile.write(infile.read()) # Se aumenta el contador ya que se escribió un documento nuevo contador+=1 # Se imporime el contador con el nombre del archivo leído print(contador, names) # Se pone un salto de página para escribir el contenido del archivo siguiente outfile.write("\n")
# Importamos la librería para leer archivos json import json # Abrimos el archivo master en modo lectura ('r') con todos los id de los archivos descargados with open('master.json', 'r') as f: # Guardamos en la variable lista el contenido de master lista = json.load(f) # En este ejemplo se representa cómo se asignaría a la lista archivos específicos #lista = ['2095303', '2169202'] # Abrimos el archivo tryall.json en modo lectura ('w'), si no está creado previamente # se crea en este momento, se puede cambiar nombre a este archivo with open('tryall.json', 'w') as outfile: # Iniciamos un contador para ir marcando cuántos archivos llevamos unidos contador = 0 # Esta variable ayuda a guardar el nombre del archivo anterior para # corroborar si no se está repitiendo con el anterior helper = 0 # Esta variable nos indica que tenemos que escribir dentro del documento lo que hay # dentro del archivo actual update = True # Recorremos toda la lista de archivos descargados for names in lista: # Abrimos cada archivo with open(f'{names}.json') as infile: # Leemos los primeras 3 líneas infile.readline() infile.readline() infile.readline() # Guardamos el contenido de la 4° que tiene el número del thread # en una variable temportal temp = infile.readline() # Comprobamos si helper tiene el mismo contenido que temp if helper != temp: # Si es diferente se puede hacer la actualización ya que no se va # a tener threads repetidos update = True # asignamos el nuevo contenido a la variable persistente helper = temp # Si tienen el mismo contenido entonces no se hace la actualización else: update = False # Abrimos nuevamente el archivo with open(f'{names}.json') as infile: # Si el post no está repetido entra if update == True: # Se escribe el contenido completo del thread en el archivo de salida outfile.write(infile.read()) # Se aumenta el contador ya que se escribió un documento nuevo contador+=1 # Se imporime el contador con el nombre del archivo leído print(contador, names) # Se pone un salto de página para escribir el contenido del archivo siguiente outfile.write("\n")
es
0.991897
# Importamos la librería para leer archivos json # Abrimos el archivo master en modo lectura ('r') con todos los id de los archivos descargados # Guardamos en la variable lista el contenido de master # En este ejemplo se representa cómo se asignaría a la lista archivos específicos #lista = ['2095303', '2169202'] # Abrimos el archivo tryall.json en modo lectura ('w'), si no está creado previamente # se crea en este momento, se puede cambiar nombre a este archivo # Iniciamos un contador para ir marcando cuántos archivos llevamos unidos # Esta variable ayuda a guardar el nombre del archivo anterior para # corroborar si no se está repitiendo con el anterior # Esta variable nos indica que tenemos que escribir dentro del documento lo que hay # dentro del archivo actual # Recorremos toda la lista de archivos descargados # Abrimos cada archivo # Leemos los primeras 3 líneas # Guardamos el contenido de la 4° que tiene el número del thread # en una variable temportal # Comprobamos si helper tiene el mismo contenido que temp # Si es diferente se puede hacer la actualización ya que no se va # a tener threads repetidos # asignamos el nuevo contenido a la variable persistente # Si tienen el mismo contenido entonces no se hace la actualización # Abrimos nuevamente el archivo # Si el post no está repetido entra # Se escribe el contenido completo del thread en el archivo de salida # Se aumenta el contador ya que se escribió un documento nuevo # Se imporime el contador con el nombre del archivo leído # Se pone un salto de página para escribir el contenido del archivo siguiente
2.906473
3
pycopula/archimedean_generators.py
SvenSerneels/pycopula
2
9474
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This file contains the generators and their inverses for common archimedean copulas. """ import numpy as np def boundsConditions(x): if x < 0 or x > 1: raise ValueError("Unable to compute generator for x equals to {}".format(x)) def claytonGenerator(x, theta): boundsConditions(x) if theta == 0: raise ValueError("The parameter of a Clayton copula must not be equal to 0.") if theta < -1: raise ValueError("The parameter of a Clayton copula must be greater than -1 and different from 0.") return (1. / theta) * (x**(-theta) - 1.) def claytonGeneratorInvert(x, theta): if theta == 0: raise ValueError("The parameter of a Clayton copula must not be equal to 0.") if theta < -1: raise ValueError("The parameter of a Clayton copula must be greater than -1 and different from 0.") return (1. + theta * x)**(-1. / max(theta,1e-6)) def gumbelGenerator(x, theta): boundsConditions(x) if theta < 1: raise ValueError("The parameter of a Gumbel copula must be greater than 1.") return (-np.log(x))**theta def gumbelGeneratorInvert(x, theta): if len(theta) > 1: theta = theta[0] if theta < 1: raise ValueError("The parameter of a Gumbel copula must be greater than 1.") if (x < 1 and theta != 1): raise(ValueError("The inverse Gumbel generator cannot be evaluated for negative input and theta > 1")) return np.exp(-np.power(x,np.divide(1, theta))) def frankGenerator(x, theta): boundsConditions(x) if theta == 0: raise ValueError("The parameter of a Frank copula must not be equal to 0.") return -np.log((np.exp(-theta[0] * x) - 1) / (np.exp(-theta[0]) - 1)) def frankGeneratorInvert(x, theta): if theta == 0: raise ValueError("The parameter of a Frank copula must not be equal to 0.") return -1. / theta * np.log(1. + np.exp(-x) * (np.exp(-theta) - 1.)) def joeGenerator(x, theta): boundsConditions(x) if theta < 1: raise ValueError("The parameter of a Joe copula must be greater than 1.") return -np.log(1. - (1. - x)**theta) def joeGeneratorInvert(x, theta): if theta < 1: raise ValueError("The parameter of a Joe copula must be greater than 1.") return 1. - (1. - np.exp(-x))**(1. / max(theta,1e-6)) def aliMikhailHaqGenerator(x, theta): boundsConditions(x) if theta < -1 or theta >= 1: raise ValueError("The parameter of an Ali-Mikhail-Haq copula must be between -1 included and 1 excluded.") return np.log((1. - theta * (1. - x)) / x) def aliMikhailHaqGeneratorInvert(x, theta): if theta < -1 or theta >= 1: raise ValueError("The parameter of an Ali-Mikhail-Haq copula must be between -1 included and 1 excluded.") return (1. - theta) / (np.exp(x) - theta)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This file contains the generators and their inverses for common archimedean copulas. """ import numpy as np def boundsConditions(x): if x < 0 or x > 1: raise ValueError("Unable to compute generator for x equals to {}".format(x)) def claytonGenerator(x, theta): boundsConditions(x) if theta == 0: raise ValueError("The parameter of a Clayton copula must not be equal to 0.") if theta < -1: raise ValueError("The parameter of a Clayton copula must be greater than -1 and different from 0.") return (1. / theta) * (x**(-theta) - 1.) def claytonGeneratorInvert(x, theta): if theta == 0: raise ValueError("The parameter of a Clayton copula must not be equal to 0.") if theta < -1: raise ValueError("The parameter of a Clayton copula must be greater than -1 and different from 0.") return (1. + theta * x)**(-1. / max(theta,1e-6)) def gumbelGenerator(x, theta): boundsConditions(x) if theta < 1: raise ValueError("The parameter of a Gumbel copula must be greater than 1.") return (-np.log(x))**theta def gumbelGeneratorInvert(x, theta): if len(theta) > 1: theta = theta[0] if theta < 1: raise ValueError("The parameter of a Gumbel copula must be greater than 1.") if (x < 1 and theta != 1): raise(ValueError("The inverse Gumbel generator cannot be evaluated for negative input and theta > 1")) return np.exp(-np.power(x,np.divide(1, theta))) def frankGenerator(x, theta): boundsConditions(x) if theta == 0: raise ValueError("The parameter of a Frank copula must not be equal to 0.") return -np.log((np.exp(-theta[0] * x) - 1) / (np.exp(-theta[0]) - 1)) def frankGeneratorInvert(x, theta): if theta == 0: raise ValueError("The parameter of a Frank copula must not be equal to 0.") return -1. / theta * np.log(1. + np.exp(-x) * (np.exp(-theta) - 1.)) def joeGenerator(x, theta): boundsConditions(x) if theta < 1: raise ValueError("The parameter of a Joe copula must be greater than 1.") return -np.log(1. - (1. - x)**theta) def joeGeneratorInvert(x, theta): if theta < 1: raise ValueError("The parameter of a Joe copula must be greater than 1.") return 1. - (1. - np.exp(-x))**(1. / max(theta,1e-6)) def aliMikhailHaqGenerator(x, theta): boundsConditions(x) if theta < -1 or theta >= 1: raise ValueError("The parameter of an Ali-Mikhail-Haq copula must be between -1 included and 1 excluded.") return np.log((1. - theta * (1. - x)) / x) def aliMikhailHaqGeneratorInvert(x, theta): if theta < -1 or theta >= 1: raise ValueError("The parameter of an Ali-Mikhail-Haq copula must be between -1 included and 1 excluded.") return (1. - theta) / (np.exp(x) - theta)
en
0.779784
#!/usr/bin/env python # -*- coding: utf-8 -*- This file contains the generators and their inverses for common archimedean copulas.
3.179865
3
app/admin/__init__.py
blackboard/BBDN-Base-Python-Flask
0
9475
<filename>app/admin/__init__.py<gh_stars>0 """ """ from admin import routes def init_app(app): """ :param app: :return: """ routes.init_app(app)
<filename>app/admin/__init__.py<gh_stars>0 """ """ from admin import routes def init_app(app): """ :param app: :return: """ routes.init_app(app)
en
0.295678
:param app: :return:
1.782756
2
output/models/nist_data/list_pkg/decimal/schema_instance/nistschema_sv_iv_list_decimal_pattern_2_xsd/__init__.py
tefra/xsdata-w3c-tests
1
9476
<filename>output/models/nist_data/list_pkg/decimal/schema_instance/nistschema_sv_iv_list_decimal_pattern_2_xsd/__init__.py from output.models.nist_data.list_pkg.decimal.schema_instance.nistschema_sv_iv_list_decimal_pattern_2_xsd.nistschema_sv_iv_list_decimal_pattern_2 import NistschemaSvIvListDecimalPattern2 __all__ = [ "NistschemaSvIvListDecimalPattern2", ]
<filename>output/models/nist_data/list_pkg/decimal/schema_instance/nistschema_sv_iv_list_decimal_pattern_2_xsd/__init__.py from output.models.nist_data.list_pkg.decimal.schema_instance.nistschema_sv_iv_list_decimal_pattern_2_xsd.nistschema_sv_iv_list_decimal_pattern_2 import NistschemaSvIvListDecimalPattern2 __all__ = [ "NistschemaSvIvListDecimalPattern2", ]
none
1
1.048786
1
fem/fem.py
Pengeace/DGP-PDE-FEM
7
9477
<reponame>Pengeace/DGP-PDE-FEM import numpy as np import pyamg from scipy import sparse from scipy.spatial import Delaunay from linsolver import sparse_solver from triangulation.delaunay import delaunay class Element: def __init__(self, points, global_indexes, fem): self.points = np.array(points) self.global_indexes = global_indexes self.fem = fem self.reference_triangle = np.array([[0, 0], [1., 0], [0, 1.]]) self.reference_grad = np.array([[-1., -1], [1., 0], [0, 1.]]) def perform_calculation(self): self._calculate_transform() self._calculate_stiffness_matrix() self._calulate_load_vector() def _calculate_transform(self): reference_coord = np.array([self.reference_triangle[:, 0], self.reference_triangle[:, 1], [1] * 3]) transformed_coord = np.array([self.points[:, 0], self.points[:, 1], [1] * 3]) trans = np.dot(transformed_coord, np.linalg.inv(reference_coord)) self.transform_matrix = trans[0:-1, 0:-1] self.area = abs(np.linalg.det(self.transform_matrix)) / 2 def _calculate_stiffness_matrix(self): transform_matrix_inv = np.linalg.inv(self.transform_matrix) self.element_stiffness_matrix = np.zeros((3, 3)) for row in range(3): for col in range(3): part_u_left_grad = np.dot(np.dot(self.fem.A, transform_matrix_inv.T), self.reference_grad[row]) part_u_right_grad = np.dot(transform_matrix_inv.T, self.reference_grad[col]) part_u_grad = self.area * np.dot(part_u_left_grad, part_u_right_grad) part_u = (self.area / 6.0) if row == col else (self.area / 12.0) self.element_stiffness_matrix[row, col] = part_u_grad + self.fem.q * part_u def _calulate_load_vector(self): mean_f = np.mean([self.fem.get_func_value(x) for x in self.points]) self.element_load_vector = np.array([mean_f * self.area / 3] * 3) class FiniteElement: """ Finite Element Method to solve the 2D Elliptic Partial Differentiation differential Equation with below form: div(A grad(u)) + q u = func """ def __init__(self, points, boundaries, A, q, func, slow_solver=True): self.points = np.array(points) self.dirichlet_boundaries = np.array(boundaries) self.A = A self.q = q self.f = func self.slow_solver = slow_solver self.triangles = [] self.point_num = len(points) def solve(self): if len(self.triangles) == 0: self._get_mesh() self._process_each_element() self._calculate_global_stiffness_matrix() self._calulate_global_load_vector() self._deal_with_dirichlet_bound() self._solve_linear_equations() def update_border_and_func(self, boundaries, func): self.dirichlet_boundaries = np.array(boundaries) self.f = func def get_func_value(self, x): if isinstance(self.f, dict): return self.f[tuple(x)] else: return self.f(x) def _get_mesh(self): if self.slow_solver: self.triangles = delaunay(self.points) else: triangulation = Delaunay(self.points) self.triangles = triangulation.simplices def _process_each_element(self): self.elements = [] for tri in self.triangles: ele = Element(points=[self.points[v] for v in tri], global_indexes=tri, fem=self) ele.perform_calculation() self.elements.append(ele) def _calculate_global_stiffness_matrix(self): self.global_stiffness_matrix_row = [] self.global_stiffness_matrix_col = [] self.global_stiffness_matrix_data = [] boundary_indexes = set(self.dirichlet_boundaries[:, 0].astype('int')) for ele in self.elements: for row in range(3): if ele.global_indexes[row] not in boundary_indexes: for col in range(3): self.global_stiffness_matrix_row.append(ele.global_indexes[row]) self.global_stiffness_matrix_col.append(ele.global_indexes[col]) self.global_stiffness_matrix_data.append(ele.element_stiffness_matrix[row, col]) def _calulate_global_load_vector(self): self.global_load_vector = np.zeros(self.point_num) for ele in self.elements: for v in range(3): self.global_load_vector[ele.global_indexes[v]] += ele.element_load_vector[v] def _deal_with_dirichlet_bound(self): for index, val in self.dirichlet_boundaries: index = int(index) self.global_stiffness_matrix_row.append(index) self.global_stiffness_matrix_col.append(index) self.global_stiffness_matrix_data.append(1) self.global_load_vector[index] = val def _solve_linear_equations(self): if not self.slow_solver: self.global_stiffness_matrix_csr = sparse.coo_matrix((self.global_stiffness_matrix_data, ( self.global_stiffness_matrix_row, self.global_stiffness_matrix_col))).tocsr() self.solution = pyamg.solve(self.global_stiffness_matrix_csr, self.global_load_vector, verb=False, tol=1e-10) else: global_stiffness_sparse = [np.array(self.global_stiffness_matrix_row), np.array(self.global_stiffness_matrix_col), np.array(self.global_stiffness_matrix_data)] self.solution = sparse_solver.sparse_gauss_seidel(global_stiffness_sparse, self.global_load_vector, sparse_input=True) ## these solver methods are for test # self.global_stiffness = sparse.coo_matrix((self.global_stiffness_matrix_data, ( # self.global_stiffness_matrix_row, self.global_stiffness_matrix_col))).tocsr() # self.solution = linsolver.jacobi(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = linsolver.gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = sparse_solver.sparse_jacobi(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False) # self.solution = sparse_solver.sparse_gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False) if isinstance(self.solution, str): print("The inputs for linear solver have problems.")
import numpy as np import pyamg from scipy import sparse from scipy.spatial import Delaunay from linsolver import sparse_solver from triangulation.delaunay import delaunay class Element: def __init__(self, points, global_indexes, fem): self.points = np.array(points) self.global_indexes = global_indexes self.fem = fem self.reference_triangle = np.array([[0, 0], [1., 0], [0, 1.]]) self.reference_grad = np.array([[-1., -1], [1., 0], [0, 1.]]) def perform_calculation(self): self._calculate_transform() self._calculate_stiffness_matrix() self._calulate_load_vector() def _calculate_transform(self): reference_coord = np.array([self.reference_triangle[:, 0], self.reference_triangle[:, 1], [1] * 3]) transformed_coord = np.array([self.points[:, 0], self.points[:, 1], [1] * 3]) trans = np.dot(transformed_coord, np.linalg.inv(reference_coord)) self.transform_matrix = trans[0:-1, 0:-1] self.area = abs(np.linalg.det(self.transform_matrix)) / 2 def _calculate_stiffness_matrix(self): transform_matrix_inv = np.linalg.inv(self.transform_matrix) self.element_stiffness_matrix = np.zeros((3, 3)) for row in range(3): for col in range(3): part_u_left_grad = np.dot(np.dot(self.fem.A, transform_matrix_inv.T), self.reference_grad[row]) part_u_right_grad = np.dot(transform_matrix_inv.T, self.reference_grad[col]) part_u_grad = self.area * np.dot(part_u_left_grad, part_u_right_grad) part_u = (self.area / 6.0) if row == col else (self.area / 12.0) self.element_stiffness_matrix[row, col] = part_u_grad + self.fem.q * part_u def _calulate_load_vector(self): mean_f = np.mean([self.fem.get_func_value(x) for x in self.points]) self.element_load_vector = np.array([mean_f * self.area / 3] * 3) class FiniteElement: """ Finite Element Method to solve the 2D Elliptic Partial Differentiation differential Equation with below form: div(A grad(u)) + q u = func """ def __init__(self, points, boundaries, A, q, func, slow_solver=True): self.points = np.array(points) self.dirichlet_boundaries = np.array(boundaries) self.A = A self.q = q self.f = func self.slow_solver = slow_solver self.triangles = [] self.point_num = len(points) def solve(self): if len(self.triangles) == 0: self._get_mesh() self._process_each_element() self._calculate_global_stiffness_matrix() self._calulate_global_load_vector() self._deal_with_dirichlet_bound() self._solve_linear_equations() def update_border_and_func(self, boundaries, func): self.dirichlet_boundaries = np.array(boundaries) self.f = func def get_func_value(self, x): if isinstance(self.f, dict): return self.f[tuple(x)] else: return self.f(x) def _get_mesh(self): if self.slow_solver: self.triangles = delaunay(self.points) else: triangulation = Delaunay(self.points) self.triangles = triangulation.simplices def _process_each_element(self): self.elements = [] for tri in self.triangles: ele = Element(points=[self.points[v] for v in tri], global_indexes=tri, fem=self) ele.perform_calculation() self.elements.append(ele) def _calculate_global_stiffness_matrix(self): self.global_stiffness_matrix_row = [] self.global_stiffness_matrix_col = [] self.global_stiffness_matrix_data = [] boundary_indexes = set(self.dirichlet_boundaries[:, 0].astype('int')) for ele in self.elements: for row in range(3): if ele.global_indexes[row] not in boundary_indexes: for col in range(3): self.global_stiffness_matrix_row.append(ele.global_indexes[row]) self.global_stiffness_matrix_col.append(ele.global_indexes[col]) self.global_stiffness_matrix_data.append(ele.element_stiffness_matrix[row, col]) def _calulate_global_load_vector(self): self.global_load_vector = np.zeros(self.point_num) for ele in self.elements: for v in range(3): self.global_load_vector[ele.global_indexes[v]] += ele.element_load_vector[v] def _deal_with_dirichlet_bound(self): for index, val in self.dirichlet_boundaries: index = int(index) self.global_stiffness_matrix_row.append(index) self.global_stiffness_matrix_col.append(index) self.global_stiffness_matrix_data.append(1) self.global_load_vector[index] = val def _solve_linear_equations(self): if not self.slow_solver: self.global_stiffness_matrix_csr = sparse.coo_matrix((self.global_stiffness_matrix_data, ( self.global_stiffness_matrix_row, self.global_stiffness_matrix_col))).tocsr() self.solution = pyamg.solve(self.global_stiffness_matrix_csr, self.global_load_vector, verb=False, tol=1e-10) else: global_stiffness_sparse = [np.array(self.global_stiffness_matrix_row), np.array(self.global_stiffness_matrix_col), np.array(self.global_stiffness_matrix_data)] self.solution = sparse_solver.sparse_gauss_seidel(global_stiffness_sparse, self.global_load_vector, sparse_input=True) ## these solver methods are for test # self.global_stiffness = sparse.coo_matrix((self.global_stiffness_matrix_data, ( # self.global_stiffness_matrix_row, self.global_stiffness_matrix_col))).tocsr() # self.solution = linsolver.jacobi(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = linsolver.gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = sparse_solver.sparse_jacobi(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False) # self.solution = sparse_solver.sparse_gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False) if isinstance(self.solution, str): print("The inputs for linear solver have problems.")
en
0.444247
Finite Element Method to solve the 2D Elliptic Partial Differentiation differential Equation with below form: div(A grad(u)) + q u = func ## these solver methods are for test # self.global_stiffness = sparse.coo_matrix((self.global_stiffness_matrix_data, ( # self.global_stiffness_matrix_row, self.global_stiffness_matrix_col))).tocsr() # self.solution = linsolver.jacobi(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = linsolver.gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector) # self.solution = sparse_solver.sparse_jacobi(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False) # self.solution = sparse_solver.sparse_gauss_seidel(self.global_stiffness.toarray(), self.global_load_vector, sparse_input=False)
2.342346
2
custom_components/tahoma/climate_devices/dimmer_exterior_heating.py
MatthewFlamm/ha-tahoma
0
9478
<gh_stars>0 """Support for Atlantic Electrical Heater IO controller.""" import logging from typing import List from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import ( HVAC_MODE_HEAT, HVAC_MODE_OFF, SUPPORT_TARGET_TEMPERATURE, ) from homeassistant.const import ATTR_TEMPERATURE, TEMP_CELSIUS from ..coordinator import TahomaDataUpdateCoordinator from ..tahoma_entity import TahomaEntity _LOGGER = logging.getLogger(__name__) COMMAND_GET_LEVEL = "getLevel" COMMAND_SET_LEVEL = "setLevel" CORE_LEVEL_STATE = "core:LevelState" class DimmerExteriorHeating(TahomaEntity, ClimateEntity): """Representation of TaHoma IO Atlantic Electrical Heater.""" def __init__(self, device_url: str, coordinator: TahomaDataUpdateCoordinator): """Init method.""" super().__init__(device_url, coordinator) self._saved_level = 100 - self.select_state(CORE_LEVEL_STATE) @property def supported_features(self) -> int: """Return the list of supported features.""" return SUPPORT_TARGET_TEMPERATURE @property def temperature_unit(self) -> str: """Return the unit of measurement used by the platform.""" return TEMP_CELSIUS @property def min_temp(self) -> float: """Return minimum percentage.""" return 0 @property def max_temp(self) -> float: """Return maximum percentage.""" return 100 @property def target_temperature(self): """Return the temperature we try to reach.""" return 100 - self.select_state(CORE_LEVEL_STATE) async def async_set_temperature(self, **kwargs) -> None: """Set new target temperature.""" level = kwargs.get(ATTR_TEMPERATURE) if level is None: return await self.async_execute_command(COMMAND_SET_LEVEL, 100 - int(level)) await self.async_execute_command(COMMAND_GET_LEVEL) @property def hvac_mode(self) -> str: """Return hvac operation ie. heat, cool mode.""" if self.select_state(CORE_LEVEL_STATE) == 100: return HVAC_MODE_OFF return HVAC_MODE_HEAT @property def hvac_modes(self) -> List[str]: """Return the list of available hvac operation modes.""" return [HVAC_MODE_OFF, HVAC_MODE_HEAT] async def async_set_hvac_mode(self, hvac_mode: str) -> None: """Set new target hvac mode.""" level = 0 if hvac_mode == HVAC_MODE_HEAT: level = self._saved_level else: self._saved_level = self.target_temperature await self.async_execute_command(COMMAND_SET_LEVEL, 100 - int(level)) await self.async_execute_command(COMMAND_GET_LEVEL)
"""Support for Atlantic Electrical Heater IO controller.""" import logging from typing import List from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import ( HVAC_MODE_HEAT, HVAC_MODE_OFF, SUPPORT_TARGET_TEMPERATURE, ) from homeassistant.const import ATTR_TEMPERATURE, TEMP_CELSIUS from ..coordinator import TahomaDataUpdateCoordinator from ..tahoma_entity import TahomaEntity _LOGGER = logging.getLogger(__name__) COMMAND_GET_LEVEL = "getLevel" COMMAND_SET_LEVEL = "setLevel" CORE_LEVEL_STATE = "core:LevelState" class DimmerExteriorHeating(TahomaEntity, ClimateEntity): """Representation of TaHoma IO Atlantic Electrical Heater.""" def __init__(self, device_url: str, coordinator: TahomaDataUpdateCoordinator): """Init method.""" super().__init__(device_url, coordinator) self._saved_level = 100 - self.select_state(CORE_LEVEL_STATE) @property def supported_features(self) -> int: """Return the list of supported features.""" return SUPPORT_TARGET_TEMPERATURE @property def temperature_unit(self) -> str: """Return the unit of measurement used by the platform.""" return TEMP_CELSIUS @property def min_temp(self) -> float: """Return minimum percentage.""" return 0 @property def max_temp(self) -> float: """Return maximum percentage.""" return 100 @property def target_temperature(self): """Return the temperature we try to reach.""" return 100 - self.select_state(CORE_LEVEL_STATE) async def async_set_temperature(self, **kwargs) -> None: """Set new target temperature.""" level = kwargs.get(ATTR_TEMPERATURE) if level is None: return await self.async_execute_command(COMMAND_SET_LEVEL, 100 - int(level)) await self.async_execute_command(COMMAND_GET_LEVEL) @property def hvac_mode(self) -> str: """Return hvac operation ie. heat, cool mode.""" if self.select_state(CORE_LEVEL_STATE) == 100: return HVAC_MODE_OFF return HVAC_MODE_HEAT @property def hvac_modes(self) -> List[str]: """Return the list of available hvac operation modes.""" return [HVAC_MODE_OFF, HVAC_MODE_HEAT] async def async_set_hvac_mode(self, hvac_mode: str) -> None: """Set new target hvac mode.""" level = 0 if hvac_mode == HVAC_MODE_HEAT: level = self._saved_level else: self._saved_level = self.target_temperature await self.async_execute_command(COMMAND_SET_LEVEL, 100 - int(level)) await self.async_execute_command(COMMAND_GET_LEVEL)
en
0.654744
Support for Atlantic Electrical Heater IO controller. Representation of TaHoma IO Atlantic Electrical Heater. Init method. Return the list of supported features. Return the unit of measurement used by the platform. Return minimum percentage. Return maximum percentage. Return the temperature we try to reach. Set new target temperature. Return hvac operation ie. heat, cool mode. Return the list of available hvac operation modes. Set new target hvac mode.
2.692704
3
elit/components/mtl/attn/joint_encoder.py
emorynlp/stem-cell-hypothesis
4
9479
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2021-03-02 13:32 from typing import Optional, Union, Dict, Any import torch from torch import nn from transformers import PreTrainedTokenizer from elit.components.mtl.attn.attn import TaskAttention from elit.components.mtl.attn.transformer import JointEncoder from elit.layers.embeddings.contextual_word_embedding import ContextualWordEmbeddingModule, ContextualWordEmbedding from elit.layers.scalar_mix import ScalarMixWithDropoutBuilder from elit.layers.transformers.utils import pick_tensor_for_each_token class JointContextualWordEmbeddingModule(ContextualWordEmbeddingModule): def __init__(self, field: str, transformer: str, transformer_tokenizer: PreTrainedTokenizer, average_subwords=False, scalar_mix: Union[ScalarMixWithDropoutBuilder, int] = None, word_dropout=None, max_sequence_length=None, ret_raw_hidden_states=False, transformer_args: Dict[str, Any] = None, trainable=True, training=True) -> None: super().__init__(field, transformer, transformer_tokenizer, average_subwords, scalar_mix, word_dropout, max_sequence_length, ret_raw_hidden_states, transformer_args, trainable, training) self.adapter: TaskAttention = None def forward(self, batch: dict, mask=None, **kwargs): input_ids: torch.LongTensor = batch[f'{self.field}_input_ids'] if self.max_sequence_length and input_ids.size(-1) > self.max_sequence_length: raise NotImplementedError('Sentence length exceeded and sliding window has not been implemented yet') token_span: torch.LongTensor = batch.get(f'{self.field}_token_span', None) token_type_ids: torch.LongTensor = batch.get(f'{self.field}_token_type_ids', None) attention_mask = input_ids.ne(0) if self.word_dropout: input_ids = self.word_dropout(input_ids) # noinspection PyTypeChecker transformer: JointEncoder = self.transformer encoder_outputs = transformer(input_ids, attention_mask, token_type_ids) outputs = dict() for task_name, encoder_output in encoder_outputs.items(): encoder_output = encoder_output[0] outputs[task_name] = pick_tensor_for_each_token(encoder_output, token_span, self.average_subwords) return outputs class JointContextualWordEmbedding(ContextualWordEmbedding): def module(self, training=True, **kwargs) -> Optional[nn.Module]: return JointContextualWordEmbeddingModule(self.field, self.transformer, self._transformer_tokenizer, self.average_subwords, self.scalar_mix, self.word_dropout, self.max_sequence_length, self.ret_raw_hidden_states, self.transformer_args, self.trainable, training=training)
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2021-03-02 13:32 from typing import Optional, Union, Dict, Any import torch from torch import nn from transformers import PreTrainedTokenizer from elit.components.mtl.attn.attn import TaskAttention from elit.components.mtl.attn.transformer import JointEncoder from elit.layers.embeddings.contextual_word_embedding import ContextualWordEmbeddingModule, ContextualWordEmbedding from elit.layers.scalar_mix import ScalarMixWithDropoutBuilder from elit.layers.transformers.utils import pick_tensor_for_each_token class JointContextualWordEmbeddingModule(ContextualWordEmbeddingModule): def __init__(self, field: str, transformer: str, transformer_tokenizer: PreTrainedTokenizer, average_subwords=False, scalar_mix: Union[ScalarMixWithDropoutBuilder, int] = None, word_dropout=None, max_sequence_length=None, ret_raw_hidden_states=False, transformer_args: Dict[str, Any] = None, trainable=True, training=True) -> None: super().__init__(field, transformer, transformer_tokenizer, average_subwords, scalar_mix, word_dropout, max_sequence_length, ret_raw_hidden_states, transformer_args, trainable, training) self.adapter: TaskAttention = None def forward(self, batch: dict, mask=None, **kwargs): input_ids: torch.LongTensor = batch[f'{self.field}_input_ids'] if self.max_sequence_length and input_ids.size(-1) > self.max_sequence_length: raise NotImplementedError('Sentence length exceeded and sliding window has not been implemented yet') token_span: torch.LongTensor = batch.get(f'{self.field}_token_span', None) token_type_ids: torch.LongTensor = batch.get(f'{self.field}_token_type_ids', None) attention_mask = input_ids.ne(0) if self.word_dropout: input_ids = self.word_dropout(input_ids) # noinspection PyTypeChecker transformer: JointEncoder = self.transformer encoder_outputs = transformer(input_ids, attention_mask, token_type_ids) outputs = dict() for task_name, encoder_output in encoder_outputs.items(): encoder_output = encoder_output[0] outputs[task_name] = pick_tensor_for_each_token(encoder_output, token_span, self.average_subwords) return outputs class JointContextualWordEmbedding(ContextualWordEmbedding): def module(self, training=True, **kwargs) -> Optional[nn.Module]: return JointContextualWordEmbeddingModule(self.field, self.transformer, self._transformer_tokenizer, self.average_subwords, self.scalar_mix, self.word_dropout, self.max_sequence_length, self.ret_raw_hidden_states, self.transformer_args, self.trainable, training=training)
en
0.533939
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2021-03-02 13:32 # noinspection PyTypeChecker
2.062613
2
simulation/sensors/__init__.py
salinsiim/petssa-simulation
0
9480
from sensors.sensors import sense_characteristics, sense_pedestrians
from sensors.sensors import sense_characteristics, sense_pedestrians
none
1
1.074546
1
jaxrl/agents/sac_v1/sac_v1_learner.py
anuragajay/jaxrl
157
9481
"""Implementations of algorithms for continuous control.""" import functools from typing import Optional, Sequence, Tuple import jax import jax.numpy as jnp import numpy as np import optax from jaxrl.agents.sac import temperature from jaxrl.agents.sac.actor import update as update_actor from jaxrl.agents.sac.critic import target_update from jaxrl.agents.sac_v1.critic import update_q, update_v from jaxrl.datasets import Batch from jaxrl.networks import critic_net, policies from jaxrl.networks.common import InfoDict, Model, PRNGKey @functools.partial(jax.jit, static_argnames=('update_target')) def _update_jit( rng: PRNGKey, actor: Model, critic: Model, value: Model, target_value: Model, temp: Model, batch: Batch, discount: float, tau: float, target_entropy: float, update_target: bool ) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]: new_critic, critic_info = update_q(critic, target_value, batch, discount) rng, key = jax.random.split(rng) new_actor, actor_info = update_actor(key, actor, new_critic, temp, batch) rng, key = jax.random.split(rng) new_value, value_info = update_v(key, new_actor, new_critic, value, temp, batch, True) if update_target: new_target_value = target_update(new_value, target_value, tau) else: new_target_value = target_value new_temp, alpha_info = temperature.update(temp, actor_info['entropy'], target_entropy) return rng, new_actor, new_critic, new_value, new_target_value, new_temp, { **critic_info, **value_info, **actor_info, **alpha_info } class SACV1Learner(object): def __init__(self, seed: int, observations: jnp.ndarray, actions: jnp.ndarray, actor_lr: float = 3e-4, value_lr: float = 3e-4, critic_lr: float = 3e-4, temp_lr: float = 3e-4, hidden_dims: Sequence[int] = (256, 256), discount: float = 0.99, tau: float = 0.005, target_update_period: int = 1, target_entropy: Optional[float] = None, init_temperature: float = 1.0): """ An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290 """ action_dim = actions.shape[-1] if target_entropy is None: self.target_entropy = -action_dim / 2 else: self.target_entropy = target_entropy self.tau = tau self.target_update_period = target_update_period self.discount = discount rng = jax.random.PRNGKey(seed) rng, actor_key, critic_key, temp_key = jax.random.split(rng, 4) actor_def = policies.NormalTanhPolicy(hidden_dims, action_dim) actor = Model.create(actor_def, inputs=[actor_key, observations], tx=optax.adam(learning_rate=actor_lr)) critic_def = critic_net.DoubleCritic(hidden_dims) critic = Model.create(critic_def, inputs=[critic_key, observations, actions], tx=optax.adam(learning_rate=critic_lr)) value_def = critic_net.ValueCritic(hidden_dims) value = Model.create(value_def, inputs=[critic_key, observations], tx=optax.adam(learning_rate=value_lr)) target_value = Model.create(value_def, inputs=[critic_key, observations]) temp = Model.create(temperature.Temperature(init_temperature), inputs=[temp_key], tx=optax.adam(learning_rate=temp_lr)) self.actor = actor self.critic = critic self.value = value self.target_value = target_value self.temp = temp self.rng = rng self.step = 1 def sample_actions(self, observations: np.ndarray, temperature: float = 1.0) -> jnp.ndarray: rng, actions = policies.sample_actions(self.rng, self.actor.apply_fn, self.actor.params, observations, temperature) self.rng = rng actions = np.asarray(actions) return np.clip(actions, -1, 1) def update(self, batch: Batch) -> InfoDict: self.step += 1 new_rng, new_actor, new_critic, new_value, new_target_value, new_temp, info = _update_jit( self.rng, self.actor, self.critic, self.value, self.target_value, self.temp, batch, self.discount, self.tau, self.target_entropy, self.step % self.target_update_period == 0) self.rng = new_rng self.actor = new_actor self.critic = new_critic self.value = new_value self.target_value = new_target_value self.temp = new_temp return info
"""Implementations of algorithms for continuous control.""" import functools from typing import Optional, Sequence, Tuple import jax import jax.numpy as jnp import numpy as np import optax from jaxrl.agents.sac import temperature from jaxrl.agents.sac.actor import update as update_actor from jaxrl.agents.sac.critic import target_update from jaxrl.agents.sac_v1.critic import update_q, update_v from jaxrl.datasets import Batch from jaxrl.networks import critic_net, policies from jaxrl.networks.common import InfoDict, Model, PRNGKey @functools.partial(jax.jit, static_argnames=('update_target')) def _update_jit( rng: PRNGKey, actor: Model, critic: Model, value: Model, target_value: Model, temp: Model, batch: Batch, discount: float, tau: float, target_entropy: float, update_target: bool ) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]: new_critic, critic_info = update_q(critic, target_value, batch, discount) rng, key = jax.random.split(rng) new_actor, actor_info = update_actor(key, actor, new_critic, temp, batch) rng, key = jax.random.split(rng) new_value, value_info = update_v(key, new_actor, new_critic, value, temp, batch, True) if update_target: new_target_value = target_update(new_value, target_value, tau) else: new_target_value = target_value new_temp, alpha_info = temperature.update(temp, actor_info['entropy'], target_entropy) return rng, new_actor, new_critic, new_value, new_target_value, new_temp, { **critic_info, **value_info, **actor_info, **alpha_info } class SACV1Learner(object): def __init__(self, seed: int, observations: jnp.ndarray, actions: jnp.ndarray, actor_lr: float = 3e-4, value_lr: float = 3e-4, critic_lr: float = 3e-4, temp_lr: float = 3e-4, hidden_dims: Sequence[int] = (256, 256), discount: float = 0.99, tau: float = 0.005, target_update_period: int = 1, target_entropy: Optional[float] = None, init_temperature: float = 1.0): """ An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290 """ action_dim = actions.shape[-1] if target_entropy is None: self.target_entropy = -action_dim / 2 else: self.target_entropy = target_entropy self.tau = tau self.target_update_period = target_update_period self.discount = discount rng = jax.random.PRNGKey(seed) rng, actor_key, critic_key, temp_key = jax.random.split(rng, 4) actor_def = policies.NormalTanhPolicy(hidden_dims, action_dim) actor = Model.create(actor_def, inputs=[actor_key, observations], tx=optax.adam(learning_rate=actor_lr)) critic_def = critic_net.DoubleCritic(hidden_dims) critic = Model.create(critic_def, inputs=[critic_key, observations, actions], tx=optax.adam(learning_rate=critic_lr)) value_def = critic_net.ValueCritic(hidden_dims) value = Model.create(value_def, inputs=[critic_key, observations], tx=optax.adam(learning_rate=value_lr)) target_value = Model.create(value_def, inputs=[critic_key, observations]) temp = Model.create(temperature.Temperature(init_temperature), inputs=[temp_key], tx=optax.adam(learning_rate=temp_lr)) self.actor = actor self.critic = critic self.value = value self.target_value = target_value self.temp = temp self.rng = rng self.step = 1 def sample_actions(self, observations: np.ndarray, temperature: float = 1.0) -> jnp.ndarray: rng, actions = policies.sample_actions(self.rng, self.actor.apply_fn, self.actor.params, observations, temperature) self.rng = rng actions = np.asarray(actions) return np.clip(actions, -1, 1) def update(self, batch: Batch) -> InfoDict: self.step += 1 new_rng, new_actor, new_critic, new_value, new_target_value, new_temp, info = _update_jit( self.rng, self.actor, self.critic, self.value, self.target_value, self.temp, batch, self.discount, self.tau, self.target_entropy, self.step % self.target_update_period == 0) self.rng = new_rng self.actor = new_actor self.critic = new_critic self.value = new_value self.target_value = new_target_value self.temp = new_temp return info
en
0.776898
Implementations of algorithms for continuous control. An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290
2.141357
2
rbc/libfuncs.py
plures/rbc
1
9482
"""Collections of library function names. """ class Library: """Base class for a collection of library function names. """ @staticmethod def get(libname, _cache={}): if libname in _cache: return _cache[libname] if libname == 'stdlib': r = Stdlib() elif libname == 'stdio': r = Stdio() elif libname == 'm': r = Mlib() elif libname == 'libdevice': r = Libdevice() elif libname == 'nvvm': r = NVVMIntrinsics() elif libname == 'llvm': r = LLVMIntrinsics() elif libname == 'heavydb': r = HeavyDB() else: raise ValueError(f'Unknown library {libname}') _cache[libname] = r return r def __contains__(self, fname): return self.check(fname) def check(self, fname): """ Return True if library contains a function with given name. """ if fname in self._function_names: return True for func in self._function_names: if func.endswith('.*') and fname.startswith(func[:-2]): return True return False class HeavyDB(Library): name = 'heavydb' _function_names = list(''' allocate_varlen_buffer set_output_row_size TableFunctionManager_error_message TableFunctionManager_set_output_row_size table_function_error '''.strip().split()) class Stdlib(Library): """ Reference: http://www.cplusplus.com/reference/cstdlib/ """ name = 'stdlib' _function_names = list(''' atof atoi atol atoll strtod strtof strtol strtold strtoll strtoul strtoull rand srand calloc free malloc realloc abort atexit at_quick_exit exit getenv quick_exit system bsearch qsort abs div labs ldiv llabs lldiv mblen mbtowc wctomb mbstowcs wcstombs '''.strip().split()) class Stdio(Library): """ Reference: http://www.cplusplus.com/reference/cstdio/ """ name = 'stdio' _function_names = list(''' remove rename tmpfile tmpnam fclose fflush fopen freopen setbuf setvbuf fprintf fscanf printf scanf snprintf sprintf sscanf vfprintf vfscanf vprintf vscanf vsnprintf vsprintf vsscanf fgetc fgets fputc fputs getc getchar gets putc putchar puts ungetc fread fwrite fgetpos fseek fsetpos ftell rewind clearerr feof ferror perror '''.strip().split()) class Mlib(Library): """ References: https://www.gnu.org/software/libc/manual/html_node/Mathematics.html https://en.cppreference.com/w/cpp/header/cmath """ name = 'm' _function_names = list('''sin sinf sinl cos cosf cosl tan tanf tanl sincos sincosf sincosl csin csinf csinl ccos ccosf ccosl ctan ctanf ctanl asin asinf asinl acos acosf acosl atan atanf atanl atan2 atan2f atan2l casin casinf casinl cacos cacosf cacosl catan catanf catanl exp expf expl exp2 exp2f exp2l exp10 exp10f exp10l log logf logl log2 log2f log2l log10 log10f log10l logb logbf logbl ilogb ilogbf ilogbl pow powf powl sqrt sqrtf sqrtl cbrt cbrtf cbrtl hypot hypotf hypotl expm1 expm1f expm1l log1p log1pf log1pl clog clogf clogl clog10 clog10f clog10l csqrt csqrtf csqrtl cpow cpowf cpowl sinh sinhf sinhl cosh coshf coshl tanh tanhf tanhl csinh csinhf csinhl ccosh ccoshf ccoshl ctanh ctanhf ctanhl asinh asinhf asinhl acosh acoshf acoshl atanh atanhf atanhl casinh casinhf casinhl cacosh cacoshf cacoshl catanh catanhf catanhl erf erff erfl erfc erfcf erfcl lgamma lgammaf lgammal tgamma tgammaf tgammal lgamma_r lgammaf_r lgammal_r gamma gammaf gammal j0 j0f j0l j1 j1f j1l jn jnf jnl y0 y0f y0l y1 y1f y1l yn ynf ynl rand srand rand_r random srandom initstate setstate random_r srandom_r initstate_r setstate_r drand48 erand48 lrand48 nrand48 mrand48 jrand48 srand48 seed48 lcong48 drand48_r erand48_r lrand48_r nrand48_r mrand48_r jrand48_r srand48_r seed48_r lcong48_r abs labs llabs fabs fabsf fabsl cabs cabsf cabsl frexp frexpf frexpl ldexp ldexpf ldexpl scalb scalbf scalbl scalbn scalbnf scalbnl significand significandf significandl ceil ceilf ceill floor floorf floorl trunc truncf truncl rint rintf rintl nearbyint nearbyintf nearbyintl round roundf roundl roundeven roundevenf roundevenl lrint lrintf lrintl lround lroundf lroundl llround llroundf llroundl fromfp fromfpf fromfpl ufromfp ufromfpf ufromfpl fromfpx fromfpxf fromfpxl ufromfpx ufromfpxf ufromfpxl modf modff modfl fmod fmodf fmodl remainder remainderf remainderl drem dremf dreml copysign copysignf copysignl signbit signbitf signbitl nextafter nextafterf nextafterl nexttoward nexttowardf nexttowardl nextup nextupf nextupl nextdown nextdownf nextdownl nan nanf nanl canonicalize canonicalizef canonicalizel getpayload getpayloadf getpayloadl setpayload setpayloadf setpayloadl setpayloadsig setpayloadsigf setpayloadsigl isgreater isgreaterequal isless islessequal islessgreater isunordered iseqsig totalorder totalorderf totalorderl totalordermag totalorderf totalorderl fmin fminf fminl fmax fmaxf fmaxl fminmag fminmagf fminmagl fmaxmag fmaxmagf fmaxmagl fdim fdimf fdiml fma fmaf fmal fadd faddf faddl fsub fsubf fsubl fmul fmulf fmull fdiv fdivf fdivl llrint llrintf llrintl'''.strip().split()) def drop_suffix(f): s = f.rsplit('.', 1)[-1] if s in ['p0i8', 'f64', 'f32', 'i1', 'i8', 'i16', 'i32', 'i64', 'i128']: f = f[:-len(s)-1] return drop_suffix(f) return f def get_llvm_name(f, prefix='llvm.'): """Return normalized name of a llvm intrinsic name. """ if f.startswith(prefix): return drop_suffix(f[len(prefix):]) return f class LLVMIntrinsics(Library): """LLVM intrinsic function names with prefix `llvm.` removed. Reference: https://llvm.org/docs/LangRef.html#intrinsic-functions """ name = 'llvm' def check(self, fname): if fname.startswith('llvm.'): return Library.check(self, get_llvm_name(fname)) return False _function_names = list(''' va_start va_end va_copy gcroot gcread gcwrite returnaddress addressofreturnaddress sponentry frameaddress stacksave stackrestore get.dynamic.area.offset prefetch pcmarker readcyclecounter clear_cache instrprof.increment instrprof.increment.step instrprof.value.profile thread.pointer call.preallocated.setup call.preallocated.arg call.preallocated.teardown abs smax smin umax umin memcpy memcpy.inline memmove sqrt powi sin cos pow exp exp2 log log10 log2 fma fabs minnum maxnum minimum maximum copysign floor ceil trunc rint nearbyint round roundeven lround llround lrint llrint ctpop ctlz cttz fshl fshr sadd.with.overflow uadd.with.overflow ssub.with.overflow usub.with.overflow smul.with.overflow umul.with.overflow sadd.sat uadd.sat ssub.sat usub.sat sshl.sat ushl.sat smul.fix umul.fix smul.fix.sat umul.fix.sat sdiv.fix udiv.fix sdiv.fix.sat udiv.fix.sat canonicalize fmuladd set.loop.iterations test.set.loop.iterations loop.decrement.reg loop.decrement vector.reduce.add vector.reduce.fadd vector.reduce.mul vector.reduce.fmul vector.reduce.and vector.reduce.or vector.reduce.xor vector.reduce.smax vector.reduce.smin vector.reduce.umax vector.reduce.umin vector.reduce.fmax vector.reduce.fmin matrix.transpose matrix.multiply matrix.column.major.load matrix.column.major.store convert.to.fp16 convert.from.fp16 init.trampoline adjust.trampoline lifetime.start lifetime.end invariant.start invariant.end launder.invariant.group strip.invariant.group experimental.constrained.fadd experimental.constrained.fsub experimental.constrained.fmul experimental.constrained.fdiv experimental.constrained.frem experimental.constrained.fma experimental.constrained.fptoui experimental.constrained.fptosi experimental.constrained.uitofp experimental.constrained.sitofp experimental.constrained.fptrunc experimental.constrained.fpext experimental.constrained.fmuladd experimental.constrained.sqrt experimental.constrained.pow experimental.constrained.powi experimental.constrained.sin experimental.constrained.cos experimental.constrained.exp experimental.constrained.exp2 experimental.constrained.log experimental.constrained.log10 experimental.constrained.log2 experimental.constrained.rint experimental.constrained.lrint experimental.constrained.llrint experimental.constrained.nearbyint experimental.constrained.maxnum experimental.constrained.minnum experimental.constrained.maximum experimental.constrained.minimum experimental.constrained.ceil experimental.constrained.floor experimental.constrained.round experimental.constrained.roundeven experimental.constrained.lround experimental.constrained.llround experimental.constrained.trunc experimental.gc.statepoint experimental.gc.result experimental.gc.relocate experimental.gc.get.pointer.base experimental.gc.get.pointer.offset experimental.vector.reduce.add.* experimental.vector.reduce.fadd.* experimental.vector.reduce.mul.* experimental.vector.reduce.fmul.* experimental.vector.reduce.and.* experimental.vector.reduce.or.* experimental.vector.reduce.xor.* experimental.vector.reduce.smax.* experimental.vector.reduce.smin.* experimental.vector.reduce.umax.* experimental.vector.reduce.umin.* experimental.vector.reduce.fmax.* experimental.vector.reduce.fmin.* flt.rounds var.annotation ptr.annotation annotation codeview.annotation trap debugtrap stackprotector stackguard objectsize expect expect.with.probability assume ssa_copy type.test type.checked.load donothing experimental.deoptimize experimental.guard experimental.widenable.condition load.relative sideeffect is.constant ptrmask vscale memcpy.element.unordered.atomic memmove.element.unordered.atomic memset.element.unordered.atomic objc.autorelease objc.autoreleasePoolPop objc.autoreleasePoolPush objc.autoreleaseReturnValue objc.copyWeak objc.destroyWeak objc.initWeak objc.loadWeak objc.loadWeakRetained objc.moveWeak objc.release objc.retain objc.retainAutorelease objc.retainAutoreleaseReturnValue objc.retainAutoreleasedReturnValue objc.retainBlock objc.storeStrong objc.storeWeak preserve.array.access.index preserve.union.access.index preserve.struct.access.index masked.store.* memset'''.strip().split()) class NVVMIntrinsics(Library): """NVVM intrinsic function names with prefix `llvm.` removed. Reference: https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html#intrinsic-functions """ name = 'nvvm' def check(self, fname): if fname.startswith('llvm.'): return Library.check(self, get_llvm_name(fname)) return False _function_names = list(''' memcpy memmove memset sqrt fma bswap ctpop ctlz cttz fmuladd convert.to.fp16.f32 convert.from.fp16.f32 convert.to.fp16 convert.from.fp16 lifetime.start lifetime.end invariant.start invariant.end var.annotation ptr.annotation annotation expect donothing '''.strip().split()) class Libdevice(Library): """NVIDIA libdevice function names with prefix `__nv_` removed. Reference: https://docs.nvidia.com/cuda/libdevice-users-guide/function-desc.html#function-desc """ name = 'libdevice' def check(self, fname): if fname.startswith('__nv_'): return Library.check(self, get_llvm_name(fname, prefix='__nv_')) return False _function_names = list(''' abs acos acosf acosh acoshf asin asinf asinh asinhf atan atan2 atan2f atanf atanh atanhf brev brevll byte_perm cbrt cbrtf ceil ceilf clz clzll copysign copysignf cos cosf cosh coshf cospi cospif dadd_rd dadd_rn dadd_ru dadd_rz ddiv_rd ddiv_rn ddiv_ru ddiv_rz dmul_rd dmul_rn dmul_ru dmul_rz double2float_rd double2float_rn double2float_ru double2float_rz double2hiint double2int_rd double2int_rn double2int_ru double2int_rz double2ll_rd double2ll_rn double2ll_ru double2ll_rz double2loint double2uint_rd double2uint_rn double2uint_ru double2uint_rz double2ull_rd double2ull_rn double2ull_ru double2ull_rz double_as_longlong drcp_rd drcp_rn drcp_ru drcp_rz dsqrt_rd dsqrt_rn dsqrt_ru dsqrt_rz erf erfc erfcf erfcinv erfcinvf erfcx erfcxf erff erfinv erfinvf exp exp10 exp10f exp2 exp2f expf expm1 expm1f fabs fabsf fadd_rd fadd_rn fadd_ru fadd_rz fast_cosf fast_exp10f fast_expf fast_fdividef fast_log10f fast_log2f fast_logf fast_powf fast_sincosf fast_sinf fast_tanf fdim fdimf fdiv_rd fdiv_rn fdiv_ru fdiv_rz ffs ffsll finitef float2half_rn float2int_rd float2int_rn float2int_ru float2int_rz float2ll_rd float2ll_rn float2ll_ru float2ll_rz float2uint_rd float2uint_rn float2uint_ru float2uint_rz float2ull_rd float2ull_rn float2ull_ru float2ull_rz float_as_int floor floorf fma fma_rd fma_rn fma_ru fma_rz fmaf fmaf_rd fmaf_rn fmaf_ru fmaf_rz fmax fmaxf fmin fminf fmod fmodf fmul_rd fmul_rn fmul_ru fmul_rz frcp_rd frcp_rn frcp_ru frcp_rz frexp frexpf frsqrt_rn fsqrt_rd fsqrt_rn fsqrt_ru fsqrt_rz fsub_rd fsub_rn fsub_ru fsub_rz hadd half2float hiloint2double hypot hypotf ilogb ilogbf int2double_rn int2float_rd int2float_rn int2float_ru int2float_rz int_as_float isfinited isinfd isinff isnand isnanf j0 j0f j1 j1f jn jnf ldexp ldexpf lgamma lgammaf ll2double_rd ll2double_rn ll2double_ru ll2double_rz ll2float_rd ll2float_rn ll2float_ru ll2float_rz llabs llmax llmin llrint llrintf llround llroundf log log10 log10f log1p log1pf log2 log2f logb logbf logf longlong_as_double max min modf modff mul24 mul64hi mulhi nan nanf nearbyint nearbyintf nextafter nextafterf normcdf normcdff normcdfinv normcdfinvf popc popcll pow powf powi powif rcbrt rcbrtf remainder remainderf remquo remquof rhadd rint rintf round roundf rsqrt rsqrtf sad saturatef scalbn scalbnf signbitd signbitf sin sincos sincosf sincospi sincospif sinf sinh sinhf sinpi sinpif sqrt sqrtf tan tanf tanh tanhf tgamma tgammaf trunc truncf uhadd uint2double_rn uint2float_rd uint2float_rn uint2float_ru uint2float_rz ull2double_rd ull2double_rn ull2double_ru ull2double_rz ull2float_rd ull2float_rn ull2float_ru ull2float_rz ullmax ullmin umax umin umul24 umul64hi umulhi urhadd usad y0 y0f y1 y1f yn ynf '''.strip().split())
"""Collections of library function names. """ class Library: """Base class for a collection of library function names. """ @staticmethod def get(libname, _cache={}): if libname in _cache: return _cache[libname] if libname == 'stdlib': r = Stdlib() elif libname == 'stdio': r = Stdio() elif libname == 'm': r = Mlib() elif libname == 'libdevice': r = Libdevice() elif libname == 'nvvm': r = NVVMIntrinsics() elif libname == 'llvm': r = LLVMIntrinsics() elif libname == 'heavydb': r = HeavyDB() else: raise ValueError(f'Unknown library {libname}') _cache[libname] = r return r def __contains__(self, fname): return self.check(fname) def check(self, fname): """ Return True if library contains a function with given name. """ if fname in self._function_names: return True for func in self._function_names: if func.endswith('.*') and fname.startswith(func[:-2]): return True return False class HeavyDB(Library): name = 'heavydb' _function_names = list(''' allocate_varlen_buffer set_output_row_size TableFunctionManager_error_message TableFunctionManager_set_output_row_size table_function_error '''.strip().split()) class Stdlib(Library): """ Reference: http://www.cplusplus.com/reference/cstdlib/ """ name = 'stdlib' _function_names = list(''' atof atoi atol atoll strtod strtof strtol strtold strtoll strtoul strtoull rand srand calloc free malloc realloc abort atexit at_quick_exit exit getenv quick_exit system bsearch qsort abs div labs ldiv llabs lldiv mblen mbtowc wctomb mbstowcs wcstombs '''.strip().split()) class Stdio(Library): """ Reference: http://www.cplusplus.com/reference/cstdio/ """ name = 'stdio' _function_names = list(''' remove rename tmpfile tmpnam fclose fflush fopen freopen setbuf setvbuf fprintf fscanf printf scanf snprintf sprintf sscanf vfprintf vfscanf vprintf vscanf vsnprintf vsprintf vsscanf fgetc fgets fputc fputs getc getchar gets putc putchar puts ungetc fread fwrite fgetpos fseek fsetpos ftell rewind clearerr feof ferror perror '''.strip().split()) class Mlib(Library): """ References: https://www.gnu.org/software/libc/manual/html_node/Mathematics.html https://en.cppreference.com/w/cpp/header/cmath """ name = 'm' _function_names = list('''sin sinf sinl cos cosf cosl tan tanf tanl sincos sincosf sincosl csin csinf csinl ccos ccosf ccosl ctan ctanf ctanl asin asinf asinl acos acosf acosl atan atanf atanl atan2 atan2f atan2l casin casinf casinl cacos cacosf cacosl catan catanf catanl exp expf expl exp2 exp2f exp2l exp10 exp10f exp10l log logf logl log2 log2f log2l log10 log10f log10l logb logbf logbl ilogb ilogbf ilogbl pow powf powl sqrt sqrtf sqrtl cbrt cbrtf cbrtl hypot hypotf hypotl expm1 expm1f expm1l log1p log1pf log1pl clog clogf clogl clog10 clog10f clog10l csqrt csqrtf csqrtl cpow cpowf cpowl sinh sinhf sinhl cosh coshf coshl tanh tanhf tanhl csinh csinhf csinhl ccosh ccoshf ccoshl ctanh ctanhf ctanhl asinh asinhf asinhl acosh acoshf acoshl atanh atanhf atanhl casinh casinhf casinhl cacosh cacoshf cacoshl catanh catanhf catanhl erf erff erfl erfc erfcf erfcl lgamma lgammaf lgammal tgamma tgammaf tgammal lgamma_r lgammaf_r lgammal_r gamma gammaf gammal j0 j0f j0l j1 j1f j1l jn jnf jnl y0 y0f y0l y1 y1f y1l yn ynf ynl rand srand rand_r random srandom initstate setstate random_r srandom_r initstate_r setstate_r drand48 erand48 lrand48 nrand48 mrand48 jrand48 srand48 seed48 lcong48 drand48_r erand48_r lrand48_r nrand48_r mrand48_r jrand48_r srand48_r seed48_r lcong48_r abs labs llabs fabs fabsf fabsl cabs cabsf cabsl frexp frexpf frexpl ldexp ldexpf ldexpl scalb scalbf scalbl scalbn scalbnf scalbnl significand significandf significandl ceil ceilf ceill floor floorf floorl trunc truncf truncl rint rintf rintl nearbyint nearbyintf nearbyintl round roundf roundl roundeven roundevenf roundevenl lrint lrintf lrintl lround lroundf lroundl llround llroundf llroundl fromfp fromfpf fromfpl ufromfp ufromfpf ufromfpl fromfpx fromfpxf fromfpxl ufromfpx ufromfpxf ufromfpxl modf modff modfl fmod fmodf fmodl remainder remainderf remainderl drem dremf dreml copysign copysignf copysignl signbit signbitf signbitl nextafter nextafterf nextafterl nexttoward nexttowardf nexttowardl nextup nextupf nextupl nextdown nextdownf nextdownl nan nanf nanl canonicalize canonicalizef canonicalizel getpayload getpayloadf getpayloadl setpayload setpayloadf setpayloadl setpayloadsig setpayloadsigf setpayloadsigl isgreater isgreaterequal isless islessequal islessgreater isunordered iseqsig totalorder totalorderf totalorderl totalordermag totalorderf totalorderl fmin fminf fminl fmax fmaxf fmaxl fminmag fminmagf fminmagl fmaxmag fmaxmagf fmaxmagl fdim fdimf fdiml fma fmaf fmal fadd faddf faddl fsub fsubf fsubl fmul fmulf fmull fdiv fdivf fdivl llrint llrintf llrintl'''.strip().split()) def drop_suffix(f): s = f.rsplit('.', 1)[-1] if s in ['p0i8', 'f64', 'f32', 'i1', 'i8', 'i16', 'i32', 'i64', 'i128']: f = f[:-len(s)-1] return drop_suffix(f) return f def get_llvm_name(f, prefix='llvm.'): """Return normalized name of a llvm intrinsic name. """ if f.startswith(prefix): return drop_suffix(f[len(prefix):]) return f class LLVMIntrinsics(Library): """LLVM intrinsic function names with prefix `llvm.` removed. Reference: https://llvm.org/docs/LangRef.html#intrinsic-functions """ name = 'llvm' def check(self, fname): if fname.startswith('llvm.'): return Library.check(self, get_llvm_name(fname)) return False _function_names = list(''' va_start va_end va_copy gcroot gcread gcwrite returnaddress addressofreturnaddress sponentry frameaddress stacksave stackrestore get.dynamic.area.offset prefetch pcmarker readcyclecounter clear_cache instrprof.increment instrprof.increment.step instrprof.value.profile thread.pointer call.preallocated.setup call.preallocated.arg call.preallocated.teardown abs smax smin umax umin memcpy memcpy.inline memmove sqrt powi sin cos pow exp exp2 log log10 log2 fma fabs minnum maxnum minimum maximum copysign floor ceil trunc rint nearbyint round roundeven lround llround lrint llrint ctpop ctlz cttz fshl fshr sadd.with.overflow uadd.with.overflow ssub.with.overflow usub.with.overflow smul.with.overflow umul.with.overflow sadd.sat uadd.sat ssub.sat usub.sat sshl.sat ushl.sat smul.fix umul.fix smul.fix.sat umul.fix.sat sdiv.fix udiv.fix sdiv.fix.sat udiv.fix.sat canonicalize fmuladd set.loop.iterations test.set.loop.iterations loop.decrement.reg loop.decrement vector.reduce.add vector.reduce.fadd vector.reduce.mul vector.reduce.fmul vector.reduce.and vector.reduce.or vector.reduce.xor vector.reduce.smax vector.reduce.smin vector.reduce.umax vector.reduce.umin vector.reduce.fmax vector.reduce.fmin matrix.transpose matrix.multiply matrix.column.major.load matrix.column.major.store convert.to.fp16 convert.from.fp16 init.trampoline adjust.trampoline lifetime.start lifetime.end invariant.start invariant.end launder.invariant.group strip.invariant.group experimental.constrained.fadd experimental.constrained.fsub experimental.constrained.fmul experimental.constrained.fdiv experimental.constrained.frem experimental.constrained.fma experimental.constrained.fptoui experimental.constrained.fptosi experimental.constrained.uitofp experimental.constrained.sitofp experimental.constrained.fptrunc experimental.constrained.fpext experimental.constrained.fmuladd experimental.constrained.sqrt experimental.constrained.pow experimental.constrained.powi experimental.constrained.sin experimental.constrained.cos experimental.constrained.exp experimental.constrained.exp2 experimental.constrained.log experimental.constrained.log10 experimental.constrained.log2 experimental.constrained.rint experimental.constrained.lrint experimental.constrained.llrint experimental.constrained.nearbyint experimental.constrained.maxnum experimental.constrained.minnum experimental.constrained.maximum experimental.constrained.minimum experimental.constrained.ceil experimental.constrained.floor experimental.constrained.round experimental.constrained.roundeven experimental.constrained.lround experimental.constrained.llround experimental.constrained.trunc experimental.gc.statepoint experimental.gc.result experimental.gc.relocate experimental.gc.get.pointer.base experimental.gc.get.pointer.offset experimental.vector.reduce.add.* experimental.vector.reduce.fadd.* experimental.vector.reduce.mul.* experimental.vector.reduce.fmul.* experimental.vector.reduce.and.* experimental.vector.reduce.or.* experimental.vector.reduce.xor.* experimental.vector.reduce.smax.* experimental.vector.reduce.smin.* experimental.vector.reduce.umax.* experimental.vector.reduce.umin.* experimental.vector.reduce.fmax.* experimental.vector.reduce.fmin.* flt.rounds var.annotation ptr.annotation annotation codeview.annotation trap debugtrap stackprotector stackguard objectsize expect expect.with.probability assume ssa_copy type.test type.checked.load donothing experimental.deoptimize experimental.guard experimental.widenable.condition load.relative sideeffect is.constant ptrmask vscale memcpy.element.unordered.atomic memmove.element.unordered.atomic memset.element.unordered.atomic objc.autorelease objc.autoreleasePoolPop objc.autoreleasePoolPush objc.autoreleaseReturnValue objc.copyWeak objc.destroyWeak objc.initWeak objc.loadWeak objc.loadWeakRetained objc.moveWeak objc.release objc.retain objc.retainAutorelease objc.retainAutoreleaseReturnValue objc.retainAutoreleasedReturnValue objc.retainBlock objc.storeStrong objc.storeWeak preserve.array.access.index preserve.union.access.index preserve.struct.access.index masked.store.* memset'''.strip().split()) class NVVMIntrinsics(Library): """NVVM intrinsic function names with prefix `llvm.` removed. Reference: https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html#intrinsic-functions """ name = 'nvvm' def check(self, fname): if fname.startswith('llvm.'): return Library.check(self, get_llvm_name(fname)) return False _function_names = list(''' memcpy memmove memset sqrt fma bswap ctpop ctlz cttz fmuladd convert.to.fp16.f32 convert.from.fp16.f32 convert.to.fp16 convert.from.fp16 lifetime.start lifetime.end invariant.start invariant.end var.annotation ptr.annotation annotation expect donothing '''.strip().split()) class Libdevice(Library): """NVIDIA libdevice function names with prefix `__nv_` removed. Reference: https://docs.nvidia.com/cuda/libdevice-users-guide/function-desc.html#function-desc """ name = 'libdevice' def check(self, fname): if fname.startswith('__nv_'): return Library.check(self, get_llvm_name(fname, prefix='__nv_')) return False _function_names = list(''' abs acos acosf acosh acoshf asin asinf asinh asinhf atan atan2 atan2f atanf atanh atanhf brev brevll byte_perm cbrt cbrtf ceil ceilf clz clzll copysign copysignf cos cosf cosh coshf cospi cospif dadd_rd dadd_rn dadd_ru dadd_rz ddiv_rd ddiv_rn ddiv_ru ddiv_rz dmul_rd dmul_rn dmul_ru dmul_rz double2float_rd double2float_rn double2float_ru double2float_rz double2hiint double2int_rd double2int_rn double2int_ru double2int_rz double2ll_rd double2ll_rn double2ll_ru double2ll_rz double2loint double2uint_rd double2uint_rn double2uint_ru double2uint_rz double2ull_rd double2ull_rn double2ull_ru double2ull_rz double_as_longlong drcp_rd drcp_rn drcp_ru drcp_rz dsqrt_rd dsqrt_rn dsqrt_ru dsqrt_rz erf erfc erfcf erfcinv erfcinvf erfcx erfcxf erff erfinv erfinvf exp exp10 exp10f exp2 exp2f expf expm1 expm1f fabs fabsf fadd_rd fadd_rn fadd_ru fadd_rz fast_cosf fast_exp10f fast_expf fast_fdividef fast_log10f fast_log2f fast_logf fast_powf fast_sincosf fast_sinf fast_tanf fdim fdimf fdiv_rd fdiv_rn fdiv_ru fdiv_rz ffs ffsll finitef float2half_rn float2int_rd float2int_rn float2int_ru float2int_rz float2ll_rd float2ll_rn float2ll_ru float2ll_rz float2uint_rd float2uint_rn float2uint_ru float2uint_rz float2ull_rd float2ull_rn float2ull_ru float2ull_rz float_as_int floor floorf fma fma_rd fma_rn fma_ru fma_rz fmaf fmaf_rd fmaf_rn fmaf_ru fmaf_rz fmax fmaxf fmin fminf fmod fmodf fmul_rd fmul_rn fmul_ru fmul_rz frcp_rd frcp_rn frcp_ru frcp_rz frexp frexpf frsqrt_rn fsqrt_rd fsqrt_rn fsqrt_ru fsqrt_rz fsub_rd fsub_rn fsub_ru fsub_rz hadd half2float hiloint2double hypot hypotf ilogb ilogbf int2double_rn int2float_rd int2float_rn int2float_ru int2float_rz int_as_float isfinited isinfd isinff isnand isnanf j0 j0f j1 j1f jn jnf ldexp ldexpf lgamma lgammaf ll2double_rd ll2double_rn ll2double_ru ll2double_rz ll2float_rd ll2float_rn ll2float_ru ll2float_rz llabs llmax llmin llrint llrintf llround llroundf log log10 log10f log1p log1pf log2 log2f logb logbf logf longlong_as_double max min modf modff mul24 mul64hi mulhi nan nanf nearbyint nearbyintf nextafter nextafterf normcdf normcdff normcdfinv normcdfinvf popc popcll pow powf powi powif rcbrt rcbrtf remainder remainderf remquo remquof rhadd rint rintf round roundf rsqrt rsqrtf sad saturatef scalbn scalbnf signbitd signbitf sin sincos sincosf sincospi sincospif sinf sinh sinhf sinpi sinpif sqrt sqrtf tan tanf tanh tanhf tgamma tgammaf trunc truncf uhadd uint2double_rn uint2float_rd uint2float_rn uint2float_ru uint2float_rz ull2double_rd ull2double_rn ull2double_ru ull2double_rz ull2float_rd ull2float_rn ull2float_ru ull2float_rz ullmax ullmin umax umin umul24 umul64hi umulhi urhadd usad y0 y0f y1 y1f yn ynf '''.strip().split())
en
0.290133
Collections of library function names. Base class for a collection of library function names. Return True if library contains a function with given name. allocate_varlen_buffer set_output_row_size TableFunctionManager_error_message TableFunctionManager_set_output_row_size table_function_error Reference: http://www.cplusplus.com/reference/cstdlib/ atof atoi atol atoll strtod strtof strtol strtold strtoll strtoul strtoull rand srand calloc free malloc realloc abort atexit at_quick_exit exit getenv quick_exit system bsearch qsort abs div labs ldiv llabs lldiv mblen mbtowc wctomb mbstowcs wcstombs Reference: http://www.cplusplus.com/reference/cstdio/ remove rename tmpfile tmpnam fclose fflush fopen freopen setbuf setvbuf fprintf fscanf printf scanf snprintf sprintf sscanf vfprintf vfscanf vprintf vscanf vsnprintf vsprintf vsscanf fgetc fgets fputc fputs getc getchar gets putc putchar puts ungetc fread fwrite fgetpos fseek fsetpos ftell rewind clearerr feof ferror perror References: https://www.gnu.org/software/libc/manual/html_node/Mathematics.html https://en.cppreference.com/w/cpp/header/cmath sin sinf sinl cos cosf cosl tan tanf tanl sincos sincosf sincosl csin csinf csinl ccos ccosf ccosl ctan ctanf ctanl asin asinf asinl acos acosf acosl atan atanf atanl atan2 atan2f atan2l casin casinf casinl cacos cacosf cacosl catan catanf catanl exp expf expl exp2 exp2f exp2l exp10 exp10f exp10l log logf logl log2 log2f log2l log10 log10f log10l logb logbf logbl ilogb ilogbf ilogbl pow powf powl sqrt sqrtf sqrtl cbrt cbrtf cbrtl hypot hypotf hypotl expm1 expm1f expm1l log1p log1pf log1pl clog clogf clogl clog10 clog10f clog10l csqrt csqrtf csqrtl cpow cpowf cpowl sinh sinhf sinhl cosh coshf coshl tanh tanhf tanhl csinh csinhf csinhl ccosh ccoshf ccoshl ctanh ctanhf ctanhl asinh asinhf asinhl acosh acoshf acoshl atanh atanhf atanhl casinh casinhf casinhl cacosh cacoshf cacoshl catanh catanhf catanhl erf erff erfl erfc erfcf erfcl lgamma lgammaf lgammal tgamma tgammaf tgammal lgamma_r lgammaf_r lgammal_r gamma gammaf gammal j0 j0f j0l j1 j1f j1l jn jnf jnl y0 y0f y0l y1 y1f y1l yn ynf ynl rand srand rand_r random srandom initstate setstate random_r srandom_r initstate_r setstate_r drand48 erand48 lrand48 nrand48 mrand48 jrand48 srand48 seed48 lcong48 drand48_r erand48_r lrand48_r nrand48_r mrand48_r jrand48_r srand48_r seed48_r lcong48_r abs labs llabs fabs fabsf fabsl cabs cabsf cabsl frexp frexpf frexpl ldexp ldexpf ldexpl scalb scalbf scalbl scalbn scalbnf scalbnl significand significandf significandl ceil ceilf ceill floor floorf floorl trunc truncf truncl rint rintf rintl nearbyint nearbyintf nearbyintl round roundf roundl roundeven roundevenf roundevenl lrint lrintf lrintl lround lroundf lroundl llround llroundf llroundl fromfp fromfpf fromfpl ufromfp ufromfpf ufromfpl fromfpx fromfpxf fromfpxl ufromfpx ufromfpxf ufromfpxl modf modff modfl fmod fmodf fmodl remainder remainderf remainderl drem dremf dreml copysign copysignf copysignl signbit signbitf signbitl nextafter nextafterf nextafterl nexttoward nexttowardf nexttowardl nextup nextupf nextupl nextdown nextdownf nextdownl nan nanf nanl canonicalize canonicalizef canonicalizel getpayload getpayloadf getpayloadl setpayload setpayloadf setpayloadl setpayloadsig setpayloadsigf setpayloadsigl isgreater isgreaterequal isless islessequal islessgreater isunordered iseqsig totalorder totalorderf totalorderl totalordermag totalorderf totalorderl fmin fminf fminl fmax fmaxf fmaxl fminmag fminmagf fminmagl fmaxmag fmaxmagf fmaxmagl fdim fdimf fdiml fma fmaf fmal fadd faddf faddl fsub fsubf fsubl fmul fmulf fmull fdiv fdivf fdivl llrint llrintf llrintl Return normalized name of a llvm intrinsic name. LLVM intrinsic function names with prefix `llvm.` removed. Reference: https://llvm.org/docs/LangRef.html#intrinsic-functions va_start va_end va_copy gcroot gcread gcwrite returnaddress addressofreturnaddress sponentry frameaddress stacksave stackrestore get.dynamic.area.offset prefetch pcmarker readcyclecounter clear_cache instrprof.increment instrprof.increment.step instrprof.value.profile thread.pointer call.preallocated.setup call.preallocated.arg call.preallocated.teardown abs smax smin umax umin memcpy memcpy.inline memmove sqrt powi sin cos pow exp exp2 log log10 log2 fma fabs minnum maxnum minimum maximum copysign floor ceil trunc rint nearbyint round roundeven lround llround lrint llrint ctpop ctlz cttz fshl fshr sadd.with.overflow uadd.with.overflow ssub.with.overflow usub.with.overflow smul.with.overflow umul.with.overflow sadd.sat uadd.sat ssub.sat usub.sat sshl.sat ushl.sat smul.fix umul.fix smul.fix.sat umul.fix.sat sdiv.fix udiv.fix sdiv.fix.sat udiv.fix.sat canonicalize fmuladd set.loop.iterations test.set.loop.iterations loop.decrement.reg loop.decrement vector.reduce.add vector.reduce.fadd vector.reduce.mul vector.reduce.fmul vector.reduce.and vector.reduce.or vector.reduce.xor vector.reduce.smax vector.reduce.smin vector.reduce.umax vector.reduce.umin vector.reduce.fmax vector.reduce.fmin matrix.transpose matrix.multiply matrix.column.major.load matrix.column.major.store convert.to.fp16 convert.from.fp16 init.trampoline adjust.trampoline lifetime.start lifetime.end invariant.start invariant.end launder.invariant.group strip.invariant.group experimental.constrained.fadd experimental.constrained.fsub experimental.constrained.fmul experimental.constrained.fdiv experimental.constrained.frem experimental.constrained.fma experimental.constrained.fptoui experimental.constrained.fptosi experimental.constrained.uitofp experimental.constrained.sitofp experimental.constrained.fptrunc experimental.constrained.fpext experimental.constrained.fmuladd experimental.constrained.sqrt experimental.constrained.pow experimental.constrained.powi experimental.constrained.sin experimental.constrained.cos experimental.constrained.exp experimental.constrained.exp2 experimental.constrained.log experimental.constrained.log10 experimental.constrained.log2 experimental.constrained.rint experimental.constrained.lrint experimental.constrained.llrint experimental.constrained.nearbyint experimental.constrained.maxnum experimental.constrained.minnum experimental.constrained.maximum experimental.constrained.minimum experimental.constrained.ceil experimental.constrained.floor experimental.constrained.round experimental.constrained.roundeven experimental.constrained.lround experimental.constrained.llround experimental.constrained.trunc experimental.gc.statepoint experimental.gc.result experimental.gc.relocate experimental.gc.get.pointer.base experimental.gc.get.pointer.offset experimental.vector.reduce.add.* experimental.vector.reduce.fadd.* experimental.vector.reduce.mul.* experimental.vector.reduce.fmul.* experimental.vector.reduce.and.* experimental.vector.reduce.or.* experimental.vector.reduce.xor.* experimental.vector.reduce.smax.* experimental.vector.reduce.smin.* experimental.vector.reduce.umax.* experimental.vector.reduce.umin.* experimental.vector.reduce.fmax.* experimental.vector.reduce.fmin.* flt.rounds var.annotation ptr.annotation annotation codeview.annotation trap debugtrap stackprotector stackguard objectsize expect expect.with.probability assume ssa_copy type.test type.checked.load donothing experimental.deoptimize experimental.guard experimental.widenable.condition load.relative sideeffect is.constant ptrmask vscale memcpy.element.unordered.atomic memmove.element.unordered.atomic memset.element.unordered.atomic objc.autorelease objc.autoreleasePoolPop objc.autoreleasePoolPush objc.autoreleaseReturnValue objc.copyWeak objc.destroyWeak objc.initWeak objc.loadWeak objc.loadWeakRetained objc.moveWeak objc.release objc.retain objc.retainAutorelease objc.retainAutoreleaseReturnValue objc.retainAutoreleasedReturnValue objc.retainBlock objc.storeStrong objc.storeWeak preserve.array.access.index preserve.union.access.index preserve.struct.access.index masked.store.* memset NVVM intrinsic function names with prefix `llvm.` removed. Reference: https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html#intrinsic-functions memcpy memmove memset sqrt fma bswap ctpop ctlz cttz fmuladd convert.to.fp16.f32 convert.from.fp16.f32 convert.to.fp16 convert.from.fp16 lifetime.start lifetime.end invariant.start invariant.end var.annotation ptr.annotation annotation expect donothing NVIDIA libdevice function names with prefix `__nv_` removed. Reference: https://docs.nvidia.com/cuda/libdevice-users-guide/function-desc.html#function-desc abs acos acosf acosh acoshf asin asinf asinh asinhf atan atan2 atan2f atanf atanh atanhf brev brevll byte_perm cbrt cbrtf ceil ceilf clz clzll copysign copysignf cos cosf cosh coshf cospi cospif dadd_rd dadd_rn dadd_ru dadd_rz ddiv_rd ddiv_rn ddiv_ru ddiv_rz dmul_rd dmul_rn dmul_ru dmul_rz double2float_rd double2float_rn double2float_ru double2float_rz double2hiint double2int_rd double2int_rn double2int_ru double2int_rz double2ll_rd double2ll_rn double2ll_ru double2ll_rz double2loint double2uint_rd double2uint_rn double2uint_ru double2uint_rz double2ull_rd double2ull_rn double2ull_ru double2ull_rz double_as_longlong drcp_rd drcp_rn drcp_ru drcp_rz dsqrt_rd dsqrt_rn dsqrt_ru dsqrt_rz erf erfc erfcf erfcinv erfcinvf erfcx erfcxf erff erfinv erfinvf exp exp10 exp10f exp2 exp2f expf expm1 expm1f fabs fabsf fadd_rd fadd_rn fadd_ru fadd_rz fast_cosf fast_exp10f fast_expf fast_fdividef fast_log10f fast_log2f fast_logf fast_powf fast_sincosf fast_sinf fast_tanf fdim fdimf fdiv_rd fdiv_rn fdiv_ru fdiv_rz ffs ffsll finitef float2half_rn float2int_rd float2int_rn float2int_ru float2int_rz float2ll_rd float2ll_rn float2ll_ru float2ll_rz float2uint_rd float2uint_rn float2uint_ru float2uint_rz float2ull_rd float2ull_rn float2ull_ru float2ull_rz float_as_int floor floorf fma fma_rd fma_rn fma_ru fma_rz fmaf fmaf_rd fmaf_rn fmaf_ru fmaf_rz fmax fmaxf fmin fminf fmod fmodf fmul_rd fmul_rn fmul_ru fmul_rz frcp_rd frcp_rn frcp_ru frcp_rz frexp frexpf frsqrt_rn fsqrt_rd fsqrt_rn fsqrt_ru fsqrt_rz fsub_rd fsub_rn fsub_ru fsub_rz hadd half2float hiloint2double hypot hypotf ilogb ilogbf int2double_rn int2float_rd int2float_rn int2float_ru int2float_rz int_as_float isfinited isinfd isinff isnand isnanf j0 j0f j1 j1f jn jnf ldexp ldexpf lgamma lgammaf ll2double_rd ll2double_rn ll2double_ru ll2double_rz ll2float_rd ll2float_rn ll2float_ru ll2float_rz llabs llmax llmin llrint llrintf llround llroundf log log10 log10f log1p log1pf log2 log2f logb logbf logf longlong_as_double max min modf modff mul24 mul64hi mulhi nan nanf nearbyint nearbyintf nextafter nextafterf normcdf normcdff normcdfinv normcdfinvf popc popcll pow powf powi powif rcbrt rcbrtf remainder remainderf remquo remquof rhadd rint rintf round roundf rsqrt rsqrtf sad saturatef scalbn scalbnf signbitd signbitf sin sincos sincosf sincospi sincospif sinf sinh sinhf sinpi sinpif sqrt sqrtf tan tanf tanh tanhf tgamma tgammaf trunc truncf uhadd uint2double_rn uint2float_rd uint2float_rn uint2float_ru uint2float_rz ull2double_rd ull2double_rn ull2double_ru ull2double_rz ull2float_rd ull2float_rn ull2float_ru ull2float_rz ullmax ullmin umax umin umul24 umul64hi umulhi urhadd usad y0 y0f y1 y1f yn ynf
2.989768
3
quick_pandas.py
chenmich/google-ml-crash-course-exercises
0
9483
<reponame>chenmich/google-ml-crash-course-exercises<filename>quick_pandas.py<gh_stars>0 import pandas as pd print(pd.__version__) city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento']) population = pd.Series([852469, 1015785, 485199]) #city_population_table = pd.DataFrame(({'City name': city_names, 'Population': population})) california_houseing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",") california_houseing_dataframe.describe() california_houseing_dataframe.head() #some error #california_houseing_dataframe.hist('housing_median_age') cities = pd.DataFrame({'City name': city_names, 'Population': population}) #print(type(cities['City name'])) #print(cities['City name']) #print(type(cities['City name'][1])) #print(cities['City name'][1]) #print(type(cities[0:2])) #print(cities[0:2]) #print(population / 1000) import numpy as np np.log(population) #print(population.apply(lambda val: val > 10000)) cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92]) #print(cities) cities['Population density'] = cities['Population'] / cities['Area square miles'] #print(cities) print(city_names.index) print(cities.reindex([2, 0, 1])) print(cities)
import pandas as pd print(pd.__version__) city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento']) population = pd.Series([852469, 1015785, 485199]) #city_population_table = pd.DataFrame(({'City name': city_names, 'Population': population})) california_houseing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",") california_houseing_dataframe.describe() california_houseing_dataframe.head() #some error #california_houseing_dataframe.hist('housing_median_age') cities = pd.DataFrame({'City name': city_names, 'Population': population}) #print(type(cities['City name'])) #print(cities['City name']) #print(type(cities['City name'][1])) #print(cities['City name'][1]) #print(type(cities[0:2])) #print(cities[0:2]) #print(population / 1000) import numpy as np np.log(population) #print(population.apply(lambda val: val > 10000)) cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92]) #print(cities) cities['Population density'] = cities['Population'] / cities['Area square miles'] #print(cities) print(city_names.index) print(cities.reindex([2, 0, 1])) print(cities)
en
0.347443
#city_population_table = pd.DataFrame(({'City name': city_names, 'Population': population})) #some error #california_houseing_dataframe.hist('housing_median_age') #print(type(cities['City name'])) #print(cities['City name']) #print(type(cities['City name'][1])) #print(cities['City name'][1]) #print(type(cities[0:2])) #print(cities[0:2]) #print(population / 1000) #print(population.apply(lambda val: val > 10000)) #print(cities) #print(cities)
3.39732
3
src/helloworld/__main__.py
paulproteus/briefcase-toga-button-app-with-hacks
2
9484
<reponame>paulproteus/briefcase-toga-button-app-with-hacks from helloworld.app import main if True or __name__ == '__main__': main().main_loop()
from helloworld.app import main if True or __name__ == '__main__': main().main_loop()
none
1
1.878178
2
backend/app/main.py
ianahart/blog
0
9485
<gh_stars>0 from fastapi import FastAPI from dotenv import load_dotenv from fastapi.middleware.cors import CORSMiddleware from app.api.api_v1.api import api_router from app.core.config import settings app = FastAPI() load_dotenv() app.include_router(api_router, prefix=settings.API_V1_STR) # Set all CORS enabled origins if settings.BACKEND_CORS_ORIGINS: app.add_middleware( CORSMiddleware, allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) if __name__ == "__main__": # Use this for debugging purposes only # pyright: reportGeneralTypeIssues=false import uvicorn uvicorn.run(app, host="0.0.0.0", port=8001, log_level="debug")
from fastapi import FastAPI from dotenv import load_dotenv from fastapi.middleware.cors import CORSMiddleware from app.api.api_v1.api import api_router from app.core.config import settings app = FastAPI() load_dotenv() app.include_router(api_router, prefix=settings.API_V1_STR) # Set all CORS enabled origins if settings.BACKEND_CORS_ORIGINS: app.add_middleware( CORSMiddleware, allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) if __name__ == "__main__": # Use this for debugging purposes only # pyright: reportGeneralTypeIssues=false import uvicorn uvicorn.run(app, host="0.0.0.0", port=8001, log_level="debug")
en
0.545152
# Set all CORS enabled origins # Use this for debugging purposes only # pyright: reportGeneralTypeIssues=false
1.98019
2
test_data/samples/alembic_template_output.py
goldstar611/ssort
238
9486
"""Example revision Revision ID: fdf0cf6487a3 Revises: Create Date: 2021-08-09 17:55:19.491713 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "example", sa.Column("example_id", sa.Integer(), nullable=False), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("measurements") # ### end Alembic commands ###
"""Example revision Revision ID: fdf0cf6487a3 Revises: Create Date: 2021-08-09 17:55:19.491713 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "example", sa.Column("example_id", sa.Integer(), nullable=False), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("measurements") # ### end Alembic commands ###
en
0.501392
Example revision Revision ID: fdf0cf6487a3 Revises: Create Date: 2021-08-09 17:55:19.491713 # revision identifiers, used by Alembic. # ### commands auto generated by Alembic - please adjust! ### # ### end Alembic commands ### # ### commands auto generated by Alembic - please adjust! ### # ### end Alembic commands ###
1.539363
2
.archived/snakecode/0173.py
gearbird/calgo
4
9487
<filename>.archived/snakecode/0173.py<gh_stars>1-10 from __future__ import annotations from typing import Optional # Definition for a binary tree node. class TreeNode: def __init__(self, val: int = 0, left: Optional[TreeNode] = None, right: Optional[TreeNode] = None): self.val = val self.left = left self.right = right class BSTIterator: def __init__(self, root: Optional[TreeNode]): self.stack: list[TreeNode] = [] self.cur = root def next(self) -> int: if not self.hasNext(): raise StopIteration() self.cur = self.stack[-1].right return self.stack.pop().val def hasNext(self) -> bool: while self.cur: self.stack.append(self.cur) self.cur = self.cur.left if self.stack: return True return False
<filename>.archived/snakecode/0173.py<gh_stars>1-10 from __future__ import annotations from typing import Optional # Definition for a binary tree node. class TreeNode: def __init__(self, val: int = 0, left: Optional[TreeNode] = None, right: Optional[TreeNode] = None): self.val = val self.left = left self.right = right class BSTIterator: def __init__(self, root: Optional[TreeNode]): self.stack: list[TreeNode] = [] self.cur = root def next(self) -> int: if not self.hasNext(): raise StopIteration() self.cur = self.stack[-1].right return self.stack.pop().val def hasNext(self) -> bool: while self.cur: self.stack.append(self.cur) self.cur = self.cur.left if self.stack: return True return False
en
0.652542
# Definition for a binary tree node.
3.370604
3
.leetcode/506.relative-ranks.py
KuiyuanFu/PythonLeetCode
0
9488
<filename>.leetcode/506.relative-ranks.py # @lc app=leetcode id=506 lang=python3 # # [506] Relative Ranks # # https://leetcode.com/problems/relative-ranks/description/ # # algorithms # Easy (53.46%) # Likes: 188 # Dislikes: 9 # Total Accepted: 71.1K # Total Submissions: 132.4K # Testcase Example: '[5,4,3,2,1]' # # You are given an integer array score of size n, where score[i] is the score # of the i^th athlete in a competition. All the scores are guaranteed to be # unique. # # The athletes are placed based on their scores, where the 1^st place athlete # has the highest score, the 2^nd place athlete has the 2^nd highest score, and # so on. The placement of each athlete determines their rank: # # # The 1^st place athlete's rank is "Gold Medal". # The 2^nd place athlete's rank is "Silver Medal". # The 3^rd place athlete's rank is "Bronze Medal". # For the 4^th place to the n^th place athlete, their rank is their placement # number (i.e., the x^th place athlete's rank is "x"). # # # Return an array answer of size n where answer[i] is the rank of the i^th # athlete. # # # Example 1: # # # Input: score = [5,4,3,2,1] # Output: ["Gold Medal","Silver Medal","Bronze Medal","4","5"] # Explanation: The placements are [1^st, 2^nd, 3^rd, 4^th, 5^th]. # # Example 2: # # # Input: score = [10,3,8,9,4] # Output: ["Gold Medal","5","Bronze Medal","Silver Medal","4"] # Explanation: The placements are [1^st, 5^th, 3^rd, 2^nd, 4^th]. # # # # # Constraints: # # # n == score.length # 1 <= n <= 10^4 # 0 <= score[i] <= 10^6 # All the values in score are unique. # # # # @lc tags=Unknown # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 排序。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def findRelativeRanks(self, score: List[int]) -> List[str]: s = [(-s, i) for i, s in enumerate(score)] s.sort() ss = ['Gold Medal', 'Silver Medal', 'Bronze Medal'] def toS(idx): if idx >= 3: return str(idx + 1) return ss[idx] res = [''] * len(score) for idx, (_, i) in enumerate(s): res[i] = toS(idx) return res # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print('score = [5,4,3,2,1]') print('Exception :') print('["Gold Medal","Silver Medal","Bronze Medal","4","5"]') print('Output :') print(str(Solution().findRelativeRanks([5, 4, 3, 2, 1]))) print() print('Example 2:') print('Input : ') print('score = [10,3,8,9,4]') print('Exception :') print('["Gold Medal","5","Bronze Medal","Silver Medal","4"]') print('Output :') print(str(Solution().findRelativeRanks([10, 3, 8, 9, 4]))) print() pass # @lc main=end
<filename>.leetcode/506.relative-ranks.py # @lc app=leetcode id=506 lang=python3 # # [506] Relative Ranks # # https://leetcode.com/problems/relative-ranks/description/ # # algorithms # Easy (53.46%) # Likes: 188 # Dislikes: 9 # Total Accepted: 71.1K # Total Submissions: 132.4K # Testcase Example: '[5,4,3,2,1]' # # You are given an integer array score of size n, where score[i] is the score # of the i^th athlete in a competition. All the scores are guaranteed to be # unique. # # The athletes are placed based on their scores, where the 1^st place athlete # has the highest score, the 2^nd place athlete has the 2^nd highest score, and # so on. The placement of each athlete determines their rank: # # # The 1^st place athlete's rank is "Gold Medal". # The 2^nd place athlete's rank is "Silver Medal". # The 3^rd place athlete's rank is "Bronze Medal". # For the 4^th place to the n^th place athlete, their rank is their placement # number (i.e., the x^th place athlete's rank is "x"). # # # Return an array answer of size n where answer[i] is the rank of the i^th # athlete. # # # Example 1: # # # Input: score = [5,4,3,2,1] # Output: ["Gold Medal","Silver Medal","Bronze Medal","4","5"] # Explanation: The placements are [1^st, 2^nd, 3^rd, 4^th, 5^th]. # # Example 2: # # # Input: score = [10,3,8,9,4] # Output: ["Gold Medal","5","Bronze Medal","Silver Medal","4"] # Explanation: The placements are [1^st, 5^th, 3^rd, 2^nd, 4^th]. # # # # # Constraints: # # # n == score.length # 1 <= n <= 10^4 # 0 <= score[i] <= 10^6 # All the values in score are unique. # # # # @lc tags=Unknown # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 排序。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def findRelativeRanks(self, score: List[int]) -> List[str]: s = [(-s, i) for i, s in enumerate(score)] s.sort() ss = ['Gold Medal', 'Silver Medal', 'Bronze Medal'] def toS(idx): if idx >= 3: return str(idx + 1) return ss[idx] res = [''] * len(score) for idx, (_, i) in enumerate(s): res[i] = toS(idx) return res # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print('score = [5,4,3,2,1]') print('Exception :') print('["Gold Medal","Silver Medal","Bronze Medal","4","5"]') print('Output :') print(str(Solution().findRelativeRanks([5, 4, 3, 2, 1]))) print() print('Example 2:') print('Input : ') print('score = [10,3,8,9,4]') print('Exception :') print('["Gold Medal","5","Bronze Medal","Silver Medal","4"]') print('Output :') print(str(Solution().findRelativeRanks([10, 3, 8, 9, 4]))) print() pass # @lc main=end
en
0.869652
# @lc app=leetcode id=506 lang=python3 # # [506] Relative Ranks # # https://leetcode.com/problems/relative-ranks/description/ # # algorithms # Easy (53.46%) # Likes: 188 # Dislikes: 9 # Total Accepted: 71.1K # Total Submissions: 132.4K # Testcase Example: '[5,4,3,2,1]' # # You are given an integer array score of size n, where score[i] is the score # of the i^th athlete in a competition. All the scores are guaranteed to be # unique. # # The athletes are placed based on their scores, where the 1^st place athlete # has the highest score, the 2^nd place athlete has the 2^nd highest score, and # so on. The placement of each athlete determines their rank: # # # The 1^st place athlete's rank is "Gold Medal". # The 2^nd place athlete's rank is "Silver Medal". # The 3^rd place athlete's rank is "Bronze Medal". # For the 4^th place to the n^th place athlete, their rank is their placement # number (i.e., the x^th place athlete's rank is "x"). # # # Return an array answer of size n where answer[i] is the rank of the i^th # athlete. # # # Example 1: # # # Input: score = [5,4,3,2,1] # Output: ["Gold Medal","Silver Medal","Bronze Medal","4","5"] # Explanation: The placements are [1^st, 2^nd, 3^rd, 4^th, 5^th]. # # Example 2: # # # Input: score = [10,3,8,9,4] # Output: ["Gold Medal","5","Bronze Medal","Silver Medal","4"] # Explanation: The placements are [1^st, 5^th, 3^rd, 2^nd, 4^th]. # # # # # Constraints: # # # n == score.length # 1 <= n <= 10^4 # 0 <= score[i] <= 10^6 # All the values in score are unique. # # # # @lc tags=Unknown # @lc imports=start # @lc imports=end # @lc idea=start # # 排序。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start # @lc code=end # @lc main=start # @lc main=end
3.610702
4
test/msan/lit.cfg.py
QuarkTheAwesome/compiler-rt-be-aeabi
118
9489
# -*- Python -*- import os # Setup config name. config.name = 'MemorySanitizer' + getattr(config, 'name_suffix', 'default') # Setup source root. config.test_source_root = os.path.dirname(__file__) # Setup default compiler flags used with -fsanitize=memory option. clang_msan_cflags = (["-fsanitize=memory", "-mno-omit-leaf-frame-pointer", "-fno-omit-frame-pointer", "-fno-optimize-sibling-calls"] + [config.target_cflags] + config.debug_info_flags) # Some Msan tests leverage backtrace() which requires libexecinfo on FreeBSD. if config.host_os == 'FreeBSD': clang_msan_cflags += ["-lexecinfo", "-fPIC"] clang_msan_cxxflags = config.cxx_mode_flags + clang_msan_cflags # Flags for KMSAN invocation. This is C-only, we're not interested in C++. clang_kmsan_cflags = (["-fsanitize=kernel-memory"] + [config.target_cflags] + config.debug_info_flags) def build_invocation(compile_flags): return " " + " ".join([config.clang] + compile_flags) + " " config.substitutions.append( ("%clang_msan ", build_invocation(clang_msan_cflags)) ) config.substitutions.append( ("%clangxx_msan ", build_invocation(clang_msan_cxxflags)) ) config.substitutions.append( ("%clang_kmsan ", build_invocation(clang_kmsan_cflags)) ) # Default test suffixes. config.suffixes = ['.c', '.cc', '.cpp'] if config.host_os not in ['Linux', 'NetBSD', 'FreeBSD']: config.unsupported = True # For mips64, mips64el we have forced store_context_size to 1 because these # archs use slow unwinder which is not async signal safe. Therefore we only # check the first frame since store_context size is 1. if config.host_arch in ['mips64', 'mips64el']: config.substitutions.append( ('CHECK-%short-stack', 'CHECK-SHORT-STACK')) else: config.substitutions.append( ('CHECK-%short-stack', 'CHECK-FULL-STACK'))
# -*- Python -*- import os # Setup config name. config.name = 'MemorySanitizer' + getattr(config, 'name_suffix', 'default') # Setup source root. config.test_source_root = os.path.dirname(__file__) # Setup default compiler flags used with -fsanitize=memory option. clang_msan_cflags = (["-fsanitize=memory", "-mno-omit-leaf-frame-pointer", "-fno-omit-frame-pointer", "-fno-optimize-sibling-calls"] + [config.target_cflags] + config.debug_info_flags) # Some Msan tests leverage backtrace() which requires libexecinfo on FreeBSD. if config.host_os == 'FreeBSD': clang_msan_cflags += ["-lexecinfo", "-fPIC"] clang_msan_cxxflags = config.cxx_mode_flags + clang_msan_cflags # Flags for KMSAN invocation. This is C-only, we're not interested in C++. clang_kmsan_cflags = (["-fsanitize=kernel-memory"] + [config.target_cflags] + config.debug_info_flags) def build_invocation(compile_flags): return " " + " ".join([config.clang] + compile_flags) + " " config.substitutions.append( ("%clang_msan ", build_invocation(clang_msan_cflags)) ) config.substitutions.append( ("%clangxx_msan ", build_invocation(clang_msan_cxxflags)) ) config.substitutions.append( ("%clang_kmsan ", build_invocation(clang_kmsan_cflags)) ) # Default test suffixes. config.suffixes = ['.c', '.cc', '.cpp'] if config.host_os not in ['Linux', 'NetBSD', 'FreeBSD']: config.unsupported = True # For mips64, mips64el we have forced store_context_size to 1 because these # archs use slow unwinder which is not async signal safe. Therefore we only # check the first frame since store_context size is 1. if config.host_arch in ['mips64', 'mips64el']: config.substitutions.append( ('CHECK-%short-stack', 'CHECK-SHORT-STACK')) else: config.substitutions.append( ('CHECK-%short-stack', 'CHECK-FULL-STACK'))
en
0.775116
# -*- Python -*- # Setup config name. # Setup source root. # Setup default compiler flags used with -fsanitize=memory option. # Some Msan tests leverage backtrace() which requires libexecinfo on FreeBSD. # Flags for KMSAN invocation. This is C-only, we're not interested in C++. # Default test suffixes. # For mips64, mips64el we have forced store_context_size to 1 because these # archs use slow unwinder which is not async signal safe. Therefore we only # check the first frame since store_context size is 1.
1.954833
2
application/core/migrations/0001_initial.py
victor-freitas/ProjetoNCS
0
9490
<reponame>victor-freitas/ProjetoNCS # Generated by Django 2.0.6 on 2018-06-17 04:47 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cliente', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('cpf_cnpj', models.IntegerField(db_column='CPF_CNPJ', unique=True)), ('razao', models.CharField(blank=True, db_column='RAZAO', max_length=100, null=True)), ('endereco', models.CharField(db_column='ENDERECO', max_length=80)), ('cep', models.CharField(db_column='CEP', max_length=20)), ('email', models.CharField(db_column='EMAIL', max_length=200)), ('telefone', models.CharField(db_column='TELEFONE', max_length=11)), ('celular', models.CharField(blank=True, db_column='CELULAR', max_length=11, null=True)), ], options={ 'db_table': 'Cliente', 'managed': False, }, ), migrations.CreateModel( name='Fornecedor', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('cpf_cnpj', models.IntegerField(db_column='CPF_CNPJ', unique=True)), ('razao', models.CharField(blank=True, db_column='RAZAO', max_length=100, null=True)), ('endereco', models.CharField(db_column='ENDERECO', max_length=80)), ('cep', models.CharField(db_column='CEP', max_length=20)), ('email', models.CharField(db_column='EMAIL', max_length=200)), ('telefone', models.CharField(db_column='TELEFONE', max_length=11)), ('celular', models.CharField(blank=True, db_column='CELULAR', max_length=11, null=True)), ('pessoa_contato', models.CharField(blank=True, db_column='PESSOA_CONTATO', max_length=100, null=True)), ], options={ 'db_table': 'Fornecedor', 'managed': False, }, ), migrations.CreateModel( name='Funcionario', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ('cpf', models.IntegerField(db_column='CPF')), ('cargo', models.SmallIntegerField(db_column='CARGO')), ('login', models.CharField(db_column='LOGIN', max_length=100)), ('senha', models.CharField(db_column='SENHA', max_length=50)), ], options={ 'db_table': 'Funcionario', 'managed': False, }, ), migrations.CreateModel( name='Materiaprima', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=60)), ('forma_emb', models.CharField(db_column='FORMA_EMB', max_length=60)), ('peso', models.CharField(db_column='PESO', max_length=20)), ('unid_medida', models.CharField(db_column='UNID_MEDIDA', max_length=50)), ('quantidade', models.IntegerField(db_column='QUANTIDADE')), ('quantidade_min', models.IntegerField(db_column='QUANTIDADE_MIN')), ('descricao', models.CharField(db_column='DESCRICAO', max_length=500)), ('data_recebimento', models.DateField(db_column='DATA_RECEBIMENTO')), ], options={ 'db_table': 'MateriaPrima', 'managed': False, }, ), migrations.CreateModel( name='Ordemdeproducao', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('descricao', models.CharField(db_column='Descricao', max_length=500)), ], options={ 'db_table': 'OrdemDeProducao', 'managed': False, }, ), migrations.CreateModel( name='Pedido', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('data_pedido', models.DateField(db_column='DATA_PEDIDO')), ('valor', models.CharField(blank=True, db_column='VALOR', max_length=20, null=True)), ], options={ 'db_table': 'Pedido', 'managed': False, }, ), migrations.CreateModel( name='Pedidomp', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('data_pedido', models.DateField(db_column='DATA_PEDIDO')), ('data_prevista', models.DateField(db_column='DATA_PREVISTA')), ('descricao', models.CharField(blank=True, db_column='DESCRICAO', max_length=500, null=True)), ('valor', models.CharField(blank=True, db_column='VALOR', max_length=20, null=True)), ], options={ 'db_table': 'PedidoMP', 'managed': False, }, ), migrations.CreateModel( name='Produto', fields=[ ('id', models.AutoField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=60)), ('forma_emb', models.CharField(db_column='FORMA_EMB', max_length=60)), ('peso', models.CharField(db_column='PESO', max_length=20)), ('unid_medida', models.CharField(db_column='UNID_MEDIDA', max_length=50)), ('preco', models.CharField(blank=True, db_column='PRECO', max_length=10, null=True)), ('quantidade', models.IntegerField(blank=True, db_column='QUANTIDADE', null=True)), ('desc_produto', models.CharField(db_column='DESC_PRODUTO', max_length=500)), ], options={ 'db_table': 'Produto', 'managed': False, }, ), migrations.CreateModel( name='Setor', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'Setor', 'managed': False, }, ), migrations.CreateModel( name='Statusordemproducao', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('status_nome', models.CharField(db_column='STATUS_NOME', max_length=30)), ], options={ 'db_table': 'StatusOrdemProducao', 'managed': False, }, ), migrations.CreateModel( name='Tipoproduto', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'TipoProduto', 'managed': False, }, ), migrations.CreateModel( name='Tiposeguimento', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'TipoSeguimento', 'managed': False, }, ), ]
# Generated by Django 2.0.6 on 2018-06-17 04:47 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cliente', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('cpf_cnpj', models.IntegerField(db_column='CPF_CNPJ', unique=True)), ('razao', models.CharField(blank=True, db_column='RAZAO', max_length=100, null=True)), ('endereco', models.CharField(db_column='ENDERECO', max_length=80)), ('cep', models.CharField(db_column='CEP', max_length=20)), ('email', models.CharField(db_column='EMAIL', max_length=200)), ('telefone', models.CharField(db_column='TELEFONE', max_length=11)), ('celular', models.CharField(blank=True, db_column='CELULAR', max_length=11, null=True)), ], options={ 'db_table': 'Cliente', 'managed': False, }, ), migrations.CreateModel( name='Fornecedor', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('cpf_cnpj', models.IntegerField(db_column='CPF_CNPJ', unique=True)), ('razao', models.CharField(blank=True, db_column='RAZAO', max_length=100, null=True)), ('endereco', models.CharField(db_column='ENDERECO', max_length=80)), ('cep', models.CharField(db_column='CEP', max_length=20)), ('email', models.CharField(db_column='EMAIL', max_length=200)), ('telefone', models.CharField(db_column='TELEFONE', max_length=11)), ('celular', models.CharField(blank=True, db_column='CELULAR', max_length=11, null=True)), ('pessoa_contato', models.CharField(blank=True, db_column='PESSOA_CONTATO', max_length=100, null=True)), ], options={ 'db_table': 'Fornecedor', 'managed': False, }, ), migrations.CreateModel( name='Funcionario', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ('cpf', models.IntegerField(db_column='CPF')), ('cargo', models.SmallIntegerField(db_column='CARGO')), ('login', models.CharField(db_column='LOGIN', max_length=100)), ('senha', models.CharField(db_column='SENHA', max_length=50)), ], options={ 'db_table': 'Funcionario', 'managed': False, }, ), migrations.CreateModel( name='Materiaprima', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=60)), ('forma_emb', models.CharField(db_column='FORMA_EMB', max_length=60)), ('peso', models.CharField(db_column='PESO', max_length=20)), ('unid_medida', models.CharField(db_column='UNID_MEDIDA', max_length=50)), ('quantidade', models.IntegerField(db_column='QUANTIDADE')), ('quantidade_min', models.IntegerField(db_column='QUANTIDADE_MIN')), ('descricao', models.CharField(db_column='DESCRICAO', max_length=500)), ('data_recebimento', models.DateField(db_column='DATA_RECEBIMENTO')), ], options={ 'db_table': 'MateriaPrima', 'managed': False, }, ), migrations.CreateModel( name='Ordemdeproducao', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('descricao', models.CharField(db_column='Descricao', max_length=500)), ], options={ 'db_table': 'OrdemDeProducao', 'managed': False, }, ), migrations.CreateModel( name='Pedido', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('data_pedido', models.DateField(db_column='DATA_PEDIDO')), ('valor', models.CharField(blank=True, db_column='VALOR', max_length=20, null=True)), ], options={ 'db_table': 'Pedido', 'managed': False, }, ), migrations.CreateModel( name='Pedidomp', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('data_pedido', models.DateField(db_column='DATA_PEDIDO')), ('data_prevista', models.DateField(db_column='DATA_PREVISTA')), ('descricao', models.CharField(blank=True, db_column='DESCRICAO', max_length=500, null=True)), ('valor', models.CharField(blank=True, db_column='VALOR', max_length=20, null=True)), ], options={ 'db_table': 'PedidoMP', 'managed': False, }, ), migrations.CreateModel( name='Produto', fields=[ ('id', models.AutoField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=60)), ('forma_emb', models.CharField(db_column='FORMA_EMB', max_length=60)), ('peso', models.CharField(db_column='PESO', max_length=20)), ('unid_medida', models.CharField(db_column='UNID_MEDIDA', max_length=50)), ('preco', models.CharField(blank=True, db_column='PRECO', max_length=10, null=True)), ('quantidade', models.IntegerField(blank=True, db_column='QUANTIDADE', null=True)), ('desc_produto', models.CharField(db_column='DESC_PRODUTO', max_length=500)), ], options={ 'db_table': 'Produto', 'managed': False, }, ), migrations.CreateModel( name='Setor', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'Setor', 'managed': False, }, ), migrations.CreateModel( name='Statusordemproducao', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('status_nome', models.CharField(db_column='STATUS_NOME', max_length=30)), ], options={ 'db_table': 'StatusOrdemProducao', 'managed': False, }, ), migrations.CreateModel( name='Tipoproduto', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'TipoProduto', 'managed': False, }, ), migrations.CreateModel( name='Tiposeguimento', fields=[ ('id', models.SmallIntegerField(db_column='ID', primary_key=True, serialize=False)), ('nome', models.CharField(db_column='NOME', max_length=100)), ], options={ 'db_table': 'TipoSeguimento', 'managed': False, }, ), ]
en
0.794675
# Generated by Django 2.0.6 on 2018-06-17 04:47
1.760594
2
dataschema/entity.py
vingkan/sql_tools
1
9491
# # nuna_sql_tools: Copyright 2022 Nuna Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Utilityes for checking and.""" import dataclasses import datetime import decimal from types import ModuleType from typing import NewType, Union # In your data declaration python modules define a JAVA_PACKAGE # variable at top level to specify the corresponding Java package of generated # classes. JAVA_PACKAGE = 'JAVA_PACKAGE' def GetJavaPackage(module: ModuleType) -> str: if hasattr(module, JAVA_PACKAGE): return getattr(module, JAVA_PACKAGE) else: return module.__name__ _SCHEMA_ANNOTATIONS = '__schema_annotations__' _EXPECTED_DICT_KEYS = set([ '__module__', '__annotations__', '__doc__', '__dict__', '__weakref__', '__dataclass_params__', '__dataclass_fields__', _SCHEMA_ANNOTATIONS ]) _EXPECTED_FUNCTIONS = ['__init__', '__repr__', '__eq__', '__hash__'] _BASE_TYPES = set([ int, bytes, str, float, bool, datetime.date, datetime.datetime, decimal.Decimal ]) _SCHEMA_ANNOTATIONS = '__schema_annotations__' _CLASS_ID = 0 def _Annotate(cls=None, annotation=None): """Annotates a class or a type. `annotation` should from annotation.py""" def Wrap(cls): schema_annotations = [] if hasattr(cls, _SCHEMA_ANNOTATIONS): schema_annotations.extend(getattr(cls, _SCHEMA_ANNOTATIONS)) if isinstance(annotation, list): schema_annotations.extend(annotation) else: schema_annotations.append(annotation) global _CLASS_ID _CLASS_ID += 1 supertype = cls if hasattr(cls, '__supertype__'): supertype = cls.__supertype__ annotated_type = NewType(f'Annotated_{_CLASS_ID}', supertype) setattr(annotated_type, _SCHEMA_ANNOTATIONS, schema_annotations) return annotated_type if cls is None: return Wrap return Wrap(cls) def Annotate(cls, annotation): """Annotates a field type with the provided annotation.""" return _Annotate(cls, annotation=annotation) def IsAnnotatedType(field_cls: type): """If provided field_cls is an annotated type.""" return hasattr(field_cls, _SCHEMA_ANNOTATIONS) def GetAnnotatedType(field_cls: type): """Returns the original type behind the annotation (if any).""" if IsAnnotatedType(field_cls) and hasattr(field_cls, '__supertype__'): return field_cls.__supertype__ return field_cls def IsOptionalType(field_cls: type): """If the field_cls looks like an Optional[...] type.""" return (hasattr(field_cls, '__origin__') # pylint: disable=comparison-with-callable and field_cls.__origin__ == Union and len(field_cls.__args__) == 2 and field_cls.__args__[1] == type(None)) def GetOptionalType(field_cls: type): """Returns the type of optional & annotation or None if not optional.""" field_cls = GetAnnotatedType(field_cls) if IsOptionalType(field_cls): return field_cls.__args__[0] return None def GetOriginalType(field_cls: type): """Returns the type of field_cls, behind annotations and Optional.""" field_cls = GetAnnotatedType(field_cls) if IsOptionalType(field_cls): return field_cls.__args__[0] return field_cls def GetStructuredTypeName(field_cls: type): """Returns the structure type name for a type, behind annotation.""" field_cls = GetAnnotatedType(field_cls) if not hasattr(field_cls, '__origin__'): return None if field_cls.__origin__ is dict: return 'dict' elif field_cls.__origin__ is list: return 'list' elif field_cls.__origin__ is set: return 'set' return None def IsBasicType(field_cls: type): """If the type field_cls looks like one of the basic field types.""" if GetAnnotatedType(field_cls) in _BASE_TYPES: return True _MAX_DEPTH = 30 class FieldTypeChecker: """Checks the type of a fields in a dataclass.""" def __init__(self, field_name, field_cls): self.field_name = field_name self.field_cls = field_cls self.checked = set() def _check(self, field_cls, depth): """Check if the type of a field is acceptable.""" if field_cls in self.checked: return True if depth > _MAX_DEPTH: raise ValueError(f'Recursive field type found at {field_cls} ' f'for field `{self.field_name}`') field_cls = GetAnnotatedType(field_cls) if IsBasicType(field_cls): return True if hasattr(field_cls, '__origin__'): if field_cls.__origin__ is dict: self._check(field_cls.__args__[0], depth) self._check(field_cls.__args__[1], depth) elif field_cls.__origin__ is list: self._check(field_cls.__args__[0], depth) elif field_cls.__origin__ is set: self._check(field_cls.__args__[0], depth) elif ( # pylint: disable=comparison-with-callable field_cls.__origin__ == Union and len(field_cls.__args__) == 2 and field_cls.__args__[1] == type(None)): if GetStructuredTypeName(field_cls) is not None: raise ValueError('Cannot have Optional structured fields.' '(e.g. Optional[List or Set or Dict])') # Optional[...] self._check(field_cls.__args__[0], depth) else: raise ValueError(f'Invalid origin class for {field_cls}: ' f'`{field_cls.__origin__}`') else: checker = DataclassChecker(field_cls) if checker.check_is_dataclass() is not None: raise ValueError( f'Invalid type surfaced for field `{self.field_name}`: ' f'`{self.field_cls}` - {field_cls} is not acceptable') err = checker.check() if err: errors = '; '.join(err) raise ValueError( f'Subfield entity class of field `{self.field_name}` ' f'({field_cls}) has type errors: {errors}') self.checked.add(field_cls) return True def check(self): return self._check(self.field_cls, 0) class DataclassChecker: """Checks if a python type and its structure conforms to Dataclass specs.""" def __init__(self, cls: type): self.cls = cls self.nested = [] def _err_class(self): return f'dataclass class `{self.cls}` in module `{self.cls.__module__}`' def _err_field(self, field: str): return (f'field `{field}` of dataclass class `{self.cls.__name__}` ' f'in module `{self.cls.__module__}`') def check_is_dataclass(self): if not dataclasses.is_dataclass(self.cls): return f'{self._err_class()} is not a dataclass' return None def _check_type(self, field_name, field_cls): try: FieldTypeChecker(field_name, field_cls).check() return None except ValueError as e: return f'{e.args[0]} for {self._err_field(field_name)}' def _check_field_type(self, field_name, field_cls): return self._check_type(GetOriginalType(field_name), field_cls) def _check_dataclass_members(self): err = [] for key in self.cls.__dict__: # pylint: disable=comparison-with-callable,unidiomatic-typecheck if type(self.cls.__dict__[key]) == type: self.nested.append( (key, DataclassChecker(self.cls.__dict__[key]))) elif callable( self.cls.__dict__[key]) and key not in _EXPECTED_FUNCTIONS: err.append(f'{self._err_class()} has unexpected function ' f'member `{key}`') elif (key not in _EXPECTED_DICT_KEYS and key not in _EXPECTED_FUNCTIONS and key not in self.cls.__annotations__): err.append(f'{self._err_class()} has unexpected / non annotated' f' member `{key}`: {self.cls.__dict__[key]}') for field in dataclasses.fields(self.cls): field_err = self._check_field_type(field.name, field.type) if field_err is not None: err.append(field_err) for nested in self.nested: for nested_err in nested[1].check(): err.append(f'{nested_err}; for nested sub-class ' f'{nested[0]} of {self._err_class()}') return err def check(self): err_dataclass = self.check_is_dataclass() if err_dataclass is not None: return [err_dataclass] return self._check_dataclass_members() def SchemaAnnotations(cls: type): """Returns the schema annotations of a type.""" annotations = [] if hasattr(cls, _SCHEMA_ANNOTATIONS): annotations.extend(cls.__schema_annotations__) return annotations
# # nuna_sql_tools: Copyright 2022 Nuna Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Utilityes for checking and.""" import dataclasses import datetime import decimal from types import ModuleType from typing import NewType, Union # In your data declaration python modules define a JAVA_PACKAGE # variable at top level to specify the corresponding Java package of generated # classes. JAVA_PACKAGE = 'JAVA_PACKAGE' def GetJavaPackage(module: ModuleType) -> str: if hasattr(module, JAVA_PACKAGE): return getattr(module, JAVA_PACKAGE) else: return module.__name__ _SCHEMA_ANNOTATIONS = '__schema_annotations__' _EXPECTED_DICT_KEYS = set([ '__module__', '__annotations__', '__doc__', '__dict__', '__weakref__', '__dataclass_params__', '__dataclass_fields__', _SCHEMA_ANNOTATIONS ]) _EXPECTED_FUNCTIONS = ['__init__', '__repr__', '__eq__', '__hash__'] _BASE_TYPES = set([ int, bytes, str, float, bool, datetime.date, datetime.datetime, decimal.Decimal ]) _SCHEMA_ANNOTATIONS = '__schema_annotations__' _CLASS_ID = 0 def _Annotate(cls=None, annotation=None): """Annotates a class or a type. `annotation` should from annotation.py""" def Wrap(cls): schema_annotations = [] if hasattr(cls, _SCHEMA_ANNOTATIONS): schema_annotations.extend(getattr(cls, _SCHEMA_ANNOTATIONS)) if isinstance(annotation, list): schema_annotations.extend(annotation) else: schema_annotations.append(annotation) global _CLASS_ID _CLASS_ID += 1 supertype = cls if hasattr(cls, '__supertype__'): supertype = cls.__supertype__ annotated_type = NewType(f'Annotated_{_CLASS_ID}', supertype) setattr(annotated_type, _SCHEMA_ANNOTATIONS, schema_annotations) return annotated_type if cls is None: return Wrap return Wrap(cls) def Annotate(cls, annotation): """Annotates a field type with the provided annotation.""" return _Annotate(cls, annotation=annotation) def IsAnnotatedType(field_cls: type): """If provided field_cls is an annotated type.""" return hasattr(field_cls, _SCHEMA_ANNOTATIONS) def GetAnnotatedType(field_cls: type): """Returns the original type behind the annotation (if any).""" if IsAnnotatedType(field_cls) and hasattr(field_cls, '__supertype__'): return field_cls.__supertype__ return field_cls def IsOptionalType(field_cls: type): """If the field_cls looks like an Optional[...] type.""" return (hasattr(field_cls, '__origin__') # pylint: disable=comparison-with-callable and field_cls.__origin__ == Union and len(field_cls.__args__) == 2 and field_cls.__args__[1] == type(None)) def GetOptionalType(field_cls: type): """Returns the type of optional & annotation or None if not optional.""" field_cls = GetAnnotatedType(field_cls) if IsOptionalType(field_cls): return field_cls.__args__[0] return None def GetOriginalType(field_cls: type): """Returns the type of field_cls, behind annotations and Optional.""" field_cls = GetAnnotatedType(field_cls) if IsOptionalType(field_cls): return field_cls.__args__[0] return field_cls def GetStructuredTypeName(field_cls: type): """Returns the structure type name for a type, behind annotation.""" field_cls = GetAnnotatedType(field_cls) if not hasattr(field_cls, '__origin__'): return None if field_cls.__origin__ is dict: return 'dict' elif field_cls.__origin__ is list: return 'list' elif field_cls.__origin__ is set: return 'set' return None def IsBasicType(field_cls: type): """If the type field_cls looks like one of the basic field types.""" if GetAnnotatedType(field_cls) in _BASE_TYPES: return True _MAX_DEPTH = 30 class FieldTypeChecker: """Checks the type of a fields in a dataclass.""" def __init__(self, field_name, field_cls): self.field_name = field_name self.field_cls = field_cls self.checked = set() def _check(self, field_cls, depth): """Check if the type of a field is acceptable.""" if field_cls in self.checked: return True if depth > _MAX_DEPTH: raise ValueError(f'Recursive field type found at {field_cls} ' f'for field `{self.field_name}`') field_cls = GetAnnotatedType(field_cls) if IsBasicType(field_cls): return True if hasattr(field_cls, '__origin__'): if field_cls.__origin__ is dict: self._check(field_cls.__args__[0], depth) self._check(field_cls.__args__[1], depth) elif field_cls.__origin__ is list: self._check(field_cls.__args__[0], depth) elif field_cls.__origin__ is set: self._check(field_cls.__args__[0], depth) elif ( # pylint: disable=comparison-with-callable field_cls.__origin__ == Union and len(field_cls.__args__) == 2 and field_cls.__args__[1] == type(None)): if GetStructuredTypeName(field_cls) is not None: raise ValueError('Cannot have Optional structured fields.' '(e.g. Optional[List or Set or Dict])') # Optional[...] self._check(field_cls.__args__[0], depth) else: raise ValueError(f'Invalid origin class for {field_cls}: ' f'`{field_cls.__origin__}`') else: checker = DataclassChecker(field_cls) if checker.check_is_dataclass() is not None: raise ValueError( f'Invalid type surfaced for field `{self.field_name}`: ' f'`{self.field_cls}` - {field_cls} is not acceptable') err = checker.check() if err: errors = '; '.join(err) raise ValueError( f'Subfield entity class of field `{self.field_name}` ' f'({field_cls}) has type errors: {errors}') self.checked.add(field_cls) return True def check(self): return self._check(self.field_cls, 0) class DataclassChecker: """Checks if a python type and its structure conforms to Dataclass specs.""" def __init__(self, cls: type): self.cls = cls self.nested = [] def _err_class(self): return f'dataclass class `{self.cls}` in module `{self.cls.__module__}`' def _err_field(self, field: str): return (f'field `{field}` of dataclass class `{self.cls.__name__}` ' f'in module `{self.cls.__module__}`') def check_is_dataclass(self): if not dataclasses.is_dataclass(self.cls): return f'{self._err_class()} is not a dataclass' return None def _check_type(self, field_name, field_cls): try: FieldTypeChecker(field_name, field_cls).check() return None except ValueError as e: return f'{e.args[0]} for {self._err_field(field_name)}' def _check_field_type(self, field_name, field_cls): return self._check_type(GetOriginalType(field_name), field_cls) def _check_dataclass_members(self): err = [] for key in self.cls.__dict__: # pylint: disable=comparison-with-callable,unidiomatic-typecheck if type(self.cls.__dict__[key]) == type: self.nested.append( (key, DataclassChecker(self.cls.__dict__[key]))) elif callable( self.cls.__dict__[key]) and key not in _EXPECTED_FUNCTIONS: err.append(f'{self._err_class()} has unexpected function ' f'member `{key}`') elif (key not in _EXPECTED_DICT_KEYS and key not in _EXPECTED_FUNCTIONS and key not in self.cls.__annotations__): err.append(f'{self._err_class()} has unexpected / non annotated' f' member `{key}`: {self.cls.__dict__[key]}') for field in dataclasses.fields(self.cls): field_err = self._check_field_type(field.name, field.type) if field_err is not None: err.append(field_err) for nested in self.nested: for nested_err in nested[1].check(): err.append(f'{nested_err}; for nested sub-class ' f'{nested[0]} of {self._err_class()}') return err def check(self): err_dataclass = self.check_is_dataclass() if err_dataclass is not None: return [err_dataclass] return self._check_dataclass_members() def SchemaAnnotations(cls: type): """Returns the schema annotations of a type.""" annotations = [] if hasattr(cls, _SCHEMA_ANNOTATIONS): annotations.extend(cls.__schema_annotations__) return annotations
en
0.740604
# # nuna_sql_tools: Copyright 2022 Nuna Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Utilityes for checking and. # In your data declaration python modules define a JAVA_PACKAGE # variable at top level to specify the corresponding Java package of generated # classes. Annotates a class or a type. `annotation` should from annotation.py Annotates a field type with the provided annotation. If provided field_cls is an annotated type. Returns the original type behind the annotation (if any). If the field_cls looks like an Optional[...] type. # pylint: disable=comparison-with-callable Returns the type of optional & annotation or None if not optional. Returns the type of field_cls, behind annotations and Optional. Returns the structure type name for a type, behind annotation. If the type field_cls looks like one of the basic field types. Checks the type of a fields in a dataclass. Check if the type of a field is acceptable. # pylint: disable=comparison-with-callable # Optional[...] Checks if a python type and its structure conforms to Dataclass specs. # pylint: disable=comparison-with-callable,unidiomatic-typecheck Returns the schema annotations of a type.
2.023992
2
Data_and_Dicts.py
melkisedeath/Harmonic_Analysis_and_Trajectory
0
9492
<filename>Data_and_Dicts.py """HERE are the base Points for all valid Tonnetze Systems. A period of all 12 notes divided by mod 3, mod 4 (always stable) """ # x = 4, y = 3 NotePointsT345 = { 0: (0, 0), 1: (1, 3), 2: (2, 2), 3: (0, 1), 4: (1, 0), 5: (2, 3), 6: (0, 2), 7: (1, 1), 8: (2, 0), 9: (0, 3), 10: (1, 2), 11: (2, 1) } # x = 8, y = 3 NotePointsT138 = { 0: (0, 0), 1: (2, 3), 2: (1, 2), 3: (0, 1), 4: (2, 0), 5: (1, 3), 6: (0, 2), 7: (2, 1), 8: (1, 0), 9: (0, 3), 10: (2, 2), 11: (1, 1) } # x = 2, y = 9 NotePointsT129 = { 0: (0, 0), 1: (2, 1), 2: (1, 0), 3: (0, 3), 4: (2, 0), 5: (1, 3), 6: (0, 2), 7: (2, 3), 8: (1, 2), 9: (0, 1), 10: (2, 2), 11: (1, 1) } # x = 4, y = 1 NotePointsT147 = { 0: (0, 0), 1: (0, 1), 2: (0, 2), 3: (0, 3), 4: (1, 0), 5: (1, 1), 6: (1, 2), 7: (1, 3), 8: (2, 0), 9: (2, 1), 10: (2, 2), 11: (2, 3) } # x = 2, y = 3 NotePointsT237 = { 0: (0, 0), 1: (2, 3), 2: (1, 0), 3: (0, 1), 4: (2, 0), 5: (1, 1), 6: (0, 2), 7: (2, 1), 8: (1, 2), 9: (0, 3), 10: (2, 2), 11: (1, 3) } dictOfTonnetz = { 'T345': NotePointsT345, 'T147': NotePointsT147, 'T138': NotePointsT138, 'T237': NotePointsT237, 'T129': NotePointsT129 } dictOfTonnetze = { 'T129': [1, 2, 9], 'T138': [1, 3, 8], 'T147': [1, 4, 7], 'T156': [1, 5, 6], 'T237': [2, 3, 7], 'T345': [3, 4, 5] }
<filename>Data_and_Dicts.py """HERE are the base Points for all valid Tonnetze Systems. A period of all 12 notes divided by mod 3, mod 4 (always stable) """ # x = 4, y = 3 NotePointsT345 = { 0: (0, 0), 1: (1, 3), 2: (2, 2), 3: (0, 1), 4: (1, 0), 5: (2, 3), 6: (0, 2), 7: (1, 1), 8: (2, 0), 9: (0, 3), 10: (1, 2), 11: (2, 1) } # x = 8, y = 3 NotePointsT138 = { 0: (0, 0), 1: (2, 3), 2: (1, 2), 3: (0, 1), 4: (2, 0), 5: (1, 3), 6: (0, 2), 7: (2, 1), 8: (1, 0), 9: (0, 3), 10: (2, 2), 11: (1, 1) } # x = 2, y = 9 NotePointsT129 = { 0: (0, 0), 1: (2, 1), 2: (1, 0), 3: (0, 3), 4: (2, 0), 5: (1, 3), 6: (0, 2), 7: (2, 3), 8: (1, 2), 9: (0, 1), 10: (2, 2), 11: (1, 1) } # x = 4, y = 1 NotePointsT147 = { 0: (0, 0), 1: (0, 1), 2: (0, 2), 3: (0, 3), 4: (1, 0), 5: (1, 1), 6: (1, 2), 7: (1, 3), 8: (2, 0), 9: (2, 1), 10: (2, 2), 11: (2, 3) } # x = 2, y = 3 NotePointsT237 = { 0: (0, 0), 1: (2, 3), 2: (1, 0), 3: (0, 1), 4: (2, 0), 5: (1, 1), 6: (0, 2), 7: (2, 1), 8: (1, 2), 9: (0, 3), 10: (2, 2), 11: (1, 3) } dictOfTonnetz = { 'T345': NotePointsT345, 'T147': NotePointsT147, 'T138': NotePointsT138, 'T237': NotePointsT237, 'T129': NotePointsT129 } dictOfTonnetze = { 'T129': [1, 2, 9], 'T138': [1, 3, 8], 'T147': [1, 4, 7], 'T156': [1, 5, 6], 'T237': [2, 3, 7], 'T345': [3, 4, 5] }
en
0.844549
HERE are the base Points for all valid Tonnetze Systems. A period of all 12 notes divided by mod 3, mod 4 (always stable) # x = 4, y = 3 # x = 8, y = 3 # x = 2, y = 9 # x = 4, y = 1 # x = 2, y = 3
2.267211
2
awacs/proton.py
alanjjenkins/awacs
0
9493
<reponame>alanjjenkins/awacs # Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Proton" prefix = "proton" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) CreateEnvironment = Action("CreateEnvironment") CreateEnvironmentTemplate = Action("CreateEnvironmentTemplate") CreateEnvironmentTemplateMajorVersion = Action("CreateEnvironmentTemplateMajorVersion") CreateEnvironmentTemplateMinorVersion = Action("CreateEnvironmentTemplateMinorVersion") CreateService = Action("CreateService") CreateServiceTemplate = Action("CreateServiceTemplate") CreateServiceTemplateMajorVersion = Action("CreateServiceTemplateMajorVersion") CreateServiceTemplateMinorVersion = Action("CreateServiceTemplateMinorVersion") DeleteAccountRoles = Action("DeleteAccountRoles") DeleteEnvironment = Action("DeleteEnvironment") DeleteEnvironmentTemplate = Action("DeleteEnvironmentTemplate") DeleteEnvironmentTemplateMajorVersion = Action("DeleteEnvironmentTemplateMajorVersion") DeleteEnvironmentTemplateMinorVersion = Action("DeleteEnvironmentTemplateMinorVersion") DeleteService = Action("DeleteService") DeleteServiceTemplate = Action("DeleteServiceTemplate") DeleteServiceTemplateMajorVersion = Action("DeleteServiceTemplateMajorVersion") DeleteServiceTemplateMinorVersion = Action("DeleteServiceTemplateMinorVersion") GetAccountRoles = Action("GetAccountRoles") GetEnvironment = Action("GetEnvironment") GetEnvironmentTemplate = Action("GetEnvironmentTemplate") GetEnvironmentTemplateMajorVersion = Action("GetEnvironmentTemplateMajorVersion") GetEnvironmentTemplateMinorVersion = Action("GetEnvironmentTemplateMinorVersion") GetService = Action("GetService") GetServiceInstance = Action("GetServiceInstance") GetServiceTemplate = Action("GetServiceTemplate") GetServiceTemplateMajorVersion = Action("GetServiceTemplateMajorVersion") GetServiceTemplateMinorVersion = Action("GetServiceTemplateMinorVersion") ListEnvironmentTemplateMajorVersions = Action("ListEnvironmentTemplateMajorVersions") ListEnvironmentTemplateMinorVersions = Action("ListEnvironmentTemplateMinorVersions") ListEnvironmentTemplates = Action("ListEnvironmentTemplates") ListEnvironments = Action("ListEnvironments") ListServiceInstances = Action("ListServiceInstances") ListServiceTemplateMajorVersions = Action("ListServiceTemplateMajorVersions") ListServiceTemplateMinorVersions = Action("ListServiceTemplateMinorVersions") ListServiceTemplates = Action("ListServiceTemplates") ListServices = Action("ListServices") ListTagsForResource = Action("ListTagsForResource") TagResource = Action("TagResource") UntagResource = Action("UntagResource") UpdateAccountRoles = Action("UpdateAccountRoles") UpdateEnvironment = Action("UpdateEnvironment") UpdateEnvironmentTemplate = Action("UpdateEnvironmentTemplate") UpdateEnvironmentTemplateMajorVersion = Action("UpdateEnvironmentTemplateMajorVersion") UpdateEnvironmentTemplateMinorVersion = Action("UpdateEnvironmentTemplateMinorVersion") UpdateService = Action("UpdateService") UpdateServiceInstance = Action("UpdateServiceInstance") UpdateServicePipeline = Action("UpdateServicePipeline") UpdateServiceTemplate = Action("UpdateServiceTemplate") UpdateServiceTemplateMajorVersion = Action("UpdateServiceTemplateMajorVersion") UpdateServiceTemplateMinorVersion = Action("UpdateServiceTemplateMinorVersion")
# Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Proton" prefix = "proton" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) CreateEnvironment = Action("CreateEnvironment") CreateEnvironmentTemplate = Action("CreateEnvironmentTemplate") CreateEnvironmentTemplateMajorVersion = Action("CreateEnvironmentTemplateMajorVersion") CreateEnvironmentTemplateMinorVersion = Action("CreateEnvironmentTemplateMinorVersion") CreateService = Action("CreateService") CreateServiceTemplate = Action("CreateServiceTemplate") CreateServiceTemplateMajorVersion = Action("CreateServiceTemplateMajorVersion") CreateServiceTemplateMinorVersion = Action("CreateServiceTemplateMinorVersion") DeleteAccountRoles = Action("DeleteAccountRoles") DeleteEnvironment = Action("DeleteEnvironment") DeleteEnvironmentTemplate = Action("DeleteEnvironmentTemplate") DeleteEnvironmentTemplateMajorVersion = Action("DeleteEnvironmentTemplateMajorVersion") DeleteEnvironmentTemplateMinorVersion = Action("DeleteEnvironmentTemplateMinorVersion") DeleteService = Action("DeleteService") DeleteServiceTemplate = Action("DeleteServiceTemplate") DeleteServiceTemplateMajorVersion = Action("DeleteServiceTemplateMajorVersion") DeleteServiceTemplateMinorVersion = Action("DeleteServiceTemplateMinorVersion") GetAccountRoles = Action("GetAccountRoles") GetEnvironment = Action("GetEnvironment") GetEnvironmentTemplate = Action("GetEnvironmentTemplate") GetEnvironmentTemplateMajorVersion = Action("GetEnvironmentTemplateMajorVersion") GetEnvironmentTemplateMinorVersion = Action("GetEnvironmentTemplateMinorVersion") GetService = Action("GetService") GetServiceInstance = Action("GetServiceInstance") GetServiceTemplate = Action("GetServiceTemplate") GetServiceTemplateMajorVersion = Action("GetServiceTemplateMajorVersion") GetServiceTemplateMinorVersion = Action("GetServiceTemplateMinorVersion") ListEnvironmentTemplateMajorVersions = Action("ListEnvironmentTemplateMajorVersions") ListEnvironmentTemplateMinorVersions = Action("ListEnvironmentTemplateMinorVersions") ListEnvironmentTemplates = Action("ListEnvironmentTemplates") ListEnvironments = Action("ListEnvironments") ListServiceInstances = Action("ListServiceInstances") ListServiceTemplateMajorVersions = Action("ListServiceTemplateMajorVersions") ListServiceTemplateMinorVersions = Action("ListServiceTemplateMinorVersions") ListServiceTemplates = Action("ListServiceTemplates") ListServices = Action("ListServices") ListTagsForResource = Action("ListTagsForResource") TagResource = Action("TagResource") UntagResource = Action("UntagResource") UpdateAccountRoles = Action("UpdateAccountRoles") UpdateEnvironment = Action("UpdateEnvironment") UpdateEnvironmentTemplate = Action("UpdateEnvironmentTemplate") UpdateEnvironmentTemplateMajorVersion = Action("UpdateEnvironmentTemplateMajorVersion") UpdateEnvironmentTemplateMinorVersion = Action("UpdateEnvironmentTemplateMinorVersion") UpdateService = Action("UpdateService") UpdateServiceInstance = Action("UpdateServiceInstance") UpdateServicePipeline = Action("UpdateServicePipeline") UpdateServiceTemplate = Action("UpdateServiceTemplate") UpdateServiceTemplateMajorVersion = Action("UpdateServiceTemplateMajorVersion") UpdateServiceTemplateMinorVersion = Action("UpdateServiceTemplateMinorVersion")
en
0.745275
# Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license.
2.199102
2
src/error.py
LydiaMelles/relativum
0
9494
class RequirementsNotMetError(Exception): """For SQL INSERT, missing table attributes.""" def __init__(self, message): super().__init__(message) class AuthenticationError(Exception): """Generic authentication error.""" def __init__(self, message): super().__init__(message)
class RequirementsNotMetError(Exception): """For SQL INSERT, missing table attributes.""" def __init__(self, message): super().__init__(message) class AuthenticationError(Exception): """Generic authentication error.""" def __init__(self, message): super().__init__(message)
en
0.295452
For SQL INSERT, missing table attributes. Generic authentication error.
2.772172
3
jaxline/utils_test.py
lorenrose1013/jaxline
1
9495
<filename>jaxline/utils_test.py # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for jaxline's utils.""" import functools import itertools as it import time from unittest import mock from absl.testing import absltest from absl.testing import flagsaver import jax import jax.numpy as jnp from jaxline import utils import numpy as np class PyPrefetchTest(absltest.TestCase): def testEmpty(self): self.assertEqual(list(utils.py_prefetch(lambda: ())), []) def testBaseCase(self): self.assertEqual(list(utils.py_prefetch(lambda: range(100))), list(range(100))) def testBadFunction(self): def _bad_function(): raise ValueError iterable = utils.py_prefetch(_bad_function) with self.assertRaises(ValueError): next(iterable) def testBadFunctionIteration(self): def _bad_iterable(): yield 1 raise ValueError iterable = utils.py_prefetch(_bad_iterable) self.assertEqual(next(iterable), 1) with self.assertRaises(ValueError): next(iterable) class TreePsumTest(absltest.TestCase): def testBaseCase(self): # pick leaf objects with leading dimension one as these tests will # be run on a single device. data = {"a": jnp.array([1]), "b": jnp.array([2])} data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testEmpty(self): data = {"a": jnp.array([]), "b": jnp.array([])} with self.assertRaises(ZeroDivisionError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testSingleLeafTree(self): data = jnp.array([1]) data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testNotNumpy(self): data = [1] with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNumDevicesMismatch(self): data = jnp.array([1, 2]) # assumes 2 devices but we only have 1 with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNoPmapWrapper(self): with self.assertRaises(NameError): # axis_name will be undefined utils.tree_psum(jnp.array([1]), axis_name="i") def testAxisNameMismatch(self): data = jnp.array([1]) with self.assertRaises(NameError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="j")(data) class MakeAsyncTest(absltest.TestCase): def testBaseCase(self): """Tests correct execution for single call.""" r = [] async_fn = utils.make_async()(lambda: r.append("a")) async_fn() time.sleep(1) self.assertListEqual(r, ["a"]) def testNonBlocking(self): """Tests async function doesn't block the main thread.""" r = [] async_fn = utils.make_async()(lambda: r.append((time.sleep(5), "a"))) r.append((None, "b")) async_fn().result() self.assertListEqual(r, [(None, "b"), (None, "a")]) def testSerialExecution(self): """Tests multiple calls to async function execute serially.""" r = [] a = lambda: r.append((time.sleep(5), "a")) b = lambda: r.append((None, "b")) async_fn = utils.make_async()(lambda f: f()) async_fn(a) async_fn(b).result() self.assertListEqual(r, [(None, "a"), (None, "b")]) def testErrorOnNextCall(self): """Tests background thread error raised in main thread on next call.""" @utils.make_async() def async_fn(): raise ValueError() # First call will trigger an error in the background thread. async_fn() with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on next call async_fn() def testSubsequentCallsDontRun(self): """Tests that subsequent calls don't run after an error has occurred.""" runs = [] @utils.make_async() def async_fn(): runs.append(None) raise ValueError() # First call will trigger an error in the background thread. async_fn() for _ in range(2): with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on # subsequent calls and _bad_function will not be run. async_fn() self.assertListEqual(runs, [None]) def testErrorInBackgroundThread(self): """Tests background thread raises the error.""" @utils.make_async() def async_fn(): raise ValueError() future = async_fn() # pylint: disable=assignment-from-no-return self.assertIsNotNone(future.exception()) class TestBroadcast(absltest.TestCase): def test_bcast_local_devices(self): self.assertEqual(utils.bcast_local_devices(jnp.zeros([])), jnp.zeros([jax.local_device_count()])) self.assertEqual(utils.bcast_local_devices(jnp.ones([])), jnp.ones([jax.local_device_count()])) def test_bcast_local_devices_empty_tree(self): self.assertIsNone(utils.bcast_local_devices(None)) self.assertEqual(utils.bcast_local_devices({}), {}) def test_bcast_local_devices_tree(self): num_devices = jax.local_device_count() tree = utils.bcast_local_devices({"ones": jnp.ones([]), "zeros": jnp.zeros([])}) self.assertEqual(tree, {"ones": jnp.ones([num_devices]), "zeros": jnp.zeros([num_devices])}) class TestLogActivity(absltest.TestCase): @mock.patch("jaxline.utils.logging.info") def test_log_success(self, mock_info): """Tests that logging an activity is successful.""" with utils.log_activity("for test"): pass mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_info.assert_any_call("[jaxline] %s finished.", "for test") @mock.patch("absl.logging.exception") @mock.patch("absl.logging.info") def test_log_failure(self, mock_info, mock_exc): """Tests that an error thrown by an activity is correctly caught.""" with self.assertRaisesRegex(ValueError, "Intentional"): with utils.log_activity("for test"): raise ValueError("Intentional") mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_exc.assert_any_call("[jaxline] %s failed with error.", "for test") class TestSpecializeRngHostDevice(absltest.TestCase): @classmethod def setUpClass(cls): super(TestSpecializeRngHostDevice, cls).setUpClass() rng = jax.random.PRNGKey(0) cls.rng = jnp.broadcast_to( rng, (jax.local_device_count(),) + rng.shape) def test_unique_device(self): """Tests that rngs are unique across devices.""" mode = "unique_host_unique_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(rng, axis=0).shape[0], jax.local_device_count()) def test_same_device(self): """Tests rngs are same across devices.""" mode = "unique_host_same_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(rng, axis=0).shape[0], 1) def test_unique_host(self): """Tests rngs unique between hosts.""" mode = "unique_host_same_device" with mock.patch.object(utils.jax, "host_id", return_value=0): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng0 = specialize_func(self.rng, host_id_devices) with mock.patch.object(utils.jax, "host_id", return_value=1): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng1 = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(np.concatenate([rng0, rng1], axis=0), axis=0).shape[0], 2) class TestRendezvous(absltest.TestCase): def test_rendezvous(self): """Test that rendezvous doesn't fail.""" utils.rendezvous() class TestJaxlineDisablePmapJit(absltest.TestCase): @mock.patch.object(utils.chex, "fake_pmap_and_jit", autospec=True) def test_pmap_jit_disabled(self, mock_fake_pmap_and_jit): """Tests pmap/jit are disabled if --jaxline_disable_pmap_jit is set.""" with self.subTest("PmapJitNotDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=False): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_not_called() with self.subTest("PmapJitDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=True): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_called_once() class DoubleBufferTest(absltest.TestCase): def test_double_buffer(self): if jax.default_backend() != "gpu": self.skipTest("Only necessary on GPU.") n = jax.local_device_count() dataset = it.repeat(np.ones([n])) iterator = iter(utils.double_buffer(dataset)) batch_ptrs = [] while len(batch_ptrs) < 4: batch = next(iterator) ptrs = [b.unsafe_buffer_pointer() for b in batch.device_buffers] batch_ptrs.append(ptrs) del batch self.assertEqual(batch_ptrs[0], batch_ptrs[2]) self.assertEqual(batch_ptrs[1], batch_ptrs[3]) self.assertNotEqual(batch_ptrs[0], batch_ptrs[1]) self.assertNotEqual(batch_ptrs[2], batch_ptrs[3]) if __name__ == "__main__": absltest.main()
<filename>jaxline/utils_test.py # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for jaxline's utils.""" import functools import itertools as it import time from unittest import mock from absl.testing import absltest from absl.testing import flagsaver import jax import jax.numpy as jnp from jaxline import utils import numpy as np class PyPrefetchTest(absltest.TestCase): def testEmpty(self): self.assertEqual(list(utils.py_prefetch(lambda: ())), []) def testBaseCase(self): self.assertEqual(list(utils.py_prefetch(lambda: range(100))), list(range(100))) def testBadFunction(self): def _bad_function(): raise ValueError iterable = utils.py_prefetch(_bad_function) with self.assertRaises(ValueError): next(iterable) def testBadFunctionIteration(self): def _bad_iterable(): yield 1 raise ValueError iterable = utils.py_prefetch(_bad_iterable) self.assertEqual(next(iterable), 1) with self.assertRaises(ValueError): next(iterable) class TreePsumTest(absltest.TestCase): def testBaseCase(self): # pick leaf objects with leading dimension one as these tests will # be run on a single device. data = {"a": jnp.array([1]), "b": jnp.array([2])} data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testEmpty(self): data = {"a": jnp.array([]), "b": jnp.array([])} with self.assertRaises(ZeroDivisionError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testSingleLeafTree(self): data = jnp.array([1]) data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testNotNumpy(self): data = [1] with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNumDevicesMismatch(self): data = jnp.array([1, 2]) # assumes 2 devices but we only have 1 with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNoPmapWrapper(self): with self.assertRaises(NameError): # axis_name will be undefined utils.tree_psum(jnp.array([1]), axis_name="i") def testAxisNameMismatch(self): data = jnp.array([1]) with self.assertRaises(NameError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="j")(data) class MakeAsyncTest(absltest.TestCase): def testBaseCase(self): """Tests correct execution for single call.""" r = [] async_fn = utils.make_async()(lambda: r.append("a")) async_fn() time.sleep(1) self.assertListEqual(r, ["a"]) def testNonBlocking(self): """Tests async function doesn't block the main thread.""" r = [] async_fn = utils.make_async()(lambda: r.append((time.sleep(5), "a"))) r.append((None, "b")) async_fn().result() self.assertListEqual(r, [(None, "b"), (None, "a")]) def testSerialExecution(self): """Tests multiple calls to async function execute serially.""" r = [] a = lambda: r.append((time.sleep(5), "a")) b = lambda: r.append((None, "b")) async_fn = utils.make_async()(lambda f: f()) async_fn(a) async_fn(b).result() self.assertListEqual(r, [(None, "a"), (None, "b")]) def testErrorOnNextCall(self): """Tests background thread error raised in main thread on next call.""" @utils.make_async() def async_fn(): raise ValueError() # First call will trigger an error in the background thread. async_fn() with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on next call async_fn() def testSubsequentCallsDontRun(self): """Tests that subsequent calls don't run after an error has occurred.""" runs = [] @utils.make_async() def async_fn(): runs.append(None) raise ValueError() # First call will trigger an error in the background thread. async_fn() for _ in range(2): with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on # subsequent calls and _bad_function will not be run. async_fn() self.assertListEqual(runs, [None]) def testErrorInBackgroundThread(self): """Tests background thread raises the error.""" @utils.make_async() def async_fn(): raise ValueError() future = async_fn() # pylint: disable=assignment-from-no-return self.assertIsNotNone(future.exception()) class TestBroadcast(absltest.TestCase): def test_bcast_local_devices(self): self.assertEqual(utils.bcast_local_devices(jnp.zeros([])), jnp.zeros([jax.local_device_count()])) self.assertEqual(utils.bcast_local_devices(jnp.ones([])), jnp.ones([jax.local_device_count()])) def test_bcast_local_devices_empty_tree(self): self.assertIsNone(utils.bcast_local_devices(None)) self.assertEqual(utils.bcast_local_devices({}), {}) def test_bcast_local_devices_tree(self): num_devices = jax.local_device_count() tree = utils.bcast_local_devices({"ones": jnp.ones([]), "zeros": jnp.zeros([])}) self.assertEqual(tree, {"ones": jnp.ones([num_devices]), "zeros": jnp.zeros([num_devices])}) class TestLogActivity(absltest.TestCase): @mock.patch("jaxline.utils.logging.info") def test_log_success(self, mock_info): """Tests that logging an activity is successful.""" with utils.log_activity("for test"): pass mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_info.assert_any_call("[jaxline] %s finished.", "for test") @mock.patch("absl.logging.exception") @mock.patch("absl.logging.info") def test_log_failure(self, mock_info, mock_exc): """Tests that an error thrown by an activity is correctly caught.""" with self.assertRaisesRegex(ValueError, "Intentional"): with utils.log_activity("for test"): raise ValueError("Intentional") mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_exc.assert_any_call("[jaxline] %s failed with error.", "for test") class TestSpecializeRngHostDevice(absltest.TestCase): @classmethod def setUpClass(cls): super(TestSpecializeRngHostDevice, cls).setUpClass() rng = jax.random.PRNGKey(0) cls.rng = jnp.broadcast_to( rng, (jax.local_device_count(),) + rng.shape) def test_unique_device(self): """Tests that rngs are unique across devices.""" mode = "unique_host_unique_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(rng, axis=0).shape[0], jax.local_device_count()) def test_same_device(self): """Tests rngs are same across devices.""" mode = "unique_host_same_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(rng, axis=0).shape[0], 1) def test_unique_host(self): """Tests rngs unique between hosts.""" mode = "unique_host_same_device" with mock.patch.object(utils.jax, "host_id", return_value=0): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng0 = specialize_func(self.rng, host_id_devices) with mock.patch.object(utils.jax, "host_id", return_value=1): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng1 = specialize_func(self.rng, host_id_devices) self.assertEqual( np.unique(np.concatenate([rng0, rng1], axis=0), axis=0).shape[0], 2) class TestRendezvous(absltest.TestCase): def test_rendezvous(self): """Test that rendezvous doesn't fail.""" utils.rendezvous() class TestJaxlineDisablePmapJit(absltest.TestCase): @mock.patch.object(utils.chex, "fake_pmap_and_jit", autospec=True) def test_pmap_jit_disabled(self, mock_fake_pmap_and_jit): """Tests pmap/jit are disabled if --jaxline_disable_pmap_jit is set.""" with self.subTest("PmapJitNotDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=False): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_not_called() with self.subTest("PmapJitDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=True): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_called_once() class DoubleBufferTest(absltest.TestCase): def test_double_buffer(self): if jax.default_backend() != "gpu": self.skipTest("Only necessary on GPU.") n = jax.local_device_count() dataset = it.repeat(np.ones([n])) iterator = iter(utils.double_buffer(dataset)) batch_ptrs = [] while len(batch_ptrs) < 4: batch = next(iterator) ptrs = [b.unsafe_buffer_pointer() for b in batch.device_buffers] batch_ptrs.append(ptrs) del batch self.assertEqual(batch_ptrs[0], batch_ptrs[2]) self.assertEqual(batch_ptrs[1], batch_ptrs[3]) self.assertNotEqual(batch_ptrs[0], batch_ptrs[1]) self.assertNotEqual(batch_ptrs[2], batch_ptrs[3]) if __name__ == "__main__": absltest.main()
en
0.892031
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== Tests for jaxline's utils. # pick leaf objects with leading dimension one as these tests will # be run on a single device. # assumes 2 devices but we only have 1 # axis_name will be undefined Tests correct execution for single call. Tests async function doesn't block the main thread. Tests multiple calls to async function execute serially. Tests background thread error raised in main thread on next call. # First call will trigger an error in the background thread. # Background thread error will be raised in the main thread on next call Tests that subsequent calls don't run after an error has occurred. # First call will trigger an error in the background thread. # Background thread error will be raised in the main thread on # subsequent calls and _bad_function will not be run. Tests background thread raises the error. # pylint: disable=assignment-from-no-return Tests that logging an activity is successful. Tests that an error thrown by an activity is correctly caught. Tests that rngs are unique across devices. Tests rngs are same across devices. Tests rngs unique between hosts. Test that rendezvous doesn't fail. Tests pmap/jit are disabled if --jaxline_disable_pmap_jit is set.
2.579058
3
test/unit/mysql_class/slaverep_isslverror.py
deepcoder42/mysql-lib
1
9496
#!/usr/bin/python # Classification (U) """Program: slaverep_isslverror.py Description: Unit testing of SlaveRep.is_slv_error in mysql_class.py. Usage: test/unit/mysql_class/slaverep_isslverror.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import mysql_class import lib.machine as machine import version __version__ = version.__version__ class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp -> Initialize testing environment. test_slv_both_true -> Test with all attrs set to True. test_sql_err_true -> Test with sql_err set to True. test_io_err_true -> Test with io_err set to True. test_default -> Test show_slv_state method. """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.name = "Mysql_Server" self.server_id = 10 self.sql_user = "mysql_user" self.sql_pass = "<PASSWORD>" self.machine = getattr(machine, "Linux")() self.host = "host_server" self.port = 3307 self.defaults_file = "def_cfg_file" self.extra_def_file = "extra_cfg_file" def test_slv_both_true(self): """Function: test_slv_both_true Description: Test with all attrs set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = "Yes" mysqlrep.io_err = "Yes" self.assertTrue(mysqlrep.is_slv_error()) def test_sql_err_true(self): """Function: test_sql_err_true Description: Test with sql_err set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = "Yes" mysqlrep.io_err = None self.assertTrue(mysqlrep.is_slv_error()) def test_io_err_true(self): """Function: test_io_err_true Description: Test with io_err set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = None mysqlrep.io_err = "Yes" self.assertTrue(mysqlrep.is_slv_error()) def test_default(self): """Function: test_default Description: Test is_slv_error method. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = None mysqlrep.io_err = None self.assertFalse(mysqlrep.is_slv_error()) if __name__ == "__main__": unittest.main()
#!/usr/bin/python # Classification (U) """Program: slaverep_isslverror.py Description: Unit testing of SlaveRep.is_slv_error in mysql_class.py. Usage: test/unit/mysql_class/slaverep_isslverror.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import mysql_class import lib.machine as machine import version __version__ = version.__version__ class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp -> Initialize testing environment. test_slv_both_true -> Test with all attrs set to True. test_sql_err_true -> Test with sql_err set to True. test_io_err_true -> Test with io_err set to True. test_default -> Test show_slv_state method. """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.name = "Mysql_Server" self.server_id = 10 self.sql_user = "mysql_user" self.sql_pass = "<PASSWORD>" self.machine = getattr(machine, "Linux")() self.host = "host_server" self.port = 3307 self.defaults_file = "def_cfg_file" self.extra_def_file = "extra_cfg_file" def test_slv_both_true(self): """Function: test_slv_both_true Description: Test with all attrs set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = "Yes" mysqlrep.io_err = "Yes" self.assertTrue(mysqlrep.is_slv_error()) def test_sql_err_true(self): """Function: test_sql_err_true Description: Test with sql_err set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = "Yes" mysqlrep.io_err = None self.assertTrue(mysqlrep.is_slv_error()) def test_io_err_true(self): """Function: test_io_err_true Description: Test with io_err set to True. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = None mysqlrep.io_err = "Yes" self.assertTrue(mysqlrep.is_slv_error()) def test_default(self): """Function: test_default Description: Test is_slv_error method. Arguments: """ mysqlrep = mysql_class.SlaveRep(self.name, self.server_id, self.sql_user, self.sql_pass, self.machine, defaults_file=self.defaults_file) mysqlrep.sql_err = None mysqlrep.io_err = None self.assertFalse(mysqlrep.is_slv_error()) if __name__ == "__main__": unittest.main()
en
0.576658
#!/usr/bin/python # Classification (U) Program: slaverep_isslverror.py Description: Unit testing of SlaveRep.is_slv_error in mysql_class.py. Usage: test/unit/mysql_class/slaverep_isslverror.py Arguments: # Libraries and Global Variables # Standard # Third-party # Local Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp -> Initialize testing environment. test_slv_both_true -> Test with all attrs set to True. test_sql_err_true -> Test with sql_err set to True. test_io_err_true -> Test with io_err set to True. test_default -> Test show_slv_state method. Function: setUp Description: Initialization for unit testing. Arguments: Function: test_slv_both_true Description: Test with all attrs set to True. Arguments: Function: test_sql_err_true Description: Test with sql_err set to True. Arguments: Function: test_io_err_true Description: Test with io_err set to True. Arguments: Function: test_default Description: Test is_slv_error method. Arguments:
2.582985
3
problems/108.py
mengshun/Leetcode
0
9497
""" 108. 将有序数组转换为二叉搜索树 """ from TreeNode import TreeNode class Solution: def sortedArrayToBST(self, nums: [int]) -> TreeNode: def dfs(left, right): if left > right: return None mid = left + (right - left) // 2 root = TreeNode(nums[mid]) root.left = dfs(left, mid-1) root.right = dfs(mid+1, right) return root return dfs(0, len(nums)-1) t = [-10,-3,0,5,9] obj = Solution() node = obj.sortedArrayToBST(t) node.preorderTraversal()
""" 108. 将有序数组转换为二叉搜索树 """ from TreeNode import TreeNode class Solution: def sortedArrayToBST(self, nums: [int]) -> TreeNode: def dfs(left, right): if left > right: return None mid = left + (right - left) // 2 root = TreeNode(nums[mid]) root.left = dfs(left, mid-1) root.right = dfs(mid+1, right) return root return dfs(0, len(nums)-1) t = [-10,-3,0,5,9] obj = Solution() node = obj.sortedArrayToBST(t) node.preorderTraversal()
zh
0.656805
108. 将有序数组转换为二叉搜索树
3.478027
3
src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py
hsm207/sage
1,742
9498
<filename>src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py<gh_stars>1000+ ## -*- encoding: utf-8 -*- """ This file (./domaines_doctest.sage) was *autogenerated* from ./domaines.tex, with sagetex.sty version 2011/05/27 v2.3.1. It contains the contents of all the sageexample environments from this file. You should be able to doctest this file with: sage -t ./domaines_doctest.sage It is always safe to delete this file; it is not used in typesetting your document. Sage example in ./domaines.tex, line 10:: sage: x = var('x') Sage example in ./domaines.tex, line 69:: sage: o = 12/35 sage: type(o) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 82:: sage: type(12/35) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 131:: sage: o = 720 sage: o.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 142:: sage: type(o).factor(o) 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 157:: sage: 720.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 166:: sage: o = 720 / 133 sage: o.numerator().factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 253:: sage: 3 * 7 21 Sage example in ./domaines.tex, line 261:: sage: (2/3) * (6/5) 4/5 Sage example in ./domaines.tex, line 267:: sage: (1 + I) * (1 - I) 2 Sage example in ./domaines.tex, line 274:: sage: (x + 2) * (x + 1) (x + 2)*(x + 1) sage: (x + 1) * (x + 2) (x + 2)*(x + 1) Sage example in ./domaines.tex, line 308:: sage: def fourth_power(a): ....: a = a * a ....: a = a * a ....: return a Sage example in ./domaines.tex, line 330:: sage: fourth_power(2) 16 sage: fourth_power(3/2) 81/16 sage: fourth_power(I) 1 sage: fourth_power(x+1) (x + 1)^4 sage: M = matrix([[0,-1],[1,0]]); M [ 0 -1] [ 1 0] sage: fourth_power(M) [1 0] [0 1] Sage example in ./domaines.tex, line 375:: sage: t = type(5/1); t <... 'sage.rings.rational.Rational'> sage: t == type(5) False Sage example in ./domaines.tex, line 476:: sage: a = 5; a 5 sage: a.is_unit() False Sage example in ./domaines.tex, line 484:: sage: a = 5/1; a 5 sage: a.is_unit() True Sage example in ./domaines.tex, line 507:: sage: parent(5) Integer Ring sage: parent(5/1) Rational Field Sage example in ./domaines.tex, line 515:: sage: ZZ Integer Ring sage: QQ Rational Field Sage example in ./domaines.tex, line 525:: sage: QQ(5).parent() Rational Field sage: ZZ(5/1).parent() Integer Ring sage: ZZ(1/5) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer Sage example in ./domaines.tex, line 543:: sage: ZZ(1), QQ(1), RR(1), CC(1) (1, 1, 1.00000000000000, 1.00000000000000) Sage example in ./domaines.tex, line 568:: sage: cartesian_product([QQ, QQ]) The Cartesian product of (Rational Field, Rational Field) Sage example in ./domaines.tex, line 574:: sage: ZZ.fraction_field() Rational Field Sage example in ./domaines.tex, line 580:: sage: ZZ['x'] Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 591:: sage: Z5 = GF(5); Z5 Finite Field of size 5 sage: P = Z5['x']; P Univariate Polynomial Ring in x over Finite Field of size 5 sage: M = MatrixSpace(P, 3, 3); M Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in x over Finite Field of size 5 Sage example in ./domaines.tex, line 602:: sage: M.random_element() # random [2*x^2 + 3*x + 4 4*x^2 + 2*x + 2 4*x^2 + 2*x] [ 3*x 2*x^2 + x + 3 3*x^2 + 4*x] [ 4*x^2 + 3 3*x^2 + 2*x + 4 2*x + 4] Sage example in ./domaines.tex, line 697:: sage: QQ.category() Join of Category of number fields and Category of quotient fields and Category of metric spaces Sage example in ./domaines.tex, line 704:: sage: QQ in Fields() True Sage example in ./domaines.tex, line 712:: sage: QQ in CommutativeAdditiveGroups() True Sage example in ./domaines.tex, line 718:: sage: QQ['x'] in EuclideanDomains() True Sage example in ./domaines.tex, line 859:: sage: 5.parent() Integer Ring Sage example in ./domaines.tex, line 872:: sage: type(factor(4)) <class 'sage.structure.factorization_integer.IntegerFactorization'> Sage example in ./domaines.tex, line 895:: sage: int(5) 5 sage: type(int(5)) <... 'int'> Sage example in ./domaines.tex, line 909:: sage: Integer(5) 5 sage: type(Integer(5)) <... 'sage.rings.integer.Integer'> Sage example in ./domaines.tex, line 926:: sage: factorial(99) / factorial(100) - 1 / 50 -1/100 Sage example in ./domaines.tex, line 974:: sage: 72/53 - 5/3 * 2.7 -3.14150943396227 Sage example in ./domaines.tex, line 982:: sage: cos(1), cos(1.) (cos(1), 0.540302305868140) Sage example in ./domaines.tex, line 1000:: sage: pi.n(digits=50) # variant: n(pi,digits=50) 3.1415926535897932384626433832795028841971693993751 Sage example in ./domaines.tex, line 1020:: sage: z = CC(1,2); z.arg() 1.10714871779409 Sage example in ./domaines.tex, line 1036:: sage: I.parent() Number Field in I with defining polynomial x^2 + 1 with I = 1*I Sage example in ./domaines.tex, line 1043:: sage: (1.+2.*I).parent() Complex Field with 53 bits of precision sage: (1.+2.*SR(I)).parent() Symbolic Ring Sage example in ./domaines.tex, line 1064:: sage: z = 3 * exp(I*pi/4) sage: z.real(), z.imag(), z.abs().canonicalize_radical() (3/2*sqrt(2), 3/2*sqrt(2), 3) Sage example in ./domaines.tex, line 1094:: sage: a, b, c = 0, 2, 3 sage: a == 1 or (b == 2 and c == 3) True Sage example in ./domaines.tex, line 1147:: sage: x, y = var('x, y') sage: bool( (x-y)*(x+y) == x^2-y^2 ) True Sage example in ./domaines.tex, line 1171:: sage: Z4 = IntegerModRing(4); Z4 Ring of integers modulo 4 sage: m = Z4(7); m 3 Sage example in ./domaines.tex, line 1184:: sage: 3 * m + 1 2 Sage example in ./domaines.tex, line 1191:: sage: Z3 = GF(3); Z3 Finite Field of size 3 Sage example in ./domaines.tex, line 1243:: sage: a = matrix(QQ, [[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1259:: sage: M = MatrixSpace(QQ,3,3); M Full MatrixSpace of 3 by 3 dense matrices over Rational Field sage: a = M([[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1283:: sage: P = ZZ['x']; P Univariate Polynomial Ring in x over Integer Ring sage: F = P.fraction_field(); F Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: p = P(x+1) * P(x); p x^2 + x sage: p + 1/p (x^4 + 2*x^3 + x^2 + 1)/(x^2 + x) sage: parent(p + 1/p) Fraction Field of Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1382:: sage: k.<a> = NumberField(x^3 + x + 1); a^3; a^4+3*a -a - 1 -a^2 + 2*a Sage example in ./domaines.tex, line 1416:: sage: parent(sin(x)) Symbolic Ring Sage example in ./domaines.tex, line 1422:: sage: SR Symbolic Ring Sage example in ./domaines.tex, line 1428:: sage: SR.category() Category of fields Sage example in ./domaines.tex, line 1482:: sage: R = QQ['x1,x2,x3,x4']; R Multivariate Polynomial Ring in x1, x2, x3, x4 over Rational Field sage: x1, x2, x3, x4 = R.gens() Sage example in ./domaines.tex, line 1489:: sage: x1 * (x2 - x3) x1*x2 - x1*x3 Sage example in ./domaines.tex, line 1496:: sage: (x1+x2)*(x1-x2) - (x1^2 - x2^2) 0 Sage example in ./domaines.tex, line 1509:: sage: P = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ); P * P.lc() x1^3*x2^2*x3 - x1^2*x2^3*x3 - x1^3*x2*x3^2 + x1*x2^3*x3^2 + x1^2*x2*x3^3 - x1*x2^2*x3^3 - x1^3*x2^2*x4 + x1^2*x2^3*x4 + x1^3*x3^2*x4 - x2^3*x3^2*x4 - x1^2*x3^3*x4 + x2^2*x3^3*x4 + x1^3*x2*x4^2 - x1*x2^3*x4^2 - x1^3*x3*x4^2 + x2^3*x3*x4^2 + x1*x3^3*x4^2 - x2*x3^3*x4^2 - x1^2*x2*x4^3 + x1*x2^2*x4^3 + x1^2*x3*x4^3 - x2^2*x3*x4^3 - x1*x3^2*x4^3 + x2*x3^2*x4^3 Sage example in ./domaines.tex, line 1531:: sage: x1, x2, x3, x4 = SR.var('x1, x2, x3, x4') sage: got = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ) sage: expected1 = -(x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: expected2 = (x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: bool(got == expected1 or got == expected2) True Sage example in ./domaines.tex, line 1581:: sage: x = var('x') sage: p = 54*x^4+36*x^3-102*x^2-72*x-12 sage: factor(p) 6*(x^2 - 2)*(3*x + 1)^2 Sage example in ./domaines.tex, line 1616:: sage: R = ZZ['x']; R Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1622:: sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 Sage example in ./domaines.tex, line 1629:: sage: parent(q) Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1635:: sage: factor(q) 2 * 3 * (3*x + 1)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1642:: sage: R = QQ['x']; R Univariate Polynomial Ring in x over Rational Field sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x + 1/3)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1665:: sage: R = ComplexField(16)['x']; R Univariate Polynomial Ring in x over Complex Field with 16 bits of precision sage: q = R(p); q 54.00*x^4 + 36.00*x^3 - 102.0*x^2 - 72.00*x - 12.00 sage: factor(q) (54.00) * (x - 1.414) * (x + 0.3333)^2 * (x + 1.414) Sage example in ./domaines.tex, line 1685:: sage: R = QQ[sqrt(2)]['x']; R Univariate Polynomial Ring in x over Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095? sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)^2 Sage example in ./domaines.tex, line 1698:: sage: R = GF(5)['x']; R Univariate Polynomial Ring in x over Finite Field of size 5 sage: q = R(p); q 4*x^4 + x^3 + 3*x^2 + 3*x + 3 sage: factor(q) (4) * (x + 2)^2 * (x^2 + 3) """
<filename>src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py<gh_stars>1000+ ## -*- encoding: utf-8 -*- """ This file (./domaines_doctest.sage) was *autogenerated* from ./domaines.tex, with sagetex.sty version 2011/05/27 v2.3.1. It contains the contents of all the sageexample environments from this file. You should be able to doctest this file with: sage -t ./domaines_doctest.sage It is always safe to delete this file; it is not used in typesetting your document. Sage example in ./domaines.tex, line 10:: sage: x = var('x') Sage example in ./domaines.tex, line 69:: sage: o = 12/35 sage: type(o) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 82:: sage: type(12/35) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 131:: sage: o = 720 sage: o.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 142:: sage: type(o).factor(o) 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 157:: sage: 720.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 166:: sage: o = 720 / 133 sage: o.numerator().factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 253:: sage: 3 * 7 21 Sage example in ./domaines.tex, line 261:: sage: (2/3) * (6/5) 4/5 Sage example in ./domaines.tex, line 267:: sage: (1 + I) * (1 - I) 2 Sage example in ./domaines.tex, line 274:: sage: (x + 2) * (x + 1) (x + 2)*(x + 1) sage: (x + 1) * (x + 2) (x + 2)*(x + 1) Sage example in ./domaines.tex, line 308:: sage: def fourth_power(a): ....: a = a * a ....: a = a * a ....: return a Sage example in ./domaines.tex, line 330:: sage: fourth_power(2) 16 sage: fourth_power(3/2) 81/16 sage: fourth_power(I) 1 sage: fourth_power(x+1) (x + 1)^4 sage: M = matrix([[0,-1],[1,0]]); M [ 0 -1] [ 1 0] sage: fourth_power(M) [1 0] [0 1] Sage example in ./domaines.tex, line 375:: sage: t = type(5/1); t <... 'sage.rings.rational.Rational'> sage: t == type(5) False Sage example in ./domaines.tex, line 476:: sage: a = 5; a 5 sage: a.is_unit() False Sage example in ./domaines.tex, line 484:: sage: a = 5/1; a 5 sage: a.is_unit() True Sage example in ./domaines.tex, line 507:: sage: parent(5) Integer Ring sage: parent(5/1) Rational Field Sage example in ./domaines.tex, line 515:: sage: ZZ Integer Ring sage: QQ Rational Field Sage example in ./domaines.tex, line 525:: sage: QQ(5).parent() Rational Field sage: ZZ(5/1).parent() Integer Ring sage: ZZ(1/5) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer Sage example in ./domaines.tex, line 543:: sage: ZZ(1), QQ(1), RR(1), CC(1) (1, 1, 1.00000000000000, 1.00000000000000) Sage example in ./domaines.tex, line 568:: sage: cartesian_product([QQ, QQ]) The Cartesian product of (Rational Field, Rational Field) Sage example in ./domaines.tex, line 574:: sage: ZZ.fraction_field() Rational Field Sage example in ./domaines.tex, line 580:: sage: ZZ['x'] Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 591:: sage: Z5 = GF(5); Z5 Finite Field of size 5 sage: P = Z5['x']; P Univariate Polynomial Ring in x over Finite Field of size 5 sage: M = MatrixSpace(P, 3, 3); M Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in x over Finite Field of size 5 Sage example in ./domaines.tex, line 602:: sage: M.random_element() # random [2*x^2 + 3*x + 4 4*x^2 + 2*x + 2 4*x^2 + 2*x] [ 3*x 2*x^2 + x + 3 3*x^2 + 4*x] [ 4*x^2 + 3 3*x^2 + 2*x + 4 2*x + 4] Sage example in ./domaines.tex, line 697:: sage: QQ.category() Join of Category of number fields and Category of quotient fields and Category of metric spaces Sage example in ./domaines.tex, line 704:: sage: QQ in Fields() True Sage example in ./domaines.tex, line 712:: sage: QQ in CommutativeAdditiveGroups() True Sage example in ./domaines.tex, line 718:: sage: QQ['x'] in EuclideanDomains() True Sage example in ./domaines.tex, line 859:: sage: 5.parent() Integer Ring Sage example in ./domaines.tex, line 872:: sage: type(factor(4)) <class 'sage.structure.factorization_integer.IntegerFactorization'> Sage example in ./domaines.tex, line 895:: sage: int(5) 5 sage: type(int(5)) <... 'int'> Sage example in ./domaines.tex, line 909:: sage: Integer(5) 5 sage: type(Integer(5)) <... 'sage.rings.integer.Integer'> Sage example in ./domaines.tex, line 926:: sage: factorial(99) / factorial(100) - 1 / 50 -1/100 Sage example in ./domaines.tex, line 974:: sage: 72/53 - 5/3 * 2.7 -3.14150943396227 Sage example in ./domaines.tex, line 982:: sage: cos(1), cos(1.) (cos(1), 0.540302305868140) Sage example in ./domaines.tex, line 1000:: sage: pi.n(digits=50) # variant: n(pi,digits=50) 3.1415926535897932384626433832795028841971693993751 Sage example in ./domaines.tex, line 1020:: sage: z = CC(1,2); z.arg() 1.10714871779409 Sage example in ./domaines.tex, line 1036:: sage: I.parent() Number Field in I with defining polynomial x^2 + 1 with I = 1*I Sage example in ./domaines.tex, line 1043:: sage: (1.+2.*I).parent() Complex Field with 53 bits of precision sage: (1.+2.*SR(I)).parent() Symbolic Ring Sage example in ./domaines.tex, line 1064:: sage: z = 3 * exp(I*pi/4) sage: z.real(), z.imag(), z.abs().canonicalize_radical() (3/2*sqrt(2), 3/2*sqrt(2), 3) Sage example in ./domaines.tex, line 1094:: sage: a, b, c = 0, 2, 3 sage: a == 1 or (b == 2 and c == 3) True Sage example in ./domaines.tex, line 1147:: sage: x, y = var('x, y') sage: bool( (x-y)*(x+y) == x^2-y^2 ) True Sage example in ./domaines.tex, line 1171:: sage: Z4 = IntegerModRing(4); Z4 Ring of integers modulo 4 sage: m = Z4(7); m 3 Sage example in ./domaines.tex, line 1184:: sage: 3 * m + 1 2 Sage example in ./domaines.tex, line 1191:: sage: Z3 = GF(3); Z3 Finite Field of size 3 Sage example in ./domaines.tex, line 1243:: sage: a = matrix(QQ, [[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1259:: sage: M = MatrixSpace(QQ,3,3); M Full MatrixSpace of 3 by 3 dense matrices over Rational Field sage: a = M([[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1283:: sage: P = ZZ['x']; P Univariate Polynomial Ring in x over Integer Ring sage: F = P.fraction_field(); F Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: p = P(x+1) * P(x); p x^2 + x sage: p + 1/p (x^4 + 2*x^3 + x^2 + 1)/(x^2 + x) sage: parent(p + 1/p) Fraction Field of Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1382:: sage: k.<a> = NumberField(x^3 + x + 1); a^3; a^4+3*a -a - 1 -a^2 + 2*a Sage example in ./domaines.tex, line 1416:: sage: parent(sin(x)) Symbolic Ring Sage example in ./domaines.tex, line 1422:: sage: SR Symbolic Ring Sage example in ./domaines.tex, line 1428:: sage: SR.category() Category of fields Sage example in ./domaines.tex, line 1482:: sage: R = QQ['x1,x2,x3,x4']; R Multivariate Polynomial Ring in x1, x2, x3, x4 over Rational Field sage: x1, x2, x3, x4 = R.gens() Sage example in ./domaines.tex, line 1489:: sage: x1 * (x2 - x3) x1*x2 - x1*x3 Sage example in ./domaines.tex, line 1496:: sage: (x1+x2)*(x1-x2) - (x1^2 - x2^2) 0 Sage example in ./domaines.tex, line 1509:: sage: P = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ); P * P.lc() x1^3*x2^2*x3 - x1^2*x2^3*x3 - x1^3*x2*x3^2 + x1*x2^3*x3^2 + x1^2*x2*x3^3 - x1*x2^2*x3^3 - x1^3*x2^2*x4 + x1^2*x2^3*x4 + x1^3*x3^2*x4 - x2^3*x3^2*x4 - x1^2*x3^3*x4 + x2^2*x3^3*x4 + x1^3*x2*x4^2 - x1*x2^3*x4^2 - x1^3*x3*x4^2 + x2^3*x3*x4^2 + x1*x3^3*x4^2 - x2*x3^3*x4^2 - x1^2*x2*x4^3 + x1*x2^2*x4^3 + x1^2*x3*x4^3 - x2^2*x3*x4^3 - x1*x3^2*x4^3 + x2*x3^2*x4^3 Sage example in ./domaines.tex, line 1531:: sage: x1, x2, x3, x4 = SR.var('x1, x2, x3, x4') sage: got = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ) sage: expected1 = -(x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: expected2 = (x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: bool(got == expected1 or got == expected2) True Sage example in ./domaines.tex, line 1581:: sage: x = var('x') sage: p = 54*x^4+36*x^3-102*x^2-72*x-12 sage: factor(p) 6*(x^2 - 2)*(3*x + 1)^2 Sage example in ./domaines.tex, line 1616:: sage: R = ZZ['x']; R Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1622:: sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 Sage example in ./domaines.tex, line 1629:: sage: parent(q) Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1635:: sage: factor(q) 2 * 3 * (3*x + 1)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1642:: sage: R = QQ['x']; R Univariate Polynomial Ring in x over Rational Field sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x + 1/3)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1665:: sage: R = ComplexField(16)['x']; R Univariate Polynomial Ring in x over Complex Field with 16 bits of precision sage: q = R(p); q 54.00*x^4 + 36.00*x^3 - 102.0*x^2 - 72.00*x - 12.00 sage: factor(q) (54.00) * (x - 1.414) * (x + 0.3333)^2 * (x + 1.414) Sage example in ./domaines.tex, line 1685:: sage: R = QQ[sqrt(2)]['x']; R Univariate Polynomial Ring in x over Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095? sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)^2 Sage example in ./domaines.tex, line 1698:: sage: R = GF(5)['x']; R Univariate Polynomial Ring in x over Finite Field of size 5 sage: q = R(p); q 4*x^4 + x^3 + 3*x^2 + 3*x + 3 sage: factor(q) (4) * (x + 2)^2 * (x^2 + 3) """
en
0.498723
## -*- encoding: utf-8 -*- This file (./domaines_doctest.sage) was *autogenerated* from ./domaines.tex, with sagetex.sty version 2011/05/27 v2.3.1. It contains the contents of all the sageexample environments from this file. You should be able to doctest this file with: sage -t ./domaines_doctest.sage It is always safe to delete this file; it is not used in typesetting your document. Sage example in ./domaines.tex, line 10:: sage: x = var('x') Sage example in ./domaines.tex, line 69:: sage: o = 12/35 sage: type(o) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 82:: sage: type(12/35) <... 'sage.rings.rational.Rational'> Sage example in ./domaines.tex, line 131:: sage: o = 720 sage: o.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 142:: sage: type(o).factor(o) 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 157:: sage: 720.factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 166:: sage: o = 720 / 133 sage: o.numerator().factor() 2^4 * 3^2 * 5 Sage example in ./domaines.tex, line 253:: sage: 3 * 7 21 Sage example in ./domaines.tex, line 261:: sage: (2/3) * (6/5) 4/5 Sage example in ./domaines.tex, line 267:: sage: (1 + I) * (1 - I) 2 Sage example in ./domaines.tex, line 274:: sage: (x + 2) * (x + 1) (x + 2)*(x + 1) sage: (x + 1) * (x + 2) (x + 2)*(x + 1) Sage example in ./domaines.tex, line 308:: sage: def fourth_power(a): ....: a = a * a ....: a = a * a ....: return a Sage example in ./domaines.tex, line 330:: sage: fourth_power(2) 16 sage: fourth_power(3/2) 81/16 sage: fourth_power(I) 1 sage: fourth_power(x+1) (x + 1)^4 sage: M = matrix([[0,-1],[1,0]]); M [ 0 -1] [ 1 0] sage: fourth_power(M) [1 0] [0 1] Sage example in ./domaines.tex, line 375:: sage: t = type(5/1); t <... 'sage.rings.rational.Rational'> sage: t == type(5) False Sage example in ./domaines.tex, line 476:: sage: a = 5; a 5 sage: a.is_unit() False Sage example in ./domaines.tex, line 484:: sage: a = 5/1; a 5 sage: a.is_unit() True Sage example in ./domaines.tex, line 507:: sage: parent(5) Integer Ring sage: parent(5/1) Rational Field Sage example in ./domaines.tex, line 515:: sage: ZZ Integer Ring sage: QQ Rational Field Sage example in ./domaines.tex, line 525:: sage: QQ(5).parent() Rational Field sage: ZZ(5/1).parent() Integer Ring sage: ZZ(1/5) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer Sage example in ./domaines.tex, line 543:: sage: ZZ(1), QQ(1), RR(1), CC(1) (1, 1, 1.00000000000000, 1.00000000000000) Sage example in ./domaines.tex, line 568:: sage: cartesian_product([QQ, QQ]) The Cartesian product of (Rational Field, Rational Field) Sage example in ./domaines.tex, line 574:: sage: ZZ.fraction_field() Rational Field Sage example in ./domaines.tex, line 580:: sage: ZZ['x'] Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 591:: sage: Z5 = GF(5); Z5 Finite Field of size 5 sage: P = Z5['x']; P Univariate Polynomial Ring in x over Finite Field of size 5 sage: M = MatrixSpace(P, 3, 3); M Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in x over Finite Field of size 5 Sage example in ./domaines.tex, line 602:: sage: M.random_element() # random [2*x^2 + 3*x + 4 4*x^2 + 2*x + 2 4*x^2 + 2*x] [ 3*x 2*x^2 + x + 3 3*x^2 + 4*x] [ 4*x^2 + 3 3*x^2 + 2*x + 4 2*x + 4] Sage example in ./domaines.tex, line 697:: sage: QQ.category() Join of Category of number fields and Category of quotient fields and Category of metric spaces Sage example in ./domaines.tex, line 704:: sage: QQ in Fields() True Sage example in ./domaines.tex, line 712:: sage: QQ in CommutativeAdditiveGroups() True Sage example in ./domaines.tex, line 718:: sage: QQ['x'] in EuclideanDomains() True Sage example in ./domaines.tex, line 859:: sage: 5.parent() Integer Ring Sage example in ./domaines.tex, line 872:: sage: type(factor(4)) <class 'sage.structure.factorization_integer.IntegerFactorization'> Sage example in ./domaines.tex, line 895:: sage: int(5) 5 sage: type(int(5)) <... 'int'> Sage example in ./domaines.tex, line 909:: sage: Integer(5) 5 sage: type(Integer(5)) <... 'sage.rings.integer.Integer'> Sage example in ./domaines.tex, line 926:: sage: factorial(99) / factorial(100) - 1 / 50 -1/100 Sage example in ./domaines.tex, line 974:: sage: 72/53 - 5/3 * 2.7 -3.14150943396227 Sage example in ./domaines.tex, line 982:: sage: cos(1), cos(1.) (cos(1), 0.540302305868140) Sage example in ./domaines.tex, line 1000:: sage: pi.n(digits=50) # variant: n(pi,digits=50) 3.1415926535897932384626433832795028841971693993751 Sage example in ./domaines.tex, line 1020:: sage: z = CC(1,2); z.arg() 1.10714871779409 Sage example in ./domaines.tex, line 1036:: sage: I.parent() Number Field in I with defining polynomial x^2 + 1 with I = 1*I Sage example in ./domaines.tex, line 1043:: sage: (1.+2.*I).parent() Complex Field with 53 bits of precision sage: (1.+2.*SR(I)).parent() Symbolic Ring Sage example in ./domaines.tex, line 1064:: sage: z = 3 * exp(I*pi/4) sage: z.real(), z.imag(), z.abs().canonicalize_radical() (3/2*sqrt(2), 3/2*sqrt(2), 3) Sage example in ./domaines.tex, line 1094:: sage: a, b, c = 0, 2, 3 sage: a == 1 or (b == 2 and c == 3) True Sage example in ./domaines.tex, line 1147:: sage: x, y = var('x, y') sage: bool( (x-y)*(x+y) == x^2-y^2 ) True Sage example in ./domaines.tex, line 1171:: sage: Z4 = IntegerModRing(4); Z4 Ring of integers modulo 4 sage: m = Z4(7); m 3 Sage example in ./domaines.tex, line 1184:: sage: 3 * m + 1 2 Sage example in ./domaines.tex, line 1191:: sage: Z3 = GF(3); Z3 Finite Field of size 3 Sage example in ./domaines.tex, line 1243:: sage: a = matrix(QQ, [[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1259:: sage: M = MatrixSpace(QQ,3,3); M Full MatrixSpace of 3 by 3 dense matrices over Rational Field sage: a = M([[1,2,3],[2,4,8],[3,9,27]]) sage: (a^2 + 1) * a^(-1) [ -5 13/2 7/3] [ 7 1 25/3] [ 2 19/2 27] Sage example in ./domaines.tex, line 1283:: sage: P = ZZ['x']; P Univariate Polynomial Ring in x over Integer Ring sage: F = P.fraction_field(); F Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: p = P(x+1) * P(x); p x^2 + x sage: p + 1/p (x^4 + 2*x^3 + x^2 + 1)/(x^2 + x) sage: parent(p + 1/p) Fraction Field of Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1382:: sage: k.<a> = NumberField(x^3 + x + 1); a^3; a^4+3*a -a - 1 -a^2 + 2*a Sage example in ./domaines.tex, line 1416:: sage: parent(sin(x)) Symbolic Ring Sage example in ./domaines.tex, line 1422:: sage: SR Symbolic Ring Sage example in ./domaines.tex, line 1428:: sage: SR.category() Category of fields Sage example in ./domaines.tex, line 1482:: sage: R = QQ['x1,x2,x3,x4']; R Multivariate Polynomial Ring in x1, x2, x3, x4 over Rational Field sage: x1, x2, x3, x4 = R.gens() Sage example in ./domaines.tex, line 1489:: sage: x1 * (x2 - x3) x1*x2 - x1*x3 Sage example in ./domaines.tex, line 1496:: sage: (x1+x2)*(x1-x2) - (x1^2 - x2^2) 0 Sage example in ./domaines.tex, line 1509:: sage: P = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ); P * P.lc() x1^3*x2^2*x3 - x1^2*x2^3*x3 - x1^3*x2*x3^2 + x1*x2^3*x3^2 + x1^2*x2*x3^3 - x1*x2^2*x3^3 - x1^3*x2^2*x4 + x1^2*x2^3*x4 + x1^3*x3^2*x4 - x2^3*x3^2*x4 - x1^2*x3^3*x4 + x2^2*x3^3*x4 + x1^3*x2*x4^2 - x1*x2^3*x4^2 - x1^3*x3*x4^2 + x2^3*x3*x4^2 + x1*x3^3*x4^2 - x2*x3^3*x4^2 - x1^2*x2*x4^3 + x1*x2^2*x4^3 + x1^2*x3*x4^3 - x2^2*x3*x4^3 - x1*x3^2*x4^3 + x2*x3^2*x4^3 Sage example in ./domaines.tex, line 1531:: sage: x1, x2, x3, x4 = SR.var('x1, x2, x3, x4') sage: got = prod( (a-b) for (a,b) in Subsets([x1,x2,x3,x4],2) ) sage: expected1 = -(x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: expected2 = (x1 - x2)*(x1 - x3)*(x1 - x4)*(x2 - x3)*(x2 - x4)*(x3 - x4) sage: bool(got == expected1 or got == expected2) True Sage example in ./domaines.tex, line 1581:: sage: x = var('x') sage: p = 54*x^4+36*x^3-102*x^2-72*x-12 sage: factor(p) 6*(x^2 - 2)*(3*x + 1)^2 Sage example in ./domaines.tex, line 1616:: sage: R = ZZ['x']; R Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1622:: sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 Sage example in ./domaines.tex, line 1629:: sage: parent(q) Univariate Polynomial Ring in x over Integer Ring Sage example in ./domaines.tex, line 1635:: sage: factor(q) 2 * 3 * (3*x + 1)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1642:: sage: R = QQ['x']; R Univariate Polynomial Ring in x over Rational Field sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x + 1/3)^2 * (x^2 - 2) Sage example in ./domaines.tex, line 1665:: sage: R = ComplexField(16)['x']; R Univariate Polynomial Ring in x over Complex Field with 16 bits of precision sage: q = R(p); q 54.00*x^4 + 36.00*x^3 - 102.0*x^2 - 72.00*x - 12.00 sage: factor(q) (54.00) * (x - 1.414) * (x + 0.3333)^2 * (x + 1.414) Sage example in ./domaines.tex, line 1685:: sage: R = QQ[sqrt(2)]['x']; R Univariate Polynomial Ring in x over Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095? sage: q = R(p); q 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12 sage: factor(q) (54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)^2 Sage example in ./domaines.tex, line 1698:: sage: R = GF(5)['x']; R Univariate Polynomial Ring in x over Finite Field of size 5 sage: q = R(p); q 4*x^4 + x^3 + 3*x^2 + 3*x + 3 sage: factor(q) (4) * (x + 2)^2 * (x^2 + 3)
1.823437
2
src/riotwatcher/riotwatcher.py
TheBoringBakery/Riot-Watcher
2
9499
from .Deserializer import Deserializer from .RateLimiter import RateLimiter from .Handlers import ( DeprecationHandler, DeserializerAdapter, DictionaryDeserializer, RateLimiterAdapter, ThrowOnErrorHandler, TypeCorrectorHandler, ) from .Handlers.RateLimit import BasicRateLimiter from ._apis import BaseApi from ._apis.riot import AccountApi class RiotWatcher: """ RiotWatcher class is intended to be the main interaction point with the generic Riot APIs. """ def __init__( self, api_key: str, timeout: int = None, rate_limiter: RateLimiter = BasicRateLimiter(), deserializer: Deserializer = DictionaryDeserializer(), ): """ Initialize a new instance of the RiotWatcher class. :param string api_key: the API key to use for this instance :param int timeout: Time to wait for a response before timing out a connection to the Riot API :param RateLimiter rate_limiter: Instance to be used for rate limiting. This defaults to Handlers.RateLimit.BasicRateLimiter. :param Deserializer deserializer: Instance to be used to deserialize responses from the Riot Api. Default is Handlers.DictionaryDeserializer. """ if not api_key: raise ValueError("api_key must be set!") handler_chain = [ DeserializerAdapter(deserializer), ThrowOnErrorHandler(), TypeCorrectorHandler(), RateLimiterAdapter(rate_limiter), DeprecationHandler(), ] self._base_api = BaseApi(api_key, handler_chain, timeout=timeout) self._account = AccountApi(self._base_api) @property def account(self) -> AccountApi: """ Interface to the Account Endpoint :rtype: riot.AccountApi """ return self._account
from .Deserializer import Deserializer from .RateLimiter import RateLimiter from .Handlers import ( DeprecationHandler, DeserializerAdapter, DictionaryDeserializer, RateLimiterAdapter, ThrowOnErrorHandler, TypeCorrectorHandler, ) from .Handlers.RateLimit import BasicRateLimiter from ._apis import BaseApi from ._apis.riot import AccountApi class RiotWatcher: """ RiotWatcher class is intended to be the main interaction point with the generic Riot APIs. """ def __init__( self, api_key: str, timeout: int = None, rate_limiter: RateLimiter = BasicRateLimiter(), deserializer: Deserializer = DictionaryDeserializer(), ): """ Initialize a new instance of the RiotWatcher class. :param string api_key: the API key to use for this instance :param int timeout: Time to wait for a response before timing out a connection to the Riot API :param RateLimiter rate_limiter: Instance to be used for rate limiting. This defaults to Handlers.RateLimit.BasicRateLimiter. :param Deserializer deserializer: Instance to be used to deserialize responses from the Riot Api. Default is Handlers.DictionaryDeserializer. """ if not api_key: raise ValueError("api_key must be set!") handler_chain = [ DeserializerAdapter(deserializer), ThrowOnErrorHandler(), TypeCorrectorHandler(), RateLimiterAdapter(rate_limiter), DeprecationHandler(), ] self._base_api = BaseApi(api_key, handler_chain, timeout=timeout) self._account = AccountApi(self._base_api) @property def account(self) -> AccountApi: """ Interface to the Account Endpoint :rtype: riot.AccountApi """ return self._account
en
0.637523
RiotWatcher class is intended to be the main interaction point with the generic Riot APIs. Initialize a new instance of the RiotWatcher class. :param string api_key: the API key to use for this instance :param int timeout: Time to wait for a response before timing out a connection to the Riot API :param RateLimiter rate_limiter: Instance to be used for rate limiting. This defaults to Handlers.RateLimit.BasicRateLimiter. :param Deserializer deserializer: Instance to be used to deserialize responses from the Riot Api. Default is Handlers.DictionaryDeserializer. Interface to the Account Endpoint :rtype: riot.AccountApi
2.468872
2