max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
taller_estructuras_de_control_selectivas/ejercicio_13.py
JMosqueraM/algoritmos_y_programacion
0
9700
# Desarrolle un un programa que reciba la fecha de nacimiento # de una persona, y como salida, indique el nombre del signo del # zodiaco correspondiente, ademas de su edad def zodiaco(DD, MM): if (((DD >= 22) and (MM == 11)) or ((DD <=21) and (MM == 12))): return("Sagitario") if (((DD >= 22) and (MM == 12)) or ((DD <=20) and (MM == 1))): return("Capricornio") if (((DD >= 21) and (MM == 1)) or ((DD <=19) and (MM == 2))): return("Acuario") if (((DD >= 20) and (MM == 2)) or ((DD <=19) and (MM == 3))): return("Piscis") if (((DD >= 21) and (MM == 3)) or ((DD <=20) and (MM == 4))): return("Aries") if (((DD >= 21) and (MM == 4)) or ((DD <=21) and (MM == 5))): return("Tauro") if (((DD >= 22) and (MM == 5)) or ((DD <=21) and (MM == 6))): return("Geminis") if (((DD >= 22) and (MM == 6)) or ((DD <=22) and (MM == 7))): return("Cancer") if (((DD >= 23) and (MM == 7)) or ((DD <=23) and (MM == 8))): return("Leo") if (((DD >= 24) and (MM == 8)) or ((DD <=22) and (MM == 9))): return("Virgo") if (((DD >= 23) and (MM == 9)) or ((DD <=22) and (MM == 10))): return("Libra") if (((DD >= 23) and (MM == 10)) or ((DD <=21) and (MM == 11))): return("Escorpion") fecha_str = input("Ingrese la fecha de nacimiento (DD/MM/AAAA): ") fecha = fecha_str.split("/") fecha_int = [] for elemento in fecha: fecha_int.append(int(elemento)) dia = fecha_int[0] mes = fecha_int[1] ano = fecha_int[2] signo = zodiaco(dia, mes) print(f"Siendo que su fecha de nacimiento es {fecha_str}, su signo zodiacal corresponde a {signo} y tiene {abs(ano - 2021)} años")
# Desarrolle un un programa que reciba la fecha de nacimiento # de una persona, y como salida, indique el nombre del signo del # zodiaco correspondiente, ademas de su edad def zodiaco(DD, MM): if (((DD >= 22) and (MM == 11)) or ((DD <=21) and (MM == 12))): return("Sagitario") if (((DD >= 22) and (MM == 12)) or ((DD <=20) and (MM == 1))): return("Capricornio") if (((DD >= 21) and (MM == 1)) or ((DD <=19) and (MM == 2))): return("Acuario") if (((DD >= 20) and (MM == 2)) or ((DD <=19) and (MM == 3))): return("Piscis") if (((DD >= 21) and (MM == 3)) or ((DD <=20) and (MM == 4))): return("Aries") if (((DD >= 21) and (MM == 4)) or ((DD <=21) and (MM == 5))): return("Tauro") if (((DD >= 22) and (MM == 5)) or ((DD <=21) and (MM == 6))): return("Geminis") if (((DD >= 22) and (MM == 6)) or ((DD <=22) and (MM == 7))): return("Cancer") if (((DD >= 23) and (MM == 7)) or ((DD <=23) and (MM == 8))): return("Leo") if (((DD >= 24) and (MM == 8)) or ((DD <=22) and (MM == 9))): return("Virgo") if (((DD >= 23) and (MM == 9)) or ((DD <=22) and (MM == 10))): return("Libra") if (((DD >= 23) and (MM == 10)) or ((DD <=21) and (MM == 11))): return("Escorpion") fecha_str = input("Ingrese la fecha de nacimiento (DD/MM/AAAA): ") fecha = fecha_str.split("/") fecha_int = [] for elemento in fecha: fecha_int.append(int(elemento)) dia = fecha_int[0] mes = fecha_int[1] ano = fecha_int[2] signo = zodiaco(dia, mes) print(f"Siendo que su fecha de nacimiento es {fecha_str}, su signo zodiacal corresponde a {signo} y tiene {abs(ano - 2021)} años")
es
0.969296
# Desarrolle un un programa que reciba la fecha de nacimiento # de una persona, y como salida, indique el nombre del signo del # zodiaco correspondiente, ademas de su edad
3.627526
4
assignment3/crawler/spiders/benchmark_spider.py
vhazali/cs5331
8
9701
import re, scrapy from crawler.items import * class BenchmarkSpider(scrapy.Spider): drop_params = True # Spider name, for use with the scrapy crawl command name = "benchmarks" # Constants to get url parts FULL, PROTOCOL, USER, PASSWORD, SUBDOMAIN, DOMAIN, TOP_LEVEL_DOMAIN, PORT_NUM, PATH, PAGE, GET_PARAMS, HASHTAGS = range(12) # List of start urls to start crawling start_urls = [ # 'https://app1.com', # 'https://app2.com', # 'https://app3.com', # 'https://app4.com', # 'https://app5.com', # 'https://app6.com', # 'https://app7.com', # 'https://app8.com', # 'https://app9.com', # 'https://app10.com', # 'https://app11.com', 'http://ec2-54-255-215-139.ap-southeast-1.compute.amazonaws.com/' ] allowed_domains = [ "app1.com", "app2.com", "app3.com", "app4.com", "app5.com", "app6.com", "app7.com", "app8.com", "app9.com", "app10.com", "app11.com", "app12.com", "app13.com", "app14.com", "app15.com", "app16.com", "app17.com", "app18.com", "app19.com", "app20.com", "app21.com" ] # Set to keep track of visited urls visited_urls = set(start_urls) """ Uses Regex to split up url into components. Groups and what they are: 0 : the full url 1 : Protocol 2 : User 3 : Password 4 : Subdomain 5 : Domain 6 : Top level domain (.com .net etc) 7 : Port number 8 : Path 9 : Page 10: Get parameters 11: Hashtags """ def splitUrlIntoParts(self, url, index): pattern = '(?:([^\:]*)\:\/\/)?(?:([^\:\@]*)(?:\:([^\@]*))?\@)?(?:([^\/\:]*)\.(?=[^\.\/\:]*\.[^\.\/\:]*))?([^\.\/\:]*)(?:\.([^\/\.\:#]*))?(?:\:([0-9]*))?(\/[^\?#]*(?=.*?\/)\/)?([^\?#]*)?(?:\?([^#]*))?(?:#(.*))?' match = re.search(pattern, url) if match: if match.group(index): return match.group(index) return '' def populateURLItem(self, item, url): item['url'] = url item['protocol'] = self.splitUrlIntoParts(url, self.PROTOCOL) item['domain'] = self.splitUrlIntoParts(url, self.DOMAIN) item['path'] = self.splitUrlIntoParts(url, self.PATH) item['page'] = self.splitUrlIntoParts(url, self.PAGE) item['get_params'] = self.splitUrlIntoParts(url, self.GET_PARAMS) def getUrlWithoutParams(self, url): # Pattern looks out for a question mark that marks start of params # Assumption is that url is already valid pattern = '([^? ]+).*' match = re.search(pattern, url) if match: if match.group(1): return match.group(1) else: return '' def isVisited(self, url): if self.drop_params: truncated_url = self.getUrlWithoutParams(url) return truncated_url in self.visited_urls else : return url in self.visited_urls def markAsVisited(self, url): if self.drop_params: truncated_url = self.getUrlWithoutParams(url) self.visited_urls.add(truncated_url) else: self.visited_urls.add(url) # The default method that's called by scrapy for each url in the start_url list def parse(self, response): # Get URL item item = URLItem() # Get parts of URL item self.populateURLItem(item, response.url) yield item # Look for Forms # Assumption: forms will have id attribute # We will be using this id and url to uniquely identify each form forms = response.css('form') for form in forms: formItem = FormItem() formItem['url'] = response.url form_id = form.css('::attr(id)').extract_first() if form_id is None: form_id = '' formItem['id_attr'] = form_id yield formItem inputs = form.css('input') for a in inputs: inputItem = InputItem() inputItem['url'] = response.url inputItem['form_id'] = form_id inputItem['complete'] = a.extract() inputItem['type_attr'] = a.css('::attr(type)').extract_first() yield inputItem # Get url to visit next links = response.css('a::attr(href)').extract() for next_page in links: # Check that url exist if next_page is not None: # Handle weirdass cases where hrefs has scheme:///domain next_page = next_page.replace("///", "//", 1) next_page = response.urljoin(next_page) # Check that url is not visited yet if not self.isVisited(next_page): self.markAsVisited(next_page) yield scrapy.Request(next_page, callback=self.parse)
import re, scrapy from crawler.items import * class BenchmarkSpider(scrapy.Spider): drop_params = True # Spider name, for use with the scrapy crawl command name = "benchmarks" # Constants to get url parts FULL, PROTOCOL, USER, PASSWORD, SUBDOMAIN, DOMAIN, TOP_LEVEL_DOMAIN, PORT_NUM, PATH, PAGE, GET_PARAMS, HASHTAGS = range(12) # List of start urls to start crawling start_urls = [ # 'https://app1.com', # 'https://app2.com', # 'https://app3.com', # 'https://app4.com', # 'https://app5.com', # 'https://app6.com', # 'https://app7.com', # 'https://app8.com', # 'https://app9.com', # 'https://app10.com', # 'https://app11.com', 'http://ec2-54-255-215-139.ap-southeast-1.compute.amazonaws.com/' ] allowed_domains = [ "app1.com", "app2.com", "app3.com", "app4.com", "app5.com", "app6.com", "app7.com", "app8.com", "app9.com", "app10.com", "app11.com", "app12.com", "app13.com", "app14.com", "app15.com", "app16.com", "app17.com", "app18.com", "app19.com", "app20.com", "app21.com" ] # Set to keep track of visited urls visited_urls = set(start_urls) """ Uses Regex to split up url into components. Groups and what they are: 0 : the full url 1 : Protocol 2 : User 3 : Password 4 : Subdomain 5 : Domain 6 : Top level domain (.com .net etc) 7 : Port number 8 : Path 9 : Page 10: Get parameters 11: Hashtags """ def splitUrlIntoParts(self, url, index): pattern = '(?:([^\:]*)\:\/\/)?(?:([^\:\@]*)(?:\:([^\@]*))?\@)?(?:([^\/\:]*)\.(?=[^\.\/\:]*\.[^\.\/\:]*))?([^\.\/\:]*)(?:\.([^\/\.\:#]*))?(?:\:([0-9]*))?(\/[^\?#]*(?=.*?\/)\/)?([^\?#]*)?(?:\?([^#]*))?(?:#(.*))?' match = re.search(pattern, url) if match: if match.group(index): return match.group(index) return '' def populateURLItem(self, item, url): item['url'] = url item['protocol'] = self.splitUrlIntoParts(url, self.PROTOCOL) item['domain'] = self.splitUrlIntoParts(url, self.DOMAIN) item['path'] = self.splitUrlIntoParts(url, self.PATH) item['page'] = self.splitUrlIntoParts(url, self.PAGE) item['get_params'] = self.splitUrlIntoParts(url, self.GET_PARAMS) def getUrlWithoutParams(self, url): # Pattern looks out for a question mark that marks start of params # Assumption is that url is already valid pattern = '([^? ]+).*' match = re.search(pattern, url) if match: if match.group(1): return match.group(1) else: return '' def isVisited(self, url): if self.drop_params: truncated_url = self.getUrlWithoutParams(url) return truncated_url in self.visited_urls else : return url in self.visited_urls def markAsVisited(self, url): if self.drop_params: truncated_url = self.getUrlWithoutParams(url) self.visited_urls.add(truncated_url) else: self.visited_urls.add(url) # The default method that's called by scrapy for each url in the start_url list def parse(self, response): # Get URL item item = URLItem() # Get parts of URL item self.populateURLItem(item, response.url) yield item # Look for Forms # Assumption: forms will have id attribute # We will be using this id and url to uniquely identify each form forms = response.css('form') for form in forms: formItem = FormItem() formItem['url'] = response.url form_id = form.css('::attr(id)').extract_first() if form_id is None: form_id = '' formItem['id_attr'] = form_id yield formItem inputs = form.css('input') for a in inputs: inputItem = InputItem() inputItem['url'] = response.url inputItem['form_id'] = form_id inputItem['complete'] = a.extract() inputItem['type_attr'] = a.css('::attr(type)').extract_first() yield inputItem # Get url to visit next links = response.css('a::attr(href)').extract() for next_page in links: # Check that url exist if next_page is not None: # Handle weirdass cases where hrefs has scheme:///domain next_page = next_page.replace("///", "//", 1) next_page = response.urljoin(next_page) # Check that url is not visited yet if not self.isVisited(next_page): self.markAsVisited(next_page) yield scrapy.Request(next_page, callback=self.parse)
en
0.74076
# Spider name, for use with the scrapy crawl command # Constants to get url parts # List of start urls to start crawling # 'https://app1.com', # 'https://app2.com', # 'https://app3.com', # 'https://app4.com', # 'https://app5.com', # 'https://app6.com', # 'https://app7.com', # 'https://app8.com', # 'https://app9.com', # 'https://app10.com', # 'https://app11.com', # Set to keep track of visited urls Uses Regex to split up url into components. Groups and what they are: 0 : the full url 1 : Protocol 2 : User 3 : Password 4 : Subdomain 5 : Domain 6 : Top level domain (.com .net etc) 7 : Port number 8 : Path 9 : Page 10: Get parameters 11: Hashtags #]*))?(?:\:([0-9]*))?(\/[^\?#]*(?=.*?\/)\/)?([^\?#]*)?(?:\?([^#]*))?(?:#(.*))?' # Pattern looks out for a question mark that marks start of params # Assumption is that url is already valid # The default method that's called by scrapy for each url in the start_url list # Get URL item # Get parts of URL item # Look for Forms # Assumption: forms will have id attribute # We will be using this id and url to uniquely identify each form # Get url to visit next # Check that url exist # Handle weirdass cases where hrefs has scheme:///domain # Check that url is not visited yet
2.709682
3
octavia_tempest_plugin/services/load_balancer/v2/listener_client.py
NeCTAR-RC/octavia-tempest-plugin
0
9702
# Copyright 2017 GoDaddy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oslo_serialization import jsonutils from tempest import config from octavia_tempest_plugin.services.load_balancer.v2 import base_client CONF = config.CONF Unset = base_client.Unset class ListenerClient(base_client.BaseLBaaSClient): root_tag = 'listener' list_root_tag = 'listeners' def create_listener(self, protocol, protocol_port, loadbalancer_id, name=Unset, description=Unset, admin_state_up=Unset, connection_limit=Unset, timeout_client_data=Unset, timeout_member_connect=Unset, timeout_member_data=Unset, timeout_tcp_inspect=Unset, insert_headers=Unset, default_pool_id=Unset, default_tls_container_ref=Unset, sni_container_refs=Unset, client_authentication=Unset, client_ca_tls_container_ref=Unset, client_crl_container_ref=Unset, return_object_only=True): """Create a listener. :param protocol: The protocol for the resource. :param protocol_port: The protocol port number for the resource. :param loadbalancer_id: The ID of the load balancer. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ kwargs = {arg: value for arg, value in locals().items() if arg != 'self' and value is not Unset} return self._create_object(**kwargs) def show_listener(self, listener_id, query_params=None, return_object_only=True): """Get listener details. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ return self._show_object(obj_id=listener_id, query_params=query_params, return_object_only=return_object_only) def list_listeners(self, query_params=None, return_object_only=True): """Get a list of listener objects. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A list of listener objects. """ return self._list_objects(query_params=query_params, return_object_only=return_object_only) def update_listener(self, listener_id, name=Unset, description=Unset, admin_state_up=Unset, connection_limit=Unset, timeout_client_data=Unset, timeout_member_connect=Unset, timeout_member_data=Unset, timeout_tcp_inspect=Unset, insert_headers=Unset, default_pool_id=Unset, default_tls_container_ref=Unset, sni_container_refs=Unset, client_authentication=Unset, client_ca_tls_container_ref=Unset, client_crl_container_ref=Unset, return_object_only=True): """Update a listener. :param listener_id: The listener ID to update. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ kwargs = {arg: value for arg, value in locals().items() if arg != 'self' and value is not Unset} kwargs['obj_id'] = kwargs.pop('listener_id') return self._update_object(**kwargs) def delete_listener(self, listener_id, ignore_errors=False): """Delete a listener. :param listener_id: The listener ID to delete. :param ignore_errors: True if errors should be ignored. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: None if ignore_errors is True, the response status code if not. """ return self._delete_obj(obj_id=listener_id, ignore_errors=ignore_errors) def get_listener_stats(self, listener_id, query_params=None, return_object_only=True): """Get listener statistics. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener statistics object. """ if query_params: request_uri = '{0}/{1}/stats?{2}'.format(self.uri, listener_id, query_params) else: request_uri = '{0}/{1}/stats'.format(self.uri, listener_id) response, body = self.get(request_uri) self.expected_success(200, response.status) if return_object_only: return jsonutils.loads(body.decode('utf-8'))['stats'] else: return jsonutils.loads(body.decode('utf-8'))
# Copyright 2017 GoDaddy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oslo_serialization import jsonutils from tempest import config from octavia_tempest_plugin.services.load_balancer.v2 import base_client CONF = config.CONF Unset = base_client.Unset class ListenerClient(base_client.BaseLBaaSClient): root_tag = 'listener' list_root_tag = 'listeners' def create_listener(self, protocol, protocol_port, loadbalancer_id, name=Unset, description=Unset, admin_state_up=Unset, connection_limit=Unset, timeout_client_data=Unset, timeout_member_connect=Unset, timeout_member_data=Unset, timeout_tcp_inspect=Unset, insert_headers=Unset, default_pool_id=Unset, default_tls_container_ref=Unset, sni_container_refs=Unset, client_authentication=Unset, client_ca_tls_container_ref=Unset, client_crl_container_ref=Unset, return_object_only=True): """Create a listener. :param protocol: The protocol for the resource. :param protocol_port: The protocol port number for the resource. :param loadbalancer_id: The ID of the load balancer. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ kwargs = {arg: value for arg, value in locals().items() if arg != 'self' and value is not Unset} return self._create_object(**kwargs) def show_listener(self, listener_id, query_params=None, return_object_only=True): """Get listener details. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ return self._show_object(obj_id=listener_id, query_params=query_params, return_object_only=return_object_only) def list_listeners(self, query_params=None, return_object_only=True): """Get a list of listener objects. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A list of listener objects. """ return self._list_objects(query_params=query_params, return_object_only=return_object_only) def update_listener(self, listener_id, name=Unset, description=Unset, admin_state_up=Unset, connection_limit=Unset, timeout_client_data=Unset, timeout_member_connect=Unset, timeout_member_data=Unset, timeout_tcp_inspect=Unset, insert_headers=Unset, default_pool_id=Unset, default_tls_container_ref=Unset, sni_container_refs=Unset, client_authentication=Unset, client_ca_tls_container_ref=Unset, client_crl_container_ref=Unset, return_object_only=True): """Update a listener. :param listener_id: The listener ID to update. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. """ kwargs = {arg: value for arg, value in locals().items() if arg != 'self' and value is not Unset} kwargs['obj_id'] = kwargs.pop('listener_id') return self._update_object(**kwargs) def delete_listener(self, listener_id, ignore_errors=False): """Delete a listener. :param listener_id: The listener ID to delete. :param ignore_errors: True if errors should be ignored. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: None if ignore_errors is True, the response status code if not. """ return self._delete_obj(obj_id=listener_id, ignore_errors=ignore_errors) def get_listener_stats(self, listener_id, query_params=None, return_object_only=True): """Get listener statistics. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener statistics object. """ if query_params: request_uri = '{0}/{1}/stats?{2}'.format(self.uri, listener_id, query_params) else: request_uri = '{0}/{1}/stats'.format(self.uri, listener_id) response, body = self.get(request_uri) self.expected_success(200, response.status) if return_object_only: return jsonutils.loads(body.decode('utf-8'))['stats'] else: return jsonutils.loads(body.decode('utf-8'))
en
0.872992
# Copyright 2017 GoDaddy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Create a listener. :param protocol: The protocol for the resource. :param protocol_port: The protocol port number for the resource. :param loadbalancer_id: The ID of the load balancer. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. Get listener details. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. Get a list of listener objects. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A list of listener objects. Update a listener. :param listener_id: The listener ID to update. :param name: Human-readable name of the resource. :param description: A human-readable description for the resource. :param admin_state_up: The administrative state of the resource, which is up (true) or down (false). :param connection_limit: The maximum number of connections permitted for this listener. Default value is -1 which represents infinite connections. :param timeout_client_data: Frontend client inactivity timeout in milliseconds. :param timeout_member_connect: Backend member connection timeout in milliseconds. :param timeout_member_data: Backend member inactivity timeout in milliseconds. :param timeout_tcp_inspect: Time, in milliseconds, to wait for additional TCP packets for content inspection. :param insert_headers: A dictionary of optional headers to insert into the request before it is sent to the backend member. :param default_pool_id: The ID of the pool used by the listener if no L7 policies match. :param default_tls_container_ref: The URI of the key manager service secret containing a PKCS12 format certificate/key bundle for TERMINATED_TLS listeners. :param sni_container_refs: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key bundles for TERMINATED_TLS listeners. :param client_authentication: The TLS client authentication mode. One of the options NONE, OPTIONAL or MANDATORY. :param client_ca_tls_container_ref: The ref of the key manager service secret containing a PEM format client CA certificate bundle for TERMINATED_HTTPS listeners. :param client_crl_container_ref: The URI of the key manager service secret containing a PEM format CA revocation list file for TERMINATED_HTTPS listeners. :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener object. Delete a listener. :param listener_id: The listener ID to delete. :param ignore_errors: True if errors should be ignored. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: None if ignore_errors is True, the response status code if not. Get listener statistics. :param listener_id: The listener ID to query. :param query_params: The optional query parameters to append to the request. Ex. fields=id&fields=name :param return_object_only: If True, the response returns the object inside the root tag. False returns the full response from the API. :raises AssertionError: if the expected_code isn't a valid http success response code :raises BadRequest: If a 400 response code is received :raises Conflict: If a 409 response code is received :raises Forbidden: If a 403 response code is received :raises Gone: If a 410 response code is received :raises InvalidContentType: If a 415 response code is received :raises InvalidHTTPResponseBody: The response body wasn't valid JSON :raises InvalidHttpSuccessCode: if the read code isn't an expected http success code :raises NotFound: If a 404 response code is received :raises NotImplemented: If a 501 response code is received :raises OverLimit: If a 413 response code is received and over_limit is not in the response body :raises RateLimitExceeded: If a 413 response code is received and over_limit is in the response body :raises ServerFault: If a 500 response code is received :raises Unauthorized: If a 401 response code is received :raises UnexpectedContentType: If the content-type of the response isn't an expect type :raises UnexpectedResponseCode: If a response code above 400 is received and it doesn't fall into any of the handled checks :raises UnprocessableEntity: If a 422 response code is received and couldn't be parsed :returns: A listener statistics object.
1.657333
2
ryu/gui/views/router_address_delete.py
isams1/Thesis
3
9703
import re import logging import httplib import view_base from models import rt_proxy LOG = logging.getLogger('ryu.gui') class RtAddrDel(view_base.ViewBase): def __init__(self, host, port, dpid, address_id, status=None): super(RtAddrDel, self).__init__() self.host = host self.port = port self.dpid = dpid self.address_id = address_id self.status = status def run(self): LOG.debug('Router Address Delete Rule running') if not self.status: # set rule return self._delete_address() def _delete_address(self): address = '%s:%s' % (self.host, self.port) res = {'host': self.host, 'port': self.port, 'status': None} address_no = {} address_no['address_id'] = self.address_id status = rt_proxy.delete_router_address(address, address_no, self.dpid) if status[0]['command_result']: command_result = status[0]['command_result'] res['status'] = command_result else: res['status'] = status res['status'] = status return self.json_response(res)
import re import logging import httplib import view_base from models import rt_proxy LOG = logging.getLogger('ryu.gui') class RtAddrDel(view_base.ViewBase): def __init__(self, host, port, dpid, address_id, status=None): super(RtAddrDel, self).__init__() self.host = host self.port = port self.dpid = dpid self.address_id = address_id self.status = status def run(self): LOG.debug('Router Address Delete Rule running') if not self.status: # set rule return self._delete_address() def _delete_address(self): address = '%s:%s' % (self.host, self.port) res = {'host': self.host, 'port': self.port, 'status': None} address_no = {} address_no['address_id'] = self.address_id status = rt_proxy.delete_router_address(address, address_no, self.dpid) if status[0]['command_result']: command_result = status[0]['command_result'] res['status'] = command_result else: res['status'] = status res['status'] = status return self.json_response(res)
en
0.962632
# set rule
2.243698
2
tests/util/test_helper.py
TobiasRasbold/pywrangler
14
9704
"""This module contains tests for the helper module. """ from pywrangler.util.helper import get_param_names def test_get_param_names(): def func(): pass assert get_param_names(func) == [] def func1(a, b=4, c=6): pass assert get_param_names(func1) == ["a", "b", "c"] assert get_param_names(func1, ["a"]) == ["b", "c"]
"""This module contains tests for the helper module. """ from pywrangler.util.helper import get_param_names def test_get_param_names(): def func(): pass assert get_param_names(func) == [] def func1(a, b=4, c=6): pass assert get_param_names(func1) == ["a", "b", "c"] assert get_param_names(func1, ["a"]) == ["b", "c"]
en
0.431578
This module contains tests for the helper module.
2.586443
3
Python-Files/model_conversion/convert_to_tflite.py
jcgeo9/ML-For-Fish-Recognition
0
9705
<reponame>jcgeo9/ML-For-Fish-Recognition # ============================================================================= # Created By : <NAME> # Project : Machine Learning for Fish Recognition (Individual Project) # ============================================================================= # Description : File in order to convert saved models to .tflite instances. # To be used after the desired model are trained and saved # How to use : Replace variables in CAPS according to needs of the dataset # ============================================================================= import tensorflow as tf model_path='PATH TO SAVED MODEL' tflite_model_name='NAME OF THE NEWLY CREATED TFLITE MODEL' #convert the model by loading the saved model to the converter converter = tf.lite.TFLiteConverter.from_saved_model(model_path) tflite_model = converter.convert() #save the tflite model with open(tflite_model_name+'.tflite', 'wb') as f: f.write(tflite_model)
# ============================================================================= # Created By : <NAME> # Project : Machine Learning for Fish Recognition (Individual Project) # ============================================================================= # Description : File in order to convert saved models to .tflite instances. # To be used after the desired model are trained and saved # How to use : Replace variables in CAPS according to needs of the dataset # ============================================================================= import tensorflow as tf model_path='PATH TO SAVED MODEL' tflite_model_name='NAME OF THE NEWLY CREATED TFLITE MODEL' #convert the model by loading the saved model to the converter converter = tf.lite.TFLiteConverter.from_saved_model(model_path) tflite_model = converter.convert() #save the tflite model with open(tflite_model_name+'.tflite', 'wb') as f: f.write(tflite_model)
en
0.682351
# ============================================================================= # Created By : <NAME> # Project : Machine Learning for Fish Recognition (Individual Project) # ============================================================================= # Description : File in order to convert saved models to .tflite instances. # To be used after the desired model are trained and saved # How to use : Replace variables in CAPS according to needs of the dataset # ============================================================================= #convert the model by loading the saved model to the converter #save the tflite model
3.26676
3
python3/sparkts/test/test_datetimeindex.py
hedibejaoui/spark-timeseries
0
9706
<reponame>hedibejaoui/spark-timeseries<gh_stars>0 from .test_utils import PySparkTestCase from sparkts.datetimeindex import * import pandas as pd class DateTimeIndexTestCase(PySparkTestCase): def test_frequencies(self): bd = BusinessDayFrequency(1, 1, self.sc) self.assertEqual(bd.days(), 1) hf = HourFrequency(4, self.sc) self.assertEqual(hf.hours(), 4) def test_uniform(self): freq = DayFrequency(3, self.sc) self.assertEqual(freq.days(), 3) start = '2015-04-10' index = uniform(start, periods=5, freq=freq, sc=self.sc) index2 = uniform(start, end='2015-04-22', freq=freq, sc=self.sc) self.assertEqual(index, index2) self.assertEqual(len(index), 5) self.assertEqual(index.first(), pd.to_datetime('2015-04-10')) self.assertEqual(index.last(), pd.to_datetime('2015-04-22')) subbydate = index[pd.to_datetime('2015-04-13'):pd.to_datetime('2015-04-19')] subbyloc = index.islice(1, 4) self.assertEqual(subbydate, subbyloc) self.assertEqual(subbydate.first(), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate.last(), pd.to_datetime('2015-04-19')) self.assertEqual(subbydate.datetime_at_loc(0), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate[pd.to_datetime('2015-04-13')], 0) def test_irregular(self): pd_index = pd.date_range('2015-04-10', periods=5, freq='3D') dt_index = irregular(pd_index, self.sc) self.assertEqual(len(dt_index), 5) self.assertEqual(dt_index.first(), pd.to_datetime('2015-04-10')) self.assertEqual(dt_index.last(), pd.to_datetime('2015-04-22')) subbydate = dt_index[pd.to_datetime('2015-04-13'):pd.to_datetime('2015-04-19')] subbyloc = dt_index.islice(1, 4) self.assertEqual(subbydate, subbyloc) self.assertEqual(subbydate.first(), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate.last(), pd.to_datetime('2015-04-19')) self.assertEqual(subbydate.datetime_at_loc(0), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate[pd.to_datetime('2015-04-13')], 0) pd_index2 = dt_index.to_pandas_index() self.assertTrue(pd_index.equals(pd_index2), str(pd_index) + "!=" + str(pd_index2))
from .test_utils import PySparkTestCase from sparkts.datetimeindex import * import pandas as pd class DateTimeIndexTestCase(PySparkTestCase): def test_frequencies(self): bd = BusinessDayFrequency(1, 1, self.sc) self.assertEqual(bd.days(), 1) hf = HourFrequency(4, self.sc) self.assertEqual(hf.hours(), 4) def test_uniform(self): freq = DayFrequency(3, self.sc) self.assertEqual(freq.days(), 3) start = '2015-04-10' index = uniform(start, periods=5, freq=freq, sc=self.sc) index2 = uniform(start, end='2015-04-22', freq=freq, sc=self.sc) self.assertEqual(index, index2) self.assertEqual(len(index), 5) self.assertEqual(index.first(), pd.to_datetime('2015-04-10')) self.assertEqual(index.last(), pd.to_datetime('2015-04-22')) subbydate = index[pd.to_datetime('2015-04-13'):pd.to_datetime('2015-04-19')] subbyloc = index.islice(1, 4) self.assertEqual(subbydate, subbyloc) self.assertEqual(subbydate.first(), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate.last(), pd.to_datetime('2015-04-19')) self.assertEqual(subbydate.datetime_at_loc(0), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate[pd.to_datetime('2015-04-13')], 0) def test_irregular(self): pd_index = pd.date_range('2015-04-10', periods=5, freq='3D') dt_index = irregular(pd_index, self.sc) self.assertEqual(len(dt_index), 5) self.assertEqual(dt_index.first(), pd.to_datetime('2015-04-10')) self.assertEqual(dt_index.last(), pd.to_datetime('2015-04-22')) subbydate = dt_index[pd.to_datetime('2015-04-13'):pd.to_datetime('2015-04-19')] subbyloc = dt_index.islice(1, 4) self.assertEqual(subbydate, subbyloc) self.assertEqual(subbydate.first(), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate.last(), pd.to_datetime('2015-04-19')) self.assertEqual(subbydate.datetime_at_loc(0), pd.to_datetime('2015-04-13')) self.assertEqual(subbydate[pd.to_datetime('2015-04-13')], 0) pd_index2 = dt_index.to_pandas_index() self.assertTrue(pd_index.equals(pd_index2), str(pd_index) + "!=" + str(pd_index2))
none
1
2.410657
2
src/listIntersect/inter.py
rajitbanerjee/leetcode
0
9707
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: seen = set() curr = headA while curr: seen.add(curr) curr = curr.next curr = headB while curr: if curr in seen: return curr curr = curr.next return None
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: seen = set() curr = headA while curr: seen.add(curr) curr = curr.next curr = headB while curr: if curr in seen: return curr curr = curr.next return None
en
0.620171
# Definition for singly-linked list.
3.581728
4
photon_stream_production/tests/test_drs_run_assignment.py
fact-project/photon_stream_production
0
9708
import numpy as np import photon_stream as ps import photon_stream_production as psp import pkg_resources import os runinfo_path = pkg_resources.resource_filename( 'photon_stream_production', os.path.join('tests', 'resources', 'runinfo_20161115_to_20170103.csv') ) drs_fRunID_for_obs_run = psp.drs_run._drs_fRunID_for_obs_run def test_drs_run_assignment(): ri = psp.runinfo.read(runinfo_path) ro = psp.drs_run.assign_drs_runs(ri) ri = ri[(ri.fNight > 20161229) & (ri.fNight <= 20170102)] ro = ro[(ro.fNight > 20161229) & (ro.fNight <= 20170102)] for i, row in ri.iterrows(): assert row.fNight == ro.loc[i, 'fNight'] assert row.fRunID == ro.loc[i, 'fRunID'] if row.fRunTypeKey == psp.runinfo.OBSERVATION_RUN_TYPE_KEY: first_method_drs_run_id = drs_fRunID_for_obs_run( runinfo=ri, fNight=row.fNight, fRunID=row.fRunID ) second_method_drs_run_id = ro.loc[i, 'DrsRunID'] if np.isnan(first_method_drs_run_id): assert np.isnan(second_method_drs_run_id) else: assert first_method_drs_run_id == second_method_drs_run_id
import numpy as np import photon_stream as ps import photon_stream_production as psp import pkg_resources import os runinfo_path = pkg_resources.resource_filename( 'photon_stream_production', os.path.join('tests', 'resources', 'runinfo_20161115_to_20170103.csv') ) drs_fRunID_for_obs_run = psp.drs_run._drs_fRunID_for_obs_run def test_drs_run_assignment(): ri = psp.runinfo.read(runinfo_path) ro = psp.drs_run.assign_drs_runs(ri) ri = ri[(ri.fNight > 20161229) & (ri.fNight <= 20170102)] ro = ro[(ro.fNight > 20161229) & (ro.fNight <= 20170102)] for i, row in ri.iterrows(): assert row.fNight == ro.loc[i, 'fNight'] assert row.fRunID == ro.loc[i, 'fRunID'] if row.fRunTypeKey == psp.runinfo.OBSERVATION_RUN_TYPE_KEY: first_method_drs_run_id = drs_fRunID_for_obs_run( runinfo=ri, fNight=row.fNight, fRunID=row.fRunID ) second_method_drs_run_id = ro.loc[i, 'DrsRunID'] if np.isnan(first_method_drs_run_id): assert np.isnan(second_method_drs_run_id) else: assert first_method_drs_run_id == second_method_drs_run_id
none
1
2.09793
2
accounts/migrations/0001_initial.py
vikifox/CMDB
16
9709
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-04-18 05:56 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('cmdb', '0001_initial'), ('appconf', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('username', models.CharField(db_index=True, max_length=40, unique=True)), ('email', models.EmailField(max_length=255)), ('is_active', models.BooleanField(default=False)), ('is_superuser', models.BooleanField(default=False)), ('nickname', models.CharField(blank=True, max_length=64, null=True)), ('ldap_name', models.CharField(blank=True, max_length=64)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='PermissionList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('url', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='RoleList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('delivery', models.ManyToManyField(blank=True, to='appconf.Project')), ('permission', models.ManyToManyField(blank=True, to='accounts.PermissionList')), ('webssh', models.ManyToManyField(blank=True, to='cmdb.HostGroup')), ], ), migrations.AddField( model_name='userinfo', name='role', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='accounts.RoleList'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-04-18 05:56 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('cmdb', '0001_initial'), ('appconf', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('username', models.CharField(db_index=True, max_length=40, unique=True)), ('email', models.EmailField(max_length=255)), ('is_active', models.BooleanField(default=False)), ('is_superuser', models.BooleanField(default=False)), ('nickname', models.CharField(blank=True, max_length=64, null=True)), ('ldap_name', models.CharField(blank=True, max_length=64)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='PermissionList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('url', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='RoleList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('delivery', models.ManyToManyField(blank=True, to='appconf.Project')), ('permission', models.ManyToManyField(blank=True, to='accounts.PermissionList')), ('webssh', models.ManyToManyField(blank=True, to='cmdb.HostGroup')), ], ), migrations.AddField( model_name='userinfo', name='role', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='accounts.RoleList'), ), ]
en
0.583576
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-04-18 05:56
1.736094
2
autoscaler/azure.py
gabrieladt/kops-ec2-autoscaler
0
9710
import http import logging from typing import List, Tuple, MutableMapping from datetime import datetime import re from requests.packages.urllib3 import Retry import autoscaler.utils as utils from autoscaler.autoscaling_groups import AutoScalingGroup from autoscaler.azure_api import AzureApi, AzureScaleSet, AzureScaleSetInstance from autoscaler.utils import TransformingFuture, AllCompletedFuture, CompletedFuture logger = logging.getLogger(__name__) _RETRY_TIME_LIMIT = 30 class AzureBoundedRetry(Retry): """ XXX: Azure sometimes sends us a Retry-After: 1200, even when we still have quota, causing our client to appear to hang. Ignore them and just retry after 30secs """ def __init__(self, **kwargs): super().__init__(**kwargs) @staticmethod def from_retry(retry): new_retry = AzureBoundedRetry() new_retry.total = retry.total new_retry.connect = retry.connect new_retry.read = retry.read new_retry.backoff_factor = retry.backoff_factor new_retry.BACKOFF_MAX = retry.BACKOFF_MAX new_retry.status_forcelist = retry.status_forcelist new_retry.method_whitelist = retry.method_whitelist return new_retry def get_retry_after(self, response): retry_after = super().get_retry_after(response) if response.status != http.HTTPStatus.TOO_MANY_REQUESTS or retry_after <= _RETRY_TIME_LIMIT: return retry_after headers = {} for header in ['Retry-After', 'x-ms-ratelimit-remaining-subscription-reads', 'x-ms-ratelimit-remaining-subscription-writes', 'x-ms-ratelimit-remaining-tenant-reads', 'x-ms-ratelimit-remaining-tenant-writes', 'x-ms-ratelimit-remaining-subscription-resource-requests', 'x-ms-ratelimit-remaining-subscription-resource-entities-read', 'x-ms-ratelimit-remaining-tenant-resource-requests', 'x-ms-ratelimit-remaining-tenant-resource-entities-read']: value = response.getheader(header) if value is not None: headers[header] = value logger.warn("Azure request throttled: {}".format(headers)) return _RETRY_TIME_LIMIT class AzureGroups(object): def __init__(self, resource_groups, slow_scale_classes, client: AzureApi): self.resource_groups = resource_groups self.slow_scale_classes = slow_scale_classes self.client = client def get_all_groups(self, kube_nodes): groups = [] if self.client: for resource_group in self.resource_groups: scale_sets_by_type = {} for scale_set in self.client.list_scale_sets(resource_group.name): scale_sets_by_type.setdefault((scale_set.location, scale_set.instance_type), []).append(scale_set) for key, scale_sets in scale_sets_by_type.items(): location, instance_type = key slow_scale = _get_azure_class(instance_type) in self.slow_scale_classes groups.append(AzureVirtualScaleSet(location, resource_group.name, self.client, instance_type, slow_scale, scale_sets, kube_nodes)) return groups _CLASS_PAT = re.compile(r'\w+_(?P<class>[A-Z]+).+') def _get_azure_class(type_): m = _CLASS_PAT.match(type_) return m.group('class') _SCALE_SET_SIZE_LIMIT = 100 # Appears as an unbounded scale set. Currently, Azure Scale Sets have a limit of 100 hosts. class AzureVirtualScaleSet(AutoScalingGroup): provider = 'azure' def __init__(self, region, resource_group, client: AzureApi, instance_type, slow_scale: bool, scale_sets: List[AzureScaleSet], kube_nodes): self.client = client self.instance_type = instance_type self.tags = {} self.name = 'virtual_scale_set_' + instance_type + '_' + region + '_' + resource_group self.scale_sets = dict((scale_set.name, scale_set) for scale_set in scale_sets) self.desired_capacity = sum(scale_set.capacity for scale_set in scale_sets) self.region = region self.resource_group = resource_group self.selectors = dict(self.tags) # HACK: for matching node selectors self.selectors['azure/type'] = self.instance_type self.selectors['azure/class'] = _get_azure_class(self.instance_type) self.slow_scale = slow_scale self.min_size = 0 self.max_size = 10000 self.is_spot = False self.vm_id_to_instance: MutableMapping[str, Tuple[str, AzureScaleSetInstance]] = {} self.instances = {} self.timeout_until = None self.timeout_reason = None self._global_priority = None self.no_schedule_taints = {} for scale_set in scale_sets: if scale_set.timeout_until is not None: if self.timeout_until is None or self.timeout_until < scale_set.timeout_until: self.timeout_until = scale_set.timeout_until self.timeout_reason = scale_set.name + ": " + scale_set.timeout_reason if scale_set.priority is not None: if self._global_priority is None: self._global_priority = scale_set.priority else: self._global_priority = min(scale_set.priority, self._global_priority) if not self.no_schedule_taints: self.no_schedule_taints = scale_set.no_schedule_taints if scale_set.capacity == 0: continue for instance in self.client.list_scale_set_instances(scale_set): self.vm_id_to_instance[instance.vm_id] = (scale_set.name, instance) self.instances[instance.vm_id] = AzureInstance(instance.vm_id, self.instance_type, instance.launch_time, self.tags) self.nodes = [node for node in kube_nodes if node.instance_id in self.vm_id_to_instance] self.unschedulable_nodes = [n for n in self.nodes if n.unschedulable] self._id = (self.region, self.name) def is_timed_out(self): if self.timeout_until and datetime.now(self.timeout_until.tzinfo) < self.timeout_until: logger.warn("{} is timed out until {} because {}".format(self._id, self.timeout_until, self.timeout_reason)) return True return False @property def global_priority(self): if self._global_priority is None: return super().global_priority return self._global_priority def get_azure_instances(self): return self.instances.values() @property def instance_ids(self): return self.vm_id_to_instance.keys() def set_desired_capacity(self, new_desired_capacity): """ sets the desired capacity of the underlying ASG directly. note that this is for internal control. for scaling purposes, please use scale() instead. """ scale_out = new_desired_capacity - self.desired_capacity assert scale_out >= 0 if scale_out == 0: return CompletedFuture(False) futures = [] for scale_set in sorted(self.scale_sets.values(), key=lambda x: (x.priority, x.name)): if scale_set.capacity < _SCALE_SET_SIZE_LIMIT: if self.slow_scale: new_group_capacity = scale_set.capacity + 1 else: new_group_capacity = min(_SCALE_SET_SIZE_LIMIT, scale_set.capacity + scale_out) scale_out -= (new_group_capacity - scale_set.capacity) if scale_set.provisioning_state == 'Updating': logger.warn("Update of {} already in progress".format(scale_set.name)) continue if scale_set.provisioning_state == 'Failed': logger.error("{} failed provisioning. Skipping it for scaling.".format(scale_set.name)) continue # Update our cached version self.scale_sets[scale_set.name].capacity = new_group_capacity futures.append(self.client.update_scale_set(scale_set, new_group_capacity)) logger.info("Scaling Azure Scale Set {} to {}".format(scale_set.name, new_group_capacity)) if scale_out == 0: break if scale_out > 0: logger.error("Not enough scale sets to reach desired capacity {} for {}".format(new_desired_capacity, self)) self.desired_capacity = new_desired_capacity - scale_out logger.info("ASG: {} new_desired_capacity: {}".format(self, new_desired_capacity)) return TransformingFuture(True, AllCompletedFuture(futures)) def terminate_instances(self, vm_ids): vm_ids = list(vm_ids) instances = {} for vm_id in vm_ids: scale_set_name, instance = self.vm_id_to_instance[vm_id] # Update our cached copy of the Scale Set self.scale_sets[scale_set_name].capacity -= 1 instances.setdefault(scale_set_name, []).append(instance) logger.info('Terminated instances %s', vm_ids) futures = [] for scale_set_name, scale_set_instances in instances.items(): futures.append(self.client.terminate_scale_set_instances(self.scale_sets[scale_set_name], scale_set_instances)) return AllCompletedFuture(futures) def scale_nodes_in(self, nodes): """ scale down asg by terminating the given node. returns a future indicating when the request completes. """ for node in nodes: self.nodes.remove(node) return self.terminate_instances(node.instance_id for node in nodes) def __str__(self): return 'AzureVirtualScaleSet({name}, {selectors_hash})'.format(name=self.name, selectors_hash=utils.selectors_to_hash(self.selectors)) def __repr__(self): return str(self) class AzureInstance(object): provider = 'azure' def __init__(self, instance_id, instance_type, launch_time, tags): self.id = instance_id self.instance_type = instance_type self.launch_time = launch_time self.tags = tags def __str__(self): return 'AzureInstance({}, {})'.format(self.id, self.instance_type) def __repr__(self): return str(self)
import http import logging from typing import List, Tuple, MutableMapping from datetime import datetime import re from requests.packages.urllib3 import Retry import autoscaler.utils as utils from autoscaler.autoscaling_groups import AutoScalingGroup from autoscaler.azure_api import AzureApi, AzureScaleSet, AzureScaleSetInstance from autoscaler.utils import TransformingFuture, AllCompletedFuture, CompletedFuture logger = logging.getLogger(__name__) _RETRY_TIME_LIMIT = 30 class AzureBoundedRetry(Retry): """ XXX: Azure sometimes sends us a Retry-After: 1200, even when we still have quota, causing our client to appear to hang. Ignore them and just retry after 30secs """ def __init__(self, **kwargs): super().__init__(**kwargs) @staticmethod def from_retry(retry): new_retry = AzureBoundedRetry() new_retry.total = retry.total new_retry.connect = retry.connect new_retry.read = retry.read new_retry.backoff_factor = retry.backoff_factor new_retry.BACKOFF_MAX = retry.BACKOFF_MAX new_retry.status_forcelist = retry.status_forcelist new_retry.method_whitelist = retry.method_whitelist return new_retry def get_retry_after(self, response): retry_after = super().get_retry_after(response) if response.status != http.HTTPStatus.TOO_MANY_REQUESTS or retry_after <= _RETRY_TIME_LIMIT: return retry_after headers = {} for header in ['Retry-After', 'x-ms-ratelimit-remaining-subscription-reads', 'x-ms-ratelimit-remaining-subscription-writes', 'x-ms-ratelimit-remaining-tenant-reads', 'x-ms-ratelimit-remaining-tenant-writes', 'x-ms-ratelimit-remaining-subscription-resource-requests', 'x-ms-ratelimit-remaining-subscription-resource-entities-read', 'x-ms-ratelimit-remaining-tenant-resource-requests', 'x-ms-ratelimit-remaining-tenant-resource-entities-read']: value = response.getheader(header) if value is not None: headers[header] = value logger.warn("Azure request throttled: {}".format(headers)) return _RETRY_TIME_LIMIT class AzureGroups(object): def __init__(self, resource_groups, slow_scale_classes, client: AzureApi): self.resource_groups = resource_groups self.slow_scale_classes = slow_scale_classes self.client = client def get_all_groups(self, kube_nodes): groups = [] if self.client: for resource_group in self.resource_groups: scale_sets_by_type = {} for scale_set in self.client.list_scale_sets(resource_group.name): scale_sets_by_type.setdefault((scale_set.location, scale_set.instance_type), []).append(scale_set) for key, scale_sets in scale_sets_by_type.items(): location, instance_type = key slow_scale = _get_azure_class(instance_type) in self.slow_scale_classes groups.append(AzureVirtualScaleSet(location, resource_group.name, self.client, instance_type, slow_scale, scale_sets, kube_nodes)) return groups _CLASS_PAT = re.compile(r'\w+_(?P<class>[A-Z]+).+') def _get_azure_class(type_): m = _CLASS_PAT.match(type_) return m.group('class') _SCALE_SET_SIZE_LIMIT = 100 # Appears as an unbounded scale set. Currently, Azure Scale Sets have a limit of 100 hosts. class AzureVirtualScaleSet(AutoScalingGroup): provider = 'azure' def __init__(self, region, resource_group, client: AzureApi, instance_type, slow_scale: bool, scale_sets: List[AzureScaleSet], kube_nodes): self.client = client self.instance_type = instance_type self.tags = {} self.name = 'virtual_scale_set_' + instance_type + '_' + region + '_' + resource_group self.scale_sets = dict((scale_set.name, scale_set) for scale_set in scale_sets) self.desired_capacity = sum(scale_set.capacity for scale_set in scale_sets) self.region = region self.resource_group = resource_group self.selectors = dict(self.tags) # HACK: for matching node selectors self.selectors['azure/type'] = self.instance_type self.selectors['azure/class'] = _get_azure_class(self.instance_type) self.slow_scale = slow_scale self.min_size = 0 self.max_size = 10000 self.is_spot = False self.vm_id_to_instance: MutableMapping[str, Tuple[str, AzureScaleSetInstance]] = {} self.instances = {} self.timeout_until = None self.timeout_reason = None self._global_priority = None self.no_schedule_taints = {} for scale_set in scale_sets: if scale_set.timeout_until is not None: if self.timeout_until is None or self.timeout_until < scale_set.timeout_until: self.timeout_until = scale_set.timeout_until self.timeout_reason = scale_set.name + ": " + scale_set.timeout_reason if scale_set.priority is not None: if self._global_priority is None: self._global_priority = scale_set.priority else: self._global_priority = min(scale_set.priority, self._global_priority) if not self.no_schedule_taints: self.no_schedule_taints = scale_set.no_schedule_taints if scale_set.capacity == 0: continue for instance in self.client.list_scale_set_instances(scale_set): self.vm_id_to_instance[instance.vm_id] = (scale_set.name, instance) self.instances[instance.vm_id] = AzureInstance(instance.vm_id, self.instance_type, instance.launch_time, self.tags) self.nodes = [node for node in kube_nodes if node.instance_id in self.vm_id_to_instance] self.unschedulable_nodes = [n for n in self.nodes if n.unschedulable] self._id = (self.region, self.name) def is_timed_out(self): if self.timeout_until and datetime.now(self.timeout_until.tzinfo) < self.timeout_until: logger.warn("{} is timed out until {} because {}".format(self._id, self.timeout_until, self.timeout_reason)) return True return False @property def global_priority(self): if self._global_priority is None: return super().global_priority return self._global_priority def get_azure_instances(self): return self.instances.values() @property def instance_ids(self): return self.vm_id_to_instance.keys() def set_desired_capacity(self, new_desired_capacity): """ sets the desired capacity of the underlying ASG directly. note that this is for internal control. for scaling purposes, please use scale() instead. """ scale_out = new_desired_capacity - self.desired_capacity assert scale_out >= 0 if scale_out == 0: return CompletedFuture(False) futures = [] for scale_set in sorted(self.scale_sets.values(), key=lambda x: (x.priority, x.name)): if scale_set.capacity < _SCALE_SET_SIZE_LIMIT: if self.slow_scale: new_group_capacity = scale_set.capacity + 1 else: new_group_capacity = min(_SCALE_SET_SIZE_LIMIT, scale_set.capacity + scale_out) scale_out -= (new_group_capacity - scale_set.capacity) if scale_set.provisioning_state == 'Updating': logger.warn("Update of {} already in progress".format(scale_set.name)) continue if scale_set.provisioning_state == 'Failed': logger.error("{} failed provisioning. Skipping it for scaling.".format(scale_set.name)) continue # Update our cached version self.scale_sets[scale_set.name].capacity = new_group_capacity futures.append(self.client.update_scale_set(scale_set, new_group_capacity)) logger.info("Scaling Azure Scale Set {} to {}".format(scale_set.name, new_group_capacity)) if scale_out == 0: break if scale_out > 0: logger.error("Not enough scale sets to reach desired capacity {} for {}".format(new_desired_capacity, self)) self.desired_capacity = new_desired_capacity - scale_out logger.info("ASG: {} new_desired_capacity: {}".format(self, new_desired_capacity)) return TransformingFuture(True, AllCompletedFuture(futures)) def terminate_instances(self, vm_ids): vm_ids = list(vm_ids) instances = {} for vm_id in vm_ids: scale_set_name, instance = self.vm_id_to_instance[vm_id] # Update our cached copy of the Scale Set self.scale_sets[scale_set_name].capacity -= 1 instances.setdefault(scale_set_name, []).append(instance) logger.info('Terminated instances %s', vm_ids) futures = [] for scale_set_name, scale_set_instances in instances.items(): futures.append(self.client.terminate_scale_set_instances(self.scale_sets[scale_set_name], scale_set_instances)) return AllCompletedFuture(futures) def scale_nodes_in(self, nodes): """ scale down asg by terminating the given node. returns a future indicating when the request completes. """ for node in nodes: self.nodes.remove(node) return self.terminate_instances(node.instance_id for node in nodes) def __str__(self): return 'AzureVirtualScaleSet({name}, {selectors_hash})'.format(name=self.name, selectors_hash=utils.selectors_to_hash(self.selectors)) def __repr__(self): return str(self) class AzureInstance(object): provider = 'azure' def __init__(self, instance_id, instance_type, launch_time, tags): self.id = instance_id self.instance_type = instance_type self.launch_time = launch_time self.tags = tags def __str__(self): return 'AzureInstance({}, {})'.format(self.id, self.instance_type) def __repr__(self): return str(self)
en
0.86913
XXX: Azure sometimes sends us a Retry-After: 1200, even when we still have quota, causing our client to appear to hang. Ignore them and just retry after 30secs # Appears as an unbounded scale set. Currently, Azure Scale Sets have a limit of 100 hosts. # HACK: for matching node selectors sets the desired capacity of the underlying ASG directly. note that this is for internal control. for scaling purposes, please use scale() instead. # Update our cached version # Update our cached copy of the Scale Set scale down asg by terminating the given node. returns a future indicating when the request completes.
2.186733
2
sort_insertion.py
rachitmishra/45
0
9711
""" Insertion Sort Approach: Loop Complexity: O(n2) """ def sort_insertion(input_arr): print("""""""""""""""""""""""""") print("input " + str(input_arr)) print("""""""""""""""""""""""""") ln = len(input_arr) i = 1 # Assuming first element is sorted while i < ln: # n times c = input_arr[i] p = i while p > 0 and input_arr[p - 1] > c: # n times input_arr[p] = input_arr[p - 1] p -= 1 input_arr[p] = c i += 1 print("pass " + str(i) + " " + str(input_arr)) print("""""""""""""""""""""""""") print("result " + str(input_arr)) print("""""""""""""""""""""""""") if __name__ == '__main__': arr = [21, 4, 1, 3, 9, 20, 25, 6, 21, 14] sort_insertion(arr)
""" Insertion Sort Approach: Loop Complexity: O(n2) """ def sort_insertion(input_arr): print("""""""""""""""""""""""""") print("input " + str(input_arr)) print("""""""""""""""""""""""""") ln = len(input_arr) i = 1 # Assuming first element is sorted while i < ln: # n times c = input_arr[i] p = i while p > 0 and input_arr[p - 1] > c: # n times input_arr[p] = input_arr[p - 1] p -= 1 input_arr[p] = c i += 1 print("pass " + str(i) + " " + str(input_arr)) print("""""""""""""""""""""""""") print("result " + str(input_arr)) print("""""""""""""""""""""""""") if __name__ == '__main__': arr = [21, 4, 1, 3, 9, 20, 25, 6, 21, 14] sort_insertion(arr)
en
0.709097
Insertion Sort Approach: Loop Complexity: O(n2) # Assuming first element is sorted # n times # n times
4.170901
4
Python2/tareas/tarea_7.py
eveiramirez/python_class
0
9712
<reponame>eveiramirez/python_class<filename>Python2/tareas/tarea_7.py """ NAME tarea_7.py VERSION [1.0] AUTHOR <NAME> CONTACT <EMAIL> GITHUB https://github.com/eveiramirez/python_class/blob/master/Python2/tareas/tarea_7.py DESCRIPTION Este programa contiene arrays estructurados para los arrays creados en el ejercicio 1, los cuales son: Produccion Costos Costos por g/L CATEGORY Numpy """ import numpy as np # Crear array con la produccion de cada gen para cada temperatura production = np.array([("Gen1", 5, 3), ("Gen2", 11, 7), ("Gen3", 4, 9), ("Gen4", 2, 6)], dtype=[("name", (np.str_, 10)), ("production_cond1", np.int32), ("production_cond2", np.int32)]) # Crear array con los costos de induccion costs = np.array([("Gen1", 3.5), ("Gen2", 5), ("Gen3", 7), ("Gen4", 4.3)], dtype=[("name", (np.str_, 10)), ("cost", np.float64)]) # Crear array con los costos por g/L para condicion 1 pc_cond1 = production["production_cond1"]/costs["cost"] # Crear array con los costos por g/L para temperatura 2 pc_cond2 = production["production_cond2"]/costs["cost"] # Crear lista con los costos por g/L para cada gene guardados en una # tupla gene_list = [] for gene in range(0, 4): gene_list.append((f"Gen{gene+1}", pc_cond1[gene], pc_cond2[gene])) # Crear array con los costos por g/L prod_costs = np.array(gene_list, dtype=[("name", (np.str_, 10)), ("pc_cond1", np.float64), ("pc_cond2", np.float64)]) # Imprimir array de los costos por g/L print(prod_costs)
""" NAME tarea_7.py VERSION [1.0] AUTHOR <NAME> CONTACT <EMAIL> GITHUB https://github.com/eveiramirez/python_class/blob/master/Python2/tareas/tarea_7.py DESCRIPTION Este programa contiene arrays estructurados para los arrays creados en el ejercicio 1, los cuales son: Produccion Costos Costos por g/L CATEGORY Numpy """ import numpy as np # Crear array con la produccion de cada gen para cada temperatura production = np.array([("Gen1", 5, 3), ("Gen2", 11, 7), ("Gen3", 4, 9), ("Gen4", 2, 6)], dtype=[("name", (np.str_, 10)), ("production_cond1", np.int32), ("production_cond2", np.int32)]) # Crear array con los costos de induccion costs = np.array([("Gen1", 3.5), ("Gen2", 5), ("Gen3", 7), ("Gen4", 4.3)], dtype=[("name", (np.str_, 10)), ("cost", np.float64)]) # Crear array con los costos por g/L para condicion 1 pc_cond1 = production["production_cond1"]/costs["cost"] # Crear array con los costos por g/L para temperatura 2 pc_cond2 = production["production_cond2"]/costs["cost"] # Crear lista con los costos por g/L para cada gene guardados en una # tupla gene_list = [] for gene in range(0, 4): gene_list.append((f"Gen{gene+1}", pc_cond1[gene], pc_cond2[gene])) # Crear array con los costos por g/L prod_costs = np.array(gene_list, dtype=[("name", (np.str_, 10)), ("pc_cond1", np.float64), ("pc_cond2", np.float64)]) # Imprimir array de los costos por g/L print(prod_costs)
es
0.833208
NAME tarea_7.py VERSION [1.0] AUTHOR <NAME> CONTACT <EMAIL> GITHUB https://github.com/eveiramirez/python_class/blob/master/Python2/tareas/tarea_7.py DESCRIPTION Este programa contiene arrays estructurados para los arrays creados en el ejercicio 1, los cuales son: Produccion Costos Costos por g/L CATEGORY Numpy # Crear array con la produccion de cada gen para cada temperatura # Crear array con los costos de induccion # Crear array con los costos por g/L para condicion 1 # Crear array con los costos por g/L para temperatura 2 # Crear lista con los costos por g/L para cada gene guardados en una # tupla # Crear array con los costos por g/L # Imprimir array de los costos por g/L
2.922862
3
iguanas/pipeline/_base_pipeline.py
paypal/Iguanas
20
9713
<gh_stars>10-100 """ Base pipeline class. Main rule generator classes inherit from this one. """ from copy import deepcopy from typing import List, Tuple, Union, Dict from iguanas.pipeline.class_accessor import ClassAccessor from iguanas.utils.typing import PandasDataFrameType, PandasSeriesType import iguanas.utils.utils as utils from iguanas.exceptions import DataFrameSizeError class _BasePipeline: """ Base pipeline class. Main pipeline classes inherit from this one. Parameters ---------- steps : List[Tuple[str, object]] The steps to be applied as part of the pipeline. verbose : int, optional Controls the verbosity - the higher, the more messages. >0 : gives the overall progress of the training of the pipeline; >1 : shows the current step being trained. Attributes ---------- steps_ : List[Tuple[str, object]] The steps corresponding to the fitted pipeline. rules : Rules The Rules object containing the rules produced from fitting the pipeline. """ def __init__(self, steps: List[Tuple[str, object]], verbose: int) -> None: self.steps = steps self.verbose = verbose self.steps_ = None self.rules = None def get_params(self) -> dict: """ Returns the parameters of each step in the pipeline. Returns ------- dict The parameters of each step in the pipeline. """ pipeline_params = {} steps_ = self.steps if self.steps_ is None else self.steps_ for step_tag, step in steps_: step_param_dict = deepcopy(step.__dict__) pipeline_params[step_tag] = step_param_dict # If step inherits from _BasePipeline, call its get_params to get # the parameters each class in the pipeline if issubclass(step.__class__, _BasePipeline): step_param_dict = step.get_params() pipeline_params.update(step_param_dict) return pipeline_params def _update_kwargs(self, params: dict) -> None: """ Updates the given parameters of the given steps in the pipeline. Parameters ---------- params : dict A dictionary where each key corresponds to the tag used for the pipeline step. Each value should be a dictionary of the parameters (keys) and their new values (values). """ for step_tag, step in self.steps: # If step inherits from _BasePipeline, call its _update_kwargs if issubclass(step.__class__, _BasePipeline): step._update_kwargs(params) if step_tag in params.keys(): # If a parameter in `params` is not in the keyword arguments # of the class (excl when kwargs is present), raise exception for param in params[step_tag].keys(): if param not in step.__dict__.keys() and 'kwargs' not in step.__dict__.keys(): raise ValueError( f'Parameter `{param}` not found in keyword arguments for class in step `{step_tag}`' ) step.__dict__.update(params[step_tag]) def _pipeline_fit(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict], y: Union[PandasSeriesType, dict], sample_weight: Union[PandasSeriesType, dict]) -> None: """ Runs the following before applying the `fit` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. """ step = self._check_accessor(step) X, y, sample_weight = [ utils.return_dataset_if_dict( step_tag=step_tag, df=df ) for df in (X, y, sample_weight) ] step.fit(X, y, sample_weight) def _pipeline_transform(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict]) -> PandasDataFrameType: """ Runs the following before applying the `transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasDataFrameType The transformed dataset. """ step = self._check_accessor(step) X = utils.return_dataset_if_dict(step_tag=step_tag, df=X) X = step.transform(X) self._exception_if_no_cols_in_X(X, step_tag) return X def _pipeline_predict(self, step: object, X: Union[PandasDataFrameType, dict]) -> PandasSeriesType: """ Runs the following before applying the `predict` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. Parameters ---------- step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasSeriesType The prediction of the final step. """ step = self._check_accessor(step) return step.predict(X) def _pipeline_fit_transform(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict], y: Union[PandasSeriesType, dict], sample_weight: Union[PandasSeriesType, dict]) -> PandasDataFrameType: """ Runs the following before applying the `fit_transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Returns ------- PandasDataFrameType The transformed dataset. """ step = self._check_accessor(step) X, y, sample_weight = [ utils.return_dataset_if_dict( step_tag=step_tag, df=df ) for df in (X, y, sample_weight) ] X = step.fit_transform(X, y, sample_weight) self._exception_if_no_cols_in_X(X, step_tag) return X def _check_accessor(self, step: object) -> object: """ Checks whether the any of the parameters in the given `step` is of type ClassAccessor. If so, then it runs the ClassAccessor's `get` method, which extracts the given attribute from the given step in the pipeline, and injects it into the parameter. """ def _check_accessor_iterable(iterable: Union[list, tuple], pipeline_params: Dict[str, dict]) -> None: """ Iterates through an iterable - if the element is another iterable, _check_accessor_iterable is called again. If the the element is a CheckAccessor, its `get` method is called (which extracts the given attribute from the given step in the pipeline) - this attribute is then assigned in place of the original element. """ for idx, value in enumerate(iterable): if isinstance(value, (list, tuple)): _check_accessor_iterable(value, pipeline_params) elif isinstance(value, ClassAccessor): try: iterable[idx] = value.get(pipeline_params) except TypeError: raise TypeError( '`ClassAccessor` object must be within a mutable iterable.' ) step_param_dict = step.__dict__ for param, value in step_param_dict.items(): # If parameter value is an instantiated class, but not a # ClassAccessor, call _check_accessor again if hasattr(value, '__dict__') and value.__dict__ and not isinstance(value, ClassAccessor): self._check_accessor(value) # If parameter value is a list or tuple, call # _check_accessor_iterable elif isinstance(value, (list, tuple)): pipeline_params = self.get_params() _check_accessor_iterable(value, pipeline_params) # If the parameter value is a ClassAccessor, call its get method elif isinstance(value, ClassAccessor): pipeline_params = self.get_params() step.__dict__[param] = value.get(pipeline_params) return step @staticmethod def _exception_if_no_cols_in_X(X: PandasDataFrameType, step_tag: str) -> Union[None, DataFrameSizeError]: """Raises an exception if `X` has no columns.""" if X.shape[1] == 0: raise DataFrameSizeError( f'`X` has been reduced to zero columns after the `{step_tag}` step in the pipeline.' )
""" Base pipeline class. Main rule generator classes inherit from this one. """ from copy import deepcopy from typing import List, Tuple, Union, Dict from iguanas.pipeline.class_accessor import ClassAccessor from iguanas.utils.typing import PandasDataFrameType, PandasSeriesType import iguanas.utils.utils as utils from iguanas.exceptions import DataFrameSizeError class _BasePipeline: """ Base pipeline class. Main pipeline classes inherit from this one. Parameters ---------- steps : List[Tuple[str, object]] The steps to be applied as part of the pipeline. verbose : int, optional Controls the verbosity - the higher, the more messages. >0 : gives the overall progress of the training of the pipeline; >1 : shows the current step being trained. Attributes ---------- steps_ : List[Tuple[str, object]] The steps corresponding to the fitted pipeline. rules : Rules The Rules object containing the rules produced from fitting the pipeline. """ def __init__(self, steps: List[Tuple[str, object]], verbose: int) -> None: self.steps = steps self.verbose = verbose self.steps_ = None self.rules = None def get_params(self) -> dict: """ Returns the parameters of each step in the pipeline. Returns ------- dict The parameters of each step in the pipeline. """ pipeline_params = {} steps_ = self.steps if self.steps_ is None else self.steps_ for step_tag, step in steps_: step_param_dict = deepcopy(step.__dict__) pipeline_params[step_tag] = step_param_dict # If step inherits from _BasePipeline, call its get_params to get # the parameters each class in the pipeline if issubclass(step.__class__, _BasePipeline): step_param_dict = step.get_params() pipeline_params.update(step_param_dict) return pipeline_params def _update_kwargs(self, params: dict) -> None: """ Updates the given parameters of the given steps in the pipeline. Parameters ---------- params : dict A dictionary where each key corresponds to the tag used for the pipeline step. Each value should be a dictionary of the parameters (keys) and their new values (values). """ for step_tag, step in self.steps: # If step inherits from _BasePipeline, call its _update_kwargs if issubclass(step.__class__, _BasePipeline): step._update_kwargs(params) if step_tag in params.keys(): # If a parameter in `params` is not in the keyword arguments # of the class (excl when kwargs is present), raise exception for param in params[step_tag].keys(): if param not in step.__dict__.keys() and 'kwargs' not in step.__dict__.keys(): raise ValueError( f'Parameter `{param}` not found in keyword arguments for class in step `{step_tag}`' ) step.__dict__.update(params[step_tag]) def _pipeline_fit(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict], y: Union[PandasSeriesType, dict], sample_weight: Union[PandasSeriesType, dict]) -> None: """ Runs the following before applying the `fit` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. """ step = self._check_accessor(step) X, y, sample_weight = [ utils.return_dataset_if_dict( step_tag=step_tag, df=df ) for df in (X, y, sample_weight) ] step.fit(X, y, sample_weight) def _pipeline_transform(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict]) -> PandasDataFrameType: """ Runs the following before applying the `transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasDataFrameType The transformed dataset. """ step = self._check_accessor(step) X = utils.return_dataset_if_dict(step_tag=step_tag, df=X) X = step.transform(X) self._exception_if_no_cols_in_X(X, step_tag) return X def _pipeline_predict(self, step: object, X: Union[PandasDataFrameType, dict]) -> PandasSeriesType: """ Runs the following before applying the `predict` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. Parameters ---------- step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasSeriesType The prediction of the final step. """ step = self._check_accessor(step) return step.predict(X) def _pipeline_fit_transform(self, step_tag: str, step: object, X: Union[PandasDataFrameType, dict], y: Union[PandasSeriesType, dict], sample_weight: Union[PandasSeriesType, dict]) -> PandasDataFrameType: """ Runs the following before applying the `fit_transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Returns ------- PandasDataFrameType The transformed dataset. """ step = self._check_accessor(step) X, y, sample_weight = [ utils.return_dataset_if_dict( step_tag=step_tag, df=df ) for df in (X, y, sample_weight) ] X = step.fit_transform(X, y, sample_weight) self._exception_if_no_cols_in_X(X, step_tag) return X def _check_accessor(self, step: object) -> object: """ Checks whether the any of the parameters in the given `step` is of type ClassAccessor. If so, then it runs the ClassAccessor's `get` method, which extracts the given attribute from the given step in the pipeline, and injects it into the parameter. """ def _check_accessor_iterable(iterable: Union[list, tuple], pipeline_params: Dict[str, dict]) -> None: """ Iterates through an iterable - if the element is another iterable, _check_accessor_iterable is called again. If the the element is a CheckAccessor, its `get` method is called (which extracts the given attribute from the given step in the pipeline) - this attribute is then assigned in place of the original element. """ for idx, value in enumerate(iterable): if isinstance(value, (list, tuple)): _check_accessor_iterable(value, pipeline_params) elif isinstance(value, ClassAccessor): try: iterable[idx] = value.get(pipeline_params) except TypeError: raise TypeError( '`ClassAccessor` object must be within a mutable iterable.' ) step_param_dict = step.__dict__ for param, value in step_param_dict.items(): # If parameter value is an instantiated class, but not a # ClassAccessor, call _check_accessor again if hasattr(value, '__dict__') and value.__dict__ and not isinstance(value, ClassAccessor): self._check_accessor(value) # If parameter value is a list or tuple, call # _check_accessor_iterable elif isinstance(value, (list, tuple)): pipeline_params = self.get_params() _check_accessor_iterable(value, pipeline_params) # If the parameter value is a ClassAccessor, call its get method elif isinstance(value, ClassAccessor): pipeline_params = self.get_params() step.__dict__[param] = value.get(pipeline_params) return step @staticmethod def _exception_if_no_cols_in_X(X: PandasDataFrameType, step_tag: str) -> Union[None, DataFrameSizeError]: """Raises an exception if `X` has no columns.""" if X.shape[1] == 0: raise DataFrameSizeError( f'`X` has been reduced to zero columns after the `{step_tag}` step in the pipeline.' )
en
0.617714
Base pipeline class. Main rule generator classes inherit from this one. Base pipeline class. Main pipeline classes inherit from this one. Parameters ---------- steps : List[Tuple[str, object]] The steps to be applied as part of the pipeline. verbose : int, optional Controls the verbosity - the higher, the more messages. >0 : gives the overall progress of the training of the pipeline; >1 : shows the current step being trained. Attributes ---------- steps_ : List[Tuple[str, object]] The steps corresponding to the fitted pipeline. rules : Rules The Rules object containing the rules produced from fitting the pipeline. Returns the parameters of each step in the pipeline. Returns ------- dict The parameters of each step in the pipeline. # If step inherits from _BasePipeline, call its get_params to get # the parameters each class in the pipeline Updates the given parameters of the given steps in the pipeline. Parameters ---------- params : dict A dictionary where each key corresponds to the tag used for the pipeline step. Each value should be a dictionary of the parameters (keys) and their new values (values). # If step inherits from _BasePipeline, call its _update_kwargs # If a parameter in `params` is not in the keyword arguments # of the class (excl when kwargs is present), raise exception Runs the following before applying the `fit` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Runs the following before applying the `transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasDataFrameType The transformed dataset. Runs the following before applying the `predict` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. Parameters ---------- step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. Returns ------- PandasSeriesType The prediction of the final step. Runs the following before applying the `fit_transform` method of `step`: 1. Checks the parameters of `step` for `ClassAccessor` objects. If a `ClassAccessor` object is found, the parameter in `step` is updated with the class attribute denoted by the `ClassAccessor` object. 2. Checks if `X`, `y` or `sample_weight` are dictionaries. If so, then the dataset aligned to `step_tag` is extracted. Parameters ---------- step_tag : str The tag corresponding to the step. step : object The step in the pipeline. X : Union[PandasDataFrameType, dict] The dataset or dictionary of datasets for each pipeline step. y : Union[PandasSeriesType, dict] The binary target column or dictionary of binary target columns for each pipeline step. sample_weight : Union[PandasSeriesType, dict], optional Row-wise weights or dictionary of row-wise weights for each pipeline step. Defaults to None. Returns ------- PandasDataFrameType The transformed dataset. Checks whether the any of the parameters in the given `step` is of type ClassAccessor. If so, then it runs the ClassAccessor's `get` method, which extracts the given attribute from the given step in the pipeline, and injects it into the parameter. Iterates through an iterable - if the element is another iterable, _check_accessor_iterable is called again. If the the element is a CheckAccessor, its `get` method is called (which extracts the given attribute from the given step in the pipeline) - this attribute is then assigned in place of the original element. # If parameter value is an instantiated class, but not a # ClassAccessor, call _check_accessor again # If parameter value is a list or tuple, call # _check_accessor_iterable # If the parameter value is a ClassAccessor, call its get method Raises an exception if `X` has no columns.
2.562291
3
test_activity_merger.py
AlexanderMakarov/activitywatch-ets
0
9714
import unittest import datetime from parameterized import parameterized from activity_merger import Interval from aw_core.models import Event from typing import List, Tuple def _build_datetime(seed: int) -> datetime.datetime: return datetime.datetime(2000, 1, seed, seed, 0, 0).astimezone(datetime.timezone.utc) def _build_timedelta(seed: int) -> datetime.timedelta: return _build_datetime(seed + 1) - _build_datetime(1) def build_intervals_linked_list(data: List[Tuple[int, bool, int]]) -> Interval: """ Builds intervals linked list from the list of tuples. Doesn't check parameters. :param data: List of tuples (day of start, flag to return `Interval` from the function, duration). :return: Chosen interval. """ result = None previous = None for (seed, is_target, duration) in data: if not previous: previous = Interval(_build_datetime(seed), _build_datetime(seed + duration)) else: tmp = Interval(_build_datetime(seed), _build_datetime(seed + duration), previous) previous.next = tmp previous = tmp if is_target: assert result is None, f"Wrong parameters - '{seed}' interval is marked as result but is not first." result = previous return result class TestInterval(unittest.TestCase): @parameterized.expand([ ( "Simple the only interval", build_intervals_linked_list([ (1, True, 1) ]), 1 ), ( "The same interval", build_intervals_linked_list([ (1, False, 1), (5, True, 1), (6, False, 1) ]), 5 ), ( "Exact Interval right before", build_intervals_linked_list([ (5, False, 1), (6, True, 1), (7, False, 1) ]), 5 ), ( "Exact Interval right after", build_intervals_linked_list([ (3, False, 1), (4, True, 1), (5, False, 1) ]), 5 ), ( "Exact Interval far after", build_intervals_linked_list([ (3, True, 1), (4, False, 1), (5, False, 1), (6, False, 1), ]), 5 ), ( "Exact Interval far before", build_intervals_linked_list([ (4, False, 1), (5, False, 1), (6, False, 1), (7, True, 1), ]), 5 ), ]) def test_find_closest_by_start(self, test_name, interval, expected_start_seed): target = _build_datetime(5) actual: Interval = interval.find_closest(target, datetime.timedelta(0), False) expected = _build_datetime(expected_start_seed) self.assertEqual(actual.start_time, expected, f"'{test_name}' case failed.") @parameterized.expand([ ( "Simple the only interval", build_intervals_linked_list([ (1, True, 1) ]), 1 ), ( "The same interval", build_intervals_linked_list([ (1, False, 1), (4, True, 1), (6, False, 1), ]), 4 ), ( "Exact Interval right before", build_intervals_linked_list([ (4, False, 1), (6, True, 1), (7, False, 1), ]), 4 ), ( "Exact Interval right after", build_intervals_linked_list([ (1, False, 1), (2, True, 1), (4, False, 1), ]), 4 ), ( "Exact Interval far after", build_intervals_linked_list([ (2, True, 1), (3, False, 1), (4, False, 1), (5, False, 1), ]), 4 ), ( "Exact Interval far before", build_intervals_linked_list([ (3, False, 1), (4, False, 1), (6, False, 1), (7, True, 1), ]), 4 ), ]) def test_find_closest_by_end(self, test_name, interval: Interval, expected_start_seed): target = _build_datetime(5) actual: Interval = interval.find_closest(target, datetime.timedelta(0), True) expected = _build_datetime(expected_start_seed) self.assertEqual(actual.start_time, expected, f"'{test_name}' case failed.") @parameterized.expand([ ( "Event at middle", build_intervals_linked_list([ (3, True, 5), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (3, True, 2), (5, False, 1), (6, False, 2), ]), ), ( "Event start equal interval start", build_intervals_linked_list([ (5, True, 5), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (5, True, 1), (6, False, 4), ]), ), ( "Event end equal interval end", build_intervals_linked_list([ (4, True, 2), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (4, True, 1), (5, False, 1), ]), ), ]) def test_separate_new_at_middle(self, test_name: str, interval: Interval, event: Event, expected_interval_offset_2_num_4: Interval): actual: Interval = interval.separate_new_at_middle(event, datetime.timedelta(0)) self.assertListEqual(actual.get_range(-2, 4), expected_interval_offset_2_num_4.get_range(-2, 4), f"'{test_name}' case failed.") if __name__ == '__main__': unittest.main()
import unittest import datetime from parameterized import parameterized from activity_merger import Interval from aw_core.models import Event from typing import List, Tuple def _build_datetime(seed: int) -> datetime.datetime: return datetime.datetime(2000, 1, seed, seed, 0, 0).astimezone(datetime.timezone.utc) def _build_timedelta(seed: int) -> datetime.timedelta: return _build_datetime(seed + 1) - _build_datetime(1) def build_intervals_linked_list(data: List[Tuple[int, bool, int]]) -> Interval: """ Builds intervals linked list from the list of tuples. Doesn't check parameters. :param data: List of tuples (day of start, flag to return `Interval` from the function, duration). :return: Chosen interval. """ result = None previous = None for (seed, is_target, duration) in data: if not previous: previous = Interval(_build_datetime(seed), _build_datetime(seed + duration)) else: tmp = Interval(_build_datetime(seed), _build_datetime(seed + duration), previous) previous.next = tmp previous = tmp if is_target: assert result is None, f"Wrong parameters - '{seed}' interval is marked as result but is not first." result = previous return result class TestInterval(unittest.TestCase): @parameterized.expand([ ( "Simple the only interval", build_intervals_linked_list([ (1, True, 1) ]), 1 ), ( "The same interval", build_intervals_linked_list([ (1, False, 1), (5, True, 1), (6, False, 1) ]), 5 ), ( "Exact Interval right before", build_intervals_linked_list([ (5, False, 1), (6, True, 1), (7, False, 1) ]), 5 ), ( "Exact Interval right after", build_intervals_linked_list([ (3, False, 1), (4, True, 1), (5, False, 1) ]), 5 ), ( "Exact Interval far after", build_intervals_linked_list([ (3, True, 1), (4, False, 1), (5, False, 1), (6, False, 1), ]), 5 ), ( "Exact Interval far before", build_intervals_linked_list([ (4, False, 1), (5, False, 1), (6, False, 1), (7, True, 1), ]), 5 ), ]) def test_find_closest_by_start(self, test_name, interval, expected_start_seed): target = _build_datetime(5) actual: Interval = interval.find_closest(target, datetime.timedelta(0), False) expected = _build_datetime(expected_start_seed) self.assertEqual(actual.start_time, expected, f"'{test_name}' case failed.") @parameterized.expand([ ( "Simple the only interval", build_intervals_linked_list([ (1, True, 1) ]), 1 ), ( "The same interval", build_intervals_linked_list([ (1, False, 1), (4, True, 1), (6, False, 1), ]), 4 ), ( "Exact Interval right before", build_intervals_linked_list([ (4, False, 1), (6, True, 1), (7, False, 1), ]), 4 ), ( "Exact Interval right after", build_intervals_linked_list([ (1, False, 1), (2, True, 1), (4, False, 1), ]), 4 ), ( "Exact Interval far after", build_intervals_linked_list([ (2, True, 1), (3, False, 1), (4, False, 1), (5, False, 1), ]), 4 ), ( "Exact Interval far before", build_intervals_linked_list([ (3, False, 1), (4, False, 1), (6, False, 1), (7, True, 1), ]), 4 ), ]) def test_find_closest_by_end(self, test_name, interval: Interval, expected_start_seed): target = _build_datetime(5) actual: Interval = interval.find_closest(target, datetime.timedelta(0), True) expected = _build_datetime(expected_start_seed) self.assertEqual(actual.start_time, expected, f"'{test_name}' case failed.") @parameterized.expand([ ( "Event at middle", build_intervals_linked_list([ (3, True, 5), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (3, True, 2), (5, False, 1), (6, False, 2), ]), ), ( "Event start equal interval start", build_intervals_linked_list([ (5, True, 5), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (5, True, 1), (6, False, 4), ]), ), ( "Event end equal interval end", build_intervals_linked_list([ (4, True, 2), ]), Event(1, _build_datetime(5), _build_timedelta(1)), build_intervals_linked_list([ (4, True, 1), (5, False, 1), ]), ), ]) def test_separate_new_at_middle(self, test_name: str, interval: Interval, event: Event, expected_interval_offset_2_num_4: Interval): actual: Interval = interval.separate_new_at_middle(event, datetime.timedelta(0)) self.assertListEqual(actual.get_range(-2, 4), expected_interval_offset_2_num_4.get_range(-2, 4), f"'{test_name}' case failed.") if __name__ == '__main__': unittest.main()
en
0.652758
Builds intervals linked list from the list of tuples. Doesn't check parameters. :param data: List of tuples (day of start, flag to return `Interval` from the function, duration). :return: Chosen interval.
2.305334
2
pommerman/agents/player_agent.py
alekseynp/playground
8
9715
""" NOTE: There are a few minor complications to fluid human control which make this code a little more involved than trivial. 1. Key press-release cycles can be, and often are, faster than one tick of the game/simulation, but the player still wants that cycle to count, i.e. to lay a bomb! 2. When holding down a key, the player expects that action to be repeated, at least after a slight delay. 3. But when holding a key down (say, move left) and simultaneously doing a quick press-release cycle (put a bomb), we want the held-down key to keep being executed, but the cycle should have happened in-between. The way we solve this problem is by separating key-state and actions-to-do. We hold the actions that need be executed in a queue (`self._action_q`) and a state for all considered keys. 1. When a key is pressed down, we note the time and mark it as down. 2. If it is released quickly thereafter, before a game tick could happen, we add its action into the queue. This often happens when putting bombs. 3. If it's still pressed down as we enter a game tick, we do some math to see if it's time for a "repeat" event and, if so, push an action to the queue. 4. Just work off one item from the queue each tick. This way, the input is "natural" and things like dropping a bomb while doing a diagonal walk from one end to the other "just work". """ from time import time from . import BaseAgent from .. import characters REPEAT_DELAY = 0.2 # seconds REPEAT_INTERVAL = 0.1 class Keystate: def __init__(self): self.keydown_time = time() self.last_repeat_time = None self.fired = False def should_fire(self): if self.last_repeat_time is None: # The first repetition: if time() - self.keydown_time > REPEAT_DELAY: return True else: # A repetition after the first: if time() - self.last_repeat_time > REPEAT_INTERVAL: return True # No repetition yet return False def mark_fired(self): self.last_repeat_time = time() self.fired = True class PlayerAgent(BaseAgent): """The Player Agent that lets the user control a character.""" def __init__(self, character=characters.Bomber, agent_control='arrows'): super(PlayerAgent, self).__init__(character) ## # @NOTE: DO NOT move this import outside the constructor. It will # not work in headless environments like a Docker container # and prevents Pommerman from running. # from pyglet.window import key CONTROLS = { 'arrows': { key.UP: 1, key.DOWN: 2, key.LEFT: 3, key.RIGHT: 4, key.SPACE: 5, key.M: 6 # In Pommerman, this will freeze the game. }, 'wasd': { key.W: 1, key.S: 2, key.A: 3, key.D: 4, key.E: 5, key.Q: 6 # In Pommerman, this will freeze the game. } } assert agent_control in CONTROLS, "Unknown control: {}".format( agent_control) self._key2act = CONTROLS[agent_control] self._action_q = [] self._keystate = {} def act(self, obs, action_space): # Go through the keys and fire for those that needs repetition (because they're held down) for k, state in self._keystate.items(): if state.should_fire(): self._action_q.append(k) state.mark_fired() act = 0 if self._action_q: # Work off the keys that are queued. act = self._key2act[self._action_q.pop(0)] return act @staticmethod def has_user_input(): return True def on_key_press(self, k, mod): # Ignore if we're not handling the key. Avoids "shadowing" ticks in # multiplayer mode. if k in self._key2act: self._keystate[k] = Keystate() def on_key_release(self, k, mod): # We only need to act on keys for which we did something in the # `key_press` event, and ignore any other key releases. if k in self._keystate: # Only mark this as a "press" upon release if it was a quick one, # i.e. not held down and executed already if not self._keystate[k].fired: self._action_q.append(k) del self._keystate[k]
""" NOTE: There are a few minor complications to fluid human control which make this code a little more involved than trivial. 1. Key press-release cycles can be, and often are, faster than one tick of the game/simulation, but the player still wants that cycle to count, i.e. to lay a bomb! 2. When holding down a key, the player expects that action to be repeated, at least after a slight delay. 3. But when holding a key down (say, move left) and simultaneously doing a quick press-release cycle (put a bomb), we want the held-down key to keep being executed, but the cycle should have happened in-between. The way we solve this problem is by separating key-state and actions-to-do. We hold the actions that need be executed in a queue (`self._action_q`) and a state for all considered keys. 1. When a key is pressed down, we note the time and mark it as down. 2. If it is released quickly thereafter, before a game tick could happen, we add its action into the queue. This often happens when putting bombs. 3. If it's still pressed down as we enter a game tick, we do some math to see if it's time for a "repeat" event and, if so, push an action to the queue. 4. Just work off one item from the queue each tick. This way, the input is "natural" and things like dropping a bomb while doing a diagonal walk from one end to the other "just work". """ from time import time from . import BaseAgent from .. import characters REPEAT_DELAY = 0.2 # seconds REPEAT_INTERVAL = 0.1 class Keystate: def __init__(self): self.keydown_time = time() self.last_repeat_time = None self.fired = False def should_fire(self): if self.last_repeat_time is None: # The first repetition: if time() - self.keydown_time > REPEAT_DELAY: return True else: # A repetition after the first: if time() - self.last_repeat_time > REPEAT_INTERVAL: return True # No repetition yet return False def mark_fired(self): self.last_repeat_time = time() self.fired = True class PlayerAgent(BaseAgent): """The Player Agent that lets the user control a character.""" def __init__(self, character=characters.Bomber, agent_control='arrows'): super(PlayerAgent, self).__init__(character) ## # @NOTE: DO NOT move this import outside the constructor. It will # not work in headless environments like a Docker container # and prevents Pommerman from running. # from pyglet.window import key CONTROLS = { 'arrows': { key.UP: 1, key.DOWN: 2, key.LEFT: 3, key.RIGHT: 4, key.SPACE: 5, key.M: 6 # In Pommerman, this will freeze the game. }, 'wasd': { key.W: 1, key.S: 2, key.A: 3, key.D: 4, key.E: 5, key.Q: 6 # In Pommerman, this will freeze the game. } } assert agent_control in CONTROLS, "Unknown control: {}".format( agent_control) self._key2act = CONTROLS[agent_control] self._action_q = [] self._keystate = {} def act(self, obs, action_space): # Go through the keys and fire for those that needs repetition (because they're held down) for k, state in self._keystate.items(): if state.should_fire(): self._action_q.append(k) state.mark_fired() act = 0 if self._action_q: # Work off the keys that are queued. act = self._key2act[self._action_q.pop(0)] return act @staticmethod def has_user_input(): return True def on_key_press(self, k, mod): # Ignore if we're not handling the key. Avoids "shadowing" ticks in # multiplayer mode. if k in self._key2act: self._keystate[k] = Keystate() def on_key_release(self, k, mod): # We only need to act on keys for which we did something in the # `key_press` event, and ignore any other key releases. if k in self._keystate: # Only mark this as a "press" upon release if it was a quick one, # i.e. not held down and executed already if not self._keystate[k].fired: self._action_q.append(k) del self._keystate[k]
en
0.949811
NOTE: There are a few minor complications to fluid human control which make this code a little more involved than trivial. 1. Key press-release cycles can be, and often are, faster than one tick of the game/simulation, but the player still wants that cycle to count, i.e. to lay a bomb! 2. When holding down a key, the player expects that action to be repeated, at least after a slight delay. 3. But when holding a key down (say, move left) and simultaneously doing a quick press-release cycle (put a bomb), we want the held-down key to keep being executed, but the cycle should have happened in-between. The way we solve this problem is by separating key-state and actions-to-do. We hold the actions that need be executed in a queue (`self._action_q`) and a state for all considered keys. 1. When a key is pressed down, we note the time and mark it as down. 2. If it is released quickly thereafter, before a game tick could happen, we add its action into the queue. This often happens when putting bombs. 3. If it's still pressed down as we enter a game tick, we do some math to see if it's time for a "repeat" event and, if so, push an action to the queue. 4. Just work off one item from the queue each tick. This way, the input is "natural" and things like dropping a bomb while doing a diagonal walk from one end to the other "just work". # seconds # The first repetition: # A repetition after the first: # No repetition yet The Player Agent that lets the user control a character. ## # @NOTE: DO NOT move this import outside the constructor. It will # not work in headless environments like a Docker container # and prevents Pommerman from running. # # In Pommerman, this will freeze the game. # In Pommerman, this will freeze the game. # Go through the keys and fire for those that needs repetition (because they're held down) # Work off the keys that are queued. # Ignore if we're not handling the key. Avoids "shadowing" ticks in # multiplayer mode. # We only need to act on keys for which we did something in the # `key_press` event, and ignore any other key releases. # Only mark this as a "press" upon release if it was a quick one, # i.e. not held down and executed already
3.976842
4
tests/rest/test_rest.py
sapshah-cisco/cobra
93
9716
<filename>tests/rest/test_rest.py # Copyright 2015 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from builtins import object import http.client import os import pytest import random import string import time import xml.etree.ElementTree as ET import logging from cobra.internal.codec.jsoncodec import toJSONStr, fromJSONStr from cobra.internal.codec.xmlcodec import toXMLStr, fromXMLStr import cobra.mit.access import cobra.mit.request import cobra.mit.session cobra = pytest.importorskip("cobra") cobra.model = pytest.importorskip("cobra.model") cobra.model.fv = pytest.importorskip("cobra.model.fv") import cobra.model.pol import cobra.model.infra import cobra.services pytestmark = pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="You must specify at least one --apic " + "option on the CLI") slow = pytest.mark.slow http.client.HTTPConnection.debuglevel = 1 logging.basicConfig(level=logging.DEBUG) fakeDevicePackageZip = 'Archive.zip' realDevicePackageZip = 'asa-device-pkg.zip' @pytest.fixture(params=pytest.config.getvalue('apic')) def moDir(request): url, user, password, secure = request.param secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) md = cobra.mit.access.MoDirectory(session) md.login() return md class Test_rest_configrequest(object): def test_createtenant(self, moDir, tenantname): """ create a tenant and commit it """ dcid = str(time.time()).replace('.', '') polUni = cobra.model.pol.Uni('') tenant = cobra.model.fv.Tenant(polUni, tenantname[0]) configRequest = cobra.mit.request.ConfigRequest() configRequest.addMo(tenant) configRequest.subtree = 'full' configRequest.id = dcid mos = moDir.commit(configRequest) assert mos mo = mos[0] assert len(mos) > 0 assert str(mo.dn) == str(tenant.dn) assert len(list(mo.children)) >= 1 def test_lookupcreatedtenant(self, moDir, tenantname): tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) assert tenant def test_deletetenant(self, moDir, tenantname): tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) tenant.delete() configRequest = cobra.mit.request.ConfigRequest() configRequest.addMo(tenant) r = moDir.commit(configRequest) assert r == [] tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) assert not tenant class Test_rest_classquery(object): def test_classquery_shorthand_filter(self, moDir): """ check that lookupByClass is able to lookup tenant common and only one item is returned """ commonTn = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "common")') assert len(commonTn) == 1 commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' def test_classquery_normal(self, moDir): """ check that a class query with no special properties succeeds we should get at least three tenants (infra, mgmt, common) """ classQuery = cobra.mit.request.ClassQuery('fvTenant') commonTn = moDir.query(classQuery) def findtn(tnlist, tnname): for tn in tnlist: if tn.name == tnname: return True return False assert findtn(commonTn, 'common') assert findtn(commonTn, 'infra') assert findtn(commonTn, 'mgmt') def test_classquery_filter(self, moDir): """ check that a class query with a property filter works """ classQuery = cobra.mit.request.ClassQuery('fvTenant') classQuery.propFilter = 'eq(fvTenant.name, "common")' commonTn = moDir.query(classQuery) commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' def test_classquery_subtree(self, moDir): """ check that a class query with a subtree response """ classQuery = cobra.mit.request.ClassQuery('fvTenant') classQuery.subtree = 'full' classQuery.propFilter = 'eq(fvTenant.name, "common")' commonTn = moDir.query(classQuery) commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' # expect at least 3 child objects assert len(list(commonTn.children)) >= 3 assert str(commonTn.BD['default'].dn) == 'uni/tn-common/BD-default' @pytest.mark.parametrize("cls,subtree", [ pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fvTenant', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('infraInfra', 'no')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fvAEPg', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('infraFuncP', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fabricNode', 'no')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('topSystem', 'full')), ]) def test_classquery_many(self, moDir, cls, subtree): classQuery = cobra.mit.request.ClassQuery(cls) classQuery.subtree = subtree # classQuery.propFilter='eq(fvTenant.name, "common")' mos = moDir.query(classQuery) assert len(mos) > 0 def test_classquery_verifyxml(self, moDir): """ verify that the XML returned by lookupByClass is valid """ commonTn = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "common")') commonTn = commonTn[0] xml = ET.fromstring(toXMLStr(commonTn)) assert xml.tag == 'fvTenant' def test_classquery_negative(self, moDir): """ generate a random tenant name and ensure that we dont find a match for it """ tenantName = ''.join(random.choice(string.ascii_lowercase) for i in range(64)) tenant = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "{0}")'.format(tenantName)) assert len(tenant) == 0 class Test_rest_dnquery(object): def test_dnquery_normal(self, moDir, dn): dnQuery = cobra.mit.request.DnQuery(dn) dnQuery.subtree = 'full' commonTn = moDir.query(dnQuery) assert len(commonTn) == 1 commonTn = commonTn[0] assert str(commonTn.dn) == str(dn) # expect at least 3 child objects assert len(list(commonTn.children)) >= 3 assert str(commonTn.BD['default'].dn) == 'uni/tn-common/BD-default' def test_dnquery_shorthand(self, moDir, dn): commonTn = moDir.lookupByDn(dn) assert str(commonTn.dn) == str(dn) class Test_rest_getLoginDomains(object): def test_getDomains(self, apic): """Verify that the getLoginDomains() method works. """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) session.getLoginDomains() assert session.domains != [] def test_loginDomains_setting(self, apic): """Verify that the loginDomain can be set.""" url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) session.getLoginDomains() session.loginDomain = session.domains[0] assert session.loginDomain == session.domains[0] class Test_rest_login(object): def test_login_positive(self, apic): """ verify that the login function works """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() assert moDir._session def test_login_negative(self, apic): """ verify that the invalid logins throw an exception """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, '<PASSWORD>', secure=secure) moDir = cobra.mit.access.MoDirectory(session) with pytest.raises(cobra.mit.session.LoginError): moDir.login() @slow def test_login_timeout(self, apic): """ verify that the session times out properly """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() start = time.time() pki = moDir.lookupByDn('uni/userext/pkiext/webtokendata') refreshTime = pki.webtokenTimeoutSeconds sleepTime = float(refreshTime) - (time.time() - start) sleepTime += 1.0 # one second buffer, for good measure time.sleep(sleepTime) with pytest.raises(cobra.mit.request.QueryError): moDir.lookupByClass('pkiWebTokenData') def test_login_get_timeout(self, apic): """ verify that the session times out properly """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() assert moDir._session.refreshTime > int(time.time()) assert moDir._session.refreshTimeoutSeconds > 0 def test_rest_login_reauth(self, apic): """Verify that the reauth call returns a different session cookie.""" url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() orig_cookie = session.cookie # sleep for 5 seconds to ensure we get a different cookie. time.sleep(5) moDir.reauth() assert orig_cookie != session.cookie class Test_rest_tracequery(object): @pytest.mark.parametrize("cls", [ pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('fvEpP'), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('vlanCktEp'), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('actrlRule'), ]) def test_tracequery(self, moDir, cls): """ Query every leaf in the fabric for some concrete objects and try to find at least one response. If we don't get that, we fail """ traceResponse = 0 nodes = moDir.lookupByClass( 'fabricNode', propFilter='eq(fabricNode.role,"leaf"') assert len(nodes) > 0 for node in nodes: a = cobra.mit.request.TraceQuery(node.dn, cls) print(a.getUrl(moDir._session)) mos = moDir.query(a) for mo in mos: print(mo.dn) traceResponse += len(mos) assert traceResponse > 0 class Test_services_devicepackage(object): fakePackage = os.path.join(os.path.dirname(os.path.realpath(__file__)), fakeDevicePackageZip) realPackage = os.path.join(os.path.dirname(os.path.realpath(__file__)), realDevicePackageZip) def test_packagevalidate(self): """ Make sure that invalid device packages throw an exception when validation is enabled """ with pytest.raises(AttributeError): cobra.services.UploadPackage(self.fakePackage, validate=True) def test_packagedonotvalidate(self): """ Make sure that if validation is not enabled, no exception is thrown """ packageUpload = cobra.services.UploadPackage(self.fakePackage) assert packageUpload.devicePackagePath == self.fakePackage def test_uploadpackage(self, moDir): """ ensure that the device package upload returns a 200 """ packageUpload = cobra.services.UploadPackage(self.realPackage, validate=True) r = moDir.commit(packageUpload) assert r == [] def test_validateupload(self, moDir): """ make sure that the uploaded device package is found """ uni = cobra.model.pol.Uni('') infra = cobra.model.infra.Infra(uni) vnsQuery = cobra.mit.request.DnQuery(infra.dn) vnsQuery.propFilter = 'eq(vnsMDev.vendor,"CISCO")' vnsQuery.queryTarget = 'subtree' vnsQuery.classFilter = 'vnsMDev' packages = moDir.query(vnsQuery) assert len(packages) > 0 package = packages[0] assert package.vendor == 'CISCO' assert package.model == 'ASA' # for package in packages: # print '\n'.join(['%s:\t%s' % (k,getattr(package,k)) for k in package.meta.props.names]) # print package.dn
<filename>tests/rest/test_rest.py # Copyright 2015 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from builtins import object import http.client import os import pytest import random import string import time import xml.etree.ElementTree as ET import logging from cobra.internal.codec.jsoncodec import toJSONStr, fromJSONStr from cobra.internal.codec.xmlcodec import toXMLStr, fromXMLStr import cobra.mit.access import cobra.mit.request import cobra.mit.session cobra = pytest.importorskip("cobra") cobra.model = pytest.importorskip("cobra.model") cobra.model.fv = pytest.importorskip("cobra.model.fv") import cobra.model.pol import cobra.model.infra import cobra.services pytestmark = pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="You must specify at least one --apic " + "option on the CLI") slow = pytest.mark.slow http.client.HTTPConnection.debuglevel = 1 logging.basicConfig(level=logging.DEBUG) fakeDevicePackageZip = 'Archive.zip' realDevicePackageZip = 'asa-device-pkg.zip' @pytest.fixture(params=pytest.config.getvalue('apic')) def moDir(request): url, user, password, secure = request.param secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) md = cobra.mit.access.MoDirectory(session) md.login() return md class Test_rest_configrequest(object): def test_createtenant(self, moDir, tenantname): """ create a tenant and commit it """ dcid = str(time.time()).replace('.', '') polUni = cobra.model.pol.Uni('') tenant = cobra.model.fv.Tenant(polUni, tenantname[0]) configRequest = cobra.mit.request.ConfigRequest() configRequest.addMo(tenant) configRequest.subtree = 'full' configRequest.id = dcid mos = moDir.commit(configRequest) assert mos mo = mos[0] assert len(mos) > 0 assert str(mo.dn) == str(tenant.dn) assert len(list(mo.children)) >= 1 def test_lookupcreatedtenant(self, moDir, tenantname): tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) assert tenant def test_deletetenant(self, moDir, tenantname): tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) tenant.delete() configRequest = cobra.mit.request.ConfigRequest() configRequest.addMo(tenant) r = moDir.commit(configRequest) assert r == [] tenant = moDir.lookupByDn('uni/tn-{0}'.format(tenantname[0])) assert not tenant class Test_rest_classquery(object): def test_classquery_shorthand_filter(self, moDir): """ check that lookupByClass is able to lookup tenant common and only one item is returned """ commonTn = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "common")') assert len(commonTn) == 1 commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' def test_classquery_normal(self, moDir): """ check that a class query with no special properties succeeds we should get at least three tenants (infra, mgmt, common) """ classQuery = cobra.mit.request.ClassQuery('fvTenant') commonTn = moDir.query(classQuery) def findtn(tnlist, tnname): for tn in tnlist: if tn.name == tnname: return True return False assert findtn(commonTn, 'common') assert findtn(commonTn, 'infra') assert findtn(commonTn, 'mgmt') def test_classquery_filter(self, moDir): """ check that a class query with a property filter works """ classQuery = cobra.mit.request.ClassQuery('fvTenant') classQuery.propFilter = 'eq(fvTenant.name, "common")' commonTn = moDir.query(classQuery) commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' def test_classquery_subtree(self, moDir): """ check that a class query with a subtree response """ classQuery = cobra.mit.request.ClassQuery('fvTenant') classQuery.subtree = 'full' classQuery.propFilter = 'eq(fvTenant.name, "common")' commonTn = moDir.query(classQuery) commonTn = commonTn[0] assert str(commonTn.dn) == 'uni/tn-common' # expect at least 3 child objects assert len(list(commonTn.children)) >= 3 assert str(commonTn.BD['default'].dn) == 'uni/tn-common/BD-default' @pytest.mark.parametrize("cls,subtree", [ pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fvTenant', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('infraInfra', 'no')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fvAEPg', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('infraFuncP', 'full')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('fabricNode', 'no')), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")(('topSystem', 'full')), ]) def test_classquery_many(self, moDir, cls, subtree): classQuery = cobra.mit.request.ClassQuery(cls) classQuery.subtree = subtree # classQuery.propFilter='eq(fvTenant.name, "common")' mos = moDir.query(classQuery) assert len(mos) > 0 def test_classquery_verifyxml(self, moDir): """ verify that the XML returned by lookupByClass is valid """ commonTn = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "common")') commonTn = commonTn[0] xml = ET.fromstring(toXMLStr(commonTn)) assert xml.tag == 'fvTenant' def test_classquery_negative(self, moDir): """ generate a random tenant name and ensure that we dont find a match for it """ tenantName = ''.join(random.choice(string.ascii_lowercase) for i in range(64)) tenant = moDir.lookupByClass( 'fvTenant', propFilter='eq(fvTenant.name, "{0}")'.format(tenantName)) assert len(tenant) == 0 class Test_rest_dnquery(object): def test_dnquery_normal(self, moDir, dn): dnQuery = cobra.mit.request.DnQuery(dn) dnQuery.subtree = 'full' commonTn = moDir.query(dnQuery) assert len(commonTn) == 1 commonTn = commonTn[0] assert str(commonTn.dn) == str(dn) # expect at least 3 child objects assert len(list(commonTn.children)) >= 3 assert str(commonTn.BD['default'].dn) == 'uni/tn-common/BD-default' def test_dnquery_shorthand(self, moDir, dn): commonTn = moDir.lookupByDn(dn) assert str(commonTn.dn) == str(dn) class Test_rest_getLoginDomains(object): def test_getDomains(self, apic): """Verify that the getLoginDomains() method works. """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) session.getLoginDomains() assert session.domains != [] def test_loginDomains_setting(self, apic): """Verify that the loginDomain can be set.""" url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) session.getLoginDomains() session.loginDomain = session.domains[0] assert session.loginDomain == session.domains[0] class Test_rest_login(object): def test_login_positive(self, apic): """ verify that the login function works """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() assert moDir._session def test_login_negative(self, apic): """ verify that the invalid logins throw an exception """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, '<PASSWORD>', secure=secure) moDir = cobra.mit.access.MoDirectory(session) with pytest.raises(cobra.mit.session.LoginError): moDir.login() @slow def test_login_timeout(self, apic): """ verify that the session times out properly """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() start = time.time() pki = moDir.lookupByDn('uni/userext/pkiext/webtokendata') refreshTime = pki.webtokenTimeoutSeconds sleepTime = float(refreshTime) - (time.time() - start) sleepTime += 1.0 # one second buffer, for good measure time.sleep(sleepTime) with pytest.raises(cobra.mit.request.QueryError): moDir.lookupByClass('pkiWebTokenData') def test_login_get_timeout(self, apic): """ verify that the session times out properly """ url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() assert moDir._session.refreshTime > int(time.time()) assert moDir._session.refreshTimeoutSeconds > 0 def test_rest_login_reauth(self, apic): """Verify that the reauth call returns a different session cookie.""" url, user, password, secure = apic secure = False if secure == 'False' else True session = cobra.mit.session.LoginSession(url, user, password, secure=secure) moDir = cobra.mit.access.MoDirectory(session) moDir.login() orig_cookie = session.cookie # sleep for 5 seconds to ensure we get a different cookie. time.sleep(5) moDir.reauth() assert orig_cookie != session.cookie class Test_rest_tracequery(object): @pytest.mark.parametrize("cls", [ pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('fvEpP'), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('vlanCktEp'), pytest.mark.skipif(pytest.config.getvalue('apic') == [], reason="no --apic")('actrlRule'), ]) def test_tracequery(self, moDir, cls): """ Query every leaf in the fabric for some concrete objects and try to find at least one response. If we don't get that, we fail """ traceResponse = 0 nodes = moDir.lookupByClass( 'fabricNode', propFilter='eq(fabricNode.role,"leaf"') assert len(nodes) > 0 for node in nodes: a = cobra.mit.request.TraceQuery(node.dn, cls) print(a.getUrl(moDir._session)) mos = moDir.query(a) for mo in mos: print(mo.dn) traceResponse += len(mos) assert traceResponse > 0 class Test_services_devicepackage(object): fakePackage = os.path.join(os.path.dirname(os.path.realpath(__file__)), fakeDevicePackageZip) realPackage = os.path.join(os.path.dirname(os.path.realpath(__file__)), realDevicePackageZip) def test_packagevalidate(self): """ Make sure that invalid device packages throw an exception when validation is enabled """ with pytest.raises(AttributeError): cobra.services.UploadPackage(self.fakePackage, validate=True) def test_packagedonotvalidate(self): """ Make sure that if validation is not enabled, no exception is thrown """ packageUpload = cobra.services.UploadPackage(self.fakePackage) assert packageUpload.devicePackagePath == self.fakePackage def test_uploadpackage(self, moDir): """ ensure that the device package upload returns a 200 """ packageUpload = cobra.services.UploadPackage(self.realPackage, validate=True) r = moDir.commit(packageUpload) assert r == [] def test_validateupload(self, moDir): """ make sure that the uploaded device package is found """ uni = cobra.model.pol.Uni('') infra = cobra.model.infra.Infra(uni) vnsQuery = cobra.mit.request.DnQuery(infra.dn) vnsQuery.propFilter = 'eq(vnsMDev.vendor,"CISCO")' vnsQuery.queryTarget = 'subtree' vnsQuery.classFilter = 'vnsMDev' packages = moDir.query(vnsQuery) assert len(packages) > 0 package = packages[0] assert package.vendor == 'CISCO' assert package.model == 'ASA' # for package in packages: # print '\n'.join(['%s:\t%s' % (k,getattr(package,k)) for k in package.meta.props.names]) # print package.dn
en
0.831536
# Copyright 2015 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. create a tenant and commit it check that lookupByClass is able to lookup tenant common and only one item is returned check that a class query with no special properties succeeds we should get at least three tenants (infra, mgmt, common) check that a class query with a property filter works check that a class query with a subtree response # expect at least 3 child objects # classQuery.propFilter='eq(fvTenant.name, "common")' verify that the XML returned by lookupByClass is valid generate a random tenant name and ensure that we dont find a match for it # expect at least 3 child objects Verify that the getLoginDomains() method works. Verify that the loginDomain can be set. verify that the login function works verify that the invalid logins throw an exception verify that the session times out properly # one second buffer, for good measure verify that the session times out properly Verify that the reauth call returns a different session cookie. # sleep for 5 seconds to ensure we get a different cookie. Query every leaf in the fabric for some concrete objects and try to find at least one response. If we don't get that, we fail Make sure that invalid device packages throw an exception when validation is enabled Make sure that if validation is not enabled, no exception is thrown ensure that the device package upload returns a 200 make sure that the uploaded device package is found # for package in packages: # print '\n'.join(['%s:\t%s' % (k,getattr(package,k)) for k in package.meta.props.names]) # print package.dn
1.850782
2
spanglish/tests/fixtures/models/language.py
omaraljazairy/FedalAPI
0
9717
<gh_stars>0 """ fixtures that return an sql statement with a list of values to be inserted.""" def load_language(): """ return the sql and values of the insert queuery.""" sql = """ INSERT INTO Spanglish_Test.Language ( `name`, `iso-639-1` ) VALUES (%s, %s) """ values = [ ( 'English', 'EN' ), ( 'Spanish', 'ES' ), ( 'Dutch', 'NL' ) ] return { 'sql': sql, 'values': values }
""" fixtures that return an sql statement with a list of values to be inserted.""" def load_language(): """ return the sql and values of the insert queuery.""" sql = """ INSERT INTO Spanglish_Test.Language ( `name`, `iso-639-1` ) VALUES (%s, %s) """ values = [ ( 'English', 'EN' ), ( 'Spanish', 'ES' ), ( 'Dutch', 'NL' ) ] return { 'sql': sql, 'values': values }
en
0.445565
fixtures that return an sql statement with a list of values to be inserted. return the sql and values of the insert queuery. INSERT INTO Spanglish_Test.Language ( `name`, `iso-639-1` ) VALUES (%s, %s)
2.761919
3
main-hs2.py
tradewartracker/phase-one-product-hs2
0
9718
import datetime as dt from os.path import dirname, join import numpy as np import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from bokeh.io import curdoc from bokeh.layouts import column, gridplot, row from bokeh.models import ColumnDataSource, DataRange1d, Select, HoverTool, Panel, Tabs, LinearColorMapper, Range1d from bokeh.models import NumeralTickFormatter, Title, Label, Paragraph, Div, CustomJSHover, BoxAnnotation from bokeh.models import ColorBar from bokeh.palettes import brewer, Spectral6 from bokeh.plotting import figure from bokeh.embed import server_document from bokeh.transform import factor_cmap ################################################################################# # This just loads in the data... # Alot of this was built of this "cross-fire demo" # https://github.com/bokeh/bokeh/blob/branch-2.3/examples/app/crossfilter/main.py start_date = dt.datetime(2017,7,1) end_date = dt.datetime(2022,1,1) background = "#ffffff" file = "./data"+ "/data.parquet" df = pq.read_table(file).to_pandas() df.sort_index(inplace=True) options = df.index.unique(0).to_list() #print(options) product = "HS CODE 72, IRON AND STEEL" level = "US Dollars" ################################################################################# #These are functions used in the plot... def growth_trade(foo): # what this function does is take a dataframe and create a relative return 100*((foo["china_exports"]/foo["china_exports"].shift(12)) - 1) def cum_trade(foo): outdf = pd.DataFrame([]) outdf["cuml_trade_2017"] = foo["china_exports"].loc["2017"].cumsum() outdf.index = pd.date_range(start="2020-01-01", end="2020-12-01", freq = "MS") outdf["cuml_trade_2020"] = foo["china_exports"].loc["2020"].cumsum() return outdf ################################################################################# # Then this makes the simple plots: def make_plot(): height = int(1.15*533) width = int(1.15*750) foo = df.loc[product_select.value] #foo = df.query("@a < a") # below there is an object of selections which will be one of the values in # the list of options. So the .value then grabs that particular option selected. x = foo.index if level_select.value == 'US Dollars': y = foo['china_exports'] if level_select.value == 'Year over Year % Change': y = growth_trade(foo) if level_select.value == "Cumulative Purchases 2020 vs 2017": cuml = cum_trade(foo) x = cuml.index y2017 = cuml["cuml_trade_2017"] y2020 = cuml["cuml_trade_2020"] title = "US Exports to China of " + product_select.value.title().upper() if level_select.value != "Cumulative Purchases 2020 vs 2017": # This is standard bokeh stuff so far plot = figure(x_axis_type="datetime", plot_height = height, plot_width=width, toolbar_location = 'below', tools = "box_zoom, reset, pan, xwheel_zoom", title = title, x_range = (start_date,end_date) ) plot.line(x = x, y = y, line_width=3.5, line_alpha=0.75, line_color = "slategray") if level_select.value == "Cumulative Purchases 2020 vs 2017": plot = figure(x_axis_type="datetime", plot_height = height, plot_width=width, toolbar_location = 'below', tools = "box_zoom, reset, pan", title = title, x_range = (dt.datetime(2020,1,1),dt.datetime(2021,2,1)) ) plot.line(x = x, y = y2017, line_width=3.5, line_alpha=0.5, line_color = "red", line_dash = "dashed" , legend_label= "2017") plot.line(x = x, y = y2020, line_width=3.5, line_alpha=0.75, line_color = "darkblue" , legend_label= "2020") plot.legend.title = 'Cumulative Purchases' plot.legend.location = "top_left" plot.legend.title_text_font_style = "bold" # fixed attributes plot.xaxis.axis_label = None plot.yaxis.axis_label = "" plot.axis.axis_label_text_font_style = "bold" plot.grid.grid_line_alpha = 0.3 TIMETOOLTIPS = """ <div style="background-color:#F5F5F5; opacity: 0.95; border: 15px 15px 15px 15px;"> <div style = "text-align:left;">""" if level_select.value == 'Year over Year % Change': TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{0}%</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'$data_x': 'datetime'})) if level_select.value == 'US Dollars': TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{$0.0a}</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'$data_x': 'datetime'})) if level_select.value == "Cumulative Purchases 2020 vs 2017": ################################################################################# singlesource2020 = ColumnDataSource({ 'xs': x.values, 'ys': y2020.values, "dates": np.array(x), }) c2020 = plot.circle(x="xs", y="ys", size=35, source = singlesource2020, color = "crimson",alpha=0.0) singlesource2017 = ColumnDataSource({ 'xs': x.values, 'ys': y2017.values, "dates": np.array(pd.date_range(start="2017-01-01", end="2017-12-01", freq = "MS")), }) c2017 = plot.circle(x="xs", y="ys", size=35, source = singlesource2017, color = "darkblue",alpha=0.0) TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> @dates{%b %Y}: $data_y{$0.0a}</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'@dates': 'datetime'}, renderers = [c2017,c2020])) if level_select.value == 'Year over Year % Change': if y.max() > 1500: plot.y_range.end = 1500 plot.title.text_font_size = '13pt' plot.background_fill_color = background plot.background_fill_alpha = 0.75 plot.border_fill_color = background tradewar_box = BoxAnnotation(left=dt.datetime(2018,7,1), right=dt.datetime(2019,10,11), fill_color='red', fill_alpha=0.1) plot.add_layout(tradewar_box) tradewar_box = BoxAnnotation(left=dt.datetime(2020,1,1), right=dt.datetime(2021,12,31), fill_color='blue', fill_alpha=0.1) plot.add_layout(tradewar_box) #p.yaxis.axis_label = plot.yaxis.axis_label_text_font_style = 'bold' plot.yaxis.axis_label_text_font_size = "13px" plot.sizing_mode= "scale_both" if level_select.value != 'Year over Year % Change': plot.yaxis.formatter = NumeralTickFormatter(format="($0. a)") plot.yaxis.axis_label = "US Dollars" if level_select.value == 'Year over Year % Change': plot.yaxis.axis_label = level_select.value plot.max_height = height plot.max_width = width plot.min_height = int(0.25*height) plot.min_width = int(0.25*width) return plot def update_plot(attrname, old, new): layout.children[0] = make_plot() # This part is still not clear to me. but it tells it what to update and where to put it # so it updates the layout and [0] is the first option (see below there is a row with the # first entry the plot, then the controls) level_select = Select(value=level, title='Tranformations', options=['US Dollars', 'Year over Year % Change', "Cumulative Purchases 2020 vs 2017"]) level_select.on_change('value', update_plot) #print(sorted(options)) product_select = Select(value=product, title='Product', options=sorted(options), width=400) # This is the key thing that creates teh selection object product_select.on_change('value', update_plot) # Change the value upone selection via the update plot div0 = Div(text = """Categories are at both the HS2 and HS4 level. Only Phase One covered products as defined in Annex 6-1 of The Agreement within that HS Code are shown. Red marks the period of Section 301 tariffs and retaliation. Blue is period of agreement.\n \n \n """, width=400, background = background, style={"justify-content": "space-between", "display": "flex"} ) div1 = Div(text = """Transformations: US Dollars, year over year growth rate and cumulative purchases in 2017 vs 2020.\n The later transformation cumulates Chinese purchases over each month in 2017 and 2020 and compares each. Because 2017 is the benchmark year for The Agreement, this measure provides a sense, for each product category, China's progress towards meeting their purchase commitments.\n """, width=400, background = background, style={"justify-content": "space-between", "display": "flex"} ) controls = column(product_select, div0, level_select, div1) height = int(1.95*533) width = int(1.95*675) layout = row(make_plot(), controls, sizing_mode = "scale_height", max_height = height, max_width = width, min_height = int(0.25*height), min_width = int(0.25*width)) curdoc().add_root(layout) curdoc().title = "us-china-products"
import datetime as dt from os.path import dirname, join import numpy as np import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from bokeh.io import curdoc from bokeh.layouts import column, gridplot, row from bokeh.models import ColumnDataSource, DataRange1d, Select, HoverTool, Panel, Tabs, LinearColorMapper, Range1d from bokeh.models import NumeralTickFormatter, Title, Label, Paragraph, Div, CustomJSHover, BoxAnnotation from bokeh.models import ColorBar from bokeh.palettes import brewer, Spectral6 from bokeh.plotting import figure from bokeh.embed import server_document from bokeh.transform import factor_cmap ################################################################################# # This just loads in the data... # Alot of this was built of this "cross-fire demo" # https://github.com/bokeh/bokeh/blob/branch-2.3/examples/app/crossfilter/main.py start_date = dt.datetime(2017,7,1) end_date = dt.datetime(2022,1,1) background = "#ffffff" file = "./data"+ "/data.parquet" df = pq.read_table(file).to_pandas() df.sort_index(inplace=True) options = df.index.unique(0).to_list() #print(options) product = "HS CODE 72, IRON AND STEEL" level = "US Dollars" ################################################################################# #These are functions used in the plot... def growth_trade(foo): # what this function does is take a dataframe and create a relative return 100*((foo["china_exports"]/foo["china_exports"].shift(12)) - 1) def cum_trade(foo): outdf = pd.DataFrame([]) outdf["cuml_trade_2017"] = foo["china_exports"].loc["2017"].cumsum() outdf.index = pd.date_range(start="2020-01-01", end="2020-12-01", freq = "MS") outdf["cuml_trade_2020"] = foo["china_exports"].loc["2020"].cumsum() return outdf ################################################################################# # Then this makes the simple plots: def make_plot(): height = int(1.15*533) width = int(1.15*750) foo = df.loc[product_select.value] #foo = df.query("@a < a") # below there is an object of selections which will be one of the values in # the list of options. So the .value then grabs that particular option selected. x = foo.index if level_select.value == 'US Dollars': y = foo['china_exports'] if level_select.value == 'Year over Year % Change': y = growth_trade(foo) if level_select.value == "Cumulative Purchases 2020 vs 2017": cuml = cum_trade(foo) x = cuml.index y2017 = cuml["cuml_trade_2017"] y2020 = cuml["cuml_trade_2020"] title = "US Exports to China of " + product_select.value.title().upper() if level_select.value != "Cumulative Purchases 2020 vs 2017": # This is standard bokeh stuff so far plot = figure(x_axis_type="datetime", plot_height = height, plot_width=width, toolbar_location = 'below', tools = "box_zoom, reset, pan, xwheel_zoom", title = title, x_range = (start_date,end_date) ) plot.line(x = x, y = y, line_width=3.5, line_alpha=0.75, line_color = "slategray") if level_select.value == "Cumulative Purchases 2020 vs 2017": plot = figure(x_axis_type="datetime", plot_height = height, plot_width=width, toolbar_location = 'below', tools = "box_zoom, reset, pan", title = title, x_range = (dt.datetime(2020,1,1),dt.datetime(2021,2,1)) ) plot.line(x = x, y = y2017, line_width=3.5, line_alpha=0.5, line_color = "red", line_dash = "dashed" , legend_label= "2017") plot.line(x = x, y = y2020, line_width=3.5, line_alpha=0.75, line_color = "darkblue" , legend_label= "2020") plot.legend.title = 'Cumulative Purchases' plot.legend.location = "top_left" plot.legend.title_text_font_style = "bold" # fixed attributes plot.xaxis.axis_label = None plot.yaxis.axis_label = "" plot.axis.axis_label_text_font_style = "bold" plot.grid.grid_line_alpha = 0.3 TIMETOOLTIPS = """ <div style="background-color:#F5F5F5; opacity: 0.95; border: 15px 15px 15px 15px;"> <div style = "text-align:left;">""" if level_select.value == 'Year over Year % Change': TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{0}%</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'$data_x': 'datetime'})) if level_select.value == 'US Dollars': TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{$0.0a}</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'$data_x': 'datetime'})) if level_select.value == "Cumulative Purchases 2020 vs 2017": ################################################################################# singlesource2020 = ColumnDataSource({ 'xs': x.values, 'ys': y2020.values, "dates": np.array(x), }) c2020 = plot.circle(x="xs", y="ys", size=35, source = singlesource2020, color = "crimson",alpha=0.0) singlesource2017 = ColumnDataSource({ 'xs': x.values, 'ys': y2017.values, "dates": np.array(pd.date_range(start="2017-01-01", end="2017-12-01", freq = "MS")), }) c2017 = plot.circle(x="xs", y="ys", size=35, source = singlesource2017, color = "darkblue",alpha=0.0) TIMETOOLTIPS = TIMETOOLTIPS + """ <span style="font-size: 13px; font-weight: bold"> @dates{%b %Y}: $data_y{$0.0a}</span> </div> </div> """ plot.add_tools(HoverTool(tooltips = TIMETOOLTIPS, line_policy='nearest', formatters={'@dates': 'datetime'}, renderers = [c2017,c2020])) if level_select.value == 'Year over Year % Change': if y.max() > 1500: plot.y_range.end = 1500 plot.title.text_font_size = '13pt' plot.background_fill_color = background plot.background_fill_alpha = 0.75 plot.border_fill_color = background tradewar_box = BoxAnnotation(left=dt.datetime(2018,7,1), right=dt.datetime(2019,10,11), fill_color='red', fill_alpha=0.1) plot.add_layout(tradewar_box) tradewar_box = BoxAnnotation(left=dt.datetime(2020,1,1), right=dt.datetime(2021,12,31), fill_color='blue', fill_alpha=0.1) plot.add_layout(tradewar_box) #p.yaxis.axis_label = plot.yaxis.axis_label_text_font_style = 'bold' plot.yaxis.axis_label_text_font_size = "13px" plot.sizing_mode= "scale_both" if level_select.value != 'Year over Year % Change': plot.yaxis.formatter = NumeralTickFormatter(format="($0. a)") plot.yaxis.axis_label = "US Dollars" if level_select.value == 'Year over Year % Change': plot.yaxis.axis_label = level_select.value plot.max_height = height plot.max_width = width plot.min_height = int(0.25*height) plot.min_width = int(0.25*width) return plot def update_plot(attrname, old, new): layout.children[0] = make_plot() # This part is still not clear to me. but it tells it what to update and where to put it # so it updates the layout and [0] is the first option (see below there is a row with the # first entry the plot, then the controls) level_select = Select(value=level, title='Tranformations', options=['US Dollars', 'Year over Year % Change', "Cumulative Purchases 2020 vs 2017"]) level_select.on_change('value', update_plot) #print(sorted(options)) product_select = Select(value=product, title='Product', options=sorted(options), width=400) # This is the key thing that creates teh selection object product_select.on_change('value', update_plot) # Change the value upone selection via the update plot div0 = Div(text = """Categories are at both the HS2 and HS4 level. Only Phase One covered products as defined in Annex 6-1 of The Agreement within that HS Code are shown. Red marks the period of Section 301 tariffs and retaliation. Blue is period of agreement.\n \n \n """, width=400, background = background, style={"justify-content": "space-between", "display": "flex"} ) div1 = Div(text = """Transformations: US Dollars, year over year growth rate and cumulative purchases in 2017 vs 2020.\n The later transformation cumulates Chinese purchases over each month in 2017 and 2020 and compares each. Because 2017 is the benchmark year for The Agreement, this measure provides a sense, for each product category, China's progress towards meeting their purchase commitments.\n """, width=400, background = background, style={"justify-content": "space-between", "display": "flex"} ) controls = column(product_select, div0, level_select, div1) height = int(1.95*533) width = int(1.95*675) layout = row(make_plot(), controls, sizing_mode = "scale_height", max_height = height, max_width = width, min_height = int(0.25*height), min_width = int(0.25*width)) curdoc().add_root(layout) curdoc().title = "us-china-products"
en
0.622527
################################################################################# # This just loads in the data... # Alot of this was built of this "cross-fire demo" # https://github.com/bokeh/bokeh/blob/branch-2.3/examples/app/crossfilter/main.py #print(options) ################################################################################# #These are functions used in the plot... # what this function does is take a dataframe and create a relative ################################################################################# # Then this makes the simple plots: #foo = df.query("@a < a") # below there is an object of selections which will be one of the values in # the list of options. So the .value then grabs that particular option selected. # This is standard bokeh stuff so far # fixed attributes <div style="background-color:#F5F5F5; opacity: 0.95; border: 15px 15px 15px 15px;"> <div style = "text-align:left;"> <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{0}%</span> </div> </div> <span style="font-size: 13px; font-weight: bold"> $data_x{%b %Y}: $data_y{$0.0a}</span> </div> </div> ################################################################################# <span style="font-size: 13px; font-weight: bold"> @dates{%b %Y}: $data_y{$0.0a}</span> </div> </div> #p.yaxis.axis_label = # This part is still not clear to me. but it tells it what to update and where to put it # so it updates the layout and [0] is the first option (see below there is a row with the # first entry the plot, then the controls) #print(sorted(options)) # This is the key thing that creates teh selection object # Change the value upone selection via the update plot Categories are at both the HS2 and HS4 level. Only Phase One covered products as defined in Annex 6-1 of The Agreement within that HS Code are shown. Red marks the period of Section 301 tariffs and retaliation. Blue is period of agreement.\n \n \n Transformations: US Dollars, year over year growth rate and cumulative purchases in 2017 vs 2020.\n The later transformation cumulates Chinese purchases over each month in 2017 and 2020 and compares each. Because 2017 is the benchmark year for The Agreement, this measure provides a sense, for each product category, China's progress towards meeting their purchase commitments.\n
2.317365
2
aiohttp_middlewares/https.py
alxpy/aiohttp-middlewares
34
9719
<reponame>alxpy/aiohttp-middlewares<filename>aiohttp_middlewares/https.py """ ================ HTTPS Middleware ================ Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. Usage ===== .. code-block:: python from aiohttp import web from aiohttp_middlewares import https_middleware # Basic usage app = web.Application(middlewares=[https_middleware()]) # Specify custom headers to match, not `X-Forwarded-Proto: https` app = web.Application( middlewares=https_middleware({"Forwarded": "https"}) ) """ import logging from aiohttp import web from aiohttp.web_middlewares import _Handler, _Middleware from .annotations import DictStrStr DEFAULT_MATCH_HEADERS = {"X-Forwarded-Proto": "https"} logger = logging.getLogger(__name__) def https_middleware(match_headers: DictStrStr = None) -> _Middleware: """ Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. This middleware is required to use, when your aiohttp app deployed behind nginx with HTTPS enabled, after aiohttp discounted ``secure_proxy_ssl_header`` keyword argument in https://github.com/aio-libs/aiohttp/pull/2299. :param match_headers: Dict of header(s) from reverse proxy to specify that aiohttp run behind HTTPS. By default: .. code-block:: python {"X-Forwarded-Proto": "https"} """ @web.middleware async def middleware( request: web.Request, handler: _Handler ) -> web.StreamResponse: """Change scheme of current request when HTTPS headers matched.""" headers = DEFAULT_MATCH_HEADERS if match_headers is not None: headers = match_headers matched = any( request.headers.get(key) == value for key, value in headers.items() ) if matched: logger.debug( "Substitute request URL scheme to https", extra={ "headers": headers, "request_headers": dict(request.headers), }, ) request = request.clone(scheme="https") return await handler(request) return middleware
""" ================ HTTPS Middleware ================ Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. Usage ===== .. code-block:: python from aiohttp import web from aiohttp_middlewares import https_middleware # Basic usage app = web.Application(middlewares=[https_middleware()]) # Specify custom headers to match, not `X-Forwarded-Proto: https` app = web.Application( middlewares=https_middleware({"Forwarded": "https"}) ) """ import logging from aiohttp import web from aiohttp.web_middlewares import _Handler, _Middleware from .annotations import DictStrStr DEFAULT_MATCH_HEADERS = {"X-Forwarded-Proto": "https"} logger = logging.getLogger(__name__) def https_middleware(match_headers: DictStrStr = None) -> _Middleware: """ Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. This middleware is required to use, when your aiohttp app deployed behind nginx with HTTPS enabled, after aiohttp discounted ``secure_proxy_ssl_header`` keyword argument in https://github.com/aio-libs/aiohttp/pull/2299. :param match_headers: Dict of header(s) from reverse proxy to specify that aiohttp run behind HTTPS. By default: .. code-block:: python {"X-Forwarded-Proto": "https"} """ @web.middleware async def middleware( request: web.Request, handler: _Handler ) -> web.StreamResponse: """Change scheme of current request when HTTPS headers matched.""" headers = DEFAULT_MATCH_HEADERS if match_headers is not None: headers = match_headers matched = any( request.headers.get(key) == value for key, value in headers.items() ) if matched: logger.debug( "Substitute request URL scheme to https", extra={ "headers": headers, "request_headers": dict(request.headers), }, ) request = request.clone(scheme="https") return await handler(request) return middleware
en
0.616694
================ HTTPS Middleware ================ Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. Usage ===== .. code-block:: python from aiohttp import web from aiohttp_middlewares import https_middleware # Basic usage app = web.Application(middlewares=[https_middleware()]) # Specify custom headers to match, not `X-Forwarded-Proto: https` app = web.Application( middlewares=https_middleware({"Forwarded": "https"}) ) Change scheme for current request when aiohttp application deployed behind reverse proxy with HTTPS enabled. This middleware is required to use, when your aiohttp app deployed behind nginx with HTTPS enabled, after aiohttp discounted ``secure_proxy_ssl_header`` keyword argument in https://github.com/aio-libs/aiohttp/pull/2299. :param match_headers: Dict of header(s) from reverse proxy to specify that aiohttp run behind HTTPS. By default: .. code-block:: python {"X-Forwarded-Proto": "https"} Change scheme of current request when HTTPS headers matched.
2.383646
2
show/drawing.py
nohamanona/poke-auto-fuka
5
9720
<reponame>nohamanona/poke-auto-fuka<filename>show/drawing.py import cv2 import numpy as np class DrawingClass(object): def __init__(self): self.draw_command ='None' self.frame_count = 0 def drawing(self, frame, fps, num_egg, htc_egg, state): cv2.putText(frame, 'FPS: {:.2f}'.format(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), thickness=2) cv2.putText(frame, 'Possessed EGG: {}'.format(num_egg), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) cv2.putText(frame, 'Hatched EGG: {}'.format(htc_egg), (10, 130), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) cv2.putText(frame, 'State: {}'.format(state), (250, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) return frame def draw_controler(self, frame, command): #print('draw',command) if command =='LX MIN': self.draw_command = 'LX MIN' elif command =='LX MAX': self.draw_command = 'LX MAX' elif command =='LY MIN': self.draw_command = 'LY MIN' elif command =='LY MAX': self.draw_command = 'LY MAX' elif command =='Button A': self.draw_command = 'Button A' elif command =='Button B': self.draw_command = 'Button B' elif command =='Button X': self.draw_command = 'Button X' elif command =='Button Y': self.draw_command = 'Button Y' elif command =='HAT TOP': self.draw_command = 'HAT TOP' elif command =='HAT RIGHT': self.draw_command = 'HAT RIGHT' elif command =='HAT BOTTOM': self.draw_command = 'HAT BOTTOM' elif command =='HAT LEFT': self.draw_command = 'HAT LEFT' elif command =='Button START': self.draw_command = 'Button START' elif command =='STOP': self.draw_command = 'STOP' #stick if self.draw_command =='LX MIN' or self.draw_command =='HAT LEFT': cv2.circle(frame, (970, 490), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LX MAX' or self.draw_command =='HAT RIGHT': cv2.circle(frame, (1030, 490), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LY MIN' or self.draw_command =='HAT TOP': cv2.circle(frame, (1000, 460), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LY MAX' or self.draw_command =='HAT BOTTOM': cv2.circle(frame, (1000, 520), 20, (0, 0, 255), thickness=-1) else: cv2.circle(frame, (1000, 490), 20, (0, 0, 255), thickness=-1) cv2.circle(frame, (1000, 490), 50, (0, 0, 255), thickness=2) #button if self.draw_command =='Button X': cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button B': cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button Y': cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button A': cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button START': cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=-1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) return frame
import cv2 import numpy as np class DrawingClass(object): def __init__(self): self.draw_command ='None' self.frame_count = 0 def drawing(self, frame, fps, num_egg, htc_egg, state): cv2.putText(frame, 'FPS: {:.2f}'.format(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), thickness=2) cv2.putText(frame, 'Possessed EGG: {}'.format(num_egg), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) cv2.putText(frame, 'Hatched EGG: {}'.format(htc_egg), (10, 130), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) cv2.putText(frame, 'State: {}'.format(state), (250, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), thickness=2) return frame def draw_controler(self, frame, command): #print('draw',command) if command =='LX MIN': self.draw_command = 'LX MIN' elif command =='LX MAX': self.draw_command = 'LX MAX' elif command =='LY MIN': self.draw_command = 'LY MIN' elif command =='LY MAX': self.draw_command = 'LY MAX' elif command =='Button A': self.draw_command = 'Button A' elif command =='Button B': self.draw_command = 'Button B' elif command =='Button X': self.draw_command = 'Button X' elif command =='Button Y': self.draw_command = 'Button Y' elif command =='HAT TOP': self.draw_command = 'HAT TOP' elif command =='HAT RIGHT': self.draw_command = 'HAT RIGHT' elif command =='HAT BOTTOM': self.draw_command = 'HAT BOTTOM' elif command =='HAT LEFT': self.draw_command = 'HAT LEFT' elif command =='Button START': self.draw_command = 'Button START' elif command =='STOP': self.draw_command = 'STOP' #stick if self.draw_command =='LX MIN' or self.draw_command =='HAT LEFT': cv2.circle(frame, (970, 490), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LX MAX' or self.draw_command =='HAT RIGHT': cv2.circle(frame, (1030, 490), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LY MIN' or self.draw_command =='HAT TOP': cv2.circle(frame, (1000, 460), 20, (0, 0, 255), thickness=-1) elif self.draw_command =='LY MAX' or self.draw_command =='HAT BOTTOM': cv2.circle(frame, (1000, 520), 20, (0, 0, 255), thickness=-1) else: cv2.circle(frame, (1000, 490), 20, (0, 0, 255), thickness=-1) cv2.circle(frame, (1000, 490), 50, (0, 0, 255), thickness=2) #button if self.draw_command =='Button X': cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1180, 460), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'X',(1172, 468), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button B': cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1180, 520), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'B',(1172, 528), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button Y': cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1150, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'Y',(1142, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button A': cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=-1) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1210, 490), 15, (0, 0, 255), thickness=2) cv2.putText(frame, 'A',(1202, 498), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) if self.draw_command =='Button START': cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=-1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), thickness=2) self.frame_count +=1 elif self.frame_count == 6: cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) self.frame_count =0 self.draw_command = 'None' else: cv2.circle(frame, (1130, 423), 10, (0, 0, 255), thickness=1) cv2.putText(frame, '+',(1120, 430), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), thickness=2) return frame
en
0.49165
#print('draw',command) #stick #button
2.828963
3
backtest.py
YangTaoCN/IntroNeuralNetworks
0
9721
import pandas_datareader.data as pdr import yfinance as fix import numpy as np fix.pdr_override() def back_test(strategy, seq_len, ticker, start_date, end_date, dim): """ A simple back test for a given date period :param strategy: the chosen strategy. Note to have already formed the model, and fitted with training data. :param seq_len: length of the days used for prediction :param ticker: company ticker :param start_date: starting date :type start_date: "YYYY-mm-dd" :param end_date: ending date :type end_date: "YYYY-mm-dd" :param dim: dimension required for strategy: 3dim for LSTM and 2dim for MLP :type dim: tuple :return: Percentage errors array that gives the errors for every test in the given date range """ data = pdr.get_data_yahoo(ticker, start_date, end_date) stock_data = data["Adj Close"] errors = [] for i in range((len(stock_data) // 10) * 10 - seq_len - 1): x = np.array(stock_data.iloc[i: i + seq_len, 1]).reshape(dim) / 200 y = np.array(stock_data.iloc[i + seq_len + 1, 1]) / 200 predict = strategy.predict(x) while predict == 0: predict = strategy.predict(x) error = (predict - y) / 100 errors.append(error) total_error = np.array(errors) print(f"Average error = {total_error.mean()}") # If you want to see the full error list then print the following statement # print(errors)
import pandas_datareader.data as pdr import yfinance as fix import numpy as np fix.pdr_override() def back_test(strategy, seq_len, ticker, start_date, end_date, dim): """ A simple back test for a given date period :param strategy: the chosen strategy. Note to have already formed the model, and fitted with training data. :param seq_len: length of the days used for prediction :param ticker: company ticker :param start_date: starting date :type start_date: "YYYY-mm-dd" :param end_date: ending date :type end_date: "YYYY-mm-dd" :param dim: dimension required for strategy: 3dim for LSTM and 2dim for MLP :type dim: tuple :return: Percentage errors array that gives the errors for every test in the given date range """ data = pdr.get_data_yahoo(ticker, start_date, end_date) stock_data = data["Adj Close"] errors = [] for i in range((len(stock_data) // 10) * 10 - seq_len - 1): x = np.array(stock_data.iloc[i: i + seq_len, 1]).reshape(dim) / 200 y = np.array(stock_data.iloc[i + seq_len + 1, 1]) / 200 predict = strategy.predict(x) while predict == 0: predict = strategy.predict(x) error = (predict - y) / 100 errors.append(error) total_error = np.array(errors) print(f"Average error = {total_error.mean()}") # If you want to see the full error list then print the following statement # print(errors)
en
0.720146
A simple back test for a given date period :param strategy: the chosen strategy. Note to have already formed the model, and fitted with training data. :param seq_len: length of the days used for prediction :param ticker: company ticker :param start_date: starting date :type start_date: "YYYY-mm-dd" :param end_date: ending date :type end_date: "YYYY-mm-dd" :param dim: dimension required for strategy: 3dim for LSTM and 2dim for MLP :type dim: tuple :return: Percentage errors array that gives the errors for every test in the given date range # If you want to see the full error list then print the following statement # print(errors)
3.334843
3
src/tespy/components/subsystems.py
jbueck/tespy
0
9722
# -*- coding: utf-8 """Module for custom component groups. It is possible to create subsystems of component groups in tespy. The subsystem class is the base class for custom subsystems. This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/components/subsystems.py SPDX-License-Identifier: MIT """ import logging # %% class subsystem: r""" Class subsystem is the base class of all TESPy subsystems. Parameters ---------- label : str The label of the subsystem. Example ------- Basic example for a setting up a tespy.components.subsystems.subsystem object. This example does not run a tespy calculation! >>> from tespy.components import subsystem >>> mysub = subsystem('mySubsystem') >>> type(mysub) <class 'tespy.components.subsystems.subsystem'> >>> mysub.get_attr('label') 'mySubsystem' """ def __init__(self, label): if not isinstance(label, str): msg = 'Subsystem label must be of type str!' logging.error(msg) raise ValueError(msg) elif len([x for x in [';', ', ', '.'] if x in label]) > 0: msg = 'Can\'t use ' + str([';', ', ', '.']) + ' in label.' logging.error(msg) raise ValueError(msg) else: self.label = label self.comps = {} self.conns = {} self.create_comps() self.create_conns() def get_attr(self, key): r""" Get the value of a subsystem's attribute. Parameters ---------- key : str The attribute you want to retrieve. Returns ------- out : Value of specified attribute. """ if key in self.__dict__: return self.__dict__[key] else: msg = 'Subsystem ' + self.label + ' has no attribute ' + key + '.' logging.error(msg) raise KeyError(msg) def create_comps(self): """Create the subsystem's components.""" return def create_conns(self): """Create the subsystem's connections.""" return
# -*- coding: utf-8 """Module for custom component groups. It is possible to create subsystems of component groups in tespy. The subsystem class is the base class for custom subsystems. This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/components/subsystems.py SPDX-License-Identifier: MIT """ import logging # %% class subsystem: r""" Class subsystem is the base class of all TESPy subsystems. Parameters ---------- label : str The label of the subsystem. Example ------- Basic example for a setting up a tespy.components.subsystems.subsystem object. This example does not run a tespy calculation! >>> from tespy.components import subsystem >>> mysub = subsystem('mySubsystem') >>> type(mysub) <class 'tespy.components.subsystems.subsystem'> >>> mysub.get_attr('label') 'mySubsystem' """ def __init__(self, label): if not isinstance(label, str): msg = 'Subsystem label must be of type str!' logging.error(msg) raise ValueError(msg) elif len([x for x in [';', ', ', '.'] if x in label]) > 0: msg = 'Can\'t use ' + str([';', ', ', '.']) + ' in label.' logging.error(msg) raise ValueError(msg) else: self.label = label self.comps = {} self.conns = {} self.create_comps() self.create_conns() def get_attr(self, key): r""" Get the value of a subsystem's attribute. Parameters ---------- key : str The attribute you want to retrieve. Returns ------- out : Value of specified attribute. """ if key in self.__dict__: return self.__dict__[key] else: msg = 'Subsystem ' + self.label + ' has no attribute ' + key + '.' logging.error(msg) raise KeyError(msg) def create_comps(self): """Create the subsystem's components.""" return def create_conns(self): """Create the subsystem's connections.""" return
en
0.600084
# -*- coding: utf-8 Module for custom component groups. It is possible to create subsystems of component groups in tespy. The subsystem class is the base class for custom subsystems. This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/components/subsystems.py SPDX-License-Identifier: MIT # %% Class subsystem is the base class of all TESPy subsystems. Parameters ---------- label : str The label of the subsystem. Example ------- Basic example for a setting up a tespy.components.subsystems.subsystem object. This example does not run a tespy calculation! >>> from tespy.components import subsystem >>> mysub = subsystem('mySubsystem') >>> type(mysub) <class 'tespy.components.subsystems.subsystem'> >>> mysub.get_attr('label') 'mySubsystem' Get the value of a subsystem's attribute. Parameters ---------- key : str The attribute you want to retrieve. Returns ------- out : Value of specified attribute. Create the subsystem's components. Create the subsystem's connections.
2.928988
3
fairscale/optim/oss.py
blefaudeux/fairscale
1
9723
<filename>fairscale/optim/oss.py # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import TYPE_CHECKING, Any, Callable, List, Optional, Type import torch import torch.distributed as dist from torch.optim import SGD, Optimizer from .utils import broadcast_object, recursive_copy_to_device if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class OSS(Optimizer): """Wraps an arbitrary :class:`optim.Optimizer <torch.optim.Optimizer>` optimizer and shards its state as described by ZeRO_. :: opt = OSS(params, optim=torch.optim.Adam, lr=0.01) .. _ZeRO: https://arxiv.org/abs/1910.02054 Pipe combines pipeline parallelism with checkpointing to reduce peak memory required to train while minimizing device under-utilization. You should determine the balance when defining a :class:`Pipe` module, as balancing will not be done automatically. The module will be partitioned into multiple devices according to the given balance. You may rely on heuristics to find your own optimal configuration. Args: params (list of tensors): parameters to be optimized Keyword Args: optim (torch.nn.Optimizer): optimizer to shard (default: SGD) group (group): torch.distributed group (default: group.WORLD) """ optim: Optimizer in_super_constructor: bool def __init__( self, params: _params_t, optim: Type[Optimizer] = SGD, group: Any = dist.group.WORLD, **defaults: Any ): self.in_super_constructor = True super().__init__(params, defaults) self.in_super_constructor = False self.group = group self.rank = dist.get_rank(group) param_groups = self.partition_parameters() self.optim = optim(param_groups[self.rank], **defaults) # Optional consolidated optimizer state self._global_state_dict = [] def partition_parameters(self) -> List[List[dict]]: """Partitions parameters across distributed ranks. Returns a list of param_groups (which is a list of dict) where each element of the list contains the param_groups for a rank. Element 0 corresponds to rank 0, etc. We need all the ranks for the broadcast inside step(). """ world_size = dist.get_world_size(self.group) param_groups: List[List] = [list() for _ in range(world_size)] sizes = [0] * world_size for param_group in self.param_groups: param_lists: List[List] = [list() for _ in range(world_size)] for param in param_group["params"]: # Add this param to rank with smallest size. rank = sizes.index(min(sizes)) param_lists[rank].append(param) sizes[rank] += param.numel() for rank, params in enumerate(param_lists): if len(params) > 0: pg = copy.copy(param_group) pg["params"] = params param_groups[rank].append(pg) return param_groups def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: loss = self.optim.step(closure=closure) for rank, param_groups in enumerate(self.partition_parameters()): for param_group in param_groups: for param in param_group["params"]: dist.broadcast(param, rank, group=self.group) return loss def state_dict(self) -> dict: """ Gets this rank's state_dict. """ return self.optim.state_dict() def _collect_state_dict(self) -> List[dict]: """ Collect all the state shards """ empty_buffer = torch.empty([1], dtype=torch.uint8) global_optim_state = [] local_state = self.state_dict() if len(local_state["state"]) == 0: return [] for rank in range(dist.get_world_size(group=self.group)): if rank == self.rank: logging.info("Saving self state") global_optim_state.append( recursive_copy_to_device( local_state, non_blocking=True, device=torch.device("cpu") ) ) # Sync with other replicas broadcast_object(empty_buffer, src_rank=rank) else: # Reuse the param_groups from this rank, these are shared across replicas logging.info("Receiving state from rank %s ", rank) replica_state = { "state": broadcast_object(empty_buffer, src_rank=rank), "param_groups": local_state["param_groups"], } # Fetch from the other replicas global_optim_state.append( recursive_copy_to_device( replica_state, non_blocking=True, device=torch.device("cpu") ) ) logging.info("State from rank %s received", rank) return global_optim_state def _broadcast_state_dict(self) -> None: """ Broadcast this rank's state shard, discard others """ empty_buffer = torch.empty([1], dtype=torch.uint8) local_state = self.state_dict() if len(local_state["state"]) == 0: return for rank in range(dist.get_world_size(group=self.group)): if rank == self.rank: # Send the state to the reference replica logging.info( "Sending the sharded SGD state to the reference replica from rank %s", rank, ) broadcast_object(local_state["state"], src_rank=rank) else: # Discard this tensor/rank, broadcast necessary for syncing logging.info("Discarding broadcast from rank %s", rank) broadcast_object(empty_buffer, src_rank=rank) def consolidate_state_dict(self, recipient_rank: int = 0) -> List[dict]: """ Update the consolidated state_dict list, one per rank. This needs to be called on all replicas """ if self.rank == recipient_rank: # Pull the sharded state from all the other replicas # Store all the states in order, rank by rank logging.info("Pulling the sharded SGD state from all replicas") self._global_state_dict = self._collect_state_dict() else: # Acknowledge broadcasts, and send this rank's shard when needed self._broadcast_state_dict() @property def global_state_dict(self): """ Return the last known global optimizer state, which consist of a list of the shards. NOTE: This is limited to the replica which was responsible for the consolidation. The state may also not be up to date, depending on when `consolidate_state_dict` was last called """ assert ( len(self._global_state_dict) > 0 ), "The optimizer state is not materialized, please call consolidate_state_dict on every replica beforehand" return self._global_state_dict def load_state_dict(self, state_dict: dict) -> None: """ Loads this rank's state_dict. """ self.optim.load_state_dict(state_dict) def add_param_group(self, param_group: dict) -> None: super().add_param_group(param_group) if not self.in_super_constructor: param_groups = self.partition_parameters()[self.rank] if len(param_groups) == len(self.optim.param_groups) + 1: self.optim.add_param_group(param_groups[-1])
<filename>fairscale/optim/oss.py # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import TYPE_CHECKING, Any, Callable, List, Optional, Type import torch import torch.distributed as dist from torch.optim import SGD, Optimizer from .utils import broadcast_object, recursive_copy_to_device if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class OSS(Optimizer): """Wraps an arbitrary :class:`optim.Optimizer <torch.optim.Optimizer>` optimizer and shards its state as described by ZeRO_. :: opt = OSS(params, optim=torch.optim.Adam, lr=0.01) .. _ZeRO: https://arxiv.org/abs/1910.02054 Pipe combines pipeline parallelism with checkpointing to reduce peak memory required to train while minimizing device under-utilization. You should determine the balance when defining a :class:`Pipe` module, as balancing will not be done automatically. The module will be partitioned into multiple devices according to the given balance. You may rely on heuristics to find your own optimal configuration. Args: params (list of tensors): parameters to be optimized Keyword Args: optim (torch.nn.Optimizer): optimizer to shard (default: SGD) group (group): torch.distributed group (default: group.WORLD) """ optim: Optimizer in_super_constructor: bool def __init__( self, params: _params_t, optim: Type[Optimizer] = SGD, group: Any = dist.group.WORLD, **defaults: Any ): self.in_super_constructor = True super().__init__(params, defaults) self.in_super_constructor = False self.group = group self.rank = dist.get_rank(group) param_groups = self.partition_parameters() self.optim = optim(param_groups[self.rank], **defaults) # Optional consolidated optimizer state self._global_state_dict = [] def partition_parameters(self) -> List[List[dict]]: """Partitions parameters across distributed ranks. Returns a list of param_groups (which is a list of dict) where each element of the list contains the param_groups for a rank. Element 0 corresponds to rank 0, etc. We need all the ranks for the broadcast inside step(). """ world_size = dist.get_world_size(self.group) param_groups: List[List] = [list() for _ in range(world_size)] sizes = [0] * world_size for param_group in self.param_groups: param_lists: List[List] = [list() for _ in range(world_size)] for param in param_group["params"]: # Add this param to rank with smallest size. rank = sizes.index(min(sizes)) param_lists[rank].append(param) sizes[rank] += param.numel() for rank, params in enumerate(param_lists): if len(params) > 0: pg = copy.copy(param_group) pg["params"] = params param_groups[rank].append(pg) return param_groups def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: loss = self.optim.step(closure=closure) for rank, param_groups in enumerate(self.partition_parameters()): for param_group in param_groups: for param in param_group["params"]: dist.broadcast(param, rank, group=self.group) return loss def state_dict(self) -> dict: """ Gets this rank's state_dict. """ return self.optim.state_dict() def _collect_state_dict(self) -> List[dict]: """ Collect all the state shards """ empty_buffer = torch.empty([1], dtype=torch.uint8) global_optim_state = [] local_state = self.state_dict() if len(local_state["state"]) == 0: return [] for rank in range(dist.get_world_size(group=self.group)): if rank == self.rank: logging.info("Saving self state") global_optim_state.append( recursive_copy_to_device( local_state, non_blocking=True, device=torch.device("cpu") ) ) # Sync with other replicas broadcast_object(empty_buffer, src_rank=rank) else: # Reuse the param_groups from this rank, these are shared across replicas logging.info("Receiving state from rank %s ", rank) replica_state = { "state": broadcast_object(empty_buffer, src_rank=rank), "param_groups": local_state["param_groups"], } # Fetch from the other replicas global_optim_state.append( recursive_copy_to_device( replica_state, non_blocking=True, device=torch.device("cpu") ) ) logging.info("State from rank %s received", rank) return global_optim_state def _broadcast_state_dict(self) -> None: """ Broadcast this rank's state shard, discard others """ empty_buffer = torch.empty([1], dtype=torch.uint8) local_state = self.state_dict() if len(local_state["state"]) == 0: return for rank in range(dist.get_world_size(group=self.group)): if rank == self.rank: # Send the state to the reference replica logging.info( "Sending the sharded SGD state to the reference replica from rank %s", rank, ) broadcast_object(local_state["state"], src_rank=rank) else: # Discard this tensor/rank, broadcast necessary for syncing logging.info("Discarding broadcast from rank %s", rank) broadcast_object(empty_buffer, src_rank=rank) def consolidate_state_dict(self, recipient_rank: int = 0) -> List[dict]: """ Update the consolidated state_dict list, one per rank. This needs to be called on all replicas """ if self.rank == recipient_rank: # Pull the sharded state from all the other replicas # Store all the states in order, rank by rank logging.info("Pulling the sharded SGD state from all replicas") self._global_state_dict = self._collect_state_dict() else: # Acknowledge broadcasts, and send this rank's shard when needed self._broadcast_state_dict() @property def global_state_dict(self): """ Return the last known global optimizer state, which consist of a list of the shards. NOTE: This is limited to the replica which was responsible for the consolidation. The state may also not be up to date, depending on when `consolidate_state_dict` was last called """ assert ( len(self._global_state_dict) > 0 ), "The optimizer state is not materialized, please call consolidate_state_dict on every replica beforehand" return self._global_state_dict def load_state_dict(self, state_dict: dict) -> None: """ Loads this rank's state_dict. """ self.optim.load_state_dict(state_dict) def add_param_group(self, param_group: dict) -> None: super().add_param_group(param_group) if not self.in_super_constructor: param_groups = self.partition_parameters()[self.rank] if len(param_groups) == len(self.optim.param_groups) + 1: self.optim.add_param_group(param_groups[-1])
en
0.861915
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. Wraps an arbitrary :class:`optim.Optimizer <torch.optim.Optimizer>` optimizer and shards its state as described by ZeRO_. :: opt = OSS(params, optim=torch.optim.Adam, lr=0.01) .. _ZeRO: https://arxiv.org/abs/1910.02054 Pipe combines pipeline parallelism with checkpointing to reduce peak memory required to train while minimizing device under-utilization. You should determine the balance when defining a :class:`Pipe` module, as balancing will not be done automatically. The module will be partitioned into multiple devices according to the given balance. You may rely on heuristics to find your own optimal configuration. Args: params (list of tensors): parameters to be optimized Keyword Args: optim (torch.nn.Optimizer): optimizer to shard (default: SGD) group (group): torch.distributed group (default: group.WORLD) # Optional consolidated optimizer state Partitions parameters across distributed ranks. Returns a list of param_groups (which is a list of dict) where each element of the list contains the param_groups for a rank. Element 0 corresponds to rank 0, etc. We need all the ranks for the broadcast inside step(). # Add this param to rank with smallest size. Gets this rank's state_dict. Collect all the state shards # Sync with other replicas # Reuse the param_groups from this rank, these are shared across replicas # Fetch from the other replicas Broadcast this rank's state shard, discard others # Send the state to the reference replica # Discard this tensor/rank, broadcast necessary for syncing Update the consolidated state_dict list, one per rank. This needs to be called on all replicas # Pull the sharded state from all the other replicas # Store all the states in order, rank by rank # Acknowledge broadcasts, and send this rank's shard when needed Return the last known global optimizer state, which consist of a list of the shards. NOTE: This is limited to the replica which was responsible for the consolidation. The state may also not be up to date, depending on when `consolidate_state_dict` was last called Loads this rank's state_dict.
2.09564
2
setup.py
ninezerozeronine/raytracing-one-weekend
0
9724
from setuptools import setup, find_packages setup( name="raytracing-one-weekend", version="0.0.0", author="<NAME>", author_email="<EMAIL>", description="A raytracer achievable in a weekend.", url="https://github.com/ninezerozeronine/raytracing-one-weekend", install_requires=[ "Pillow", "numpy", ], packages=find_packages('src'), package_dir={'': 'src'}, )
from setuptools import setup, find_packages setup( name="raytracing-one-weekend", version="0.0.0", author="<NAME>", author_email="<EMAIL>", description="A raytracer achievable in a weekend.", url="https://github.com/ninezerozeronine/raytracing-one-weekend", install_requires=[ "Pillow", "numpy", ], packages=find_packages('src'), package_dir={'': 'src'}, )
none
1
1.288188
1
homepage/urls.py
r0kym/SNI-backend
1
9725
<gh_stars>1-10 """ URLconf of the homepage """ from django.urls import path, include from . import views urlpatterns = [ path('', views.home, name='home'), path('auth', views.auth, name='auth'), path('auth/public', views.auth_public, name='auth-public'), path('auth/full', views.auth_full, name='auth-full'), path('auth/invite', views.auth_invite, name='auth-invite'), path('callback/sni', views.sni_callback, name='sni_callback'), path('logout', views.logout, name='logout'), path('403', views.no_perm, name='no-permission'), path('404', views.not_found, name='not-found'), ]
""" URLconf of the homepage """ from django.urls import path, include from . import views urlpatterns = [ path('', views.home, name='home'), path('auth', views.auth, name='auth'), path('auth/public', views.auth_public, name='auth-public'), path('auth/full', views.auth_full, name='auth-full'), path('auth/invite', views.auth_invite, name='auth-invite'), path('callback/sni', views.sni_callback, name='sni_callback'), path('logout', views.logout, name='logout'), path('403', views.no_perm, name='no-permission'), path('404', views.not_found, name='not-found'), ]
en
0.797408
URLconf of the homepage
2.052678
2
srcflib/email/__init__.py
mas90/srcf-python
0
9726
""" Notification email machinery, for tasks to send credentials and instructions to users. Email templates placed inside the `templates` directory of this module should: - extend from `layout` - provide `subject` and `body` blocks """ from enum import Enum import os.path from jinja2 import Environment, FileSystemLoader from sqlalchemy.orm import Session as SQLASession from srcf.database import Member, Society from srcf.mail import send_mail from ..plumbing import Owner, owner_desc, owner_name, owner_website ENV = Environment(loader=FileSystemLoader(os.path.join(os.path.dirname(__file__), "templates")), trim_blocks=True, lstrip_blocks=True) ENV.filters.update({"is_member": lambda mem: isinstance(mem, Member), "is_society": lambda soc: isinstance(soc, Society), "owner_name": owner_name, "owner_desc": owner_desc, "owner_website": owner_website}) CURRENT_WRAPPER = None class Layout(Enum): """ Base layout template to be inherited by an email-specific template. """ SUBJECT = "/common/subject.j2" """ Subject line of the email. """ BODY = "/common/body.j2" """ Main content of the email. """ class EmailWrapper: """ Context manager for email sending, used to augment emails with additional metadata. """ def __init__(self, subject: str = None, body: str = None, context: dict = None): self._layouts = {Layout.SUBJECT: subject, Layout.BODY: body} self._context = context def render(self, template: str, layout: Layout, target: Owner, context: dict = None): """ Render an email template with Jinja using the provided context. """ context = dict(context or (), layout=layout.value, target=target) out = ENV.get_template(template).render(context) custom = self._layouts.get(layout) if custom: if self._context: context.update(self._context) out = custom.format(out, **context) if layout == Layout.SUBJECT: out = " ".join(out.split()) return out def __enter__(self): global CURRENT_WRAPPER if CURRENT_WRAPPER: raise RuntimeError("Another context is already active") CURRENT_WRAPPER = self def __exit__(self, exception_type, exception_value, traceback): global CURRENT_WRAPPER CURRENT_WRAPPER = None DEFAULT_WRAPPER = EmailWrapper(subject="[SRCF] {}") def send(target: Owner, template: str, context: dict = None, session: SQLASession = None): """ Render and send an email to the target member or society. """ wrapper = CURRENT_WRAPPER or DEFAULT_WRAPPER subject = wrapper.render(template, Layout.SUBJECT, target, context) body = wrapper.render(template, Layout.BODY, target, context) recipient = (owner_desc(target, True), target.email) send_mail(recipient, subject, body, copy_sysadmins=False, session=session)
""" Notification email machinery, for tasks to send credentials and instructions to users. Email templates placed inside the `templates` directory of this module should: - extend from `layout` - provide `subject` and `body` blocks """ from enum import Enum import os.path from jinja2 import Environment, FileSystemLoader from sqlalchemy.orm import Session as SQLASession from srcf.database import Member, Society from srcf.mail import send_mail from ..plumbing import Owner, owner_desc, owner_name, owner_website ENV = Environment(loader=FileSystemLoader(os.path.join(os.path.dirname(__file__), "templates")), trim_blocks=True, lstrip_blocks=True) ENV.filters.update({"is_member": lambda mem: isinstance(mem, Member), "is_society": lambda soc: isinstance(soc, Society), "owner_name": owner_name, "owner_desc": owner_desc, "owner_website": owner_website}) CURRENT_WRAPPER = None class Layout(Enum): """ Base layout template to be inherited by an email-specific template. """ SUBJECT = "/common/subject.j2" """ Subject line of the email. """ BODY = "/common/body.j2" """ Main content of the email. """ class EmailWrapper: """ Context manager for email sending, used to augment emails with additional metadata. """ def __init__(self, subject: str = None, body: str = None, context: dict = None): self._layouts = {Layout.SUBJECT: subject, Layout.BODY: body} self._context = context def render(self, template: str, layout: Layout, target: Owner, context: dict = None): """ Render an email template with Jinja using the provided context. """ context = dict(context or (), layout=layout.value, target=target) out = ENV.get_template(template).render(context) custom = self._layouts.get(layout) if custom: if self._context: context.update(self._context) out = custom.format(out, **context) if layout == Layout.SUBJECT: out = " ".join(out.split()) return out def __enter__(self): global CURRENT_WRAPPER if CURRENT_WRAPPER: raise RuntimeError("Another context is already active") CURRENT_WRAPPER = self def __exit__(self, exception_type, exception_value, traceback): global CURRENT_WRAPPER CURRENT_WRAPPER = None DEFAULT_WRAPPER = EmailWrapper(subject="[SRCF] {}") def send(target: Owner, template: str, context: dict = None, session: SQLASession = None): """ Render and send an email to the target member or society. """ wrapper = CURRENT_WRAPPER or DEFAULT_WRAPPER subject = wrapper.render(template, Layout.SUBJECT, target, context) body = wrapper.render(template, Layout.BODY, target, context) recipient = (owner_desc(target, True), target.email) send_mail(recipient, subject, body, copy_sysadmins=False, session=session)
en
0.774941
Notification email machinery, for tasks to send credentials and instructions to users. Email templates placed inside the `templates` directory of this module should: - extend from `layout` - provide `subject` and `body` blocks Base layout template to be inherited by an email-specific template. Subject line of the email. Main content of the email. Context manager for email sending, used to augment emails with additional metadata. Render an email template with Jinja using the provided context. Render and send an email to the target member or society.
2.538509
3
nose2_example/my_package/myapp.py
dolfandringa/PythonProjectStructureDemo
2
9727
from .operations import Multiply, Add, Substract class MyApp(object): def __init__(self): self.operations={'multiply': Multiply, 'add': Add, 'substract': Substract} def do(self, operation, number1, number2): return self.operations[operation.lower()].do(number1, number2)
from .operations import Multiply, Add, Substract class MyApp(object): def __init__(self): self.operations={'multiply': Multiply, 'add': Add, 'substract': Substract} def do(self, operation, number1, number2): return self.operations[operation.lower()].do(number1, number2)
none
1
3.253654
3
src/train_nn.py
anirudhbhashyam/911-Calls-Seattle-Predictions
0
9728
<gh_stars>0 import os from typing import Union import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, KFold import utility as ut from variables import * # Read the data. train_data = pd.read_csv(os.path.join(DATA_PATH, ".".join([DATA_TRAIN, DATA_EXT])), header = 0) # Get the labels. Y = train_data.pop(LABEL) sample_weights = np.ones(Y.shape[0]) for i in range(10, 24): sample_weights[train_data["_".join(("hour", str(i)))] == 1] = 1.5 # -- For classification -- # # CLASSES = np.unique(Y) # N_CLASSES = len(CLASSES) # Y = Y.replace(dict(zip(CLASSES, range(0, len(CLASSES))))) # Data shape parameters. N_FEATURES = train_data.shape[1] N_SAMPLES = train_data.shape[0] # Split the training data. X_train, X_val, Y_train, Y_val = train_test_split(train_data, Y, shuffle = True, random_state = 7919) def build_and_compile(input_: tuple = (WB_SIZE, N_FEATURES), loss_func: str = "mae") -> tf.keras.Model: """ Build and compile a TensorFLow LSTM network. Parameters ---------- input_ : Shape of the trainining data. Should specify `(batch_size` or `window_size, n_features)` loss_func : Loss function to use for training. Returns ------- `tf.keras.Model` : A compiled TensorFlow model. """ # Seqential keras model. model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(50, input_shape = input_, return_sequences = True), tf.keras.layers.LSTM(50, return_sequences = False), tf.keras.layers.GaussianNoise(1.0), tf.keras.layers.Dense(1024, activation = "relu"), tf.keras.layers.Dropout(0.7), tf.keras.layers.Dense(128, activation = "relu"), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(64, activation = "relu"), tf.keras.layers.GaussianNoise(0.2), # tf.keras.layers.Dense(32, activation = "relu"), # tf.keras.layers.GaussianNoise(0.7), tf.keras.layers.Dense(1, activation = "relu") ]) # Compile the model. model.compile( loss = loss_func, optimizer = "adam" ) return model def train(model: tf.keras.Model, train_data: np.ndarray, train_labels: np.ndarray, val_data: np.ndarray, val_labels: np.ndarray, epochs: int = 200, sample_weights: np.array = None, cross_val = False) -> pd.DataFrame: """ Trains the TensorFlow `model`. Parameters ---------- model : A TensorFlow compiled model. train_data : The data to be trained. Shape must be consistent with what is passed during model compilation. train_labels : The ground truth predictions. val_data : The data to be used as validation. val_labels : The ground truth validation predictions. epochs : Total number of epochs to train. sample_weights : Weights for `train_data` to use during training. Returns ------- pd.DataFrame: Training information. """ # Check for overfitting. early_stopping = tf.keras.callbacks.EarlyStopping( monitor = "val_loss", min_delta = 0.001, patience = 100, restore_best_weights = False) history = model.fit( train_data.reshape(-1, WB_SIZE, N_FEATURES), train_labels, sample_weight = sample_weights, validation_data = (val_data.reshape(-1, WB_SIZE, N_FEATURES), val_labels), verbose = 1, epochs = epochs, callbacks = early_stopping) return pd.DataFrame(history.history) # def cross_validate(train_data: pd.DataFrame, # train_labels: pd.DataFrame, # epochs: int = 50, # sample_weights: np.array = None, # folds: int = 2) -> pd.DataFrame: # splits = KFold(n_splits = folds, shuffle = True) # print("Starting cross validation.") # accuracy = list() # val_loss = list() # models = list() # for i, (train_index, test_index) in enumerate(splits.split(train_data, train_labels)): # print(f"Iteration {i}\n") # X_train, X_val, Y_train, Y_val = train_data[train_index], train_data[test_index], train_data[train_index], train_labels[test_index] # model = build_and_compile((WB_SIZE, N_FEATURES), "mae") # history_df = train(model, X_train, Y_train, epochs) # # train_stats(history_df, i) # scores = model.evaluate(X_val.reshape(-1, WB_SIZE, N_FEATURES), Y_val) # print(f"Validation loss: {scores}\n") # #of {scores[0]} {model.metrics_names[1]} of {scores[1] * 100:.2f}%") # # accuracy.append(scores[1] * 100) # val_loss.append(scores) # models.append(model) # return models[np.argmin(val_loss)] def train_stats(history_df: pd.DataFrame, it: int = None) -> None: """ Produces training statistics once training has run its course. Parameters ---------- history_df : The history as returned by Keras `fit` method. it : To be used with cross validation. Specifies the name of the learning curve based on the cross validation itertation `it`. Returns ------- `None` """ # Learning curve. plt.rcParams["figure.dpi"] = 160 history_df.loc[:, ["loss", "val_loss"]].plot() plt.title("Model Loss") plt.ylabel("Loss") plt.xlabel("Epoch") name = TRAIN_FIG_SAVE_NAME if it is not None: name = "_".join([name, str(it)]) plt.savefig(os.path.join(TRAIN_FIG_SAVE_PATH, ".".join([name, FIG_EXT]))) # Stats print(f"Minimum validation loss: {history_df['val_loss'].min()}") # plt.plot(f"Accuracy: {history_df['train_accuracy']}") # plt.plot(f"Validation Accuracy: {history_df['val_accuracy']}") return None def main(): model = build_and_compile((WB_SIZE, N_FEATURES)) # model = cross_validate(np.array(train_data), np.array(Y)) history_df = train(model, np.array(X_train), np.array(Y_train), np.array(X_val), np.array(Y_val)) # train_stats(history_df) # Save trained model (better to use checkpoints). model.save(os.path.join(NN_MODEL_SAVE_PATH, NN_MODEL_SAVE_NAME)) if __name__ == "__main__": main()
import os from typing import Union import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, KFold import utility as ut from variables import * # Read the data. train_data = pd.read_csv(os.path.join(DATA_PATH, ".".join([DATA_TRAIN, DATA_EXT])), header = 0) # Get the labels. Y = train_data.pop(LABEL) sample_weights = np.ones(Y.shape[0]) for i in range(10, 24): sample_weights[train_data["_".join(("hour", str(i)))] == 1] = 1.5 # -- For classification -- # # CLASSES = np.unique(Y) # N_CLASSES = len(CLASSES) # Y = Y.replace(dict(zip(CLASSES, range(0, len(CLASSES))))) # Data shape parameters. N_FEATURES = train_data.shape[1] N_SAMPLES = train_data.shape[0] # Split the training data. X_train, X_val, Y_train, Y_val = train_test_split(train_data, Y, shuffle = True, random_state = 7919) def build_and_compile(input_: tuple = (WB_SIZE, N_FEATURES), loss_func: str = "mae") -> tf.keras.Model: """ Build and compile a TensorFLow LSTM network. Parameters ---------- input_ : Shape of the trainining data. Should specify `(batch_size` or `window_size, n_features)` loss_func : Loss function to use for training. Returns ------- `tf.keras.Model` : A compiled TensorFlow model. """ # Seqential keras model. model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(50, input_shape = input_, return_sequences = True), tf.keras.layers.LSTM(50, return_sequences = False), tf.keras.layers.GaussianNoise(1.0), tf.keras.layers.Dense(1024, activation = "relu"), tf.keras.layers.Dropout(0.7), tf.keras.layers.Dense(128, activation = "relu"), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(64, activation = "relu"), tf.keras.layers.GaussianNoise(0.2), # tf.keras.layers.Dense(32, activation = "relu"), # tf.keras.layers.GaussianNoise(0.7), tf.keras.layers.Dense(1, activation = "relu") ]) # Compile the model. model.compile( loss = loss_func, optimizer = "adam" ) return model def train(model: tf.keras.Model, train_data: np.ndarray, train_labels: np.ndarray, val_data: np.ndarray, val_labels: np.ndarray, epochs: int = 200, sample_weights: np.array = None, cross_val = False) -> pd.DataFrame: """ Trains the TensorFlow `model`. Parameters ---------- model : A TensorFlow compiled model. train_data : The data to be trained. Shape must be consistent with what is passed during model compilation. train_labels : The ground truth predictions. val_data : The data to be used as validation. val_labels : The ground truth validation predictions. epochs : Total number of epochs to train. sample_weights : Weights for `train_data` to use during training. Returns ------- pd.DataFrame: Training information. """ # Check for overfitting. early_stopping = tf.keras.callbacks.EarlyStopping( monitor = "val_loss", min_delta = 0.001, patience = 100, restore_best_weights = False) history = model.fit( train_data.reshape(-1, WB_SIZE, N_FEATURES), train_labels, sample_weight = sample_weights, validation_data = (val_data.reshape(-1, WB_SIZE, N_FEATURES), val_labels), verbose = 1, epochs = epochs, callbacks = early_stopping) return pd.DataFrame(history.history) # def cross_validate(train_data: pd.DataFrame, # train_labels: pd.DataFrame, # epochs: int = 50, # sample_weights: np.array = None, # folds: int = 2) -> pd.DataFrame: # splits = KFold(n_splits = folds, shuffle = True) # print("Starting cross validation.") # accuracy = list() # val_loss = list() # models = list() # for i, (train_index, test_index) in enumerate(splits.split(train_data, train_labels)): # print(f"Iteration {i}\n") # X_train, X_val, Y_train, Y_val = train_data[train_index], train_data[test_index], train_data[train_index], train_labels[test_index] # model = build_and_compile((WB_SIZE, N_FEATURES), "mae") # history_df = train(model, X_train, Y_train, epochs) # # train_stats(history_df, i) # scores = model.evaluate(X_val.reshape(-1, WB_SIZE, N_FEATURES), Y_val) # print(f"Validation loss: {scores}\n") # #of {scores[0]} {model.metrics_names[1]} of {scores[1] * 100:.2f}%") # # accuracy.append(scores[1] * 100) # val_loss.append(scores) # models.append(model) # return models[np.argmin(val_loss)] def train_stats(history_df: pd.DataFrame, it: int = None) -> None: """ Produces training statistics once training has run its course. Parameters ---------- history_df : The history as returned by Keras `fit` method. it : To be used with cross validation. Specifies the name of the learning curve based on the cross validation itertation `it`. Returns ------- `None` """ # Learning curve. plt.rcParams["figure.dpi"] = 160 history_df.loc[:, ["loss", "val_loss"]].plot() plt.title("Model Loss") plt.ylabel("Loss") plt.xlabel("Epoch") name = TRAIN_FIG_SAVE_NAME if it is not None: name = "_".join([name, str(it)]) plt.savefig(os.path.join(TRAIN_FIG_SAVE_PATH, ".".join([name, FIG_EXT]))) # Stats print(f"Minimum validation loss: {history_df['val_loss'].min()}") # plt.plot(f"Accuracy: {history_df['train_accuracy']}") # plt.plot(f"Validation Accuracy: {history_df['val_accuracy']}") return None def main(): model = build_and_compile((WB_SIZE, N_FEATURES)) # model = cross_validate(np.array(train_data), np.array(Y)) history_df = train(model, np.array(X_train), np.array(Y_train), np.array(X_val), np.array(Y_val)) # train_stats(history_df) # Save trained model (better to use checkpoints). model.save(os.path.join(NN_MODEL_SAVE_PATH, NN_MODEL_SAVE_NAME)) if __name__ == "__main__": main()
en
0.640894
# Read the data. # Get the labels. # -- For classification -- # # CLASSES = np.unique(Y) # N_CLASSES = len(CLASSES) # Y = Y.replace(dict(zip(CLASSES, range(0, len(CLASSES))))) # Data shape parameters. # Split the training data. Build and compile a TensorFLow LSTM network. Parameters ---------- input_ : Shape of the trainining data. Should specify `(batch_size` or `window_size, n_features)` loss_func : Loss function to use for training. Returns ------- `tf.keras.Model` : A compiled TensorFlow model. # Seqential keras model. # tf.keras.layers.Dense(32, activation = "relu"), # tf.keras.layers.GaussianNoise(0.7), # Compile the model. Trains the TensorFlow `model`. Parameters ---------- model : A TensorFlow compiled model. train_data : The data to be trained. Shape must be consistent with what is passed during model compilation. train_labels : The ground truth predictions. val_data : The data to be used as validation. val_labels : The ground truth validation predictions. epochs : Total number of epochs to train. sample_weights : Weights for `train_data` to use during training. Returns ------- pd.DataFrame: Training information. # Check for overfitting. # def cross_validate(train_data: pd.DataFrame, # train_labels: pd.DataFrame, # epochs: int = 50, # sample_weights: np.array = None, # folds: int = 2) -> pd.DataFrame: # splits = KFold(n_splits = folds, shuffle = True) # print("Starting cross validation.") # accuracy = list() # val_loss = list() # models = list() # for i, (train_index, test_index) in enumerate(splits.split(train_data, train_labels)): # print(f"Iteration {i}\n") # X_train, X_val, Y_train, Y_val = train_data[train_index], train_data[test_index], train_data[train_index], train_labels[test_index] # model = build_and_compile((WB_SIZE, N_FEATURES), "mae") # history_df = train(model, X_train, Y_train, epochs) # # train_stats(history_df, i) # scores = model.evaluate(X_val.reshape(-1, WB_SIZE, N_FEATURES), Y_val) # print(f"Validation loss: {scores}\n") # #of {scores[0]} {model.metrics_names[1]} of {scores[1] * 100:.2f}%") # # accuracy.append(scores[1] * 100) # val_loss.append(scores) # models.append(model) # return models[np.argmin(val_loss)] Produces training statistics once training has run its course. Parameters ---------- history_df : The history as returned by Keras `fit` method. it : To be used with cross validation. Specifies the name of the learning curve based on the cross validation itertation `it`. Returns ------- `None` # Learning curve. # Stats # plt.plot(f"Accuracy: {history_df['train_accuracy']}") # plt.plot(f"Validation Accuracy: {history_df['val_accuracy']}") # model = cross_validate(np.array(train_data), np.array(Y)) # train_stats(history_df) # Save trained model (better to use checkpoints).
3.119279
3
pdserver/objects.py
Gustavo6046/polydung
0
9729
<gh_stars>0 import base64 import random import string import netbyte import numpy as np try: import simplejson as json except ImportError: import json kinds = {} class PDObject(object): def __init__(self, game, kind, id, pos, properties): self.game = game self.kind = kind self.id = id or ''.join([random.choice(string.ascii_letters + string.digits + "#$%*") for _ in range(100)]) self.pos = np.array(pos) self.properties = properties self.game.handle_object_creation(self) def __getitem__(self, key): # a shortcut for Netbyte return self.properties[key] def __setitem__(self, key, value): # not only a shortcut for Netbyte self.properties[key] = value self.game.update_object(self) def __call__(self, key, **kwargs): nbe = netbyte.Netbyte() nbe['self'] = self nbe['game'] = self.game for k, v in kwargs.items(): nbe[k] = v nbe.execute_instructions(*self.kind.functions[key]) def tick(self, timedelta): self('tick', timedelta=timedelta) def serialize(self): return json.dumps({ "kind": self.kind.name, 'id': self.id, 'pos': self.pos.tolist(), "properties": self.properties }) @classmethod def deserialize(cls, game, js): data = json.loads(js) return cls(game, kinds[data['kind']], data['id'], data['pos'], data['properties']) class PDClass(object): def __init__(self, game, name, functions=()): self.functions = dict(functions) self.name = name kinds[name] = self nbe = netbyte.Netbyte() def serializable(self): return { 'name': self.name, 'functions': {k: nbe.dump(v, name="{}.{}".format(self.name, k)) for k, v in self.functions.items()} }
import base64 import random import string import netbyte import numpy as np try: import simplejson as json except ImportError: import json kinds = {} class PDObject(object): def __init__(self, game, kind, id, pos, properties): self.game = game self.kind = kind self.id = id or ''.join([random.choice(string.ascii_letters + string.digits + "#$%*") for _ in range(100)]) self.pos = np.array(pos) self.properties = properties self.game.handle_object_creation(self) def __getitem__(self, key): # a shortcut for Netbyte return self.properties[key] def __setitem__(self, key, value): # not only a shortcut for Netbyte self.properties[key] = value self.game.update_object(self) def __call__(self, key, **kwargs): nbe = netbyte.Netbyte() nbe['self'] = self nbe['game'] = self.game for k, v in kwargs.items(): nbe[k] = v nbe.execute_instructions(*self.kind.functions[key]) def tick(self, timedelta): self('tick', timedelta=timedelta) def serialize(self): return json.dumps({ "kind": self.kind.name, 'id': self.id, 'pos': self.pos.tolist(), "properties": self.properties }) @classmethod def deserialize(cls, game, js): data = json.loads(js) return cls(game, kinds[data['kind']], data['id'], data['pos'], data['properties']) class PDClass(object): def __init__(self, game, name, functions=()): self.functions = dict(functions) self.name = name kinds[name] = self nbe = netbyte.Netbyte() def serializable(self): return { 'name': self.name, 'functions': {k: nbe.dump(v, name="{}.{}".format(self.name, k)) for k, v in self.functions.items()} }
en
0.422646
# a shortcut for Netbyte # not only a shortcut for Netbyte
2.516005
3
football/football_test.py
EEdwardsA/DS-OOP-Review
0
9730
import unittest from players import Player, Quarterback from possible_values import * from game import Game from random import randint, uniform, sample from season import * # TODO - some things you can add... class FootballGameTest(unittest.TestCase): '''test the class''' def test_field_goal_made(self): teams = sample(team_names, k=2) game = Game(teams=teams) team_prev_points = game.score[teams[0]] game.field_goal(teams[0]) team_post_points = game.score[teams[0]] self.assertEqual(team_post_points, team_prev_points + 3) def test_get_winner(self): teams = sample(team_names, k=2) game = Game(teams=teams) game.field_goal(teams[0]) t1_points = game.score[teams[0]] t2_points = game.score[teams[1]] if t1_points >= t2_points: win, lose = teams else: lose, win = teams self.assertEqual((win,lose), game.get_winning_team()) class FootballPlayerTest(unittest.TestCase): '''Check the default values for Player and Quarterback yards=120, touchdowns=5, safety=1, interceptions=0 ''' def test_default_player_yards(self): player = Player(name='Dude') self.assertEqual(player.yards, 120) def test_player_yards_set_to(self): player = Player(name='OtherDude', yards=150) self.assertEqual(player.yards, 150) def test_default_qb_interceptions(self): qb = Quarterback(name='FancyDude') self.assertEqual(qb.interceptions, 4) def test_default_qb_completed_passes(self): qb = Quarterback() self.assertEqual(qb.completed_passes, 20) def test_passing_score(self): qb = Quarterback() self.assertEqual((20 - (2 * 4)), qb.passing_score()) if __name__ == '__main__': unittest.main()
import unittest from players import Player, Quarterback from possible_values import * from game import Game from random import randint, uniform, sample from season import * # TODO - some things you can add... class FootballGameTest(unittest.TestCase): '''test the class''' def test_field_goal_made(self): teams = sample(team_names, k=2) game = Game(teams=teams) team_prev_points = game.score[teams[0]] game.field_goal(teams[0]) team_post_points = game.score[teams[0]] self.assertEqual(team_post_points, team_prev_points + 3) def test_get_winner(self): teams = sample(team_names, k=2) game = Game(teams=teams) game.field_goal(teams[0]) t1_points = game.score[teams[0]] t2_points = game.score[teams[1]] if t1_points >= t2_points: win, lose = teams else: lose, win = teams self.assertEqual((win,lose), game.get_winning_team()) class FootballPlayerTest(unittest.TestCase): '''Check the default values for Player and Quarterback yards=120, touchdowns=5, safety=1, interceptions=0 ''' def test_default_player_yards(self): player = Player(name='Dude') self.assertEqual(player.yards, 120) def test_player_yards_set_to(self): player = Player(name='OtherDude', yards=150) self.assertEqual(player.yards, 150) def test_default_qb_interceptions(self): qb = Quarterback(name='FancyDude') self.assertEqual(qb.interceptions, 4) def test_default_qb_completed_passes(self): qb = Quarterback() self.assertEqual(qb.completed_passes, 20) def test_passing_score(self): qb = Quarterback() self.assertEqual((20 - (2 * 4)), qb.passing_score()) if __name__ == '__main__': unittest.main()
en
0.638937
# TODO - some things you can add... test the class Check the default values for Player and Quarterback yards=120, touchdowns=5, safety=1, interceptions=0
3.603117
4
preprocessor/base.py
shayanthrn/AGAIN-VC
3
9731
<reponame>shayanthrn/AGAIN-VC import os import logging import numpy as np from tqdm import tqdm from functools import partial from multiprocessing.pool import ThreadPool import pyworld as pw from util.dsp import Dsp logger = logging.getLogger(__name__) def preprocess_one(input_items, module, output_path=''): input_path, basename = input_items y = module.load_wav(input_path) if module.config.dtype == 'wav': ret = y elif module.config.dtype == 'melspectrogram': ret = module.wav2mel(y) elif module.config.dtype == 'f0': f0, sp, ap = pw.wav2world(y.astype(np.float64), module.config.sample_rate) ret = f0 if (f0 == 0).all(): logger.warn(f'f0 returns all zeros: {input_path}') elif module.config.dtype == 's3prl_spec': ret = module.wav2s3prl_spec(y) if ret is None: logger.warn(f'S3PRL spectrogram returns NoneType: {input_path}') elif module.config.dtype == 'resemblyzer': y = resemblyzer.preprocess_wav(input_path) ret = module.wav2resemblyzer(y) else: logger.warn(f'Not implement feature type {module.config.dtype}') if output_path == '': return ret else: if type(ret) is np.ndarray: np.save(os.path.join(output_path, f'{basename}.npy'), ret) else: logger.warn(f'Feature {module.config.dtype} is not saved: {input_path}.') return 1 class BasePreproceccor(): def __init__(self, config): self.dsp_modules = {} for feat in config.feat_to_preprocess: self.dsp_modules[feat] = Dsp(config.feat[feat]) def preprocess(self, input_path, output_path, feat, njobs): file_dict = self.gen_file_dict(input_path) logger.info(f'Starting to preprocess from {input_path}.') self.preprocess_from_file_dict(file_dict=file_dict, output_path=output_path, feat=feat, njobs=njobs) logger.info(f'Saving processed file to {output_path}.') return def preprocess_from_file_dict(self, file_dict, output_path, feat, njobs): os.makedirs(os.path.join(output_path, feat), exist_ok=True) module = self.dsp_modules[feat] task = partial(preprocess_one, module=module, output_path=os.path.join(output_path, feat)) with ThreadPool(njobs) as pool: _ = list(tqdm(pool.imap(task, file_dict.items()), total=len(file_dict), desc=f'Preprocessing ')) def gen_file_dict(self, input_path): raise NotImplementedError
import os import logging import numpy as np from tqdm import tqdm from functools import partial from multiprocessing.pool import ThreadPool import pyworld as pw from util.dsp import Dsp logger = logging.getLogger(__name__) def preprocess_one(input_items, module, output_path=''): input_path, basename = input_items y = module.load_wav(input_path) if module.config.dtype == 'wav': ret = y elif module.config.dtype == 'melspectrogram': ret = module.wav2mel(y) elif module.config.dtype == 'f0': f0, sp, ap = pw.wav2world(y.astype(np.float64), module.config.sample_rate) ret = f0 if (f0 == 0).all(): logger.warn(f'f0 returns all zeros: {input_path}') elif module.config.dtype == 's3prl_spec': ret = module.wav2s3prl_spec(y) if ret is None: logger.warn(f'S3PRL spectrogram returns NoneType: {input_path}') elif module.config.dtype == 'resemblyzer': y = resemblyzer.preprocess_wav(input_path) ret = module.wav2resemblyzer(y) else: logger.warn(f'Not implement feature type {module.config.dtype}') if output_path == '': return ret else: if type(ret) is np.ndarray: np.save(os.path.join(output_path, f'{basename}.npy'), ret) else: logger.warn(f'Feature {module.config.dtype} is not saved: {input_path}.') return 1 class BasePreproceccor(): def __init__(self, config): self.dsp_modules = {} for feat in config.feat_to_preprocess: self.dsp_modules[feat] = Dsp(config.feat[feat]) def preprocess(self, input_path, output_path, feat, njobs): file_dict = self.gen_file_dict(input_path) logger.info(f'Starting to preprocess from {input_path}.') self.preprocess_from_file_dict(file_dict=file_dict, output_path=output_path, feat=feat, njobs=njobs) logger.info(f'Saving processed file to {output_path}.') return def preprocess_from_file_dict(self, file_dict, output_path, feat, njobs): os.makedirs(os.path.join(output_path, feat), exist_ok=True) module = self.dsp_modules[feat] task = partial(preprocess_one, module=module, output_path=os.path.join(output_path, feat)) with ThreadPool(njobs) as pool: _ = list(tqdm(pool.imap(task, file_dict.items()), total=len(file_dict), desc=f'Preprocessing ')) def gen_file_dict(self, input_path): raise NotImplementedError
none
1
2.217593
2
divsum_stats.py
fjruizruano/SatIntExt
0
9732
<filename>divsum_stats.py<gh_stars>0 #!/usr/bin/python import sys from subprocess import call print "divsum_count.py ListOfDivsumFiles\n" try: files = sys.argv[1] except: files = raw_input("Introduce RepeatMasker's list of Divsum files with library size (tab separated): ") files = open(files).readlines() to_join = [] header = "Coverage for each repeat class and divergence (Kimura)\n" results = {} for line in files: line = line.split("\t") file = line[0] size = int(line[1]) data = open(file).readlines() matrix_start = data.index(header) matrix = data[matrix_start+1:] li= [] names_line = matrix[0] info = names_line.split() for fam in info: li.append([fam]) info_len = len(li) for line in matrix[1:]: info = line.split() for i in range(0,info_len): li[i].append(info[i]) out = open(file+".counts","w") out.write("Sequence\tAbundance\n") stats = open(file+".stats","w") stats.write("Sequence\tDivergence\tTotalAbundance\tMaxAbundance\tMaxPeak\tRPS\tDIVPEAK\n") for el in li[1:]: numbers = el[1:] numbers = [int(x) for x in numbers] numbers_prop = [1.0*x/size for x in numbers] prop_dict = {} prop_li = [] for prop in range(0,len(numbers_prop)): prop_dict[prop] = numbers_prop[prop] prop_li.append(numbers_prop[prop]) prop_dict_sorted = sorted(prop_dict.items(), key=lambda x: x[1], reverse=True) total = sum(numbers_prop) top = prop_dict_sorted[0] top_div = top[0] top_ab = top[1] peak = [] if top_div >= 2: for div in range(top_div-2,top_div+3): peak.append(prop_dict[div]) else: for div in range(0,5): peak.append(prop_dict[div]) sum_peak = sum(peak) rps = sum_peak/total divpeak = top_div out.write(el[0]+"\t"+str(sum(numbers))+"\n") all_divs = [] for d in li[0][1:]: all_divs.append(int(d)+0.5) div_sumproduct = 0 for x,y in zip(all_divs,prop_li): div_sumproduct += x * y divergence = div_sumproduct/total data = "%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (el[0],str(divergence),str(total),str(top_ab),str(sum_peak),str(rps),str(divpeak)) stats.write(data) data2 = "%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (file, str(divergence),str(total),str(top_ab),str(sum_peak),str(rps),str(divpeak)) if el[0] in results: results[el[0]].append(data2) else: results[el[0]] = [data2] out.close() stats.close() to_join.append(file+".counts") out = open("results.txt", "w") for el in sorted(results): info = results[el] out.write("%s\tDivergence\tTotalAbundance\tMaxAbundance\tMaxPeak\tRPS\tDIVPEAK\n" % (el)) for i in info: out.write(i) out.write("\n\n\n") out.close() call("join_multiple_lists.py %s" % (" ".join(to_join)), shell=True)
<filename>divsum_stats.py<gh_stars>0 #!/usr/bin/python import sys from subprocess import call print "divsum_count.py ListOfDivsumFiles\n" try: files = sys.argv[1] except: files = raw_input("Introduce RepeatMasker's list of Divsum files with library size (tab separated): ") files = open(files).readlines() to_join = [] header = "Coverage for each repeat class and divergence (Kimura)\n" results = {} for line in files: line = line.split("\t") file = line[0] size = int(line[1]) data = open(file).readlines() matrix_start = data.index(header) matrix = data[matrix_start+1:] li= [] names_line = matrix[0] info = names_line.split() for fam in info: li.append([fam]) info_len = len(li) for line in matrix[1:]: info = line.split() for i in range(0,info_len): li[i].append(info[i]) out = open(file+".counts","w") out.write("Sequence\tAbundance\n") stats = open(file+".stats","w") stats.write("Sequence\tDivergence\tTotalAbundance\tMaxAbundance\tMaxPeak\tRPS\tDIVPEAK\n") for el in li[1:]: numbers = el[1:] numbers = [int(x) for x in numbers] numbers_prop = [1.0*x/size for x in numbers] prop_dict = {} prop_li = [] for prop in range(0,len(numbers_prop)): prop_dict[prop] = numbers_prop[prop] prop_li.append(numbers_prop[prop]) prop_dict_sorted = sorted(prop_dict.items(), key=lambda x: x[1], reverse=True) total = sum(numbers_prop) top = prop_dict_sorted[0] top_div = top[0] top_ab = top[1] peak = [] if top_div >= 2: for div in range(top_div-2,top_div+3): peak.append(prop_dict[div]) else: for div in range(0,5): peak.append(prop_dict[div]) sum_peak = sum(peak) rps = sum_peak/total divpeak = top_div out.write(el[0]+"\t"+str(sum(numbers))+"\n") all_divs = [] for d in li[0][1:]: all_divs.append(int(d)+0.5) div_sumproduct = 0 for x,y in zip(all_divs,prop_li): div_sumproduct += x * y divergence = div_sumproduct/total data = "%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (el[0],str(divergence),str(total),str(top_ab),str(sum_peak),str(rps),str(divpeak)) stats.write(data) data2 = "%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (file, str(divergence),str(total),str(top_ab),str(sum_peak),str(rps),str(divpeak)) if el[0] in results: results[el[0]].append(data2) else: results[el[0]] = [data2] out.close() stats.close() to_join.append(file+".counts") out = open("results.txt", "w") for el in sorted(results): info = results[el] out.write("%s\tDivergence\tTotalAbundance\tMaxAbundance\tMaxPeak\tRPS\tDIVPEAK\n" % (el)) for i in info: out.write(i) out.write("\n\n\n") out.close() call("join_multiple_lists.py %s" % (" ".join(to_join)), shell=True)
ru
0.258958
#!/usr/bin/python
2.885818
3
agatecharts/charts/__init__.py
onyxfish/fever
4
9733
<gh_stars>1-10 #!/usr/bin/env python from agatecharts.charts.bars import Bars from agatecharts.charts.columns import Columns from agatecharts.charts.lines import Lines from agatecharts.charts.scatter import Scatter
#!/usr/bin/env python from agatecharts.charts.bars import Bars from agatecharts.charts.columns import Columns from agatecharts.charts.lines import Lines from agatecharts.charts.scatter import Scatter
ru
0.26433
#!/usr/bin/env python
1.308807
1
users/views.py
rossm6/accounts
11
9734
from django.contrib.auth import update_session_auth_hash from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.contrib.auth.views import (LoginView, PasswordResetConfirmView, PasswordResetView) from django.http import HttpResponse, HttpResponseNotAllowed from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic import CreateView, DeleteView, UpdateView from users.forms import (SignInForm, SignUpForm, UserPasswordResetForm, UserProfileForm, UserSetPasswordForm) from users.mixins import LockDuringEditMixin from users.models import Lock, UserSession class SignUp(CreateView): model = User form_class = SignUpForm template_name = "registration/signup.html" success_url = reverse_lazy("dashboard:dashboard") class SignIn(LoginView): form_class = SignInForm class Profile(LoginRequiredMixin, LockDuringEditMixin, UpdateView): model = User form_class = UserProfileForm template_name = "registration/profile.html" success_url = reverse_lazy("users:profile") def get_object(self): return self.request.user def form_valid(self, form): response = super().form_valid(form) update_session_auth_hash(self.request, self.object) # this will delete the current user session # and create anew UserSession.objects.create(user=self.object, session_id=self.request.session.session_key) return response class UserPasswordResetView(PasswordResetView): form_class = UserPasswordResetForm class UserPasswordResetConfirmView(PasswordResetConfirmView): form_class = UserSetPasswordForm def unlock(request, pk): if request.method == "POST": lock = Lock.objects.filter(pk=pk).delete() return HttpResponse('') return HttpResponseNotAllowed(["POST"])
from django.contrib.auth import update_session_auth_hash from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.contrib.auth.views import (LoginView, PasswordResetConfirmView, PasswordResetView) from django.http import HttpResponse, HttpResponseNotAllowed from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic import CreateView, DeleteView, UpdateView from users.forms import (SignInForm, SignUpForm, UserPasswordResetForm, UserProfileForm, UserSetPasswordForm) from users.mixins import LockDuringEditMixin from users.models import Lock, UserSession class SignUp(CreateView): model = User form_class = SignUpForm template_name = "registration/signup.html" success_url = reverse_lazy("dashboard:dashboard") class SignIn(LoginView): form_class = SignInForm class Profile(LoginRequiredMixin, LockDuringEditMixin, UpdateView): model = User form_class = UserProfileForm template_name = "registration/profile.html" success_url = reverse_lazy("users:profile") def get_object(self): return self.request.user def form_valid(self, form): response = super().form_valid(form) update_session_auth_hash(self.request, self.object) # this will delete the current user session # and create anew UserSession.objects.create(user=self.object, session_id=self.request.session.session_key) return response class UserPasswordResetView(PasswordResetView): form_class = UserPasswordResetForm class UserPasswordResetConfirmView(PasswordResetConfirmView): form_class = UserSetPasswordForm def unlock(request, pk): if request.method == "POST": lock = Lock.objects.filter(pk=pk).delete() return HttpResponse('') return HttpResponseNotAllowed(["POST"])
en
0.93328
# this will delete the current user session # and create anew
2.131227
2
test/core/s3_table_test_base.py
adidas/m3d-api
24
9735
<reponame>adidas/m3d-api<filename>test/core/s3_table_test_base.py import os from test.core.emr_system_unit_test_base import EMRSystemUnitTestBase from test.core.tconx_helper import TconxHelper class S3TableTestBase(EMRSystemUnitTestBase): default_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test101.json" multi_partition_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test102.json" single_partition_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test103.json" def env_setup( self, tmpdir, destination_system, destination_database, destination_environment, destination_table ): """ This function builds on top of EMRSystemUnitTestBase.env_setup() and adds test-specific tconx file. :param tmpdir: test case specific temporary directory where configuration files will be created. :param destination_system: destination system code :param destination_database: destination database code :param destination_environment: destination environment code :param destination_table: destination table code :return: Function will return several parameters: m3d_config_path: paths of test-specific config.json. Should be passed to M3D API calls. scon_emr_path: paths of test-specific scon_emr tconx_path: paths of test-specific tconx m3d_config_dict: contents of test-specific config.json as dict scon_emr_dict: contents of test-specific scon_emr as dict """ m3d_config_file, scon_emr_file, m3d_config_dict, scon_emr_dict = \ super(S3TableTestBase, self).env_setup( tmpdir, destination_system, destination_database, destination_environment ) # tconx specific part tconx_file = TconxHelper.setup_tconx_from_file( m3d_config_dict["tags"]["config"], destination_system, destination_database, destination_environment, destination_table, S3TableTestBase.default_tconx ) return m3d_config_file, scon_emr_file, tconx_file, \ m3d_config_dict, scon_emr_dict @staticmethod def assert_one_hql_sent(dump_dir, expected_hql): generated_files = map(lambda f: os.path.join(dump_dir, f), os.listdir(dump_dir)) hql_files = list(filter(lambda f: os.path.isfile(f) and f.endswith(".hql"), generated_files)) assert len(hql_files) == 1 hql_file = hql_files[0] with open(hql_file, 'r') as hql_f: generated_hql = hql_f.read() generated_hql_processed = generated_hql.strip().lower() expected_hql_processed = expected_hql.strip().lower() assert generated_hql_processed == expected_hql_processed
import os from test.core.emr_system_unit_test_base import EMRSystemUnitTestBase from test.core.tconx_helper import TconxHelper class S3TableTestBase(EMRSystemUnitTestBase): default_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test101.json" multi_partition_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test102.json" single_partition_tconx = \ "test/resources/s3_table_test_base/tconx-bdp-emr_test-dev-bi_test103.json" def env_setup( self, tmpdir, destination_system, destination_database, destination_environment, destination_table ): """ This function builds on top of EMRSystemUnitTestBase.env_setup() and adds test-specific tconx file. :param tmpdir: test case specific temporary directory where configuration files will be created. :param destination_system: destination system code :param destination_database: destination database code :param destination_environment: destination environment code :param destination_table: destination table code :return: Function will return several parameters: m3d_config_path: paths of test-specific config.json. Should be passed to M3D API calls. scon_emr_path: paths of test-specific scon_emr tconx_path: paths of test-specific tconx m3d_config_dict: contents of test-specific config.json as dict scon_emr_dict: contents of test-specific scon_emr as dict """ m3d_config_file, scon_emr_file, m3d_config_dict, scon_emr_dict = \ super(S3TableTestBase, self).env_setup( tmpdir, destination_system, destination_database, destination_environment ) # tconx specific part tconx_file = TconxHelper.setup_tconx_from_file( m3d_config_dict["tags"]["config"], destination_system, destination_database, destination_environment, destination_table, S3TableTestBase.default_tconx ) return m3d_config_file, scon_emr_file, tconx_file, \ m3d_config_dict, scon_emr_dict @staticmethod def assert_one_hql_sent(dump_dir, expected_hql): generated_files = map(lambda f: os.path.join(dump_dir, f), os.listdir(dump_dir)) hql_files = list(filter(lambda f: os.path.isfile(f) and f.endswith(".hql"), generated_files)) assert len(hql_files) == 1 hql_file = hql_files[0] with open(hql_file, 'r') as hql_f: generated_hql = hql_f.read() generated_hql_processed = generated_hql.strip().lower() expected_hql_processed = expected_hql.strip().lower() assert generated_hql_processed == expected_hql_processed
en
0.624647
This function builds on top of EMRSystemUnitTestBase.env_setup() and adds test-specific tconx file. :param tmpdir: test case specific temporary directory where configuration files will be created. :param destination_system: destination system code :param destination_database: destination database code :param destination_environment: destination environment code :param destination_table: destination table code :return: Function will return several parameters: m3d_config_path: paths of test-specific config.json. Should be passed to M3D API calls. scon_emr_path: paths of test-specific scon_emr tconx_path: paths of test-specific tconx m3d_config_dict: contents of test-specific config.json as dict scon_emr_dict: contents of test-specific scon_emr as dict # tconx specific part
2.163591
2
metrics/serializers.py
BrianWaganerSTL/RocketDBaaS
1
9736
from rest_framework import serializers from metrics.models import Metrics_Cpu, Metrics_PingServer, Metrics_MountPoint, \ Metrics_CpuLoad, Metrics_PingDb class Metrics_CpuSerializer(serializers.ModelSerializer): class Meta: model = Metrics_Cpu fields = '__all__' depth = 0 class Metrics_MountPointSerializer(serializers.ModelSerializer): class Meta: model = Metrics_MountPoint fields = '__all__' depth = 0 class Metrics_CpuLoadSerializer(serializers.ModelSerializer): class Meta: model = Metrics_CpuLoad fields = '__all__' depth = 0 class Metrics_PingServerSerializer(serializers.ModelSerializer): class Meta: model = Metrics_PingServer fields = '__all__' depth = 0 class Metrics_PingDbSerializer(serializers.ModelSerializer): class Meta: model = Metrics_PingDb fields = '__all__' depth = 0
from rest_framework import serializers from metrics.models import Metrics_Cpu, Metrics_PingServer, Metrics_MountPoint, \ Metrics_CpuLoad, Metrics_PingDb class Metrics_CpuSerializer(serializers.ModelSerializer): class Meta: model = Metrics_Cpu fields = '__all__' depth = 0 class Metrics_MountPointSerializer(serializers.ModelSerializer): class Meta: model = Metrics_MountPoint fields = '__all__' depth = 0 class Metrics_CpuLoadSerializer(serializers.ModelSerializer): class Meta: model = Metrics_CpuLoad fields = '__all__' depth = 0 class Metrics_PingServerSerializer(serializers.ModelSerializer): class Meta: model = Metrics_PingServer fields = '__all__' depth = 0 class Metrics_PingDbSerializer(serializers.ModelSerializer): class Meta: model = Metrics_PingDb fields = '__all__' depth = 0
none
1
1.981495
2
sqlc/private/sqlc_toolchain.bzl
dmayle/rules_sqlc
2
9737
# Copyright 2020 Plezentek, Inc. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. load( "//sqlc/private:providers.bzl", "SQLCRelease", ) load( "//sqlc/private/rules_go/lib:platforms.bzl", "PLATFORMS", ) def _sqlc_toolchain_impl(ctx): release = ctx.attr.release[SQLCRelease] cross_compile = ctx.attr.goos != release.goos or ctx.attr.goarch != release.goarch return [platform_common.ToolchainInfo( name = ctx.label.name, cross_compile = cross_compile, default_goos = ctx.attr.goos, default_goarch = ctx.attr.goarch, actions = struct(), flags = struct(), release = release, )] sqlc_toolchain = rule( _sqlc_toolchain_impl, attrs = { "goos": attr.string( mandatory = True, doc = "Default target OS", ), "goarch": attr.string( mandatory = True, doc = "Default target architecture", ), "release": attr.label( mandatory = True, providers = [SQLCRelease], cfg = "exec", doc = "The SQLC release this toolchain is based on", ), }, doc = "Defines a SQLC toolchain based on a release", provides = [platform_common.ToolchainInfo], ) def declare_toolchains(host, release): host_goos, _, host_goarch = host.partition("_") for p in PLATFORMS: toolchain_name = "sqlc_" + p.name impl_name = toolchain_name + "-impl" cgo_constraints = ( "@com_plezentek_rules_sqlc//sqlc/toolchain:cgo_off", "@com_plezentek_rules_sqlc//sqlc/toolchain:cgo_on", ) constraints = [c for c in p.constraints if c not in cgo_constraints] sqlc_toolchain( name = impl_name, goos = p.goos, goarch = p.goarch, release = release, tags = ["manual"], visibility = ["//visibility:public"], ) native.toolchain( name = toolchain_name, toolchain_type = "@com_plezentek_rules_sqlc//sqlc:toolchain", exec_compatible_with = [ "@com_plezentek_rules_sqlc//sqlc/toolchain:" + host_goos, "@com_plezentek_rules_sqlc//sqlc/toolchain:" + host_goarch, ], target_compatible_with = constraints, toolchain = ":" + impl_name, )
# Copyright 2020 Plezentek, Inc. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. load( "//sqlc/private:providers.bzl", "SQLCRelease", ) load( "//sqlc/private/rules_go/lib:platforms.bzl", "PLATFORMS", ) def _sqlc_toolchain_impl(ctx): release = ctx.attr.release[SQLCRelease] cross_compile = ctx.attr.goos != release.goos or ctx.attr.goarch != release.goarch return [platform_common.ToolchainInfo( name = ctx.label.name, cross_compile = cross_compile, default_goos = ctx.attr.goos, default_goarch = ctx.attr.goarch, actions = struct(), flags = struct(), release = release, )] sqlc_toolchain = rule( _sqlc_toolchain_impl, attrs = { "goos": attr.string( mandatory = True, doc = "Default target OS", ), "goarch": attr.string( mandatory = True, doc = "Default target architecture", ), "release": attr.label( mandatory = True, providers = [SQLCRelease], cfg = "exec", doc = "The SQLC release this toolchain is based on", ), }, doc = "Defines a SQLC toolchain based on a release", provides = [platform_common.ToolchainInfo], ) def declare_toolchains(host, release): host_goos, _, host_goarch = host.partition("_") for p in PLATFORMS: toolchain_name = "sqlc_" + p.name impl_name = toolchain_name + "-impl" cgo_constraints = ( "@com_plezentek_rules_sqlc//sqlc/toolchain:cgo_off", "@com_plezentek_rules_sqlc//sqlc/toolchain:cgo_on", ) constraints = [c for c in p.constraints if c not in cgo_constraints] sqlc_toolchain( name = impl_name, goos = p.goos, goarch = p.goarch, release = release, tags = ["manual"], visibility = ["//visibility:public"], ) native.toolchain( name = toolchain_name, toolchain_type = "@com_plezentek_rules_sqlc//sqlc:toolchain", exec_compatible_with = [ "@com_plezentek_rules_sqlc//sqlc/toolchain:" + host_goos, "@com_plezentek_rules_sqlc//sqlc/toolchain:" + host_goarch, ], target_compatible_with = constraints, toolchain = ":" + impl_name, )
en
0.846447
# Copyright 2020 Plezentek, Inc. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
1.637326
2
configs/tracker_configs/new_test_20e_cam_1_new_short.py
nolanzzz/mtmct
17
9738
<reponame>nolanzzz/mtmct root = { "general" : { "display_viewer" : False, #The visible GPUS will be restricted to the numbers listed here. The pytorch (cuda:0) numeration will start at 0 #This is a trick to get everything onto the wanted gpus because just setting cuda:4 in the function calls will #not work for mmdetection. There will still be things on gpu cuda:0. "cuda_visible_devices" : "1", "save_track_results" : True }, "data" : { # To increase the speed while developing an specific interval of all frames can be set. "selection_interval" : [0,10000], "source" : { "base_folder" : "/u40/zhanr110/MTA_ext_short/test", # "base_folder" : "/Users/nolanzhang/Projects/mtmct/data/MTA_ext_short/test", "cam_ids" : [1] } }, "detector" : { # "mmdetection_config" : "detectors/mmdetection/configs/faster_rcnn_r50_fpn_1x_gta.py", "mmdetection_config" : "detectors/mmdetection/configs/mta/faster_rcnn_r50_mta.py", # "mmdetection_checkpoint_file" : "work_dirs/detector/faster_rcnn_gta22.07_epoch_5.pth", "mmdetection_checkpoint_file" : "detectors/mmdetection/work_dirs/GtaDataset_30e/epoch_20.pth", "device" : "cuda:0", #Remove all detections with a confidence less than min_confidence "min_confidence" : 0.8, }, "feature_extractor" : { "feature_extractor_name" : "abd_net_extractor" ,"reid_strong_extractor": { "reid_strong_baseline_config": "feature_extractors/reid_strong_baseline/configs/softmax_triplet.yml", "checkpoint_file": "work_dirs/feature_extractor/strong_reid_baseline/resnet50_model_reid_GTA_softmax_triplet.pth", "device": "cuda:0,1" ,"visible_device" : "0,1"} ,"abd_net_extractor" : dict(abd_dan=['cam', 'pam'], abd_dan_no_head=False, abd_dim=1024, abd_np=2, adam_beta1=0.9, adam_beta2=0.999, arch='resnet50', branches=['global', 'abd'], compatibility=False, criterion='htri', cuhk03_classic_split=False, cuhk03_labeled=False, dan_dan=[], dan_dan_no_head=False, dan_dim=1024, data_augment=['crop,random-erase'], day_only=False, dropout=0.5, eval_freq=5, evaluate=False, fixbase=False, fixbase_epoch=10, flip_eval=False, gamma=0.1, global_dim=1024, global_max_pooling=False, gpu_devices='1', height=384, htri_only=False, label_smooth=True, lambda_htri=0.1, lambda_xent=1, lr=0.0003, margin=1.2, max_epoch=80, min_height=-1, momentum=0.9, night_only=False, np_dim=1024, np_max_pooling=False, np_np=2, np_with_global=False, num_instances=4, of_beta=1e-06, of_position=['before', 'after', 'cam', 'pam', 'intermediate'], of_start_epoch=23, open_layers=['classifier'], optim='adam', ow_beta=0.001, pool_tracklet_features='avg', print_freq=10, resume='', rmsprop_alpha=0.99 , load_weights='work_dirs/feature_extractor/abd-net/checkpoint_ep30_non_clean.pth.tar' # , load_weights='work_dirs/feature_extractor/abd-net/resnet50-19c8e357.pth' , root='work_dirs/datasets' , sample_method='evenly' , save_dir='work_dirs/feature_extractor/abd-net/log/eval-resnet50' , seed=1, seq_len=15, sgd_dampening=0, sgd_nesterov=False, shallow_cam=True, source_names=['mta_ext'], split_id=0, start_epoch=0, start_eval=0, stepsize=[20, 40], target_names=['market1501'], test_batch_size=100, train_batch_size=64, train_sampler='', use_avai_gpus=False, use_cpu=False, use_metric_cuhk03=False, use_of=True, use_ow=True, visualize_ranks=False, weight_decay=0.0005, width=128, workers=4) }, "tracker" : { "type" : "DeepSort", "nn_budget" : 100 } }
root = { "general" : { "display_viewer" : False, #The visible GPUS will be restricted to the numbers listed here. The pytorch (cuda:0) numeration will start at 0 #This is a trick to get everything onto the wanted gpus because just setting cuda:4 in the function calls will #not work for mmdetection. There will still be things on gpu cuda:0. "cuda_visible_devices" : "1", "save_track_results" : True }, "data" : { # To increase the speed while developing an specific interval of all frames can be set. "selection_interval" : [0,10000], "source" : { "base_folder" : "/u40/zhanr110/MTA_ext_short/test", # "base_folder" : "/Users/nolanzhang/Projects/mtmct/data/MTA_ext_short/test", "cam_ids" : [1] } }, "detector" : { # "mmdetection_config" : "detectors/mmdetection/configs/faster_rcnn_r50_fpn_1x_gta.py", "mmdetection_config" : "detectors/mmdetection/configs/mta/faster_rcnn_r50_mta.py", # "mmdetection_checkpoint_file" : "work_dirs/detector/faster_rcnn_gta22.07_epoch_5.pth", "mmdetection_checkpoint_file" : "detectors/mmdetection/work_dirs/GtaDataset_30e/epoch_20.pth", "device" : "cuda:0", #Remove all detections with a confidence less than min_confidence "min_confidence" : 0.8, }, "feature_extractor" : { "feature_extractor_name" : "abd_net_extractor" ,"reid_strong_extractor": { "reid_strong_baseline_config": "feature_extractors/reid_strong_baseline/configs/softmax_triplet.yml", "checkpoint_file": "work_dirs/feature_extractor/strong_reid_baseline/resnet50_model_reid_GTA_softmax_triplet.pth", "device": "cuda:0,1" ,"visible_device" : "0,1"} ,"abd_net_extractor" : dict(abd_dan=['cam', 'pam'], abd_dan_no_head=False, abd_dim=1024, abd_np=2, adam_beta1=0.9, adam_beta2=0.999, arch='resnet50', branches=['global', 'abd'], compatibility=False, criterion='htri', cuhk03_classic_split=False, cuhk03_labeled=False, dan_dan=[], dan_dan_no_head=False, dan_dim=1024, data_augment=['crop,random-erase'], day_only=False, dropout=0.5, eval_freq=5, evaluate=False, fixbase=False, fixbase_epoch=10, flip_eval=False, gamma=0.1, global_dim=1024, global_max_pooling=False, gpu_devices='1', height=384, htri_only=False, label_smooth=True, lambda_htri=0.1, lambda_xent=1, lr=0.0003, margin=1.2, max_epoch=80, min_height=-1, momentum=0.9, night_only=False, np_dim=1024, np_max_pooling=False, np_np=2, np_with_global=False, num_instances=4, of_beta=1e-06, of_position=['before', 'after', 'cam', 'pam', 'intermediate'], of_start_epoch=23, open_layers=['classifier'], optim='adam', ow_beta=0.001, pool_tracklet_features='avg', print_freq=10, resume='', rmsprop_alpha=0.99 , load_weights='work_dirs/feature_extractor/abd-net/checkpoint_ep30_non_clean.pth.tar' # , load_weights='work_dirs/feature_extractor/abd-net/resnet50-19c8e357.pth' , root='work_dirs/datasets' , sample_method='evenly' , save_dir='work_dirs/feature_extractor/abd-net/log/eval-resnet50' , seed=1, seq_len=15, sgd_dampening=0, sgd_nesterov=False, shallow_cam=True, source_names=['mta_ext'], split_id=0, start_epoch=0, start_eval=0, stepsize=[20, 40], target_names=['market1501'], test_batch_size=100, train_batch_size=64, train_sampler='', use_avai_gpus=False, use_cpu=False, use_metric_cuhk03=False, use_of=True, use_ow=True, visualize_ranks=False, weight_decay=0.0005, width=128, workers=4) }, "tracker" : { "type" : "DeepSort", "nn_budget" : 100 } }
en
0.714727
#The visible GPUS will be restricted to the numbers listed here. The pytorch (cuda:0) numeration will start at 0 #This is a trick to get everything onto the wanted gpus because just setting cuda:4 in the function calls will #not work for mmdetection. There will still be things on gpu cuda:0. # To increase the speed while developing an specific interval of all frames can be set. # "base_folder" : "/Users/nolanzhang/Projects/mtmct/data/MTA_ext_short/test", # "mmdetection_config" : "detectors/mmdetection/configs/faster_rcnn_r50_fpn_1x_gta.py", # "mmdetection_checkpoint_file" : "work_dirs/detector/faster_rcnn_gta22.07_epoch_5.pth", #Remove all detections with a confidence less than min_confidence # , load_weights='work_dirs/feature_extractor/abd-net/resnet50-19c8e357.pth'
1.892192
2
tests/structures/test_generator.py
cherub96/voc
1
9739
<reponame>cherub96/voc from ..utils import TranspileTestCase class GeneratorTests(TranspileTestCase): def test_simple_generator(self): self.assertCodeExecution(""" def multiplier(first, second): y = first * second yield y y *= second yield y y *= second yield y y *= second yield y print(list(multiplier(1, 20))) """) def test_loop_generator(self): self.assertCodeExecution(""" def fizz_buzz(start, stop): for i in range(start, stop): found = False if i % 2 == 0: yield 'fizz' found = True if i % 3 == 0: yield 'buzz' found = True if not found: yield i print(list(fizz_buzz(1, 20))) """)
from ..utils import TranspileTestCase class GeneratorTests(TranspileTestCase): def test_simple_generator(self): self.assertCodeExecution(""" def multiplier(first, second): y = first * second yield y y *= second yield y y *= second yield y y *= second yield y print(list(multiplier(1, 20))) """) def test_loop_generator(self): self.assertCodeExecution(""" def fizz_buzz(start, stop): for i in range(start, stop): found = False if i % 2 == 0: yield 'fizz' found = True if i % 3 == 0: yield 'buzz' found = True if not found: yield i print(list(fizz_buzz(1, 20))) """)
en
0.49293
def multiplier(first, second): y = first * second yield y y *= second yield y y *= second yield y y *= second yield y print(list(multiplier(1, 20))) def fizz_buzz(start, stop): for i in range(start, stop): found = False if i % 2 == 0: yield 'fizz' found = True if i % 3 == 0: yield 'buzz' found = True if not found: yield i print(list(fizz_buzz(1, 20)))
3.192285
3
ogusa/tax.py
hdoupe/OG-USA
0
9740
<filename>ogusa/tax.py ''' ------------------------------------------------------------------------ Functions for taxes in the steady state and along the transition path. ------------------------------------------------------------------------ ''' # Packages import numpy as np from ogusa import utils ''' ------------------------------------------------------------------------ Functions ------------------------------------------------------------------------ ''' def replacement_rate_vals(nssmat, wss, factor_ss, j, p): ''' Calculates replacement rate values for the social security system. Args: nssmat (Numpy array): initial guess at labor supply, size = SxJ new_w (scalar): steady state real wage rate factor_ss (scalar): scaling factor converting model units to dollars j (int): index of lifetime income group p (OG-USA Specifications object): model parameters Returns: theta (Numpy array): social security replacement rate value for lifetime income group j ''' if j is not None: e = p.e[:, j] else: e = p.e # adjust number of calendar years AIME computed from int model periods equiv_periods = int(round((p.S / 80.0) * p.AIME_num_years)) - 1 if e.ndim == 2: dim2 = e.shape[1] else: dim2 = 1 earnings = (e * (wss * nssmat * factor_ss)).reshape(p.S, dim2) # get highest earning years for number of years AIME computed from highest_earn =\ (-1.0 * np.sort(-1.0 * earnings[:p.retire[-1], :], axis=0))[:equiv_periods] AIME = highest_earn.sum(0) / ((12.0 * (p.S / 80.0)) * equiv_periods) PIA = np.zeros(dim2) # Compute level of replacement using AIME brackets and PIA rates for j in range(dim2): if AIME[j] < p.AIME_bkt_1: PIA[j] = p.PIA_rate_bkt_1 * AIME[j] elif AIME[j] < p.AIME_bkt_2: PIA[j] = (p.PIA_rate_bkt_1 * p.AIME_bkt_1 + p.PIA_rate_bkt_2 * (AIME[j] - p.AIME_bkt_1)) else: PIA[j] = (p.PIA_rate_bkt_1 * p.AIME_bkt_1 + p.PIA_rate_bkt_2 * (p.AIME_bkt_2 - p.AIME_bkt_1) + p.PIA_rate_bkt_3 * (AIME[j] - p.AIME_bkt_2)) # Set the maximum monthly replacment rate from SS benefits tables PIA[PIA > p.PIA_maxpayment] = p.PIA_maxpayment if p.PIA_minpayment != 0.0: PIA[PIA < p.PIA_minpayment] = p.PIA_minpayment theta = (PIA * (12.0 * p.S / 80.0)) / (factor_ss * wss) return theta def ETR_wealth(b, h_wealth, m_wealth, p_wealth): r''' Calculates the effective tax rate on wealth. .. math:: T_{j,s,t}^{w} = \frac{h^{w}p_{w}b_{j,s,t}}{h^{w}b_{j,s,t} + m^{w}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_w (Numpy array): effective tax rate on wealth, size = SxJ ''' tau_w = (p_wealth * h_wealth * b) / (h_wealth * b + m_wealth) return tau_w def MTR_wealth(b, h_wealth, m_wealth, p_wealth): r''' Calculates the marginal tax rate on wealth from the wealth tax. .. math:: \frac{\partial T_{j,s,t}^{w}}{\partial b_{j,s,t}} = \frac{h^{w}m^{w}p_{w}}{(b_{j,s,t}h^{w}m^{w})^{2}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_prime (Numpy array): marginal tax rate on wealth, size = SxJ ''' tau_prime = ((b * h_wealth * m_wealth * p_wealth) / ((b * h_wealth + m_wealth) ** 2) + ETR_wealth(b, h_wealth, m_wealth, p_wealth)) return tau_prime def ETR_income(r, w, b, n, factor, e, etr_params, p): ''' Calculates effective personal income tax rate. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): effective tax rate on total income ''' X = (w * e * n) * factor Y = (r * b) * factor X2 = X ** 2 Y2 = Y ** 2 income = X + Y income2 = income ** 2 if p.tax_func_type == 'GS': phi0 = np.squeeze(etr_params[..., 0]) phi1 = np.squeeze(etr_params[..., 1]) phi2 = np.squeeze(etr_params[..., 2]) tau = ((phi0 * (income - ((income ** -phi1) + phi2) ** (-1 / phi1))) / income) elif p.tax_func_type == 'DEP_totalinc': A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) max_income = np.squeeze(etr_params[..., 4]) min_income = np.squeeze(etr_params[..., 5]) shift_income = np.squeeze(etr_params[..., 8]) shift = np.squeeze(etr_params[..., 10]) tau_income = (((max_income - min_income) * (A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) tau = tau_income + shift_income + shift else: # DEP or linear A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) C = np.squeeze(etr_params[..., 2]) D = np.squeeze(etr_params[..., 3]) max_x = np.squeeze(etr_params[..., 4]) min_x = np.squeeze(etr_params[..., 5]) max_y = np.squeeze(etr_params[..., 6]) min_y = np.squeeze(etr_params[..., 7]) shift_x = np.squeeze(etr_params[..., 8]) shift_y = np.squeeze(etr_params[..., 9]) shift = np.squeeze(etr_params[..., 10]) share = np.squeeze(etr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) tau = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift return tau def MTR_income(r, w, b, n, factor, mtr_capital, e, etr_params, mtr_params, p): r''' Generates the marginal tax rate on labor income for households. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars mtr_capital (bool): whether to compute the marginal tax rate on capital income or labor income e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): marginal tax rate on income source ''' X = (w * e * n) * factor Y = (r * b) * factor X2 = X ** 2 Y2 = Y ** 2 income = X + Y income2 = income ** 2 if p.tax_func_type == 'GS': if p.analytical_mtrs: phi0 = np.squeeze(etr_params[..., 0]) phi1 = np.squeeze(etr_params[..., 1]) phi2 = np.squeeze(etr_params[..., 2]) else: phi0 = np.squeeze(mtr_params[..., 0]) phi1 = np.squeeze(mtr_params[..., 1]) phi2 = np.squeeze(mtr_params[..., 2]) tau = (phi0*(1 - (income ** (-phi1 - 1) * ((income ** -phi1) + phi2) ** ((-1 - phi1) / phi1)))) elif p.tax_func_type == 'DEP_totalinc': if p.analytical_mtrs: A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) max_income = np.squeeze(etr_params[..., 4]) min_income = np.squeeze(etr_params[..., 5]) shift_income = np.squeeze(etr_params[..., 8]) shift = np.squeeze(etr_params[..., 10]) d_etr = ((max_income - min_income) * ((2 * A * income + B) / ((A * income2 + B * income + 1) ** 2))) etr = (((max_income - min_income) * ((A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) + shift_income + shift) tau = (d_etr * income) + (etr) else: A = np.squeeze(mtr_params[..., 0]) B = np.squeeze(mtr_params[..., 1]) max_income = np.squeeze(mtr_params[..., 4]) min_income = np.squeeze(mtr_params[..., 5]) shift_income = np.squeeze(mtr_params[..., 8]) shift = np.squeeze(mtr_params[..., 10]) tau_income = (((max_income - min_income) * (A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) tau = tau_income + shift_income + shift else: # DEP or linear if p.analytical_mtrs: A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) C = np.squeeze(etr_params[..., 2]) D = np.squeeze(etr_params[..., 3]) max_x = np.squeeze(etr_params[..., 4]) min_x = np.squeeze(etr_params[..., 5]) max_y = np.squeeze(etr_params[..., 6]) min_y = np.squeeze(etr_params[..., 7]) shift_x = np.squeeze(etr_params[..., 8]) shift_y = np.squeeze(etr_params[..., 9]) shift = np.squeeze(etr_params[..., 10]) share = np.squeeze(etr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) etr = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift if mtr_capital: d_etr = ((1-share) * ((tau_y + shift_y) ** (-share)) * (max_y - min_y) * ((2 * C * Y + D) / ((C * Y2 + D * Y + 1) ** 2)) * ((tau_x + shift_x) ** share)) tau = d_etr * income + etr else: d_etr = (share * ((tau_x + shift_x) ** (share - 1)) * (max_x - min_x) * ((2 * A * X + B) / ((A * X2 + B * X + 1) ** 2)) * ((tau_y + shift_y) ** (1 - share))) tau = d_etr * income + etr else: A = np.squeeze(mtr_params[..., 0]) B = np.squeeze(mtr_params[..., 1]) C = np.squeeze(mtr_params[..., 2]) D = np.squeeze(mtr_params[..., 3]) max_x = np.squeeze(mtr_params[..., 4]) min_x = np.squeeze(mtr_params[..., 5]) max_y = np.squeeze(mtr_params[..., 6]) min_y = np.squeeze(mtr_params[..., 7]) shift_x = np.squeeze(mtr_params[..., 8]) shift_y = np.squeeze(mtr_params[..., 9]) shift = np.squeeze(mtr_params[..., 10]) share = np.squeeze(mtr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) tau = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift return tau def get_biz_tax(w, Y, L, K, p, method): r''' Finds total business income tax revenue. .. math:: R_{t}^{b} = \tau_{t}^{b}(Y_{t} - w_{t}L_{t}) - \tau_{t}^{b}\delta_{t}^{\tau}K_{t}^{\tau} Args: r (array_like): real interest rate Y (array_like): aggregate output L (array_like): aggregate labor demand K (array_like): aggregate capital demand Returns: business_revenue (array_like): aggregate business tax revenue ''' if method == 'SS': delta_tau = p.delta_tau[-1] tau_b = p.tau_b[-1] else: delta_tau = p.delta_tau[:p.T] tau_b = p.tau_b[:p.T] business_revenue = tau_b * (Y - w * L) - tau_b * delta_tau * K return business_revenue def net_taxes(r, w, b, n, bq, factor, tr, theta, t, j, shift, method, e, etr_params, p): ''' Calculate net taxes paid for each household. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply bq (Numpy array): bequests received factor (scalar): scaling factor converting model units to dollars tr (Numpy array): government transfers to the household theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: net_tax (Numpy array): net taxes paid for each household ''' T_I = income_tax_liab(r, w, b, n, factor, t, j, method, e, etr_params, p) pension = pension_amount(w, n, theta, t, j, shift, method, e, p) T_BQ = bequest_tax_liab(r, b, bq, t, j, method, p) T_W = wealth_tax_liab(r, b, t, j, method, p) net_tax = T_I - pension + T_BQ + T_W - tr return net_tax def income_tax_liab(r, w, b, n, factor, t, j, method, e, etr_params, p): ''' Calculate income and payroll tax liability for each household Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: T_I (Numpy array): total income and payroll taxes paid for each household ''' if j is not None: if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) w = w.reshape(w.shape[0], 1) else: if method == 'TPI': r = utils.to_timepath_shape(r) w = utils.to_timepath_shape(w) income = r * b + w * e * n labor_income = w * e * n T_I = ETR_income(r, w, b, n, factor, e, etr_params, p) * income if method == 'SS': T_P = p.tau_payroll[-1] * labor_income elif method == 'TPI': length = w.shape[0] if len(b.shape) == 1: T_P = p.tau_payroll[t: t + length] * labor_income elif len(b.shape) == 2: T_P = (p.tau_payroll[t: t + length].reshape(length, 1) * labor_income) else: T_P = (p.tau_payroll[t:t + length].reshape(length, 1, 1) * labor_income) elif method == 'TPI_scalar': T_P = p.tau_payroll[0] * labor_income income_payroll_tax_liab = T_I + T_P return income_payroll_tax_liab def pension_amount(w, n, theta, t, j, shift, method, e, p): ''' Calculate public pension benefit amounts for each household. Args: w (array_like): real wage rate n (Numpy array): labor supply theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units p (OG-USA Specifications object): model parameters Returns: pension (Numpy array): pension amount for each household ''' if j is not None: if method == 'TPI': if n.ndim == 2: w = w.reshape(w.shape[0], 1) else: if method == 'TPI': w = utils.to_timepath_shape(w) pension = np.zeros_like(n) if method == 'SS': # Depending on if we are looking at b_s or b_s+1, the # entry for retirement will change (it shifts back one). # The shift boolean makes sure we start replacement rates # at the correct age. if shift is False: pension[p.retire[-1]:] = theta * w else: pension[p.retire[-1] - 1:] = theta * w elif method == 'TPI': length = w.shape[0] if not shift: # retireTPI is different from retire, because in TP income # we are counting backwards with different length lists. # This will always be the correct location of retirement, # depending on the shape of the lists. retireTPI = (p.retire[t: t + length] - p.S) else: retireTPI = (p.retire[t: t + length] - 1 - p.S) if len(n.shape) == 1: if not shift: retireTPI = p.retire[t] - p.S else: retireTPI = p.retire[t] - 1 - p.S pension[retireTPI:] = ( theta[j] * p.replacement_rate_adjust[t] * w[retireTPI:]) elif len(n.shape) == 2: for tt in range(pension.shape[0]): pension[tt, retireTPI[tt]:] = ( theta * p.replacement_rate_adjust[t + tt] * w[tt]) else: for tt in range(pension.shape[0]): pension[tt, retireTPI[tt]:, :] = ( theta.reshape(1, p.J) * p.replacement_rate_adjust[t + tt] * w[tt]) elif method == 'TPI_scalar': # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI. pension = theta * p.replacement_rate_adjust[0] * w return pension def wealth_tax_liab(r, b, t, j, method, p): ''' Calculate wealth tax liability for each household. Args: r (array_like): real interest rate b (Numpy array): savings t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_W (Numpy array): wealth tax liability for each household ''' if j is not None: if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) else: if method == 'TPI': r = utils.to_timepath_shape(r) if method == 'SS': T_W = (ETR_wealth(b, p.h_wealth[-1], p.m_wealth[-1], p.p_wealth[-1]) * b) elif method == 'TPI': length = r.shape[0] if len(b.shape) == 1: T_W = (ETR_wealth(b, p.h_wealth[t:t + length], p.m_wealth[t:t + length], p.p_wealth[t:t + length]) * b) elif len(b.shape) == 2: T_W = (ETR_wealth(b, p.h_wealth[t:t + length], p.m_wealth[t:t + length], p.p_wealth[t:t + length]) * b) else: T_W = (ETR_wealth( b, p.h_wealth[t:t + length].reshape(length, 1, 1), p.m_wealth[t:t + length].reshape(length, 1, 1), p.p_wealth[t:t + length].reshape(length, 1, 1)) * b) elif method == 'TPI_scalar': T_W = (ETR_wealth(b, p.h_wealth[0], p.m_wealth[0], p.p_wealth[0]) * b) return T_W def bequest_tax_liab(r, b, bq, t, j, method, p): ''' Calculate liability due from taxes on bequests for each household. Args: r (array_like): real interest rate b (Numpy array): savings bq (Numpy array): bequests received t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_BQ (Numpy array): bequest tax liability for each household ''' if j is not None: lambdas = p.lambdas[j] if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) else: lambdas = np.transpose(p.lambdas) if method == 'TPI': r = utils.to_timepath_shape(r) if method == 'SS': T_BQ = p.tau_bq[-1] * bq elif method == 'TPI': length = r.shape[0] if len(b.shape) == 1: T_BQ = p.tau_bq[t:t + length] * bq elif len(b.shape) == 2: T_BQ = p.tau_bq[t:t + length].reshape(length, 1) * bq / lambdas else: T_BQ = p.tau_bq[t:t + length].reshape(length, 1, 1) * bq elif method == 'TPI_scalar': # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI. T_BQ = p.tau_bq[0] * bq return T_BQ
<filename>ogusa/tax.py ''' ------------------------------------------------------------------------ Functions for taxes in the steady state and along the transition path. ------------------------------------------------------------------------ ''' # Packages import numpy as np from ogusa import utils ''' ------------------------------------------------------------------------ Functions ------------------------------------------------------------------------ ''' def replacement_rate_vals(nssmat, wss, factor_ss, j, p): ''' Calculates replacement rate values for the social security system. Args: nssmat (Numpy array): initial guess at labor supply, size = SxJ new_w (scalar): steady state real wage rate factor_ss (scalar): scaling factor converting model units to dollars j (int): index of lifetime income group p (OG-USA Specifications object): model parameters Returns: theta (Numpy array): social security replacement rate value for lifetime income group j ''' if j is not None: e = p.e[:, j] else: e = p.e # adjust number of calendar years AIME computed from int model periods equiv_periods = int(round((p.S / 80.0) * p.AIME_num_years)) - 1 if e.ndim == 2: dim2 = e.shape[1] else: dim2 = 1 earnings = (e * (wss * nssmat * factor_ss)).reshape(p.S, dim2) # get highest earning years for number of years AIME computed from highest_earn =\ (-1.0 * np.sort(-1.0 * earnings[:p.retire[-1], :], axis=0))[:equiv_periods] AIME = highest_earn.sum(0) / ((12.0 * (p.S / 80.0)) * equiv_periods) PIA = np.zeros(dim2) # Compute level of replacement using AIME brackets and PIA rates for j in range(dim2): if AIME[j] < p.AIME_bkt_1: PIA[j] = p.PIA_rate_bkt_1 * AIME[j] elif AIME[j] < p.AIME_bkt_2: PIA[j] = (p.PIA_rate_bkt_1 * p.AIME_bkt_1 + p.PIA_rate_bkt_2 * (AIME[j] - p.AIME_bkt_1)) else: PIA[j] = (p.PIA_rate_bkt_1 * p.AIME_bkt_1 + p.PIA_rate_bkt_2 * (p.AIME_bkt_2 - p.AIME_bkt_1) + p.PIA_rate_bkt_3 * (AIME[j] - p.AIME_bkt_2)) # Set the maximum monthly replacment rate from SS benefits tables PIA[PIA > p.PIA_maxpayment] = p.PIA_maxpayment if p.PIA_minpayment != 0.0: PIA[PIA < p.PIA_minpayment] = p.PIA_minpayment theta = (PIA * (12.0 * p.S / 80.0)) / (factor_ss * wss) return theta def ETR_wealth(b, h_wealth, m_wealth, p_wealth): r''' Calculates the effective tax rate on wealth. .. math:: T_{j,s,t}^{w} = \frac{h^{w}p_{w}b_{j,s,t}}{h^{w}b_{j,s,t} + m^{w}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_w (Numpy array): effective tax rate on wealth, size = SxJ ''' tau_w = (p_wealth * h_wealth * b) / (h_wealth * b + m_wealth) return tau_w def MTR_wealth(b, h_wealth, m_wealth, p_wealth): r''' Calculates the marginal tax rate on wealth from the wealth tax. .. math:: \frac{\partial T_{j,s,t}^{w}}{\partial b_{j,s,t}} = \frac{h^{w}m^{w}p_{w}}{(b_{j,s,t}h^{w}m^{w})^{2}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_prime (Numpy array): marginal tax rate on wealth, size = SxJ ''' tau_prime = ((b * h_wealth * m_wealth * p_wealth) / ((b * h_wealth + m_wealth) ** 2) + ETR_wealth(b, h_wealth, m_wealth, p_wealth)) return tau_prime def ETR_income(r, w, b, n, factor, e, etr_params, p): ''' Calculates effective personal income tax rate. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): effective tax rate on total income ''' X = (w * e * n) * factor Y = (r * b) * factor X2 = X ** 2 Y2 = Y ** 2 income = X + Y income2 = income ** 2 if p.tax_func_type == 'GS': phi0 = np.squeeze(etr_params[..., 0]) phi1 = np.squeeze(etr_params[..., 1]) phi2 = np.squeeze(etr_params[..., 2]) tau = ((phi0 * (income - ((income ** -phi1) + phi2) ** (-1 / phi1))) / income) elif p.tax_func_type == 'DEP_totalinc': A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) max_income = np.squeeze(etr_params[..., 4]) min_income = np.squeeze(etr_params[..., 5]) shift_income = np.squeeze(etr_params[..., 8]) shift = np.squeeze(etr_params[..., 10]) tau_income = (((max_income - min_income) * (A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) tau = tau_income + shift_income + shift else: # DEP or linear A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) C = np.squeeze(etr_params[..., 2]) D = np.squeeze(etr_params[..., 3]) max_x = np.squeeze(etr_params[..., 4]) min_x = np.squeeze(etr_params[..., 5]) max_y = np.squeeze(etr_params[..., 6]) min_y = np.squeeze(etr_params[..., 7]) shift_x = np.squeeze(etr_params[..., 8]) shift_y = np.squeeze(etr_params[..., 9]) shift = np.squeeze(etr_params[..., 10]) share = np.squeeze(etr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) tau = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift return tau def MTR_income(r, w, b, n, factor, mtr_capital, e, etr_params, mtr_params, p): r''' Generates the marginal tax rate on labor income for households. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars mtr_capital (bool): whether to compute the marginal tax rate on capital income or labor income e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): marginal tax rate on income source ''' X = (w * e * n) * factor Y = (r * b) * factor X2 = X ** 2 Y2 = Y ** 2 income = X + Y income2 = income ** 2 if p.tax_func_type == 'GS': if p.analytical_mtrs: phi0 = np.squeeze(etr_params[..., 0]) phi1 = np.squeeze(etr_params[..., 1]) phi2 = np.squeeze(etr_params[..., 2]) else: phi0 = np.squeeze(mtr_params[..., 0]) phi1 = np.squeeze(mtr_params[..., 1]) phi2 = np.squeeze(mtr_params[..., 2]) tau = (phi0*(1 - (income ** (-phi1 - 1) * ((income ** -phi1) + phi2) ** ((-1 - phi1) / phi1)))) elif p.tax_func_type == 'DEP_totalinc': if p.analytical_mtrs: A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) max_income = np.squeeze(etr_params[..., 4]) min_income = np.squeeze(etr_params[..., 5]) shift_income = np.squeeze(etr_params[..., 8]) shift = np.squeeze(etr_params[..., 10]) d_etr = ((max_income - min_income) * ((2 * A * income + B) / ((A * income2 + B * income + 1) ** 2))) etr = (((max_income - min_income) * ((A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) + shift_income + shift) tau = (d_etr * income) + (etr) else: A = np.squeeze(mtr_params[..., 0]) B = np.squeeze(mtr_params[..., 1]) max_income = np.squeeze(mtr_params[..., 4]) min_income = np.squeeze(mtr_params[..., 5]) shift_income = np.squeeze(mtr_params[..., 8]) shift = np.squeeze(mtr_params[..., 10]) tau_income = (((max_income - min_income) * (A * income2 + B * income) / (A * income2 + B * income + 1)) + min_income) tau = tau_income + shift_income + shift else: # DEP or linear if p.analytical_mtrs: A = np.squeeze(etr_params[..., 0]) B = np.squeeze(etr_params[..., 1]) C = np.squeeze(etr_params[..., 2]) D = np.squeeze(etr_params[..., 3]) max_x = np.squeeze(etr_params[..., 4]) min_x = np.squeeze(etr_params[..., 5]) max_y = np.squeeze(etr_params[..., 6]) min_y = np.squeeze(etr_params[..., 7]) shift_x = np.squeeze(etr_params[..., 8]) shift_y = np.squeeze(etr_params[..., 9]) shift = np.squeeze(etr_params[..., 10]) share = np.squeeze(etr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) etr = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift if mtr_capital: d_etr = ((1-share) * ((tau_y + shift_y) ** (-share)) * (max_y - min_y) * ((2 * C * Y + D) / ((C * Y2 + D * Y + 1) ** 2)) * ((tau_x + shift_x) ** share)) tau = d_etr * income + etr else: d_etr = (share * ((tau_x + shift_x) ** (share - 1)) * (max_x - min_x) * ((2 * A * X + B) / ((A * X2 + B * X + 1) ** 2)) * ((tau_y + shift_y) ** (1 - share))) tau = d_etr * income + etr else: A = np.squeeze(mtr_params[..., 0]) B = np.squeeze(mtr_params[..., 1]) C = np.squeeze(mtr_params[..., 2]) D = np.squeeze(mtr_params[..., 3]) max_x = np.squeeze(mtr_params[..., 4]) min_x = np.squeeze(mtr_params[..., 5]) max_y = np.squeeze(mtr_params[..., 6]) min_y = np.squeeze(mtr_params[..., 7]) shift_x = np.squeeze(mtr_params[..., 8]) shift_y = np.squeeze(mtr_params[..., 9]) shift = np.squeeze(mtr_params[..., 10]) share = np.squeeze(mtr_params[..., 11]) tau_x = ((max_x - min_x) * (A * X2 + B * X) / (A * X2 + B * X + 1) + min_x) tau_y = ((max_y - min_y) * (C * Y2 + D * Y) / (C * Y2 + D * Y + 1) + min_y) tau = (((tau_x + shift_x) ** share) * ((tau_y + shift_y) ** (1 - share))) + shift return tau def get_biz_tax(w, Y, L, K, p, method): r''' Finds total business income tax revenue. .. math:: R_{t}^{b} = \tau_{t}^{b}(Y_{t} - w_{t}L_{t}) - \tau_{t}^{b}\delta_{t}^{\tau}K_{t}^{\tau} Args: r (array_like): real interest rate Y (array_like): aggregate output L (array_like): aggregate labor demand K (array_like): aggregate capital demand Returns: business_revenue (array_like): aggregate business tax revenue ''' if method == 'SS': delta_tau = p.delta_tau[-1] tau_b = p.tau_b[-1] else: delta_tau = p.delta_tau[:p.T] tau_b = p.tau_b[:p.T] business_revenue = tau_b * (Y - w * L) - tau_b * delta_tau * K return business_revenue def net_taxes(r, w, b, n, bq, factor, tr, theta, t, j, shift, method, e, etr_params, p): ''' Calculate net taxes paid for each household. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply bq (Numpy array): bequests received factor (scalar): scaling factor converting model units to dollars tr (Numpy array): government transfers to the household theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: net_tax (Numpy array): net taxes paid for each household ''' T_I = income_tax_liab(r, w, b, n, factor, t, j, method, e, etr_params, p) pension = pension_amount(w, n, theta, t, j, shift, method, e, p) T_BQ = bequest_tax_liab(r, b, bq, t, j, method, p) T_W = wealth_tax_liab(r, b, t, j, method, p) net_tax = T_I - pension + T_BQ + T_W - tr return net_tax def income_tax_liab(r, w, b, n, factor, t, j, method, e, etr_params, p): ''' Calculate income and payroll tax liability for each household Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: T_I (Numpy array): total income and payroll taxes paid for each household ''' if j is not None: if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) w = w.reshape(w.shape[0], 1) else: if method == 'TPI': r = utils.to_timepath_shape(r) w = utils.to_timepath_shape(w) income = r * b + w * e * n labor_income = w * e * n T_I = ETR_income(r, w, b, n, factor, e, etr_params, p) * income if method == 'SS': T_P = p.tau_payroll[-1] * labor_income elif method == 'TPI': length = w.shape[0] if len(b.shape) == 1: T_P = p.tau_payroll[t: t + length] * labor_income elif len(b.shape) == 2: T_P = (p.tau_payroll[t: t + length].reshape(length, 1) * labor_income) else: T_P = (p.tau_payroll[t:t + length].reshape(length, 1, 1) * labor_income) elif method == 'TPI_scalar': T_P = p.tau_payroll[0] * labor_income income_payroll_tax_liab = T_I + T_P return income_payroll_tax_liab def pension_amount(w, n, theta, t, j, shift, method, e, p): ''' Calculate public pension benefit amounts for each household. Args: w (array_like): real wage rate n (Numpy array): labor supply theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units p (OG-USA Specifications object): model parameters Returns: pension (Numpy array): pension amount for each household ''' if j is not None: if method == 'TPI': if n.ndim == 2: w = w.reshape(w.shape[0], 1) else: if method == 'TPI': w = utils.to_timepath_shape(w) pension = np.zeros_like(n) if method == 'SS': # Depending on if we are looking at b_s or b_s+1, the # entry for retirement will change (it shifts back one). # The shift boolean makes sure we start replacement rates # at the correct age. if shift is False: pension[p.retire[-1]:] = theta * w else: pension[p.retire[-1] - 1:] = theta * w elif method == 'TPI': length = w.shape[0] if not shift: # retireTPI is different from retire, because in TP income # we are counting backwards with different length lists. # This will always be the correct location of retirement, # depending on the shape of the lists. retireTPI = (p.retire[t: t + length] - p.S) else: retireTPI = (p.retire[t: t + length] - 1 - p.S) if len(n.shape) == 1: if not shift: retireTPI = p.retire[t] - p.S else: retireTPI = p.retire[t] - 1 - p.S pension[retireTPI:] = ( theta[j] * p.replacement_rate_adjust[t] * w[retireTPI:]) elif len(n.shape) == 2: for tt in range(pension.shape[0]): pension[tt, retireTPI[tt]:] = ( theta * p.replacement_rate_adjust[t + tt] * w[tt]) else: for tt in range(pension.shape[0]): pension[tt, retireTPI[tt]:, :] = ( theta.reshape(1, p.J) * p.replacement_rate_adjust[t + tt] * w[tt]) elif method == 'TPI_scalar': # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI. pension = theta * p.replacement_rate_adjust[0] * w return pension def wealth_tax_liab(r, b, t, j, method, p): ''' Calculate wealth tax liability for each household. Args: r (array_like): real interest rate b (Numpy array): savings t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_W (Numpy array): wealth tax liability for each household ''' if j is not None: if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) else: if method == 'TPI': r = utils.to_timepath_shape(r) if method == 'SS': T_W = (ETR_wealth(b, p.h_wealth[-1], p.m_wealth[-1], p.p_wealth[-1]) * b) elif method == 'TPI': length = r.shape[0] if len(b.shape) == 1: T_W = (ETR_wealth(b, p.h_wealth[t:t + length], p.m_wealth[t:t + length], p.p_wealth[t:t + length]) * b) elif len(b.shape) == 2: T_W = (ETR_wealth(b, p.h_wealth[t:t + length], p.m_wealth[t:t + length], p.p_wealth[t:t + length]) * b) else: T_W = (ETR_wealth( b, p.h_wealth[t:t + length].reshape(length, 1, 1), p.m_wealth[t:t + length].reshape(length, 1, 1), p.p_wealth[t:t + length].reshape(length, 1, 1)) * b) elif method == 'TPI_scalar': T_W = (ETR_wealth(b, p.h_wealth[0], p.m_wealth[0], p.p_wealth[0]) * b) return T_W def bequest_tax_liab(r, b, bq, t, j, method, p): ''' Calculate liability due from taxes on bequests for each household. Args: r (array_like): real interest rate b (Numpy array): savings bq (Numpy array): bequests received t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_BQ (Numpy array): bequest tax liability for each household ''' if j is not None: lambdas = p.lambdas[j] if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) else: lambdas = np.transpose(p.lambdas) if method == 'TPI': r = utils.to_timepath_shape(r) if method == 'SS': T_BQ = p.tau_bq[-1] * bq elif method == 'TPI': length = r.shape[0] if len(b.shape) == 1: T_BQ = p.tau_bq[t:t + length] * bq elif len(b.shape) == 2: T_BQ = p.tau_bq[t:t + length].reshape(length, 1) * bq / lambdas else: T_BQ = p.tau_bq[t:t + length].reshape(length, 1, 1) * bq elif method == 'TPI_scalar': # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI. T_BQ = p.tau_bq[0] * bq return T_BQ
en
0.70665
------------------------------------------------------------------------ Functions for taxes in the steady state and along the transition path. ------------------------------------------------------------------------ # Packages ------------------------------------------------------------------------ Functions ------------------------------------------------------------------------ Calculates replacement rate values for the social security system. Args: nssmat (Numpy array): initial guess at labor supply, size = SxJ new_w (scalar): steady state real wage rate factor_ss (scalar): scaling factor converting model units to dollars j (int): index of lifetime income group p (OG-USA Specifications object): model parameters Returns: theta (Numpy array): social security replacement rate value for lifetime income group j # adjust number of calendar years AIME computed from int model periods # get highest earning years for number of years AIME computed from # Compute level of replacement using AIME brackets and PIA rates # Set the maximum monthly replacment rate from SS benefits tables Calculates the effective tax rate on wealth. .. math:: T_{j,s,t}^{w} = \frac{h^{w}p_{w}b_{j,s,t}}{h^{w}b_{j,s,t} + m^{w}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_w (Numpy array): effective tax rate on wealth, size = SxJ Calculates the marginal tax rate on wealth from the wealth tax. .. math:: \frac{\partial T_{j,s,t}^{w}}{\partial b_{j,s,t}} = \frac{h^{w}m^{w}p_{w}}{(b_{j,s,t}h^{w}m^{w})^{2}} Args: b (Numpy array): savings h_wealth (scalar): parameter of wealth tax function p_wealth (scalar): parameter of wealth tax function m_wealth (scalar): parameter of wealth tax function Returns: tau_prime (Numpy array): marginal tax rate on wealth, size = SxJ Calculates effective personal income tax rate. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): effective tax rate on total income # DEP or linear Generates the marginal tax rate on labor income for households. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars mtr_capital (bool): whether to compute the marginal tax rate on capital income or labor income e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: tau (Numpy array): marginal tax rate on income source # DEP or linear Finds total business income tax revenue. .. math:: R_{t}^{b} = \tau_{t}^{b}(Y_{t} - w_{t}L_{t}) - \tau_{t}^{b}\delta_{t}^{\tau}K_{t}^{\tau} Args: r (array_like): real interest rate Y (array_like): aggregate output L (array_like): aggregate labor demand K (array_like): aggregate capital demand Returns: business_revenue (array_like): aggregate business tax revenue Calculate net taxes paid for each household. Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply bq (Numpy array): bequests received factor (scalar): scaling factor converting model units to dollars tr (Numpy array): government transfers to the household theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: net_tax (Numpy array): net taxes paid for each household Calculate income and payroll tax liability for each household Args: r (array_like): real interest rate w (array_like): real wage rate b (Numpy array): savings n (Numpy array): labor supply factor (scalar): scaling factor converting model units to dollars t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units etr_params (Numpy array): effective tax rate function parameters p (OG-USA Specifications object): model parameters Returns: T_I (Numpy array): total income and payroll taxes paid for each household Calculate public pension benefit amounts for each household. Args: w (array_like): real wage rate n (Numpy array): labor supply theta (Numpy array): social security replacement rate value for lifetime income group j t (int): time period j (int): index of lifetime income group shift (bool): whether computing for periods 0--s or 1--(s+1), =True for 1--(s+1) method (str): adjusts calculation dimensions based on 'SS' or 'TPI' e (Numpy array): effective labor units p (OG-USA Specifications object): model parameters Returns: pension (Numpy array): pension amount for each household # Depending on if we are looking at b_s or b_s+1, the # entry for retirement will change (it shifts back one). # The shift boolean makes sure we start replacement rates # at the correct age. # retireTPI is different from retire, because in TP income # we are counting backwards with different length lists. # This will always be the correct location of retirement, # depending on the shape of the lists. # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI. Calculate wealth tax liability for each household. Args: r (array_like): real interest rate b (Numpy array): savings t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_W (Numpy array): wealth tax liability for each household Calculate liability due from taxes on bequests for each household. Args: r (array_like): real interest rate b (Numpy array): savings bq (Numpy array): bequests received t (int): time period j (int): index of lifetime income group method (str): adjusts calculation dimensions based on 'SS' or 'TPI' p (OG-USA Specifications object): model parameters Returns: T_BQ (Numpy array): bequest tax liability for each household # The above methods won't work if scalars are used. This option # is only called by the SS_TPI_firstdoughnutring function in TPI.
2.587121
3
muse_for_anything/api/v1_api/taxonomy_items.py
baireutherjonas/muse-for-anything
0
9741
<filename>muse_for_anything/api/v1_api/taxonomy_items.py """Module containing the taxonomy items API endpoints of the v1 API.""" from datetime import datetime from sqlalchemy.sql.schema import Sequence from muse_for_anything.db.models.taxonomies import ( Taxonomy, TaxonomyItem, TaxonomyItemRelation, TaxonomyItemVersion, ) from marshmallow.utils import INCLUDE from flask_babel import gettext from muse_for_anything.api.util import template_url_for from typing import Any, Callable, Dict, List, Optional, Union, cast from flask.helpers import url_for from flask.views import MethodView from sqlalchemy.sql.expression import asc, desc, literal from sqlalchemy.orm.query import Query from sqlalchemy.orm import selectinload from flask_smorest import abort from http import HTTPStatus from .root import API_V1 from ..base_models import ( ApiLink, ApiResponse, ChangedApiObject, ChangedApiObjectSchema, CursorPage, CursorPageArgumentsSchema, CursorPageSchema, DynamicApiResponseSchema, NewApiObject, NewApiObjectSchema, ) from ...db.db import DB from ...db.pagination import get_page_info from ...db.models.namespace import Namespace from ...db.models.ontology_objects import OntologyObjectType, OntologyObjectTypeVersion from .models.ontology import ( TaxonomyItemRelationPostSchema, TaxonomyItemRelationSchema, TaxonomyItemSchema, TaxonomySchema, ) from .namespace_helpers import ( query_params_to_api_key, ) from .taxonomy_helpers import ( action_links_for_taxonomy_item, action_links_for_taxonomy_item_relation, create_action_link_for_taxonomy_item_relation_page, nav_links_for_taxonomy_item, nav_links_for_taxonomy_item_relation, taxonomy_item_relation_to_api_link, taxonomy_item_relation_to_api_response, taxonomy_item_relation_to_taxonomy_item_relation_data, taxonomy_item_to_api_link, taxonomy_item_to_api_response, taxonomy_item_to_taxonomy_item_data, taxonomy_to_api_response, taxonomy_to_items_links, taxonomy_to_taxonomy_data, ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/" ) class TaxonomyItemView(MethodView): """Endpoint for a single taxonomy item.""" def _check_path_params(self, namespace: str, taxonomy: str, taxonomy_item: str): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) def _get_taxonomy_item( self, namespace: str, taxonomy: str, taxonomy_item: str ) -> TaxonomyItem: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) found_taxonomy_item: Optional[TaxonomyItem] = ( TaxonomyItem.query.options(selectinload(TaxonomyItem.current_ancestors)) .filter( TaxonomyItem.id == taxonomy_item_id, TaxonomyItem.taxonomy_id == taxonomy_id, ) .first() ) if ( found_taxonomy_item is None or found_taxonomy_item.taxonomy.namespace_id != namespace_id ): abort(HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item not found.")) return found_taxonomy_item # is not None because abort raises exception def _check_if_taxonomy_modifiable(self, taxonomy: Taxonomy): if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) def _check_if_modifiable(self, taxonomy_item: TaxonomyItem): self._check_if_taxonomy_modifiable(taxonomy=taxonomy_item.taxonomy) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) @API_V1.response(DynamicApiResponseSchema(TaxonomyItemSchema())) def get(self, namespace: str, taxonomy: str, taxonomy_item: str, **kwargs: Any): """Get a single taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) embedded: List[ApiResponse] = [] for relation in found_taxonomy_item.current_ancestors: embedded.append(taxonomy_item_to_api_response(relation.taxonomy_item_source)) for relation in found_taxonomy_item.current_related: embedded.append(taxonomy_item_relation_to_api_response(relation)) embedded.append(taxonomy_item_to_api_response(relation.taxonomy_item_target)) return ApiResponse( links=[ ApiLink( href=url_for( "api-v1.NamespacesView", _external=True, **{"item-count": 50}, sort="name", ), rel=("first", "page", "collection", "nav"), resource_type="ont-namespace", schema=url_for( "api-v1.ApiSchemaView", schema_id="Namespace", _external=True ), ), *nav_links_for_taxonomy_item(found_taxonomy_item), *action_links_for_taxonomy_item(found_taxonomy_item), ], embedded=embedded, data=taxonomy_item_to_taxonomy_item_data(found_taxonomy_item), ) @API_V1.arguments(TaxonomyItemSchema()) @API_V1.response(DynamicApiResponseSchema(NewApiObjectSchema())) def put(self, data, namespace: str, taxonomy: str, taxonomy_item: str): """Update a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_modifiable(found_taxonomy_item) taxonomy_item_version = TaxonomyItemVersion( taxonomy_item=found_taxonomy_item, version=found_taxonomy_item.current_version.version + 1, name=data["name"], description=data.get("description", ""), sort_key=data.get("sort_key", 10), ) found_taxonomy_item.current_version = taxonomy_item_version DB.session.add(found_taxonomy_item) DB.session.add(taxonomy_item_version) DB.session.commit() taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) return ApiResponse( links=[taxonomy_item_link], embedded=[taxonomy_item_data], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "update", "put", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def post(self, namespace: str, taxonomy: str, taxonomy_item: str): # restore action """Restore a deleted taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_taxonomy_modifiable(found_taxonomy_item.taxonomy) changed_links: List[ApiLink] = [] embedded: List[ApiResponse] = [] # only actually restore when not already restored if found_taxonomy_item.deleted_on is not None: # restore taxonomy item deleted_timestamp = found_taxonomy_item.deleted_on found_taxonomy_item.deleted_on = None # also restore relations ancestors: Sequence[TaxonomyItemRelation] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.taxonomy_item_target_id == found_taxonomy_item.id, TaxonomyItemRelation.deleted_on == deleted_timestamp, ).all() ancestor_ids = set() relation: TaxonomyItemRelation for relation in ancestors: if relation.taxonomy_item_source.deleted_on is not None: continue # do not restore relations to deleted items ancestor_ids.add(relation.taxonomy_item_source_id) relation.deleted_on = None DB.session.add(relation) def produces_circle(relation: TaxonomyItemRelation) -> bool: if relation.taxonomy_item_target_id in ancestor_ids: return True for rel in relation.taxonomy_item_target.current_related: if produces_circle(rel): return True return False children: Sequence[TaxonomyItemRelation] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.taxonomy_item_source_id == found_taxonomy_item.id, TaxonomyItemRelation.deleted_on == deleted_timestamp, ).all() for relation in children: if relation.taxonomy_item_target.deleted_on is not None: continue # do not restore relations to deleted items if produces_circle(relation): continue relation.deleted_on = None DB.session.add(relation) DB.session.add(found_taxonomy_item) DB.session.commit() # add changed items to be embedded into the response for relation in found_taxonomy_item.current_ancestors: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_source) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_source) ) for relation in found_taxonomy_item.current_related: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_target) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_target) ) taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_link = taxonomy_to_taxonomy_data(found_taxonomy_item.taxonomy).self taxonomy_data = taxonomy_to_api_response(found_taxonomy_item.taxonomy) return ApiResponse( links=[taxonomy_item_link, taxonomy_link, *changed_links], embedded=[taxonomy_item_data, taxonomy_data, *embedded], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "restore", "post", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def delete(self, namespace: str, taxonomy: str, taxonomy_item: str): # restore action """Delete a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_taxonomy_modifiable(found_taxonomy_item.taxonomy) changed_links: List[ApiLink] = [] embedded: List[ApiResponse] = [] # only actually delete when not already deleted if found_taxonomy_item.deleted_on is None: # delete taxonomy item deleted_timestamp = datetime.utcnow() found_taxonomy_item.deleted_on = deleted_timestamp # also delete incoming and outgoing relations to remove them # from relations of existing items ancestors = found_taxonomy_item.current_ancestors for relation in found_taxonomy_item.current_ancestors: relation.deleted_on = deleted_timestamp DB.session.add(relation) related = found_taxonomy_item.current_related for relation in found_taxonomy_item.current_related: relation.deleted_on = deleted_timestamp DB.session.add(relation) DB.session.add(found_taxonomy_item) DB.session.commit() # add changed items to be embedded into the response for relation in ancestors: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_source) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_source) ) for relation in related: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_target) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_target) ) taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_link = taxonomy_to_taxonomy_data(found_taxonomy_item.taxonomy).self taxonomy_data = taxonomy_to_api_response(found_taxonomy_item.taxonomy) return ApiResponse( links=[taxonomy_item_link, taxonomy_link, *changed_links], embedded=[taxonomy_item_data, taxonomy_data, *embedded], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "delete", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/relations/" ) class TaxonomyItemRelationsView(MethodView): """Endpoint for manipulating taxonomy item relations.""" def _check_path_params(self, namespace: str, taxonomy: str, taxonomy_item: str): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) def _get_taxonomy_item( self, namespace: str, taxonomy: str, taxonomy_item: str ) -> TaxonomyItem: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) found_taxonomy_item: Optional[TaxonomyItem] = TaxonomyItem.query.filter( TaxonomyItem.id == taxonomy_item_id, TaxonomyItem.taxonomy_id == taxonomy_id, ).first() if ( found_taxonomy_item is None or found_taxonomy_item.taxonomy.namespace_id != namespace_id ): abort(HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item not found.")) return found_taxonomy_item # is not None because abort raises exception def _check_if_modifiable(self, taxonomy_item: TaxonomyItem): taxonomy = taxonomy_item.taxonomy if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) def _check_item_circle( self, item_target: TaxonomyItem, item_source: TaxonomyItem, original_target: Optional[TaxonomyItem] = None, ): """Check for a path from target to source which would form a circular dependency. Abort if such a path is found!""" if original_target is None: original_target = item_target relation: TaxonomyItemRelation for relation in item_target.current_related: if relation.taxonomy_item_target.deleted_on is not None: continue # exclude deleted items as targets if relation.taxonomy_item_target_id == item_source.id: abort( HTTPStatus.CONFLICT, message=gettext( "Cannot add a relation from %(target)s to %(source)s as it would create a circle!", target=original_target.name, source=item_source.name, ), ) else: self._check_item_circle( item_target=relation.taxonomy_item_target, item_source=item_source, original_target=original_target, ) @API_V1.arguments(TaxonomyItemRelationPostSchema()) @API_V1.response(DynamicApiResponseSchema(NewApiObjectSchema())) def post( self, data: Dict[str, str], namespace: str, taxonomy: str, taxonomy_item: str, ): """Create a new relation to a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) if namespace != data["namespace_id"] or taxonomy != data["taxonomy_id"]: abort( HTTPStatus.BAD_REQUEST, message=gettext( "Cannot create a relation to a taxonomy item of a different taxonomy!" ), ) found_taxonomy_item = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_modifiable(found_taxonomy_item) found_taxonomy_item_target = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=data["taxonomy_item_id"] ) self._check_item_circle(found_taxonomy_item_target, found_taxonomy_item) relation = TaxonomyItemRelation( taxonomy_item_source=found_taxonomy_item, taxonomy_item_target=found_taxonomy_item_target, ) DB.session.add(relation) DB.session.commit() taxonomy_item_relation_link = ( taxonomy_item_relation_to_taxonomy_item_relation_data(relation).self ) taxonomy_item_relation_data = taxonomy_item_relation_to_api_response(relation) taxonomy_item_source_link = taxonomy_item_to_api_link(found_taxonomy_item) taxonomy_item_source_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_item_target_link = taxonomy_item_to_api_link(found_taxonomy_item_target) taxonomy_item_target_data = taxonomy_item_to_api_response( found_taxonomy_item_target ) self_link = create_action_link_for_taxonomy_item_relation_page( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self_link.rel = (*self_link.rel, "ont-taxonomy-item-relation") self_link.resource_type = "new" return ApiResponse( links=[ taxonomy_item_relation_link, taxonomy_item_source_link, taxonomy_item_target_link, ], embedded=[ taxonomy_item_relation_data, taxonomy_item_source_data, taxonomy_item_target_data, ], data=NewApiObject( self=self_link, new=taxonomy_item_relation_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/relations/<string:relation>/" ) class TaxonomyItemRelationView(MethodView): """Endpoint for removing taxonomy item relations.""" def _check_path_params( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str ): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) if not relation or not relation.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext( "The requested taxonomy item relation id has the wrong format!" ), ) def _get_taxonomy_item_relation( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str ) -> TaxonomyItemRelation: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) relation_id = int(relation) found_taxonomy_item_relation: Optional[ TaxonomyItemRelation ] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.id == relation_id, TaxonomyItemRelation.taxonomy_item_source_id == taxonomy_item_id, ).first() if ( found_taxonomy_item_relation is None or found_taxonomy_item_relation.taxonomy_item_source.taxonomy_id != taxonomy_id or found_taxonomy_item_relation.taxonomy_item_source.taxonomy.namespace_id != namespace_id ): abort( HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item relation not found.") ) return found_taxonomy_item_relation # is not None because abort raises exception def _check_if_modifiable(self, relation: TaxonomyItemRelation): taxonomy_item = relation.taxonomy_item_source taxonomy = taxonomy_item.taxonomy if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy item! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) if relation.deleted_on is not None: # cannot modify deleted item relation! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item relation is marked as deleted and cannot be modified further." ), ) @API_V1.response(DynamicApiResponseSchema(TaxonomyItemRelationSchema())) def get( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str, **kwargs: Any ): """Get a single relation.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) found_relation = self._get_taxonomy_item_relation( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) return ApiResponse( links=( *nav_links_for_taxonomy_item_relation(found_relation), *action_links_for_taxonomy_item_relation(found_relation), ), data=taxonomy_item_relation_to_taxonomy_item_relation_data(found_relation), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def delete( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str, **kwargs: Any ): """Delete an existing relation.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) found_relation = self._get_taxonomy_item_relation( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) self._check_if_modifiable(found_relation) # only actually delete when not already deleted if found_relation.deleted_on is None: # delete taxonomy item relation found_relation.deleted_on = datetime.utcnow() DB.session.add(found_relation) DB.session.commit() relation_link = taxonomy_item_relation_to_taxonomy_item_relation_data( found_relation ).self relation_data = taxonomy_item_relation_to_api_response(found_relation) source_item_link = taxonomy_item_to_api_link(found_relation.taxonomy_item_source) source_item_data = taxonomy_item_to_api_response( found_relation.taxonomy_item_source ) target_item_link = taxonomy_item_to_api_link(found_relation.taxonomy_item_target) target_item_data = taxonomy_item_to_api_response( found_relation.taxonomy_item_target ) return ApiResponse( links=[relation_link, source_item_link, target_item_link], embedded=[relation_data, source_item_data, target_item_data], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemRelationView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, _external=True, ), rel=( "delete", "ont-taxonomy-item-relation", ), resource_type="changed", ), changed=relation_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/versions/" ) class TaxonomyItemVersionsView(MethodView): """Endpoint for all versions of a taxonomy item.""" def get(self, namespace: str, taxonomy: str, taxonomy_item: str, **kwargs: Any): """TODO.""" @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/versions/<string:version>/" ) class TaxonomyItemVersionView(MethodView): """Endpoint for a single version of a taxonomy item.""" def _check_path_params( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str ): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) if not version or not version.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext( "The requested taxonomy item version has the wrong format!" ), ) def _get_taxonomy_item_version( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str ) -> TaxonomyItemVersion: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) version_nr = int(version) found_taxonomy_item_version: Optional[ TaxonomyItemVersion ] = TaxonomyItemVersion.query.filter( TaxonomyItemVersion.version == version_nr, TaxonomyItemVersion.taxonomy_item_id == taxonomy_item_id, ).first() if ( found_taxonomy_item_version is None or found_taxonomy_item_version.taxonomy_item.taxonomy_id != taxonomy_id or found_taxonomy_item_version.taxonomy_item.taxonomy.namespace_id != namespace_id ): abort( HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item version not found.") ) return found_taxonomy_item_version # is not None because abort raises exception @API_V1.response(DynamicApiResponseSchema(TaxonomyItemSchema())) def get( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str, **kwargs: Any ): """Get a single taxonomy item version.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, version=version, ) found_taxonomy_item_version = self._get_taxonomy_item_version( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, version=version, ) return ApiResponse( links=[ ApiLink( href=url_for( "api-v1.NamespacesView", _external=True, **{"item-count": 50}, sort="name", ), rel=("first", "page", "collection", "nav"), resource_type="ont-namespace", schema=url_for( "api-v1.ApiSchemaView", schema_id="Namespace", _external=True ), ), *nav_links_for_taxonomy_item_version(found_taxonomy_item_version), *action_links_for_taxonomy_item_version(found_taxonomy_item_version), ], data=taxonomy_item_to_taxonomy_item_data(found_taxonomy_item_version), )
<filename>muse_for_anything/api/v1_api/taxonomy_items.py """Module containing the taxonomy items API endpoints of the v1 API.""" from datetime import datetime from sqlalchemy.sql.schema import Sequence from muse_for_anything.db.models.taxonomies import ( Taxonomy, TaxonomyItem, TaxonomyItemRelation, TaxonomyItemVersion, ) from marshmallow.utils import INCLUDE from flask_babel import gettext from muse_for_anything.api.util import template_url_for from typing import Any, Callable, Dict, List, Optional, Union, cast from flask.helpers import url_for from flask.views import MethodView from sqlalchemy.sql.expression import asc, desc, literal from sqlalchemy.orm.query import Query from sqlalchemy.orm import selectinload from flask_smorest import abort from http import HTTPStatus from .root import API_V1 from ..base_models import ( ApiLink, ApiResponse, ChangedApiObject, ChangedApiObjectSchema, CursorPage, CursorPageArgumentsSchema, CursorPageSchema, DynamicApiResponseSchema, NewApiObject, NewApiObjectSchema, ) from ...db.db import DB from ...db.pagination import get_page_info from ...db.models.namespace import Namespace from ...db.models.ontology_objects import OntologyObjectType, OntologyObjectTypeVersion from .models.ontology import ( TaxonomyItemRelationPostSchema, TaxonomyItemRelationSchema, TaxonomyItemSchema, TaxonomySchema, ) from .namespace_helpers import ( query_params_to_api_key, ) from .taxonomy_helpers import ( action_links_for_taxonomy_item, action_links_for_taxonomy_item_relation, create_action_link_for_taxonomy_item_relation_page, nav_links_for_taxonomy_item, nav_links_for_taxonomy_item_relation, taxonomy_item_relation_to_api_link, taxonomy_item_relation_to_api_response, taxonomy_item_relation_to_taxonomy_item_relation_data, taxonomy_item_to_api_link, taxonomy_item_to_api_response, taxonomy_item_to_taxonomy_item_data, taxonomy_to_api_response, taxonomy_to_items_links, taxonomy_to_taxonomy_data, ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/" ) class TaxonomyItemView(MethodView): """Endpoint for a single taxonomy item.""" def _check_path_params(self, namespace: str, taxonomy: str, taxonomy_item: str): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) def _get_taxonomy_item( self, namespace: str, taxonomy: str, taxonomy_item: str ) -> TaxonomyItem: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) found_taxonomy_item: Optional[TaxonomyItem] = ( TaxonomyItem.query.options(selectinload(TaxonomyItem.current_ancestors)) .filter( TaxonomyItem.id == taxonomy_item_id, TaxonomyItem.taxonomy_id == taxonomy_id, ) .first() ) if ( found_taxonomy_item is None or found_taxonomy_item.taxonomy.namespace_id != namespace_id ): abort(HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item not found.")) return found_taxonomy_item # is not None because abort raises exception def _check_if_taxonomy_modifiable(self, taxonomy: Taxonomy): if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) def _check_if_modifiable(self, taxonomy_item: TaxonomyItem): self._check_if_taxonomy_modifiable(taxonomy=taxonomy_item.taxonomy) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) @API_V1.response(DynamicApiResponseSchema(TaxonomyItemSchema())) def get(self, namespace: str, taxonomy: str, taxonomy_item: str, **kwargs: Any): """Get a single taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) embedded: List[ApiResponse] = [] for relation in found_taxonomy_item.current_ancestors: embedded.append(taxonomy_item_to_api_response(relation.taxonomy_item_source)) for relation in found_taxonomy_item.current_related: embedded.append(taxonomy_item_relation_to_api_response(relation)) embedded.append(taxonomy_item_to_api_response(relation.taxonomy_item_target)) return ApiResponse( links=[ ApiLink( href=url_for( "api-v1.NamespacesView", _external=True, **{"item-count": 50}, sort="name", ), rel=("first", "page", "collection", "nav"), resource_type="ont-namespace", schema=url_for( "api-v1.ApiSchemaView", schema_id="Namespace", _external=True ), ), *nav_links_for_taxonomy_item(found_taxonomy_item), *action_links_for_taxonomy_item(found_taxonomy_item), ], embedded=embedded, data=taxonomy_item_to_taxonomy_item_data(found_taxonomy_item), ) @API_V1.arguments(TaxonomyItemSchema()) @API_V1.response(DynamicApiResponseSchema(NewApiObjectSchema())) def put(self, data, namespace: str, taxonomy: str, taxonomy_item: str): """Update a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_modifiable(found_taxonomy_item) taxonomy_item_version = TaxonomyItemVersion( taxonomy_item=found_taxonomy_item, version=found_taxonomy_item.current_version.version + 1, name=data["name"], description=data.get("description", ""), sort_key=data.get("sort_key", 10), ) found_taxonomy_item.current_version = taxonomy_item_version DB.session.add(found_taxonomy_item) DB.session.add(taxonomy_item_version) DB.session.commit() taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) return ApiResponse( links=[taxonomy_item_link], embedded=[taxonomy_item_data], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "update", "put", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def post(self, namespace: str, taxonomy: str, taxonomy_item: str): # restore action """Restore a deleted taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_taxonomy_modifiable(found_taxonomy_item.taxonomy) changed_links: List[ApiLink] = [] embedded: List[ApiResponse] = [] # only actually restore when not already restored if found_taxonomy_item.deleted_on is not None: # restore taxonomy item deleted_timestamp = found_taxonomy_item.deleted_on found_taxonomy_item.deleted_on = None # also restore relations ancestors: Sequence[TaxonomyItemRelation] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.taxonomy_item_target_id == found_taxonomy_item.id, TaxonomyItemRelation.deleted_on == deleted_timestamp, ).all() ancestor_ids = set() relation: TaxonomyItemRelation for relation in ancestors: if relation.taxonomy_item_source.deleted_on is not None: continue # do not restore relations to deleted items ancestor_ids.add(relation.taxonomy_item_source_id) relation.deleted_on = None DB.session.add(relation) def produces_circle(relation: TaxonomyItemRelation) -> bool: if relation.taxonomy_item_target_id in ancestor_ids: return True for rel in relation.taxonomy_item_target.current_related: if produces_circle(rel): return True return False children: Sequence[TaxonomyItemRelation] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.taxonomy_item_source_id == found_taxonomy_item.id, TaxonomyItemRelation.deleted_on == deleted_timestamp, ).all() for relation in children: if relation.taxonomy_item_target.deleted_on is not None: continue # do not restore relations to deleted items if produces_circle(relation): continue relation.deleted_on = None DB.session.add(relation) DB.session.add(found_taxonomy_item) DB.session.commit() # add changed items to be embedded into the response for relation in found_taxonomy_item.current_ancestors: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_source) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_source) ) for relation in found_taxonomy_item.current_related: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_target) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_target) ) taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_link = taxonomy_to_taxonomy_data(found_taxonomy_item.taxonomy).self taxonomy_data = taxonomy_to_api_response(found_taxonomy_item.taxonomy) return ApiResponse( links=[taxonomy_item_link, taxonomy_link, *changed_links], embedded=[taxonomy_item_data, taxonomy_data, *embedded], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "restore", "post", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def delete(self, namespace: str, taxonomy: str, taxonomy_item: str): # restore action """Delete a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) found_taxonomy_item: TaxonomyItem = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_taxonomy_modifiable(found_taxonomy_item.taxonomy) changed_links: List[ApiLink] = [] embedded: List[ApiResponse] = [] # only actually delete when not already deleted if found_taxonomy_item.deleted_on is None: # delete taxonomy item deleted_timestamp = datetime.utcnow() found_taxonomy_item.deleted_on = deleted_timestamp # also delete incoming and outgoing relations to remove them # from relations of existing items ancestors = found_taxonomy_item.current_ancestors for relation in found_taxonomy_item.current_ancestors: relation.deleted_on = deleted_timestamp DB.session.add(relation) related = found_taxonomy_item.current_related for relation in found_taxonomy_item.current_related: relation.deleted_on = deleted_timestamp DB.session.add(relation) DB.session.add(found_taxonomy_item) DB.session.commit() # add changed items to be embedded into the response for relation in ancestors: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_source) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_source) ) for relation in related: changed_links.append(taxonomy_item_relation_to_api_link(relation)) embedded.append(taxonomy_item_relation_to_api_response(relation)) changed_links.append( taxonomy_item_to_api_link(relation.taxonomy_item_target) ) embedded.append( taxonomy_item_to_api_response(relation.taxonomy_item_target) ) taxonomy_item_link = taxonomy_item_to_taxonomy_item_data(found_taxonomy_item).self taxonomy_item_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_link = taxonomy_to_taxonomy_data(found_taxonomy_item.taxonomy).self taxonomy_data = taxonomy_to_api_response(found_taxonomy_item.taxonomy) return ApiResponse( links=[taxonomy_item_link, taxonomy_link, *changed_links], embedded=[taxonomy_item_data, taxonomy_data, *embedded], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, _external=True, ), rel=( "delete", "ont-taxonomy-item", ), resource_type="changed", ), changed=taxonomy_item_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/relations/" ) class TaxonomyItemRelationsView(MethodView): """Endpoint for manipulating taxonomy item relations.""" def _check_path_params(self, namespace: str, taxonomy: str, taxonomy_item: str): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) def _get_taxonomy_item( self, namespace: str, taxonomy: str, taxonomy_item: str ) -> TaxonomyItem: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) found_taxonomy_item: Optional[TaxonomyItem] = TaxonomyItem.query.filter( TaxonomyItem.id == taxonomy_item_id, TaxonomyItem.taxonomy_id == taxonomy_id, ).first() if ( found_taxonomy_item is None or found_taxonomy_item.taxonomy.namespace_id != namespace_id ): abort(HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item not found.")) return found_taxonomy_item # is not None because abort raises exception def _check_if_modifiable(self, taxonomy_item: TaxonomyItem): taxonomy = taxonomy_item.taxonomy if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) def _check_item_circle( self, item_target: TaxonomyItem, item_source: TaxonomyItem, original_target: Optional[TaxonomyItem] = None, ): """Check for a path from target to source which would form a circular dependency. Abort if such a path is found!""" if original_target is None: original_target = item_target relation: TaxonomyItemRelation for relation in item_target.current_related: if relation.taxonomy_item_target.deleted_on is not None: continue # exclude deleted items as targets if relation.taxonomy_item_target_id == item_source.id: abort( HTTPStatus.CONFLICT, message=gettext( "Cannot add a relation from %(target)s to %(source)s as it would create a circle!", target=original_target.name, source=item_source.name, ), ) else: self._check_item_circle( item_target=relation.taxonomy_item_target, item_source=item_source, original_target=original_target, ) @API_V1.arguments(TaxonomyItemRelationPostSchema()) @API_V1.response(DynamicApiResponseSchema(NewApiObjectSchema())) def post( self, data: Dict[str, str], namespace: str, taxonomy: str, taxonomy_item: str, ): """Create a new relation to a taxonomy item.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) if namespace != data["namespace_id"] or taxonomy != data["taxonomy_id"]: abort( HTTPStatus.BAD_REQUEST, message=gettext( "Cannot create a relation to a taxonomy item of a different taxonomy!" ), ) found_taxonomy_item = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self._check_if_modifiable(found_taxonomy_item) found_taxonomy_item_target = self._get_taxonomy_item( namespace=namespace, taxonomy=taxonomy, taxonomy_item=data["taxonomy_item_id"] ) self._check_item_circle(found_taxonomy_item_target, found_taxonomy_item) relation = TaxonomyItemRelation( taxonomy_item_source=found_taxonomy_item, taxonomy_item_target=found_taxonomy_item_target, ) DB.session.add(relation) DB.session.commit() taxonomy_item_relation_link = ( taxonomy_item_relation_to_taxonomy_item_relation_data(relation).self ) taxonomy_item_relation_data = taxonomy_item_relation_to_api_response(relation) taxonomy_item_source_link = taxonomy_item_to_api_link(found_taxonomy_item) taxonomy_item_source_data = taxonomy_item_to_api_response(found_taxonomy_item) taxonomy_item_target_link = taxonomy_item_to_api_link(found_taxonomy_item_target) taxonomy_item_target_data = taxonomy_item_to_api_response( found_taxonomy_item_target ) self_link = create_action_link_for_taxonomy_item_relation_page( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item ) self_link.rel = (*self_link.rel, "ont-taxonomy-item-relation") self_link.resource_type = "new" return ApiResponse( links=[ taxonomy_item_relation_link, taxonomy_item_source_link, taxonomy_item_target_link, ], embedded=[ taxonomy_item_relation_data, taxonomy_item_source_data, taxonomy_item_target_data, ], data=NewApiObject( self=self_link, new=taxonomy_item_relation_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/relations/<string:relation>/" ) class TaxonomyItemRelationView(MethodView): """Endpoint for removing taxonomy item relations.""" def _check_path_params( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str ): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) if not relation or not relation.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext( "The requested taxonomy item relation id has the wrong format!" ), ) def _get_taxonomy_item_relation( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str ) -> TaxonomyItemRelation: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) relation_id = int(relation) found_taxonomy_item_relation: Optional[ TaxonomyItemRelation ] = TaxonomyItemRelation.query.filter( TaxonomyItemRelation.id == relation_id, TaxonomyItemRelation.taxonomy_item_source_id == taxonomy_item_id, ).first() if ( found_taxonomy_item_relation is None or found_taxonomy_item_relation.taxonomy_item_source.taxonomy_id != taxonomy_id or found_taxonomy_item_relation.taxonomy_item_source.taxonomy.namespace_id != namespace_id ): abort( HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item relation not found.") ) return found_taxonomy_item_relation # is not None because abort raises exception def _check_if_modifiable(self, relation: TaxonomyItemRelation): taxonomy_item = relation.taxonomy_item_source taxonomy = taxonomy_item.taxonomy if taxonomy.namespace.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Namespace is marked as deleted and cannot be modified further." ), ) if taxonomy.deleted_on is not None: # cannot modify deleted namespace! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy is marked as deleted and cannot be modified further." ), ) if taxonomy_item.deleted_on is not None: # cannot modify deleted taxonomy item! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item is marked as deleted and cannot be modified further." ), ) if relation.deleted_on is not None: # cannot modify deleted item relation! abort( HTTPStatus.CONFLICT, message=gettext( "Taxonomy item relation is marked as deleted and cannot be modified further." ), ) @API_V1.response(DynamicApiResponseSchema(TaxonomyItemRelationSchema())) def get( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str, **kwargs: Any ): """Get a single relation.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) found_relation = self._get_taxonomy_item_relation( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) return ApiResponse( links=( *nav_links_for_taxonomy_item_relation(found_relation), *action_links_for_taxonomy_item_relation(found_relation), ), data=taxonomy_item_relation_to_taxonomy_item_relation_data(found_relation), ) @API_V1.response(DynamicApiResponseSchema(ChangedApiObjectSchema())) def delete( self, namespace: str, taxonomy: str, taxonomy_item: str, relation: str, **kwargs: Any ): """Delete an existing relation.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) found_relation = self._get_taxonomy_item_relation( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, ) self._check_if_modifiable(found_relation) # only actually delete when not already deleted if found_relation.deleted_on is None: # delete taxonomy item relation found_relation.deleted_on = datetime.utcnow() DB.session.add(found_relation) DB.session.commit() relation_link = taxonomy_item_relation_to_taxonomy_item_relation_data( found_relation ).self relation_data = taxonomy_item_relation_to_api_response(found_relation) source_item_link = taxonomy_item_to_api_link(found_relation.taxonomy_item_source) source_item_data = taxonomy_item_to_api_response( found_relation.taxonomy_item_source ) target_item_link = taxonomy_item_to_api_link(found_relation.taxonomy_item_target) target_item_data = taxonomy_item_to_api_response( found_relation.taxonomy_item_target ) return ApiResponse( links=[relation_link, source_item_link, target_item_link], embedded=[relation_data, source_item_data, target_item_data], data=ChangedApiObject( self=ApiLink( href=url_for( "api-v1.TaxonomyItemRelationView", namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, relation=relation, _external=True, ), rel=( "delete", "ont-taxonomy-item-relation", ), resource_type="changed", ), changed=relation_link, ), ) @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/versions/" ) class TaxonomyItemVersionsView(MethodView): """Endpoint for all versions of a taxonomy item.""" def get(self, namespace: str, taxonomy: str, taxonomy_item: str, **kwargs: Any): """TODO.""" @API_V1.route( "/namespaces/<string:namespace>/taxonomies/<string:taxonomy>/items/<string:taxonomy_item>/versions/<string:version>/" ) class TaxonomyItemVersionView(MethodView): """Endpoint for a single version of a taxonomy item.""" def _check_path_params( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str ): if not namespace or not namespace.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested namespace id has the wrong format!"), ) if not taxonomy or not taxonomy.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy id has the wrong format!"), ) if not taxonomy_item or not taxonomy_item.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext("The requested taxonomy item id has the wrong format!"), ) if not version or not version.isdigit(): abort( HTTPStatus.BAD_REQUEST, message=gettext( "The requested taxonomy item version has the wrong format!" ), ) def _get_taxonomy_item_version( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str ) -> TaxonomyItemVersion: namespace_id = int(namespace) taxonomy_id = int(taxonomy) taxonomy_item_id = int(taxonomy_item) version_nr = int(version) found_taxonomy_item_version: Optional[ TaxonomyItemVersion ] = TaxonomyItemVersion.query.filter( TaxonomyItemVersion.version == version_nr, TaxonomyItemVersion.taxonomy_item_id == taxonomy_item_id, ).first() if ( found_taxonomy_item_version is None or found_taxonomy_item_version.taxonomy_item.taxonomy_id != taxonomy_id or found_taxonomy_item_version.taxonomy_item.taxonomy.namespace_id != namespace_id ): abort( HTTPStatus.NOT_FOUND, message=gettext("Taxonomy item version not found.") ) return found_taxonomy_item_version # is not None because abort raises exception @API_V1.response(DynamicApiResponseSchema(TaxonomyItemSchema())) def get( self, namespace: str, taxonomy: str, taxonomy_item: str, version: str, **kwargs: Any ): """Get a single taxonomy item version.""" self._check_path_params( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, version=version, ) found_taxonomy_item_version = self._get_taxonomy_item_version( namespace=namespace, taxonomy=taxonomy, taxonomy_item=taxonomy_item, version=version, ) return ApiResponse( links=[ ApiLink( href=url_for( "api-v1.NamespacesView", _external=True, **{"item-count": 50}, sort="name", ), rel=("first", "page", "collection", "nav"), resource_type="ont-namespace", schema=url_for( "api-v1.ApiSchemaView", schema_id="Namespace", _external=True ), ), *nav_links_for_taxonomy_item_version(found_taxonomy_item_version), *action_links_for_taxonomy_item_version(found_taxonomy_item_version), ], data=taxonomy_item_to_taxonomy_item_data(found_taxonomy_item_version), )
en
0.911726
Module containing the taxonomy items API endpoints of the v1 API. Endpoint for a single taxonomy item. # is not None because abort raises exception # cannot modify deleted namespace! # cannot modify deleted namespace! # cannot modify deleted taxonomy! Get a single taxonomy item. Update a taxonomy item. # restore action Restore a deleted taxonomy item. # only actually restore when not already restored # restore taxonomy item # also restore relations # do not restore relations to deleted items # do not restore relations to deleted items # add changed items to be embedded into the response # restore action Delete a taxonomy item. # only actually delete when not already deleted # delete taxonomy item # also delete incoming and outgoing relations to remove them # from relations of existing items # add changed items to be embedded into the response Endpoint for manipulating taxonomy item relations. # is not None because abort raises exception # cannot modify deleted namespace! # cannot modify deleted namespace! # cannot modify deleted taxonomy! Check for a path from target to source which would form a circular dependency. Abort if such a path is found! # exclude deleted items as targets Create a new relation to a taxonomy item. Endpoint for removing taxonomy item relations. # is not None because abort raises exception # cannot modify deleted namespace! # cannot modify deleted namespace! # cannot modify deleted taxonomy item! # cannot modify deleted item relation! Get a single relation. Delete an existing relation. # only actually delete when not already deleted # delete taxonomy item relation Endpoint for all versions of a taxonomy item. TODO. Endpoint for a single version of a taxonomy item. # is not None because abort raises exception Get a single taxonomy item version.
1.841306
2
PythonDAdata/3358OS_06_Code/code6/pd_plotting.py
shijiale0609/Python_Data_Analysis
1
9742
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('transcount.csv') df = df.groupby('year').aggregate(np.mean) gpu = pd.read_csv('gpu_transcount.csv') gpu = gpu.groupby('year').aggregate(np.mean) df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True) df = df.replace(np.nan, 0) df.plot() df.plot(logy=True) df[df['gpu_trans_count'] > 0].plot(kind='scatter', x='trans_count', y='gpu_trans_count', loglog=True) plt.show()
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('transcount.csv') df = df.groupby('year').aggregate(np.mean) gpu = pd.read_csv('gpu_transcount.csv') gpu = gpu.groupby('year').aggregate(np.mean) df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True) df = df.replace(np.nan, 0) df.plot() df.plot(logy=True) df[df['gpu_trans_count'] > 0].plot(kind='scatter', x='trans_count', y='gpu_trans_count', loglog=True) plt.show()
none
1
3.157782
3
source/blog/migrations/0004_postcomments.py
JakubGutowski/PersonalBlog
0
9743
<filename>source/blog/migrations/0004_postcomments.py # Generated by Django 2.0.5 on 2018-07-02 19:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0003_blogpost_author'), ] operations = [ migrations.CreateModel( name='PostComments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nick', models.CharField(max_length=20)), ('comment', models.CharField(max_length=140)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.BlogPost')), ], ), ]
<filename>source/blog/migrations/0004_postcomments.py # Generated by Django 2.0.5 on 2018-07-02 19:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0003_blogpost_author'), ] operations = [ migrations.CreateModel( name='PostComments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nick', models.CharField(max_length=20)), ('comment', models.CharField(max_length=140)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.BlogPost')), ], ), ]
en
0.666511
# Generated by Django 2.0.5 on 2018-07-02 19:46
1.517525
2
submissions/aising2019/a.py
m-star18/atcoder
1
9744
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n = int(readline()) h = int(readline()) w = int(readline()) print((n - h + 1) * (n - w + 1))
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n = int(readline()) h = int(readline()) w = int(readline()) print((n - h + 1) * (n - w + 1))
none
1
2.719723
3
CreateHalo.py
yoyoberenguer/MultiplayerGameEngine
4
9745
<filename>CreateHalo.py<gh_stars>1-10 import pygame from NetworkBroadcast import Broadcast, AnimatedSprite, DeleteSpriteCommand from Textures import HALO_SPRITE12, HALO_SPRITE14, HALO_SPRITE13 __author__ = "<NAME>" __credits__ = ["<NAME>"] __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class PlayerHalo(pygame.sprite.Sprite): images = [] containers = None def __init__(self, texture_name_, object_, timing_, layer_=0): self.layer = layer_ pygame.sprite.Sprite.__init__(self, self.containers) if isinstance(object_.gl.All, pygame.sprite.LayeredUpdates): object_.gl.All.change_layer(self, object_.layer) self.object = object_ if isinstance(self.images, pygame.Surface): self.images = [self.images] * 30 self.images_copy = self.images.copy() self.image = self.images_copy[0] self.rect = self.image.get_rect(center=object_.rect.center) self.dt = 0 self.index = 0 self.gl = object_.gl self.length = len(self.images) - 1 self.blend = 0 self.timing = timing_ self.texture_name = texture_name_ self.id_ = id(self) self.player_halo_object = Broadcast(self.make_object()) def make_object(self) -> AnimatedSprite: return AnimatedSprite(frame_=self.gl.FRAME, id_=self.id_, surface_=self.texture_name, layer_=self.layer, blend_=self.blend, rect_=self.rect, index_=self.index) def update(self): if self.dt > self.timing: if self.object.rect.colliderect(self.gl.SCREENRECT): self.image = self.images_copy[self.index] self.rect = self.image.get_rect(center=self.object.rect.center) self.index += 1 if self.index > self.length: self.kill() return self.dt = 0 self.player_halo_object.update({'frame': self.gl.FRAME, 'rect': self.rect, 'index': self.index}) else: self.kill() return else: self.dt += self.gl.TIME_PASSED_SECONDS self.player_halo_object.queue() class AsteroidHalo(pygame.sprite.Sprite): images = [] containers = None def __init__(self, texture_name_, object_, timing_, layer_=0): self.layer = layer_ pygame.sprite.Sprite.__init__(self, self.containers) if isinstance(object_.gl.All, pygame.sprite.LayeredUpdates): object_.gl.All.change_layer(self, object_.layer) self.object = object_ if isinstance(self.images, pygame.Surface): self.images = [self.images] * 30 self.images_copy = self.images.copy() self.image = self.images_copy[0] if not id(AsteroidHalo.images) == id(eval(texture_name_)): raise ValueError("Asteroid image does not match with its surface name.") self.rect = self.image.get_rect(center=object_.rect.center) self.dt = 0 self.index = 0 self.gl = object_.gl self.length = len(self.images) - 1 self.blend = 0 self.timing = timing_ self.texture_name = texture_name_ self.id_ = id(self) self.asteroidHalo_object = Broadcast(self.make_object()) Broadcast.add_object_id(self.id_) def delete_object(self) -> DeleteSpriteCommand: """ Send a command to kill an object on client side. :return: DetectCollisionSprite object """ return DeleteSpriteCommand(frame_=self.gl.FRAME, to_delete_={self.id_: self.texture_name}) def make_object(self) -> AnimatedSprite: return AnimatedSprite(frame_=self.gl.FRAME, id_=self.id_, surface_=self.texture_name, layer_=self.layer, blend_=self.blend, rect_=self.rect, index_=self.index) def quit(self) -> None: Broadcast.remove_object_id(self.id_) obj = Broadcast(self.delete_object()) obj.queue() self.kill() def update(self) -> None: if self.dt > self.timing: if self.object.rect.colliderect(self.gl.SCREENRECT): self.image = self.images_copy[self.index] self.rect = self.image.get_rect(center=self.object.rect.center) self.index += 1 if self.index > self.length: self.quit() return self.asteroidHalo_object.update( {'frame': self.gl.FRAME, 'rect': self.rect, 'index': self.index}) self.asteroidHalo_object.queue() self.dt = 0 else: self.quit() return else: self.dt += self.gl.TIME_PASSED_SECONDS
<filename>CreateHalo.py<gh_stars>1-10 import pygame from NetworkBroadcast import Broadcast, AnimatedSprite, DeleteSpriteCommand from Textures import HALO_SPRITE12, HALO_SPRITE14, HALO_SPRITE13 __author__ = "<NAME>" __credits__ = ["<NAME>"] __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class PlayerHalo(pygame.sprite.Sprite): images = [] containers = None def __init__(self, texture_name_, object_, timing_, layer_=0): self.layer = layer_ pygame.sprite.Sprite.__init__(self, self.containers) if isinstance(object_.gl.All, pygame.sprite.LayeredUpdates): object_.gl.All.change_layer(self, object_.layer) self.object = object_ if isinstance(self.images, pygame.Surface): self.images = [self.images] * 30 self.images_copy = self.images.copy() self.image = self.images_copy[0] self.rect = self.image.get_rect(center=object_.rect.center) self.dt = 0 self.index = 0 self.gl = object_.gl self.length = len(self.images) - 1 self.blend = 0 self.timing = timing_ self.texture_name = texture_name_ self.id_ = id(self) self.player_halo_object = Broadcast(self.make_object()) def make_object(self) -> AnimatedSprite: return AnimatedSprite(frame_=self.gl.FRAME, id_=self.id_, surface_=self.texture_name, layer_=self.layer, blend_=self.blend, rect_=self.rect, index_=self.index) def update(self): if self.dt > self.timing: if self.object.rect.colliderect(self.gl.SCREENRECT): self.image = self.images_copy[self.index] self.rect = self.image.get_rect(center=self.object.rect.center) self.index += 1 if self.index > self.length: self.kill() return self.dt = 0 self.player_halo_object.update({'frame': self.gl.FRAME, 'rect': self.rect, 'index': self.index}) else: self.kill() return else: self.dt += self.gl.TIME_PASSED_SECONDS self.player_halo_object.queue() class AsteroidHalo(pygame.sprite.Sprite): images = [] containers = None def __init__(self, texture_name_, object_, timing_, layer_=0): self.layer = layer_ pygame.sprite.Sprite.__init__(self, self.containers) if isinstance(object_.gl.All, pygame.sprite.LayeredUpdates): object_.gl.All.change_layer(self, object_.layer) self.object = object_ if isinstance(self.images, pygame.Surface): self.images = [self.images] * 30 self.images_copy = self.images.copy() self.image = self.images_copy[0] if not id(AsteroidHalo.images) == id(eval(texture_name_)): raise ValueError("Asteroid image does not match with its surface name.") self.rect = self.image.get_rect(center=object_.rect.center) self.dt = 0 self.index = 0 self.gl = object_.gl self.length = len(self.images) - 1 self.blend = 0 self.timing = timing_ self.texture_name = texture_name_ self.id_ = id(self) self.asteroidHalo_object = Broadcast(self.make_object()) Broadcast.add_object_id(self.id_) def delete_object(self) -> DeleteSpriteCommand: """ Send a command to kill an object on client side. :return: DetectCollisionSprite object """ return DeleteSpriteCommand(frame_=self.gl.FRAME, to_delete_={self.id_: self.texture_name}) def make_object(self) -> AnimatedSprite: return AnimatedSprite(frame_=self.gl.FRAME, id_=self.id_, surface_=self.texture_name, layer_=self.layer, blend_=self.blend, rect_=self.rect, index_=self.index) def quit(self) -> None: Broadcast.remove_object_id(self.id_) obj = Broadcast(self.delete_object()) obj.queue() self.kill() def update(self) -> None: if self.dt > self.timing: if self.object.rect.colliderect(self.gl.SCREENRECT): self.image = self.images_copy[self.index] self.rect = self.image.get_rect(center=self.object.rect.center) self.index += 1 if self.index > self.length: self.quit() return self.asteroidHalo_object.update( {'frame': self.gl.FRAME, 'rect': self.rect, 'index': self.index}) self.asteroidHalo_object.queue() self.dt = 0 else: self.quit() return else: self.dt += self.gl.TIME_PASSED_SECONDS
en
0.502474
Send a command to kill an object on client side. :return: DetectCollisionSprite object
2.362422
2
src/dataops/pandas_db.py
ShizhuZhang/ontask_b
0
9746
# -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function import logging import os.path import subprocess from collections import OrderedDict from itertools import izip import numpy as np import pandas as pd from django.conf import settings from django.core.cache import cache from django.db import connection from sqlalchemy import create_engine from dataops.formula_evaluation import evaluate_node_sql from ontask import fix_pctg_in_name SITE_ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) table_prefix = '__ONTASK_WORKFLOW_TABLE_' df_table_prefix = table_prefix + '{0}' upload_table_prefix = table_prefix + 'UPLOAD_{0}' # Query to count the number of rows in a table query_count_rows = 'SELECT count(*) from "{0}"' logger = logging.getLogger(__name__) # Translation between pandas data type names, and those handled in OnTask pandas_datatype_names = { 'object': 'string', 'int64': 'integer', 'float64': 'double', 'bool': 'boolean', 'datetime64[ns]': 'datetime' } # Translation between SQL data type names, and those handled in OnTask sql_datatype_names = { 'text': 'string', 'bigint': 'integer', 'double precision': 'double', 'boolean': 'boolean', 'timestamp without time zone': 'datetime' } # DB Engine to use with Pandas (required by to_sql, from_sql engine = None def create_db_connection(dialect, driver, username, password, host, dbname): """ Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: Password to connect with the database :param host: Host to connect with the database :param dbname: database name :return: the engine """ # DB engine database_url = \ '{dialect}{driver}://{user}:{password}@{host}/{database_name}'.format( dialect=dialect, driver=driver, user=username, password=password, host=host, database_name=dbname, ) return create_engine(database_url, echo=False, paramstyle='format') def create_db_engine(dialect, driver, username, password, host, dbname): """ Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: <PASSWORD> :param host: Host to connect with the database :param dbname: database name :return: the engine """ # DB engine database_url = \ '{dialect}{driver}://{user}:{password}@{host}/{database_name}'.format( dialect=dialect, driver=driver, user=username, password=password, host=host, database_name=dbname, ) engine = create_db_connection(dialect, driver, username, password, host, dbname) if settings.DEBUG: print('Creating engine with ', database_url) return engine def destroy_db_engine(db_engine): """ Method that disposes of the given engine (to guarantee there are no connections available :param db_engine: Engine to destroy :return: Nothing """ db_engine.dispose() def pg_restore_table(filename): """ Function that given a file produced with a pg_dump, it uploads its content to the existing database :param filename: File in pg_dump format to restore :return: """ process = subprocess.Popen(['psql', '-d', settings.DATABASES['default']['NAME'], '-q', '-f', filename]) process.wait() def delete_all_tables(): """ Delete all tables related to existing workflows :return: """ cursor = connection.cursor() table_list = connection.introspection.get_table_list(cursor) for tinfo in table_list: if not tinfo.name.startswith(table_prefix): continue cursor.execute('DROP TABLE "{0}";'.format(tinfo.name)) # To make sure the table is dropped. connection.commit() return def is_table_in_db(table_name): cursor = connection.cursor() return next( (True for x in connection.introspection.get_table_list(cursor) if x.name == table_name), False ) def is_wf_table_in_db(workflow): return is_table_in_db(create_table_name(workflow.id)) def create_table_name(pk): """ :param pk: Primary Key of a workflow :return: The unique table name to use to store a workflow data frame """ return df_table_prefix.format(pk) def create_upload_table_name(pk): """ :param pk: Primary key of a workflow :return: The unique table to use to upload a new data frame """ return upload_table_prefix.format(pk) def load_from_db(pk, columns=None, filter_exp=None): """ Load the data frame stored for the workflow with the pk :param pk: Primary key of the workflow :param columns: Optional list of columns to load (all if NOne is given) :param filter_exp: JSON expression to filter a subset of rows :return: data frame """ return load_table(create_table_name(pk), columns=columns, filter_exp=filter_exp) def load_table(table_name, columns=None, filter_exp=None): """ Load a data frame from the SQL DB. FUTURE WORK: Consider to store the dataframes in Redis to reduce load/store time. The trick is to use a compressed format: SET: redisConn.set("key", df.to_msgpack(compress='zlib')) GET: pd.read_msgpack(redisConn.get("key")) Need to agree on a sensible item name that does not collide with anything else and a policy to detect a cached dataframe and remove it when the data changes (difficult to detect? Perhaps df_new.equals(df_current)) If feasible, a write-through system could be easily implemented. :param table_name: Table name to read from the db in to data frame :param view: Optional view object to restrict access to the DB :return: data_frame or None if it does not exist. """ if table_name not in connection.introspection.table_names(): return None if settings.DEBUG: print('Loading table ', table_name) if columns or filter_exp: # A list of columns or a filter exp is given query, params = get_filter_query(table_name, columns, filter_exp) result = pd.read_sql_query(query, engine, params=params) else: # No view given, so simply get the whole table result = pd.read_sql(table_name, engine) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def load_query(query): """ Load a data frame from the SQL DB running the given query. :param query: Query to run in the DB :return: data_frame or None if it does not exist. """ if settings.DEBUG: print('Loading query ', query) result = pd.read_sql_query(query, engine) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def load_df_from_csvfile(file, skiprows=0, skipfooter=0): """ Given a file object, try to read the content as a CSV file and transform into a data frame. The skiprows and skipfooter are number of lines to skip from the top and bottom of the file (see read_csv in pandas). It also tries to convert as many columns as possible to date/time format (testing the conversion on every string column). :param filename: File object to read the CSV content :param skiprows: Number of lines to skip at the top of the document :param skipfooter: Number of lines to skip at the bottom of the document :return: Resulting data frame, or an Exception. """ data_frame = pd.read_csv( file, index_col=False, infer_datetime_format=True, quotechar='"', skiprows=skiprows, skipfooter=skipfooter ) # Strip white space from all string columns and try to convert to # datetime just in case for x in list(data_frame.columns): if data_frame[x].dtype.name == 'object': # Column is a string! Remove the leading and trailing white # space data_frame[x] = data_frame[x].str.strip().fillna(data_frame[x]) # Try the datetime conversion try: series = pd.to_datetime(data_frame[x], infer_datetime_format=True) # Datetime conversion worked! Update the data_frame data_frame[x] = series except (ValueError, TypeError): pass return data_frame def load_df_from_sqlconnection(conn_item, pwd=None): """ Load a DF from a SQL connection open with the parameters given in conn_item. :param conn_item: SQLConnection object with the connection parameters. :return: Data frame or raise an exception. """ # Get the connection db_connection = create_db_connection(conn_item.conn_type, conn_item.conn_driver, conn_item.db_user, pwd, conn_item.db_host, conn_item.db_name) # Try to fetch the data result = pd.read_sql(conn_item.db_table, db_connection) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def store_table(data_frame, table_name): """ Store a data frame in the DB :param data_frame: The data frame to store :param table_name: The name of the table in the DB :return: Nothing. Side effect in the DB """ with cache.lock(table_name): # We ovewrite the content and do not create an index data_frame.to_sql(table_name, engine, if_exists='replace', index=False) return def delete_table(pk): """Delete the table representing the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. """ try: cursor = connection.cursor() cursor.execute('DROP TABLE "{0}";'.format(create_table_name(pk))) connection.commit() except Exception: logger.error( 'Error while dropping table {0}'.format(create_table_name(pk)) ) def delete_upload_table(pk): """Delete the table used to merge data into the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. """ cursor = connection.cursor() cursor.execute('DROP TABLE "{0}"'.format(create_upload_table_name(pk))) connection.commit() def get_table_column_types(table_name): """ :param table_name: Table name :return: List of pairs (column name, SQL type) """ cursor = connection.cursor() cursor.execute("""select column_name, data_type from INFORMATION_SCHEMA.COLUMNS where table_name = '{0}'""".format(table_name)) return cursor.fetchall() def df_column_types_rename(table_name): """ :param table_name: Primary key of the workflow containing this data frame (table) :return: List of data type strings translated to the proper values """ column_types = get_table_column_types(table_name) # result = [table_name[x].dtype.name for x in list(table_name.columns)] # for tname, ntname in pandas_datatype_names.items(): # result[:] = [x if x != tname else ntname for x in result] return [sql_datatype_names[x] for __, x in get_table_column_types(table_name)] def df_drop_column(pk, column_name): """ Drop a column from the DB table storing a data frame :param pk: Workflow primary key to obtain table name :param column_name: Column name :return: Drops the column from the corresponding DB table """ query = 'ALTER TABLE "{0}" DROP COLUMN "{1}"'.format( create_table_name(pk), column_name ) cursor = connection.cursor() cursor.execute(query) def get_subframe(pk, cond_filter, column_names=None): """ Execute a select query to extract a subset of the dataframe and turn the resulting query set into a data frame. :param pk: Workflow primary key :param cond_filter: Condition object to filter the data (or None) :param column_names: [list of column names], QuerySet with the data rows :return: """ # Get the cursor cursor = get_table_cursor(pk, cond_filter, column_names) # Create the DataFrame and set the column names result = pd.DataFrame.from_records(cursor.fetchall(), coerce_float=True) result.columns = [c.name for c in cursor.description] return result def get_table_cursor(pk, cond_filter, column_names=None): """ Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param cond_filter: Condition object to filter the data (or None) :param column_names: optional list of columns to select :return: ([list of column names], QuerySet with the data rows) """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}" from "{1}"'.format( '", "'.join(safe_column_names), create_table_name(pk) ) else: query = 'SELECT * from "{0}"'.format(create_table_name(pk)) # See if the action has a filter or not fields = [] if cond_filter is not None: cond_filter, fields = evaluate_node_sql(cond_filter.formula) if cond_filter: # The condition may be empty, in which case, nothing is needed. query += ' WHERE ' + cond_filter # Execute the query cursor = connection.cursor() cursor.execute(query, fields) return cursor def get_table_data(pk, cond_filter, column_names=None): # Get first the cursor cursor = get_table_cursor(pk, cond_filter, column_names) # Return the data return cursor.fetchall() def execute_select_on_table(pk, fields, values, column_names=None): """ Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param fields: List of fields to add to the WHERE clause :param values: parameters to match the previous fields :param column_names: optional list of columns to select :return: QuerySet with the data rows """ # Create the query if column_names: safe_column_names = ['"' + fix_pctg_in_name(x) + '"' for x in column_names] query = 'SELECT {0}'.format(','.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(pk)) # See if the action has a filter or not cursor = connection.cursor() if fields: query += ' WHERE ' + \ ' AND '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in fields]) cursor.execute(query, values) else: # Execute the query cursor.execute(query) # Get the data return cursor.fetchall() def get_table_queryset(tablename): query = 'SELECT * from "{0}";'.format(tablename) try: cursor = connection.cursor() cursor.execute(query) except Exception: return None return cursor.fetchall() def query_to_dicts(query_string, *query_args): """ Run a simple query and produce a generator that returns the results as a bunch of dictionaries with keys for the column values selected. """ cursor = connection.cursor() cursor.execute(query_string, query_args) col_names = [desc[0] for desc in cursor.description] while True: row = cursor.fetchone() if row is None: break row_dict = OrderedDict(izip(col_names, row)) yield row_dict return def update_row(pk, set_fields, set_values, where_fields, where_values): """ Given a primary key, pairs (set_field, set_value), and pairs (where_field, where_value), it updates the row in the table selected with the list of (where field = where value) with the values in the assignments in the list of (set_fields, set_values) :param pk: Primary key to detect workflow :param set_fields: List of field names to be updated :param set_values: List of values to update the fields of the previous list :param where_fields: List of fields used to filter the row in the table :param where_values: List of values of the previous fields to filter the row :return: The table in the workflow pointed by PK is modified. """ # First part of the query with the table name query = 'UPDATE "{0}"'.format(create_table_name(pk)) # Add the SET field = value clauses query += ' SET ' + ', '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in set_fields]) # And finally add the WHERE clause query += ' WHERE ' + ' AND '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in where_fields]) # Concatenate the values as parameters to the query parameters = set_values + where_values # Execute the query cursor = connection.cursor() cursor.execute(query, parameters) connection.commit() def increase_row_integer(pk, set_field, where_field, where_value): """ Given a primary key, a field set_field, and a pair (where_field, where_value), it increases the field in the appropriate row :param pk: Primary key to detect workflow :param set_field: name of the field to be increased :param where_field: Field used to filter the row in the table :param where_value: Value of the previous field to filter the row :return: The table in the workflow pointed by PK is modified. """ # First part of the query with the table name query = 'UPDATE "{0}" SET "{1}" = "{1}" + 1 WHERE "{2}" = %s'.format( create_table_name(pk), set_field, where_field ) # Execute the query cursor = connection.cursor() cursor.execute(query, [where_value]) connection.commit() def get_table_row_by_key(workflow, cond_filter, kv_pair, column_names=None): """ Select the set of elements after filtering and with the key=value pair :param workflow: workflow object to get to the table :param cond_filter: Condition object to filter the data (or None) :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :param column_names: Optional list of column names to select :return: A dictionary with the (column_name, value) data or None if the row has not been found """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(workflow.id)) # Create the second part of the query setting key=value query += ' WHERE ("{0}" = %s)'.format(fix_pctg_in_name(kv_pair[0])) fields = [kv_pair[1]] # See if the action has a filter or not if cond_filter is not None: cond_filter, filter_fields = \ evaluate_node_sql(cond_filter.formula) query += ' AND (' + cond_filter + ')' fields = fields + filter_fields # Execute the query cursor = connection.cursor() cursor.execute(query, fields) # Get the data qs = cursor.fetchall() # If there is anything different than one element, return None if len(qs) != 1: return None # Get the only element qs = qs[0] # ZIP the values to create a dictionary return OrderedDict(zip(workflow.get_column_names(), qs)) def get_column_stats_from_df(df_column): """ Given a data frame with a single column, return a set of statistics depending on its type. :param df_column: data frame with a single column :return: A dictionary with keys depending on the type of column {'min': minimum value (integer, double an datetime), 'q1': Q1 value (0.25) (integer, double), 'mean': mean value (integer, double), 'median': median value (integer, double), 'mean': mean value (integer, double), 'q3': Q3 value (0.75) (integer, double), 'max': maximum value (integer, double an datetime), 'std': standard deviation (integer, double), 'counts': (integer, double, string, datetime, Boolean', 'mode': (integer, double, string, datetime, Boolean, or None if the column has all its values to NaN """ if len(df_column.loc[df_column.notnull()]) == 0: # The column has no data return None # Dictionary to return result = { 'min': 0, 'q1': 0, 'mean': 0, 'median': 0, 'q3': 0, 'max': 0, 'std': 0, 'mode': None, 'counts': {}, } data_type = pandas_datatype_names[df_column.dtype.name] if data_type == 'integer' or data_type == 'double': quantiles = df_column.quantile([0, .25, .5, .75, 1]) result['min'] = '{0:g}'.format(quantiles[0]) result['q1'] = '{0:g}'.format(quantiles[.25]) result['mean'] = '{0:g}'.format(df_column.mean()) result['median'] = '{0:g}'.format(quantiles[.5]) result['q3'] = '{0:g}'.format(quantiles[.75]) result['max'] = '{0:g}'.format(quantiles[1]) result['std'] = '{0:g}'.format(df_column.std()) result['counts'] = df_column.value_counts().to_dict() mode = df_column.mode() if len(mode) == 0: mode = '--' result['mode'] = mode[0] return result def get_filter_query(table_name, column_names, filter_exp): """ Given a set of columns and a filter expression, return a pair of SQL query and params to be executed :param table_name: Table to query :param column_names: list of columns to consider or None to consider all :param filter_exp: Text filter expression :return: (sql query, sql params) """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(table_name) # Calculate the first suffix to add to the query filter_txt = '' filter_fields = [] if filter_exp: filter_txt, filter_fields = evaluate_node_sql(filter_exp) # Build the query so far appending the filter and/or the cv_tuples if filter_txt: query += ' WHERE ' fields = [] # If there has been a suffix from the filter, add it. if filter_txt: query += filter_txt if filter_fields: fields.extend(filter_fields) return (query, fields) def search_table_rows(workflow_id, cv_tuples=None, any_join=True, order_col_name=None, order_asc=True, column_names=None, pre_filter=None): """ Select rows where for every (column, value) pair, column contains value ( as in LIKE %value%, these are combined with OR if any is TRUE, or AND if any is false, and the result is ordered by the given column and type (if given) :param workflow_id: workflow object to get to the table :param cv_tuples: A column, value, type tuple to search the value in the column :param any_join: Boolean encoding if values should be combined with OR (or AND) :param order_col_name: Order results by this column :param order_asc: Order results in ascending values (or descending) :param column_names: Optional list of column names to select :param pre_filter: Optional filter condition to pre filter the query set. the query is built with these terms as requirement AND the cv_tuples. :return: The resulting query set """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(workflow_id)) # Calculate the first suffix to add to the query filter_txt = '' filter_fields = [] if pre_filter: filter_txt, filter_fields = evaluate_node_sql(pre_filter) if cv_tuples: likes = [] tuple_fields = [] for name, value, data_type in cv_tuples: # Make sure we escape the name and search as text name = fix_pctg_in_name(name) mod_name = '(CAST("{0}" AS TEXT) LIKE %s)'.format(name) # Create the second part of the query setting column LIKE '%value%' likes.append(mod_name) tuple_fields.append('%' + value + '%') # Combine the search subqueries if any_join: tuple_txt = '(' + ' OR '.join(likes) + ')' else: tuple_txt = '(' + ' AND '.join(likes) + ')' # Build the query so far appending the filter and/or the cv_tuples if filter_txt or cv_tuples: query += ' WHERE ' fields = [] # If there has been a suffix from the filter, add it. if filter_txt: query += filter_txt fields.extend(filter_fields) # If there is a pre-filter, the suffix needs to be "AND" with the ones # just calculated if filter_txt and cv_tuples: query += ' AND ' if cv_tuples: query += tuple_txt fields.extend(tuple_fields) # Add the order if needed if order_col_name: query += ' ORDER BY "{0}"'.format(fix_pctg_in_name(order_col_name)) if not order_asc: query += ' DESC' # Execute the query cursor = connection.cursor() cursor.execute(query, fields) # Get the data return cursor.fetchall() def delete_table_row_by_key(workflow_id, kv_pair): """ Delete the row in the table attached to a workflow with the given key, value pairs :param workflow_id: workflow object to get to the table :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :return: Drops that row from the table in the DB """ # Create the query query = 'DELETE FROM "{0}"'.format(create_table_name(workflow_id)) # Create the second part of the query setting key=value query += ' WHERE ("{0}" = %s)'.format(fix_pctg_in_name(kv_pair[0])) fields = [kv_pair[1]] # Execute the query cursor = connection.cursor() cursor.execute(query, fields) def num_rows(pk, cond_filter=None): """ Obtain the number of rows of the table storing workflow with given pk :param pk: Primary key of the table storing the data frame :param cond_filter: Condition element to filter the query :return: """ return num_rows_by_name(create_table_name(pk), cond_filter) def num_rows_by_name(table_name, cond_filter=None): """ Given a table name, get its number of rows :param table_name: Table name :param cond_filter: Condition element used to filter the query :return: integer """ # Initial query with the table name query = query_count_rows.format(table_name) fields = [] if cond_filter is not None: cond_filter, fields = evaluate_node_sql(cond_filter) query += ' WHERE ' + cond_filter cursor = connection.cursor() cursor.execute(query, fields) return cursor.fetchone()[0] def check_wf_df(workflow): """ Check the consistency between the information stored in the workflow and the structure of the underlying dataframe :param workflow: Workflow object :return: Boolean stating the result of the check. True: Correct. """ # Get the df df = load_from_db(workflow.id) # Set values in case there is no df if df is not None: dfnrows = df.shape[0] dfncols = df.shape[1] df_col_names = list(df.columns) else: dfnrows = 0 dfncols = 0 df_col_names = [] # Check 1: Number of rows and columns if workflow.nrows != dfnrows: return False if workflow.ncols != dfncols: return False # Identical sets of columns wf_cols = workflow.columns.all() if [x.name for x in wf_cols] != df_col_names: return False # Identical data types for n1, n2 in zip(wf_cols, df_col_names): df_dt = pandas_datatype_names[df[n2].dtype.name] if n1.data_type == 'boolean' and df_dt == 'string': # This is the case of a column with Boolean and Nulls continue if n1.data_type != df_dt: return False return True
# -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function import logging import os.path import subprocess from collections import OrderedDict from itertools import izip import numpy as np import pandas as pd from django.conf import settings from django.core.cache import cache from django.db import connection from sqlalchemy import create_engine from dataops.formula_evaluation import evaluate_node_sql from ontask import fix_pctg_in_name SITE_ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) table_prefix = '__ONTASK_WORKFLOW_TABLE_' df_table_prefix = table_prefix + '{0}' upload_table_prefix = table_prefix + 'UPLOAD_{0}' # Query to count the number of rows in a table query_count_rows = 'SELECT count(*) from "{0}"' logger = logging.getLogger(__name__) # Translation between pandas data type names, and those handled in OnTask pandas_datatype_names = { 'object': 'string', 'int64': 'integer', 'float64': 'double', 'bool': 'boolean', 'datetime64[ns]': 'datetime' } # Translation between SQL data type names, and those handled in OnTask sql_datatype_names = { 'text': 'string', 'bigint': 'integer', 'double precision': 'double', 'boolean': 'boolean', 'timestamp without time zone': 'datetime' } # DB Engine to use with Pandas (required by to_sql, from_sql engine = None def create_db_connection(dialect, driver, username, password, host, dbname): """ Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: Password to connect with the database :param host: Host to connect with the database :param dbname: database name :return: the engine """ # DB engine database_url = \ '{dialect}{driver}://{user}:{password}@{host}/{database_name}'.format( dialect=dialect, driver=driver, user=username, password=password, host=host, database_name=dbname, ) return create_engine(database_url, echo=False, paramstyle='format') def create_db_engine(dialect, driver, username, password, host, dbname): """ Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: <PASSWORD> :param host: Host to connect with the database :param dbname: database name :return: the engine """ # DB engine database_url = \ '{dialect}{driver}://{user}:{password}@{host}/{database_name}'.format( dialect=dialect, driver=driver, user=username, password=password, host=host, database_name=dbname, ) engine = create_db_connection(dialect, driver, username, password, host, dbname) if settings.DEBUG: print('Creating engine with ', database_url) return engine def destroy_db_engine(db_engine): """ Method that disposes of the given engine (to guarantee there are no connections available :param db_engine: Engine to destroy :return: Nothing """ db_engine.dispose() def pg_restore_table(filename): """ Function that given a file produced with a pg_dump, it uploads its content to the existing database :param filename: File in pg_dump format to restore :return: """ process = subprocess.Popen(['psql', '-d', settings.DATABASES['default']['NAME'], '-q', '-f', filename]) process.wait() def delete_all_tables(): """ Delete all tables related to existing workflows :return: """ cursor = connection.cursor() table_list = connection.introspection.get_table_list(cursor) for tinfo in table_list: if not tinfo.name.startswith(table_prefix): continue cursor.execute('DROP TABLE "{0}";'.format(tinfo.name)) # To make sure the table is dropped. connection.commit() return def is_table_in_db(table_name): cursor = connection.cursor() return next( (True for x in connection.introspection.get_table_list(cursor) if x.name == table_name), False ) def is_wf_table_in_db(workflow): return is_table_in_db(create_table_name(workflow.id)) def create_table_name(pk): """ :param pk: Primary Key of a workflow :return: The unique table name to use to store a workflow data frame """ return df_table_prefix.format(pk) def create_upload_table_name(pk): """ :param pk: Primary key of a workflow :return: The unique table to use to upload a new data frame """ return upload_table_prefix.format(pk) def load_from_db(pk, columns=None, filter_exp=None): """ Load the data frame stored for the workflow with the pk :param pk: Primary key of the workflow :param columns: Optional list of columns to load (all if NOne is given) :param filter_exp: JSON expression to filter a subset of rows :return: data frame """ return load_table(create_table_name(pk), columns=columns, filter_exp=filter_exp) def load_table(table_name, columns=None, filter_exp=None): """ Load a data frame from the SQL DB. FUTURE WORK: Consider to store the dataframes in Redis to reduce load/store time. The trick is to use a compressed format: SET: redisConn.set("key", df.to_msgpack(compress='zlib')) GET: pd.read_msgpack(redisConn.get("key")) Need to agree on a sensible item name that does not collide with anything else and a policy to detect a cached dataframe and remove it when the data changes (difficult to detect? Perhaps df_new.equals(df_current)) If feasible, a write-through system could be easily implemented. :param table_name: Table name to read from the db in to data frame :param view: Optional view object to restrict access to the DB :return: data_frame or None if it does not exist. """ if table_name not in connection.introspection.table_names(): return None if settings.DEBUG: print('Loading table ', table_name) if columns or filter_exp: # A list of columns or a filter exp is given query, params = get_filter_query(table_name, columns, filter_exp) result = pd.read_sql_query(query, engine, params=params) else: # No view given, so simply get the whole table result = pd.read_sql(table_name, engine) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def load_query(query): """ Load a data frame from the SQL DB running the given query. :param query: Query to run in the DB :return: data_frame or None if it does not exist. """ if settings.DEBUG: print('Loading query ', query) result = pd.read_sql_query(query, engine) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def load_df_from_csvfile(file, skiprows=0, skipfooter=0): """ Given a file object, try to read the content as a CSV file and transform into a data frame. The skiprows and skipfooter are number of lines to skip from the top and bottom of the file (see read_csv in pandas). It also tries to convert as many columns as possible to date/time format (testing the conversion on every string column). :param filename: File object to read the CSV content :param skiprows: Number of lines to skip at the top of the document :param skipfooter: Number of lines to skip at the bottom of the document :return: Resulting data frame, or an Exception. """ data_frame = pd.read_csv( file, index_col=False, infer_datetime_format=True, quotechar='"', skiprows=skiprows, skipfooter=skipfooter ) # Strip white space from all string columns and try to convert to # datetime just in case for x in list(data_frame.columns): if data_frame[x].dtype.name == 'object': # Column is a string! Remove the leading and trailing white # space data_frame[x] = data_frame[x].str.strip().fillna(data_frame[x]) # Try the datetime conversion try: series = pd.to_datetime(data_frame[x], infer_datetime_format=True) # Datetime conversion worked! Update the data_frame data_frame[x] = series except (ValueError, TypeError): pass return data_frame def load_df_from_sqlconnection(conn_item, pwd=None): """ Load a DF from a SQL connection open with the parameters given in conn_item. :param conn_item: SQLConnection object with the connection parameters. :return: Data frame or raise an exception. """ # Get the connection db_connection = create_db_connection(conn_item.conn_type, conn_item.conn_driver, conn_item.db_user, pwd, conn_item.db_host, conn_item.db_name) # Try to fetch the data result = pd.read_sql(conn_item.db_table, db_connection) # After reading from the DB, turn all None into NaN result.fillna(value=np.nan, inplace=True) return result def store_table(data_frame, table_name): """ Store a data frame in the DB :param data_frame: The data frame to store :param table_name: The name of the table in the DB :return: Nothing. Side effect in the DB """ with cache.lock(table_name): # We ovewrite the content and do not create an index data_frame.to_sql(table_name, engine, if_exists='replace', index=False) return def delete_table(pk): """Delete the table representing the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. """ try: cursor = connection.cursor() cursor.execute('DROP TABLE "{0}";'.format(create_table_name(pk))) connection.commit() except Exception: logger.error( 'Error while dropping table {0}'.format(create_table_name(pk)) ) def delete_upload_table(pk): """Delete the table used to merge data into the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. """ cursor = connection.cursor() cursor.execute('DROP TABLE "{0}"'.format(create_upload_table_name(pk))) connection.commit() def get_table_column_types(table_name): """ :param table_name: Table name :return: List of pairs (column name, SQL type) """ cursor = connection.cursor() cursor.execute("""select column_name, data_type from INFORMATION_SCHEMA.COLUMNS where table_name = '{0}'""".format(table_name)) return cursor.fetchall() def df_column_types_rename(table_name): """ :param table_name: Primary key of the workflow containing this data frame (table) :return: List of data type strings translated to the proper values """ column_types = get_table_column_types(table_name) # result = [table_name[x].dtype.name for x in list(table_name.columns)] # for tname, ntname in pandas_datatype_names.items(): # result[:] = [x if x != tname else ntname for x in result] return [sql_datatype_names[x] for __, x in get_table_column_types(table_name)] def df_drop_column(pk, column_name): """ Drop a column from the DB table storing a data frame :param pk: Workflow primary key to obtain table name :param column_name: Column name :return: Drops the column from the corresponding DB table """ query = 'ALTER TABLE "{0}" DROP COLUMN "{1}"'.format( create_table_name(pk), column_name ) cursor = connection.cursor() cursor.execute(query) def get_subframe(pk, cond_filter, column_names=None): """ Execute a select query to extract a subset of the dataframe and turn the resulting query set into a data frame. :param pk: Workflow primary key :param cond_filter: Condition object to filter the data (or None) :param column_names: [list of column names], QuerySet with the data rows :return: """ # Get the cursor cursor = get_table_cursor(pk, cond_filter, column_names) # Create the DataFrame and set the column names result = pd.DataFrame.from_records(cursor.fetchall(), coerce_float=True) result.columns = [c.name for c in cursor.description] return result def get_table_cursor(pk, cond_filter, column_names=None): """ Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param cond_filter: Condition object to filter the data (or None) :param column_names: optional list of columns to select :return: ([list of column names], QuerySet with the data rows) """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}" from "{1}"'.format( '", "'.join(safe_column_names), create_table_name(pk) ) else: query = 'SELECT * from "{0}"'.format(create_table_name(pk)) # See if the action has a filter or not fields = [] if cond_filter is not None: cond_filter, fields = evaluate_node_sql(cond_filter.formula) if cond_filter: # The condition may be empty, in which case, nothing is needed. query += ' WHERE ' + cond_filter # Execute the query cursor = connection.cursor() cursor.execute(query, fields) return cursor def get_table_data(pk, cond_filter, column_names=None): # Get first the cursor cursor = get_table_cursor(pk, cond_filter, column_names) # Return the data return cursor.fetchall() def execute_select_on_table(pk, fields, values, column_names=None): """ Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param fields: List of fields to add to the WHERE clause :param values: parameters to match the previous fields :param column_names: optional list of columns to select :return: QuerySet with the data rows """ # Create the query if column_names: safe_column_names = ['"' + fix_pctg_in_name(x) + '"' for x in column_names] query = 'SELECT {0}'.format(','.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(pk)) # See if the action has a filter or not cursor = connection.cursor() if fields: query += ' WHERE ' + \ ' AND '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in fields]) cursor.execute(query, values) else: # Execute the query cursor.execute(query) # Get the data return cursor.fetchall() def get_table_queryset(tablename): query = 'SELECT * from "{0}";'.format(tablename) try: cursor = connection.cursor() cursor.execute(query) except Exception: return None return cursor.fetchall() def query_to_dicts(query_string, *query_args): """ Run a simple query and produce a generator that returns the results as a bunch of dictionaries with keys for the column values selected. """ cursor = connection.cursor() cursor.execute(query_string, query_args) col_names = [desc[0] for desc in cursor.description] while True: row = cursor.fetchone() if row is None: break row_dict = OrderedDict(izip(col_names, row)) yield row_dict return def update_row(pk, set_fields, set_values, where_fields, where_values): """ Given a primary key, pairs (set_field, set_value), and pairs (where_field, where_value), it updates the row in the table selected with the list of (where field = where value) with the values in the assignments in the list of (set_fields, set_values) :param pk: Primary key to detect workflow :param set_fields: List of field names to be updated :param set_values: List of values to update the fields of the previous list :param where_fields: List of fields used to filter the row in the table :param where_values: List of values of the previous fields to filter the row :return: The table in the workflow pointed by PK is modified. """ # First part of the query with the table name query = 'UPDATE "{0}"'.format(create_table_name(pk)) # Add the SET field = value clauses query += ' SET ' + ', '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in set_fields]) # And finally add the WHERE clause query += ' WHERE ' + ' AND '.join(['"{0}" = %s'.format(fix_pctg_in_name(x)) for x in where_fields]) # Concatenate the values as parameters to the query parameters = set_values + where_values # Execute the query cursor = connection.cursor() cursor.execute(query, parameters) connection.commit() def increase_row_integer(pk, set_field, where_field, where_value): """ Given a primary key, a field set_field, and a pair (where_field, where_value), it increases the field in the appropriate row :param pk: Primary key to detect workflow :param set_field: name of the field to be increased :param where_field: Field used to filter the row in the table :param where_value: Value of the previous field to filter the row :return: The table in the workflow pointed by PK is modified. """ # First part of the query with the table name query = 'UPDATE "{0}" SET "{1}" = "{1}" + 1 WHERE "{2}" = %s'.format( create_table_name(pk), set_field, where_field ) # Execute the query cursor = connection.cursor() cursor.execute(query, [where_value]) connection.commit() def get_table_row_by_key(workflow, cond_filter, kv_pair, column_names=None): """ Select the set of elements after filtering and with the key=value pair :param workflow: workflow object to get to the table :param cond_filter: Condition object to filter the data (or None) :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :param column_names: Optional list of column names to select :return: A dictionary with the (column_name, value) data or None if the row has not been found """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(workflow.id)) # Create the second part of the query setting key=value query += ' WHERE ("{0}" = %s)'.format(fix_pctg_in_name(kv_pair[0])) fields = [kv_pair[1]] # See if the action has a filter or not if cond_filter is not None: cond_filter, filter_fields = \ evaluate_node_sql(cond_filter.formula) query += ' AND (' + cond_filter + ')' fields = fields + filter_fields # Execute the query cursor = connection.cursor() cursor.execute(query, fields) # Get the data qs = cursor.fetchall() # If there is anything different than one element, return None if len(qs) != 1: return None # Get the only element qs = qs[0] # ZIP the values to create a dictionary return OrderedDict(zip(workflow.get_column_names(), qs)) def get_column_stats_from_df(df_column): """ Given a data frame with a single column, return a set of statistics depending on its type. :param df_column: data frame with a single column :return: A dictionary with keys depending on the type of column {'min': minimum value (integer, double an datetime), 'q1': Q1 value (0.25) (integer, double), 'mean': mean value (integer, double), 'median': median value (integer, double), 'mean': mean value (integer, double), 'q3': Q3 value (0.75) (integer, double), 'max': maximum value (integer, double an datetime), 'std': standard deviation (integer, double), 'counts': (integer, double, string, datetime, Boolean', 'mode': (integer, double, string, datetime, Boolean, or None if the column has all its values to NaN """ if len(df_column.loc[df_column.notnull()]) == 0: # The column has no data return None # Dictionary to return result = { 'min': 0, 'q1': 0, 'mean': 0, 'median': 0, 'q3': 0, 'max': 0, 'std': 0, 'mode': None, 'counts': {}, } data_type = pandas_datatype_names[df_column.dtype.name] if data_type == 'integer' or data_type == 'double': quantiles = df_column.quantile([0, .25, .5, .75, 1]) result['min'] = '{0:g}'.format(quantiles[0]) result['q1'] = '{0:g}'.format(quantiles[.25]) result['mean'] = '{0:g}'.format(df_column.mean()) result['median'] = '{0:g}'.format(quantiles[.5]) result['q3'] = '{0:g}'.format(quantiles[.75]) result['max'] = '{0:g}'.format(quantiles[1]) result['std'] = '{0:g}'.format(df_column.std()) result['counts'] = df_column.value_counts().to_dict() mode = df_column.mode() if len(mode) == 0: mode = '--' result['mode'] = mode[0] return result def get_filter_query(table_name, column_names, filter_exp): """ Given a set of columns and a filter expression, return a pair of SQL query and params to be executed :param table_name: Table to query :param column_names: list of columns to consider or None to consider all :param filter_exp: Text filter expression :return: (sql query, sql params) """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(table_name) # Calculate the first suffix to add to the query filter_txt = '' filter_fields = [] if filter_exp: filter_txt, filter_fields = evaluate_node_sql(filter_exp) # Build the query so far appending the filter and/or the cv_tuples if filter_txt: query += ' WHERE ' fields = [] # If there has been a suffix from the filter, add it. if filter_txt: query += filter_txt if filter_fields: fields.extend(filter_fields) return (query, fields) def search_table_rows(workflow_id, cv_tuples=None, any_join=True, order_col_name=None, order_asc=True, column_names=None, pre_filter=None): """ Select rows where for every (column, value) pair, column contains value ( as in LIKE %value%, these are combined with OR if any is TRUE, or AND if any is false, and the result is ordered by the given column and type (if given) :param workflow_id: workflow object to get to the table :param cv_tuples: A column, value, type tuple to search the value in the column :param any_join: Boolean encoding if values should be combined with OR (or AND) :param order_col_name: Order results by this column :param order_asc: Order results in ascending values (or descending) :param column_names: Optional list of column names to select :param pre_filter: Optional filter condition to pre filter the query set. the query is built with these terms as requirement AND the cv_tuples. :return: The resulting query set """ # Create the query if column_names: safe_column_names = [fix_pctg_in_name(x) for x in column_names] query = 'SELECT "{0}"'.format('", "'.join(safe_column_names)) else: query = 'SELECT *' # Add the table query += ' FROM "{0}"'.format(create_table_name(workflow_id)) # Calculate the first suffix to add to the query filter_txt = '' filter_fields = [] if pre_filter: filter_txt, filter_fields = evaluate_node_sql(pre_filter) if cv_tuples: likes = [] tuple_fields = [] for name, value, data_type in cv_tuples: # Make sure we escape the name and search as text name = fix_pctg_in_name(name) mod_name = '(CAST("{0}" AS TEXT) LIKE %s)'.format(name) # Create the second part of the query setting column LIKE '%value%' likes.append(mod_name) tuple_fields.append('%' + value + '%') # Combine the search subqueries if any_join: tuple_txt = '(' + ' OR '.join(likes) + ')' else: tuple_txt = '(' + ' AND '.join(likes) + ')' # Build the query so far appending the filter and/or the cv_tuples if filter_txt or cv_tuples: query += ' WHERE ' fields = [] # If there has been a suffix from the filter, add it. if filter_txt: query += filter_txt fields.extend(filter_fields) # If there is a pre-filter, the suffix needs to be "AND" with the ones # just calculated if filter_txt and cv_tuples: query += ' AND ' if cv_tuples: query += tuple_txt fields.extend(tuple_fields) # Add the order if needed if order_col_name: query += ' ORDER BY "{0}"'.format(fix_pctg_in_name(order_col_name)) if not order_asc: query += ' DESC' # Execute the query cursor = connection.cursor() cursor.execute(query, fields) # Get the data return cursor.fetchall() def delete_table_row_by_key(workflow_id, kv_pair): """ Delete the row in the table attached to a workflow with the given key, value pairs :param workflow_id: workflow object to get to the table :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :return: Drops that row from the table in the DB """ # Create the query query = 'DELETE FROM "{0}"'.format(create_table_name(workflow_id)) # Create the second part of the query setting key=value query += ' WHERE ("{0}" = %s)'.format(fix_pctg_in_name(kv_pair[0])) fields = [kv_pair[1]] # Execute the query cursor = connection.cursor() cursor.execute(query, fields) def num_rows(pk, cond_filter=None): """ Obtain the number of rows of the table storing workflow with given pk :param pk: Primary key of the table storing the data frame :param cond_filter: Condition element to filter the query :return: """ return num_rows_by_name(create_table_name(pk), cond_filter) def num_rows_by_name(table_name, cond_filter=None): """ Given a table name, get its number of rows :param table_name: Table name :param cond_filter: Condition element used to filter the query :return: integer """ # Initial query with the table name query = query_count_rows.format(table_name) fields = [] if cond_filter is not None: cond_filter, fields = evaluate_node_sql(cond_filter) query += ' WHERE ' + cond_filter cursor = connection.cursor() cursor.execute(query, fields) return cursor.fetchone()[0] def check_wf_df(workflow): """ Check the consistency between the information stored in the workflow and the structure of the underlying dataframe :param workflow: Workflow object :return: Boolean stating the result of the check. True: Correct. """ # Get the df df = load_from_db(workflow.id) # Set values in case there is no df if df is not None: dfnrows = df.shape[0] dfncols = df.shape[1] df_col_names = list(df.columns) else: dfnrows = 0 dfncols = 0 df_col_names = [] # Check 1: Number of rows and columns if workflow.nrows != dfnrows: return False if workflow.ncols != dfncols: return False # Identical sets of columns wf_cols = workflow.columns.all() if [x.name for x in wf_cols] != df_col_names: return False # Identical data types for n1, n2 in zip(wf_cols, df_col_names): df_dt = pandas_datatype_names[df[n2].dtype.name] if n1.data_type == 'boolean' and df_dt == 'string': # This is the case of a column with Boolean and Nulls continue if n1.data_type != df_dt: return False return True
en
0.783379
# -*- coding: utf-8 -*- # Query to count the number of rows in a table # Translation between pandas data type names, and those handled in OnTask # Translation between SQL data type names, and those handled in OnTask # DB Engine to use with Pandas (required by to_sql, from_sql Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: Password to connect with the database :param host: Host to connect with the database :param dbname: database name :return: the engine # DB engine Function that creates the engine object to connect to the database. The object is required by the pandas functions to_sql and from_sql :param dialect: Dialect for the engine (oracle, mysql, postgresql, etc) :param driver: DBAPI driver (psycopg2, ...) :param username: Username to connect with the database :param password: <PASSWORD> :param host: Host to connect with the database :param dbname: database name :return: the engine # DB engine Method that disposes of the given engine (to guarantee there are no connections available :param db_engine: Engine to destroy :return: Nothing Function that given a file produced with a pg_dump, it uploads its content to the existing database :param filename: File in pg_dump format to restore :return: Delete all tables related to existing workflows :return: # To make sure the table is dropped. :param pk: Primary Key of a workflow :return: The unique table name to use to store a workflow data frame :param pk: Primary key of a workflow :return: The unique table to use to upload a new data frame Load the data frame stored for the workflow with the pk :param pk: Primary key of the workflow :param columns: Optional list of columns to load (all if NOne is given) :param filter_exp: JSON expression to filter a subset of rows :return: data frame Load a data frame from the SQL DB. FUTURE WORK: Consider to store the dataframes in Redis to reduce load/store time. The trick is to use a compressed format: SET: redisConn.set("key", df.to_msgpack(compress='zlib')) GET: pd.read_msgpack(redisConn.get("key")) Need to agree on a sensible item name that does not collide with anything else and a policy to detect a cached dataframe and remove it when the data changes (difficult to detect? Perhaps df_new.equals(df_current)) If feasible, a write-through system could be easily implemented. :param table_name: Table name to read from the db in to data frame :param view: Optional view object to restrict access to the DB :return: data_frame or None if it does not exist. # A list of columns or a filter exp is given # No view given, so simply get the whole table # After reading from the DB, turn all None into NaN Load a data frame from the SQL DB running the given query. :param query: Query to run in the DB :return: data_frame or None if it does not exist. # After reading from the DB, turn all None into NaN Given a file object, try to read the content as a CSV file and transform into a data frame. The skiprows and skipfooter are number of lines to skip from the top and bottom of the file (see read_csv in pandas). It also tries to convert as many columns as possible to date/time format (testing the conversion on every string column). :param filename: File object to read the CSV content :param skiprows: Number of lines to skip at the top of the document :param skipfooter: Number of lines to skip at the bottom of the document :return: Resulting data frame, or an Exception. # Strip white space from all string columns and try to convert to # datetime just in case # Column is a string! Remove the leading and trailing white # space # Try the datetime conversion # Datetime conversion worked! Update the data_frame Load a DF from a SQL connection open with the parameters given in conn_item. :param conn_item: SQLConnection object with the connection parameters. :return: Data frame or raise an exception. # Get the connection # Try to fetch the data # After reading from the DB, turn all None into NaN Store a data frame in the DB :param data_frame: The data frame to store :param table_name: The name of the table in the DB :return: Nothing. Side effect in the DB # We ovewrite the content and do not create an index Delete the table representing the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. Delete the table used to merge data into the workflow with the given PK. Due to the dual use of the database, the command has to be executed directly on the DB. :param table_name: Table name :return: List of pairs (column name, SQL type) select column_name, data_type from INFORMATION_SCHEMA.COLUMNS where table_name = '{0}' :param table_name: Primary key of the workflow containing this data frame (table) :return: List of data type strings translated to the proper values # result = [table_name[x].dtype.name for x in list(table_name.columns)] # for tname, ntname in pandas_datatype_names.items(): # result[:] = [x if x != tname else ntname for x in result] Drop a column from the DB table storing a data frame :param pk: Workflow primary key to obtain table name :param column_name: Column name :return: Drops the column from the corresponding DB table Execute a select query to extract a subset of the dataframe and turn the resulting query set into a data frame. :param pk: Workflow primary key :param cond_filter: Condition object to filter the data (or None) :param column_names: [list of column names], QuerySet with the data rows :return: # Get the cursor # Create the DataFrame and set the column names Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param cond_filter: Condition object to filter the data (or None) :param column_names: optional list of columns to select :return: ([list of column names], QuerySet with the data rows) # Create the query # See if the action has a filter or not # The condition may be empty, in which case, nothing is needed. # Execute the query # Get first the cursor # Return the data Execute a select query in the database with an optional filter obtained from the jquery QueryBuilder. :param pk: Primary key of the workflow storing the data :param fields: List of fields to add to the WHERE clause :param values: parameters to match the previous fields :param column_names: optional list of columns to select :return: QuerySet with the data rows # Create the query # Add the table # See if the action has a filter or not # Execute the query # Get the data Run a simple query and produce a generator that returns the results as a bunch of dictionaries with keys for the column values selected. Given a primary key, pairs (set_field, set_value), and pairs (where_field, where_value), it updates the row in the table selected with the list of (where field = where value) with the values in the assignments in the list of (set_fields, set_values) :param pk: Primary key to detect workflow :param set_fields: List of field names to be updated :param set_values: List of values to update the fields of the previous list :param where_fields: List of fields used to filter the row in the table :param where_values: List of values of the previous fields to filter the row :return: The table in the workflow pointed by PK is modified. # First part of the query with the table name # Add the SET field = value clauses # And finally add the WHERE clause # Concatenate the values as parameters to the query # Execute the query Given a primary key, a field set_field, and a pair (where_field, where_value), it increases the field in the appropriate row :param pk: Primary key to detect workflow :param set_field: name of the field to be increased :param where_field: Field used to filter the row in the table :param where_value: Value of the previous field to filter the row :return: The table in the workflow pointed by PK is modified. # First part of the query with the table name # Execute the query Select the set of elements after filtering and with the key=value pair :param workflow: workflow object to get to the table :param cond_filter: Condition object to filter the data (or None) :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :param column_names: Optional list of column names to select :return: A dictionary with the (column_name, value) data or None if the row has not been found # Create the query # Add the table # Create the second part of the query setting key=value # See if the action has a filter or not # Execute the query # Get the data # If there is anything different than one element, return None # Get the only element # ZIP the values to create a dictionary Given a data frame with a single column, return a set of statistics depending on its type. :param df_column: data frame with a single column :return: A dictionary with keys depending on the type of column {'min': minimum value (integer, double an datetime), 'q1': Q1 value (0.25) (integer, double), 'mean': mean value (integer, double), 'median': median value (integer, double), 'mean': mean value (integer, double), 'q3': Q3 value (0.75) (integer, double), 'max': maximum value (integer, double an datetime), 'std': standard deviation (integer, double), 'counts': (integer, double, string, datetime, Boolean', 'mode': (integer, double, string, datetime, Boolean, or None if the column has all its values to NaN # The column has no data # Dictionary to return Given a set of columns and a filter expression, return a pair of SQL query and params to be executed :param table_name: Table to query :param column_names: list of columns to consider or None to consider all :param filter_exp: Text filter expression :return: (sql query, sql params) # Create the query # Add the table # Calculate the first suffix to add to the query # Build the query so far appending the filter and/or the cv_tuples # If there has been a suffix from the filter, add it. Select rows where for every (column, value) pair, column contains value ( as in LIKE %value%, these are combined with OR if any is TRUE, or AND if any is false, and the result is ordered by the given column and type (if given) :param workflow_id: workflow object to get to the table :param cv_tuples: A column, value, type tuple to search the value in the column :param any_join: Boolean encoding if values should be combined with OR (or AND) :param order_col_name: Order results by this column :param order_asc: Order results in ascending values (or descending) :param column_names: Optional list of column names to select :param pre_filter: Optional filter condition to pre filter the query set. the query is built with these terms as requirement AND the cv_tuples. :return: The resulting query set # Create the query # Add the table # Calculate the first suffix to add to the query # Make sure we escape the name and search as text # Create the second part of the query setting column LIKE '%value%' # Combine the search subqueries # Build the query so far appending the filter and/or the cv_tuples # If there has been a suffix from the filter, add it. # If there is a pre-filter, the suffix needs to be "AND" with the ones # just calculated # Add the order if needed # Execute the query # Get the data Delete the row in the table attached to a workflow with the given key, value pairs :param workflow_id: workflow object to get to the table :param kv_pair: A key=value pair to identify the row. Key is suppose to be unique. :return: Drops that row from the table in the DB # Create the query # Create the second part of the query setting key=value # Execute the query Obtain the number of rows of the table storing workflow with given pk :param pk: Primary key of the table storing the data frame :param cond_filter: Condition element to filter the query :return: Given a table name, get its number of rows :param table_name: Table name :param cond_filter: Condition element used to filter the query :return: integer # Initial query with the table name Check the consistency between the information stored in the workflow and the structure of the underlying dataframe :param workflow: Workflow object :return: Boolean stating the result of the check. True: Correct. # Get the df # Set values in case there is no df # Check 1: Number of rows and columns # Identical sets of columns # Identical data types # This is the case of a column with Boolean and Nulls
2.315767
2
config/cf.py
rbsdev/config-client
0
9747
<gh_stars>0 from typing import Any, Dict, KeysView import attr from config.auth import OAuth2 from config.cfenv import CFenv from config.spring import ConfigClient @attr.s(slots=True) class CF: cfenv = attr.ib( type=CFenv, factory=CFenv, validator=attr.validators.instance_of(CFenv), ) oauth2 = attr.ib(type=OAuth2, default=None) client = attr.ib(type=ConfigClient, default=None) def __attrs_post_init__(self) -> None: if not self.oauth2: self.oauth2 = OAuth2( access_token_uri=self.cfenv.configserver_access_token_uri(), client_id=self.cfenv.configserver_client_id(), client_secret=self.cfenv.configserver_client_secret(), ) if not self.client: self.client = ConfigClient( address=self.cfenv.configserver_uri(), app_name=self.cfenv.application_name, profile=self.cfenv.space_name.lower(), ) self.oauth2.configure() @property def vcap_services(self): return self.cfenv.vcap_services @property def vcap_application(self): return self.cfenv.vcap_application def get_config(self) -> None: header = {"Authorization": f"Bearer {self.oauth2.token}"} self.client.get_config(headers=header) @property def config(self) -> Dict: return self.client.config def get_attribute(self, value: str) -> Any: return self.client.get_attribute(value) def get_keys(self) -> KeysView: return self.client.get_keys()
from typing import Any, Dict, KeysView import attr from config.auth import OAuth2 from config.cfenv import CFenv from config.spring import ConfigClient @attr.s(slots=True) class CF: cfenv = attr.ib( type=CFenv, factory=CFenv, validator=attr.validators.instance_of(CFenv), ) oauth2 = attr.ib(type=OAuth2, default=None) client = attr.ib(type=ConfigClient, default=None) def __attrs_post_init__(self) -> None: if not self.oauth2: self.oauth2 = OAuth2( access_token_uri=self.cfenv.configserver_access_token_uri(), client_id=self.cfenv.configserver_client_id(), client_secret=self.cfenv.configserver_client_secret(), ) if not self.client: self.client = ConfigClient( address=self.cfenv.configserver_uri(), app_name=self.cfenv.application_name, profile=self.cfenv.space_name.lower(), ) self.oauth2.configure() @property def vcap_services(self): return self.cfenv.vcap_services @property def vcap_application(self): return self.cfenv.vcap_application def get_config(self) -> None: header = {"Authorization": f"Bearer {self.oauth2.token}"} self.client.get_config(headers=header) @property def config(self) -> Dict: return self.client.config def get_attribute(self, value: str) -> Any: return self.client.get_attribute(value) def get_keys(self) -> KeysView: return self.client.get_keys()
none
1
2.264096
2
ducktape/template.py
rancp/ducktape-docs
0
9748
<reponame>rancp/ducktape-docs # Copyright 2015 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ducktape.utils.util import package_is_installed from jinja2 import Template, FileSystemLoader, PackageLoader, ChoiceLoader, Environment import os.path import inspect class TemplateRenderer(object): def render_template(self, template, **kwargs): """ Render a template using the context of the current object, optionally with overrides. :param template: the template to render, a Template or a str :param kwargs: optional override parameters :return: the rendered template """ if not hasattr(template, 'render'): template = Template(template) ctx = dict(self.__class__.__dict__) ctx.update(self.__dict__) return template.render(ctx, **kwargs) @staticmethod def _package_search_path(module_name): """ :param module_name: Name of a module :return: (package, package_search_path) where package is the package containing the module, and package_search_path is a path relative to the package in which to search for templates. """ module_parts = module_name.split(".") package = module_parts[0] # Construct path relative to package under which "templates" would be found directory = "" for d in module_parts[1: -1]: directory = os.path.join(directory, d) return package, os.path.join(directory, "templates") def render(self, path, **kwargs): """ Render a template loaded from a file. template files referenced in file f should be in a sibling directory of f called "templates". :param path: path, relative to the search paths, to the template file :param kwargs: optional override parameters :return: the rendered template """ if not hasattr(self, 'template_loader'): class_dir = os.path.dirname(inspect.getfile(self.__class__)) module_name = self.__class__.__module__ package, package_search_path = self._package_search_path(module_name) loaders = [] msg = "" if os.path.isdir(class_dir): # FileSystemLoader overrides PackageLoader if the path containing this directory # is a valid directory. FileSystemLoader throws an error from which ChoiceLoader # doesn't recover if the directory is invalid loaders.append(FileSystemLoader(os.path.join(class_dir, 'templates'))) else: msg += "Will not search in %s for template files since it is not a valid directory. " % class_dir if package_is_installed(package): loaders.append(PackageLoader(package, package_search_path)) else: msg += "Will not search in package %s for template files because it cannot be imported." if len(loaders) == 0: # Expect at least one of FileSystemLoader and PackageLoader to be present raise EnvironmentError(msg) self.template_loader = ChoiceLoader(loaders) self.template_env = Environment(loader=self.template_loader, trim_blocks=True, lstrip_blocks=True) template = self.template_env.get_template(path) return self.render_template(template, **kwargs)
# Copyright 2015 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ducktape.utils.util import package_is_installed from jinja2 import Template, FileSystemLoader, PackageLoader, ChoiceLoader, Environment import os.path import inspect class TemplateRenderer(object): def render_template(self, template, **kwargs): """ Render a template using the context of the current object, optionally with overrides. :param template: the template to render, a Template or a str :param kwargs: optional override parameters :return: the rendered template """ if not hasattr(template, 'render'): template = Template(template) ctx = dict(self.__class__.__dict__) ctx.update(self.__dict__) return template.render(ctx, **kwargs) @staticmethod def _package_search_path(module_name): """ :param module_name: Name of a module :return: (package, package_search_path) where package is the package containing the module, and package_search_path is a path relative to the package in which to search for templates. """ module_parts = module_name.split(".") package = module_parts[0] # Construct path relative to package under which "templates" would be found directory = "" for d in module_parts[1: -1]: directory = os.path.join(directory, d) return package, os.path.join(directory, "templates") def render(self, path, **kwargs): """ Render a template loaded from a file. template files referenced in file f should be in a sibling directory of f called "templates". :param path: path, relative to the search paths, to the template file :param kwargs: optional override parameters :return: the rendered template """ if not hasattr(self, 'template_loader'): class_dir = os.path.dirname(inspect.getfile(self.__class__)) module_name = self.__class__.__module__ package, package_search_path = self._package_search_path(module_name) loaders = [] msg = "" if os.path.isdir(class_dir): # FileSystemLoader overrides PackageLoader if the path containing this directory # is a valid directory. FileSystemLoader throws an error from which ChoiceLoader # doesn't recover if the directory is invalid loaders.append(FileSystemLoader(os.path.join(class_dir, 'templates'))) else: msg += "Will not search in %s for template files since it is not a valid directory. " % class_dir if package_is_installed(package): loaders.append(PackageLoader(package, package_search_path)) else: msg += "Will not search in package %s for template files because it cannot be imported." if len(loaders) == 0: # Expect at least one of FileSystemLoader and PackageLoader to be present raise EnvironmentError(msg) self.template_loader = ChoiceLoader(loaders) self.template_env = Environment(loader=self.template_loader, trim_blocks=True, lstrip_blocks=True) template = self.template_env.get_template(path) return self.render_template(template, **kwargs)
en
0.742518
# Copyright 2015 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Render a template using the context of the current object, optionally with overrides. :param template: the template to render, a Template or a str :param kwargs: optional override parameters :return: the rendered template :param module_name: Name of a module :return: (package, package_search_path) where package is the package containing the module, and package_search_path is a path relative to the package in which to search for templates. # Construct path relative to package under which "templates" would be found Render a template loaded from a file. template files referenced in file f should be in a sibling directory of f called "templates". :param path: path, relative to the search paths, to the template file :param kwargs: optional override parameters :return: the rendered template # FileSystemLoader overrides PackageLoader if the path containing this directory # is a valid directory. FileSystemLoader throws an error from which ChoiceLoader # doesn't recover if the directory is invalid # Expect at least one of FileSystemLoader and PackageLoader to be present
2.244931
2
day4/homework/q7.py
AkshayManchanda/Python_Training
0
9749
<reponame>AkshayManchanda/Python_Training<gh_stars>0 i=input("Enter a string: ") list = i.split() list.sort() for i in list: print(i,end=' ')
i=input("Enter a string: ") list = i.split() list.sort() for i in list: print(i,end=' ')
none
1
3.976479
4
src/git_portfolio/use_cases/config_repos.py
staticdev/github-portfolio
0
9750
<filename>src/git_portfolio/use_cases/config_repos.py """Config repositories use case.""" from __future__ import annotations import git_portfolio.config_manager as cm import git_portfolio.domain.gh_connection_settings as cs import git_portfolio.responses as res class ConfigReposUseCase: """Gitp config repositories use case.""" def __init__(self, config_manager: cm.ConfigManager) -> None: """Initializer.""" self.config_manager = config_manager def execute( self, github_config: cs.GhConnectionSettings, selected_repos: list[str] ) -> res.Response: """Configuration of git repositories.""" self.config_manager.config.github_access_token = github_config.access_token self.config_manager.config.github_hostname = github_config.hostname self.config_manager.config.github_selected_repos = selected_repos self.config_manager.save_config() return res.ResponseSuccess("gitp repositories successfully configured.")
<filename>src/git_portfolio/use_cases/config_repos.py """Config repositories use case.""" from __future__ import annotations import git_portfolio.config_manager as cm import git_portfolio.domain.gh_connection_settings as cs import git_portfolio.responses as res class ConfigReposUseCase: """Gitp config repositories use case.""" def __init__(self, config_manager: cm.ConfigManager) -> None: """Initializer.""" self.config_manager = config_manager def execute( self, github_config: cs.GhConnectionSettings, selected_repos: list[str] ) -> res.Response: """Configuration of git repositories.""" self.config_manager.config.github_access_token = github_config.access_token self.config_manager.config.github_hostname = github_config.hostname self.config_manager.config.github_selected_repos = selected_repos self.config_manager.save_config() return res.ResponseSuccess("gitp repositories successfully configured.")
en
0.343925
Config repositories use case. Gitp config repositories use case. Initializer. Configuration of git repositories.
2.058089
2
test/test_logic.py
mateuszkowalke/sudoku_game
0
9751
import pytest from ..logic import Board, empty_board, example_board, solved_board class TestBoard: def test_create_board(self): board = Board(example_board) assert board.tiles == example_board def test_solve_board(self): board = Board(example_board) board.solve() assert board.tiles == solved_board def test_check_if_possible(self): board = Board(example_board) assert board.check_if_possible(0, 0, 4) == False assert board.check_if_possible(0, 0, 9) == True def test_check_solution(self): board = Board(solved_board) assert board.check_solution() def test_new_board(self): board = Board(empty_board) board.new_board(example_board) assert board.tiles == example_board def test_lock_tiles(self): board = Board(example_board) board.lock_tiles() assert board.check_if_tile_locked(0, 1)
import pytest from ..logic import Board, empty_board, example_board, solved_board class TestBoard: def test_create_board(self): board = Board(example_board) assert board.tiles == example_board def test_solve_board(self): board = Board(example_board) board.solve() assert board.tiles == solved_board def test_check_if_possible(self): board = Board(example_board) assert board.check_if_possible(0, 0, 4) == False assert board.check_if_possible(0, 0, 9) == True def test_check_solution(self): board = Board(solved_board) assert board.check_solution() def test_new_board(self): board = Board(empty_board) board.new_board(example_board) assert board.tiles == example_board def test_lock_tiles(self): board = Board(example_board) board.lock_tiles() assert board.check_if_tile_locked(0, 1)
none
1
3.072967
3
src/compas_rhino/objects/_select.py
jf---/compas
2
9752
from __future__ import print_function from __future__ import absolute_import from __future__ import division import ast import rhinoscriptsyntax as rs __all__ = [ 'mesh_select_vertex', 'mesh_select_vertices', 'mesh_select_face', 'mesh_select_faces', 'mesh_select_edge', 'mesh_select_edges', 'network_select_node', 'network_select_nodes', 'network_select_edge', 'network_select_edges', ] def mesh_select_vertex(mesh, message="Select a vertex."): """Select a single vertex of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def mesh_select_vertices(mesh, message="Select vertices."): """Select multiple vertices of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_face(mesh, message="Select a face."): """Select a single face of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] key = ast.literal_eval(key) return key return None def mesh_select_faces(mesh, message="Select faces."): """Select multiple faces of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_edge(mesh, message="Select an edge."): """Select a single edge of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- tuple of int, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def mesh_select_edges(mesh, message="Select edges."): """Select multiple edges of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of tuple of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys def network_select_node(network, message="Select a node."): """Select a single node of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- hashable or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def network_select_nodes(network, message="Select nodes."): """Select multiple nodes of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def network_select_edge(network, message="Select an edge."): """Select a single edge of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- tuple of hashable, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def network_select_edges(network, message="Select edges."): """Select multiple edges of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of tuple of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
from __future__ import print_function from __future__ import absolute_import from __future__ import division import ast import rhinoscriptsyntax as rs __all__ = [ 'mesh_select_vertex', 'mesh_select_vertices', 'mesh_select_face', 'mesh_select_faces', 'mesh_select_edge', 'mesh_select_edges', 'network_select_node', 'network_select_nodes', 'network_select_edge', 'network_select_edges', ] def mesh_select_vertex(mesh, message="Select a vertex."): """Select a single vertex of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def mesh_select_vertices(mesh, message="Select vertices."): """Select multiple vertices of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_face(mesh, message="Select a face."): """Select a single face of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] key = ast.literal_eval(key) return key return None def mesh_select_faces(mesh, message="Select faces."): """Select multiple faces of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_edge(mesh, message="Select an edge."): """Select a single edge of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- tuple of int, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def mesh_select_edges(mesh, message="Select edges."): """Select multiple edges of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of tuple of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys def network_select_node(network, message="Select a node."): """Select a single node of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- hashable or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def network_select_nodes(network, message="Select nodes."): """Select multiple nodes of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def network_select_edge(network, message="Select an edge."): """Select a single edge of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- tuple of hashable, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def network_select_edges(network, message="Select edges."): """Select multiple edges of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of tuple of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
en
0.300779
Select a single vertex of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None Select multiple vertices of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int Select a single face of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None Select multiple faces of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int Select a single edge of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- tuple of int, or None Select multiple edges of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of tuple of int Select a single node of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- hashable or None Select multiple nodes of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of hashable Select a single edge of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- tuple of hashable, or None Select multiple edges of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of tuple of hashable # ============================================================================== # Main # ==============================================================================
2.3027
2
handlers/product_add.py
MuchkoM/CalorieMatchBot
0
9753
from telegram import Update from telegram.ext import Updater, CallbackContext, ConversationHandler, CommandHandler, MessageHandler, Filters from db import DBConnector import re str_matcher = r"\"(?P<name>.+)\"\s*(?P<fat>\d+)\s*/\s*(?P<protein>\d+)\s*/\s*(?P<carbohydrates>\d+)\s*(?P<kcal>\d+)" ADD_1 = 0 def add_0(update: Update, _: CallbackContext): update.message.reply_text('Enter new product in format\n' '"name" fat/protein/carbohydrates kcal') return ADD_1 def add_1(update: Update, context: CallbackContext): db_connect: DBConnector = context.bot_data['db_connect'] result = re.match(str_matcher, update.message.text) if result: db_connect.products.insert(result.groupdict()) update.message.reply_text('Product was added') else: update.message.reply_text('Message have wrong format') return ConversationHandler.END def add_handler(updater: Updater): """/product_add - Add product to list known products""" updater.dispatcher.add_handler(ConversationHandler( entry_points=[CommandHandler('product_add', add_0)], states={ ADD_1: [MessageHandler(Filters.text & ~Filters.command, add_1)] }, fallbacks=[] ))
from telegram import Update from telegram.ext import Updater, CallbackContext, ConversationHandler, CommandHandler, MessageHandler, Filters from db import DBConnector import re str_matcher = r"\"(?P<name>.+)\"\s*(?P<fat>\d+)\s*/\s*(?P<protein>\d+)\s*/\s*(?P<carbohydrates>\d+)\s*(?P<kcal>\d+)" ADD_1 = 0 def add_0(update: Update, _: CallbackContext): update.message.reply_text('Enter new product in format\n' '"name" fat/protein/carbohydrates kcal') return ADD_1 def add_1(update: Update, context: CallbackContext): db_connect: DBConnector = context.bot_data['db_connect'] result = re.match(str_matcher, update.message.text) if result: db_connect.products.insert(result.groupdict()) update.message.reply_text('Product was added') else: update.message.reply_text('Message have wrong format') return ConversationHandler.END def add_handler(updater: Updater): """/product_add - Add product to list known products""" updater.dispatcher.add_handler(ConversationHandler( entry_points=[CommandHandler('product_add', add_0)], states={ ADD_1: [MessageHandler(Filters.text & ~Filters.command, add_1)] }, fallbacks=[] ))
en
0.938881
/product_add - Add product to list known products
2.368037
2
python-packages/nolearn-0.5/build/lib.linux-x86_64-2.7/nolearn/tests/test_dataset.py
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
2
9754
<gh_stars>1-10 from mock import patch import numpy as np def test_dataset_simple(): from ..dataset import Dataset data = object() target = object() dataset = Dataset(data, target) assert dataset.data is data assert dataset.target is target @patch('nolearn.dataset.np.load') def test_dataset_with_filenames(load): from ..dataset import Dataset data = 'datafile' target = 'targetfile' dataset = Dataset(data, target) assert load.call_count == 2 assert dataset.target is load.return_value def test_dataset_train_test_split(): from ..dataset import Dataset data = np.arange(100) target = np.array([0] * 50 + [1] * 50) dataset = Dataset(data, target) assert dataset.split_indices.classes.tolist() == [0, 1] assert dataset.split_indices.n_train == 75 assert dataset.split_indices.n_test == 25 X_train, X_test, y_train, y_test = dataset.train_test_split() assert len(X_train) == len(y_train) assert len(X_test) == len(y_test) def test_dataset_scale(): from ..dataset import Dataset data = np.arange(100).astype('float') target = np.array([0] * 100) dataset = Dataset(data, target) dataset.scale() assert dataset.data[0] == -1.7148160424389376 assert dataset.data[-1] == 1.7148160424389376
from mock import patch import numpy as np def test_dataset_simple(): from ..dataset import Dataset data = object() target = object() dataset = Dataset(data, target) assert dataset.data is data assert dataset.target is target @patch('nolearn.dataset.np.load') def test_dataset_with_filenames(load): from ..dataset import Dataset data = 'datafile' target = 'targetfile' dataset = Dataset(data, target) assert load.call_count == 2 assert dataset.target is load.return_value def test_dataset_train_test_split(): from ..dataset import Dataset data = np.arange(100) target = np.array([0] * 50 + [1] * 50) dataset = Dataset(data, target) assert dataset.split_indices.classes.tolist() == [0, 1] assert dataset.split_indices.n_train == 75 assert dataset.split_indices.n_test == 25 X_train, X_test, y_train, y_test = dataset.train_test_split() assert len(X_train) == len(y_train) assert len(X_test) == len(y_test) def test_dataset_scale(): from ..dataset import Dataset data = np.arange(100).astype('float') target = np.array([0] * 100) dataset = Dataset(data, target) dataset.scale() assert dataset.data[0] == -1.7148160424389376 assert dataset.data[-1] == 1.7148160424389376
none
1
2.369039
2
src/Cipher/MultiLevelCaesarDecrypt.py
EpicTofuu/Assignment
0
9755
<reponame>EpicTofuu/Assignment import Cipher.tk from Cipher.tk import EncryptDecryptCoord, GetChiSquared, Mode def MultiDecrypt (message, alphabet, usables = 3, lan = "English", transformations = [], lowestchi = 9999, ogMessage = ""): msg = "" prev = (9999, (0, 0)) # (chi, key) for i in range (len(message)): for k in range (1, len (alphabet)): msg = EncryptDecryptCoord(message, (i,k), alphabet, Mode.DECRYPT) chi = GetChiSquared (msg, lan) if (round (chi, 3) < round (prev[0], 3)): prev = (chi, (i,k)) # base case if (prev[0] >= lowestchi): v = ogMessage for tr in transformations: v = EncryptDecryptCoord (v, tr, alphabet, Mode.DECRYPT) return (v, lowestchi, transformations) if (len(transformations) == 0): # only set lowest chi on the first run lowestchi = prev[0] ogMessage = message transformations.append (prev[1]) return MultiDecrypt (EncryptDecryptCoord (message, prev[1], alphabet, Mode.DECRYPT), alphabet, usables, lan, transformations, prev[0], ogMessage) ''' # testing do write it here a = " abcdefghijklmnopqrstuvwxyz" p=[] for c in a: p.append (c) print ("starting...") print (MultiDecrypt ("dtyktckcxlbd", p)) # original 231 '''
import Cipher.tk from Cipher.tk import EncryptDecryptCoord, GetChiSquared, Mode def MultiDecrypt (message, alphabet, usables = 3, lan = "English", transformations = [], lowestchi = 9999, ogMessage = ""): msg = "" prev = (9999, (0, 0)) # (chi, key) for i in range (len(message)): for k in range (1, len (alphabet)): msg = EncryptDecryptCoord(message, (i,k), alphabet, Mode.DECRYPT) chi = GetChiSquared (msg, lan) if (round (chi, 3) < round (prev[0], 3)): prev = (chi, (i,k)) # base case if (prev[0] >= lowestchi): v = ogMessage for tr in transformations: v = EncryptDecryptCoord (v, tr, alphabet, Mode.DECRYPT) return (v, lowestchi, transformations) if (len(transformations) == 0): # only set lowest chi on the first run lowestchi = prev[0] ogMessage = message transformations.append (prev[1]) return MultiDecrypt (EncryptDecryptCoord (message, prev[1], alphabet, Mode.DECRYPT), alphabet, usables, lan, transformations, prev[0], ogMessage) ''' # testing do write it here a = " abcdefghijklmnopqrstuvwxyz" p=[] for c in a: p.append (c) print ("starting...") print (MultiDecrypt ("dtyktckcxlbd", p)) # original 231 '''
en
0.620817
# (chi, key) # base case # only set lowest chi on the first run # testing do write it here a = " abcdefghijklmnopqrstuvwxyz" p=[] for c in a: p.append (c) print ("starting...") print (MultiDecrypt ("dtyktckcxlbd", p)) # original 231
3.471786
3
scripts/vcf_filter.py
bunop/cyvcf
46
9756
<reponame>bunop/cyvcf<gh_stars>10-100 #!/usr/bin/env python import sys import argparse import pkg_resources import vcf from vcf.parser import _Filter parser = argparse.ArgumentParser(description='Filter a VCF file', formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('input', metavar='input', type=str, nargs=1, help='File to process (use - for STDIN)') parser.add_argument('filters', metavar='filter', type=str, nargs='+', help='Filters to use') parser.add_argument('--no-short-circuit', action='store_true', help='Do not stop filter processing on a site if a single filter fails.') parser.add_argument('--output', action='store', default=sys.stdout, help='Filename to output (default stdout)') parser.add_argument('--no-filtered', action='store_true', help='Remove failed sites') if __name__ == '__main__': # TODO: allow filter specification by short name # TODO: flag that writes filter output into INFO column # TODO: argument use implies filter use # TODO: parallelize # TODO: prevent plugins raising an exception from crashing the script # dynamically build the list of available filters filters = {} filter_help = '\n\navailable filters:' for p in pkg_resources.iter_entry_points('vcf.filters'): filt = p.load() filters[filt.name] = filt filt.customize_parser(parser) filter_help += '\n %s:\t%s' % (filt.name, filt.description) parser.description += filter_help # parse command line args args = parser.parse_args() inp = vcf.Reader(file(args.input[0])) # build filter chain chain = [] for name in args.filters: f = filters[name](args) chain.append(f) inp.filters[f.filter_name()] = _Filter(f.filter_name(), f.description) oup = vcf.Writer(args.output, inp) # apply filters short_circuit = not args.no_short_circuit for record in inp: for filt in chain: result = filt(record) if result: record.add_filter(filt.filter_name()) if short_circuit: break if (not args.no_filtered) or (record.FILTER == '.'): oup.write_record(record)
#!/usr/bin/env python import sys import argparse import pkg_resources import vcf from vcf.parser import _Filter parser = argparse.ArgumentParser(description='Filter a VCF file', formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('input', metavar='input', type=str, nargs=1, help='File to process (use - for STDIN)') parser.add_argument('filters', metavar='filter', type=str, nargs='+', help='Filters to use') parser.add_argument('--no-short-circuit', action='store_true', help='Do not stop filter processing on a site if a single filter fails.') parser.add_argument('--output', action='store', default=sys.stdout, help='Filename to output (default stdout)') parser.add_argument('--no-filtered', action='store_true', help='Remove failed sites') if __name__ == '__main__': # TODO: allow filter specification by short name # TODO: flag that writes filter output into INFO column # TODO: argument use implies filter use # TODO: parallelize # TODO: prevent plugins raising an exception from crashing the script # dynamically build the list of available filters filters = {} filter_help = '\n\navailable filters:' for p in pkg_resources.iter_entry_points('vcf.filters'): filt = p.load() filters[filt.name] = filt filt.customize_parser(parser) filter_help += '\n %s:\t%s' % (filt.name, filt.description) parser.description += filter_help # parse command line args args = parser.parse_args() inp = vcf.Reader(file(args.input[0])) # build filter chain chain = [] for name in args.filters: f = filters[name](args) chain.append(f) inp.filters[f.filter_name()] = _Filter(f.filter_name(), f.description) oup = vcf.Writer(args.output, inp) # apply filters short_circuit = not args.no_short_circuit for record in inp: for filt in chain: result = filt(record) if result: record.add_filter(filt.filter_name()) if short_circuit: break if (not args.no_filtered) or (record.FILTER == '.'): oup.write_record(record)
en
0.585351
#!/usr/bin/env python # TODO: allow filter specification by short name # TODO: flag that writes filter output into INFO column # TODO: argument use implies filter use # TODO: parallelize # TODO: prevent plugins raising an exception from crashing the script # dynamically build the list of available filters # parse command line args # build filter chain # apply filters
2.495073
2
src/flocker/blueprints/red/__init__.py
Muxelmann/home-projects
0
9757
import os from flask import Blueprint, render_template def create_bp(): bp_red = Blueprint('red', __name__, url_prefix='/red') @bp_red.route('/index/') @bp_red.route('/') def index(): return render_template('red/index.html') return bp_red
import os from flask import Blueprint, render_template def create_bp(): bp_red = Blueprint('red', __name__, url_prefix='/red') @bp_red.route('/index/') @bp_red.route('/') def index(): return render_template('red/index.html') return bp_red
none
1
2.296598
2
alphacoders/__init__.py
whoiscc/alphacoders
7
9758
<reponame>whoiscc/alphacoders # from aiohttp.client_exceptions import ClientError from lxml import html from pathlib import Path from asyncio import create_task from functools import wraps def start_immediately(task): @wraps(task) def wrapper(*args, **kwargs): return create_task(task(*args, **kwargs)) return wrapper @start_immediately async def download_page(client, url): count = 0 while True: print(f"(retry = {count}) download url: {url}") try: async with client.get(url) as resp: assert resp.status == 200 return await resp.text() except ClientError: pass finally: count += 1 @start_immediately async def download_image(client, url, target_dir, name): count = 0 while True: print(f"(retry = {count}) download image: {url} -> {target_dir / name}") try: async with client.get(url) as resp: content = await resp.read() target_dir.mkdir(exist_ok=True) (target_dir / name).write_bytes(content) return except ClientError: pass finally: count += 1 def download_search(client, keyword, page): safe_keyword = keyword.replace(" ", "+") # url = f"https://mobile.alphacoders.com/by-resolution/5?search={safe_keyword}&page={page}" url = f"https://wall.alphacoders.com/search.php?search={safe_keyword}&page={page}" return download_page(client, url) @start_immediately async def query_image_id(client, keyword=None, page=None, document=None): if document is None: assert keyword is not None and page is not None search = await download_search(client, keyword, page) document = html.fromstring(search) a_list = document.xpath('//div[@class="boxgrid"]/a') href_list = [a.attrib["href"] for a in a_list] return href_list def query_page_count(document): count_string = document.xpath('//ul[@class="pagination"]/li[last() - 1]/a/text()')[ 0 ] return int(count_string) @start_immediately async def query_image_url(client, detail_path): url = f"https://wall.alphacoders.com/{detail_path}" detail = await download_page(client, url) document = html.fromstring(detail) image = document.xpath('//div[@class="center img-container-desktop"]/a')[0] return image.attrib["href"] @start_immediately async def download_image_by_id(manager, client, image_id, target_dir): image_url = await query_image_url(client, image_id) name = image_url.split("/")[-1] await download_image(client, image_url, target_dir, name) manager.complete_count += 1 class SingleTask: def __init__(self, keyword, limit=None): self.keyword = keyword self.limit = limit self.complete_count = 0 self.triggered = False async def run(self, client): assert not self.triggered self.triggered = True first_search_doc = html.fromstring( await download_search(client, self.keyword, 1) ) page_count = query_page_count(first_search_doc) download_image_task_list = [] image_count = 0 for page in range(1, page_count + 1): if page == 1: partial_list = await query_image_id(client, document=first_search_doc) else: partial_list = await query_image_id( client, keyword=self.keyword, page=page ) if self.limit is not None: partial_list = partial_list[: self.limit - image_count] image_count += len(partial_list) for image_id in partial_list: download_image_task_list.append( download_image_by_id(self, client, image_id, Path(self.keyword)) ) if self.limit is not None and image_count == self.limit: break for task in download_image_task_list: await task @start_immediately async def execute_single_task(manager, client): return await manager.run(client)
# from aiohttp.client_exceptions import ClientError from lxml import html from pathlib import Path from asyncio import create_task from functools import wraps def start_immediately(task): @wraps(task) def wrapper(*args, **kwargs): return create_task(task(*args, **kwargs)) return wrapper @start_immediately async def download_page(client, url): count = 0 while True: print(f"(retry = {count}) download url: {url}") try: async with client.get(url) as resp: assert resp.status == 200 return await resp.text() except ClientError: pass finally: count += 1 @start_immediately async def download_image(client, url, target_dir, name): count = 0 while True: print(f"(retry = {count}) download image: {url} -> {target_dir / name}") try: async with client.get(url) as resp: content = await resp.read() target_dir.mkdir(exist_ok=True) (target_dir / name).write_bytes(content) return except ClientError: pass finally: count += 1 def download_search(client, keyword, page): safe_keyword = keyword.replace(" ", "+") # url = f"https://mobile.alphacoders.com/by-resolution/5?search={safe_keyword}&page={page}" url = f"https://wall.alphacoders.com/search.php?search={safe_keyword}&page={page}" return download_page(client, url) @start_immediately async def query_image_id(client, keyword=None, page=None, document=None): if document is None: assert keyword is not None and page is not None search = await download_search(client, keyword, page) document = html.fromstring(search) a_list = document.xpath('//div[@class="boxgrid"]/a') href_list = [a.attrib["href"] for a in a_list] return href_list def query_page_count(document): count_string = document.xpath('//ul[@class="pagination"]/li[last() - 1]/a/text()')[ 0 ] return int(count_string) @start_immediately async def query_image_url(client, detail_path): url = f"https://wall.alphacoders.com/{detail_path}" detail = await download_page(client, url) document = html.fromstring(detail) image = document.xpath('//div[@class="center img-container-desktop"]/a')[0] return image.attrib["href"] @start_immediately async def download_image_by_id(manager, client, image_id, target_dir): image_url = await query_image_url(client, image_id) name = image_url.split("/")[-1] await download_image(client, image_url, target_dir, name) manager.complete_count += 1 class SingleTask: def __init__(self, keyword, limit=None): self.keyword = keyword self.limit = limit self.complete_count = 0 self.triggered = False async def run(self, client): assert not self.triggered self.triggered = True first_search_doc = html.fromstring( await download_search(client, self.keyword, 1) ) page_count = query_page_count(first_search_doc) download_image_task_list = [] image_count = 0 for page in range(1, page_count + 1): if page == 1: partial_list = await query_image_id(client, document=first_search_doc) else: partial_list = await query_image_id( client, keyword=self.keyword, page=page ) if self.limit is not None: partial_list = partial_list[: self.limit - image_count] image_count += len(partial_list) for image_id in partial_list: download_image_task_list.append( download_image_by_id(self, client, image_id, Path(self.keyword)) ) if self.limit is not None and image_count == self.limit: break for task in download_image_task_list: await task @start_immediately async def execute_single_task(manager, client): return await manager.run(client)
en
0.573389
# # url = f"https://mobile.alphacoders.com/by-resolution/5?search={safe_keyword}&page={page}"
2.717837
3
Python/Calculating_Trimmed_Means/calculating_trimmed_means1.py
PeriscopeData/analytics-toolbox
2
9759
# SQL output is imported as a pandas dataframe variable called "df" # Source: https://stackoverflow.com/questions/19441730/trimmed-mean-with-percentage-limit-in-python import pandas as pd import matplotlib.pyplot as plt from scipy.stats import tmean, scoreatpercentile import numpy as np def trimmean(arr, percent): lower_limit = scoreatpercentile(arr, percent) upper_limit = scoreatpercentile(arr, 100-percent) return tmean(arr, limits=(lower_limit, upper_limit), inclusive=(False, False)) my_result = trimmean(df["amt_paid"].values,10)
# SQL output is imported as a pandas dataframe variable called "df" # Source: https://stackoverflow.com/questions/19441730/trimmed-mean-with-percentage-limit-in-python import pandas as pd import matplotlib.pyplot as plt from scipy.stats import tmean, scoreatpercentile import numpy as np def trimmean(arr, percent): lower_limit = scoreatpercentile(arr, percent) upper_limit = scoreatpercentile(arr, 100-percent) return tmean(arr, limits=(lower_limit, upper_limit), inclusive=(False, False)) my_result = trimmean(df["amt_paid"].values,10)
en
0.849478
# SQL output is imported as a pandas dataframe variable called "df" # Source: https://stackoverflow.com/questions/19441730/trimmed-mean-with-percentage-limit-in-python
3.285858
3
scripts/data_extract.py
amichalski2/WBC-SHAP
0
9760
import os import cv2 import random import numpy as np from tensorflow.keras.utils import to_categorical from scripts.consts import class_dict def get_data(path, split=0.2): X, y = [], [] for directory in os.listdir(path): dirpath = os.path.join(path, directory) print(directory, len(os.listdir(dirpath))) for file in os.listdir(dirpath): filepath = os.path.join(dirpath, file) img = cv2.imread(filepath, cv2.IMREAD_UNCHANGED) if img.shape != (360, 363, 3): img = cv2.resize(img, (360, 363), cv2.INTER_CUBIC) X.append(img) y.append(class_dict[directory]) data = list(zip(X, y)) random.shuffle(data) X, y = zip(*data) num_train = int((1.0 - split) * len(y)) X_train, X_valid = np.array(X[:num_train]).astype( 'float32'), np.array(X[num_train:]).astype('float32') y_train, y_valid = np.array( y[:num_train]).reshape(-1, 1), np.array(y[num_train:]).reshape((-1, 1)) X_train = X_train / 255.0 X_valid = X_valid / 255.0 y_train, y_valid = to_categorical(y_train), to_categorical(y_valid) print(X_train.shape, y_train.shape) print(X_valid.shape, y_valid.shape) return X_train, y_train, X_valid, y_valid
import os import cv2 import random import numpy as np from tensorflow.keras.utils import to_categorical from scripts.consts import class_dict def get_data(path, split=0.2): X, y = [], [] for directory in os.listdir(path): dirpath = os.path.join(path, directory) print(directory, len(os.listdir(dirpath))) for file in os.listdir(dirpath): filepath = os.path.join(dirpath, file) img = cv2.imread(filepath, cv2.IMREAD_UNCHANGED) if img.shape != (360, 363, 3): img = cv2.resize(img, (360, 363), cv2.INTER_CUBIC) X.append(img) y.append(class_dict[directory]) data = list(zip(X, y)) random.shuffle(data) X, y = zip(*data) num_train = int((1.0 - split) * len(y)) X_train, X_valid = np.array(X[:num_train]).astype( 'float32'), np.array(X[num_train:]).astype('float32') y_train, y_valid = np.array( y[:num_train]).reshape(-1, 1), np.array(y[num_train:]).reshape((-1, 1)) X_train = X_train / 255.0 X_valid = X_valid / 255.0 y_train, y_valid = to_categorical(y_train), to_categorical(y_valid) print(X_train.shape, y_train.shape) print(X_valid.shape, y_valid.shape) return X_train, y_train, X_valid, y_valid
none
1
2.634801
3
ironic/tests/unit/drivers/test_base.py
tzumainn/ironic
0
9761
<filename>ironic/tests/unit/drivers/test_base.py # Copyright 2014 Cisco Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import mock from ironic.common import exception from ironic.common import raid from ironic.common import states from ironic.drivers import base as driver_base from ironic.drivers.modules import fake from ironic.tests import base class FakeVendorInterface(driver_base.VendorInterface): def get_properties(self): pass @driver_base.passthru(['POST']) def noexception(self): return "Fake" @driver_base.driver_passthru(['POST']) def driver_noexception(self): return "Fake" @driver_base.passthru(['POST']) def ironicexception(self): raise exception.IronicException("Fake!") @driver_base.passthru(['POST']) def normalexception(self): raise Exception("Fake!") @driver_base.passthru(['POST'], require_exclusive_lock=False) def shared_task(self): return "shared fake" def validate(self, task, **kwargs): pass def driver_validate(self, **kwargs): pass class PassthruDecoratorTestCase(base.TestCase): def setUp(self): super(PassthruDecoratorTestCase, self).setUp() self.fvi = FakeVendorInterface() def test_passthru_noexception(self): result = self.fvi.noexception() self.assertEqual("Fake", result) @mock.patch.object(driver_base, 'LOG', autospec=True) def test_passthru_ironicexception(self, mock_log): self.assertRaises(exception.IronicException, self.fvi.ironicexception, mock.ANY) mock_log.exception.assert_called_with( mock.ANY, 'ironicexception') @mock.patch.object(driver_base, 'LOG', autospec=True) def test_passthru_nonironicexception(self, mock_log): self.assertRaises(exception.VendorPassthruException, self.fvi.normalexception, mock.ANY) mock_log.exception.assert_called_with( mock.ANY, 'normalexception') def test_passthru_shared_task_metadata(self): self.assertIn('require_exclusive_lock', self.fvi.shared_task._vendor_metadata[1]) self.assertFalse( self.fvi.shared_task._vendor_metadata[1]['require_exclusive_lock']) def test_passthru_exclusive_task_metadata(self): self.assertIn('require_exclusive_lock', self.fvi.noexception._vendor_metadata[1]) self.assertTrue( self.fvi.noexception._vendor_metadata[1]['require_exclusive_lock']) def test_passthru_check_func_references(self): inst1 = FakeVendorInterface() inst2 = FakeVendorInterface() self.assertNotEqual(inst1.vendor_routes['noexception']['func'], inst2.vendor_routes['noexception']['func']) self.assertNotEqual(inst1.driver_routes['driver_noexception']['func'], inst2.driver_routes['driver_noexception']['func']) class CleanStepDecoratorTestCase(base.TestCase): def setUp(self): super(CleanStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_clean_step del method_mock._clean_step_priority del method_mock._clean_step_abortable del method_mock._clean_step_argsinfo self.method = method_mock def test__validate_argsinfo(self): # None, empty dict driver_base._validate_argsinfo(None) driver_base._validate_argsinfo({}) # Only description specified driver_base._validate_argsinfo({'arg1': {'description': 'desc1'}}) # Multiple args driver_base._validate_argsinfo({'arg1': {'description': 'desc1', 'required': True}, 'arg2': {'description': 'desc2'}}) def test__validate_argsinfo_not_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'argsinfo.+dictionary', driver_base._validate_argsinfo, 'not-a-dict') def test__validate_argsinfo_arg_not_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'Argument.+dictionary', driver_base._validate_argsinfo, {'arg1': 'not-a-dict'}) def test__validate_argsinfo_arg_empty_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'description', driver_base._validate_argsinfo, {'arg1': {}}) def test__validate_argsinfo_arg_missing_description(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'description', driver_base._validate_argsinfo, {'arg1': {'required': True}}) def test__validate_argsinfo_arg_description_invalid(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'string', driver_base._validate_argsinfo, {'arg1': {'description': True}}) def test__validate_argsinfo_arg_required_invalid(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'Boolean', driver_base._validate_argsinfo, {'arg1': {'description': 'desc1', 'required': 'maybe'}}) def test__validate_argsinfo_arg_unknown_key(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'invalid', driver_base._validate_argsinfo, {'arg1': {'description': 'desc1', 'unknown': 'bad'}}) def test_clean_step_priority_only(self): d = driver_base.clean_step(priority=10) d(self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(10, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertIsNone(self.method._clean_step_argsinfo) def test_clean_step_all_args(self): argsinfo = {'arg1': {'description': 'desc1', 'required': True}} d = driver_base.clean_step(priority=0, abortable=True, argsinfo=argsinfo) d(self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertTrue(self.method._clean_step_abortable) self.assertEqual(argsinfo, self.method._clean_step_argsinfo) def test_clean_step_bad_priority(self): d = driver_base.clean_step(priority='hi') self.assertRaisesRegex(exception.InvalidParameterValue, 'priority', d, self.method) self.assertTrue(self.method._is_clean_step) self.assertFalse(hasattr(self.method, '_clean_step_priority')) self.assertFalse(hasattr(self.method, '_clean_step_abortable')) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) def test_clean_step_bad_abortable(self): d = driver_base.clean_step(priority=0, abortable='blue') self.assertRaisesRegex(exception.InvalidParameterValue, 'abortable', d, self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(hasattr(self.method, '_clean_step_abortable')) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) @mock.patch.object(driver_base, '_validate_argsinfo', spec_set=True, autospec=True) def test_clean_step_bad_argsinfo(self, mock_valid): mock_valid.side_effect = exception.InvalidParameterValue('bad') d = driver_base.clean_step(priority=0, argsinfo=100) self.assertRaises(exception.InvalidParameterValue, d, self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) class CleanStepTestCase(base.TestCase): def test_get_and_execute_clean_steps(self): # Create a fake Driver class, create some clean steps, make sure # they are listed correctly, and attempt to execute one of them method_mock = mock.MagicMock(spec_set=[]) method_args_mock = mock.MagicMock(spec_set=[]) task_mock = mock.MagicMock(spec_set=[]) class BaseTestClass(driver_base.BaseInterface): def get_properties(self): return {} def validate(self, task): pass class TestClass(BaseTestClass): interface_type = 'test' @driver_base.clean_step(priority=0) def manual_method(self, task): pass @driver_base.clean_step(priority=10, abortable=True) def automated_method(self, task): method_mock(task) def not_clean_method(self, task): pass class TestClass2(BaseTestClass): interface_type = 'test2' @driver_base.clean_step(priority=0) def manual_method2(self, task): pass @driver_base.clean_step(priority=20, abortable=True) def automated_method2(self, task): method_mock(task) def not_clean_method2(self, task): pass class TestClass3(BaseTestClass): interface_type = 'test3' @driver_base.clean_step(priority=0, abortable=True, argsinfo={ 'arg1': {'description': 'desc1', 'required': True}}) def manual_method3(self, task, **kwargs): method_args_mock(task, **kwargs) @driver_base.clean_step(priority=15, argsinfo={ 'arg10': {'description': 'desc10'}}) def automated_method3(self, task, **kwargs): pass def not_clean_method3(self, task): pass obj = TestClass() obj2 = TestClass2() obj3 = TestClass3() self.assertEqual(2, len(obj.get_clean_steps(task_mock))) # Ensure the steps look correct self.assertEqual(10, obj.get_clean_steps(task_mock)[0]['priority']) self.assertTrue(obj.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test', obj.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method', obj.get_clean_steps( task_mock)[0]['step']) self.assertEqual(0, obj.get_clean_steps(task_mock)[1]['priority']) self.assertFalse(obj.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual('test', obj.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method', obj.get_clean_steps( task_mock)[1]['step']) # Ensure the second obj get different clean steps self.assertEqual(2, len(obj2.get_clean_steps(task_mock))) # Ensure the steps look correct self.assertEqual(20, obj2.get_clean_steps(task_mock)[0]['priority']) self.assertTrue(obj2.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test2', obj2.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method2', obj2.get_clean_steps( task_mock)[0]['step']) self.assertEqual(0, obj2.get_clean_steps(task_mock)[1]['priority']) self.assertFalse(obj2.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual('test2', obj2.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method2', obj2.get_clean_steps( task_mock)[1]['step']) self.assertIsNone(obj2.get_clean_steps(task_mock)[0]['argsinfo']) # Ensure the third obj has different clean steps self.assertEqual(2, len(obj3.get_clean_steps(task_mock))) self.assertEqual(15, obj3.get_clean_steps(task_mock)[0]['priority']) self.assertFalse(obj3.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test3', obj3.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method3', obj3.get_clean_steps( task_mock)[0]['step']) self.assertEqual({'arg10': {'description': 'desc10'}}, obj3.get_clean_steps(task_mock)[0]['argsinfo']) self.assertEqual(0, obj3.get_clean_steps(task_mock)[1]['priority']) self.assertTrue(obj3.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual(obj3.interface_type, obj3.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method3', obj3.get_clean_steps( task_mock)[1]['step']) self.assertEqual({'arg1': {'description': 'desc1', 'required': True}}, obj3.get_clean_steps(task_mock)[1]['argsinfo']) # Ensure we can execute the function. obj.execute_clean_step(task_mock, obj.get_clean_steps(task_mock)[0]) method_mock.assert_called_once_with(task_mock) args = {'arg1': 'val1'} clean_step = {'interface': 'test3', 'step': 'manual_method3', 'args': args} obj3.execute_clean_step(task_mock, clean_step) method_args_mock.assert_called_once_with(task_mock, **args) class DeployStepDecoratorTestCase(base.TestCase): def setUp(self): super(DeployStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_deploy_step del method_mock._deploy_step_priority del method_mock._deploy_step_argsinfo self.method = method_mock def test_deploy_step_priority_only(self): d = driver_base.deploy_step(priority=10) d(self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(10, self.method._deploy_step_priority) self.assertIsNone(self.method._deploy_step_argsinfo) def test_deploy_step_all_args(self): argsinfo = {'arg1': {'description': 'desc1', 'required': True}} d = driver_base.deploy_step(priority=0, argsinfo=argsinfo) d(self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(argsinfo, self.method._deploy_step_argsinfo) def test_deploy_step_bad_priority(self): d = driver_base.deploy_step(priority='hi') self.assertRaisesRegex(exception.InvalidParameterValue, 'priority', d, self.method) self.assertTrue(self.method._is_deploy_step) self.assertFalse(hasattr(self.method, '_deploy_step_priority')) self.assertFalse(hasattr(self.method, '_deploy_step_argsinfo')) @mock.patch.object(driver_base, '_validate_argsinfo', spec_set=True, autospec=True) def test_deploy_step_bad_argsinfo(self, mock_valid): mock_valid.side_effect = exception.InvalidParameterValue('bad') d = driver_base.deploy_step(priority=0, argsinfo=100) self.assertRaises(exception.InvalidParameterValue, d, self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertFalse(hasattr(self.method, '_deploy_step_argsinfo')) class DeployAndCleanStepDecoratorTestCase(base.TestCase): def setUp(self): super(DeployAndCleanStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_deploy_step del method_mock._deploy_step_priority del method_mock._deploy_step_argsinfo del method_mock._is_clean_step del method_mock._clean_step_priority del method_mock._clean_step_abortable del method_mock._clean_step_argsinfo self.method = method_mock def test_deploy_and_clean_step_priority_only(self): dd = driver_base.deploy_step(priority=10) dc = driver_base.clean_step(priority=11) dd(dc(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(10, self.method._deploy_step_priority) self.assertIsNone(self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(11, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertIsNone(self.method._clean_step_argsinfo) def test_deploy_and_clean_step_all_args(self): dargsinfo = {'arg1': {'description': 'desc1', 'required': True}} cargsinfo = {'arg2': {'description': 'desc2', 'required': False}} dd = driver_base.deploy_step(priority=0, argsinfo=dargsinfo) dc = driver_base.clean_step(priority=0, argsinfo=cargsinfo) dd(dc(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(dargsinfo, self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertEqual(cargsinfo, self.method._clean_step_argsinfo) def test_clean_and_deploy_step_all_args(self): # Opposite ordering, should make no difference. dargsinfo = {'arg1': {'description': 'desc1', 'required': True}} cargsinfo = {'arg2': {'description': 'desc2', 'required': False}} dd = driver_base.deploy_step(priority=0, argsinfo=dargsinfo) dc = driver_base.clean_step(priority=0, argsinfo=cargsinfo) dc(dd(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(dargsinfo, self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertEqual(cargsinfo, self.method._clean_step_argsinfo) class DeployStepTestCase(base.TestCase): def test_get_and_execute_deploy_steps(self): # Create a fake Driver class, create some deploy steps, make sure # they are listed correctly, and attempt to execute one of them method_mock = mock.MagicMock(spec_set=[]) method_args_mock = mock.MagicMock(spec_set=[]) task_mock = mock.MagicMock(spec_set=[]) class BaseTestClass(driver_base.BaseInterface): def get_properties(self): return {} def validate(self, task): pass class TestClass(BaseTestClass): interface_type = 'test' @driver_base.deploy_step(priority=0) def deploy_zero(self, task): pass @driver_base.deploy_step(priority=10) def deploy_ten(self, task): method_mock(task) def not_deploy_method(self, task): pass class TestClass2(BaseTestClass): interface_type = 'test2' @driver_base.deploy_step(priority=0) def deploy_zero2(self, task): pass @driver_base.deploy_step(priority=20) def deploy_twenty(self, task): method_mock(task) def not_deploy_method2(self, task): pass class TestClass3(BaseTestClass): interface_type = 'test3' @driver_base.deploy_step(priority=0, argsinfo={ 'arg1': {'description': 'desc1', 'required': True}}) def deploy_zero3(self, task, **kwargs): method_args_mock(task, **kwargs) @driver_base.deploy_step(priority=15, argsinfo={ 'arg10': {'description': 'desc10'}}) def deploy_fifteen(self, task, **kwargs): pass def not_deploy_method3(self, task): pass obj = TestClass() obj2 = TestClass2() obj3 = TestClass3() self.assertEqual(2, len(obj.get_deploy_steps(task_mock))) # Ensure the steps look correct self.assertEqual(10, obj.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test', obj.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_ten', obj.get_deploy_steps( task_mock)[0]['step']) self.assertEqual(0, obj.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual('test', obj.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero', obj.get_deploy_steps( task_mock)[1]['step']) # Ensure the second obj has different deploy steps self.assertEqual(2, len(obj2.get_deploy_steps(task_mock))) # Ensure the steps look correct self.assertEqual(20, obj2.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test2', obj2.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_twenty', obj2.get_deploy_steps( task_mock)[0]['step']) self.assertEqual(0, obj2.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual('test2', obj2.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero2', obj2.get_deploy_steps( task_mock)[1]['step']) self.assertIsNone(obj2.get_deploy_steps(task_mock)[0]['argsinfo']) # Ensure the third obj has different deploy steps self.assertEqual(2, len(obj3.get_deploy_steps(task_mock))) self.assertEqual(15, obj3.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test3', obj3.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_fifteen', obj3.get_deploy_steps( task_mock)[0]['step']) self.assertEqual({'arg10': {'description': 'desc10'}}, obj3.get_deploy_steps(task_mock)[0]['argsinfo']) self.assertEqual(0, obj3.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual(obj3.interface_type, obj3.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero3', obj3.get_deploy_steps( task_mock)[1]['step']) self.assertEqual({'arg1': {'description': 'desc1', 'required': True}}, obj3.get_deploy_steps(task_mock)[1]['argsinfo']) # Ensure we can execute the function. obj.execute_deploy_step(task_mock, obj.get_deploy_steps(task_mock)[0]) method_mock.assert_called_once_with(task_mock) args = {'arg1': 'val1'} deploy_step = {'interface': 'test3', 'step': 'deploy_zero3', 'args': args} obj3.execute_deploy_step(task_mock, deploy_step) method_args_mock.assert_called_once_with(task_mock, **args) class MyRAIDInterface(driver_base.RAIDInterface): def create_configuration(self, task, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True): pass def delete_configuration(self, task): pass class RAIDInterfaceTestCase(base.TestCase): @mock.patch.object(driver_base.RAIDInterface, 'validate_raid_config', autospec=True) def test_validate(self, validate_raid_config_mock): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config='some_raid_config') task_mock = mock.MagicMock(node=node_mock) raid_interface.validate(task_mock) validate_raid_config_mock.assert_called_once_with( raid_interface, task_mock, 'some_raid_config') @mock.patch.object(driver_base.RAIDInterface, 'validate_raid_config', autospec=True) def test_validate_no_target_raid_config(self, validate_raid_config_mock): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config={}) task_mock = mock.MagicMock(node=node_mock) raid_interface.validate(task_mock) self.assertFalse(validate_raid_config_mock.called) @mock.patch.object(raid, 'validate_configuration', autospec=True) def test_validate_raid_config(self, common_validate_mock): with open(driver_base.RAID_CONFIG_SCHEMA, 'r') as raid_schema_fobj: raid_schema = json.load(raid_schema_fobj) raid_interface = MyRAIDInterface() raid_interface.validate_raid_config('task', 'some_raid_config') common_validate_mock.assert_called_once_with( 'some_raid_config', raid_schema) @mock.patch.object(raid, 'get_logical_disk_properties', autospec=True) def test_get_logical_disk_properties(self, get_properties_mock): with open(driver_base.RAID_CONFIG_SCHEMA, 'r') as raid_schema_fobj: raid_schema = json.load(raid_schema_fobj) raid_interface = MyRAIDInterface() raid_interface.get_logical_disk_properties() get_properties_mock.assert_called_once_with(raid_schema) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_create.return_value = states.DEPLOYWAIT raid_config = 'some_raid_config' result = raid_interface.apply_configuration(task_mock, raid_config) self.assertEqual(states.DEPLOYWAIT, result) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) mock_create.assert_called_once_with(raid_interface, task_mock, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True) self.assertEqual(raid_config, node_mock.target_raid_config) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration_delete_existing(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_create.return_value = states.DEPLOYWAIT raid_config = 'some_raid_config' result = raid_interface.apply_configuration(task_mock, raid_config, delete_existing=True) self.assertEqual(states.DEPLOYWAIT, result) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) mock_create.assert_called_once_with(raid_interface, task_mock, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True) self.assertEqual(raid_config, node_mock.target_raid_config) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration_invalid(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_validate.side_effect = exception.InvalidParameterValue('bad') raid_config = 'some_raid_config' self.assertRaises(exception.InvalidParameterValue, raid_interface.apply_configuration, task_mock, raid_config) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) self.assertFalse(mock_create.called) self.assertIsNone(node_mock.target_raid_config) class TestDeployInterface(base.TestCase): @mock.patch.object(driver_base.LOG, 'warning', autospec=True) def test_warning_on_heartbeat(self, mock_log): # NOTE(dtantsur): FakeDeploy does not override heartbeat deploy = fake.FakeDeploy() deploy.heartbeat(mock.Mock(node=mock.Mock(uuid='uuid', driver='driver')), 'url', '3.2.0') self.assertTrue(mock_log.called) class MyBIOSInterface(driver_base.BIOSInterface): def get_properties(self): pass def validate(self, task): pass @driver_base.cache_bios_settings def apply_configuration(self, task, settings): return "return_value_apply_configuration" @driver_base.cache_bios_settings def factory_reset(self, task): return "return_value_factory_reset" def cache_bios_settings(self, task): pass class TestBIOSInterface(base.TestCase): @mock.patch.object(MyBIOSInterface, 'cache_bios_settings', autospec=True) def test_apply_configuration_wrapper(self, cache_bios_settings_mock): bios = MyBIOSInterface() task_mock = mock.MagicMock() actual = bios.apply_configuration(task_mock, "") cache_bios_settings_mock.assert_called_once_with(bios, task_mock) self.assertEqual(actual, "return_value_apply_configuration") @mock.patch.object(MyBIOSInterface, 'cache_bios_settings', autospec=True) def test_factory_reset_wrapper(self, cache_bios_settings_mock): bios = MyBIOSInterface() task_mock = mock.MagicMock() actual = bios.factory_reset(task_mock) cache_bios_settings_mock.assert_called_once_with(bios, task_mock) self.assertEqual(actual, "return_value_factory_reset") class TestBootInterface(base.TestCase): def test_validate_rescue_default_impl(self): boot = fake.FakeBoot() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, boot.validate_rescue, task_mock) class TestManagementInterface(base.TestCase): def test_inject_nmi_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.inject_nmi, task_mock) def test_get_supported_boot_modes_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.get_supported_boot_modes, task_mock) def test_set_boot_mode_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.set_boot_mode, task_mock, 'whatever') def test_get_boot_mode_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.get_boot_mode, task_mock) class TestBareDriver(base.TestCase): def test_class_variables(self): self.assertEqual(['boot', 'deploy', 'management', 'network', 'power'], driver_base.BareDriver().core_interfaces) self.assertEqual( ['bios', 'console', 'inspect', 'raid', 'rescue', 'storage'], driver_base.BareDriver().optional_interfaces )
<filename>ironic/tests/unit/drivers/test_base.py # Copyright 2014 Cisco Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import mock from ironic.common import exception from ironic.common import raid from ironic.common import states from ironic.drivers import base as driver_base from ironic.drivers.modules import fake from ironic.tests import base class FakeVendorInterface(driver_base.VendorInterface): def get_properties(self): pass @driver_base.passthru(['POST']) def noexception(self): return "Fake" @driver_base.driver_passthru(['POST']) def driver_noexception(self): return "Fake" @driver_base.passthru(['POST']) def ironicexception(self): raise exception.IronicException("Fake!") @driver_base.passthru(['POST']) def normalexception(self): raise Exception("Fake!") @driver_base.passthru(['POST'], require_exclusive_lock=False) def shared_task(self): return "shared fake" def validate(self, task, **kwargs): pass def driver_validate(self, **kwargs): pass class PassthruDecoratorTestCase(base.TestCase): def setUp(self): super(PassthruDecoratorTestCase, self).setUp() self.fvi = FakeVendorInterface() def test_passthru_noexception(self): result = self.fvi.noexception() self.assertEqual("Fake", result) @mock.patch.object(driver_base, 'LOG', autospec=True) def test_passthru_ironicexception(self, mock_log): self.assertRaises(exception.IronicException, self.fvi.ironicexception, mock.ANY) mock_log.exception.assert_called_with( mock.ANY, 'ironicexception') @mock.patch.object(driver_base, 'LOG', autospec=True) def test_passthru_nonironicexception(self, mock_log): self.assertRaises(exception.VendorPassthruException, self.fvi.normalexception, mock.ANY) mock_log.exception.assert_called_with( mock.ANY, 'normalexception') def test_passthru_shared_task_metadata(self): self.assertIn('require_exclusive_lock', self.fvi.shared_task._vendor_metadata[1]) self.assertFalse( self.fvi.shared_task._vendor_metadata[1]['require_exclusive_lock']) def test_passthru_exclusive_task_metadata(self): self.assertIn('require_exclusive_lock', self.fvi.noexception._vendor_metadata[1]) self.assertTrue( self.fvi.noexception._vendor_metadata[1]['require_exclusive_lock']) def test_passthru_check_func_references(self): inst1 = FakeVendorInterface() inst2 = FakeVendorInterface() self.assertNotEqual(inst1.vendor_routes['noexception']['func'], inst2.vendor_routes['noexception']['func']) self.assertNotEqual(inst1.driver_routes['driver_noexception']['func'], inst2.driver_routes['driver_noexception']['func']) class CleanStepDecoratorTestCase(base.TestCase): def setUp(self): super(CleanStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_clean_step del method_mock._clean_step_priority del method_mock._clean_step_abortable del method_mock._clean_step_argsinfo self.method = method_mock def test__validate_argsinfo(self): # None, empty dict driver_base._validate_argsinfo(None) driver_base._validate_argsinfo({}) # Only description specified driver_base._validate_argsinfo({'arg1': {'description': 'desc1'}}) # Multiple args driver_base._validate_argsinfo({'arg1': {'description': 'desc1', 'required': True}, 'arg2': {'description': 'desc2'}}) def test__validate_argsinfo_not_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'argsinfo.+dictionary', driver_base._validate_argsinfo, 'not-a-dict') def test__validate_argsinfo_arg_not_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'Argument.+dictionary', driver_base._validate_argsinfo, {'arg1': 'not-a-dict'}) def test__validate_argsinfo_arg_empty_dict(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'description', driver_base._validate_argsinfo, {'arg1': {}}) def test__validate_argsinfo_arg_missing_description(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'description', driver_base._validate_argsinfo, {'arg1': {'required': True}}) def test__validate_argsinfo_arg_description_invalid(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'string', driver_base._validate_argsinfo, {'arg1': {'description': True}}) def test__validate_argsinfo_arg_required_invalid(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'Boolean', driver_base._validate_argsinfo, {'arg1': {'description': 'desc1', 'required': 'maybe'}}) def test__validate_argsinfo_arg_unknown_key(self): self.assertRaisesRegex(exception.InvalidParameterValue, 'invalid', driver_base._validate_argsinfo, {'arg1': {'description': 'desc1', 'unknown': 'bad'}}) def test_clean_step_priority_only(self): d = driver_base.clean_step(priority=10) d(self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(10, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertIsNone(self.method._clean_step_argsinfo) def test_clean_step_all_args(self): argsinfo = {'arg1': {'description': 'desc1', 'required': True}} d = driver_base.clean_step(priority=0, abortable=True, argsinfo=argsinfo) d(self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertTrue(self.method._clean_step_abortable) self.assertEqual(argsinfo, self.method._clean_step_argsinfo) def test_clean_step_bad_priority(self): d = driver_base.clean_step(priority='hi') self.assertRaisesRegex(exception.InvalidParameterValue, 'priority', d, self.method) self.assertTrue(self.method._is_clean_step) self.assertFalse(hasattr(self.method, '_clean_step_priority')) self.assertFalse(hasattr(self.method, '_clean_step_abortable')) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) def test_clean_step_bad_abortable(self): d = driver_base.clean_step(priority=0, abortable='blue') self.assertRaisesRegex(exception.InvalidParameterValue, 'abortable', d, self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(hasattr(self.method, '_clean_step_abortable')) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) @mock.patch.object(driver_base, '_validate_argsinfo', spec_set=True, autospec=True) def test_clean_step_bad_argsinfo(self, mock_valid): mock_valid.side_effect = exception.InvalidParameterValue('bad') d = driver_base.clean_step(priority=0, argsinfo=100) self.assertRaises(exception.InvalidParameterValue, d, self.method) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertFalse(hasattr(self.method, '_clean_step_argsinfo')) class CleanStepTestCase(base.TestCase): def test_get_and_execute_clean_steps(self): # Create a fake Driver class, create some clean steps, make sure # they are listed correctly, and attempt to execute one of them method_mock = mock.MagicMock(spec_set=[]) method_args_mock = mock.MagicMock(spec_set=[]) task_mock = mock.MagicMock(spec_set=[]) class BaseTestClass(driver_base.BaseInterface): def get_properties(self): return {} def validate(self, task): pass class TestClass(BaseTestClass): interface_type = 'test' @driver_base.clean_step(priority=0) def manual_method(self, task): pass @driver_base.clean_step(priority=10, abortable=True) def automated_method(self, task): method_mock(task) def not_clean_method(self, task): pass class TestClass2(BaseTestClass): interface_type = 'test2' @driver_base.clean_step(priority=0) def manual_method2(self, task): pass @driver_base.clean_step(priority=20, abortable=True) def automated_method2(self, task): method_mock(task) def not_clean_method2(self, task): pass class TestClass3(BaseTestClass): interface_type = 'test3' @driver_base.clean_step(priority=0, abortable=True, argsinfo={ 'arg1': {'description': 'desc1', 'required': True}}) def manual_method3(self, task, **kwargs): method_args_mock(task, **kwargs) @driver_base.clean_step(priority=15, argsinfo={ 'arg10': {'description': 'desc10'}}) def automated_method3(self, task, **kwargs): pass def not_clean_method3(self, task): pass obj = TestClass() obj2 = TestClass2() obj3 = TestClass3() self.assertEqual(2, len(obj.get_clean_steps(task_mock))) # Ensure the steps look correct self.assertEqual(10, obj.get_clean_steps(task_mock)[0]['priority']) self.assertTrue(obj.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test', obj.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method', obj.get_clean_steps( task_mock)[0]['step']) self.assertEqual(0, obj.get_clean_steps(task_mock)[1]['priority']) self.assertFalse(obj.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual('test', obj.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method', obj.get_clean_steps( task_mock)[1]['step']) # Ensure the second obj get different clean steps self.assertEqual(2, len(obj2.get_clean_steps(task_mock))) # Ensure the steps look correct self.assertEqual(20, obj2.get_clean_steps(task_mock)[0]['priority']) self.assertTrue(obj2.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test2', obj2.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method2', obj2.get_clean_steps( task_mock)[0]['step']) self.assertEqual(0, obj2.get_clean_steps(task_mock)[1]['priority']) self.assertFalse(obj2.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual('test2', obj2.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method2', obj2.get_clean_steps( task_mock)[1]['step']) self.assertIsNone(obj2.get_clean_steps(task_mock)[0]['argsinfo']) # Ensure the third obj has different clean steps self.assertEqual(2, len(obj3.get_clean_steps(task_mock))) self.assertEqual(15, obj3.get_clean_steps(task_mock)[0]['priority']) self.assertFalse(obj3.get_clean_steps(task_mock)[0]['abortable']) self.assertEqual('test3', obj3.get_clean_steps( task_mock)[0]['interface']) self.assertEqual('automated_method3', obj3.get_clean_steps( task_mock)[0]['step']) self.assertEqual({'arg10': {'description': 'desc10'}}, obj3.get_clean_steps(task_mock)[0]['argsinfo']) self.assertEqual(0, obj3.get_clean_steps(task_mock)[1]['priority']) self.assertTrue(obj3.get_clean_steps(task_mock)[1]['abortable']) self.assertEqual(obj3.interface_type, obj3.get_clean_steps( task_mock)[1]['interface']) self.assertEqual('manual_method3', obj3.get_clean_steps( task_mock)[1]['step']) self.assertEqual({'arg1': {'description': 'desc1', 'required': True}}, obj3.get_clean_steps(task_mock)[1]['argsinfo']) # Ensure we can execute the function. obj.execute_clean_step(task_mock, obj.get_clean_steps(task_mock)[0]) method_mock.assert_called_once_with(task_mock) args = {'arg1': 'val1'} clean_step = {'interface': 'test3', 'step': 'manual_method3', 'args': args} obj3.execute_clean_step(task_mock, clean_step) method_args_mock.assert_called_once_with(task_mock, **args) class DeployStepDecoratorTestCase(base.TestCase): def setUp(self): super(DeployStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_deploy_step del method_mock._deploy_step_priority del method_mock._deploy_step_argsinfo self.method = method_mock def test_deploy_step_priority_only(self): d = driver_base.deploy_step(priority=10) d(self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(10, self.method._deploy_step_priority) self.assertIsNone(self.method._deploy_step_argsinfo) def test_deploy_step_all_args(self): argsinfo = {'arg1': {'description': 'desc1', 'required': True}} d = driver_base.deploy_step(priority=0, argsinfo=argsinfo) d(self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(argsinfo, self.method._deploy_step_argsinfo) def test_deploy_step_bad_priority(self): d = driver_base.deploy_step(priority='hi') self.assertRaisesRegex(exception.InvalidParameterValue, 'priority', d, self.method) self.assertTrue(self.method._is_deploy_step) self.assertFalse(hasattr(self.method, '_deploy_step_priority')) self.assertFalse(hasattr(self.method, '_deploy_step_argsinfo')) @mock.patch.object(driver_base, '_validate_argsinfo', spec_set=True, autospec=True) def test_deploy_step_bad_argsinfo(self, mock_valid): mock_valid.side_effect = exception.InvalidParameterValue('bad') d = driver_base.deploy_step(priority=0, argsinfo=100) self.assertRaises(exception.InvalidParameterValue, d, self.method) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertFalse(hasattr(self.method, '_deploy_step_argsinfo')) class DeployAndCleanStepDecoratorTestCase(base.TestCase): def setUp(self): super(DeployAndCleanStepDecoratorTestCase, self).setUp() method_mock = mock.MagicMock() del method_mock._is_deploy_step del method_mock._deploy_step_priority del method_mock._deploy_step_argsinfo del method_mock._is_clean_step del method_mock._clean_step_priority del method_mock._clean_step_abortable del method_mock._clean_step_argsinfo self.method = method_mock def test_deploy_and_clean_step_priority_only(self): dd = driver_base.deploy_step(priority=10) dc = driver_base.clean_step(priority=11) dd(dc(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(10, self.method._deploy_step_priority) self.assertIsNone(self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(11, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertIsNone(self.method._clean_step_argsinfo) def test_deploy_and_clean_step_all_args(self): dargsinfo = {'arg1': {'description': 'desc1', 'required': True}} cargsinfo = {'arg2': {'description': 'desc2', 'required': False}} dd = driver_base.deploy_step(priority=0, argsinfo=dargsinfo) dc = driver_base.clean_step(priority=0, argsinfo=cargsinfo) dd(dc(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(dargsinfo, self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertEqual(cargsinfo, self.method._clean_step_argsinfo) def test_clean_and_deploy_step_all_args(self): # Opposite ordering, should make no difference. dargsinfo = {'arg1': {'description': 'desc1', 'required': True}} cargsinfo = {'arg2': {'description': 'desc2', 'required': False}} dd = driver_base.deploy_step(priority=0, argsinfo=dargsinfo) dc = driver_base.clean_step(priority=0, argsinfo=cargsinfo) dc(dd(self.method)) self.assertTrue(self.method._is_deploy_step) self.assertEqual(0, self.method._deploy_step_priority) self.assertEqual(dargsinfo, self.method._deploy_step_argsinfo) self.assertTrue(self.method._is_clean_step) self.assertEqual(0, self.method._clean_step_priority) self.assertFalse(self.method._clean_step_abortable) self.assertEqual(cargsinfo, self.method._clean_step_argsinfo) class DeployStepTestCase(base.TestCase): def test_get_and_execute_deploy_steps(self): # Create a fake Driver class, create some deploy steps, make sure # they are listed correctly, and attempt to execute one of them method_mock = mock.MagicMock(spec_set=[]) method_args_mock = mock.MagicMock(spec_set=[]) task_mock = mock.MagicMock(spec_set=[]) class BaseTestClass(driver_base.BaseInterface): def get_properties(self): return {} def validate(self, task): pass class TestClass(BaseTestClass): interface_type = 'test' @driver_base.deploy_step(priority=0) def deploy_zero(self, task): pass @driver_base.deploy_step(priority=10) def deploy_ten(self, task): method_mock(task) def not_deploy_method(self, task): pass class TestClass2(BaseTestClass): interface_type = 'test2' @driver_base.deploy_step(priority=0) def deploy_zero2(self, task): pass @driver_base.deploy_step(priority=20) def deploy_twenty(self, task): method_mock(task) def not_deploy_method2(self, task): pass class TestClass3(BaseTestClass): interface_type = 'test3' @driver_base.deploy_step(priority=0, argsinfo={ 'arg1': {'description': 'desc1', 'required': True}}) def deploy_zero3(self, task, **kwargs): method_args_mock(task, **kwargs) @driver_base.deploy_step(priority=15, argsinfo={ 'arg10': {'description': 'desc10'}}) def deploy_fifteen(self, task, **kwargs): pass def not_deploy_method3(self, task): pass obj = TestClass() obj2 = TestClass2() obj3 = TestClass3() self.assertEqual(2, len(obj.get_deploy_steps(task_mock))) # Ensure the steps look correct self.assertEqual(10, obj.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test', obj.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_ten', obj.get_deploy_steps( task_mock)[0]['step']) self.assertEqual(0, obj.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual('test', obj.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero', obj.get_deploy_steps( task_mock)[1]['step']) # Ensure the second obj has different deploy steps self.assertEqual(2, len(obj2.get_deploy_steps(task_mock))) # Ensure the steps look correct self.assertEqual(20, obj2.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test2', obj2.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_twenty', obj2.get_deploy_steps( task_mock)[0]['step']) self.assertEqual(0, obj2.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual('test2', obj2.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero2', obj2.get_deploy_steps( task_mock)[1]['step']) self.assertIsNone(obj2.get_deploy_steps(task_mock)[0]['argsinfo']) # Ensure the third obj has different deploy steps self.assertEqual(2, len(obj3.get_deploy_steps(task_mock))) self.assertEqual(15, obj3.get_deploy_steps(task_mock)[0]['priority']) self.assertEqual('test3', obj3.get_deploy_steps( task_mock)[0]['interface']) self.assertEqual('deploy_fifteen', obj3.get_deploy_steps( task_mock)[0]['step']) self.assertEqual({'arg10': {'description': 'desc10'}}, obj3.get_deploy_steps(task_mock)[0]['argsinfo']) self.assertEqual(0, obj3.get_deploy_steps(task_mock)[1]['priority']) self.assertEqual(obj3.interface_type, obj3.get_deploy_steps( task_mock)[1]['interface']) self.assertEqual('deploy_zero3', obj3.get_deploy_steps( task_mock)[1]['step']) self.assertEqual({'arg1': {'description': 'desc1', 'required': True}}, obj3.get_deploy_steps(task_mock)[1]['argsinfo']) # Ensure we can execute the function. obj.execute_deploy_step(task_mock, obj.get_deploy_steps(task_mock)[0]) method_mock.assert_called_once_with(task_mock) args = {'arg1': 'val1'} deploy_step = {'interface': 'test3', 'step': 'deploy_zero3', 'args': args} obj3.execute_deploy_step(task_mock, deploy_step) method_args_mock.assert_called_once_with(task_mock, **args) class MyRAIDInterface(driver_base.RAIDInterface): def create_configuration(self, task, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True): pass def delete_configuration(self, task): pass class RAIDInterfaceTestCase(base.TestCase): @mock.patch.object(driver_base.RAIDInterface, 'validate_raid_config', autospec=True) def test_validate(self, validate_raid_config_mock): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config='some_raid_config') task_mock = mock.MagicMock(node=node_mock) raid_interface.validate(task_mock) validate_raid_config_mock.assert_called_once_with( raid_interface, task_mock, 'some_raid_config') @mock.patch.object(driver_base.RAIDInterface, 'validate_raid_config', autospec=True) def test_validate_no_target_raid_config(self, validate_raid_config_mock): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config={}) task_mock = mock.MagicMock(node=node_mock) raid_interface.validate(task_mock) self.assertFalse(validate_raid_config_mock.called) @mock.patch.object(raid, 'validate_configuration', autospec=True) def test_validate_raid_config(self, common_validate_mock): with open(driver_base.RAID_CONFIG_SCHEMA, 'r') as raid_schema_fobj: raid_schema = json.load(raid_schema_fobj) raid_interface = MyRAIDInterface() raid_interface.validate_raid_config('task', 'some_raid_config') common_validate_mock.assert_called_once_with( 'some_raid_config', raid_schema) @mock.patch.object(raid, 'get_logical_disk_properties', autospec=True) def test_get_logical_disk_properties(self, get_properties_mock): with open(driver_base.RAID_CONFIG_SCHEMA, 'r') as raid_schema_fobj: raid_schema = json.load(raid_schema_fobj) raid_interface = MyRAIDInterface() raid_interface.get_logical_disk_properties() get_properties_mock.assert_called_once_with(raid_schema) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_create.return_value = states.DEPLOYWAIT raid_config = 'some_raid_config' result = raid_interface.apply_configuration(task_mock, raid_config) self.assertEqual(states.DEPLOYWAIT, result) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) mock_create.assert_called_once_with(raid_interface, task_mock, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True) self.assertEqual(raid_config, node_mock.target_raid_config) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration_delete_existing(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_create.return_value = states.DEPLOYWAIT raid_config = 'some_raid_config' result = raid_interface.apply_configuration(task_mock, raid_config, delete_existing=True) self.assertEqual(states.DEPLOYWAIT, result) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) mock_create.assert_called_once_with(raid_interface, task_mock, create_root_volume=True, create_nonroot_volumes=True, delete_existing=True) self.assertEqual(raid_config, node_mock.target_raid_config) @mock.patch.object(MyRAIDInterface, 'create_configuration', autospec=True) @mock.patch.object(MyRAIDInterface, 'validate_raid_config', autospec=True) def test_apply_configuration_invalid(self, mock_validate, mock_create): raid_interface = MyRAIDInterface() node_mock = mock.MagicMock(target_raid_config=None) task_mock = mock.MagicMock(node=node_mock) mock_validate.side_effect = exception.InvalidParameterValue('bad') raid_config = 'some_raid_config' self.assertRaises(exception.InvalidParameterValue, raid_interface.apply_configuration, task_mock, raid_config) mock_validate.assert_called_once_with(raid_interface, task_mock, raid_config) self.assertFalse(mock_create.called) self.assertIsNone(node_mock.target_raid_config) class TestDeployInterface(base.TestCase): @mock.patch.object(driver_base.LOG, 'warning', autospec=True) def test_warning_on_heartbeat(self, mock_log): # NOTE(dtantsur): FakeDeploy does not override heartbeat deploy = fake.FakeDeploy() deploy.heartbeat(mock.Mock(node=mock.Mock(uuid='uuid', driver='driver')), 'url', '3.2.0') self.assertTrue(mock_log.called) class MyBIOSInterface(driver_base.BIOSInterface): def get_properties(self): pass def validate(self, task): pass @driver_base.cache_bios_settings def apply_configuration(self, task, settings): return "return_value_apply_configuration" @driver_base.cache_bios_settings def factory_reset(self, task): return "return_value_factory_reset" def cache_bios_settings(self, task): pass class TestBIOSInterface(base.TestCase): @mock.patch.object(MyBIOSInterface, 'cache_bios_settings', autospec=True) def test_apply_configuration_wrapper(self, cache_bios_settings_mock): bios = MyBIOSInterface() task_mock = mock.MagicMock() actual = bios.apply_configuration(task_mock, "") cache_bios_settings_mock.assert_called_once_with(bios, task_mock) self.assertEqual(actual, "return_value_apply_configuration") @mock.patch.object(MyBIOSInterface, 'cache_bios_settings', autospec=True) def test_factory_reset_wrapper(self, cache_bios_settings_mock): bios = MyBIOSInterface() task_mock = mock.MagicMock() actual = bios.factory_reset(task_mock) cache_bios_settings_mock.assert_called_once_with(bios, task_mock) self.assertEqual(actual, "return_value_factory_reset") class TestBootInterface(base.TestCase): def test_validate_rescue_default_impl(self): boot = fake.FakeBoot() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, boot.validate_rescue, task_mock) class TestManagementInterface(base.TestCase): def test_inject_nmi_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.inject_nmi, task_mock) def test_get_supported_boot_modes_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.get_supported_boot_modes, task_mock) def test_set_boot_mode_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.set_boot_mode, task_mock, 'whatever') def test_get_boot_mode_default_impl(self): management = fake.FakeManagement() task_mock = mock.MagicMock(spec_set=['node']) self.assertRaises(exception.UnsupportedDriverExtension, management.get_boot_mode, task_mock) class TestBareDriver(base.TestCase): def test_class_variables(self): self.assertEqual(['boot', 'deploy', 'management', 'network', 'power'], driver_base.BareDriver().core_interfaces) self.assertEqual( ['bios', 'console', 'inspect', 'raid', 'rescue', 'storage'], driver_base.BareDriver().optional_interfaces )
en
0.865481
# Copyright 2014 Cisco Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # None, empty dict # Only description specified # Multiple args # Create a fake Driver class, create some clean steps, make sure # they are listed correctly, and attempt to execute one of them # Ensure the steps look correct # Ensure the second obj get different clean steps # Ensure the steps look correct # Ensure the third obj has different clean steps # Ensure we can execute the function. # Opposite ordering, should make no difference. # Create a fake Driver class, create some deploy steps, make sure # they are listed correctly, and attempt to execute one of them # Ensure the steps look correct # Ensure the second obj has different deploy steps # Ensure the steps look correct # Ensure the third obj has different deploy steps # Ensure we can execute the function. # NOTE(dtantsur): FakeDeploy does not override heartbeat
2.069278
2
opentimesheet/profiles/tests/test_models.py
valerymelou/opentimesheet-server
0
9762
<reponame>valerymelou/opentimesheet-server import pytest from opentimesheet.core.tests import TenantTestCase @pytest.mark.usefixtures("profile") class TestProfile(TenantTestCase): def test__str__(self): assert ( self.profile.first_name + " " + self.profile.last_name == self.profile.__str__() )
import pytest from opentimesheet.core.tests import TenantTestCase @pytest.mark.usefixtures("profile") class TestProfile(TenantTestCase): def test__str__(self): assert ( self.profile.first_name + " " + self.profile.last_name == self.profile.__str__() )
none
1
2.307724
2
ami/flowchart/library/Display.py
chuckie82/ami
6
9763
from ami.flowchart.library.DisplayWidgets import ScalarWidget, ScatterWidget, WaveformWidget, \ ImageWidget, ObjectWidget, LineWidget, TimeWidget, HistogramWidget, \ Histogram2DWidget from ami.flowchart.library.common import CtrlNode from amitypes import Array1d, Array2d from typing import Any import ami.graph_nodes as gn class ScalarViewer(CtrlNode): """ ScalarViewer displays the value of a scalar. """ nodeName = "ScalarViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": float}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ScalarWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ScalarWidget', 'terms': terms, 'topics': topics} class WaveformViewer(CtrlNode): """ WaveformViewer displays 1D arrays. """ nodeName = "WaveformViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, WaveformWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'WaveformWidget', 'terms': terms, 'topics': topics} class ImageViewer(CtrlNode): """ ImageViewer displays 2D arrays. """ nodeName = "ImageViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Array2d}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ImageWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ImageWidget', 'terms': terms, 'topics': topics} class ObjectViewer(CtrlNode): """ ObjectViewer displays string representation of a python object. """ nodeName = "ObjectViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Any}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ObjectWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ObjectWidget', 'terms': terms, 'topics': topics} class Histogram(CtrlNode): """ Histogram plots a histogram created from Binning. """ nodeName = "Histogram" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"Bins": {"io": "in", "ttype": Array1d}, "Counts": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, HistogramWidget, **kwargs) def addInput(self, **args): self.addTerminal(name="Bins", io='in', ttype=Array1d, **args) self.addTerminal(name="Counts", io='in', ttype=Array1d, **args) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'HistogramWidget', 'terms': terms, 'topics': topics} class Histogram2D(CtrlNode): """ Histogram2D plots a 2d histogram created from Binning2D. """ nodeName = "Histogram2D" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"XBins": {"io": "in", "ttype": Array1d}, "YBins": {"io": "in", "ttype": Array1d}, "Counts": {"io": "in", "ttype": Array2d}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, Histogram2DWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'Histogram2DWidget', 'terms': terms, 'topics': topics} class ScatterPlot(CtrlNode): """ Scatter Plot collects two scalars and plots them against each other. """ nodeName = "ScatterPlot" uiTemplate = [("Num Points", 'intSpin', {'value': 100, 'min': 1}), ('Unique', 'check')] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": float}, "Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ScatterWidget, **kwargs) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def addInput(self, **args): self.addTerminal(name="X", io='in', ttype=float, **args) self.addTerminal(name="Y", io='in', ttype=float, **args) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] nodes = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], unique=self.values['Unique'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] return nodes def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ScatterWidget', 'terms': terms, 'topics': topics} class ScalarPlot(CtrlNode): """ Scalar Plot collects scalars and plots them. """ nodeName = "ScalarPlot" uiTemplate = [("Num Points", 'intSpin', {'value': 100, 'min': 1})] def __init__(self, name): super().__init__(name, terminals={"Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def addInput(self, **args): self.addTerminal(name="Y", io='in', ttype=float, **args) def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, WaveformWidget, **kwargs) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] if len(inputs.values()) > 1: node = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] else: node = gn.RollingBuffer(name=self.name(), N=self.values['Num Points'], inputs=inputs, outputs=outputs, **kwargs) return node def plotMetadata(self, topics, terms, **kwargs): return {'type': 'WaveformWidget', 'terms': terms, 'topics': topics} class LinePlot(CtrlNode): """ Line Plot plots arrays. """ nodeName = "LinePlot" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": Array1d}, "Y": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, LineWidget, **kwargs) def addInput(self, **args): group = self.nextGroupName() self.addTerminal(name="X", io='in', ttype=Array1d, group=group, **args) self.addTerminal(name="Y", io='in', ttype=Array1d, group=group, **args) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'LineWidget', 'terms': terms, 'topics': topics} class TimePlot(CtrlNode): """ Plot a number against time of day. """ nodeName = "TimePlot" uiTemplate = [("Num Points", 'intSpin', {'value': 1000, 'min': 1})] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": float}, "Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, TimeWidget, **kwargs) def addInput(self, **args): self.addTerminal(name="X", io='in', ttype=float, **args) self.addTerminal(name="Y", io='in', ttype=float, **args) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] nodes = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] return nodes def plotMetadata(self, topics, terms, **kwargs): return {'type': 'TimeWidget', 'terms': terms, 'topics': topics}
from ami.flowchart.library.DisplayWidgets import ScalarWidget, ScatterWidget, WaveformWidget, \ ImageWidget, ObjectWidget, LineWidget, TimeWidget, HistogramWidget, \ Histogram2DWidget from ami.flowchart.library.common import CtrlNode from amitypes import Array1d, Array2d from typing import Any import ami.graph_nodes as gn class ScalarViewer(CtrlNode): """ ScalarViewer displays the value of a scalar. """ nodeName = "ScalarViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": float}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ScalarWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ScalarWidget', 'terms': terms, 'topics': topics} class WaveformViewer(CtrlNode): """ WaveformViewer displays 1D arrays. """ nodeName = "WaveformViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, WaveformWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'WaveformWidget', 'terms': terms, 'topics': topics} class ImageViewer(CtrlNode): """ ImageViewer displays 2D arrays. """ nodeName = "ImageViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Array2d}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ImageWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ImageWidget', 'terms': terms, 'topics': topics} class ObjectViewer(CtrlNode): """ ObjectViewer displays string representation of a python object. """ nodeName = "ObjectViewer" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"In": {"io": "in", "ttype": Any}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ObjectWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ObjectWidget', 'terms': terms, 'topics': topics} class Histogram(CtrlNode): """ Histogram plots a histogram created from Binning. """ nodeName = "Histogram" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"Bins": {"io": "in", "ttype": Array1d}, "Counts": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, HistogramWidget, **kwargs) def addInput(self, **args): self.addTerminal(name="Bins", io='in', ttype=Array1d, **args) self.addTerminal(name="Counts", io='in', ttype=Array1d, **args) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'HistogramWidget', 'terms': terms, 'topics': topics} class Histogram2D(CtrlNode): """ Histogram2D plots a 2d histogram created from Binning2D. """ nodeName = "Histogram2D" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"XBins": {"io": "in", "ttype": Array1d}, "YBins": {"io": "in", "ttype": Array1d}, "Counts": {"io": "in", "ttype": Array2d}}, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, Histogram2DWidget, **kwargs) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'Histogram2DWidget', 'terms': terms, 'topics': topics} class ScatterPlot(CtrlNode): """ Scatter Plot collects two scalars and plots them against each other. """ nodeName = "ScatterPlot" uiTemplate = [("Num Points", 'intSpin', {'value': 100, 'min': 1}), ('Unique', 'check')] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": float}, "Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, ScatterWidget, **kwargs) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def addInput(self, **args): self.addTerminal(name="X", io='in', ttype=float, **args) self.addTerminal(name="Y", io='in', ttype=float, **args) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] nodes = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], unique=self.values['Unique'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] return nodes def plotMetadata(self, topics, terms, **kwargs): return {'type': 'ScatterWidget', 'terms': terms, 'topics': topics} class ScalarPlot(CtrlNode): """ Scalar Plot collects scalars and plots them. """ nodeName = "ScalarPlot" uiTemplate = [("Num Points", 'intSpin', {'value': 100, 'min': 1})] def __init__(self, name): super().__init__(name, terminals={"Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def addInput(self, **args): self.addTerminal(name="Y", io='in', ttype=float, **args) def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, WaveformWidget, **kwargs) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] if len(inputs.values()) > 1: node = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] else: node = gn.RollingBuffer(name=self.name(), N=self.values['Num Points'], inputs=inputs, outputs=outputs, **kwargs) return node def plotMetadata(self, topics, terms, **kwargs): return {'type': 'WaveformWidget', 'terms': terms, 'topics': topics} class LinePlot(CtrlNode): """ Line Plot plots arrays. """ nodeName = "LinePlot" uiTemplate = [] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": Array1d}, "Y": {"io": "in", "ttype": Array1d}}, allowAddInput=True, viewable=True) def isChanged(self, restore_ctrl, restore_widget): return False def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, LineWidget, **kwargs) def addInput(self, **args): group = self.nextGroupName() self.addTerminal(name="X", io='in', ttype=Array1d, group=group, **args) self.addTerminal(name="Y", io='in', ttype=Array1d, group=group, **args) def plotMetadata(self, topics, terms, **kwargs): return {'type': 'LineWidget', 'terms': terms, 'topics': topics} class TimePlot(CtrlNode): """ Plot a number against time of day. """ nodeName = "TimePlot" uiTemplate = [("Num Points", 'intSpin', {'value': 1000, 'min': 1})] def __init__(self, name): super().__init__(name, terminals={"X": {"io": "in", "ttype": float}, "Y": {"io": "in", "ttype": float}}, allowAddInput=True, buffered=True) def isChanged(self, restore_ctrl, restore_widget): return restore_ctrl def display(self, topics, terms, addr, win, **kwargs): return super().display(topics, terms, addr, win, TimeWidget, **kwargs) def addInput(self, **args): self.addTerminal(name="X", io='in', ttype=float, **args) self.addTerminal(name="Y", io='in', ttype=float, **args) def to_operation(self, inputs, outputs, **kwargs): outputs = [self.name()+'.'+i for i in inputs.keys()] buffer_output = [self.name()] nodes = [gn.RollingBuffer(name=self.name()+"_buffer", N=self.values['Num Points'], inputs=inputs, outputs=buffer_output, **kwargs), gn.Map(name=self.name()+"_operation", inputs=buffer_output, outputs=outputs, func=lambda a: zip(*a), **kwargs)] return nodes def plotMetadata(self, topics, terms, **kwargs): return {'type': 'TimeWidget', 'terms': terms, 'topics': topics}
en
0.817348
ScalarViewer displays the value of a scalar. WaveformViewer displays 1D arrays. ImageViewer displays 2D arrays. ObjectViewer displays string representation of a python object. Histogram plots a histogram created from Binning. Histogram2D plots a 2d histogram created from Binning2D. Scatter Plot collects two scalars and plots them against each other. Scalar Plot collects scalars and plots them. Line Plot plots arrays. Plot a number against time of day.
2.432266
2
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ARB/transform_feedback_instanced.py
ShujaKhalid/deep-rl
210
9764
<filename>deep-rl/lib/python2.7/site-packages/OpenGL/GL/ARB/transform_feedback_instanced.py<gh_stars>100-1000 '''OpenGL extension ARB.transform_feedback_instanced This module customises the behaviour of the OpenGL.raw.GL.ARB.transform_feedback_instanced to provide a more Python-friendly API Overview (from the spec) Multiple instances of geometry may be specified to the GL by calling functions such as DrawArraysInstanced and DrawElementsInstanced. Further, the results of a transform feedback operation may be returned to the GL by calling DrawTransformFeedback, or DrawTransformFeedbackStream. However, it is not presently possible to draw multiple instances of data transform feedback without using a query and the resulting round trip from server to client. This extension adds functionality to draw multiple instances of the result of a transform feedback operation. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/transform_feedback_instanced.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ARB.transform_feedback_instanced import * from OpenGL.raw.GL.ARB.transform_feedback_instanced import _EXTENSION_NAME def glInitTransformFeedbackInstancedARB(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
<filename>deep-rl/lib/python2.7/site-packages/OpenGL/GL/ARB/transform_feedback_instanced.py<gh_stars>100-1000 '''OpenGL extension ARB.transform_feedback_instanced This module customises the behaviour of the OpenGL.raw.GL.ARB.transform_feedback_instanced to provide a more Python-friendly API Overview (from the spec) Multiple instances of geometry may be specified to the GL by calling functions such as DrawArraysInstanced and DrawElementsInstanced. Further, the results of a transform feedback operation may be returned to the GL by calling DrawTransformFeedback, or DrawTransformFeedbackStream. However, it is not presently possible to draw multiple instances of data transform feedback without using a query and the resulting round trip from server to client. This extension adds functionality to draw multiple instances of the result of a transform feedback operation. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/transform_feedback_instanced.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ARB.transform_feedback_instanced import * from OpenGL.raw.GL.ARB.transform_feedback_instanced import _EXTENSION_NAME def glInitTransformFeedbackInstancedARB(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
en
0.770066
OpenGL extension ARB.transform_feedback_instanced This module customises the behaviour of the OpenGL.raw.GL.ARB.transform_feedback_instanced to provide a more Python-friendly API Overview (from the spec) Multiple instances of geometry may be specified to the GL by calling functions such as DrawArraysInstanced and DrawElementsInstanced. Further, the results of a transform feedback operation may be returned to the GL by calling DrawTransformFeedback, or DrawTransformFeedbackStream. However, it is not presently possible to draw multiple instances of data transform feedback without using a query and the resulting round trip from server to client. This extension adds functionality to draw multiple instances of the result of a transform feedback operation. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/transform_feedback_instanced.txt Return boolean indicating whether this extension is available ### END AUTOGENERATED SECTION
1.723923
2
features/cpp/simple/test.py
xbabka01/retdec-regression-tests
8
9765
<filename>features/cpp/simple/test.py<gh_stars>1-10 from regression_tests import * class TestBase(Test): def test_for_main(self): assert self.out_c.has_funcs('main') or self.out_c.has_funcs('entry_point') def test_check_main_is_not_ctor_or_dtor(self): for c in self.out_config.classes: assert "main" not in c.constructors assert "main" not in c.destructors class TestAll(TestBase): settings = TestSettings( input=files_in_dir('inputs/symbols'), args='-k' ) def test_for_string(self): # printf() is used -> '\n' at the end of the string # puts() is used -> no '\n' at the end of the string assert self.out_c.has_string_literal_matching( r'ClassA::ClassA(\\n)?' ) assert self.out_c.has_string_literal_matching( r'%i %i(\\n)?' ) assert self.out_c.has_string_literal_matching( r'~ClassA::ClassA(\\n)?' ) def test_for_vtables(self): assert self.out_config.vtable_count == 1 vtable = self.out_config.vtables[0] assert vtable.item_count == 1 assert "doSomething" in vtable.items[0].target_name def test_for_classes(self): assert self.out_config.classes_count == 1 c = self.out_config.classes[0] assert len(c.constructors) == 2 assert len(c.destructors) == 2 assert len(c.virtualMethods) == 1 class TestAllStripped(TestBase): settings = TestSettings( input=files_in_dir('inputs/stripped'), args='-k' ) def test_for_vtables(self): assert self.out_config.vtable_count == 1 vtable = self.out_config.vtables[0] assert vtable.item_count == 1 assert vtable.items[0].target_name # there is some (!empty) function name def test_for_classes(self): assert self.out_config.classes_count == 1 c = self.out_config.classes[0] assert len(c.virtualMethods) == 1 assert len(c.constructors) == 2 assert len(c.destructors) == 2 class TestMsvc(TestBase): settings = TestSettings( input='inputs/msvc/simple-msvc-release.ex', args='-k' ) settings_d = TestSettings( input='inputs/msvc/simple-msvc-debug.ex', args='-k' ) def test_for_string(self): assert self.out_c.has_string_literal( 'ClassA::ClassA\\n' ) assert self.out_c.has_string_literal( '~ClassA::ClassA\\n' ) assert self.out_c.has_string_literal( '%i %i\\n' ) def test_for_vtables(self): assert self.out_config.vtable_count == 2 vtable1 = self.out_config.vtables[0] assert vtable1.item_count == 1 vtable2 = self.out_config.vtables[0] assert vtable2.item_count == 1
<filename>features/cpp/simple/test.py<gh_stars>1-10 from regression_tests import * class TestBase(Test): def test_for_main(self): assert self.out_c.has_funcs('main') or self.out_c.has_funcs('entry_point') def test_check_main_is_not_ctor_or_dtor(self): for c in self.out_config.classes: assert "main" not in c.constructors assert "main" not in c.destructors class TestAll(TestBase): settings = TestSettings( input=files_in_dir('inputs/symbols'), args='-k' ) def test_for_string(self): # printf() is used -> '\n' at the end of the string # puts() is used -> no '\n' at the end of the string assert self.out_c.has_string_literal_matching( r'ClassA::ClassA(\\n)?' ) assert self.out_c.has_string_literal_matching( r'%i %i(\\n)?' ) assert self.out_c.has_string_literal_matching( r'~ClassA::ClassA(\\n)?' ) def test_for_vtables(self): assert self.out_config.vtable_count == 1 vtable = self.out_config.vtables[0] assert vtable.item_count == 1 assert "doSomething" in vtable.items[0].target_name def test_for_classes(self): assert self.out_config.classes_count == 1 c = self.out_config.classes[0] assert len(c.constructors) == 2 assert len(c.destructors) == 2 assert len(c.virtualMethods) == 1 class TestAllStripped(TestBase): settings = TestSettings( input=files_in_dir('inputs/stripped'), args='-k' ) def test_for_vtables(self): assert self.out_config.vtable_count == 1 vtable = self.out_config.vtables[0] assert vtable.item_count == 1 assert vtable.items[0].target_name # there is some (!empty) function name def test_for_classes(self): assert self.out_config.classes_count == 1 c = self.out_config.classes[0] assert len(c.virtualMethods) == 1 assert len(c.constructors) == 2 assert len(c.destructors) == 2 class TestMsvc(TestBase): settings = TestSettings( input='inputs/msvc/simple-msvc-release.ex', args='-k' ) settings_d = TestSettings( input='inputs/msvc/simple-msvc-debug.ex', args='-k' ) def test_for_string(self): assert self.out_c.has_string_literal( 'ClassA::ClassA\\n' ) assert self.out_c.has_string_literal( '~ClassA::ClassA\\n' ) assert self.out_c.has_string_literal( '%i %i\\n' ) def test_for_vtables(self): assert self.out_config.vtable_count == 2 vtable1 = self.out_config.vtables[0] assert vtable1.item_count == 1 vtable2 = self.out_config.vtables[0] assert vtable2.item_count == 1
en
0.750024
# printf() is used -> '\n' at the end of the string # puts() is used -> no '\n' at the end of the string # there is some (!empty) function name
2.391305
2
src/experiment.py
windar427/find_alpha
0
9766
<filename>src/experiment.py from .lib.DownloadData import DownloadData
<filename>src/experiment.py from .lib.DownloadData import DownloadData
none
1
1.060894
1
src/__init__.py
songchenwen/icloud-drive-docker
0
9767
<filename>src/__init__.py __author__ = '<NAME> (<EMAIL>)' import warnings warnings.filterwarnings('ignore', category=DeprecationWarning)
<filename>src/__init__.py __author__ = '<NAME> (<EMAIL>)' import warnings warnings.filterwarnings('ignore', category=DeprecationWarning)
none
1
1.17847
1
test_basico.py
rafael-torraca/delivery
0
9768
<gh_stars>0 def test_one_plus_one_is_two(): assert 1 + 1 == 2 #o assert espera que algo seja verdadeiro, se for falso o teste quebrou def test_negative_1_plus_1_is_3(): assert 1 + 1 == 3
def test_one_plus_one_is_two(): assert 1 + 1 == 2 #o assert espera que algo seja verdadeiro, se for falso o teste quebrou def test_negative_1_plus_1_is_3(): assert 1 + 1 == 3
pt
0.680635
#o assert espera que algo seja verdadeiro, se for falso o teste quebrou
3.79914
4
setup.py
rohernandezz/coldtype
0
9769
import setuptools long_description = """ # Coldtype ### Programmatic display typography More info available at: [coldtype.goodhertz.com](https://coldtype.goodhertz.com) """ setuptools.setup( name="coldtype", version="0.6.6", author="<NAME> / Goodhertz", author_email="<EMAIL>", description="Functions for manual vectorized typesetting", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/goodhertz/coldtype", #package_dir={"": "coldtype"}, packages=[ "coldtype", "coldtype.sh", "coldtype.fx", "coldtype.img", "coldtype.time", "coldtype.midi", "coldtype.pens", "coldtype.text", "coldtype.grid", "coldtype.color", "coldtype.capture", "coldtype.blender", "coldtype.geometry", "coldtype.time.nle", "coldtype.renderer", "coldtype.webserver", "coldtype.renderable", "coldtype.fontgoggles", "coldtype.interpolation", "coldtype.renderer.winman", "coldtype.fontgoggles.font", "coldtype.fontgoggles.misc", "coldtype.fontgoggles.compile", ], include_package_data=True, package_data={ "": [ "webserver/webviewer.html", "demo/RecMono-CasualItalic.ttf", "demo/ColdtypeObviously-VF.ttf", "demo/MutatorSans.ttf", "demo/demo.py", "demo/midi.py", "demo/blank.py", "demo/boiler.py", "renderer/picklejar.py", "renderer/.coldtype.py" ], }, entry_points={ 'console_scripts': [ 'coldtype = coldtype.renderer:main' ], }, extras_require={ "skia": [ "skia-python>=86.0", ], "viewer": [ "glfw", "PyOpenGL", "PyOpenGL-accelerate", "skia-python>=86.0", "skia-pathops", # can this be taken from skia-python? "SimpleWebSocketServer", "watchdog<2.0.0", # https://github.com/gorakhargosh/watchdog/issues/702 "noise", "ufo2ft", "numpy", ], "webviewer": [ "SimpleWebSocketServer", "watchdog<2.0.0", # https://github.com/gorakhargosh/watchdog/issues/702 ], "experimental": [ "pynput", "rtmidi", "noise", ], "c": [ "srt", "noise", ], "unicode": [ "unicodedata2" ], "blender": [ "skia-pathops" ], "notebook": [ "skia-pathops", "skia-python", ] }, install_requires=[ "lxml", "fonttools[ufo]", "fontPens", "fontParts", "more-itertools", "easing-functions", "timecode", "mido", "defcon", "freetype-py", "uharfbuzz>=0.14.0", "python-bidi" ], classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], )
import setuptools long_description = """ # Coldtype ### Programmatic display typography More info available at: [coldtype.goodhertz.com](https://coldtype.goodhertz.com) """ setuptools.setup( name="coldtype", version="0.6.6", author="<NAME> / Goodhertz", author_email="<EMAIL>", description="Functions for manual vectorized typesetting", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/goodhertz/coldtype", #package_dir={"": "coldtype"}, packages=[ "coldtype", "coldtype.sh", "coldtype.fx", "coldtype.img", "coldtype.time", "coldtype.midi", "coldtype.pens", "coldtype.text", "coldtype.grid", "coldtype.color", "coldtype.capture", "coldtype.blender", "coldtype.geometry", "coldtype.time.nle", "coldtype.renderer", "coldtype.webserver", "coldtype.renderable", "coldtype.fontgoggles", "coldtype.interpolation", "coldtype.renderer.winman", "coldtype.fontgoggles.font", "coldtype.fontgoggles.misc", "coldtype.fontgoggles.compile", ], include_package_data=True, package_data={ "": [ "webserver/webviewer.html", "demo/RecMono-CasualItalic.ttf", "demo/ColdtypeObviously-VF.ttf", "demo/MutatorSans.ttf", "demo/demo.py", "demo/midi.py", "demo/blank.py", "demo/boiler.py", "renderer/picklejar.py", "renderer/.coldtype.py" ], }, entry_points={ 'console_scripts': [ 'coldtype = coldtype.renderer:main' ], }, extras_require={ "skia": [ "skia-python>=86.0", ], "viewer": [ "glfw", "PyOpenGL", "PyOpenGL-accelerate", "skia-python>=86.0", "skia-pathops", # can this be taken from skia-python? "SimpleWebSocketServer", "watchdog<2.0.0", # https://github.com/gorakhargosh/watchdog/issues/702 "noise", "ufo2ft", "numpy", ], "webviewer": [ "SimpleWebSocketServer", "watchdog<2.0.0", # https://github.com/gorakhargosh/watchdog/issues/702 ], "experimental": [ "pynput", "rtmidi", "noise", ], "c": [ "srt", "noise", ], "unicode": [ "unicodedata2" ], "blender": [ "skia-pathops" ], "notebook": [ "skia-pathops", "skia-python", ] }, install_requires=[ "lxml", "fonttools[ufo]", "fontPens", "fontParts", "more-itertools", "easing-functions", "timecode", "mido", "defcon", "freetype-py", "uharfbuzz>=0.14.0", "python-bidi" ], classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], )
en
0.569193
# Coldtype ### Programmatic display typography More info available at: [coldtype.goodhertz.com](https://coldtype.goodhertz.com) #package_dir={"": "coldtype"}, # can this be taken from skia-python? # https://github.com/gorakhargosh/watchdog/issues/702 # https://github.com/gorakhargosh/watchdog/issues/702
1.611154
2
GFOLD_problem.py
xdedss/SuccessiveConvexification
0
9770
# -*- coding: utf-8 -*- # GFOLD_static_p3p4 min_=min from cvxpy import * import cvxpy_codegen as cpg from time import time import numpy as np import sys import GFOLD_params ''' As defined in the paper... PROBLEM 3: Minimum Landing Error (tf roughly solved) MINIMIZE : norm of landing error vector SUBJ TO : 0) initial conditions satisfied (position, velocity) 1) final conditions satisfied (altitude, velocity) 2) dynamics always satisfied 3) x stays in cone at all times 4) relaxed convexified mass and thrust constraints 5) thrust pointing constraint 6) sub-surface flight constraint PROBLEM 4: Minimum Fuel Use MAXIMIZE : landing mass, opt variables are dynamical and SUBJ TO : 0) same constraints as p1, plus: 1) landing point must be equal or better than that found by p1 ''' def solve(params, params_super = None, codegen = False, verbose=False): #super params if (params_super == None): params_super = GFOLD_params.SuperParams() # default N = params_super.N #优化变量 x =Variable(6,N,name='var_x') # state vector (3position,3velocity) u =Variable(3,N,name='var_u') # u = Tc/mass because Tc[:,n]/m[n] is not allowed by DCP z= Variable(1,N,name='var_z') # z = ln(mass) s= Variable(1,N,name='var_s') # thrust slack parameter # Parameters x0 = Parameter(6, 1, name="x0") xf = Parameter(6, 1, name="xf") z0_term_inv = Parameter(1, N, name="z0_term_inv", sign='positive') z0_term_log = Parameter(1, N, name="z0_term_log") g = Parameter(3, 1, name="g_vec") p_cs_cos = Parameter(1, N, name='p_cs_cos') sparse_params = Parameter(7, 1, name="sparse_params", sign='positive') m_wet_log = Parameter(2, 1, name='m_wet_log') if (not codegen): x0.value = params.x0.reshape(6, 1) xf.value = params.xf.reshape(6, 1) z0_term_inv.value = params.z0_term_inv.reshape(1, N) z0_term_log.value = params.z0_term_log.reshape(1, N) g.value = params.g.reshape(3, 1) p_cs_cos.value = params.p_cs_cos.reshape(1, N) m_wet_log.value = [params.m_wet_log, 0] sparse_params.value = np.array([ params.alpha_dt, params.G_max, params.V_max, params.y_gs_cot, params.r1, params.r2, params.tf ]).reshape(7, 1) alpha_dt, G_max, V_max, y_gs_cot, r1, r2, tf_ = sparse_params dt = tf_ * (1/N) # Integration dt # constraints con = [] con += [x[0:3,0] == x0[0:3]] # initial pos con += [x[3:6,0] == x0[3:6]] # initial vel con += [x[0:3,N-1] == xf[0:3]] # final pos con += [x[3:6,N-1]== xf[3:6]] # final vel con += [s[0,N-1] == 0] # thrust at the end must be zero con += [u[:,0] == s[0,0]*np.array([1,0,0])] # thrust direction starts straight con += [u[:,N-1] == s[0,N-1]*np.array([1,0,0])] # and ends straight con += [z[0,0] == m_wet_log[0,0]] # convexified (7) for n in range(0,N-1): #dynamics con += [x[3:6,n+1] == x[3:6,n] + (dt*0.5)*((u[:,n]+g[:,0]) + (u[:,n+1]+g[:,0]))] con += [x[0:3,n+1] == x[0:3,n] + (dt*0.5)*(x[3:6,n+1]+x[3:6,n])] # glideslope cone con += [ norm( (x[0:3,n])[1:3] ) - y_gs_cot*(x[0,n]) <= 0 ] con += [ norm(x[3:6,n]) <= V_max ] # velocity #con += [norm(u[:,n+1]-u[:,n]) <= dt*T_max/m_dry * 3] con += [z[0,n+1] == z[0,n] - (alpha_dt*0.5)*(s[0,n] + s[0,n+1])] # mass decreases con += [norm(u[:,n]) <= s[0,n]] # limit thrust magnitude & also therefore, mass # Thrust pointing constraint con += [ u[0,n] >= p_cs_cos[0,n]*s[0,n] ] if n > 0: #z0_term = m_wet - alpha * r2 * (n) * dt # see ref [2], eq 34,35,36 #z0 = log(z0_term) z0 = z0_term_log[0,n] mu_1 = r1*(z0_term_inv[0,n]) mu_2 = r2*(z0_term_inv[0,n]) #更正一处原项目与论文不符之处 # 示意图:https://www.desmos.com/calculator/wtcfgnepe1 con += [s[0,n] >= mu_1 * (1 - (z[0,n] - z0) + (z[0,n] - z0)**2 *0.5)] # lower thrust bound con += [s[0,n] <= mu_2 * (1 - (z[0,n] - z0))] # upper thrust bound #Objective objective = Minimize(-z[0,N-1]) problem=Problem(objective, con) if codegen: cpg.codegen(problem, codegen_path) else: obj_opt = problem.solve(solver=ECOS, verbose=verbose) return ( obj_opt, np.array(x.value), # r,v np.array(u.value), # u (acceleration) np.exp(np.array(z.value)) # mass ) if type(x.value) != type(None) else (None, None, None, None) if __name__ == '__main__': if (len(sys.argv) > 2 and sys.argv[1] == 'codegen'): codegen_path = sys.argv[2] solve(None, None, True) else: print("invalid input") print(sys.argv)
# -*- coding: utf-8 -*- # GFOLD_static_p3p4 min_=min from cvxpy import * import cvxpy_codegen as cpg from time import time import numpy as np import sys import GFOLD_params ''' As defined in the paper... PROBLEM 3: Minimum Landing Error (tf roughly solved) MINIMIZE : norm of landing error vector SUBJ TO : 0) initial conditions satisfied (position, velocity) 1) final conditions satisfied (altitude, velocity) 2) dynamics always satisfied 3) x stays in cone at all times 4) relaxed convexified mass and thrust constraints 5) thrust pointing constraint 6) sub-surface flight constraint PROBLEM 4: Minimum Fuel Use MAXIMIZE : landing mass, opt variables are dynamical and SUBJ TO : 0) same constraints as p1, plus: 1) landing point must be equal or better than that found by p1 ''' def solve(params, params_super = None, codegen = False, verbose=False): #super params if (params_super == None): params_super = GFOLD_params.SuperParams() # default N = params_super.N #优化变量 x =Variable(6,N,name='var_x') # state vector (3position,3velocity) u =Variable(3,N,name='var_u') # u = Tc/mass because Tc[:,n]/m[n] is not allowed by DCP z= Variable(1,N,name='var_z') # z = ln(mass) s= Variable(1,N,name='var_s') # thrust slack parameter # Parameters x0 = Parameter(6, 1, name="x0") xf = Parameter(6, 1, name="xf") z0_term_inv = Parameter(1, N, name="z0_term_inv", sign='positive') z0_term_log = Parameter(1, N, name="z0_term_log") g = Parameter(3, 1, name="g_vec") p_cs_cos = Parameter(1, N, name='p_cs_cos') sparse_params = Parameter(7, 1, name="sparse_params", sign='positive') m_wet_log = Parameter(2, 1, name='m_wet_log') if (not codegen): x0.value = params.x0.reshape(6, 1) xf.value = params.xf.reshape(6, 1) z0_term_inv.value = params.z0_term_inv.reshape(1, N) z0_term_log.value = params.z0_term_log.reshape(1, N) g.value = params.g.reshape(3, 1) p_cs_cos.value = params.p_cs_cos.reshape(1, N) m_wet_log.value = [params.m_wet_log, 0] sparse_params.value = np.array([ params.alpha_dt, params.G_max, params.V_max, params.y_gs_cot, params.r1, params.r2, params.tf ]).reshape(7, 1) alpha_dt, G_max, V_max, y_gs_cot, r1, r2, tf_ = sparse_params dt = tf_ * (1/N) # Integration dt # constraints con = [] con += [x[0:3,0] == x0[0:3]] # initial pos con += [x[3:6,0] == x0[3:6]] # initial vel con += [x[0:3,N-1] == xf[0:3]] # final pos con += [x[3:6,N-1]== xf[3:6]] # final vel con += [s[0,N-1] == 0] # thrust at the end must be zero con += [u[:,0] == s[0,0]*np.array([1,0,0])] # thrust direction starts straight con += [u[:,N-1] == s[0,N-1]*np.array([1,0,0])] # and ends straight con += [z[0,0] == m_wet_log[0,0]] # convexified (7) for n in range(0,N-1): #dynamics con += [x[3:6,n+1] == x[3:6,n] + (dt*0.5)*((u[:,n]+g[:,0]) + (u[:,n+1]+g[:,0]))] con += [x[0:3,n+1] == x[0:3,n] + (dt*0.5)*(x[3:6,n+1]+x[3:6,n])] # glideslope cone con += [ norm( (x[0:3,n])[1:3] ) - y_gs_cot*(x[0,n]) <= 0 ] con += [ norm(x[3:6,n]) <= V_max ] # velocity #con += [norm(u[:,n+1]-u[:,n]) <= dt*T_max/m_dry * 3] con += [z[0,n+1] == z[0,n] - (alpha_dt*0.5)*(s[0,n] + s[0,n+1])] # mass decreases con += [norm(u[:,n]) <= s[0,n]] # limit thrust magnitude & also therefore, mass # Thrust pointing constraint con += [ u[0,n] >= p_cs_cos[0,n]*s[0,n] ] if n > 0: #z0_term = m_wet - alpha * r2 * (n) * dt # see ref [2], eq 34,35,36 #z0 = log(z0_term) z0 = z0_term_log[0,n] mu_1 = r1*(z0_term_inv[0,n]) mu_2 = r2*(z0_term_inv[0,n]) #更正一处原项目与论文不符之处 # 示意图:https://www.desmos.com/calculator/wtcfgnepe1 con += [s[0,n] >= mu_1 * (1 - (z[0,n] - z0) + (z[0,n] - z0)**2 *0.5)] # lower thrust bound con += [s[0,n] <= mu_2 * (1 - (z[0,n] - z0))] # upper thrust bound #Objective objective = Minimize(-z[0,N-1]) problem=Problem(objective, con) if codegen: cpg.codegen(problem, codegen_path) else: obj_opt = problem.solve(solver=ECOS, verbose=verbose) return ( obj_opt, np.array(x.value), # r,v np.array(u.value), # u (acceleration) np.exp(np.array(z.value)) # mass ) if type(x.value) != type(None) else (None, None, None, None) if __name__ == '__main__': if (len(sys.argv) > 2 and sys.argv[1] == 'codegen'): codegen_path = sys.argv[2] solve(None, None, True) else: print("invalid input") print(sys.argv)
en
0.737469
# -*- coding: utf-8 -*- # GFOLD_static_p3p4 As defined in the paper... PROBLEM 3: Minimum Landing Error (tf roughly solved) MINIMIZE : norm of landing error vector SUBJ TO : 0) initial conditions satisfied (position, velocity) 1) final conditions satisfied (altitude, velocity) 2) dynamics always satisfied 3) x stays in cone at all times 4) relaxed convexified mass and thrust constraints 5) thrust pointing constraint 6) sub-surface flight constraint PROBLEM 4: Minimum Fuel Use MAXIMIZE : landing mass, opt variables are dynamical and SUBJ TO : 0) same constraints as p1, plus: 1) landing point must be equal or better than that found by p1 #super params # default #优化变量 # state vector (3position,3velocity) # u = Tc/mass because Tc[:,n]/m[n] is not allowed by DCP # z = ln(mass) # thrust slack parameter # Parameters # Integration dt # constraints # initial pos # initial vel # final pos # final vel # thrust at the end must be zero # thrust direction starts straight # and ends straight # convexified (7) #dynamics # glideslope cone # velocity #con += [norm(u[:,n+1]-u[:,n]) <= dt*T_max/m_dry * 3] # mass decreases # limit thrust magnitude & also therefore, mass # Thrust pointing constraint #z0_term = m_wet - alpha * r2 * (n) * dt # see ref [2], eq 34,35,36 #z0 = log(z0_term) #更正一处原项目与论文不符之处 # 示意图:https://www.desmos.com/calculator/wtcfgnepe1 # lower thrust bound # upper thrust bound #Objective # r,v # u (acceleration) # mass
2.57138
3
Hints.py
SarienFates/MMRandomizer
36
9771
import io import hashlib import logging import os import struct import random from HintList import getHint, getHintGroup, Hint from Utils import local_path #builds out general hints based on location and whether an item is required or not def buildGossipHints(world, rom): stoneAddresses = [0x938e4c, 0x938EA8, 0x938F04, 0x938F60, 0x938FBC, 0x939018, 0x939074, 0x9390D0, 0x93912C, 0x939188, 0x9391E4, 0x939240, 0x93929C, 0x9392F8, 0x939354, 0x9393B0, 0x93940C, 0x939468, 0x9394C4, 0x939520, 0x93957C, 0x9395D8, 0x939634, 0x939690, 0x9396EC, 0x939748, 0x9397A4, 0x939800, 0x93985C, 0x9398B8, 0x939914, 0x939970] #address for gossip stone text boxes, byte limit is 92 alwaysLocations = getHintGroup('alwaysLocation')#These location will always have a hint somewhere in the world. sometimesSpace = (int((len(stoneAddresses) - len(alwaysLocations)*2)/2)) sometimesLocations = getHintGroup('location')#A random selection of these locations will be in the hint pool. random.shuffle(sometimesLocations) sometimesLocations = sometimesLocations[0:sometimesSpace] hintList = alwaysLocations hintList.extend(alwaysLocations) hintList.extend(sometimesLocations) locationData = [] for hint in hintList: for locationWorld in world.get_locations(): if hint.name == locationWorld.name: locationData.extend([locationWorld]) #hopefully fixes weird VC error where the last character from a previous text box would sometimes spill over into the next box. for address in range(stoneAddresses[0], 0x9399D8): rom.write_byte(address, 0x08) #shuffles the stone addresses for randomization, always locations will be placed first and twice random.shuffle(stoneAddresses) #loops through shuffled locations and addresses and builds hint. while locationData: currentLoc = locationData.pop(0) Block_code = getBytes((getHint(currentLoc.name).text)) if currentLoc.item.type == 'Map' or currentLoc.item.type == 'Compass' or currentLoc.item.type == 'BossKey' or currentLoc.item.type == 'SmallKey': Block_code.extend(getBytes((getHint(currentLoc.item.type).text))) else: Block_code.extend(getBytes((getHint(currentLoc.item.name).text))) endText(Block_code) if len(Block_code) > 92: print('Too many characters in hint') Block_code = getBytes("I am Error.") Block_code.extend(getBytes(currentLoc.name)) Block_code.extend(getBytes('&')) Block_code.extend(getBytes(currentLoc.item.name)) rom.write_bytes(stoneAddresses.pop(0), Block_code) junkHints = getHintGroup('junkHint') random.shuffle(junkHints) while stoneAddresses: junkHint = junkHints.pop() Block_code = getBytes(junkHint.text) endText(Block_code) rom.write_bytes(stoneAddresses.pop(0), Block_code) return rom # builds boss reward text that is displayed at the temple of time altar for child and adult, pull based off of item in a fixed order. def buildBossRewardHints(world, rom): bossRewardsSpiritualStones = ['Kokiri Emerald', 'Goron Ruby', 'Zora Sapphire'] bossRewardsMedallions = ['Forest Medallion', 'Fire Medallion', 'Water Medallion', 'Shadow Medallion', 'Spirit Medallion', 'Light Medallion'] # text that appears at altar as a child. Block_code = [] Block_code = getBytes(getHint('Spiritual Stone Text Start').text) for reward in bossRewardsSpiritualStones: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Spiritual Stone Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95ED95, Block_code) # text that appears at altar as an adult. Block_code = [] for reward in bossRewardsMedallions: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Medallion Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95DB94, Block_code) return rom # pulls text string from hintlist for reward after sending the location to hintlist. def buildBossString(Block_code, reward, world): for location in world.get_locations(): if location.item.name == reward: Block_code.extend([0x08]) Block_code.extend(getBytes(getHint(location.name).text)) return Block_code # alternates through color set commands in child and adult boss reward hint strings setting the colors at the start of the string to correspond with the reward found at the location. # skips over color commands at the end of stings to set color back to white. def setRewardColor(Block_code): rewardColors = [0x42, 0x41, 0x43, 0x45, 0x46, 0x44] colorWhite = True for i, byte in enumerate(Block_code): if byte == 0x05 and colorWhite: Block_code[i + 1] = rewardColors.pop(0) colorWhite = False elif byte == 0x05 and not colorWhite: colorWhite = True return Block_code #sets the end of text byte in the text box. def endText(byteArray): return byteArray.extend([0x02]) # reads array of characters and converts them to an array of bytes. def getBytes(string): byteCode = [] for char in string: if char == '^': byteCode.extend([0x04])#box break elif char == '&': byteCode.extend([0x01])#new line elif char == '@': byteCode.extend([0x0F])#print player name elif char == '#': byteCode.extend([0x05, 0x40]) #sets color to white else: char = char.encode('utf-8') char = char.hex() byte = int('0x' + char, 16) byteCode.extend([byte]) return byteCode
import io import hashlib import logging import os import struct import random from HintList import getHint, getHintGroup, Hint from Utils import local_path #builds out general hints based on location and whether an item is required or not def buildGossipHints(world, rom): stoneAddresses = [0x938e4c, 0x938EA8, 0x938F04, 0x938F60, 0x938FBC, 0x939018, 0x939074, 0x9390D0, 0x93912C, 0x939188, 0x9391E4, 0x939240, 0x93929C, 0x9392F8, 0x939354, 0x9393B0, 0x93940C, 0x939468, 0x9394C4, 0x939520, 0x93957C, 0x9395D8, 0x939634, 0x939690, 0x9396EC, 0x939748, 0x9397A4, 0x939800, 0x93985C, 0x9398B8, 0x939914, 0x939970] #address for gossip stone text boxes, byte limit is 92 alwaysLocations = getHintGroup('alwaysLocation')#These location will always have a hint somewhere in the world. sometimesSpace = (int((len(stoneAddresses) - len(alwaysLocations)*2)/2)) sometimesLocations = getHintGroup('location')#A random selection of these locations will be in the hint pool. random.shuffle(sometimesLocations) sometimesLocations = sometimesLocations[0:sometimesSpace] hintList = alwaysLocations hintList.extend(alwaysLocations) hintList.extend(sometimesLocations) locationData = [] for hint in hintList: for locationWorld in world.get_locations(): if hint.name == locationWorld.name: locationData.extend([locationWorld]) #hopefully fixes weird VC error where the last character from a previous text box would sometimes spill over into the next box. for address in range(stoneAddresses[0], 0x9399D8): rom.write_byte(address, 0x08) #shuffles the stone addresses for randomization, always locations will be placed first and twice random.shuffle(stoneAddresses) #loops through shuffled locations and addresses and builds hint. while locationData: currentLoc = locationData.pop(0) Block_code = getBytes((getHint(currentLoc.name).text)) if currentLoc.item.type == 'Map' or currentLoc.item.type == 'Compass' or currentLoc.item.type == 'BossKey' or currentLoc.item.type == 'SmallKey': Block_code.extend(getBytes((getHint(currentLoc.item.type).text))) else: Block_code.extend(getBytes((getHint(currentLoc.item.name).text))) endText(Block_code) if len(Block_code) > 92: print('Too many characters in hint') Block_code = getBytes("I am Error.") Block_code.extend(getBytes(currentLoc.name)) Block_code.extend(getBytes('&')) Block_code.extend(getBytes(currentLoc.item.name)) rom.write_bytes(stoneAddresses.pop(0), Block_code) junkHints = getHintGroup('junkHint') random.shuffle(junkHints) while stoneAddresses: junkHint = junkHints.pop() Block_code = getBytes(junkHint.text) endText(Block_code) rom.write_bytes(stoneAddresses.pop(0), Block_code) return rom # builds boss reward text that is displayed at the temple of time altar for child and adult, pull based off of item in a fixed order. def buildBossRewardHints(world, rom): bossRewardsSpiritualStones = ['Kokiri Emerald', 'Goron Ruby', 'Zora Sapphire'] bossRewardsMedallions = ['Forest Medallion', 'Fire Medallion', 'Water Medallion', 'Shadow Medallion', 'Spirit Medallion', 'Light Medallion'] # text that appears at altar as a child. Block_code = [] Block_code = getBytes(getHint('Spiritual Stone Text Start').text) for reward in bossRewardsSpiritualStones: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Spiritual Stone Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95ED95, Block_code) # text that appears at altar as an adult. Block_code = [] for reward in bossRewardsMedallions: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Medallion Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95DB94, Block_code) return rom # pulls text string from hintlist for reward after sending the location to hintlist. def buildBossString(Block_code, reward, world): for location in world.get_locations(): if location.item.name == reward: Block_code.extend([0x08]) Block_code.extend(getBytes(getHint(location.name).text)) return Block_code # alternates through color set commands in child and adult boss reward hint strings setting the colors at the start of the string to correspond with the reward found at the location. # skips over color commands at the end of stings to set color back to white. def setRewardColor(Block_code): rewardColors = [0x42, 0x41, 0x43, 0x45, 0x46, 0x44] colorWhite = True for i, byte in enumerate(Block_code): if byte == 0x05 and colorWhite: Block_code[i + 1] = rewardColors.pop(0) colorWhite = False elif byte == 0x05 and not colorWhite: colorWhite = True return Block_code #sets the end of text byte in the text box. def endText(byteArray): return byteArray.extend([0x02]) # reads array of characters and converts them to an array of bytes. def getBytes(string): byteCode = [] for char in string: if char == '^': byteCode.extend([0x04])#box break elif char == '&': byteCode.extend([0x01])#new line elif char == '@': byteCode.extend([0x0F])#print player name elif char == '#': byteCode.extend([0x05, 0x40]) #sets color to white else: char = char.encode('utf-8') char = char.hex() byte = int('0x' + char, 16) byteCode.extend([byte]) return byteCode
en
0.915753
#builds out general hints based on location and whether an item is required or not #address for gossip stone text boxes, byte limit is 92 #These location will always have a hint somewhere in the world. #A random selection of these locations will be in the hint pool. #hopefully fixes weird VC error where the last character from a previous text box would sometimes spill over into the next box. #shuffles the stone addresses for randomization, always locations will be placed first and twice #loops through shuffled locations and addresses and builds hint. # builds boss reward text that is displayed at the temple of time altar for child and adult, pull based off of item in a fixed order. # text that appears at altar as a child. # text that appears at altar as an adult. # pulls text string from hintlist for reward after sending the location to hintlist. # alternates through color set commands in child and adult boss reward hint strings setting the colors at the start of the string to correspond with the reward found at the location. # skips over color commands at the end of stings to set color back to white. #sets the end of text byte in the text box. # reads array of characters and converts them to an array of bytes. #box break #new line #print player name #sets color to white
2.440115
2
examen_2/p2/p2.py
Jhoselyn-Carballo/computacion_para_ingenieria
0
9772
# -*- coding: utf-8 -*- """ Created on Thu Feb 17 09:10:05 2022 @author: JHOSS """ from tkinter import * def contador(accion, contador): if accion == 'countUp': contador == contador + 1 elif accion == 'coundDown': contador == contador -1 elif accion == 'reset': contador == 0 return contador
# -*- coding: utf-8 -*- """ Created on Thu Feb 17 09:10:05 2022 @author: JHOSS """ from tkinter import * def contador(accion, contador): if accion == 'countUp': contador == contador + 1 elif accion == 'coundDown': contador == contador -1 elif accion == 'reset': contador == 0 return contador
en
0.736576
# -*- coding: utf-8 -*- Created on Thu Feb 17 09:10:05 2022 @author: JHOSS
3.373298
3
bokeh/models/tests/test_callbacks.py
ndepal/bokeh
1
9773
<reponame>ndepal/bokeh from pytest import raises from bokeh.models import CustomJS, Slider def test_js_callback(): slider = Slider() cb = CustomJS(code="foo();", args=dict(x=slider)) assert 'foo()' in cb.code assert cb.args['x'] is slider cb = CustomJS(code="foo();", args=dict(x=3)) assert 'foo()' in cb.code assert cb.args['x'] is 3 with raises(AttributeError): # kwargs not supported CustomJS(code="foo();", x=slider) def test_py_callback(): slider = Slider() foo = None # fool pyflakes def cb(x=slider): foo() cb = CustomJS.from_py_func(cb) assert 'foo()' in cb.code assert cb.args['x'] is slider def cb(x=4): foo() cb = CustomJS.from_py_func(cb) assert 'foo()' in cb.code assert cb.args['x'] is 4
from pytest import raises from bokeh.models import CustomJS, Slider def test_js_callback(): slider = Slider() cb = CustomJS(code="foo();", args=dict(x=slider)) assert 'foo()' in cb.code assert cb.args['x'] is slider cb = CustomJS(code="foo();", args=dict(x=3)) assert 'foo()' in cb.code assert cb.args['x'] is 3 with raises(AttributeError): # kwargs not supported CustomJS(code="foo();", x=slider) def test_py_callback(): slider = Slider() foo = None # fool pyflakes def cb(x=slider): foo() cb = CustomJS.from_py_func(cb) assert 'foo()' in cb.code assert cb.args['x'] is slider def cb(x=4): foo() cb = CustomJS.from_py_func(cb) assert 'foo()' in cb.code assert cb.args['x'] is 4
en
0.353214
# kwargs not supported # fool pyflakes
2.172644
2
tests/test_0150-attributeerrors.py
martindurant/awkward-1.0
0
9774
# BSD 3-Clause License; see https://github.com/jpivarski/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import sys import pytest import numpy import awkward1 class Dummy(awkward1.Record): @property def broken(self): raise AttributeError("I'm broken!") def test(): behavior = {} behavior["Dummy"] = Dummy array = awkward1.Array([{"x": 1}, {"x": 2}, {"x": 3}], behavior=behavior) array.layout.setparameter("__record__", "Dummy") with pytest.raises(AttributeError) as err: array[1].broken assert str(err.value) == "I'm broken!" # not "no field named 'broken'"
# BSD 3-Clause License; see https://github.com/jpivarski/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import sys import pytest import numpy import awkward1 class Dummy(awkward1.Record): @property def broken(self): raise AttributeError("I'm broken!") def test(): behavior = {} behavior["Dummy"] = Dummy array = awkward1.Array([{"x": 1}, {"x": 2}, {"x": 3}], behavior=behavior) array.layout.setparameter("__record__", "Dummy") with pytest.raises(AttributeError) as err: array[1].broken assert str(err.value) == "I'm broken!" # not "no field named 'broken'"
en
0.783693
# BSD 3-Clause License; see https://github.com/jpivarski/awkward-1.0/blob/master/LICENSE # not "no field named 'broken'"
1.969888
2
scripts/preprocess.py
umd-lib/solr-irroc
0
9775
#!/user/bin/env python3 # -*- coding: utf8 -*- #===================================================# # cleanup.py # # <NAME> # # 2015-08-13 # # # # Data preprocessing script for IRRoC DB # # Usage: python3 cleanup.py [in.csv] [out.csv] # #===================================================# import sys, csv, re infields = ['id', 'str_resource', 'str_description', 'website', 'meta_title', 'meta_description', 'stage_list', 'task_list'] outfields = infields + ['stage_list_facet', 'task_list_facet'] with open(sys.argv[1], 'r') as infile, open(sys.argv[2], 'w') as outfile: # skip header row in order to use own fieldnames next(infile) # instantiate the reader and writer objects dr = csv.DictReader(infile, fieldnames=infields) dw = csv.DictWriter(outfile, fieldnames=outfields) dw.writeheader() exp = re.compile(r'\d+::([^\b])') # loop over the input file, writing results to output file for row in dr: # remove hash marks from URL m = re.search('#(.+)#', row['website']) if m: row['website'] = m.group(1) # remove spaces from all multivalued fields row['stage_list_facet'] = row['stage_list'].replace('; ', ';') row['task_list_facet'] = row['task_list'].replace('; ', ';') row['meta_description'] = row['meta_description'].replace(', ', ',') # create stage_list_facet and task_list_facet cols and strip numbers row['stage_list'] = re.sub(exp, r'\1', row['stage_list_facet']) row['task_list'] = re.sub(exp, r'\1', row['task_list_facet']) # write row dw.writerow(row)
#!/user/bin/env python3 # -*- coding: utf8 -*- #===================================================# # cleanup.py # # <NAME> # # 2015-08-13 # # # # Data preprocessing script for IRRoC DB # # Usage: python3 cleanup.py [in.csv] [out.csv] # #===================================================# import sys, csv, re infields = ['id', 'str_resource', 'str_description', 'website', 'meta_title', 'meta_description', 'stage_list', 'task_list'] outfields = infields + ['stage_list_facet', 'task_list_facet'] with open(sys.argv[1], 'r') as infile, open(sys.argv[2], 'w') as outfile: # skip header row in order to use own fieldnames next(infile) # instantiate the reader and writer objects dr = csv.DictReader(infile, fieldnames=infields) dw = csv.DictWriter(outfile, fieldnames=outfields) dw.writeheader() exp = re.compile(r'\d+::([^\b])') # loop over the input file, writing results to output file for row in dr: # remove hash marks from URL m = re.search('#(.+)#', row['website']) if m: row['website'] = m.group(1) # remove spaces from all multivalued fields row['stage_list_facet'] = row['stage_list'].replace('; ', ';') row['task_list_facet'] = row['task_list'].replace('; ', ';') row['meta_description'] = row['meta_description'].replace(', ', ',') # create stage_list_facet and task_list_facet cols and strip numbers row['stage_list'] = re.sub(exp, r'\1', row['stage_list_facet']) row['task_list'] = re.sub(exp, r'\1', row['task_list_facet']) # write row dw.writerow(row)
en
0.487706
#!/user/bin/env python3 # -*- coding: utf8 -*- #===================================================# # cleanup.py # # <NAME> # # 2015-08-13 # # # # Data preprocessing script for IRRoC DB # # Usage: python3 cleanup.py [in.csv] [out.csv] # #===================================================# # skip header row in order to use own fieldnames # instantiate the reader and writer objects # loop over the input file, writing results to output file # remove hash marks from URL #', row['website']) # remove spaces from all multivalued fields # create stage_list_facet and task_list_facet cols and strip numbers # write row
2.57541
3
ievv_opensource/demo/batchframeworkdemo/apps.py
appressoas/ievv_opensource
0
9776
from django.apps import AppConfig from ievv_opensource import ievv_batchframework from ievv_opensource.ievv_batchframework import batchregistry class HelloWorldAction(ievv_batchframework.Action): def execute(self): self.logger.info('Hello world! %r', self.kwargs) class HelloWorldAsyncAction(ievv_batchframework.Action): def execute(self): self.logger.info('\n\n\n\n\n\n\n\nHello world, async! %r\n\n\n\n\n', self.kwargs) class BatchFrameworkDemoAppConfig(AppConfig): name = 'ievv_opensource.demo.batchframeworkdemo' verbose_name = "IEVV Batchframework demo" def ready(self): batchregistry.Registry.get_instance().add_actiongroup( batchregistry.ActionGroup( name='batchframeworkdemo_helloworld', mode=batchregistry.ActionGroup.MODE_SYNCHRONOUS, actions=[ HelloWorldAction ])) batchregistry.Registry.get_instance().add_actiongroup( batchregistry.ActionGroup( name='batchframeworkdemo_helloworld_async', mode=batchregistry.ActionGroup.MODE_ASYNCHRONOUS, actions=[ HelloWorldAsyncAction ] ) )
from django.apps import AppConfig from ievv_opensource import ievv_batchframework from ievv_opensource.ievv_batchframework import batchregistry class HelloWorldAction(ievv_batchframework.Action): def execute(self): self.logger.info('Hello world! %r', self.kwargs) class HelloWorldAsyncAction(ievv_batchframework.Action): def execute(self): self.logger.info('\n\n\n\n\n\n\n\nHello world, async! %r\n\n\n\n\n', self.kwargs) class BatchFrameworkDemoAppConfig(AppConfig): name = 'ievv_opensource.demo.batchframeworkdemo' verbose_name = "IEVV Batchframework demo" def ready(self): batchregistry.Registry.get_instance().add_actiongroup( batchregistry.ActionGroup( name='batchframeworkdemo_helloworld', mode=batchregistry.ActionGroup.MODE_SYNCHRONOUS, actions=[ HelloWorldAction ])) batchregistry.Registry.get_instance().add_actiongroup( batchregistry.ActionGroup( name='batchframeworkdemo_helloworld_async', mode=batchregistry.ActionGroup.MODE_ASYNCHRONOUS, actions=[ HelloWorldAsyncAction ] ) )
none
1
2.009999
2
fmoe/gates/utils.py
GODVIX/fastmoe
0
9777
<filename>fmoe/gates/utils.py<gh_stars>0 r""" Utilities that may be used in the gates """ import torch from fmoe.functions import count_by_gate import fmoe_cuda as fmoe_native def limit_by_capacity(topk_idx, num_expert, world_size, capacity): capacity = torch.ones(num_expert, dtype=torch.int32, device=topk_idx.device) * capacity pos, lec, gec = count_by_gate(topk_idx, num_expert, world_size, require_pos=False) new_gec, = fmoe_native.limit_by_capacity(gec, capacity, num_expert, world_size) if world_size > 1: new_lec, = fmoe_native.expert_exchange(new_gec, num_expert, world_size) else: new_lec = new_gec fmoe_native.prune_gate_by_capacity(topk_idx, new_lec.to(torch.int32), num_expert, world_size) return new_lec, new_gec
<filename>fmoe/gates/utils.py<gh_stars>0 r""" Utilities that may be used in the gates """ import torch from fmoe.functions import count_by_gate import fmoe_cuda as fmoe_native def limit_by_capacity(topk_idx, num_expert, world_size, capacity): capacity = torch.ones(num_expert, dtype=torch.int32, device=topk_idx.device) * capacity pos, lec, gec = count_by_gate(topk_idx, num_expert, world_size, require_pos=False) new_gec, = fmoe_native.limit_by_capacity(gec, capacity, num_expert, world_size) if world_size > 1: new_lec, = fmoe_native.expert_exchange(new_gec, num_expert, world_size) else: new_lec = new_gec fmoe_native.prune_gate_by_capacity(topk_idx, new_lec.to(torch.int32), num_expert, world_size) return new_lec, new_gec
en
0.917752
Utilities that may be used in the gates
1.911596
2
evaluate.py
DeppMeng/DANNet
0
9778
<reponame>DeppMeng/DANNet<filename>evaluate.py import os import torch import numpy as np from PIL import Image import torch.nn as nn from torch.utils import data from network import * from dataset.zurich_night_dataset import zurich_night_DataSet from configs.test_config import get_arguments palette = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30, 220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70, 0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32] zero_pad = 256 * 3 - len(palette) for i in range(zero_pad): palette.append(0) def colorize_mask(mask): new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P') new_mask.putpalette(palette) return new_mask def main(): os.environ['CUDA_VISIBLE_DEVICES'] = '0' device = torch.device("cuda") args = get_arguments() if not os.path.exists(args.save): os.makedirs(args.save) if args.model == 'PSPNet': model = PSPNet(num_classes=args.num_classes) if args.model == 'DeepLab': model = Deeplab(num_classes=args.num_classes) if args.model == 'RefineNet': model = RefineNet(num_classes=args.num_classes, imagenet=False) saved_state_dict = torch.load(args.restore_from) model_dict = model.state_dict() saved_state_dict = {k: v for k, v in saved_state_dict.items() if k in model_dict} model_dict.update(saved_state_dict) model.load_state_dict(saved_state_dict) lightnet = LightNet() saved_state_dict = torch.load(args.restore_from_light) model_dict = lightnet.state_dict() saved_state_dict = {k: v for k, v in saved_state_dict.items() if k in model_dict} model_dict.update(saved_state_dict) lightnet.load_state_dict(saved_state_dict) model = model.to(device) lightnet = lightnet.to(device) model.eval() lightnet.eval() testloader = data.DataLoader(zurich_night_DataSet(args.data_dir, args.data_list, set=args.set)) interp = nn.Upsample(size=(1080, 1920), mode='bilinear', align_corners=True) weights = torch.log(torch.FloatTensor( [0.36869696, 0.06084986, 0.22824049, 0.00655399, 0.00877272, 0.01227341, 0.00207795, 0.0055127, 0.15928651, 0.01157818, 0.04018982, 0.01218957, 0.00135122, 0.06994545, 0.00267456, 0.00235192, 0.00232904, 0.00098658, 0.00413907])).cuda() weights = (torch.mean(weights) - weights) / torch.std(weights) * args.std + 1.0 for index, batch in enumerate(testloader): if index % 10 == 0: print('%d processd' % index) image, name = batch image = image.to(device) with torch.no_grad(): r = lightnet(image) enhancement = image + r if args.model == 'RefineNet': output2 = model(enhancement) else: _, output2 = model(enhancement) weights_prob = weights.expand(output2.size()[0], output2.size()[3], output2.size()[2], 19) weights_prob = weights_prob.transpose(1, 3) output2 = output2 * weights_prob output = interp(output2).cpu().data[0].numpy() output = output.transpose(1,2,0) output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8) output_col = colorize_mask(output) output = Image.fromarray(output) ###### get the enhanced image mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) enhancement = enhancement.cpu().data[0].numpy().transpose(1,2,0) enhancement = enhancement * mean_std[1] + mean_std[0] enhancement = (enhancement - enhancement.min()) / (enhancement.max()-enhancement.min()) enhancement = enhancement[:, :, ::-1] * 255 # change to BGR enhancement = Image.fromarray(enhancement.astype(np.uint8)) ###### get the light light = r.cpu().data[0].numpy().transpose(1, 2, 0) light = (light-light.min()) / (light.max() - light.min()) light = light[:, :, ::-1] * 255 # change to BGR light = Image.fromarray(light.astype(np.uint8)) name = name[0].split('/')[-1] output.save('%s/%s' % (args.save, name)) output_col.save('%s/%s_color.png' % (args.save, name.split('.')[0])) enhancement.save('%s/%s_enhancement.png' % (args.save, name.split('.')[0])) light.save('%s/%s_light.png' % (args.save, name.split('.')[0])) if __name__ == '__main__': main()
import os import torch import numpy as np from PIL import Image import torch.nn as nn from torch.utils import data from network import * from dataset.zurich_night_dataset import zurich_night_DataSet from configs.test_config import get_arguments palette = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30, 220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70, 0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32] zero_pad = 256 * 3 - len(palette) for i in range(zero_pad): palette.append(0) def colorize_mask(mask): new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P') new_mask.putpalette(palette) return new_mask def main(): os.environ['CUDA_VISIBLE_DEVICES'] = '0' device = torch.device("cuda") args = get_arguments() if not os.path.exists(args.save): os.makedirs(args.save) if args.model == 'PSPNet': model = PSPNet(num_classes=args.num_classes) if args.model == 'DeepLab': model = Deeplab(num_classes=args.num_classes) if args.model == 'RefineNet': model = RefineNet(num_classes=args.num_classes, imagenet=False) saved_state_dict = torch.load(args.restore_from) model_dict = model.state_dict() saved_state_dict = {k: v for k, v in saved_state_dict.items() if k in model_dict} model_dict.update(saved_state_dict) model.load_state_dict(saved_state_dict) lightnet = LightNet() saved_state_dict = torch.load(args.restore_from_light) model_dict = lightnet.state_dict() saved_state_dict = {k: v for k, v in saved_state_dict.items() if k in model_dict} model_dict.update(saved_state_dict) lightnet.load_state_dict(saved_state_dict) model = model.to(device) lightnet = lightnet.to(device) model.eval() lightnet.eval() testloader = data.DataLoader(zurich_night_DataSet(args.data_dir, args.data_list, set=args.set)) interp = nn.Upsample(size=(1080, 1920), mode='bilinear', align_corners=True) weights = torch.log(torch.FloatTensor( [0.36869696, 0.06084986, 0.22824049, 0.00655399, 0.00877272, 0.01227341, 0.00207795, 0.0055127, 0.15928651, 0.01157818, 0.04018982, 0.01218957, 0.00135122, 0.06994545, 0.00267456, 0.00235192, 0.00232904, 0.00098658, 0.00413907])).cuda() weights = (torch.mean(weights) - weights) / torch.std(weights) * args.std + 1.0 for index, batch in enumerate(testloader): if index % 10 == 0: print('%d processd' % index) image, name = batch image = image.to(device) with torch.no_grad(): r = lightnet(image) enhancement = image + r if args.model == 'RefineNet': output2 = model(enhancement) else: _, output2 = model(enhancement) weights_prob = weights.expand(output2.size()[0], output2.size()[3], output2.size()[2], 19) weights_prob = weights_prob.transpose(1, 3) output2 = output2 * weights_prob output = interp(output2).cpu().data[0].numpy() output = output.transpose(1,2,0) output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8) output_col = colorize_mask(output) output = Image.fromarray(output) ###### get the enhanced image mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) enhancement = enhancement.cpu().data[0].numpy().transpose(1,2,0) enhancement = enhancement * mean_std[1] + mean_std[0] enhancement = (enhancement - enhancement.min()) / (enhancement.max()-enhancement.min()) enhancement = enhancement[:, :, ::-1] * 255 # change to BGR enhancement = Image.fromarray(enhancement.astype(np.uint8)) ###### get the light light = r.cpu().data[0].numpy().transpose(1, 2, 0) light = (light-light.min()) / (light.max() - light.min()) light = light[:, :, ::-1] * 255 # change to BGR light = Image.fromarray(light.astype(np.uint8)) name = name[0].split('/')[-1] output.save('%s/%s' % (args.save, name)) output_col.save('%s/%s_color.png' % (args.save, name.split('.')[0])) enhancement.save('%s/%s_enhancement.png' % (args.save, name.split('.')[0])) light.save('%s/%s_light.png' % (args.save, name.split('.')[0])) if __name__ == '__main__': main()
en
0.774967
###### get the enhanced image # change to BGR ###### get the light # change to BGR
2.293945
2
decorator.py
zengboming/python
0
9779
#decorator def now(): print "2015-11-18" f=now f() print now.__name__ print f.__name__ def log(func): def wrapper(*args,**kw): print 'begin call %s():' %func.__name__ func(*args,**kw) print 'end call %s():' %func.__name__ return wrapper @log def now1(): print now1.__name__ now1() now1=log(now1) now1() def log1(text): def decorator(func): def wrapper(*args,**kw): print '%s %s():' %(text,func.__name__) return func(*args,**kw) return wrapper return decorator @log1('execute') def now2(): print now2.__name__ now2() import functools def log2(func): @functools.wraps(func) def wrapper(*args,**kw): print 'call %s():' %func.__name__ return func(*args,**kw) return wrapper @log2 def now3(): print now3.__name__ now3() def log3(text): def decorator(func): @functools.wraps(func) def wrapper(*args,**kw): print '%s %s():' %(text,func.__name__) return func(*args,**kw) return wrapper return decorator @log3('execute') def now4(): print now4.__name__ now4() def log4(text): if callable(text): @functools.wraps(text) def wrapper(*args,**kw): print 'begin call %s:' %text.__name__ text(*args,**kw) print 'end call '+text.__name__ return wrapper else : def decorator(func): @functools.wraps(func) def wrapper(*args,**kw): print 'begin call %s %s():' %(text,func.__name__) func(*args,**kw) print 'end call %s %s():' %(text,func.__name__) return wrapper return decorator @log4 def now5(): print 'doing'+now5.__name__ now5() @log4('execute') def now6(): print 'doing'+now6.__name__ now6()
#decorator def now(): print "2015-11-18" f=now f() print now.__name__ print f.__name__ def log(func): def wrapper(*args,**kw): print 'begin call %s():' %func.__name__ func(*args,**kw) print 'end call %s():' %func.__name__ return wrapper @log def now1(): print now1.__name__ now1() now1=log(now1) now1() def log1(text): def decorator(func): def wrapper(*args,**kw): print '%s %s():' %(text,func.__name__) return func(*args,**kw) return wrapper return decorator @log1('execute') def now2(): print now2.__name__ now2() import functools def log2(func): @functools.wraps(func) def wrapper(*args,**kw): print 'call %s():' %func.__name__ return func(*args,**kw) return wrapper @log2 def now3(): print now3.__name__ now3() def log3(text): def decorator(func): @functools.wraps(func) def wrapper(*args,**kw): print '%s %s():' %(text,func.__name__) return func(*args,**kw) return wrapper return decorator @log3('execute') def now4(): print now4.__name__ now4() def log4(text): if callable(text): @functools.wraps(text) def wrapper(*args,**kw): print 'begin call %s:' %text.__name__ text(*args,**kw) print 'end call '+text.__name__ return wrapper else : def decorator(func): @functools.wraps(func) def wrapper(*args,**kw): print 'begin call %s %s():' %(text,func.__name__) func(*args,**kw) print 'end call %s %s():' %(text,func.__name__) return wrapper return decorator @log4 def now5(): print 'doing'+now5.__name__ now5() @log4('execute') def now6(): print 'doing'+now6.__name__ now6()
en
0.553214
#decorator
3.184262
3
test/pyfrechet_visualize.py
compgeomTU/frechetForCurves
0
9780
# Author: <NAME> # <EMAIL> # # Command line to run program: # python3 pyfrechet_visualize.py import sys, os, unittest sys.path.insert(0, "../") from pyfrechet.distance import StrongDistance from pyfrechet.visualize import FreeSpaceDiagram, Trajectories TEST_DATA = "sp500" if TEST_DATA == "sp500": REACHABLE_EPSILON = 5 UNREACHABLE_EPSILON = 1 REVERSE_CURVE = False elif TEST_DATA == "trajectory": REACHABLE_EPSILON = 70 UNREACHABLE_EPSILON = 60 REVERSE_CURVE = True CURVE_1 = f"{TEST_DATA}_data/sample_1.txt" CURVE_2 = f"{TEST_DATA}_data/sample_2.txt" class pyfrechet_optimise(unittest.TestCase): global REACHABLE_EPSILON global UNREACHABLE_EPSILON global REVERSE_CURVE global CURVE_1 global CURVE_2 def test_fail_BinarySearch_instance_argument(self): class BadClass(): pass with self.assertRaises(TypeError): bc = BadClass() FreeSpaceDiagram(bc) def test_FreeSpaceDiagram_plot(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) sd.setFreeSpace(REACHABLE_EPSILON) fsd = FreeSpaceDiagram(sd) fsd.plot() def test_FreeSpaceDiagram__addEpsilonSlider(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) fsd.addEpsilonSlider(UNREACHABLE_EPSILON, REACHABLE_EPSILON, 1) fsd.plot() def test_FreeSpaceDiagram__weighted_cells(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) sd.setFreeSpace(REACHABLE_EPSILON) fsd.plot(True, False) def test_FreeSpaceDiagram__gridlines(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) sd.setFreeSpace(REACHABLE_EPSILON) fsd.plot(True, True) def test_Trajectories(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) t = Trajectories(sd) t.plot() if __name__ == '__main__': unittest.main()
# Author: <NAME> # <EMAIL> # # Command line to run program: # python3 pyfrechet_visualize.py import sys, os, unittest sys.path.insert(0, "../") from pyfrechet.distance import StrongDistance from pyfrechet.visualize import FreeSpaceDiagram, Trajectories TEST_DATA = "sp500" if TEST_DATA == "sp500": REACHABLE_EPSILON = 5 UNREACHABLE_EPSILON = 1 REVERSE_CURVE = False elif TEST_DATA == "trajectory": REACHABLE_EPSILON = 70 UNREACHABLE_EPSILON = 60 REVERSE_CURVE = True CURVE_1 = f"{TEST_DATA}_data/sample_1.txt" CURVE_2 = f"{TEST_DATA}_data/sample_2.txt" class pyfrechet_optimise(unittest.TestCase): global REACHABLE_EPSILON global UNREACHABLE_EPSILON global REVERSE_CURVE global CURVE_1 global CURVE_2 def test_fail_BinarySearch_instance_argument(self): class BadClass(): pass with self.assertRaises(TypeError): bc = BadClass() FreeSpaceDiagram(bc) def test_FreeSpaceDiagram_plot(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) sd.setFreeSpace(REACHABLE_EPSILON) fsd = FreeSpaceDiagram(sd) fsd.plot() def test_FreeSpaceDiagram__addEpsilonSlider(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) fsd.addEpsilonSlider(UNREACHABLE_EPSILON, REACHABLE_EPSILON, 1) fsd.plot() def test_FreeSpaceDiagram__weighted_cells(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) sd.setFreeSpace(REACHABLE_EPSILON) fsd.plot(True, False) def test_FreeSpaceDiagram__gridlines(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) fsd = FreeSpaceDiagram(sd) sd.setFreeSpace(REACHABLE_EPSILON) fsd.plot(True, True) def test_Trajectories(self): sd = StrongDistance.setCurves(CURVE_1, CURVE_2, REVERSE_CURVE) t = Trajectories(sd) t.plot() if __name__ == '__main__': unittest.main()
en
0.364627
# Author: <NAME> # <EMAIL> # # Command line to run program: # python3 pyfrechet_visualize.py
2.600627
3
py_ser_freeastro/core.py
nww2007/py_ser_freeastro
0
9781
#!/usr/bin/env python3 # vim:fileencoding=UTF-8 # -*- coding: UTF-8 -*- """ Created on 15 juny 2019 y. @author: <NAME> <EMAIL> """ import sys import struct import numpy as np from progress.bar import Bar import logging logging.basicConfig(format = u'%(filename)s:%(lineno)d: %(levelname)-8s [%(asctime)s] %(message)s', level = logging.DEBUG, stream=sys.stdout) # class ser(np.array): class ser(object): """ A set of methods for working with a set of images in the SER format. """ def __init__(self, fname): """ Download information from file. """ # super.__init__() # luids self.MONO = 0 self.BAYER_RGGB = 8 self.BAYER_GRBG = 9 self.BAYER_GBRG = 10 self.BAYER_BGGR = 11 self.BAYER_CYYM = 16 self.BAYER_YCMY = 17 self.BAYER_YMCY = 18 self.BAYER_MYYC = 19 self.RGB = 100 self.BGR = 101 self.fname = fname with open(self.fname, 'rb') as fd: # Download information from the header. self.header = fd.read(178) self.parse_header() # Download images. self.frames = np.zeros((self.framecount, self.imageheight, self.imagewidth)) bar = Bar('Downloading', max=self.framecount) for frame in range(self.framecount): # for frame in range(1): bar.next() t_frame = fd.read(self.imageheight * self.imagewidth * self.pixeldepthperplane//8) for line in range(self.imageheight): for pixel in range(self.imagewidth): index = (line * self.imagewidth + pixel) * 2 self.frames[frame][line][pixel] = struct.unpack('<H', t_frame[index:index+2])[0] bar.finish() # Download the trailer self.trailer = fd.read(self.framecount * 8) self.parse_trailer() def parse_header(self): """ Parse the title. """ self.fileid = self.header[0:14] self.luid = struct.unpack('<i', self.header[14:18])[0] self.colorid = struct.unpack('<i', self.header[18:22])[0] self.littleendian_FALSE = 0 self.littleendian_TRUE = 1 self.littleendian = struct.unpack('<i', self.header[22:26])[0] self.imagewidth = struct.unpack('<i', self.header[26:30])[0] self.imageheight = struct.unpack('<i', self.header[30:34])[0] self.pixeldepthperplane = struct.unpack('<i', self.header[34:38])[0] self.framecount = struct.unpack('<i', self.header[38:42])[0] self.observer = self.header[42:82] self.telescope = self.header[82:122] self.datetime = struct.unpack('<q', self.header[122:130])[0] self.datetime_utc = struct.unpack('<q', self.header[130:138])[0] # logging.info('{0}x{1}'.format(self.imagewidth, self.imageheight)) def parse_trailer(self): """ Parse the trailer """ for i in range(0, self.framecount*8, 8): tuli = (struct.unpack('<Q', self.trailer[i:i+8])[0]) def main(argv): logging.info('%s started.\n' % argv[0]) fn = './images/ASICAP_2019-05-10_01_43_36_523.SER' frames = ser(fn) # logging.debug(type(frames)) # logging.debug(type(object)) # # darks_fn = './images/ASICAP_2019-05-10_02_12_00_621.SER' # # offsets_fn = './images/ASICAP_2019-05-10_02_30_47_294.SER' # # # frames = ser.ser() # # frames.read(darks_fn) # # frames.read(lights_fn) # # ser_fr = serialise_frames(frames) # # logging.debug('std1={}'.format(ser_fr.std())) # # hist_fr = get_hist(ser_fr) # # plt.plot(hist_fr) # # plt.grid() # # plt.show() # # fnames = [ # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_34_52_584.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_36_05_343.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_34_373.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_47_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_58_784.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_06_703.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_17_476.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_27_330.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_36_623.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_48_239.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_20_816.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_32_118.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_47_796.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_59_999.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_10_321.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_41_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_07_956.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_19_287.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_31_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_43_981.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_07_152.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_36_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_01_167.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_33_214.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_58_952.SER', # ] # # print('{};{};{};{};{}'.format('File', 'Temperature', 'Exposure', 'Gain', 'std')) # for fn in fnames: # print('{}'.format(fn), flush=True, file=sys.stderr) # frames = ser.ser() # frames.read(fn) # ser_fr = serialise_frames(frames) # # config = configparser.ConfigParser() # config.read(fn + '.txt') # # print('{};{};{};{};{}'.format(fn, config['ZWO ASI120MC']['temperature'], config['ZWO ASI120MC']['exposure'], config['ZWO ASI120MC']['gain'], ser_fr.std())) logging.info('%s finished.\n' % argv[0]) return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
#!/usr/bin/env python3 # vim:fileencoding=UTF-8 # -*- coding: UTF-8 -*- """ Created on 15 juny 2019 y. @author: <NAME> <EMAIL> """ import sys import struct import numpy as np from progress.bar import Bar import logging logging.basicConfig(format = u'%(filename)s:%(lineno)d: %(levelname)-8s [%(asctime)s] %(message)s', level = logging.DEBUG, stream=sys.stdout) # class ser(np.array): class ser(object): """ A set of methods for working with a set of images in the SER format. """ def __init__(self, fname): """ Download information from file. """ # super.__init__() # luids self.MONO = 0 self.BAYER_RGGB = 8 self.BAYER_GRBG = 9 self.BAYER_GBRG = 10 self.BAYER_BGGR = 11 self.BAYER_CYYM = 16 self.BAYER_YCMY = 17 self.BAYER_YMCY = 18 self.BAYER_MYYC = 19 self.RGB = 100 self.BGR = 101 self.fname = fname with open(self.fname, 'rb') as fd: # Download information from the header. self.header = fd.read(178) self.parse_header() # Download images. self.frames = np.zeros((self.framecount, self.imageheight, self.imagewidth)) bar = Bar('Downloading', max=self.framecount) for frame in range(self.framecount): # for frame in range(1): bar.next() t_frame = fd.read(self.imageheight * self.imagewidth * self.pixeldepthperplane//8) for line in range(self.imageheight): for pixel in range(self.imagewidth): index = (line * self.imagewidth + pixel) * 2 self.frames[frame][line][pixel] = struct.unpack('<H', t_frame[index:index+2])[0] bar.finish() # Download the trailer self.trailer = fd.read(self.framecount * 8) self.parse_trailer() def parse_header(self): """ Parse the title. """ self.fileid = self.header[0:14] self.luid = struct.unpack('<i', self.header[14:18])[0] self.colorid = struct.unpack('<i', self.header[18:22])[0] self.littleendian_FALSE = 0 self.littleendian_TRUE = 1 self.littleendian = struct.unpack('<i', self.header[22:26])[0] self.imagewidth = struct.unpack('<i', self.header[26:30])[0] self.imageheight = struct.unpack('<i', self.header[30:34])[0] self.pixeldepthperplane = struct.unpack('<i', self.header[34:38])[0] self.framecount = struct.unpack('<i', self.header[38:42])[0] self.observer = self.header[42:82] self.telescope = self.header[82:122] self.datetime = struct.unpack('<q', self.header[122:130])[0] self.datetime_utc = struct.unpack('<q', self.header[130:138])[0] # logging.info('{0}x{1}'.format(self.imagewidth, self.imageheight)) def parse_trailer(self): """ Parse the trailer """ for i in range(0, self.framecount*8, 8): tuli = (struct.unpack('<Q', self.trailer[i:i+8])[0]) def main(argv): logging.info('%s started.\n' % argv[0]) fn = './images/ASICAP_2019-05-10_01_43_36_523.SER' frames = ser(fn) # logging.debug(type(frames)) # logging.debug(type(object)) # # darks_fn = './images/ASICAP_2019-05-10_02_12_00_621.SER' # # offsets_fn = './images/ASICAP_2019-05-10_02_30_47_294.SER' # # # frames = ser.ser() # # frames.read(darks_fn) # # frames.read(lights_fn) # # ser_fr = serialise_frames(frames) # # logging.debug('std1={}'.format(ser_fr.std())) # # hist_fr = get_hist(ser_fr) # # plt.plot(hist_fr) # # plt.grid() # # plt.show() # # fnames = [ # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_34_52_584.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_36_05_343.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_34_373.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_47_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_58_784.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_06_703.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_17_476.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_27_330.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_36_623.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_48_239.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_20_816.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_32_118.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_47_796.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_59_999.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_10_321.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_41_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_07_956.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_19_287.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_31_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_43_981.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_07_152.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_36_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_01_167.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_33_214.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_58_952.SER', # ] # # print('{};{};{};{};{}'.format('File', 'Temperature', 'Exposure', 'Gain', 'std')) # for fn in fnames: # print('{}'.format(fn), flush=True, file=sys.stderr) # frames = ser.ser() # frames.read(fn) # ser_fr = serialise_frames(frames) # # config = configparser.ConfigParser() # config.read(fn + '.txt') # # print('{};{};{};{};{}'.format(fn, config['ZWO ASI120MC']['temperature'], config['ZWO ASI120MC']['exposure'], config['ZWO ASI120MC']['gain'], ser_fr.std())) logging.info('%s finished.\n' % argv[0]) return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
en
0.318762
#!/usr/bin/env python3 # vim:fileencoding=UTF-8 # -*- coding: UTF-8 -*- Created on 15 juny 2019 y. @author: <NAME> <EMAIL> # class ser(np.array): A set of methods for working with a set of images in the SER format. Download information from file. # super.__init__() # luids # Download information from the header. # Download images. # for frame in range(1): # Download the trailer Parse the title. # logging.info('{0}x{1}'.format(self.imagewidth, self.imageheight)) Parse the trailer # logging.debug(type(frames)) # logging.debug(type(object)) # # darks_fn = './images/ASICAP_2019-05-10_02_12_00_621.SER' # # offsets_fn = './images/ASICAP_2019-05-10_02_30_47_294.SER' # # # frames = ser.ser() # # frames.read(darks_fn) # # frames.read(lights_fn) # # ser_fr = serialise_frames(frames) # # logging.debug('std1={}'.format(ser_fr.std())) # # hist_fr = get_hist(ser_fr) # # plt.plot(hist_fr) # # plt.grid() # # plt.show() # # fnames = [ # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_34_52_584.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_36_05_343.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_34_373.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_47_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_37_58_784.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_06_703.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_17_476.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_27_330.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_36_623.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_39_48_239.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_20_816.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_32_118.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_47_796.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_40_59_999.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_10_321.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_41_41_276.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_07_956.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_19_287.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_31_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_42_43_981.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_07_152.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_43_36_180.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_01_167.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_33_214.SER', # '/home/nww/ASICAP/tmp/ASICAP_2019-05-25_15_44_58_952.SER', # ] # # print('{};{};{};{};{}'.format('File', 'Temperature', 'Exposure', 'Gain', 'std')) # for fn in fnames: # print('{}'.format(fn), flush=True, file=sys.stderr) # frames = ser.ser() # frames.read(fn) # ser_fr = serialise_frames(frames) # # config = configparser.ConfigParser() # config.read(fn + '.txt') # # print('{};{};{};{};{}'.format(fn, config['ZWO ASI120MC']['temperature'], config['ZWO ASI120MC']['exposure'], config['ZWO ASI120MC']['gain'], ser_fr.std()))
2.571103
3
sgdml_dataset_generation/readers/fchk.py
humeniuka/sGDML_dataset_generation
0
9782
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- __all__ = ["FormattedCheckpointFile"] # # Imports import numpy as np import scipy.linalg as sla from collections import OrderedDict import re import logging # # Local Imports from sgdml_dataset_generation import units from sgdml_dataset_generation.units import hbar # # Logging logger = logging.getLogger(__name__) logging.basicConfig(format="[%(module)-12s] %(message)s", level=logging.INFO) class FormattedCheckpointFile(object): """ reads all fields from formatted checkpoint files produced by the quantum chemistry programs Gaussian 16 and QChem. Parameters ---------- f : File file handle opened for reading a formatted checkpoint file The user has to ensure the file handle is opened and closed at the end. The fields of the checkpoint file can be accessed by their names (see example below). Array fields are stored as 1D numpy arrays of float (R) or integer (I) type. Example ------- >>> with open("freq.fchk") as f: >>> fchk = FormattedCheckpointFile(f) >>> print(fchk["Number of atoms"]) """ def __init__(self, f): self.filename = f.name self.data = OrderedDict() # accumulate all lines belonging to the same field (whithout newlines) acc = "" dtype = None for line_number, line in enumerate(f.readlines()): # count lines starting from 1 line_number += 1 # The name of a field starts in the first column and with a capital letter if re.match(r"^[A-Z].*", line): if len(acc) > 0 and not dtype is None: # All lines belonging to the previous field must have been read, # so we convert it to a numpy array. try: if dtype == str: self.data[field] = acc else: # numerical types array = np.fromstring(acc, dtype=dtype, sep=" ") assert len(array) == count self.data[field] = array except (ValueError,AssertionError) as err: logger.warning(f"A problem occurred reading field `{field}` in line {line_number:10} in {f.name} .") logger.warning(err) self.data[field] = np.zeros(count, dtype=dtype) # reset accumulator acc = "" try: if len(line) < 43: # skip title and method logger.debug(f"skipping line {line_number:10} in {f.name}: `{line.strip()}`") continue # First 43 columns are reserved for the field name field = line[0:43].strip() logger.debug(f"field `{field}` encountered") # Colum 43 contains a character indicating the data type: # I -> integer # R -> real type_char = line[43] if type_char == "I": dtype = int elif type_char == "R": dtype = float elif type_char == "C": dtype = str else: dtype = None # skip lines without I or R data type markers logger.debug(f"skipping line {line_number:10} in {f.name}: `{line.strip()}` .") continue # If column 47-48 contain the string "N=", we are dealing with an array # and the last integer indicates the number of elements if line[47:49] == "N=": count = int(line[49:]) else: # scalar value self.data[field] = dtype(line[49:]) except Exception as err: logger.error(f"An error occurred while reading line {line_number:10} in {f.name} .") raise err else: acc += " " + line # read last field if len(acc) > 0: self.data[field] = np.fromstring(acc, dtype=dtype, sep=" ") assert len(self.data[field]) == count def __getitem__(self, key): """ access data fields by their names Parameters ---------- key : str name of field that should be retrieved (e.g. 'Number of atoms') Returns ------- field : float, int or ndarray a KeyError is raised if the field is not present in the formatted checkpoint file """ return self.data[key] def keys(self): """ list names of all fields present in the formatted checkpoint file Returns ------- keys : list of str field names """ return self.data.keys() def harmonic_approximation(self): """ extract the position, gradient and Hessian of the potential energy in cartesian coordinates The potential is expanded to second order around the current position x0: E(x) = E(x0) + grad(E)^T.(x-x0) + 1/2 (x-x0)^T . hess(E) . (x-x0) A frequency calculation has to be present in the formatted checkpoint file. The frequency calculation should be performed in a separate Gaussian 16 job using the following route line for the ground state calculation: #P functional/basis Freq NoSymm IOp(7/32=5) and the following route line for an excited state frequency calculation: #P functional/basis TD=(Nstates=2, Root=1, NAC) Freq NoSymm IOp(7/32=5) Returns ------- pos : ndarray (3*nat,) cartesian coordinates x0 energy : ndarray (1,) total energy E(x0) of state of interest (in Hartree) grad : ndarray (3*nat,) cartesian gradient dE/dx(x0) (in Hartree/bohr) hess : ndarray (3*nat,3*nat) cartesian force constants d^2E/(dxdx)(x0) (in Hartree/bohr^2) """ try: nat = self.data["Number of atoms"] # total energy of state of interest energy = np.array(self.data["Total Energy"]) # geometry pos = self.data["Current cartesian coordinates"] # cartesian gradient grad = self.data["Cartesian Gradient"] # Only the lower triangular part of the Hessian is stored. hess = np.zeros((3*nat,3*nat)) row, col = np.tril_indices(3*nat) hess[row,col] = self.data["Cartesian Force Constants"] # Hessian is symmetric, H^T = H hess[col,row] = hess[row,col] except KeyError as err: logger.error(f"A required field could not be found in formatted checkpoint file {self.filename} .") raise err return pos, energy, grad, hess def nonadiabatic_coupling(self): """ extract non-adiabatic coupling vector between ground and excited state (Root=I), if present. Only Gaussian 16 saves the NAC vector in the checkpoint file, while QChem writes it to the output file. Returns ------- nac : ndarray (3*nat,) 1st order derivative coupling <0|d/dx|I> """ try: nac = self.data["Nonadiabatic coupling"] except KeyError as err: logger.error(f"The field `Nonadiabatic coupling` could not be found in the formatted checkpoint file {self.filename} .") raise err if (nac == 0.0).all(): logger.warning(f"All components of non-adiabatic coupling vector in {self.filename} are zero.") return nac def vibrational_groundstate(self, zero_threshold=100.0): """ The vibrational ground state belonging to the harmonic potential is given by 1/4 T psi (x) = (det(Gamma ) / pi^N) exp{ -1/2 (x-x ) Gamma (x-x ) } 0 0 0 0 0 provided that x0 is the minimum. This function computes the width parameter matrix Gamma_0 from the Hessian at the minimum. Optional -------- zero_threshold : float > 0 threshold for considering normal mode frequencies as zero (in cm-1) Returns ------- x0 : ndarray (3*nat,) center of Gaussian, in cartesian coordinates (bohr) Gamma0 : ndarray (3*nat,3*nat) symmetric, positive semi-definite matrix of width parameters (bohr^{-2}) en_zpt : float zero-point energy (Hartree) """ x0, energy, grad, hess = self.harmonic_approximation() mass = self.masses() # diagonals of M^{1/2} and M^{-1/2} msq = np.sqrt(mass) imsq = 1.0/msq # mass-weighted Hessian H hess_mwc = np.einsum('i,ij,j->ij', imsq, hess, imsq) # diagonalize symmetric H = V.diag(w).V^T w2,V = sla.eigh(hess_mwc) # vibrational energies w = np.sqrt(w2) # zero-point energy en_zpt = 0.5 * hbar * np.sum(w) logger.info("Normal mode frequencies (cm-1)") logger.info(w*units.hartree_to_wavenumbers) if not (w * units.hartree_to_wavenumbers > zero_threshold).all(): logger.warning("At a minimum all frequencies should be positive, found imaginary ones.") # select non-zero vibrational modes non_zero = (w * units.hartree_to_wavenumbers) > zero_threshold # number of non singular dimensions num_non_zero = np.count_nonzero( non_zero ) dim = x0.shape[0] logger.info(f"number of zero modes : {dim - num_non_zero}") # L = hbar^{-1/2} M^{1/2} V w^{1/2} L = hbar**(-1/2) * np.einsum('i,ij,j->ij', msq, V[:,non_zero], np.sqrt(w[non_zero])) # Gamma_0 = L . L^T Gamma_0 = np.einsum('ij,kj->ik', L, L) return x0, Gamma_0, en_zpt def masses(self): """ atomic masses in a.u. Returns ------- masses : ndarray (3*nat,) masses for each cartesian coordinate in multiples of electron mass """ mass = self.data["Real atomic weights"] * units.amu_to_aumass mass = np.repeat(mass, 3) return mass def atomic_numbers(self): """ atomic numbers Returns ------- numbers : ndarray(nat,) atomic number for each atom """ return self.data["Atomic numbers"]
#!/usr/bin/env python # -*- coding: utf-8 -*- __all__ = ["FormattedCheckpointFile"] # # Imports import numpy as np import scipy.linalg as sla from collections import OrderedDict import re import logging # # Local Imports from sgdml_dataset_generation import units from sgdml_dataset_generation.units import hbar # # Logging logger = logging.getLogger(__name__) logging.basicConfig(format="[%(module)-12s] %(message)s", level=logging.INFO) class FormattedCheckpointFile(object): """ reads all fields from formatted checkpoint files produced by the quantum chemistry programs Gaussian 16 and QChem. Parameters ---------- f : File file handle opened for reading a formatted checkpoint file The user has to ensure the file handle is opened and closed at the end. The fields of the checkpoint file can be accessed by their names (see example below). Array fields are stored as 1D numpy arrays of float (R) or integer (I) type. Example ------- >>> with open("freq.fchk") as f: >>> fchk = FormattedCheckpointFile(f) >>> print(fchk["Number of atoms"]) """ def __init__(self, f): self.filename = f.name self.data = OrderedDict() # accumulate all lines belonging to the same field (whithout newlines) acc = "" dtype = None for line_number, line in enumerate(f.readlines()): # count lines starting from 1 line_number += 1 # The name of a field starts in the first column and with a capital letter if re.match(r"^[A-Z].*", line): if len(acc) > 0 and not dtype is None: # All lines belonging to the previous field must have been read, # so we convert it to a numpy array. try: if dtype == str: self.data[field] = acc else: # numerical types array = np.fromstring(acc, dtype=dtype, sep=" ") assert len(array) == count self.data[field] = array except (ValueError,AssertionError) as err: logger.warning(f"A problem occurred reading field `{field}` in line {line_number:10} in {f.name} .") logger.warning(err) self.data[field] = np.zeros(count, dtype=dtype) # reset accumulator acc = "" try: if len(line) < 43: # skip title and method logger.debug(f"skipping line {line_number:10} in {f.name}: `{line.strip()}`") continue # First 43 columns are reserved for the field name field = line[0:43].strip() logger.debug(f"field `{field}` encountered") # Colum 43 contains a character indicating the data type: # I -> integer # R -> real type_char = line[43] if type_char == "I": dtype = int elif type_char == "R": dtype = float elif type_char == "C": dtype = str else: dtype = None # skip lines without I or R data type markers logger.debug(f"skipping line {line_number:10} in {f.name}: `{line.strip()}` .") continue # If column 47-48 contain the string "N=", we are dealing with an array # and the last integer indicates the number of elements if line[47:49] == "N=": count = int(line[49:]) else: # scalar value self.data[field] = dtype(line[49:]) except Exception as err: logger.error(f"An error occurred while reading line {line_number:10} in {f.name} .") raise err else: acc += " " + line # read last field if len(acc) > 0: self.data[field] = np.fromstring(acc, dtype=dtype, sep=" ") assert len(self.data[field]) == count def __getitem__(self, key): """ access data fields by their names Parameters ---------- key : str name of field that should be retrieved (e.g. 'Number of atoms') Returns ------- field : float, int or ndarray a KeyError is raised if the field is not present in the formatted checkpoint file """ return self.data[key] def keys(self): """ list names of all fields present in the formatted checkpoint file Returns ------- keys : list of str field names """ return self.data.keys() def harmonic_approximation(self): """ extract the position, gradient and Hessian of the potential energy in cartesian coordinates The potential is expanded to second order around the current position x0: E(x) = E(x0) + grad(E)^T.(x-x0) + 1/2 (x-x0)^T . hess(E) . (x-x0) A frequency calculation has to be present in the formatted checkpoint file. The frequency calculation should be performed in a separate Gaussian 16 job using the following route line for the ground state calculation: #P functional/basis Freq NoSymm IOp(7/32=5) and the following route line for an excited state frequency calculation: #P functional/basis TD=(Nstates=2, Root=1, NAC) Freq NoSymm IOp(7/32=5) Returns ------- pos : ndarray (3*nat,) cartesian coordinates x0 energy : ndarray (1,) total energy E(x0) of state of interest (in Hartree) grad : ndarray (3*nat,) cartesian gradient dE/dx(x0) (in Hartree/bohr) hess : ndarray (3*nat,3*nat) cartesian force constants d^2E/(dxdx)(x0) (in Hartree/bohr^2) """ try: nat = self.data["Number of atoms"] # total energy of state of interest energy = np.array(self.data["Total Energy"]) # geometry pos = self.data["Current cartesian coordinates"] # cartesian gradient grad = self.data["Cartesian Gradient"] # Only the lower triangular part of the Hessian is stored. hess = np.zeros((3*nat,3*nat)) row, col = np.tril_indices(3*nat) hess[row,col] = self.data["Cartesian Force Constants"] # Hessian is symmetric, H^T = H hess[col,row] = hess[row,col] except KeyError as err: logger.error(f"A required field could not be found in formatted checkpoint file {self.filename} .") raise err return pos, energy, grad, hess def nonadiabatic_coupling(self): """ extract non-adiabatic coupling vector between ground and excited state (Root=I), if present. Only Gaussian 16 saves the NAC vector in the checkpoint file, while QChem writes it to the output file. Returns ------- nac : ndarray (3*nat,) 1st order derivative coupling <0|d/dx|I> """ try: nac = self.data["Nonadiabatic coupling"] except KeyError as err: logger.error(f"The field `Nonadiabatic coupling` could not be found in the formatted checkpoint file {self.filename} .") raise err if (nac == 0.0).all(): logger.warning(f"All components of non-adiabatic coupling vector in {self.filename} are zero.") return nac def vibrational_groundstate(self, zero_threshold=100.0): """ The vibrational ground state belonging to the harmonic potential is given by 1/4 T psi (x) = (det(Gamma ) / pi^N) exp{ -1/2 (x-x ) Gamma (x-x ) } 0 0 0 0 0 provided that x0 is the minimum. This function computes the width parameter matrix Gamma_0 from the Hessian at the minimum. Optional -------- zero_threshold : float > 0 threshold for considering normal mode frequencies as zero (in cm-1) Returns ------- x0 : ndarray (3*nat,) center of Gaussian, in cartesian coordinates (bohr) Gamma0 : ndarray (3*nat,3*nat) symmetric, positive semi-definite matrix of width parameters (bohr^{-2}) en_zpt : float zero-point energy (Hartree) """ x0, energy, grad, hess = self.harmonic_approximation() mass = self.masses() # diagonals of M^{1/2} and M^{-1/2} msq = np.sqrt(mass) imsq = 1.0/msq # mass-weighted Hessian H hess_mwc = np.einsum('i,ij,j->ij', imsq, hess, imsq) # diagonalize symmetric H = V.diag(w).V^T w2,V = sla.eigh(hess_mwc) # vibrational energies w = np.sqrt(w2) # zero-point energy en_zpt = 0.5 * hbar * np.sum(w) logger.info("Normal mode frequencies (cm-1)") logger.info(w*units.hartree_to_wavenumbers) if not (w * units.hartree_to_wavenumbers > zero_threshold).all(): logger.warning("At a minimum all frequencies should be positive, found imaginary ones.") # select non-zero vibrational modes non_zero = (w * units.hartree_to_wavenumbers) > zero_threshold # number of non singular dimensions num_non_zero = np.count_nonzero( non_zero ) dim = x0.shape[0] logger.info(f"number of zero modes : {dim - num_non_zero}") # L = hbar^{-1/2} M^{1/2} V w^{1/2} L = hbar**(-1/2) * np.einsum('i,ij,j->ij', msq, V[:,non_zero], np.sqrt(w[non_zero])) # Gamma_0 = L . L^T Gamma_0 = np.einsum('ij,kj->ik', L, L) return x0, Gamma_0, en_zpt def masses(self): """ atomic masses in a.u. Returns ------- masses : ndarray (3*nat,) masses for each cartesian coordinate in multiples of electron mass """ mass = self.data["Real atomic weights"] * units.amu_to_aumass mass = np.repeat(mass, 3) return mass def atomic_numbers(self): """ atomic numbers Returns ------- numbers : ndarray(nat,) atomic number for each atom """ return self.data["Atomic numbers"]
en
0.768298
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Imports # # Local Imports # # Logging reads all fields from formatted checkpoint files produced by the quantum chemistry programs Gaussian 16 and QChem. Parameters ---------- f : File file handle opened for reading a formatted checkpoint file The user has to ensure the file handle is opened and closed at the end. The fields of the checkpoint file can be accessed by their names (see example below). Array fields are stored as 1D numpy arrays of float (R) or integer (I) type. Example ------- >>> with open("freq.fchk") as f: >>> fchk = FormattedCheckpointFile(f) >>> print(fchk["Number of atoms"]) # accumulate all lines belonging to the same field (whithout newlines) # count lines starting from 1 # The name of a field starts in the first column and with a capital letter # All lines belonging to the previous field must have been read, # so we convert it to a numpy array. # numerical types # reset accumulator # skip title and method # First 43 columns are reserved for the field name # Colum 43 contains a character indicating the data type: # I -> integer # R -> real # skip lines without I or R data type markers # If column 47-48 contain the string "N=", we are dealing with an array # and the last integer indicates the number of elements # scalar value # read last field access data fields by their names Parameters ---------- key : str name of field that should be retrieved (e.g. 'Number of atoms') Returns ------- field : float, int or ndarray a KeyError is raised if the field is not present in the formatted checkpoint file list names of all fields present in the formatted checkpoint file Returns ------- keys : list of str field names extract the position, gradient and Hessian of the potential energy in cartesian coordinates The potential is expanded to second order around the current position x0: E(x) = E(x0) + grad(E)^T.(x-x0) + 1/2 (x-x0)^T . hess(E) . (x-x0) A frequency calculation has to be present in the formatted checkpoint file. The frequency calculation should be performed in a separate Gaussian 16 job using the following route line for the ground state calculation: #P functional/basis Freq NoSymm IOp(7/32=5) and the following route line for an excited state frequency calculation: #P functional/basis TD=(Nstates=2, Root=1, NAC) Freq NoSymm IOp(7/32=5) Returns ------- pos : ndarray (3*nat,) cartesian coordinates x0 energy : ndarray (1,) total energy E(x0) of state of interest (in Hartree) grad : ndarray (3*nat,) cartesian gradient dE/dx(x0) (in Hartree/bohr) hess : ndarray (3*nat,3*nat) cartesian force constants d^2E/(dxdx)(x0) (in Hartree/bohr^2) # total energy of state of interest # geometry # cartesian gradient # Only the lower triangular part of the Hessian is stored. # Hessian is symmetric, H^T = H extract non-adiabatic coupling vector between ground and excited state (Root=I), if present. Only Gaussian 16 saves the NAC vector in the checkpoint file, while QChem writes it to the output file. Returns ------- nac : ndarray (3*nat,) 1st order derivative coupling <0|d/dx|I> The vibrational ground state belonging to the harmonic potential is given by 1/4 T psi (x) = (det(Gamma ) / pi^N) exp{ -1/2 (x-x ) Gamma (x-x ) } 0 0 0 0 0 provided that x0 is the minimum. This function computes the width parameter matrix Gamma_0 from the Hessian at the minimum. Optional -------- zero_threshold : float > 0 threshold for considering normal mode frequencies as zero (in cm-1) Returns ------- x0 : ndarray (3*nat,) center of Gaussian, in cartesian coordinates (bohr) Gamma0 : ndarray (3*nat,3*nat) symmetric, positive semi-definite matrix of width parameters (bohr^{-2}) en_zpt : float zero-point energy (Hartree) # diagonals of M^{1/2} and M^{-1/2} # mass-weighted Hessian H # diagonalize symmetric H = V.diag(w).V^T # vibrational energies # zero-point energy # select non-zero vibrational modes # number of non singular dimensions # L = hbar^{-1/2} M^{1/2} V w^{1/2} # Gamma_0 = L . L^T atomic masses in a.u. Returns ------- masses : ndarray (3*nat,) masses for each cartesian coordinate in multiples of electron mass atomic numbers Returns ------- numbers : ndarray(nat,) atomic number for each atom
2.94844
3
2020_01_01/max_values/max_values.py
94JuHo/Algorithm_study
0
9783
values = [] for i in range(9): values.append(int(input(''))) max_value = 0 location = 0 for i in range(9): if values[i] > max_value: max_value = values[i] location = i+1 print(max_value) print(location)
values = [] for i in range(9): values.append(int(input(''))) max_value = 0 location = 0 for i in range(9): if values[i] > max_value: max_value = values[i] location = i+1 print(max_value) print(location)
none
1
3.786208
4
fuzzywuzzy/process.py
rhasspy/fuzzywuzzy
3
9784
#!/usr/bin/env python # encoding: utf-8 """ process.py Copyright (c) 2011 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from fuzz import * import sys, os import utils ####################################### # Find Best Matchs In List Of Choices # ####################################### def extract(query, choices, processor=None, scorer=None, limit=5): # choices = a list of objects we are attempting to extract values from # query = an object representing the thing we want to find # scorer f(OBJ, QUERY) --> INT. We will return the objects with the highest score # by default, we use score.WRatio() and both OBJ and QUERY should be strings # processor f(OBJ_A) --> OBJ_B, where the output is an input to scorer # for example, "processor = lambda x: x[0]" would return the first element in a collection x (of, say, strings) # this would then be used in the scoring collection if choices is None or len(choices) == 0: return [] # default, turn whatever the choice is into a string if processor is None: processor = lambda x: utils.asciidammit(x) # default: wratio if scorer is None: scorer = WRatio sl = list() for choice in choices: processed = processor(choice) score = scorer(query, processed) tuple = (choice, score) sl.append(tuple) sl.sort(key=lambda i: -1*i[1]) return sl[:limit] ########################## # Find Single Best Match # ########################## def extractOne(query, choices, processor=None, scorer=None, score_cutoff=0): # convenience method which returns the single best choice # optional parameter: score_cutoff. # If the best choice has a score of less than score_cutoff # we will return none (intuition: not a good enough match) best_list = extract(query, choices, processor, scorer, limit=1) if len(best_list) > 0: best = best_list[0] if best[1] > score_cutoff: return best else: return None else: return None
#!/usr/bin/env python # encoding: utf-8 """ process.py Copyright (c) 2011 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from fuzz import * import sys, os import utils ####################################### # Find Best Matchs In List Of Choices # ####################################### def extract(query, choices, processor=None, scorer=None, limit=5): # choices = a list of objects we are attempting to extract values from # query = an object representing the thing we want to find # scorer f(OBJ, QUERY) --> INT. We will return the objects with the highest score # by default, we use score.WRatio() and both OBJ and QUERY should be strings # processor f(OBJ_A) --> OBJ_B, where the output is an input to scorer # for example, "processor = lambda x: x[0]" would return the first element in a collection x (of, say, strings) # this would then be used in the scoring collection if choices is None or len(choices) == 0: return [] # default, turn whatever the choice is into a string if processor is None: processor = lambda x: utils.asciidammit(x) # default: wratio if scorer is None: scorer = WRatio sl = list() for choice in choices: processed = processor(choice) score = scorer(query, processed) tuple = (choice, score) sl.append(tuple) sl.sort(key=lambda i: -1*i[1]) return sl[:limit] ########################## # Find Single Best Match # ########################## def extractOne(query, choices, processor=None, scorer=None, score_cutoff=0): # convenience method which returns the single best choice # optional parameter: score_cutoff. # If the best choice has a score of less than score_cutoff # we will return none (intuition: not a good enough match) best_list = extract(query, choices, processor, scorer, limit=1) if len(best_list) > 0: best = best_list[0] if best[1] > score_cutoff: return best else: return None else: return None
en
0.735952
#!/usr/bin/env python # encoding: utf-8 process.py Copyright (c) 2011 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ####################################### # Find Best Matchs In List Of Choices # ####################################### # choices = a list of objects we are attempting to extract values from # query = an object representing the thing we want to find # scorer f(OBJ, QUERY) --> INT. We will return the objects with the highest score # by default, we use score.WRatio() and both OBJ and QUERY should be strings # processor f(OBJ_A) --> OBJ_B, where the output is an input to scorer # for example, "processor = lambda x: x[0]" would return the first element in a collection x (of, say, strings) # this would then be used in the scoring collection # default, turn whatever the choice is into a string # default: wratio ########################## # Find Single Best Match # ########################## # convenience method which returns the single best choice # optional parameter: score_cutoff. # If the best choice has a score of less than score_cutoff # we will return none (intuition: not a good enough match)
2.392474
2
day03/day03.py
robfalck/AoC2017
0
9785
<gh_stars>0 from __future__ import print_function, division, absolute_import import numpy as np INPUT = 265149 def part1(number): skip = 2 d = 1 row = None col = None for shell_idx in range(1, 10000): size = shell_idx * 2 + 1 a = d + skip b = a + skip c = b + skip d = c + skip skip = skip + 2 if a <= number <= b: # top col = -(size // 2) + (b - number) row = size // 2 elif b <= number <= c: # left row = size // 2 - (c - number) col = -(size // 2) elif c <= number <= d: # bottom row = -(size // 2) col = row + (number - c) elif number < a: # right col = size // 2 row = col - (a - number) if row is not None and col is not None: manh_dist = abs(row) + abs(col) return manh_dist def part2(number): """ A brute-force approach to part 2. """ map = np.zeros((11, 11), dtype=int) row = 5 col = 5 map[row, col] = 1 heading = 'RIGHT' dcol = 1 drow = 0 nsteps = 70 for i in range(nsteps): row += drow col += dcol sum_at_next = map[row-1:row+2, col-1:col+2].sum() map[row, col] = sum_at_next if sum_at_next > number: return sum_at_next # Determine if we need to change heading if heading == 'RIGHT' and map[row-1, col] == 0: heading = 'UP' drow = -1 dcol = 0 elif heading == 'UP' and map[row, col-1] == 0: heading = 'LEFT' drow = 0 dcol = -1 elif heading == 'LEFT' and map[row+1, col] == 0: heading = 'DOWN' drow = 1 dcol = 0 elif heading == 'DOWN' and map[row, col+1] == 0: heading = 'RIGHT' drow = 0 dcol = 1 if __name__ == '__main__': print(part1(number=INPUT)) print(part2(number=INPUT))
from __future__ import print_function, division, absolute_import import numpy as np INPUT = 265149 def part1(number): skip = 2 d = 1 row = None col = None for shell_idx in range(1, 10000): size = shell_idx * 2 + 1 a = d + skip b = a + skip c = b + skip d = c + skip skip = skip + 2 if a <= number <= b: # top col = -(size // 2) + (b - number) row = size // 2 elif b <= number <= c: # left row = size // 2 - (c - number) col = -(size // 2) elif c <= number <= d: # bottom row = -(size // 2) col = row + (number - c) elif number < a: # right col = size // 2 row = col - (a - number) if row is not None and col is not None: manh_dist = abs(row) + abs(col) return manh_dist def part2(number): """ A brute-force approach to part 2. """ map = np.zeros((11, 11), dtype=int) row = 5 col = 5 map[row, col] = 1 heading = 'RIGHT' dcol = 1 drow = 0 nsteps = 70 for i in range(nsteps): row += drow col += dcol sum_at_next = map[row-1:row+2, col-1:col+2].sum() map[row, col] = sum_at_next if sum_at_next > number: return sum_at_next # Determine if we need to change heading if heading == 'RIGHT' and map[row-1, col] == 0: heading = 'UP' drow = -1 dcol = 0 elif heading == 'UP' and map[row, col-1] == 0: heading = 'LEFT' drow = 0 dcol = -1 elif heading == 'LEFT' and map[row+1, col] == 0: heading = 'DOWN' drow = 1 dcol = 0 elif heading == 'DOWN' and map[row, col+1] == 0: heading = 'RIGHT' drow = 0 dcol = 1 if __name__ == '__main__': print(part1(number=INPUT)) print(part2(number=INPUT))
en
0.422821
# top # left # bottom # right A brute-force approach to part 2. # Determine if we need to change heading
2.724455
3
core/migrations/0004_auto_20210929_2354.py
codefair114/Inventory-App-Django
0
9786
<filename>core/migrations/0004_auto_20210929_2354.py # Generated by Django 3.2.7 on 2021-09-29 23:54 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20210929_2353'), ] operations = [ migrations.AlterField( model_name='order', name='client', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.orderclient'), ), migrations.AlterField( model_name='order', name='payment', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.paymentmethod'), ), migrations.AlterField( model_name='order', name='shipment', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.shipment'), ), ]
<filename>core/migrations/0004_auto_20210929_2354.py # Generated by Django 3.2.7 on 2021-09-29 23:54 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20210929_2353'), ] operations = [ migrations.AlterField( model_name='order', name='client', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.orderclient'), ), migrations.AlterField( model_name='order', name='payment', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.paymentmethod'), ), migrations.AlterField( model_name='order', name='shipment', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.shipment'), ), ]
en
0.823453
# Generated by Django 3.2.7 on 2021-09-29 23:54
1.38346
1
nova/api/openstack/compute/legacy_v2/contrib/console_auth_tokens.py
bopopescu/nova-token
0
9787
begin_unit comment|'# Copyright 2013 Cloudbase Solutions Srl' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'webob' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'api' op|'.' name|'openstack' name|'import' name|'extensions' newline|'\n' name|'from' name|'nova' op|'.' name|'api' op|'.' name|'openstack' name|'import' name|'wsgi' newline|'\n' name|'from' name|'nova' op|'.' name|'consoleauth' name|'import' name|'rpcapi' name|'as' name|'consoleauth_rpcapi' newline|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_' newline|'\n' nl|'\n' nl|'\n' DECL|variable|authorize name|'authorize' op|'=' name|'extensions' op|'.' name|'extension_authorizer' op|'(' string|"'compute'" op|',' string|"'console_auth_tokens'" op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|ConsoleAuthTokensController name|'class' name|'ConsoleAuthTokensController' op|'(' name|'wsgi' op|'.' name|'Controller' op|')' op|':' newline|'\n' DECL|member|__init__ indent|' ' name|'def' name|'__init__' op|'(' name|'self' op|',' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'_consoleauth_rpcapi' op|'=' name|'consoleauth_rpcapi' op|'.' name|'ConsoleAuthAPI' op|'(' op|')' newline|'\n' name|'super' op|'(' name|'ConsoleAuthTokensController' op|',' name|'self' op|')' op|'.' name|'__init__' op|'(' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' newline|'\n' nl|'\n' DECL|member|show dedent|'' name|'def' name|'show' op|'(' name|'self' op|',' name|'req' op|',' name|'id' op|')' op|':' newline|'\n' indent|' ' string|'"""Checks a console auth token and returns the related connect info."""' newline|'\n' name|'context' op|'=' name|'req' op|'.' name|'environ' op|'[' string|"'nova.context'" op|']' newline|'\n' name|'authorize' op|'(' name|'context' op|')' newline|'\n' nl|'\n' name|'token' op|'=' name|'id' newline|'\n' name|'connect_info' op|'=' name|'self' op|'.' name|'_consoleauth_rpcapi' op|'.' name|'check_token' op|'(' name|'context' op|',' name|'token' op|')' newline|'\n' name|'if' name|'not' name|'connect_info' op|':' newline|'\n' indent|' ' name|'raise' name|'webob' op|'.' name|'exc' op|'.' name|'HTTPNotFound' op|'(' name|'explanation' op|'=' name|'_' op|'(' string|'"Token not found"' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'console_type' op|'=' name|'connect_info' op|'.' name|'get' op|'(' string|"'console_type'" op|')' newline|'\n' comment|'# This is currently required only for RDP consoles' nl|'\n' name|'if' name|'console_type' op|'!=' string|'"rdp-html5"' op|':' newline|'\n' indent|' ' name|'raise' name|'webob' op|'.' name|'exc' op|'.' name|'HTTPUnauthorized' op|'(' nl|'\n' name|'explanation' op|'=' name|'_' op|'(' string|'"The requested console type details are not "' nl|'\n' string|'"accessible"' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' op|'{' string|"'console'" op|':' nl|'\n' op|'{' name|'i' op|':' name|'connect_info' op|'[' name|'i' op|']' nl|'\n' name|'for' name|'i' name|'in' op|'[' string|"'instance_uuid'" op|',' string|"'host'" op|',' string|"'port'" op|',' nl|'\n' string|"'internal_access_path'" op|']' nl|'\n' name|'if' name|'i' name|'in' name|'connect_info' op|'}' op|'}' newline|'\n' nl|'\n' nl|'\n' DECL|class|Console_auth_tokens dedent|'' dedent|'' name|'class' name|'Console_auth_tokens' op|'(' name|'extensions' op|'.' name|'ExtensionDescriptor' op|')' op|':' newline|'\n' indent|' ' string|'"""Console token authentication support."""' newline|'\n' DECL|variable|name name|'name' op|'=' string|'"ConsoleAuthTokens"' newline|'\n' DECL|variable|alias name|'alias' op|'=' string|'"os-console-auth-tokens"' newline|'\n' DECL|variable|namespace name|'namespace' op|'=' op|'(' string|'"http://docs.openstack.org/compute/ext/"' nl|'\n' string|'"consoles-auth-tokens/api/v2"' op|')' newline|'\n' DECL|variable|updated name|'updated' op|'=' string|'"2013-08-13T00:00:00Z"' newline|'\n' nl|'\n' DECL|member|get_resources name|'def' name|'get_resources' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'controller' op|'=' name|'ConsoleAuthTokensController' op|'(' op|')' newline|'\n' name|'ext' op|'=' name|'extensions' op|'.' name|'ResourceExtension' op|'(' string|"'os-console-auth-tokens'" op|',' nl|'\n' name|'controller' op|')' newline|'\n' name|'return' op|'[' name|'ext' op|']' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
begin_unit comment|'# Copyright 2013 Cloudbase Solutions Srl' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'webob' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'api' op|'.' name|'openstack' name|'import' name|'extensions' newline|'\n' name|'from' name|'nova' op|'.' name|'api' op|'.' name|'openstack' name|'import' name|'wsgi' newline|'\n' name|'from' name|'nova' op|'.' name|'consoleauth' name|'import' name|'rpcapi' name|'as' name|'consoleauth_rpcapi' newline|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_' newline|'\n' nl|'\n' nl|'\n' DECL|variable|authorize name|'authorize' op|'=' name|'extensions' op|'.' name|'extension_authorizer' op|'(' string|"'compute'" op|',' string|"'console_auth_tokens'" op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|ConsoleAuthTokensController name|'class' name|'ConsoleAuthTokensController' op|'(' name|'wsgi' op|'.' name|'Controller' op|')' op|':' newline|'\n' DECL|member|__init__ indent|' ' name|'def' name|'__init__' op|'(' name|'self' op|',' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'_consoleauth_rpcapi' op|'=' name|'consoleauth_rpcapi' op|'.' name|'ConsoleAuthAPI' op|'(' op|')' newline|'\n' name|'super' op|'(' name|'ConsoleAuthTokensController' op|',' name|'self' op|')' op|'.' name|'__init__' op|'(' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' newline|'\n' nl|'\n' DECL|member|show dedent|'' name|'def' name|'show' op|'(' name|'self' op|',' name|'req' op|',' name|'id' op|')' op|':' newline|'\n' indent|' ' string|'"""Checks a console auth token and returns the related connect info."""' newline|'\n' name|'context' op|'=' name|'req' op|'.' name|'environ' op|'[' string|"'nova.context'" op|']' newline|'\n' name|'authorize' op|'(' name|'context' op|')' newline|'\n' nl|'\n' name|'token' op|'=' name|'id' newline|'\n' name|'connect_info' op|'=' name|'self' op|'.' name|'_consoleauth_rpcapi' op|'.' name|'check_token' op|'(' name|'context' op|',' name|'token' op|')' newline|'\n' name|'if' name|'not' name|'connect_info' op|':' newline|'\n' indent|' ' name|'raise' name|'webob' op|'.' name|'exc' op|'.' name|'HTTPNotFound' op|'(' name|'explanation' op|'=' name|'_' op|'(' string|'"Token not found"' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'console_type' op|'=' name|'connect_info' op|'.' name|'get' op|'(' string|"'console_type'" op|')' newline|'\n' comment|'# This is currently required only for RDP consoles' nl|'\n' name|'if' name|'console_type' op|'!=' string|'"rdp-html5"' op|':' newline|'\n' indent|' ' name|'raise' name|'webob' op|'.' name|'exc' op|'.' name|'HTTPUnauthorized' op|'(' nl|'\n' name|'explanation' op|'=' name|'_' op|'(' string|'"The requested console type details are not "' nl|'\n' string|'"accessible"' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' op|'{' string|"'console'" op|':' nl|'\n' op|'{' name|'i' op|':' name|'connect_info' op|'[' name|'i' op|']' nl|'\n' name|'for' name|'i' name|'in' op|'[' string|"'instance_uuid'" op|',' string|"'host'" op|',' string|"'port'" op|',' nl|'\n' string|"'internal_access_path'" op|']' nl|'\n' name|'if' name|'i' name|'in' name|'connect_info' op|'}' op|'}' newline|'\n' nl|'\n' nl|'\n' DECL|class|Console_auth_tokens dedent|'' dedent|'' name|'class' name|'Console_auth_tokens' op|'(' name|'extensions' op|'.' name|'ExtensionDescriptor' op|')' op|':' newline|'\n' indent|' ' string|'"""Console token authentication support."""' newline|'\n' DECL|variable|name name|'name' op|'=' string|'"ConsoleAuthTokens"' newline|'\n' DECL|variable|alias name|'alias' op|'=' string|'"os-console-auth-tokens"' newline|'\n' DECL|variable|namespace name|'namespace' op|'=' op|'(' string|'"http://docs.openstack.org/compute/ext/"' nl|'\n' string|'"consoles-auth-tokens/api/v2"' op|')' newline|'\n' DECL|variable|updated name|'updated' op|'=' string|'"2013-08-13T00:00:00Z"' newline|'\n' nl|'\n' DECL|member|get_resources name|'def' name|'get_resources' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'controller' op|'=' name|'ConsoleAuthTokensController' op|'(' op|')' newline|'\n' name|'ext' op|'=' name|'extensions' op|'.' name|'ResourceExtension' op|'(' string|"'os-console-auth-tokens'" op|',' nl|'\n' name|'controller' op|')' newline|'\n' name|'return' op|'[' name|'ext' op|']' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
en
0.53614
Checks a console auth token and returns the related connect info. Console token authentication support.
1.236482
1
ahrs/common/geometry.py
jaluebbe/ahrs
184
9788
<filename>ahrs/common/geometry.py # -*- coding: utf-8 -*- """ Geometrical functions --------------------- References ---------- .. [W1] Wikipedia: https://de.wikipedia.org/wiki/Ellipse#Ellipsengleichung_(Parameterform) .. [WAE] Wolfram Alpha: Ellipse. (http://mathworld.wolfram.com/Ellipse.html) """ import numpy as np from typing import Union def circle(center: Union[list, np.ndarray], radius: float = 1.0, num_points: int = 20) -> np.ndarray: """ Build a circle with the given characteristics. Parameters ---------- c : array-like 2D Coordinates of center. r : float Radius of the circle. num_points : int Number of points to build. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the circle. """ R = np.linspace(0.0, 2.0*np.pi, num_points+1) x = center[0] + radius*np.cos(R) y = center[1] + radius*np.sin(R) return np.array([x, y]).transpose() def ellipse(center: Union[list, np.ndarray], phi: float, axes: Union[list, np.ndarray], num_points: int = 20) -> np.ndarray: """ Build an ellipse with the given characteristics. Parameters ---------- center : array-like 2D Coordinates of center. phi : float Angle, in radians, of the major axis w.r.t. the X-axis axes : array-like Lengths of major and minor axes, respectively. num_points : int Number of points. Defaults to 20. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the ellipse. """ R = np.linspace(0.0, 2.0*np.pi, num_points+1) a, b = axes x = center[0] + a*np.cos(R)*np.cos(phi) - b*np.sin(R)*np.sin(phi) y = center[1] + a*np.cos(R)*np.sin(phi) + b*np.sin(R)*np.cos(phi) return np.array([x, y]).transpose()
<filename>ahrs/common/geometry.py # -*- coding: utf-8 -*- """ Geometrical functions --------------------- References ---------- .. [W1] Wikipedia: https://de.wikipedia.org/wiki/Ellipse#Ellipsengleichung_(Parameterform) .. [WAE] Wolfram Alpha: Ellipse. (http://mathworld.wolfram.com/Ellipse.html) """ import numpy as np from typing import Union def circle(center: Union[list, np.ndarray], radius: float = 1.0, num_points: int = 20) -> np.ndarray: """ Build a circle with the given characteristics. Parameters ---------- c : array-like 2D Coordinates of center. r : float Radius of the circle. num_points : int Number of points to build. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the circle. """ R = np.linspace(0.0, 2.0*np.pi, num_points+1) x = center[0] + radius*np.cos(R) y = center[1] + radius*np.sin(R) return np.array([x, y]).transpose() def ellipse(center: Union[list, np.ndarray], phi: float, axes: Union[list, np.ndarray], num_points: int = 20) -> np.ndarray: """ Build an ellipse with the given characteristics. Parameters ---------- center : array-like 2D Coordinates of center. phi : float Angle, in radians, of the major axis w.r.t. the X-axis axes : array-like Lengths of major and minor axes, respectively. num_points : int Number of points. Defaults to 20. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the ellipse. """ R = np.linspace(0.0, 2.0*np.pi, num_points+1) a, b = axes x = center[0] + a*np.cos(R)*np.cos(phi) - b*np.sin(R)*np.sin(phi) y = center[1] + a*np.cos(R)*np.sin(phi) + b*np.sin(R)*np.cos(phi) return np.array([x, y]).transpose()
en
0.52084
# -*- coding: utf-8 -*- Geometrical functions --------------------- References ---------- .. [W1] Wikipedia: https://de.wikipedia.org/wiki/Ellipse#Ellipsengleichung_(Parameterform) .. [WAE] Wolfram Alpha: Ellipse. (http://mathworld.wolfram.com/Ellipse.html) Build a circle with the given characteristics. Parameters ---------- c : array-like 2D Coordinates of center. r : float Radius of the circle. num_points : int Number of points to build. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the circle. Build an ellipse with the given characteristics. Parameters ---------- center : array-like 2D Coordinates of center. phi : float Angle, in radians, of the major axis w.r.t. the X-axis axes : array-like Lengths of major and minor axes, respectively. num_points : int Number of points. Defaults to 20. Returns ------- points : numpy.ndarray N-by-2 array with the coordinates of the ellipse.
3.937743
4
htdocs/plotting/auto/scripts100/p116.py
jamayfieldjr/iem
1
9789
"""Monthly HDD/CDD Totals.""" import datetime from pandas.io.sql import read_sql from pyiem.plot.use_agg import plt from pyiem.util import get_dbconn, get_autoplot_context from pyiem.exceptions import NoDataFound PDICT = {'cdd': 'Cooling Degree Days', 'hdd': 'Heating Degree Days'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['report'] = True desc['description'] = """This chart presents monthly cooling degree days or heating degree days for a 20 year period of your choice. The 20 year limit is for plot usability only, the data download has all available years contained.""" y20 = datetime.date.today().year - 19 desc['arguments'] = [ dict(type='station', name='station', default='IATDSM', label='Select Station', network='IACLIMATE'), dict(type='select', options=PDICT, default='cdd', name='var', label='Select Variable'), dict(type='year', name='syear', default=y20, label='For plotting, year to start 20 years of plot'), ] return desc def plotter(fdict): """ Go """ import seaborn as sns ctx = get_autoplot_context(fdict, get_description()) pgconn = get_dbconn('coop') station = ctx['station'] varname = ctx['var'] table = "alldata_%s" % (station[:2], ) df = read_sql(""" SELECT year, month, sum(precip) as sum_precip, avg(high) as avg_high, avg(low) as avg_low, sum(cdd(high,low,60)) as cdd60, sum(cdd(high,low,65)) as cdd65, sum(hdd(high,low,60)) as hdd60, sum(hdd(high,low,65)) as hdd65, sum(case when precip >= 0.01 then 1 else 0 end) as rain_days, sum(case when snow >= 0.1 then 1 else 0 end) as snow_days from """+table+""" WHERE station = %s GROUP by year, month """, pgconn, params=(station,), index_col=None) if df.empty: raise NoDataFound("No Data Found.") df['monthdate'] = df[['year', 'month']].apply( lambda x: datetime.date(x[0], x[1], 1), axis=1) df.set_index('monthdate', inplace=True) res = """\ # IEM Climodat https://mesonet.agron.iastate.edu/climodat/ # Report Generated: %s # Climate Record: %s -> %s # Site Information: [%s] %s # Contact Information: <NAME> <EMAIL> 515.294.5978 """ % (datetime.date.today().strftime("%d %b %Y"), ctx['_nt'].sts[station]['archive_begin'].date(), datetime.date.today(), station, ctx['_nt'].sts[station]['name']) res += """# THESE ARE THE MONTHLY %s (base=65) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC """ % (PDICT[varname].upper(), station) second = """# THESE ARE THE MONTHLY %s (base=60) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC """ % ( PDICT[varname].upper(), station) minyear = df['year'].min() maxyear = df['year'].max() for yr in range(minyear, maxyear + 1): res += ("%4i" % (yr,)) second += "%4i" % (yr,) for mo in range(1, 13): ts = datetime.date(yr, mo, 1) if ts not in df.index: res += ("%7s" % ("M",)) second += "%7s" % ("M",) continue row = df.loc[ts] res += ("%7.0f" % (row[varname+"65"],)) second += "%7.0f" % (row[varname+"60"],) res += ("\n") second += "\n" res += ("MEAN") second += "MEAN" for mo in range(1, 13): df2 = df[df['month'] == mo] res += ("%7.0f" % (df2[varname+"65"].mean(), )) second += "%7.0f" % (df2[varname+"60"].mean(), ) res += ("\n") second += "\n" res += second y1 = int(fdict.get('syear', 1990)) fig, ax = plt.subplots(1, 1, figsize=(8., 6.)) fig.text(0.5, 0.95, "[%s] %s (%s-%s)" % ( station, ctx['_nt'].sts[station]['name'], y1, y1 + 20), ha='center', fontsize=16) ax.set_title(r"%s base=60$^\circ$F" % (PDICT[varname], )) filtered = df[(df['year'] >= y1) & (df['year'] <= (y1 + 20))] df2 = filtered[ ['month', 'year', varname + '60'] ].pivot('year', 'month', varname + '60') sns.heatmap(df2, annot=True, fmt=".0f", linewidths=.5, ax=ax) return fig, df, res if __name__ == '__main__': plotter(dict(syear=1990))
"""Monthly HDD/CDD Totals.""" import datetime from pandas.io.sql import read_sql from pyiem.plot.use_agg import plt from pyiem.util import get_dbconn, get_autoplot_context from pyiem.exceptions import NoDataFound PDICT = {'cdd': 'Cooling Degree Days', 'hdd': 'Heating Degree Days'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['report'] = True desc['description'] = """This chart presents monthly cooling degree days or heating degree days for a 20 year period of your choice. The 20 year limit is for plot usability only, the data download has all available years contained.""" y20 = datetime.date.today().year - 19 desc['arguments'] = [ dict(type='station', name='station', default='IATDSM', label='Select Station', network='IACLIMATE'), dict(type='select', options=PDICT, default='cdd', name='var', label='Select Variable'), dict(type='year', name='syear', default=y20, label='For plotting, year to start 20 years of plot'), ] return desc def plotter(fdict): """ Go """ import seaborn as sns ctx = get_autoplot_context(fdict, get_description()) pgconn = get_dbconn('coop') station = ctx['station'] varname = ctx['var'] table = "alldata_%s" % (station[:2], ) df = read_sql(""" SELECT year, month, sum(precip) as sum_precip, avg(high) as avg_high, avg(low) as avg_low, sum(cdd(high,low,60)) as cdd60, sum(cdd(high,low,65)) as cdd65, sum(hdd(high,low,60)) as hdd60, sum(hdd(high,low,65)) as hdd65, sum(case when precip >= 0.01 then 1 else 0 end) as rain_days, sum(case when snow >= 0.1 then 1 else 0 end) as snow_days from """+table+""" WHERE station = %s GROUP by year, month """, pgconn, params=(station,), index_col=None) if df.empty: raise NoDataFound("No Data Found.") df['monthdate'] = df[['year', 'month']].apply( lambda x: datetime.date(x[0], x[1], 1), axis=1) df.set_index('monthdate', inplace=True) res = """\ # IEM Climodat https://mesonet.agron.iastate.edu/climodat/ # Report Generated: %s # Climate Record: %s -> %s # Site Information: [%s] %s # Contact Information: <NAME> <EMAIL> 515.294.5978 """ % (datetime.date.today().strftime("%d %b %Y"), ctx['_nt'].sts[station]['archive_begin'].date(), datetime.date.today(), station, ctx['_nt'].sts[station]['name']) res += """# THESE ARE THE MONTHLY %s (base=65) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC """ % (PDICT[varname].upper(), station) second = """# THESE ARE THE MONTHLY %s (base=60) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC """ % ( PDICT[varname].upper(), station) minyear = df['year'].min() maxyear = df['year'].max() for yr in range(minyear, maxyear + 1): res += ("%4i" % (yr,)) second += "%4i" % (yr,) for mo in range(1, 13): ts = datetime.date(yr, mo, 1) if ts not in df.index: res += ("%7s" % ("M",)) second += "%7s" % ("M",) continue row = df.loc[ts] res += ("%7.0f" % (row[varname+"65"],)) second += "%7.0f" % (row[varname+"60"],) res += ("\n") second += "\n" res += ("MEAN") second += "MEAN" for mo in range(1, 13): df2 = df[df['month'] == mo] res += ("%7.0f" % (df2[varname+"65"].mean(), )) second += "%7.0f" % (df2[varname+"60"].mean(), ) res += ("\n") second += "\n" res += second y1 = int(fdict.get('syear', 1990)) fig, ax = plt.subplots(1, 1, figsize=(8., 6.)) fig.text(0.5, 0.95, "[%s] %s (%s-%s)" % ( station, ctx['_nt'].sts[station]['name'], y1, y1 + 20), ha='center', fontsize=16) ax.set_title(r"%s base=60$^\circ$F" % (PDICT[varname], )) filtered = df[(df['year'] >= y1) & (df['year'] <= (y1 + 20))] df2 = filtered[ ['month', 'year', varname + '60'] ].pivot('year', 'month', varname + '60') sns.heatmap(df2, annot=True, fmt=".0f", linewidths=.5, ax=ax) return fig, df, res if __name__ == '__main__': plotter(dict(syear=1990))
en
0.787647
Monthly HDD/CDD Totals. Return a dict describing how to call this plotter This chart presents monthly cooling degree days or heating degree days for a 20 year period of your choice. The 20 year limit is for plot usability only, the data download has all available years contained. Go SELECT year, month, sum(precip) as sum_precip, avg(high) as avg_high, avg(low) as avg_low, sum(cdd(high,low,60)) as cdd60, sum(cdd(high,low,65)) as cdd65, sum(hdd(high,low,60)) as hdd60, sum(hdd(high,low,65)) as hdd65, sum(case when precip >= 0.01 then 1 else 0 end) as rain_days, sum(case when snow >= 0.1 then 1 else 0 end) as snow_days from WHERE station = %s GROUP by year, month \ # IEM Climodat https://mesonet.agron.iastate.edu/climodat/ # Report Generated: %s # Climate Record: %s -> %s # Site Information: [%s] %s # Contact Information: <NAME> <EMAIL> 515.294.5978 # THESE ARE THE MONTHLY %s (base=65) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC # THESE ARE THE MONTHLY %s (base=60) FOR STATION %s YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP \ OCT NOV DEC
2.888843
3
examples/horovod/ray_torch_shuffle.py
krfricke/ray_shuffling_data_loader
16
9790
import os import pickle import time import timeit import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torch import tempfile import horovod.torch as hvd from horovod.ray import RayExecutor from ray_shuffling_data_loader.torch_dataset import (TorchShufflingDataset) from ray_shuffling_data_loader.data_generation import (generate_data, DATA_SPEC) import argparse DEFAULT_DATA_DIR = "s3://shuffling-data-loader-benchmarks/data/" numpy_to_torch_dtype = { np.bool: torch.bool, np.uint8: torch.uint8, np.int8: torch.int8, np.int16: torch.int16, np.int32: torch.int32, np.int64: torch.int64, np.float16: torch.float16, np.float32: torch.float32, np.float64: torch.float64, np.complex64: torch.complex64, np.complex128: torch.complex128 } # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=250000, metavar="N", help="input batch size for training (default: 64)") parser.add_argument( "--test-batch-size", type=int, default=250000, metavar="N", help="input batch size for testing (default: 1000)") parser.add_argument( "--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)") parser.add_argument( "--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)") parser.add_argument( "--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)") parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument( "--seed", type=int, default=42, metavar="S", help="random seed (default: 42)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help=("how many batches to wait before logging training " "status")) parser.add_argument( "--fp16-allreduce", action="store_true", default=False, help="use fp16 compression during allreduce") parser.add_argument( "--use-adasum", action="store_true", default=False, help="use adasum algorithm to do reduction") parser.add_argument( "--gradient-predivide-factor", type=float, default=1.0, help=("apply gradient predivide factor in optimizer " "(default: 1.0)")) parser.add_argument("--num-workers", type=int, default=None) parser.add_argument("--num-hosts", type=int, default=None) parser.add_argument("--num-workers-per-host", type=int, default=None) parser.add_argument("--cpus-per-worker", type=int, default=1) parser.add_argument("--mock-train-step-time", type=float, default=1.0) # Synthetic training data generation settings. parser.add_argument("--cache-files", action="store_true", default=False) parser.add_argument("--num-rows", type=int, default=2 * (10**7)) parser.add_argument("--num-files", type=int, default=25) parser.add_argument("--max-row-group-skew", type=float, default=0.0) parser.add_argument("--num-row-groups-per-file", type=int, default=5) parser.add_argument("--data-dir", type=str, default=DEFAULT_DATA_DIR) # Shuffling data loader settings. parser.add_argument("--num-reducers", type=int, default=32) parser.add_argument("--max-concurrent-epochs", type=int, default=2) parser.add_argument("--address", default="auto") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) def train_main(args, filenames): # Horovod: initialize library. hvd.init() torch.manual_seed(args.seed) if torch.cuda.is_available() and not args.no_cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) rank = hvd.rank() train_dataset = create_dataset( filenames, batch_size=args.batch_size, rank=rank, num_epochs=args.epochs, world_size=hvd.size(), num_reducers=args.num_reducers, max_concurrent_epochs=args.max_concurrent_epochs) model = Net() # By default, Adasum doesn"t need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if torch.cuda.is_available() and not args.no_cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() # Horovod: scale learning rate by lr_scaler. optimizer = optim.SGD( model.parameters(), lr=args.lr * lr_scaler, momentum=args.momentum) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Horovod: (optional) compression algorithm. compression = (hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none) # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average, gradient_predivide_factor=args.gradient_predivide_factor) def _train(epoch): model.train() # Horovod: set epoch to sampler for shuffling. train_dataset.set_epoch(epoch) start_epoch = timeit.default_timer() last_batch_time = start_epoch batch_wait_times = [] for batch_idx, (data, target) in enumerate(train_dataset): batch_wait_times.append(timeit.default_timer() - last_batch_time) if torch.cuda.is_available() and not args.no_cuda: if isinstance(data, list): data = [t.cuda() for t in data] target = target.cuda() optimizer.zero_grad() # output = model(data) if batch_idx % args.log_interval == 0: print( f"Processing batch {batch_idx} in epoch {epoch} on worker " f"{rank}.") time.sleep(args.mock_train_step_time) # TODO(Clark): Add worker synchronization barrier here. # loss = F.nll_loss(output, target) # loss.backward() # optimizer.step() last_batch_time = timeit.default_timer() epoch_duration = timeit.default_timer() - start_epoch avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nEpoch {epoch}, worker {rank} stats over " f"{len(batch_wait_times)} steps: {epoch_duration:.3f}") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") return batch_wait_times print(f"Starting training on worker {rank}.") batch_wait_times = [] for epoch in range(args.epochs): batch_wait_times.extend(_train(epoch)) batch_wait_times.pop(0) print(f"Done training on worker {rank}.") avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nWorker {rank} training stats over {args.epochs} epochs:") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") # TODO(Clark): Add logic to the dataset abstraction so we don't have to do # this. if rank == 0: print("Waiting in rank 0 worker to let other workers consume queue...") time.sleep(10) print("Done waiting in rank 0 worker.") def create_dataset(filenames, *, batch_size, rank, num_epochs, world_size, num_reducers, max_concurrent_epochs): print(f"Creating Torch shuffling dataset for worker {rank} with " f"{batch_size} batch size, {num_epochs} epochs, {num_reducers} " f"reducers, and {world_size} trainers.") feature_columns = list(DATA_SPEC.keys()) feature_types = [ numpy_to_torch_dtype[dtype] for _, _, dtype in DATA_SPEC.values() ] label_column = feature_columns.pop() label_type = feature_types.pop() return TorchShufflingDataset( filenames, num_epochs, world_size, batch_size, rank, num_reducers=num_reducers, max_concurrent_epochs=max_concurrent_epochs, feature_columns=feature_columns, feature_types=feature_types, label_column=label_column, label_type=label_type) if __name__ == "__main__": args = parser.parse_args() from ray_shuffling_data_loader.stats import human_readable_size import ray print("Connecting to Ray cluster...") ray.init(address=args.address) num_rows = args.num_rows num_files = args.num_files num_row_groups_per_file = args.num_row_groups_per_file max_row_group_skew = args.max_row_group_skew data_dir = args.data_dir cache_path = os.path.join(tempfile.gettempdir(), "data_cache") filenames = None if args.cache_files and os.path.exists(cache_path): try: with open(cache_path, "rb") as f: filenames, num_bytes = pickle.load(f) except Exception as exc: print(f"Cache load failed - {exc}") if not filenames: print(f"Generating {num_rows} rows over {num_files} files, with " f"{num_row_groups_per_file} row groups per file and at most " f"{100 * max_row_group_skew:.1f}% row group skew.") filenames, num_bytes = generate_data(num_rows, num_files, num_row_groups_per_file, max_row_group_skew, data_dir) if args.cache_files: with open(os.path.join(tempfile.gettempdir(), "data_cache"), "wb") as f: pickle.dump((filenames, num_bytes), f) print(f"Generated {len(filenames)} files containing {num_rows} rows " f"with {num_row_groups_per_file} row groups per file, totalling " f"{human_readable_size(num_bytes)}.") print("Create Ray executor") worker_kwargs = {} num_workers = args.num_workers num_hosts = args.num_hosts num_workers_per_host = args.num_workers_per_host if num_workers is not None: if num_hosts is not None: raise ValueError( "Only one of --num-workers and --num-hosts should be used.") worker_kwargs["num_workers"] = num_workers elif num_hosts is not None: worker_kwargs["num_hosts"] = num_hosts if num_workers_per_host is None: raise ValueError("When giving --num-hosts, --num-workers-per-host " "must also be given.") worker_kwargs["num_workers_per_host"] = num_workers_per_host cpus_per_worker = args.cpus_per_worker settings = RayExecutor.create_settings(timeout_s=30) executor = RayExecutor( settings, use_gpu=True, gpus_per_worker=1, cpus_per_worker=cpus_per_worker, **worker_kwargs) executor.start() executor.run(train_main, args=[args, filenames]) executor.shutdown() print("Done consuming batches.")
import os import pickle import time import timeit import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torch import tempfile import horovod.torch as hvd from horovod.ray import RayExecutor from ray_shuffling_data_loader.torch_dataset import (TorchShufflingDataset) from ray_shuffling_data_loader.data_generation import (generate_data, DATA_SPEC) import argparse DEFAULT_DATA_DIR = "s3://shuffling-data-loader-benchmarks/data/" numpy_to_torch_dtype = { np.bool: torch.bool, np.uint8: torch.uint8, np.int8: torch.int8, np.int16: torch.int16, np.int32: torch.int32, np.int64: torch.int64, np.float16: torch.float16, np.float32: torch.float32, np.float64: torch.float64, np.complex64: torch.complex64, np.complex128: torch.complex128 } # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=250000, metavar="N", help="input batch size for training (default: 64)") parser.add_argument( "--test-batch-size", type=int, default=250000, metavar="N", help="input batch size for testing (default: 1000)") parser.add_argument( "--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)") parser.add_argument( "--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)") parser.add_argument( "--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)") parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument( "--seed", type=int, default=42, metavar="S", help="random seed (default: 42)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help=("how many batches to wait before logging training " "status")) parser.add_argument( "--fp16-allreduce", action="store_true", default=False, help="use fp16 compression during allreduce") parser.add_argument( "--use-adasum", action="store_true", default=False, help="use adasum algorithm to do reduction") parser.add_argument( "--gradient-predivide-factor", type=float, default=1.0, help=("apply gradient predivide factor in optimizer " "(default: 1.0)")) parser.add_argument("--num-workers", type=int, default=None) parser.add_argument("--num-hosts", type=int, default=None) parser.add_argument("--num-workers-per-host", type=int, default=None) parser.add_argument("--cpus-per-worker", type=int, default=1) parser.add_argument("--mock-train-step-time", type=float, default=1.0) # Synthetic training data generation settings. parser.add_argument("--cache-files", action="store_true", default=False) parser.add_argument("--num-rows", type=int, default=2 * (10**7)) parser.add_argument("--num-files", type=int, default=25) parser.add_argument("--max-row-group-skew", type=float, default=0.0) parser.add_argument("--num-row-groups-per-file", type=int, default=5) parser.add_argument("--data-dir", type=str, default=DEFAULT_DATA_DIR) # Shuffling data loader settings. parser.add_argument("--num-reducers", type=int, default=32) parser.add_argument("--max-concurrent-epochs", type=int, default=2) parser.add_argument("--address", default="auto") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) def train_main(args, filenames): # Horovod: initialize library. hvd.init() torch.manual_seed(args.seed) if torch.cuda.is_available() and not args.no_cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) rank = hvd.rank() train_dataset = create_dataset( filenames, batch_size=args.batch_size, rank=rank, num_epochs=args.epochs, world_size=hvd.size(), num_reducers=args.num_reducers, max_concurrent_epochs=args.max_concurrent_epochs) model = Net() # By default, Adasum doesn"t need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if torch.cuda.is_available() and not args.no_cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() # Horovod: scale learning rate by lr_scaler. optimizer = optim.SGD( model.parameters(), lr=args.lr * lr_scaler, momentum=args.momentum) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Horovod: (optional) compression algorithm. compression = (hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none) # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average, gradient_predivide_factor=args.gradient_predivide_factor) def _train(epoch): model.train() # Horovod: set epoch to sampler for shuffling. train_dataset.set_epoch(epoch) start_epoch = timeit.default_timer() last_batch_time = start_epoch batch_wait_times = [] for batch_idx, (data, target) in enumerate(train_dataset): batch_wait_times.append(timeit.default_timer() - last_batch_time) if torch.cuda.is_available() and not args.no_cuda: if isinstance(data, list): data = [t.cuda() for t in data] target = target.cuda() optimizer.zero_grad() # output = model(data) if batch_idx % args.log_interval == 0: print( f"Processing batch {batch_idx} in epoch {epoch} on worker " f"{rank}.") time.sleep(args.mock_train_step_time) # TODO(Clark): Add worker synchronization barrier here. # loss = F.nll_loss(output, target) # loss.backward() # optimizer.step() last_batch_time = timeit.default_timer() epoch_duration = timeit.default_timer() - start_epoch avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nEpoch {epoch}, worker {rank} stats over " f"{len(batch_wait_times)} steps: {epoch_duration:.3f}") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") return batch_wait_times print(f"Starting training on worker {rank}.") batch_wait_times = [] for epoch in range(args.epochs): batch_wait_times.extend(_train(epoch)) batch_wait_times.pop(0) print(f"Done training on worker {rank}.") avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nWorker {rank} training stats over {args.epochs} epochs:") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") # TODO(Clark): Add logic to the dataset abstraction so we don't have to do # this. if rank == 0: print("Waiting in rank 0 worker to let other workers consume queue...") time.sleep(10) print("Done waiting in rank 0 worker.") def create_dataset(filenames, *, batch_size, rank, num_epochs, world_size, num_reducers, max_concurrent_epochs): print(f"Creating Torch shuffling dataset for worker {rank} with " f"{batch_size} batch size, {num_epochs} epochs, {num_reducers} " f"reducers, and {world_size} trainers.") feature_columns = list(DATA_SPEC.keys()) feature_types = [ numpy_to_torch_dtype[dtype] for _, _, dtype in DATA_SPEC.values() ] label_column = feature_columns.pop() label_type = feature_types.pop() return TorchShufflingDataset( filenames, num_epochs, world_size, batch_size, rank, num_reducers=num_reducers, max_concurrent_epochs=max_concurrent_epochs, feature_columns=feature_columns, feature_types=feature_types, label_column=label_column, label_type=label_type) if __name__ == "__main__": args = parser.parse_args() from ray_shuffling_data_loader.stats import human_readable_size import ray print("Connecting to Ray cluster...") ray.init(address=args.address) num_rows = args.num_rows num_files = args.num_files num_row_groups_per_file = args.num_row_groups_per_file max_row_group_skew = args.max_row_group_skew data_dir = args.data_dir cache_path = os.path.join(tempfile.gettempdir(), "data_cache") filenames = None if args.cache_files and os.path.exists(cache_path): try: with open(cache_path, "rb") as f: filenames, num_bytes = pickle.load(f) except Exception as exc: print(f"Cache load failed - {exc}") if not filenames: print(f"Generating {num_rows} rows over {num_files} files, with " f"{num_row_groups_per_file} row groups per file and at most " f"{100 * max_row_group_skew:.1f}% row group skew.") filenames, num_bytes = generate_data(num_rows, num_files, num_row_groups_per_file, max_row_group_skew, data_dir) if args.cache_files: with open(os.path.join(tempfile.gettempdir(), "data_cache"), "wb") as f: pickle.dump((filenames, num_bytes), f) print(f"Generated {len(filenames)} files containing {num_rows} rows " f"with {num_row_groups_per_file} row groups per file, totalling " f"{human_readable_size(num_bytes)}.") print("Create Ray executor") worker_kwargs = {} num_workers = args.num_workers num_hosts = args.num_hosts num_workers_per_host = args.num_workers_per_host if num_workers is not None: if num_hosts is not None: raise ValueError( "Only one of --num-workers and --num-hosts should be used.") worker_kwargs["num_workers"] = num_workers elif num_hosts is not None: worker_kwargs["num_hosts"] = num_hosts if num_workers_per_host is None: raise ValueError("When giving --num-hosts, --num-workers-per-host " "must also be given.") worker_kwargs["num_workers_per_host"] = num_workers_per_host cpus_per_worker = args.cpus_per_worker settings = RayExecutor.create_settings(timeout_s=30) executor = RayExecutor( settings, use_gpu=True, gpus_per_worker=1, cpus_per_worker=cpus_per_worker, **worker_kwargs) executor.start() executor.run(train_main, args=[args, filenames]) executor.shutdown() print("Done consuming batches.")
en
0.656283
# Training settings # Synthetic training data generation settings. # Shuffling data loader settings. # Horovod: initialize library. # Horovod: pin GPU to local rank. # Horovod: limit # of CPU threads to be used per worker. # By default, Adasum doesn"t need scaling up learning rate. # Move model to GPU. # If using GPU Adasum allreduce, scale learning rate by local_size. # Horovod: scale learning rate by lr_scaler. # Horovod: broadcast parameters & optimizer state. # Horovod: (optional) compression algorithm. # Horovod: wrap optimizer with DistributedOptimizer. # Horovod: set epoch to sampler for shuffling. # output = model(data) # TODO(Clark): Add worker synchronization barrier here. # loss = F.nll_loss(output, target) # loss.backward() # optimizer.step() # TODO(Clark): Add logic to the dataset abstraction so we don't have to do # this.
2.270872
2
tests/test_main/test_base/tests.py
PitonX60/django-firebird
51
9791
<reponame>PitonX60/django-firebird # -*- coding: utf-8 -*- from datetime import datetime, timedelta from django.conf import settings from django.db import connection, DatabaseError from django.db.models import F, DateField, DateTimeField, IntegerField, TimeField, CASCADE from django.db.models.fields.related import ForeignKey from django.db.models.functions import ( Extract, ExtractDay, ExtractHour, ExtractMinute, ExtractMonth, ExtractSecond, ExtractWeek, ExtractWeekDay, ExtractYear, Trunc, TruncDate, TruncDay, TruncHour, TruncMinute, TruncMonth, TruncSecond, TruncTime, TruncYear, ) from django.test import TestCase, TransactionTestCase, override_settings from django.utils import timezone from .models import BigS, FieldsTest, Foo, Bar, DTModel def microsecond_support(value): return value if connection.features.supports_microsecond_precision else value.replace(microsecond=0) def truncate_to(value, kind, tzinfo=None): # Convert to target timezone before truncation if tzinfo is not None: value = value.astimezone(tzinfo) def truncate(value, kind): if kind == 'second': return value.replace(microsecond=0) if kind == 'minute': return value.replace(second=0, microsecond=0) if kind == 'hour': return value.replace(minute=0, second=0, microsecond=0) if kind == 'day': if isinstance(value, datetime): return value.replace(hour=0, minute=0, second=0, microsecond=0) return value if kind == 'month': if isinstance(value, datetime): return value.replace(day=1, hour=0, minute=0, second=0, microsecond=0) return value.replace(day=1) # otherwise, truncate to year if isinstance(value, datetime): return value.replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0) return value.replace(month=1, day=1) value = truncate(value, kind) if tzinfo is not None: # If there was a daylight saving transition, then reset the timezone. value = timezone.make_aware(value.replace(tzinfo=None), tzinfo) return value class FirebirdTest(TestCase): def setUp(self): pass def test_server_version(self): version = connection.server_version self.assertNotEqual(version, '') def test_firebird_version(self): version = connection.ops.firebird_version self.assertNotEqual(version, []) class DatabaseOperationsTest(TestCase): def setUp(self): self.ops = connection.ops def test_get_sequence_name(self): sq_name = self.ops.get_sequence_name('TEST') self.assertEqual(sq_name, '"TEST_SQ"') def test_drop_sequence_sql(self): sql = self.ops.drop_sequence_sql('TEST') self.assertEqual(sql, 'DROP SEQUENCE "TEST_SQ"') def test_date_extract_sql(self): sql = self.ops.date_extract_sql('week_day', 'DATE_FIELD') value = "EXTRACT(WEEKDAY FROM DATE_FIELD) + 1" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('year', 'DATE_FIELD') value = "EXTRACT(YEAR FROM DATE_FIELD)" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('month', 'DATE_FIELD') value = "EXTRACT(MONTH FROM DATE_FIELD)" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('day', 'DATE_FIELD') value = "EXTRACT(DAY FROM DATE_FIELD)" self.assertEqual(sql, value) def test_datetime_trunc_sql(self): sql = self.ops.datetime_trunc_sql('year', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-01-01 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('month', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-01 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('day', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('hour', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('minute', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':'||EXTRACT(minute FROM DATE_FIELD)||':00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('second', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':'||EXTRACT(minute FROM DATE_FIELD)||':'||TRUNC(EXTRACT(second FROM DATE_FIELD)) AS TIMESTAMP)" self.assertEqual(sql, value) def test_time_trunc_sql(self): sql = self.ops.time_trunc_sql('hour', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':00:00' AS TIME)" self.assertEqual(sql, out) sql = self.ops.time_trunc_sql('minute', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':' || EXTRACT(minute FROM TIME_FIELD) || ':00' AS TIME)" self.assertEqual(sql, out) sql = self.ops.time_trunc_sql('second', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':' || EXTRACT(minute FROM TIME_FIELD) || ':' || TRUNC(EXTRACT(second FROM TIME_FIELD)) AS TIME)" self.assertEqual(sql, out) class DatabaseSchemaTests(TransactionTestCase): def test_no_index_for_foreignkey(self): """ FirebirdSQL already creates indexes automatically for foreign keys. (#70). """ index_sql = connection.schema_editor()._model_indexes_sql(Bar) self.assertEqual(index_sql, []) def test_fk_index_creation(self): new_field = ForeignKey(Foo, on_delete=CASCADE) new_field.set_attributes_from_name(None) with connection.schema_editor() as editor: editor.add_field( Bar, new_field ) # Just return indexes others that not automaically created by Fk indexes = editor._get_field_indexes(Bar, new_field) self.assertEqual(indexes, []) def test_fk_remove_issue70(self): with connection.schema_editor() as editor: editor.remove_field( Bar, Bar._meta.get_field("a") ) self.assertRaises(DatabaseError) class SlugFieldTests(TestCase): def test_slugfield_max_length(self): """ Make sure SlugField honors max_length (#9706) """ bs = BigS.objects.create(s='slug' * 50) bs = BigS.objects.get(pk=bs.pk) self.assertEqual(bs.s, 'slug' * 50) class DateFieldTests(TestCase): def tests_date_interval(self): obj = FieldsTest() obj.pub_date = datetime.now() obj.mod_date = obj.pub_date + timedelta(days=3) obj.save() objs = FieldsTest.objects.filter(mod_date__gte=F('pub_date') + timedelta(days=3)).all() self.assertEqual(len(objs), 1) @override_settings(USE_TZ=False) class DateFunctionTests(TestCase): def create_model(self, start_datetime, end_datetime): return DTModel.objects.create( name=start_datetime.isoformat(), start_datetime=start_datetime, end_datetime=end_datetime, start_date=start_datetime.date(), end_date=end_datetime.date(), start_time=start_datetime.time(), end_time=end_datetime.time(), duration=(end_datetime - start_datetime), ) def test_trunc_func(self): start_datetime = microsecond_support(datetime(2015, 6, 15, 14, 30, 50, 321)) end_datetime = microsecond_support(datetime(2016, 6, 15, 14, 10, 50, 123)) if settings.USE_TZ: start_datetime = timezone.make_aware(start_datetime, is_dst=False) end_datetime = timezone.make_aware(end_datetime, is_dst=False) self.create_model(start_datetime, end_datetime) self.create_model(end_datetime, start_datetime) msg = 'output_field must be either DateField, TimeField, or DateTimeField' with self.assertRaisesMessage(ValueError, msg): list(DTModel.objects.annotate(truncated=Trunc('start_datetime', 'year', output_field=IntegerField()))) with self.assertRaisesMessage(AssertionError, "'name' isn't a DateField, TimeField, or DateTimeField."): list(DTModel.objects.annotate(truncated=Trunc('name', 'year', output_field=DateTimeField()))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_date', 'second'))) with self.assertRaisesMessage(ValueError, "Cannot truncate TimeField 'start_time' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_time', 'month'))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_date', 'month', output_field=DateTimeField()))) with self.assertRaisesMessage(ValueError, "Cannot truncate TimeField 'start_time' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_time', 'second', output_field=DateTimeField()))) def test_datetime_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_datetime', kind, output_field=DateTimeField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime, kind)), (truncate_to(end_datetime, kind)) ], lambda m: (m.truncated) ) def test_date_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_date', kind, output_field=DateField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime.date(), kind)), (truncate_to(end_datetime.date(), kind)) ], lambda m: (m.truncated) ) def test_time_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_time', kind, output_field=TimeField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime.time(), kind)), (truncate_to(end_datetime.time(), kind)) ], lambda m: (m.truncated) ) test_date_kind('year') test_date_kind('month') test_date_kind('day') test_time_kind('hour') test_time_kind('minute') test_time_kind('second') test_datetime_kind('year') test_datetime_kind('month') test_datetime_kind('day') test_datetime_kind('hour') test_datetime_kind('minute') test_datetime_kind('second') qs = DTModel.objects.filter(start_datetime__date=Trunc('start_datetime', 'day', output_field=DateField())) self.assertEqual(qs.count(), 2) def test_trunc_time_func(self): start_datetime = microsecond_support(datetime(2015, 6, 15, 14, 30, 50, 321000)) end_datetime = microsecond_support(datetime(2016, 6, 15, 14, 10, 50, 123000)) if settings.USE_TZ: start_datetime = timezone.make_aware(start_datetime, is_dst=False) end_datetime = timezone.make_aware(end_datetime, is_dst=False) self.create_model(start_datetime, end_datetime) self.create_model(end_datetime, start_datetime) self.assertQuerysetEqual( DTModel.objects.annotate(extracted=TruncTime('start_datetime')).order_by('start_datetime'), [ (start_datetime.time()), (end_datetime.time()), ], lambda m: (m.extracted) ) self.assertEqual(DTModel.objects.filter(start_datetime__time=TruncTime('start_datetime')).count(), 2) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to TimeField"): list(DTModel.objects.annotate(truncated=TruncTime('start_date'))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to TimeField"): list(DTModel.objects.annotate(truncated=TruncTime('start_date', output_field=DateField())))
# -*- coding: utf-8 -*- from datetime import datetime, timedelta from django.conf import settings from django.db import connection, DatabaseError from django.db.models import F, DateField, DateTimeField, IntegerField, TimeField, CASCADE from django.db.models.fields.related import ForeignKey from django.db.models.functions import ( Extract, ExtractDay, ExtractHour, ExtractMinute, ExtractMonth, ExtractSecond, ExtractWeek, ExtractWeekDay, ExtractYear, Trunc, TruncDate, TruncDay, TruncHour, TruncMinute, TruncMonth, TruncSecond, TruncTime, TruncYear, ) from django.test import TestCase, TransactionTestCase, override_settings from django.utils import timezone from .models import BigS, FieldsTest, Foo, Bar, DTModel def microsecond_support(value): return value if connection.features.supports_microsecond_precision else value.replace(microsecond=0) def truncate_to(value, kind, tzinfo=None): # Convert to target timezone before truncation if tzinfo is not None: value = value.astimezone(tzinfo) def truncate(value, kind): if kind == 'second': return value.replace(microsecond=0) if kind == 'minute': return value.replace(second=0, microsecond=0) if kind == 'hour': return value.replace(minute=0, second=0, microsecond=0) if kind == 'day': if isinstance(value, datetime): return value.replace(hour=0, minute=0, second=0, microsecond=0) return value if kind == 'month': if isinstance(value, datetime): return value.replace(day=1, hour=0, minute=0, second=0, microsecond=0) return value.replace(day=1) # otherwise, truncate to year if isinstance(value, datetime): return value.replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0) return value.replace(month=1, day=1) value = truncate(value, kind) if tzinfo is not None: # If there was a daylight saving transition, then reset the timezone. value = timezone.make_aware(value.replace(tzinfo=None), tzinfo) return value class FirebirdTest(TestCase): def setUp(self): pass def test_server_version(self): version = connection.server_version self.assertNotEqual(version, '') def test_firebird_version(self): version = connection.ops.firebird_version self.assertNotEqual(version, []) class DatabaseOperationsTest(TestCase): def setUp(self): self.ops = connection.ops def test_get_sequence_name(self): sq_name = self.ops.get_sequence_name('TEST') self.assertEqual(sq_name, '"TEST_SQ"') def test_drop_sequence_sql(self): sql = self.ops.drop_sequence_sql('TEST') self.assertEqual(sql, 'DROP SEQUENCE "TEST_SQ"') def test_date_extract_sql(self): sql = self.ops.date_extract_sql('week_day', 'DATE_FIELD') value = "EXTRACT(WEEKDAY FROM DATE_FIELD) + 1" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('year', 'DATE_FIELD') value = "EXTRACT(YEAR FROM DATE_FIELD)" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('month', 'DATE_FIELD') value = "EXTRACT(MONTH FROM DATE_FIELD)" self.assertEqual(sql, value) sql = self.ops.date_extract_sql('day', 'DATE_FIELD') value = "EXTRACT(DAY FROM DATE_FIELD)" self.assertEqual(sql, value) def test_datetime_trunc_sql(self): sql = self.ops.datetime_trunc_sql('year', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-01-01 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('month', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-01 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('day', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' 00:00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('hour', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':00:00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('minute', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':'||EXTRACT(minute FROM DATE_FIELD)||':00' AS TIMESTAMP)" self.assertEqual(sql, value) sql = self.ops.datetime_trunc_sql('second', 'DATE_FIELD', None) value = "CAST(EXTRACT(year FROM DATE_FIELD)||'-'||EXTRACT(month FROM DATE_FIELD)||'-'||EXTRACT(day FROM DATE_FIELD)||' '||EXTRACT(hour FROM DATE_FIELD)||':'||EXTRACT(minute FROM DATE_FIELD)||':'||TRUNC(EXTRACT(second FROM DATE_FIELD)) AS TIMESTAMP)" self.assertEqual(sql, value) def test_time_trunc_sql(self): sql = self.ops.time_trunc_sql('hour', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':00:00' AS TIME)" self.assertEqual(sql, out) sql = self.ops.time_trunc_sql('minute', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':' || EXTRACT(minute FROM TIME_FIELD) || ':00' AS TIME)" self.assertEqual(sql, out) sql = self.ops.time_trunc_sql('second', 'TIME_FIELD') out = "CAST(EXTRACT(hour FROM TIME_FIELD) || ':' || EXTRACT(minute FROM TIME_FIELD) || ':' || TRUNC(EXTRACT(second FROM TIME_FIELD)) AS TIME)" self.assertEqual(sql, out) class DatabaseSchemaTests(TransactionTestCase): def test_no_index_for_foreignkey(self): """ FirebirdSQL already creates indexes automatically for foreign keys. (#70). """ index_sql = connection.schema_editor()._model_indexes_sql(Bar) self.assertEqual(index_sql, []) def test_fk_index_creation(self): new_field = ForeignKey(Foo, on_delete=CASCADE) new_field.set_attributes_from_name(None) with connection.schema_editor() as editor: editor.add_field( Bar, new_field ) # Just return indexes others that not automaically created by Fk indexes = editor._get_field_indexes(Bar, new_field) self.assertEqual(indexes, []) def test_fk_remove_issue70(self): with connection.schema_editor() as editor: editor.remove_field( Bar, Bar._meta.get_field("a") ) self.assertRaises(DatabaseError) class SlugFieldTests(TestCase): def test_slugfield_max_length(self): """ Make sure SlugField honors max_length (#9706) """ bs = BigS.objects.create(s='slug' * 50) bs = BigS.objects.get(pk=bs.pk) self.assertEqual(bs.s, 'slug' * 50) class DateFieldTests(TestCase): def tests_date_interval(self): obj = FieldsTest() obj.pub_date = datetime.now() obj.mod_date = obj.pub_date + timedelta(days=3) obj.save() objs = FieldsTest.objects.filter(mod_date__gte=F('pub_date') + timedelta(days=3)).all() self.assertEqual(len(objs), 1) @override_settings(USE_TZ=False) class DateFunctionTests(TestCase): def create_model(self, start_datetime, end_datetime): return DTModel.objects.create( name=start_datetime.isoformat(), start_datetime=start_datetime, end_datetime=end_datetime, start_date=start_datetime.date(), end_date=end_datetime.date(), start_time=start_datetime.time(), end_time=end_datetime.time(), duration=(end_datetime - start_datetime), ) def test_trunc_func(self): start_datetime = microsecond_support(datetime(2015, 6, 15, 14, 30, 50, 321)) end_datetime = microsecond_support(datetime(2016, 6, 15, 14, 10, 50, 123)) if settings.USE_TZ: start_datetime = timezone.make_aware(start_datetime, is_dst=False) end_datetime = timezone.make_aware(end_datetime, is_dst=False) self.create_model(start_datetime, end_datetime) self.create_model(end_datetime, start_datetime) msg = 'output_field must be either DateField, TimeField, or DateTimeField' with self.assertRaisesMessage(ValueError, msg): list(DTModel.objects.annotate(truncated=Trunc('start_datetime', 'year', output_field=IntegerField()))) with self.assertRaisesMessage(AssertionError, "'name' isn't a DateField, TimeField, or DateTimeField."): list(DTModel.objects.annotate(truncated=Trunc('name', 'year', output_field=DateTimeField()))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_date', 'second'))) with self.assertRaisesMessage(ValueError, "Cannot truncate TimeField 'start_time' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_time', 'month'))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_date', 'month', output_field=DateTimeField()))) with self.assertRaisesMessage(ValueError, "Cannot truncate TimeField 'start_time' to DateTimeField"): list(DTModel.objects.annotate(truncated=Trunc('start_time', 'second', output_field=DateTimeField()))) def test_datetime_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_datetime', kind, output_field=DateTimeField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime, kind)), (truncate_to(end_datetime, kind)) ], lambda m: (m.truncated) ) def test_date_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_date', kind, output_field=DateField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime.date(), kind)), (truncate_to(end_datetime.date(), kind)) ], lambda m: (m.truncated) ) def test_time_kind(kind): self.assertQuerysetEqual( DTModel.objects.annotate( truncated=Trunc('start_time', kind, output_field=TimeField()) ).order_by('start_datetime'), [ (truncate_to(start_datetime.time(), kind)), (truncate_to(end_datetime.time(), kind)) ], lambda m: (m.truncated) ) test_date_kind('year') test_date_kind('month') test_date_kind('day') test_time_kind('hour') test_time_kind('minute') test_time_kind('second') test_datetime_kind('year') test_datetime_kind('month') test_datetime_kind('day') test_datetime_kind('hour') test_datetime_kind('minute') test_datetime_kind('second') qs = DTModel.objects.filter(start_datetime__date=Trunc('start_datetime', 'day', output_field=DateField())) self.assertEqual(qs.count(), 2) def test_trunc_time_func(self): start_datetime = microsecond_support(datetime(2015, 6, 15, 14, 30, 50, 321000)) end_datetime = microsecond_support(datetime(2016, 6, 15, 14, 10, 50, 123000)) if settings.USE_TZ: start_datetime = timezone.make_aware(start_datetime, is_dst=False) end_datetime = timezone.make_aware(end_datetime, is_dst=False) self.create_model(start_datetime, end_datetime) self.create_model(end_datetime, start_datetime) self.assertQuerysetEqual( DTModel.objects.annotate(extracted=TruncTime('start_datetime')).order_by('start_datetime'), [ (start_datetime.time()), (end_datetime.time()), ], lambda m: (m.extracted) ) self.assertEqual(DTModel.objects.filter(start_datetime__time=TruncTime('start_datetime')).count(), 2) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to TimeField"): list(DTModel.objects.annotate(truncated=TruncTime('start_date'))) with self.assertRaisesMessage(ValueError, "Cannot truncate DateField 'start_date' to TimeField"): list(DTModel.objects.annotate(truncated=TruncTime('start_date', output_field=DateField())))
en
0.75436
# -*- coding: utf-8 -*- # Convert to target timezone before truncation # otherwise, truncate to year # If there was a daylight saving transition, then reset the timezone. FirebirdSQL already creates indexes automatically for foreign keys. (#70). # Just return indexes others that not automaically created by Fk Make sure SlugField honors max_length (#9706)
2.096732
2
tests/test_past_failures.py
justinbois/eqtk
2
9792
import pytest import numpy as np import eqtk def test_promiscuous_binding_failure(): A = np.array( [ [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, ], [ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, ], [ 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, ], [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, ], [ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, ], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, ], ] ) G = np.array( [ -0.51720535, -0.69471304, -1.78260496, -1.32337777, -0.63267947, -0.57923893, -0.78718634, -0.27521037, -0.13733511, -0.69433251, 1.6858364, -0.43683479, 0.39312096, -0.0625205, 0.23139303, 0.07680628, -0.52774543, 1.74592678, ] ) x0 = np.array( [ [ 2.48257788e01, 1.72132293e-01, 1.14833731e-02, 5.00547317e-02, 1.38949549e-01, 1.93069773e01, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, ] ] ) def test_spontaneous_production_failure(): N = np.array( [[1, 0, 1, 0, -1, 0], [1, 0, 0, 1, 0, -1], [1, 1, 1, 0, 0, 0]], dtype=float ) A = np.array( [[0, 0, 0, 1, 0, 1], [1, 0, -1, 0, 0, 1], [0, -1, 1, 0, 1, 0]], dtype=float ) G = np.array([0, 1, 2, 3, 4, 5]) K = np.exp(-np.dot(N, G)) for x0_val in [ [1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0], ]: x0 = np.array(x0_val, dtype=float) x_NK = eqtk.solve(c0=x0, N=N, K=K) with pytest.raises(ValueError) as excinfo: x_AG = eqtk.solve(c0=x0, A=A, G=G) excinfo.match("`A` must have all nonnegative entries.") assert eqtk.eqcheck(x_NK, x0, N=N, K=K) def test_scale_factor_failure(): A = np.array([[1.0, 0.0, 2.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 2.0]]) G = np.array([0.0, 0.0, 0.77428976, -5.64873697, -0.95863043]) x0 = np.array( [ [ 5.50293892e-05, 6.49273515e-08, 2.75796219e-05, 1.29854703e-07, 3.24636758e-08, ] ] ) x = eqtk.solve(c0=x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G) def test_trivial_elemental_failure(): A = np.array([[1.0, 0.0], [0.0, 1.0]]) G = np.array([0.0, 0.0]) x0 = np.array([[3.48219906e-06, 1.32719868e-10]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) A = np.array([[1.0, 0.0], [0.0, 1.0]]) G = np.array([0.0, 0.0]) x0 = np.array([[2.24222410e-08, 1.63359284e-04]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) A = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) G = np.array([0.0, 0.0, 0.0]) x0 = np.array([[2.63761955e-04, 4.93360042e-07, 4.88340687e-07]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) def test_past_failure_1(): A = np.array([[1.0, 0.0, 2.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 2.0]]) G = np.array([0.0, 0.0, -16.76857677, -2.38430181, 1.22028775]) x0 = np.array( [ [ 1.65989040e-10, 1.07630096e-04, 1.65989040e-10, 1.65989040e-10, 5.38150479e-05, ] ] ) x = eqtk.solve(x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G) def test_past_failure_2(): N = np.array([[-2.0, 1.0, 0.0, 0.0], [-3.0, 0.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 1.0]]) minus_log_K = np.array([-43.66660344, -68.14676841, -92.28023823]) x0 = np.array([[1.87852623e-06, 3.75705246e-06, 1.25235082e-06, 4.69631557e-07]]) K = np.exp(-minus_log_K) x = eqtk.solve(x0, N, K) assert eqtk.eqcheck(x, x0, N, K) def test_small_conc_failure(): A = np.array( [ [1.0, 0.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 2.0], [1.0, 0.0, 0.0, 1.0, 2.0], ] ) G = np.array( [ -1.1323012373599138e02, -2.7028447814426110e-01, -2.3382656193096754e01, -1.0088531260804201e02, -5.7676558386243052e01, ] ) x0 = np.array( [ [ 1.8134373707286439e-08, 3.5913242229740680e-14, 3.5913242229740680e-14, 3.5913242229740680e-14, 1.7956621114870340e-14, ] ] ) x = eqtk.solve(c0=x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G)
import pytest import numpy as np import eqtk def test_promiscuous_binding_failure(): A = np.array( [ [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, ], [ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, ], [ 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, ], [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, ], [ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, ], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, ], ] ) G = np.array( [ -0.51720535, -0.69471304, -1.78260496, -1.32337777, -0.63267947, -0.57923893, -0.78718634, -0.27521037, -0.13733511, -0.69433251, 1.6858364, -0.43683479, 0.39312096, -0.0625205, 0.23139303, 0.07680628, -0.52774543, 1.74592678, ] ) x0 = np.array( [ [ 2.48257788e01, 1.72132293e-01, 1.14833731e-02, 5.00547317e-02, 1.38949549e-01, 1.93069773e01, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, 0.00000000e00, ] ] ) def test_spontaneous_production_failure(): N = np.array( [[1, 0, 1, 0, -1, 0], [1, 0, 0, 1, 0, -1], [1, 1, 1, 0, 0, 0]], dtype=float ) A = np.array( [[0, 0, 0, 1, 0, 1], [1, 0, -1, 0, 0, 1], [0, -1, 1, 0, 1, 0]], dtype=float ) G = np.array([0, 1, 2, 3, 4, 5]) K = np.exp(-np.dot(N, G)) for x0_val in [ [1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0], ]: x0 = np.array(x0_val, dtype=float) x_NK = eqtk.solve(c0=x0, N=N, K=K) with pytest.raises(ValueError) as excinfo: x_AG = eqtk.solve(c0=x0, A=A, G=G) excinfo.match("`A` must have all nonnegative entries.") assert eqtk.eqcheck(x_NK, x0, N=N, K=K) def test_scale_factor_failure(): A = np.array([[1.0, 0.0, 2.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 2.0]]) G = np.array([0.0, 0.0, 0.77428976, -5.64873697, -0.95863043]) x0 = np.array( [ [ 5.50293892e-05, 6.49273515e-08, 2.75796219e-05, 1.29854703e-07, 3.24636758e-08, ] ] ) x = eqtk.solve(c0=x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G) def test_trivial_elemental_failure(): A = np.array([[1.0, 0.0], [0.0, 1.0]]) G = np.array([0.0, 0.0]) x0 = np.array([[3.48219906e-06, 1.32719868e-10]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) A = np.array([[1.0, 0.0], [0.0, 1.0]]) G = np.array([0.0, 0.0]) x0 = np.array([[2.24222410e-08, 1.63359284e-04]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) A = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) G = np.array([0.0, 0.0, 0.0]) x0 = np.array([[2.63761955e-04, 4.93360042e-07, 4.88340687e-07]]) assert np.allclose(eqtk.solve(c0=x0, A=A, G=G), x0) def test_past_failure_1(): A = np.array([[1.0, 0.0, 2.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 2.0]]) G = np.array([0.0, 0.0, -16.76857677, -2.38430181, 1.22028775]) x0 = np.array( [ [ 1.65989040e-10, 1.07630096e-04, 1.65989040e-10, 1.65989040e-10, 5.38150479e-05, ] ] ) x = eqtk.solve(x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G) def test_past_failure_2(): N = np.array([[-2.0, 1.0, 0.0, 0.0], [-3.0, 0.0, 1.0, 0.0], [-4.0, 0.0, 0.0, 1.0]]) minus_log_K = np.array([-43.66660344, -68.14676841, -92.28023823]) x0 = np.array([[1.87852623e-06, 3.75705246e-06, 1.25235082e-06, 4.69631557e-07]]) K = np.exp(-minus_log_K) x = eqtk.solve(x0, N, K) assert eqtk.eqcheck(x, x0, N, K) def test_small_conc_failure(): A = np.array( [ [1.0, 0.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 2.0], [1.0, 0.0, 0.0, 1.0, 2.0], ] ) G = np.array( [ -1.1323012373599138e02, -2.7028447814426110e-01, -2.3382656193096754e01, -1.0088531260804201e02, -5.7676558386243052e01, ] ) x0 = np.array( [ [ 1.8134373707286439e-08, 3.5913242229740680e-14, 3.5913242229740680e-14, 3.5913242229740680e-14, 1.7956621114870340e-14, ] ] ) x = eqtk.solve(c0=x0, A=A, G=G) assert eqtk.eqcheck(x, x0, A=A, G=G)
none
1
1.945195
2
sdk/python/pulumi_azure/lb/outbound_rule.py
suresh198526/pulumi-azure
0
9793
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['OutboundRule'] class OutboundRule(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, allocated_outbound_ports: Optional[pulumi.Input[int]] = None, backend_address_pool_id: Optional[pulumi.Input[str]] = None, enable_tcp_reset: Optional[pulumi.Input[bool]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]]] = None, idle_timeout_in_minutes: Optional[pulumi.Input[int]] = None, loadbalancer_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Manages a Load Balancer Outbound Rule. > **NOTE** When using this resource, the Load Balancer needs to have a FrontEnd IP Configuration and a Backend Address Pool Attached. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West US") example_public_ip = azure.network.PublicIp("examplePublicIp", location="West US", resource_group_name=example_resource_group.name, allocation_method="Static") example_load_balancer = azure.lb.LoadBalancer("exampleLoadBalancer", location="West US", resource_group_name=example_resource_group.name, frontend_ip_configurations=[azure.lb.LoadBalancerFrontendIpConfigurationArgs( name="PublicIPAddress", public_ip_address_id=example_public_ip.id, )]) example_backend_address_pool = azure.lb.BackendAddressPool("exampleBackendAddressPool", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id) example_outbound_rule = azure.lb.OutboundRule("exampleOutboundRule", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id, protocol="Tcp", backend_address_pool_id=example_backend_address_pool.id, frontend_ip_configurations=[azure.lb.OutboundRuleFrontendIpConfigurationArgs( name="PublicIPAddress", )]) ``` ## Import Load Balancer Outbound Rules can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:lb/outboundRule:OutboundRule example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.Network/loadBalancers/lb1/outboundRules/rule1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['allocated_outbound_ports'] = allocated_outbound_ports if backend_address_pool_id is None: raise TypeError("Missing required property 'backend_address_pool_id'") __props__['backend_address_pool_id'] = backend_address_pool_id __props__['enable_tcp_reset'] = enable_tcp_reset __props__['frontend_ip_configurations'] = frontend_ip_configurations __props__['idle_timeout_in_minutes'] = idle_timeout_in_minutes if loadbalancer_id is None: raise TypeError("Missing required property 'loadbalancer_id'") __props__['loadbalancer_id'] = loadbalancer_id __props__['name'] = name if protocol is None: raise TypeError("Missing required property 'protocol'") __props__['protocol'] = protocol if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name super(OutboundRule, __self__).__init__( 'azure:lb/outboundRule:OutboundRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, allocated_outbound_ports: Optional[pulumi.Input[int]] = None, backend_address_pool_id: Optional[pulumi.Input[str]] = None, enable_tcp_reset: Optional[pulumi.Input[bool]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]]] = None, idle_timeout_in_minutes: Optional[pulumi.Input[int]] = None, loadbalancer_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None) -> 'OutboundRule': """ Get an existing OutboundRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["allocated_outbound_ports"] = allocated_outbound_ports __props__["backend_address_pool_id"] = backend_address_pool_id __props__["enable_tcp_reset"] = enable_tcp_reset __props__["frontend_ip_configurations"] = frontend_ip_configurations __props__["idle_timeout_in_minutes"] = idle_timeout_in_minutes __props__["loadbalancer_id"] = loadbalancer_id __props__["name"] = name __props__["protocol"] = protocol __props__["resource_group_name"] = resource_group_name return OutboundRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="allocatedOutboundPorts") def allocated_outbound_ports(self) -> pulumi.Output[Optional[int]]: """ The number of outbound ports to be used for NAT. """ return pulumi.get(self, "allocated_outbound_ports") @property @pulumi.getter(name="backendAddressPoolId") def backend_address_pool_id(self) -> pulumi.Output[str]: """ The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. """ return pulumi.get(self, "backend_address_pool_id") @property @pulumi.getter(name="enableTcpReset") def enable_tcp_reset(self) -> pulumi.Output[Optional[bool]]: """ Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. """ return pulumi.get(self, "enable_tcp_reset") @property @pulumi.getter(name="frontendIpConfigurations") def frontend_ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.OutboundRuleFrontendIpConfiguration']]]: """ One or more `frontend_ip_configuration` blocks as defined below. """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter(name="idleTimeoutInMinutes") def idle_timeout_in_minutes(self) -> pulumi.Output[Optional[int]]: """ The timeout for the TCP idle connection """ return pulumi.get(self, "idle_timeout_in_minutes") @property @pulumi.getter(name="loadbalancerId") def loadbalancer_id(self) -> pulumi.Output[str]: """ The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. """ return pulumi.get(self, "loadbalancer_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. """ return pulumi.get(self, "name") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Output[str]: """ The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ return pulumi.get(self, "resource_group_name") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['OutboundRule'] class OutboundRule(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, allocated_outbound_ports: Optional[pulumi.Input[int]] = None, backend_address_pool_id: Optional[pulumi.Input[str]] = None, enable_tcp_reset: Optional[pulumi.Input[bool]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]]] = None, idle_timeout_in_minutes: Optional[pulumi.Input[int]] = None, loadbalancer_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Manages a Load Balancer Outbound Rule. > **NOTE** When using this resource, the Load Balancer needs to have a FrontEnd IP Configuration and a Backend Address Pool Attached. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West US") example_public_ip = azure.network.PublicIp("examplePublicIp", location="West US", resource_group_name=example_resource_group.name, allocation_method="Static") example_load_balancer = azure.lb.LoadBalancer("exampleLoadBalancer", location="West US", resource_group_name=example_resource_group.name, frontend_ip_configurations=[azure.lb.LoadBalancerFrontendIpConfigurationArgs( name="PublicIPAddress", public_ip_address_id=example_public_ip.id, )]) example_backend_address_pool = azure.lb.BackendAddressPool("exampleBackendAddressPool", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id) example_outbound_rule = azure.lb.OutboundRule("exampleOutboundRule", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id, protocol="Tcp", backend_address_pool_id=example_backend_address_pool.id, frontend_ip_configurations=[azure.lb.OutboundRuleFrontendIpConfigurationArgs( name="PublicIPAddress", )]) ``` ## Import Load Balancer Outbound Rules can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:lb/outboundRule:OutboundRule example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.Network/loadBalancers/lb1/outboundRules/rule1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['allocated_outbound_ports'] = allocated_outbound_ports if backend_address_pool_id is None: raise TypeError("Missing required property 'backend_address_pool_id'") __props__['backend_address_pool_id'] = backend_address_pool_id __props__['enable_tcp_reset'] = enable_tcp_reset __props__['frontend_ip_configurations'] = frontend_ip_configurations __props__['idle_timeout_in_minutes'] = idle_timeout_in_minutes if loadbalancer_id is None: raise TypeError("Missing required property 'loadbalancer_id'") __props__['loadbalancer_id'] = loadbalancer_id __props__['name'] = name if protocol is None: raise TypeError("Missing required property 'protocol'") __props__['protocol'] = protocol if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name super(OutboundRule, __self__).__init__( 'azure:lb/outboundRule:OutboundRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, allocated_outbound_ports: Optional[pulumi.Input[int]] = None, backend_address_pool_id: Optional[pulumi.Input[str]] = None, enable_tcp_reset: Optional[pulumi.Input[bool]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]]] = None, idle_timeout_in_minutes: Optional[pulumi.Input[int]] = None, loadbalancer_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None) -> 'OutboundRule': """ Get an existing OutboundRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["allocated_outbound_ports"] = allocated_outbound_ports __props__["backend_address_pool_id"] = backend_address_pool_id __props__["enable_tcp_reset"] = enable_tcp_reset __props__["frontend_ip_configurations"] = frontend_ip_configurations __props__["idle_timeout_in_minutes"] = idle_timeout_in_minutes __props__["loadbalancer_id"] = loadbalancer_id __props__["name"] = name __props__["protocol"] = protocol __props__["resource_group_name"] = resource_group_name return OutboundRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="allocatedOutboundPorts") def allocated_outbound_ports(self) -> pulumi.Output[Optional[int]]: """ The number of outbound ports to be used for NAT. """ return pulumi.get(self, "allocated_outbound_ports") @property @pulumi.getter(name="backendAddressPoolId") def backend_address_pool_id(self) -> pulumi.Output[str]: """ The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. """ return pulumi.get(self, "backend_address_pool_id") @property @pulumi.getter(name="enableTcpReset") def enable_tcp_reset(self) -> pulumi.Output[Optional[bool]]: """ Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. """ return pulumi.get(self, "enable_tcp_reset") @property @pulumi.getter(name="frontendIpConfigurations") def frontend_ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.OutboundRuleFrontendIpConfiguration']]]: """ One or more `frontend_ip_configuration` blocks as defined below. """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter(name="idleTimeoutInMinutes") def idle_timeout_in_minutes(self) -> pulumi.Output[Optional[int]]: """ The timeout for the TCP idle connection """ return pulumi.get(self, "idle_timeout_in_minutes") @property @pulumi.getter(name="loadbalancerId") def loadbalancer_id(self) -> pulumi.Output[str]: """ The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. """ return pulumi.get(self, "loadbalancer_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. """ return pulumi.get(self, "name") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Output[str]: """ The name of the resource group in which to create the resource. Changing this forces a new resource to be created. """ return pulumi.get(self, "resource_group_name") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
en
0.640442
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** Manages a Load Balancer Outbound Rule. > **NOTE** When using this resource, the Load Balancer needs to have a FrontEnd IP Configuration and a Backend Address Pool Attached. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West US") example_public_ip = azure.network.PublicIp("examplePublicIp", location="West US", resource_group_name=example_resource_group.name, allocation_method="Static") example_load_balancer = azure.lb.LoadBalancer("exampleLoadBalancer", location="West US", resource_group_name=example_resource_group.name, frontend_ip_configurations=[azure.lb.LoadBalancerFrontendIpConfigurationArgs( name="PublicIPAddress", public_ip_address_id=example_public_ip.id, )]) example_backend_address_pool = azure.lb.BackendAddressPool("exampleBackendAddressPool", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id) example_outbound_rule = azure.lb.OutboundRule("exampleOutboundRule", resource_group_name=example_resource_group.name, loadbalancer_id=example_load_balancer.id, protocol="Tcp", backend_address_pool_id=example_backend_address_pool.id, frontend_ip_configurations=[azure.lb.OutboundRuleFrontendIpConfigurationArgs( name="PublicIPAddress", )]) ``` ## Import Load Balancer Outbound Rules can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:lb/outboundRule:OutboundRule example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.Network/loadBalancers/lb1/outboundRules/rule1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. Get an existing OutboundRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] allocated_outbound_ports: The number of outbound ports to be used for NAT. :param pulumi.Input[str] backend_address_pool_id: The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param pulumi.Input[bool] enable_tcp_reset: Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundRuleFrontendIpConfigurationArgs']]]] frontend_ip_configurations: One or more `frontend_ip_configuration` blocks as defined below. :param pulumi.Input[int] idle_timeout_in_minutes: The timeout for the TCP idle connection :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. :param pulumi.Input[str] protocol: The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. Changing this forces a new resource to be created. The number of outbound ports to be used for NAT. The ID of the Backend Address Pool. Outbound traffic is randomly load balanced across IPs in the backend IPs. Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP. One or more `frontend_ip_configuration` blocks as defined below. The timeout for the TCP idle connection The ID of the Load Balancer in which to create the Outbound Rule. Changing this forces a new resource to be created. Specifies the name of the Outbound Rule. Changing this forces a new resource to be created. The transport protocol for the external endpoint. Possible values are `Udp`, `Tcp` or `All`. The name of the resource group in which to create the resource. Changing this forces a new resource to be created.
1.544875
2
orbit_predictor/predictors/base.py
Juanlu001/orbit-predictor
0
9794
<gh_stars>0 # MIT License # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import datetime as dt import logging import warnings from collections import namedtuple from math import pi, acos, degrees, radians import numpy as np try: from scipy.optimize import brentq, minimize_scalar except ImportError: warnings.warn('scipy module was not found, some features may not work properly.', ImportWarning) from orbit_predictor.constants import MU_E from orbit_predictor.exceptions import NotReachable, PropagationError from orbit_predictor import coordinate_systems from orbit_predictor.keplerian import rv2coe from orbit_predictor.utils import ( angle_between, cross_product, dot_product, reify, vector_diff, vector_norm, gstime_from_datetime, get_shadow, get_sun, eclipse_duration, get_satellite_minus_penumbra_verticals, ) logger = logging.getLogger(__name__) ONE_SECOND = dt.timedelta(seconds=1) def round_datetime(dt_): return dt_ class Position(namedtuple( "Position", ['when_utc', 'position_ecef', 'velocity_ecef', 'error_estimate'])): @reify def position_llh(self): """Latitude (deg), longitude (deg), altitude (km).""" return coordinate_systems.ecef_to_llh(self.position_ecef) @reify def osculating_elements(self): """Osculating Keplerian orbital elements. Semimajor axis (km), eccentricity, inclination (deg), right ascension of the ascending node or RAAN (deg), argument of perigee (deg), true anomaly (deg). """ gmst = gstime_from_datetime(self.when_utc) position_eci = coordinate_systems.ecef_to_eci(self.position_ecef, gmst) velocity_eci = coordinate_systems.ecef_to_eci(self.velocity_ecef, gmst) # Convert position to Keplerian osculating elements p, ecc, inc, raan, argp, ta = rv2coe( MU_E, np.array(position_eci), np.array(velocity_eci) ) # Transform to more familiar semimajor axis sma = p / (1 - ecc ** 2) return sma, ecc, degrees(inc), degrees(raan), degrees(argp), degrees(ta) class PredictedPass: def __init__(self, location, sate_id, max_elevation_deg, aos, los, duration_s, max_elevation_position=None, max_elevation_date=None): self.location = location self.sate_id = sate_id self.max_elevation_position = max_elevation_position self.max_elevation_date = max_elevation_date self.max_elevation_deg = max_elevation_deg self.aos = aos self.los = los self.duration_s = duration_s @property def midpoint(self): """Returns a datetime of the midpoint of the pass""" return self.aos + (self.los - self.aos) / 2 def __repr__(self): return "<PredictedPass {} over {} on {}>".format(self.sate_id, self.location, self.aos) def __eq__(self, other): return all([issubclass(other.__class__, PredictedPass), self.location == other.location, self.sate_id == other.sate_id, self.max_elevation_position == other.max_elevation_position, self.max_elevation_date == other.max_elevation_date, self.max_elevation_deg == other.max_elevation_deg, self.aos == other.aos, self.los == other.los, self.duration_s == other.duration_s]) def get_off_nadir_angle(self): warnings.warn("This method is deprecated!", DeprecationWarning) return self.off_nadir_deg @reify def off_nadir_deg(self): """Computes off-nadir angle calculation Given satellite position ``sate_pos``, velocity ``sate_vel``, and location ``target`` in a common frame, off-nadir angle ``off_nadir_angle`` is given by: t2b = sate_pos - target cos(off_nadir_angle) = (sate_pos · t2b) # Vectorial dot product _______________________ || sate_pos || || t2b|| Sign for the rotation is calculated this way cross = target ⨯ sate_pos sign = cross · sate_vel ____________________ | cross · sate_vel | """ sate_pos = self.max_elevation_position.position_ecef sate_vel = self.max_elevation_position.velocity_ecef target = self.location.position_ecef t2b = vector_diff(sate_pos, target) angle = acos( dot_product(sate_pos, t2b) / (vector_norm(sate_pos) * vector_norm(t2b)) ) cross = cross_product(target, sate_pos) dot = dot_product(cross, sate_vel) try: sign = dot / abs(dot) except ZeroDivisionError: sign = 1 return degrees(angle) * sign class Predictor: @property def sate_id(self): raise NotImplementedError def propagate_eci(self, when_utc=None): raise NotImplementedError def get_position(self, when_utc=None): raise NotImplementedError("You have to implement it!") def get_shadow(self, when_utc=None): """Gives illumination at given time (2 for illuminated, 1 for penumbra, 0 for umbra).""" if when_utc is None: when_utc = dt.datetime.utcnow() return get_shadow( self.get_position(when_utc).position_ecef, when_utc ) def get_normal_vector(self, when_utc=None): """Gets unitary normal vector (orthogonal to orbital plane) at given time.""" if when_utc is None: when_utc = dt.datetime.utcnow() position, velocity = self.propagate_eci(when_utc) orbital_plane_normal = np.cross(position, velocity) return orbital_plane_normal / vector_norm(orbital_plane_normal) def get_beta(self, when_utc=None): """Gets angle between orbital plane and Sun direction (beta) at given time, in degrees.""" if when_utc is None: when_utc = dt.datetime.utcnow() # Here we calculate the complementary angle of beta, # because we use the normal vector of the orbital plane beta_comp = angle_between( get_sun(when_utc), self.get_normal_vector(when_utc) ) # We subtract from 90 degrees to return the real beta angle return 90 - beta_comp class CartesianPredictor(Predictor): def _propagate_ecef(self, when_utc=None): """Return position and velocity in the given date using ECEF coordinate system.""" if when_utc is None: when_utc = dt.datetime.utcnow() position_eci, velocity_eci = self.propagate_eci(when_utc) gmst = gstime_from_datetime(when_utc) position_ecef = coordinate_systems.eci_to_ecef(position_eci, gmst) velocity_ecef = coordinate_systems.eci_to_ecef(velocity_eci, gmst) return position_ecef, velocity_ecef @reify def mean_motion(self): """Mean motion, in radians per minute""" raise NotImplementedError @reify def period(self): """Orbital period, in minutes""" return 2 * pi / self.mean_motion def get_position(self, when_utc=None): """Return a Position namedtuple in ECEF coordinate system""" if when_utc is None: when_utc = dt.datetime.utcnow() position_ecef, velocity_ecef = self._propagate_ecef(when_utc) return Position(when_utc=when_utc, position_ecef=position_ecef, velocity_ecef=velocity_ecef, error_estimate=None) def get_only_position(self, when_utc=None): """Return a tuple in ECEF coordinate system""" return self.get_position(when_utc).position_ecef def get_eclipse_duration(self, when_utc=None, tolerance=1e-1): """Gets eclipse duration at given time, in minutes""" ecc = self.get_position(when_utc).osculating_elements[1] if ecc > tolerance: raise NotImplementedError("Non circular orbits are not supported") beta = self.get_beta(when_utc) return eclipse_duration(beta, self.period) def passes_over(self, location, when_utc, limit_date=None, max_elevation_gt=0, aos_at_dg=0): return LocationPredictor(location, self, when_utc, limit_date, max_elevation_gt, aos_at_dg) def get_next_pass(self, location, when_utc=None, max_elevation_gt=5, aos_at_dg=0, limit_date=None): """Return a PredictedPass instance with the data of the next pass over the given location location_llh: point on Earth we want to see from the satellite. when_utc: datetime UTC after which the pass is calculated, default to now. max_elevation_gt: filter passes with max_elevation under it. aos_at_dg: This is if we want to start the pass at a specific elevation. The next pass with a LOS strictly after when_utc will be returned, possibly the current pass. """ if when_utc is None: when_utc = dt.datetime.utcnow() for pass_ in self.passes_over(location, when_utc, limit_date, max_elevation_gt=max_elevation_gt, aos_at_dg=aos_at_dg): return pass_ else: raise NotReachable('Propagation limit date exceeded') def eclipses_since(self, when_utc=None, limit_date=None): """ An iterator that yields all eclipses start and end times between when_utc and limit_date. The next eclipse with a end strictly after when_utc will be returned, possibly the current eclipse. The last eclipse returned starts before limit_date, but it can end strictly after limit_date. No circular orbits are not supported, and will raise NotImplementedError. """ def _get_illumination(t): my_start = start + dt.timedelta(seconds=t) result = get_satellite_minus_penumbra_verticals( self.get_only_position(my_start), my_start ) return result if when_utc is None: when_utc = dt.datetime.utcnow() orbital_period_s = self.period * 60 # A third of the orbit period is used as the base window of the search. # This window ensures the function get_satellite_minus_penumbra_verticals # will not have more than one local minimum (one in the illuminated phase and # the other in penumbra). base_search_window_s = orbital_period_s / 3 start = when_utc while limit_date is None or start < limit_date: # a minimum negative value is aproximatelly the middle point of the eclipse minimum_illumination = minimize_scalar( _get_illumination, bounds=(0, base_search_window_s), method="bounded", options={"xatol": 1e-2}, ) eclipse_center_candidate_delta_s = minimum_illumination.x # If found a minimum that is not illuminated, there is an eclipse here if _get_illumination(eclipse_center_candidate_delta_s) < 0: # The small time interval to search zeros around the center # is estimated with the expected eclipse duration (which generally # is smaller than expected, and that is the reason of the 1.5 coeficient). # Also a minimum of 180 seconds was added because # in some cases the estimation is 0 even though there is an eclipse. eclipse_duration_estimation_s = self.get_eclipse_duration(start) * 60 zero_search_window_s = max(180, 1.5 * eclipse_duration_estimation_s) # Search now both zeros to get the start and end of the eclipse eclipse_start_delta_s = brentq( _get_illumination, eclipse_center_candidate_delta_s - zero_search_window_s, eclipse_center_candidate_delta_s, xtol=1e-2, full_output=False, ) eclipse_end_delta_s = brentq( _get_illumination, eclipse_center_candidate_delta_s, eclipse_center_candidate_delta_s + zero_search_window_s, xtol=1e-2, full_output=False, ) eclipse_start = start + dt.timedelta(seconds=eclipse_start_delta_s) eclipse_end = start + dt.timedelta(seconds=eclipse_end_delta_s) yield eclipse_start, eclipse_end start = eclipse_end + dt.timedelta(seconds=base_search_window_s) else: start += dt.timedelta(seconds=base_search_window_s) class GPSPredictor(Predictor): pass class LocationPredictor: """Predicts passes over a given location Exposes an iterable interface """ def __init__(self, location, predictor, start_date, limit_date=None, max_elevation_gt=0, aos_at_dg=0, *, propagator=None): if propagator is not None: warnings.warn( "propagator parameter was renamed to predictor " "and will be removed in a future release", DeprecationWarning ) predictor = propagator self.location = location self.predictor = predictor self.start_date = start_date self.limit_date = limit_date self.max_elevation_gt = radians(max([max_elevation_gt, aos_at_dg])) self.aos_at = radians(aos_at_dg) @property def propagator(self): warnings.warn( "propagator parameter was renamed to predictor " "and will be removed in a future release", DeprecationWarning ) return self.predictor def __iter__(self): """Returns one pass each time""" current_date = self.start_date while True: if self.is_ascending(current_date): # we need a descending point ascending_date = current_date descending_date = self._find_nearest_descending(ascending_date) pass_ = self._refine_pass(ascending_date, descending_date) if pass_.valid: if self.limit_date is not None and pass_.aos > self.limit_date: break yield self._build_predicted_pass(pass_) if self.limit_date is not None and current_date > self.limit_date: break current_date = pass_.tca + self._orbit_step(0.6) else: current_date = self._find_nearest_ascending(current_date) def _build_predicted_pass(self, accuratepass): """Returns a classic predicted pass""" tca_position = self.predictor.get_position(accuratepass.tca) return PredictedPass(self.location, self.predictor.sate_id, max_elevation_deg=accuratepass.max_elevation_deg, aos=accuratepass.aos, los=accuratepass.los, duration_s=accuratepass.duration.total_seconds(), max_elevation_position=tca_position, max_elevation_date=accuratepass.tca, ) def _find_nearest_descending(self, ascending_date): for candidate in self._sample_points(ascending_date): if not self.is_ascending(candidate): return candidate else: logger.error('Could not find a descending pass over %s start date: %s - TLE: %s', self.location, ascending_date, self.predictor.tle) raise PropagationError("Can not find an descending phase") def _find_nearest_ascending(self, descending_date): for candidate in self._sample_points(descending_date): if self.is_ascending(candidate): return candidate else: logger.error('Could not find an ascending pass over %s start date: %s - TLE: %s', self.location, descending_date, self.predictor.tle) raise PropagationError('Can not find an ascending phase') def _sample_points(self, date): """Helper method to found ascending or descending phases of elevation""" start = date end = date + self._orbit_step(0.99) mid = self.midpoint(start, end) mid_right = self.midpoint(mid, end) mid_left = self.midpoint(start, mid) return [end, mid, mid_right, mid_left] def _refine_pass(self, ascending_date, descending_date): tca = self._find_tca(ascending_date, descending_date) elevation = self._elevation_at(tca) if elevation > self.max_elevation_gt: aos = self._find_aos(tca) los = self._find_los(tca) else: aos = los = None return AccuratePredictedPass(aos, tca, los, elevation) def _find_tca(self, ascending_date, descending_date): while not self._precision_reached(ascending_date, descending_date): midpoint = self.midpoint(ascending_date, descending_date) if self.is_ascending(midpoint): ascending_date = midpoint else: descending_date = midpoint return ascending_date def _precision_reached(self, start, end): # TODO: Allow the precision to change from the outside return end - start <= ONE_SECOND @staticmethod def midpoint(start, end): """Returns the midpoint between two dates""" return start + (end - start) / 2 def _elevation_at(self, when_utc): position = self.predictor.get_only_position(when_utc) return self.location.elevation_for(position) def is_passing(self, when_utc): """Returns a boolean indicating if satellite is actually visible""" return bool(self._elevation_at(when_utc)) def is_ascending(self, when_utc): """Check is elevation is ascending or descending on a given point""" elevation = self._elevation_at(when_utc) next_elevation = self._elevation_at(when_utc + ONE_SECOND) return elevation <= next_elevation def _orbit_step(self, size): """Returns a time step, that will make the satellite advance a given number of orbits""" step_in_radians = size * 2 * pi seconds = (step_in_radians / self.predictor.mean_motion) * 60 return dt.timedelta(seconds=seconds) def _find_aos(self, tca): end = tca start = tca - self._orbit_step(0.34) # On third of the orbit elevation = self._elevation_at(start) assert elevation < 0 while not self._precision_reached(start, end): midpoint = self.midpoint(start, end) elevation = self._elevation_at(midpoint) if elevation < self.aos_at: start = midpoint else: end = midpoint return end def _find_los(self, tca): start = tca end = tca + self._orbit_step(0.34) while not self._precision_reached(start, end): midpoint = self.midpoint(start, end) elevation = self._elevation_at(midpoint) if elevation < self.aos_at: end = midpoint else: start = midpoint return start class AccuratePredictedPass: def __init__(self, aos, tca, los, max_elevation): self.aos = round_datetime(aos) if aos is not None else None self.tca = round_datetime(tca) self.los = round_datetime(los) if los is not None else None self.max_elevation = max_elevation @property def valid(self): return self.max_elevation > 0 and self.aos is not None and self.los is not None @reify def max_elevation_deg(self): return degrees(self.max_elevation) @reify def duration(self): return self.los - self.aos
# MIT License # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import datetime as dt import logging import warnings from collections import namedtuple from math import pi, acos, degrees, radians import numpy as np try: from scipy.optimize import brentq, minimize_scalar except ImportError: warnings.warn('scipy module was not found, some features may not work properly.', ImportWarning) from orbit_predictor.constants import MU_E from orbit_predictor.exceptions import NotReachable, PropagationError from orbit_predictor import coordinate_systems from orbit_predictor.keplerian import rv2coe from orbit_predictor.utils import ( angle_between, cross_product, dot_product, reify, vector_diff, vector_norm, gstime_from_datetime, get_shadow, get_sun, eclipse_duration, get_satellite_minus_penumbra_verticals, ) logger = logging.getLogger(__name__) ONE_SECOND = dt.timedelta(seconds=1) def round_datetime(dt_): return dt_ class Position(namedtuple( "Position", ['when_utc', 'position_ecef', 'velocity_ecef', 'error_estimate'])): @reify def position_llh(self): """Latitude (deg), longitude (deg), altitude (km).""" return coordinate_systems.ecef_to_llh(self.position_ecef) @reify def osculating_elements(self): """Osculating Keplerian orbital elements. Semimajor axis (km), eccentricity, inclination (deg), right ascension of the ascending node or RAAN (deg), argument of perigee (deg), true anomaly (deg). """ gmst = gstime_from_datetime(self.when_utc) position_eci = coordinate_systems.ecef_to_eci(self.position_ecef, gmst) velocity_eci = coordinate_systems.ecef_to_eci(self.velocity_ecef, gmst) # Convert position to Keplerian osculating elements p, ecc, inc, raan, argp, ta = rv2coe( MU_E, np.array(position_eci), np.array(velocity_eci) ) # Transform to more familiar semimajor axis sma = p / (1 - ecc ** 2) return sma, ecc, degrees(inc), degrees(raan), degrees(argp), degrees(ta) class PredictedPass: def __init__(self, location, sate_id, max_elevation_deg, aos, los, duration_s, max_elevation_position=None, max_elevation_date=None): self.location = location self.sate_id = sate_id self.max_elevation_position = max_elevation_position self.max_elevation_date = max_elevation_date self.max_elevation_deg = max_elevation_deg self.aos = aos self.los = los self.duration_s = duration_s @property def midpoint(self): """Returns a datetime of the midpoint of the pass""" return self.aos + (self.los - self.aos) / 2 def __repr__(self): return "<PredictedPass {} over {} on {}>".format(self.sate_id, self.location, self.aos) def __eq__(self, other): return all([issubclass(other.__class__, PredictedPass), self.location == other.location, self.sate_id == other.sate_id, self.max_elevation_position == other.max_elevation_position, self.max_elevation_date == other.max_elevation_date, self.max_elevation_deg == other.max_elevation_deg, self.aos == other.aos, self.los == other.los, self.duration_s == other.duration_s]) def get_off_nadir_angle(self): warnings.warn("This method is deprecated!", DeprecationWarning) return self.off_nadir_deg @reify def off_nadir_deg(self): """Computes off-nadir angle calculation Given satellite position ``sate_pos``, velocity ``sate_vel``, and location ``target`` in a common frame, off-nadir angle ``off_nadir_angle`` is given by: t2b = sate_pos - target cos(off_nadir_angle) = (sate_pos · t2b) # Vectorial dot product _______________________ || sate_pos || || t2b|| Sign for the rotation is calculated this way cross = target ⨯ sate_pos sign = cross · sate_vel ____________________ | cross · sate_vel | """ sate_pos = self.max_elevation_position.position_ecef sate_vel = self.max_elevation_position.velocity_ecef target = self.location.position_ecef t2b = vector_diff(sate_pos, target) angle = acos( dot_product(sate_pos, t2b) / (vector_norm(sate_pos) * vector_norm(t2b)) ) cross = cross_product(target, sate_pos) dot = dot_product(cross, sate_vel) try: sign = dot / abs(dot) except ZeroDivisionError: sign = 1 return degrees(angle) * sign class Predictor: @property def sate_id(self): raise NotImplementedError def propagate_eci(self, when_utc=None): raise NotImplementedError def get_position(self, when_utc=None): raise NotImplementedError("You have to implement it!") def get_shadow(self, when_utc=None): """Gives illumination at given time (2 for illuminated, 1 for penumbra, 0 for umbra).""" if when_utc is None: when_utc = dt.datetime.utcnow() return get_shadow( self.get_position(when_utc).position_ecef, when_utc ) def get_normal_vector(self, when_utc=None): """Gets unitary normal vector (orthogonal to orbital plane) at given time.""" if when_utc is None: when_utc = dt.datetime.utcnow() position, velocity = self.propagate_eci(when_utc) orbital_plane_normal = np.cross(position, velocity) return orbital_plane_normal / vector_norm(orbital_plane_normal) def get_beta(self, when_utc=None): """Gets angle between orbital plane and Sun direction (beta) at given time, in degrees.""" if when_utc is None: when_utc = dt.datetime.utcnow() # Here we calculate the complementary angle of beta, # because we use the normal vector of the orbital plane beta_comp = angle_between( get_sun(when_utc), self.get_normal_vector(when_utc) ) # We subtract from 90 degrees to return the real beta angle return 90 - beta_comp class CartesianPredictor(Predictor): def _propagate_ecef(self, when_utc=None): """Return position and velocity in the given date using ECEF coordinate system.""" if when_utc is None: when_utc = dt.datetime.utcnow() position_eci, velocity_eci = self.propagate_eci(when_utc) gmst = gstime_from_datetime(when_utc) position_ecef = coordinate_systems.eci_to_ecef(position_eci, gmst) velocity_ecef = coordinate_systems.eci_to_ecef(velocity_eci, gmst) return position_ecef, velocity_ecef @reify def mean_motion(self): """Mean motion, in radians per minute""" raise NotImplementedError @reify def period(self): """Orbital period, in minutes""" return 2 * pi / self.mean_motion def get_position(self, when_utc=None): """Return a Position namedtuple in ECEF coordinate system""" if when_utc is None: when_utc = dt.datetime.utcnow() position_ecef, velocity_ecef = self._propagate_ecef(when_utc) return Position(when_utc=when_utc, position_ecef=position_ecef, velocity_ecef=velocity_ecef, error_estimate=None) def get_only_position(self, when_utc=None): """Return a tuple in ECEF coordinate system""" return self.get_position(when_utc).position_ecef def get_eclipse_duration(self, when_utc=None, tolerance=1e-1): """Gets eclipse duration at given time, in minutes""" ecc = self.get_position(when_utc).osculating_elements[1] if ecc > tolerance: raise NotImplementedError("Non circular orbits are not supported") beta = self.get_beta(when_utc) return eclipse_duration(beta, self.period) def passes_over(self, location, when_utc, limit_date=None, max_elevation_gt=0, aos_at_dg=0): return LocationPredictor(location, self, when_utc, limit_date, max_elevation_gt, aos_at_dg) def get_next_pass(self, location, when_utc=None, max_elevation_gt=5, aos_at_dg=0, limit_date=None): """Return a PredictedPass instance with the data of the next pass over the given location location_llh: point on Earth we want to see from the satellite. when_utc: datetime UTC after which the pass is calculated, default to now. max_elevation_gt: filter passes with max_elevation under it. aos_at_dg: This is if we want to start the pass at a specific elevation. The next pass with a LOS strictly after when_utc will be returned, possibly the current pass. """ if when_utc is None: when_utc = dt.datetime.utcnow() for pass_ in self.passes_over(location, when_utc, limit_date, max_elevation_gt=max_elevation_gt, aos_at_dg=aos_at_dg): return pass_ else: raise NotReachable('Propagation limit date exceeded') def eclipses_since(self, when_utc=None, limit_date=None): """ An iterator that yields all eclipses start and end times between when_utc and limit_date. The next eclipse with a end strictly after when_utc will be returned, possibly the current eclipse. The last eclipse returned starts before limit_date, but it can end strictly after limit_date. No circular orbits are not supported, and will raise NotImplementedError. """ def _get_illumination(t): my_start = start + dt.timedelta(seconds=t) result = get_satellite_minus_penumbra_verticals( self.get_only_position(my_start), my_start ) return result if when_utc is None: when_utc = dt.datetime.utcnow() orbital_period_s = self.period * 60 # A third of the orbit period is used as the base window of the search. # This window ensures the function get_satellite_minus_penumbra_verticals # will not have more than one local minimum (one in the illuminated phase and # the other in penumbra). base_search_window_s = orbital_period_s / 3 start = when_utc while limit_date is None or start < limit_date: # a minimum negative value is aproximatelly the middle point of the eclipse minimum_illumination = minimize_scalar( _get_illumination, bounds=(0, base_search_window_s), method="bounded", options={"xatol": 1e-2}, ) eclipse_center_candidate_delta_s = minimum_illumination.x # If found a minimum that is not illuminated, there is an eclipse here if _get_illumination(eclipse_center_candidate_delta_s) < 0: # The small time interval to search zeros around the center # is estimated with the expected eclipse duration (which generally # is smaller than expected, and that is the reason of the 1.5 coeficient). # Also a minimum of 180 seconds was added because # in some cases the estimation is 0 even though there is an eclipse. eclipse_duration_estimation_s = self.get_eclipse_duration(start) * 60 zero_search_window_s = max(180, 1.5 * eclipse_duration_estimation_s) # Search now both zeros to get the start and end of the eclipse eclipse_start_delta_s = brentq( _get_illumination, eclipse_center_candidate_delta_s - zero_search_window_s, eclipse_center_candidate_delta_s, xtol=1e-2, full_output=False, ) eclipse_end_delta_s = brentq( _get_illumination, eclipse_center_candidate_delta_s, eclipse_center_candidate_delta_s + zero_search_window_s, xtol=1e-2, full_output=False, ) eclipse_start = start + dt.timedelta(seconds=eclipse_start_delta_s) eclipse_end = start + dt.timedelta(seconds=eclipse_end_delta_s) yield eclipse_start, eclipse_end start = eclipse_end + dt.timedelta(seconds=base_search_window_s) else: start += dt.timedelta(seconds=base_search_window_s) class GPSPredictor(Predictor): pass class LocationPredictor: """Predicts passes over a given location Exposes an iterable interface """ def __init__(self, location, predictor, start_date, limit_date=None, max_elevation_gt=0, aos_at_dg=0, *, propagator=None): if propagator is not None: warnings.warn( "propagator parameter was renamed to predictor " "and will be removed in a future release", DeprecationWarning ) predictor = propagator self.location = location self.predictor = predictor self.start_date = start_date self.limit_date = limit_date self.max_elevation_gt = radians(max([max_elevation_gt, aos_at_dg])) self.aos_at = radians(aos_at_dg) @property def propagator(self): warnings.warn( "propagator parameter was renamed to predictor " "and will be removed in a future release", DeprecationWarning ) return self.predictor def __iter__(self): """Returns one pass each time""" current_date = self.start_date while True: if self.is_ascending(current_date): # we need a descending point ascending_date = current_date descending_date = self._find_nearest_descending(ascending_date) pass_ = self._refine_pass(ascending_date, descending_date) if pass_.valid: if self.limit_date is not None and pass_.aos > self.limit_date: break yield self._build_predicted_pass(pass_) if self.limit_date is not None and current_date > self.limit_date: break current_date = pass_.tca + self._orbit_step(0.6) else: current_date = self._find_nearest_ascending(current_date) def _build_predicted_pass(self, accuratepass): """Returns a classic predicted pass""" tca_position = self.predictor.get_position(accuratepass.tca) return PredictedPass(self.location, self.predictor.sate_id, max_elevation_deg=accuratepass.max_elevation_deg, aos=accuratepass.aos, los=accuratepass.los, duration_s=accuratepass.duration.total_seconds(), max_elevation_position=tca_position, max_elevation_date=accuratepass.tca, ) def _find_nearest_descending(self, ascending_date): for candidate in self._sample_points(ascending_date): if not self.is_ascending(candidate): return candidate else: logger.error('Could not find a descending pass over %s start date: %s - TLE: %s', self.location, ascending_date, self.predictor.tle) raise PropagationError("Can not find an descending phase") def _find_nearest_ascending(self, descending_date): for candidate in self._sample_points(descending_date): if self.is_ascending(candidate): return candidate else: logger.error('Could not find an ascending pass over %s start date: %s - TLE: %s', self.location, descending_date, self.predictor.tle) raise PropagationError('Can not find an ascending phase') def _sample_points(self, date): """Helper method to found ascending or descending phases of elevation""" start = date end = date + self._orbit_step(0.99) mid = self.midpoint(start, end) mid_right = self.midpoint(mid, end) mid_left = self.midpoint(start, mid) return [end, mid, mid_right, mid_left] def _refine_pass(self, ascending_date, descending_date): tca = self._find_tca(ascending_date, descending_date) elevation = self._elevation_at(tca) if elevation > self.max_elevation_gt: aos = self._find_aos(tca) los = self._find_los(tca) else: aos = los = None return AccuratePredictedPass(aos, tca, los, elevation) def _find_tca(self, ascending_date, descending_date): while not self._precision_reached(ascending_date, descending_date): midpoint = self.midpoint(ascending_date, descending_date) if self.is_ascending(midpoint): ascending_date = midpoint else: descending_date = midpoint return ascending_date def _precision_reached(self, start, end): # TODO: Allow the precision to change from the outside return end - start <= ONE_SECOND @staticmethod def midpoint(start, end): """Returns the midpoint between two dates""" return start + (end - start) / 2 def _elevation_at(self, when_utc): position = self.predictor.get_only_position(when_utc) return self.location.elevation_for(position) def is_passing(self, when_utc): """Returns a boolean indicating if satellite is actually visible""" return bool(self._elevation_at(when_utc)) def is_ascending(self, when_utc): """Check is elevation is ascending or descending on a given point""" elevation = self._elevation_at(when_utc) next_elevation = self._elevation_at(when_utc + ONE_SECOND) return elevation <= next_elevation def _orbit_step(self, size): """Returns a time step, that will make the satellite advance a given number of orbits""" step_in_radians = size * 2 * pi seconds = (step_in_radians / self.predictor.mean_motion) * 60 return dt.timedelta(seconds=seconds) def _find_aos(self, tca): end = tca start = tca - self._orbit_step(0.34) # On third of the orbit elevation = self._elevation_at(start) assert elevation < 0 while not self._precision_reached(start, end): midpoint = self.midpoint(start, end) elevation = self._elevation_at(midpoint) if elevation < self.aos_at: start = midpoint else: end = midpoint return end def _find_los(self, tca): start = tca end = tca + self._orbit_step(0.34) while not self._precision_reached(start, end): midpoint = self.midpoint(start, end) elevation = self._elevation_at(midpoint) if elevation < self.aos_at: end = midpoint else: start = midpoint return start class AccuratePredictedPass: def __init__(self, aos, tca, los, max_elevation): self.aos = round_datetime(aos) if aos is not None else None self.tca = round_datetime(tca) self.los = round_datetime(los) if los is not None else None self.max_elevation = max_elevation @property def valid(self): return self.max_elevation > 0 and self.aos is not None and self.los is not None @reify def max_elevation_deg(self): return degrees(self.max_elevation) @reify def duration(self): return self.los - self.aos
en
0.799172
# MIT License # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. Latitude (deg), longitude (deg), altitude (km). Osculating Keplerian orbital elements. Semimajor axis (km), eccentricity, inclination (deg), right ascension of the ascending node or RAAN (deg), argument of perigee (deg), true anomaly (deg). # Convert position to Keplerian osculating elements # Transform to more familiar semimajor axis Returns a datetime of the midpoint of the pass Computes off-nadir angle calculation Given satellite position ``sate_pos``, velocity ``sate_vel``, and location ``target`` in a common frame, off-nadir angle ``off_nadir_angle`` is given by: t2b = sate_pos - target cos(off_nadir_angle) = (sate_pos · t2b) # Vectorial dot product _______________________ || sate_pos || || t2b|| Sign for the rotation is calculated this way cross = target ⨯ sate_pos sign = cross · sate_vel ____________________ | cross · sate_vel | Gives illumination at given time (2 for illuminated, 1 for penumbra, 0 for umbra). Gets unitary normal vector (orthogonal to orbital plane) at given time. Gets angle between orbital plane and Sun direction (beta) at given time, in degrees. # Here we calculate the complementary angle of beta, # because we use the normal vector of the orbital plane # We subtract from 90 degrees to return the real beta angle Return position and velocity in the given date using ECEF coordinate system. Mean motion, in radians per minute Orbital period, in minutes Return a Position namedtuple in ECEF coordinate system Return a tuple in ECEF coordinate system Gets eclipse duration at given time, in minutes Return a PredictedPass instance with the data of the next pass over the given location location_llh: point on Earth we want to see from the satellite. when_utc: datetime UTC after which the pass is calculated, default to now. max_elevation_gt: filter passes with max_elevation under it. aos_at_dg: This is if we want to start the pass at a specific elevation. The next pass with a LOS strictly after when_utc will be returned, possibly the current pass. An iterator that yields all eclipses start and end times between when_utc and limit_date. The next eclipse with a end strictly after when_utc will be returned, possibly the current eclipse. The last eclipse returned starts before limit_date, but it can end strictly after limit_date. No circular orbits are not supported, and will raise NotImplementedError. # A third of the orbit period is used as the base window of the search. # This window ensures the function get_satellite_minus_penumbra_verticals # will not have more than one local minimum (one in the illuminated phase and # the other in penumbra). # a minimum negative value is aproximatelly the middle point of the eclipse # If found a minimum that is not illuminated, there is an eclipse here # The small time interval to search zeros around the center # is estimated with the expected eclipse duration (which generally # is smaller than expected, and that is the reason of the 1.5 coeficient). # Also a minimum of 180 seconds was added because # in some cases the estimation is 0 even though there is an eclipse. # Search now both zeros to get the start and end of the eclipse Predicts passes over a given location Exposes an iterable interface Returns one pass each time # we need a descending point Returns a classic predicted pass Helper method to found ascending or descending phases of elevation # TODO: Allow the precision to change from the outside Returns the midpoint between two dates Returns a boolean indicating if satellite is actually visible Check is elevation is ascending or descending on a given point Returns a time step, that will make the satellite advance a given number of orbits # On third of the orbit
1.711189
2
vilmedic/scorers/NLG/__init__.py
jbdel/vilmedic
15
9795
<reponame>jbdel/vilmedic from .rouge import ROUGEScorer from .bleu.bleu import BLEUScorer from .meteor.meteor import METEORScorer from .cider.cider import Cider from .ciderd.ciderd import CiderD
from .rouge import ROUGEScorer from .bleu.bleu import BLEUScorer from .meteor.meteor import METEORScorer from .cider.cider import Cider from .ciderd.ciderd import CiderD
none
1
0.973505
1
tests/test_liif.py
Yshuo-Li/mmediting-test
2
9796
import numpy as np import torch import torch.nn as nn from mmcv.runner import obj_from_dict from mmcv.utils.config import Config from mmedit.models import build_model from mmedit.models.losses import L1Loss from mmedit.models.registry import COMPONENTS @COMPONENTS.register_module() class BP(nn.Module): """A simple BP network for testing LIIF. Args: in_dim (int): Input dimension. out_dim (int): Output dimension. """ def __init__(self, in_dim, out_dim): super().__init__() self.layer = nn.Linear(in_dim, out_dim) def forward(self, x): shape = x.shape[:-1] x = self.layer(x.view(-1, x.shape[-1])) return x.view(*shape, -1) def test_liif(): model_cfg = dict( type='LIIF', generator=dict( type='EDSR', in_channels=3, out_channels=3, mid_channels=8, num_blocks=1), imnet=dict(type='BP', in_dim=8, out_dim=3), local_ensemble=True, feat_unfold=True, cell_decode=True, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1., 1., 1.), eval_bsize=30000, pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')) scale_max = 4 train_cfg = None test_cfg = Config(dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max)) # build restorer restorer = build_model(model_cfg, train_cfg=train_cfg, test_cfg=test_cfg) # test attributes assert restorer.__class__.__name__ == 'LIIF' assert isinstance(restorer.imnet, BP) assert isinstance(restorer.pixel_loss, L1Loss) # prepare data inputs = torch.rand(1, 3, 22, 11) targets = torch.rand(1, 128 * 64, 3) coord = torch.rand(1, 128 * 64, 2) cell = torch.rand(1, 128 * 64, 2) data_batch = {'lq': inputs, 'gt': targets, 'coord': coord, 'cell': cell} # prepare optimizer optim_cfg = dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=restorer.parameters())) # test train_step and forward_test (cpu) outputs = restorer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['log_vars']['loss_pix'], float) assert outputs['num_samples'] == 1 assert outputs['results']['lq'].shape == data_batch['lq'].shape assert outputs['results']['gt'].shape == data_batch['gt'].shape assert torch.is_tensor(outputs['results']['output']) assert outputs['results']['output'].size() == (1, 128 * 64, 3) # test train_step and forward_test (gpu) if torch.cuda.is_available(): restorer = restorer.cuda() data_batch = { 'lq': inputs.cuda(), 'gt': targets.cuda(), 'coord': coord.cuda(), 'cell': cell.cuda() } # train_step optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=restorer.parameters())) outputs = restorer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['log_vars']['loss_pix'], float) assert outputs['num_samples'] == 1 assert outputs['results']['lq'].shape == data_batch['lq'].shape assert outputs['results']['gt'].shape == data_batch['gt'].shape assert torch.is_tensor(outputs['results']['output']) assert outputs['results']['output'].size() == (1, 128 * 64, 3) # val_step result = restorer.val_step(data_batch, meta=[{'gt_path': ''}]) assert isinstance(result, dict) assert isinstance(result['eval_result'], dict) assert result['eval_result'].keys() == set({'PSNR', 'SSIM'}) assert isinstance(result['eval_result']['PSNR'], np.float64) assert isinstance(result['eval_result']['SSIM'], np.float64)
import numpy as np import torch import torch.nn as nn from mmcv.runner import obj_from_dict from mmcv.utils.config import Config from mmedit.models import build_model from mmedit.models.losses import L1Loss from mmedit.models.registry import COMPONENTS @COMPONENTS.register_module() class BP(nn.Module): """A simple BP network for testing LIIF. Args: in_dim (int): Input dimension. out_dim (int): Output dimension. """ def __init__(self, in_dim, out_dim): super().__init__() self.layer = nn.Linear(in_dim, out_dim) def forward(self, x): shape = x.shape[:-1] x = self.layer(x.view(-1, x.shape[-1])) return x.view(*shape, -1) def test_liif(): model_cfg = dict( type='LIIF', generator=dict( type='EDSR', in_channels=3, out_channels=3, mid_channels=8, num_blocks=1), imnet=dict(type='BP', in_dim=8, out_dim=3), local_ensemble=True, feat_unfold=True, cell_decode=True, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1., 1., 1.), eval_bsize=30000, pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')) scale_max = 4 train_cfg = None test_cfg = Config(dict(metrics=['PSNR', 'SSIM'], crop_border=scale_max)) # build restorer restorer = build_model(model_cfg, train_cfg=train_cfg, test_cfg=test_cfg) # test attributes assert restorer.__class__.__name__ == 'LIIF' assert isinstance(restorer.imnet, BP) assert isinstance(restorer.pixel_loss, L1Loss) # prepare data inputs = torch.rand(1, 3, 22, 11) targets = torch.rand(1, 128 * 64, 3) coord = torch.rand(1, 128 * 64, 2) cell = torch.rand(1, 128 * 64, 2) data_batch = {'lq': inputs, 'gt': targets, 'coord': coord, 'cell': cell} # prepare optimizer optim_cfg = dict(type='Adam', lr=1e-4, betas=(0.9, 0.999)) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=restorer.parameters())) # test train_step and forward_test (cpu) outputs = restorer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['log_vars']['loss_pix'], float) assert outputs['num_samples'] == 1 assert outputs['results']['lq'].shape == data_batch['lq'].shape assert outputs['results']['gt'].shape == data_batch['gt'].shape assert torch.is_tensor(outputs['results']['output']) assert outputs['results']['output'].size() == (1, 128 * 64, 3) # test train_step and forward_test (gpu) if torch.cuda.is_available(): restorer = restorer.cuda() data_batch = { 'lq': inputs.cuda(), 'gt': targets.cuda(), 'coord': coord.cuda(), 'cell': cell.cuda() } # train_step optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=restorer.parameters())) outputs = restorer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['log_vars']['loss_pix'], float) assert outputs['num_samples'] == 1 assert outputs['results']['lq'].shape == data_batch['lq'].shape assert outputs['results']['gt'].shape == data_batch['gt'].shape assert torch.is_tensor(outputs['results']['output']) assert outputs['results']['output'].size() == (1, 128 * 64, 3) # val_step result = restorer.val_step(data_batch, meta=[{'gt_path': ''}]) assert isinstance(result, dict) assert isinstance(result['eval_result'], dict) assert result['eval_result'].keys() == set({'PSNR', 'SSIM'}) assert isinstance(result['eval_result']['PSNR'], np.float64) assert isinstance(result['eval_result']['SSIM'], np.float64)
en
0.508143
A simple BP network for testing LIIF. Args: in_dim (int): Input dimension. out_dim (int): Output dimension. # build restorer # test attributes # prepare data # prepare optimizer # test train_step and forward_test (cpu) # test train_step and forward_test (gpu) # train_step # val_step
2.107408
2
database/signals.py
ccraddock/beiwe-backend-cc
0
9797
<gh_stars>0 from django.utils import timezone from django.core.exceptions import ObjectDoesNotExist from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from database.study_models import DeviceSettings, Study, Survey, SurveyArchive @receiver(post_save, sender=Study) def populate_study_device_settings(sender, **kwargs): """ Ensure that every newly created Study object has a DeviceSettings object. This essentially makes the OneToOneField have null=False in both directions. """ my_study = kwargs['instance'] if kwargs['created'] and not hasattr(my_study, 'device_settings'): # If my_study has just been created and doesn't have a DeviceSettings # attached to it, create one with the default parameters. DeviceSettings.objects.create(study=my_study) @receiver(pre_save, sender=Survey) def create_survey_archive(sender, **kwargs): """ Ensure that every time a Survey is edited, a SurveyArchive (SA) is stored which holds the current contents of the Survey before saving, as well as a pair of timestamps marking the time range over which the SA applies. """ # The Survey instance being passed has the updated contents of the Survey. To get # the preexisting contents of the Survey, make a database call using the passed # instance's primary key. If we get an ObjectDoesNotExist error short-circuit because # that means it is the initial save operation. my_survey_plus_updates = kwargs['instance'] try: my_survey = Survey.objects.get(pk=my_survey_plus_updates.pk) except ObjectDoesNotExist: return # All fields present in AbstractSurvey, plus the study foreign key which is # separately present in Survey and SurveyArchive. survey_fields = [f.name for f in super(Survey, my_survey)._meta.fields] survey_fields.append('study_id') # Prepare a new archive containing the archive-specific information new_archive = SurveyArchive(survey=my_survey, archive_start=my_survey.last_updated) try: # Get the most recent archive for this Survey, to check whether the Survey has been edited last_archive = my_survey.archives.latest('archive_end') except SurveyArchive.DoesNotExist: survey_dirty = True # If there is no previous archive, we automatically make a new one else: survey_dirty = False for shared_field in survey_fields: # Update all of the shared fields in the archive to have the original survey's values if shared_field == 'name': setattr(new_archive, shared_field, '{0} {1}'.format(getattr(my_survey, shared_field), timezone.now().isoformat())) else: setattr(new_archive, shared_field, getattr(my_survey, shared_field)) if not survey_dirty and getattr(my_survey, shared_field) != getattr(last_archive, shared_field): # If the survey has been edited since the last archive was made, mark the survey as # dirty. This tells us that we have to make a new archive object. survey_dirty = True if survey_dirty: # If the survey has been edited, save the new archive. This automatically sets the # archive_end field to be the current time. new_archive.save() else: # If the survey has not been edited, we don't save the new archive. Update the # previous archive to extend to the current time. Note that object.update saves the # object, unlike QuerySet.update. See base_models.AbstractModel for details. last_archive.update(archive_end=timezone.now())
from django.utils import timezone from django.core.exceptions import ObjectDoesNotExist from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from database.study_models import DeviceSettings, Study, Survey, SurveyArchive @receiver(post_save, sender=Study) def populate_study_device_settings(sender, **kwargs): """ Ensure that every newly created Study object has a DeviceSettings object. This essentially makes the OneToOneField have null=False in both directions. """ my_study = kwargs['instance'] if kwargs['created'] and not hasattr(my_study, 'device_settings'): # If my_study has just been created and doesn't have a DeviceSettings # attached to it, create one with the default parameters. DeviceSettings.objects.create(study=my_study) @receiver(pre_save, sender=Survey) def create_survey_archive(sender, **kwargs): """ Ensure that every time a Survey is edited, a SurveyArchive (SA) is stored which holds the current contents of the Survey before saving, as well as a pair of timestamps marking the time range over which the SA applies. """ # The Survey instance being passed has the updated contents of the Survey. To get # the preexisting contents of the Survey, make a database call using the passed # instance's primary key. If we get an ObjectDoesNotExist error short-circuit because # that means it is the initial save operation. my_survey_plus_updates = kwargs['instance'] try: my_survey = Survey.objects.get(pk=my_survey_plus_updates.pk) except ObjectDoesNotExist: return # All fields present in AbstractSurvey, plus the study foreign key which is # separately present in Survey and SurveyArchive. survey_fields = [f.name for f in super(Survey, my_survey)._meta.fields] survey_fields.append('study_id') # Prepare a new archive containing the archive-specific information new_archive = SurveyArchive(survey=my_survey, archive_start=my_survey.last_updated) try: # Get the most recent archive for this Survey, to check whether the Survey has been edited last_archive = my_survey.archives.latest('archive_end') except SurveyArchive.DoesNotExist: survey_dirty = True # If there is no previous archive, we automatically make a new one else: survey_dirty = False for shared_field in survey_fields: # Update all of the shared fields in the archive to have the original survey's values if shared_field == 'name': setattr(new_archive, shared_field, '{0} {1}'.format(getattr(my_survey, shared_field), timezone.now().isoformat())) else: setattr(new_archive, shared_field, getattr(my_survey, shared_field)) if not survey_dirty and getattr(my_survey, shared_field) != getattr(last_archive, shared_field): # If the survey has been edited since the last archive was made, mark the survey as # dirty. This tells us that we have to make a new archive object. survey_dirty = True if survey_dirty: # If the survey has been edited, save the new archive. This automatically sets the # archive_end field to be the current time. new_archive.save() else: # If the survey has not been edited, we don't save the new archive. Update the # previous archive to extend to the current time. Note that object.update saves the # object, unlike QuerySet.update. See base_models.AbstractModel for details. last_archive.update(archive_end=timezone.now())
en
0.915589
Ensure that every newly created Study object has a DeviceSettings object. This essentially makes the OneToOneField have null=False in both directions. # If my_study has just been created and doesn't have a DeviceSettings # attached to it, create one with the default parameters. Ensure that every time a Survey is edited, a SurveyArchive (SA) is stored which holds the current contents of the Survey before saving, as well as a pair of timestamps marking the time range over which the SA applies. # The Survey instance being passed has the updated contents of the Survey. To get # the preexisting contents of the Survey, make a database call using the passed # instance's primary key. If we get an ObjectDoesNotExist error short-circuit because # that means it is the initial save operation. # All fields present in AbstractSurvey, plus the study foreign key which is # separately present in Survey and SurveyArchive. # Prepare a new archive containing the archive-specific information # Get the most recent archive for this Survey, to check whether the Survey has been edited # If there is no previous archive, we automatically make a new one # Update all of the shared fields in the archive to have the original survey's values # If the survey has been edited since the last archive was made, mark the survey as # dirty. This tells us that we have to make a new archive object. # If the survey has been edited, save the new archive. This automatically sets the # archive_end field to be the current time. # If the survey has not been edited, we don't save the new archive. Update the # previous archive to extend to the current time. Note that object.update saves the # object, unlike QuerySet.update. See base_models.AbstractModel for details.
2.296067
2
docs/examples/notify/notify_skeleton.py
Blakstar26/npyscreen
0
9798
import npyscreen class NotifyBaseExample(npyscreen.Form): def create(self): key_of_choice = 'p' what_to_display = 'Press {} for popup \n Press escape key to quit'.format(key_of_choice) self.how_exited_handers[npyscreen.wgwidget.EXITED_ESCAPE] = self.exit_application self.add(npyscreen.FixedText, value=what_to_display) def exit_application(self): self.parentApp.setNextForm(None) self.editing = False class MyApplication(npyscreen.NPSAppManaged): def onStart(self): self.addForm('MAIN', NotifyBaseExample, name='To be improved upon') if __name__ == '__main__': TestApp = MyApplication().run()
import npyscreen class NotifyBaseExample(npyscreen.Form): def create(self): key_of_choice = 'p' what_to_display = 'Press {} for popup \n Press escape key to quit'.format(key_of_choice) self.how_exited_handers[npyscreen.wgwidget.EXITED_ESCAPE] = self.exit_application self.add(npyscreen.FixedText, value=what_to_display) def exit_application(self): self.parentApp.setNextForm(None) self.editing = False class MyApplication(npyscreen.NPSAppManaged): def onStart(self): self.addForm('MAIN', NotifyBaseExample, name='To be improved upon') if __name__ == '__main__': TestApp = MyApplication().run()
none
1
2.371183
2
practicioner_bundle/ch15-neural_style/pyimagesearch/nn/conv/minigooglenet.py
romanroson/pis_code
1
9799
# -*- coding: utf-8 -*- """Implementation of MiniGoogLeNet architecture. This implementation is based on the original implemetation of GoogLeNet. The authors of the net used BN before Activation layer. This should be switched. """ from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import AveragePooling2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Dropout from keras.layers.core import Dense from keras.layers import Flatten from keras.layers import Input from keras.models import Model from keras.layers import concatenate from keras import backend as K class MiniGoogLeNet: """Implementation of MiniGoogLeNet architecture """ @staticmethod def conv_module(x, filter_num, filter_x_size, filter_y_size, stride, chanel_dim, padding="same"): """Define conv layer Arguments: x {Tensor} -- input layer to the function filter_num {int} -- number of filters our CONV layer is going to learn filter_x_size {int} -- x-size of each of the filter_num filters that will be learned filter_y_size {int} -- y-size of each of the filter_num filters that will be learned stride {int} -- stride of the CONV layer chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Keyword Arguments: padding {str} -- type of padding to be applied to the CONV layer (default: {"same"}) Returns: Tensor -- convolutional module """ # define a CONV => BN => RELU pattern x = Conv2D(filter_num, (filter_x_size, filter_y_size), strides=stride, padding=padding)(x) x = BatchNormalization(axis=chanel_dim)(x) x = Activation("relu")(x) # return the block return x @staticmethod def inception_module(x, numK1x1, numK3x3, chanel_dim): # pylint: disable=invalid-name """Define inception module Arguments: x {Tensor} -- input layer numK1x1 {int} -- number of 1x1 filters numK3x3 {int} -- number of 3x3 filters chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- inception module """ # define two CONV modules, then concatenate across the channel dimension conv_1x1 = MiniGoogLeNet.conv_module(x, numK1x1, 1, 1, (1, 1), chanel_dim) conv_3x3 = MiniGoogLeNet.conv_module(x, numK3x3, 3, 3, (1, 1), chanel_dim) x = concatenate([conv_1x1, conv_3x3], axis=chanel_dim) # return the block return x @staticmethod def downsample_module(x, filter_num, chanel_dim): """Define downsample module Arguments: x {Tensor} -- input layer filter_num {int} -- number of filters our CONV layer is going to learn chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- downsample module """ # define the CONV module and POOL, then concatenate across the channel dimensions conv_3x3 = MiniGoogLeNet.conv_module(x, filter_num, 3, 3, (2, 2), chanel_dim, padding="valid") pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = concatenate([conv_3x3, pool], axis=chanel_dim) # return the block return x @staticmethod def build(width, height, depth, classes): """Build MiniGoogLeNet architecture Arguments: width {int} -- [description] height {int} -- [description] depth {int} -- [description] classes {int} -- [description] Returns: obj -- MiniGoogLeNet model """ # initialize the input shape to be "channels last" and the channels dimension itself input_shape = (height, width, depth) chanel_dim = -1 # if we are using "channels first", update the input shape and channels dimension if K.image_data_format() == "channels_first": input_shape = (depth, height, width) chanel_dim = 1 # define the model input and first CONV module inputs = Input(shape=input_shape) x = MiniGoogLeNet.conv_module(inputs, 96, 3, 3, (1, 1), chanel_dim) # two Inception modules followed by a downsample module x = MiniGoogLeNet.inception_module(x, 32, 32, chanel_dim) x = MiniGoogLeNet.inception_module(x, 32, 48, chanel_dim) x = MiniGoogLeNet.downsample_module(x, 80, chanel_dim) # four Inception modules followed by a downsample module x = MiniGoogLeNet.inception_module(x, 112, 48, chanel_dim) x = MiniGoogLeNet.inception_module(x, 96, 64, chanel_dim) x = MiniGoogLeNet.inception_module(x, 80, 80, chanel_dim) x = MiniGoogLeNet.inception_module(x, 48, 96, chanel_dim) x = MiniGoogLeNet.downsample_module(x, 96, chanel_dim) # two Inception modules followed by global POOL and dropout x = MiniGoogLeNet.inception_module(x, 176, 160, chanel_dim) x = MiniGoogLeNet.inception_module(x, 176, 160, chanel_dim) x = AveragePooling2D((7, 7))(x) x = Dropout(0.5)(x) # softmax classifier x = Flatten()(x) x = Dense(classes)(x) x = Activation("softmax")(x) # create the model model = Model(inputs, x, name="googlenet") # return the constructed network architecture return model
# -*- coding: utf-8 -*- """Implementation of MiniGoogLeNet architecture. This implementation is based on the original implemetation of GoogLeNet. The authors of the net used BN before Activation layer. This should be switched. """ from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import AveragePooling2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Dropout from keras.layers.core import Dense from keras.layers import Flatten from keras.layers import Input from keras.models import Model from keras.layers import concatenate from keras import backend as K class MiniGoogLeNet: """Implementation of MiniGoogLeNet architecture """ @staticmethod def conv_module(x, filter_num, filter_x_size, filter_y_size, stride, chanel_dim, padding="same"): """Define conv layer Arguments: x {Tensor} -- input layer to the function filter_num {int} -- number of filters our CONV layer is going to learn filter_x_size {int} -- x-size of each of the filter_num filters that will be learned filter_y_size {int} -- y-size of each of the filter_num filters that will be learned stride {int} -- stride of the CONV layer chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Keyword Arguments: padding {str} -- type of padding to be applied to the CONV layer (default: {"same"}) Returns: Tensor -- convolutional module """ # define a CONV => BN => RELU pattern x = Conv2D(filter_num, (filter_x_size, filter_y_size), strides=stride, padding=padding)(x) x = BatchNormalization(axis=chanel_dim)(x) x = Activation("relu")(x) # return the block return x @staticmethod def inception_module(x, numK1x1, numK3x3, chanel_dim): # pylint: disable=invalid-name """Define inception module Arguments: x {Tensor} -- input layer numK1x1 {int} -- number of 1x1 filters numK3x3 {int} -- number of 3x3 filters chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- inception module """ # define two CONV modules, then concatenate across the channel dimension conv_1x1 = MiniGoogLeNet.conv_module(x, numK1x1, 1, 1, (1, 1), chanel_dim) conv_3x3 = MiniGoogLeNet.conv_module(x, numK3x3, 3, 3, (1, 1), chanel_dim) x = concatenate([conv_1x1, conv_3x3], axis=chanel_dim) # return the block return x @staticmethod def downsample_module(x, filter_num, chanel_dim): """Define downsample module Arguments: x {Tensor} -- input layer filter_num {int} -- number of filters our CONV layer is going to learn chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- downsample module """ # define the CONV module and POOL, then concatenate across the channel dimensions conv_3x3 = MiniGoogLeNet.conv_module(x, filter_num, 3, 3, (2, 2), chanel_dim, padding="valid") pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = concatenate([conv_3x3, pool], axis=chanel_dim) # return the block return x @staticmethod def build(width, height, depth, classes): """Build MiniGoogLeNet architecture Arguments: width {int} -- [description] height {int} -- [description] depth {int} -- [description] classes {int} -- [description] Returns: obj -- MiniGoogLeNet model """ # initialize the input shape to be "channels last" and the channels dimension itself input_shape = (height, width, depth) chanel_dim = -1 # if we are using "channels first", update the input shape and channels dimension if K.image_data_format() == "channels_first": input_shape = (depth, height, width) chanel_dim = 1 # define the model input and first CONV module inputs = Input(shape=input_shape) x = MiniGoogLeNet.conv_module(inputs, 96, 3, 3, (1, 1), chanel_dim) # two Inception modules followed by a downsample module x = MiniGoogLeNet.inception_module(x, 32, 32, chanel_dim) x = MiniGoogLeNet.inception_module(x, 32, 48, chanel_dim) x = MiniGoogLeNet.downsample_module(x, 80, chanel_dim) # four Inception modules followed by a downsample module x = MiniGoogLeNet.inception_module(x, 112, 48, chanel_dim) x = MiniGoogLeNet.inception_module(x, 96, 64, chanel_dim) x = MiniGoogLeNet.inception_module(x, 80, 80, chanel_dim) x = MiniGoogLeNet.inception_module(x, 48, 96, chanel_dim) x = MiniGoogLeNet.downsample_module(x, 96, chanel_dim) # two Inception modules followed by global POOL and dropout x = MiniGoogLeNet.inception_module(x, 176, 160, chanel_dim) x = MiniGoogLeNet.inception_module(x, 176, 160, chanel_dim) x = AveragePooling2D((7, 7))(x) x = Dropout(0.5)(x) # softmax classifier x = Flatten()(x) x = Dense(classes)(x) x = Activation("softmax")(x) # create the model model = Model(inputs, x, name="googlenet") # return the constructed network architecture return model
en
0.613197
# -*- coding: utf-8 -*- Implementation of MiniGoogLeNet architecture. This implementation is based on the original implemetation of GoogLeNet. The authors of the net used BN before Activation layer. This should be switched. Implementation of MiniGoogLeNet architecture Define conv layer Arguments: x {Tensor} -- input layer to the function filter_num {int} -- number of filters our CONV layer is going to learn filter_x_size {int} -- x-size of each of the filter_num filters that will be learned filter_y_size {int} -- y-size of each of the filter_num filters that will be learned stride {int} -- stride of the CONV layer chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Keyword Arguments: padding {str} -- type of padding to be applied to the CONV layer (default: {"same"}) Returns: Tensor -- convolutional module # define a CONV => BN => RELU pattern # return the block # pylint: disable=invalid-name Define inception module Arguments: x {Tensor} -- input layer numK1x1 {int} -- number of 1x1 filters numK3x3 {int} -- number of 3x3 filters chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- inception module # define two CONV modules, then concatenate across the channel dimension # return the block Define downsample module Arguments: x {Tensor} -- input layer filter_num {int} -- number of filters our CONV layer is going to learn chanel_dim {int} -- channel dimension, derived from “channels last” or “channels first” Returns: Tensor -- downsample module # define the CONV module and POOL, then concatenate across the channel dimensions # return the block Build MiniGoogLeNet architecture Arguments: width {int} -- [description] height {int} -- [description] depth {int} -- [description] classes {int} -- [description] Returns: obj -- MiniGoogLeNet model # initialize the input shape to be "channels last" and the channels dimension itself # if we are using "channels first", update the input shape and channels dimension # define the model input and first CONV module # two Inception modules followed by a downsample module # four Inception modules followed by a downsample module # two Inception modules followed by global POOL and dropout # softmax classifier # create the model # return the constructed network architecture
3.501246
4