|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: repo_name |
|
dtype: string |
|
- name: repo_owner |
|
dtype: string |
|
- name: file_link |
|
dtype: string |
|
- name: line_link |
|
dtype: string |
|
- name: path |
|
dtype: string |
|
- name: content_sha |
|
dtype: string |
|
- name: content |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 32708409 |
|
num_examples: 50 |
|
- name: train |
|
num_bytes: 8081954107 |
|
num_examples: 10000 |
|
download_size: 5914651135 |
|
dataset_size: 8114662516 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
- split: train |
|
path: data/train-* |
|
tags: |
|
- jupyter notebook |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# Dataset Summary |
|
The presented dataset contains `10000` Jupyter notebooks, |
|
each of which contains at least one error. In addition to the notebook content, |
|
the dataset also provides information about the repository where the notebook is stored. |
|
This information can help restore the environment if needed. |
|
|
|
# Getting Started |
|
This dataset is organized such that it can be naively loaded via the Hugging Face datasets library. We recommend using streaming due to the large size of the files. |
|
|
|
```Python |
|
import nbformat |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset( |
|
"JetBrains-Research/jupyter-errors-dataset", split="test", streaming=True |
|
) |
|
row = next(iter(dataset)) |
|
notebook = nbformat.reads(row["content"], as_version=nbformat.NO_CONVERT) |
|
``` |
|
|
|
# Citation |
|
``` |
|
@misc{JupyterErrorsDataset, |
|
title = {Dataset of Errors in Jupyter Notebooks}, |
|
author = {Konstantin Grotov and Sergey Titov and Yaroslav Zharov and Timofey Bryksin}, |
|
year = {2023}, |
|
publisher = {HuggingFace}, |
|
journal = {HuggingFace repository}, |
|
howpublished = {\url{https://huggingface.co/datasets/JetBrains-Research/jupyter-errors-dataset}}, |
|
} |
|
``` |