UNION_DATA / gen_train_data.py
Jiann's picture
Upload 5 files
84cb2b1 verified
import numpy as np
import random
import re
import copy
from nltk.corpus import stopwords
import nltk
pos_tag = nltk.pos_tag
from nltk.stem import WordNetLemmatizer
lemma = WordNetLemmatizer().lemmatize
import sys
function_word = [".", ",", "!", "?", "male", "female", "neutral"]
def get_avail_phrases():
sw = set(stopwords.words('english'))
avail_phrases = set()
fin = open("./conceptnet_entity.csv", 'r')
for i, line in enumerate(fin):
avail_phrases.add(' '.join(line.strip().split("|||")[:-1]))
avail_phrases = avail_phrases - sw
fin.close()
fin = open("./negation.txt", 'r')
negation_word = []
for i, line in enumerate(fin):
word = ' '.join(line.strip().split()[1:])
negation_word.append(word)
avail_phrases.add(word)
fin.close()
for w in function_word:
avail_phrases.add(w)
with open("avail_phrases.txt", "w") as fout:
for w in avail_phrases:
fout.write(w+"\n")
return avail_phrases, negation_word
avail_phrases, negation_word = get_avail_phrases()
def output(st, fout):
if "w" in data_dir:
fout.write(" ".join(st)+"\n")
else:
for sen in st:
fout.write(sen+"\n")
fout.write("-"*5+"\n")
def repeat_sentence(st):
# repeat one sentence and delete the original sentence
idx = np.random.choice(np.arange(len(st))[1:], 1 + int(len(st)/2), replace=False).tolist()
s = min(idx)
tmp_st = copy.deepcopy(st)
for l in idx:
tmp_st[l] = copy.deepcopy(tmp_st[s])
return tmp_st
def repeat_ngram(st):
# repeat ngram in one sentence 1~4
def repeat_sen_gram(st):
flag = True
for _ in range(10):
try:
idx = np.random.choice(np.arange(len(st))[1:])
gram_num = np.random.choice(np.arange(5)[1:])
split_sen = st[idx].strip().split()
pointer_st = np.random.choice(np.arange(len(split_sen)))
pointer_ed = pointer_st + gram_num
if pointer_ed > len(split_sen):
pointer_ed = pointer_st
pointer_st = pointer_ed - gram_num
if pointer_st < 0:
continue
else:
flag = False
break
except:
continue
if flag:
return copy.deepcopy(st)
sen1, sen2, sen3 = " ".join(split_sen[:pointer_st]), " ".join(split_sen[pointer_st:pointer_ed]), " ".join(split_sen[pointer_ed:])
tmp_st = copy.deepcopy(st)
tmp_st[idx] = " ".join([sen1, sen2, sen2, sen3]).strip()
return tmp_st
for i in range(int(len(st)/2)):
st = repeat_sen_gram(st)
return st
def replace_sentence(st):
flag = True
for _ in range(10):
try:
tmp_st = copy.deepcopy(st)
idxs = np.random.choice(np.arange(len(st))[1:], np.random.choice(np.arange(1, len(st))), replace=False)
replace_st_id = np.random.choice(np.arange(len(story)))
for idx in idxs:
tmp_st[idx] = np.random.choice(story[replace_st_id])
flag = False
break
except:
continue
if flag:
return copy.deepcopy(st)
return tmp_st
def change_neg_helper(sen):
def pro(s):
final_sen = " ".join(s)
return final_sen
sen = sen.strip().split()
for i, n in enumerate(sen):
if n in negation_word:
del sen[i]
return pro(sen)
neg_list = ["not", "n't"]
for i, n in enumerate(sen):
if n in ["would", "will", "can", "could", "may", "might", "shall", "should", "do", "does", "did", "am", "is", "are", "was", "were", "be", "been"]:
sen.insert(i+1, np.random.choice(neg_list))
return pro(sen)
pos_sen = pos_tag(sen)
for i, n in enumerate(pos_sen):
if n[1] == "VB":
sen.insert(i, "do " + np.random.choice(neg_list))
return pro(sen)
elif n[1] == "VBD":
sen[i] = lemma(sen[i], "v")
sen.insert(i, "did " + np.random.choice(neg_list))
return pro(sen)
elif n[1] == "VBG":
sen.insert(i, np.random.choice(neg_list))
return pro(sen)
elif n[1] == "VBN":
sen.insert(i, np.random.choice(neg_list))
return pro(sen)
elif n[1] == "VBP":
sen.insert(i, "do " + np.random.choice(neg_list))
return pro(sen)
elif n[1] == "VBZ":
sen[i] = lemma(sen[i], "v")
sen.insert(i, "does " + np.random.choice(neg_list))
return pro(sen)
print("VERB ERROR")
return None
anotomy_word = {}
all_num, anotomy_num = 0, 0
with open("./conceptnet_antonym.txt", "r") as fin:
for line in fin:
tmp = line.strip().split("|||")
if len(tmp) == 3:
h, t = tmp[0], tmp[2].split()
if h in anotomy_word:
anotomy_word[h] += t
else:
anotomy_word[h] = t[:]
def change_neg_sentence(st):
flag = True
for _ in range(10):
try:
tmp_st = copy.deepcopy(st)
idxs = np.random.choice(np.arange(len(st))[1:], np.random.choice(np.arange(1, len(st))), replace=False)
for idx in idxs:
tmp_st_idx = change_neg_helper(st[idx])
if tmp_st_idx is not None:
tmp_st[idx] = tmp_st_idx
flag = False
if flag == False:
break
except:
continue
if flag:
return copy.deepcopy(st)
return tmp_st
def replace_word(st):
global all_num, anotomy_num
def replace_one_word(st):
anotomy = False
flag = True
for _ in range(100):
tmp_st = copy.deepcopy(st)
idx = np.random.choice(np.arange(len(st))[1:])
split_sen = tmp_st[idx].split()
pos_split_sen = pos_tag(split_sen)
avail_w_id = []
for w_id, w in enumerate(split_sen):
if (w in avail_phrases and w not in function_word and "[" not in w):
avail_w_id.append(w_id)
if len(avail_w_id) == 0: continue
word_id = np.random.choice(avail_w_id)
if pos_split_sen[word_id][1] not in pos_vocab_entity: continue
lemma_word = lemma(pos_split_sen[word_id][0], 'v' if pos_split_sen[word_id][1][0] == 'V' else 'n')
if lemma_word in anotomy_word:
replace_word = np.random.choice(anotomy_word[lemma_word])
anotomy = True
else:
word_freq = pos_vocab_entity[pos_split_sen[word_id][1]]
replace_word = ""
flag_in = True
for _ in range(10):
replace_word = np.random.choice(word_freq["word"], p=word_freq["freq"]/np.sum(word_freq["freq"]))
if len(word_freq["word"]) == 1 or replace_word != pos_split_sen[word_id][0]:
flag_in = False
break
if flag_in:
replace_word = pos_split_sen[word_id][0]
anotomy = False
tmp_split_sen = copy.deepcopy(split_sen)
split_sen[word_id] = replace_word
tmp_st[idx] = " ".join(split_sen)
flag = False
break
if flag:
return copy.deepcopy(st), False
return tmp_st, anotomy
num = 0
for idx in np.arange(len(st))[1:]:
for word in st[idx].split():
if word in avail_phrases:
num += 1
try:
final_num = np.random.choice(np.arange(1, int(num*0.15+1)))
except:
final_num = 1
for _ in range(final_num):
st, anotomy = replace_one_word(st)
all_num += 1
if anotomy: anotomy_num += 1
return st
def shuffle_sentence(st, n_sentence):
def exchange(l, ids, target_ids):
tmp_l = copy.deepcopy(l)
for o_id, t_id in zip(ids, target_ids):
tmp_l[o_id] = copy.deepcopy(l[t_id])
return tmp_l
# exchange n sentences
flag = True
for _ in range(10):
sen_ids = np.random.choice(np.arange(len(st))[1:], n_sentence, replace=False)
target_ids = np.random.permutation(sen_ids)
tmp_st = exchange(st, sen_ids, target_ids)
if st != tmp_st:
flag = False
break
if flag:
return copy.deepcopy(st)
return tmp_st
def get_pos_vocab(dir):
pos_vocab_entity = {}
with open("%s/entity_vocab.txt"%dir, "r") as fin:
for line in fin:
tmp = line.strip().split("|||")
word = tmp[0].split()[0]
pos = tmp[1:]
for p in pos:
pp = p.split()
if pp[0] in pos_vocab_entity:
pos_vocab_entity[pp[0]]["word"].append(word)
pos_vocab_entity[pp[0]]["freq"].append(float(pp[1]))
else:
pos_vocab_entity[pp[0]] = {"word":[word], "freq":[float(pp[1])]}
return pos_vocab_entity
# ========================================================================================
name_list = ["test", "dev", "train"]
data_dir = "./%s/ini_data"%("WritingPrompts" if "w" in sys.argv[1] else "ROCStories")
output_dir = "%s/train_data"%("WritingPrompts" if "w" in sys.argv[1] else "ROCStories")
# type_dict = {"repeat":0.6, "replace":0.15, "shuffle":0.15, "neg":0.1}
type_dict = {"repeat":0.1, "replace":0.3, "shuffle":0.4, "neg":0.2}
type_list = list(type_dict.keys())
type_prob_list = []
for t in type_list:
type_prob_list.append(type_dict[t])
time_list = [1,2,3,4]
# time_prob_list = [0.2,0.4,0.3,0.1]
time_prob_list = [0.5,0.2,0.2,0.1]
pos_vocab_entity = get_pos_vocab(data_dir)
for name in name_list:
if "w" in data_dir.lower():
with open("%s/%s.wp_source"%(data_dir, name), "r") as fin1:
with open("%s/%s.wp_target"%(data_dir, name), "r") as fin2:
story, tmp = [], []
for k, line in enumerate(fin2):
src = fin1.readline().strip()
if src[-1].isalpha():
src = src + " ."
tmp.append(src)
for sen in line.strip().split(".")[:-1]:
if sen.strip() != "":
tmp.append(sen.strip()+" .")
if len(tmp) >= 4:
story.append(tmp)
tmp = []
else:
with open("%s/%s.txt"%(data_dir, name), "r") as fin:
story, tmp = [], []
for k, line in enumerate(fin):
i = k + 1
if i % 6 == 0:
story.append(tmp)
tmp = []
else:
sen = line.strip()
tmp.append(sen+" ." if sen[-1].isalpha() else sen)
with open("%s/%s_human.txt"%(output_dir, name), "w") as fout:
for st_id, st in enumerate(story):
output(st, fout)
prefix = "%s/%s_negative"%(output_dir, name)
with open("%s.txt"%(prefix), "w") as fout:
for st_id, st in enumerate(story):
chaotic_list = np.random.choice(type_list,
np.random.choice(time_list, p=time_prob_list), replace=False, p=type_prob_list/np.sum(type_prob_list)).tolist()
print(chaotic_list)
for c in chaotic_list:
if c == "repeat":
if random.random() < 0.7:
st = repeat_sentence(st)
else:
st = repeat_ngram(st)
if c == "replace":
if random.random() < 0.5:
# replace one sentence
st = replace_sentence(st)
else:
# replace one word
st = replace_word(st)
if c == "shuffle":
n_sentence = int(np.random.choice(np.arange(1,len(st)-1)+1))
st = shuffle_sentence(st, n_sentence)
if c == "neg":
st = change_neg_sentence(st)
output(st, fout)
print("Anotomy:", anotomy_num)
print("All:", all_num)