repo_name
stringlengths
6
100
path
stringlengths
4
294
copies
stringlengths
1
5
size
stringlengths
4
6
content
stringlengths
606
896k
license
stringclasses
15 values
Xion/pelican-plugins
sub_parts/sub_parts.py
59
2671
# -*- coding: utf-8 -*- from __future__ import unicode_literals from pelican import signals import logging logger = logging.getLogger(__name__) def patch_subparts(generator): generator.subparts = [] slugs = {} for article in generator.articles: slugs[article.slug] = article if '--' in article.slug: generator.subparts.append(article) for article in generator.subparts: logger.info('sub_part: Detected %s', article.slug) (pslug, _) = article.slug.rsplit('--', 1) if pslug in slugs: parent = slugs[pslug] if not hasattr(parent, 'subparts'): parent.subparts = [] parent.subparts.append(article) article.subpart_of = parent article.subtitle = article.title article.title = article.title + ", " + parent.title generator.dates.remove(article) generator.articles.remove(article) if article.category: for cat, arts in generator.categories: if cat.name == article.category.name: arts.remove(article) break else: logger.error( 'sub_part: Cannot remove sub-part from category %s', article.category) if (hasattr(article, 'subphotos') or hasattr(article, 'photo_gallery')): parent.subphotos = ( getattr(parent, 'subphotos', len(getattr(parent, 'photo_gallery', []))) + getattr(article, 'subphotos', 0) + len(getattr(article, 'photo_gallery', []))) else: logger.error('sub_part: No parent for %s', pslug) generator._update_context(('articles', 'dates', 'subparts')) def write_subparts(generator, writer): for article in generator.subparts: signals.article_generator_write_article.send(generator, content=article) writer.write_file( article.save_as, generator.get_template(article.template), generator.context, article=article, category=article.category, override_output=hasattr(article, 'override_save_as'), relative_urls=generator.settings['RELATIVE_URLS']) if len(generator.subparts) > 0: print('sub_part: processed {} sub-parts.'.format( len(generator.subparts))) def register(): signals.article_generator_finalized.connect(patch_subparts) signals.article_writer_finalized.connect(write_subparts)
agpl-3.0
meghabhoj/NEWBAZAAR
bazaar/listings/urls.py
2
1143
from __future__ import unicode_literals from django.conf.urls import patterns, url from .views import ListingListView, ListingDetailView, ListingUpdateView, ListingDeleteView, PublishingListView, \ PublishingCreateView, PublishingUpdateView, PublishingDeleteView urlpatterns = patterns( '', url(r'^listings/$', ListingListView.as_view(), name="listing-list"), url(r'^listings/new/$', ListingUpdateView.as_view(), name="listing-create"), url(r'^listings/(?P<pk>\d+)/$', ListingDetailView.as_view(), name='listing-detail'), url(r'^listings/update/(?P<pk>\d+)/$', ListingUpdateView.as_view(), name='listing-update'), url(r'^listings/delete/(?P<pk>\d+)/$', ListingDeleteView.as_view(), name='listing-delete'), # Publishing view url(r'^publishings/$', PublishingListView.as_view(), name="publishing-list"), url(r'^publishings/new/$', PublishingCreateView.as_view(), name="publishing-create"), url(r'^publishings/update/(?P<pk>\d+)/$', PublishingUpdateView.as_view(), name='publishing-update'), url(r'^publishings/delete/(?P<pk>\d+)/$', PublishingDeleteView.as_view(), name='publishing-delete'), )
bsd-2-clause
mozilla/kitsune
kitsune/kpi/management/commands/update_l10n_metric.py
1
2630
from datetime import date, timedelta from django.conf import settings from django.core.management.base import BaseCommand from kitsune.kpi.management import utils from kitsune.kpi.models import L10N_METRIC_CODE, Metric, MetricKind from kitsune.sumo import googleanalytics class Command(BaseCommand): help = "Calculate new l10n coverage numbers and save." def handle(self, **options): """ L10n coverage is a measure of the amount of translations that are up to date, weighted by the number of visits for each locale. The "algorithm" (see Bug 727084): SUMO visits = Total SUMO visits for the last 30 days; Total translated = 0; For each locale { Total up to date = Total up to date + ((Number of up to date articles in the en-US top 50 visited)/50 ) * (Visitors for that locale / SUMO visits)); } An up to date article is any of the following: * An en-US article (by definition it is always up to date) * The latest en-US revision has been translated * There are only new revisions with TYPO_SIGNIFICANCE not translated * There is only one revision of MEDIUM_SIGNIFICANCE not translated """ # Get the top 60 visited articles. We will only use the top 50 # but a handful aren't localizable so we get some extras. top_60_docs = utils._get_top_docs(60) # Get the visits to each locale in the last 30 days. end = date.today() - timedelta(days=1) # yesterday start = end - timedelta(days=30) locale_visits = googleanalytics.visitors_by_locale(start, end) # Total visits. total_visits = sum(locale_visits.values()) # Calculate the coverage. coverage = 0 for locale, visits in locale_visits.items(): if locale == settings.WIKI_DEFAULT_LANGUAGE: num_docs = utils.MAX_DOCS_UP_TO_DATE up_to_date_docs = utils.MAX_DOCS_UP_TO_DATE else: up_to_date_docs, num_docs = utils._get_up_to_date_count(top_60_docs, locale) if num_docs and total_visits: coverage += (float(up_to_date_docs) / num_docs) * (float(visits) / total_visits) # Save the value to Metric table. metric_kind = MetricKind.objects.get_or_create(code=L10N_METRIC_CODE)[0] day = date.today() Metric.objects.create( kind=metric_kind, start=day, end=day + timedelta(days=1), value=int(coverage * 100), ) # Store as a % int.
bsd-3-clause
bopo/tablib
tablib/packages/xlwt3/ExcelFormulaLexer.py
46
4311
import sys from .antlr import EOF, CommonToken as Tok, TokenStream, TokenStreamException import struct from . import ExcelFormulaParser from re import compile as recompile, match, LOCALE, UNICODE, IGNORECASE, VERBOSE int_const_pattern = r"\d+\b" flt_const_pattern = r""" (?: (?: \d* \. \d+ ) # .1 .12 .123 etc 9.1 etc 98.1 etc | (?: \d+ \. ) # 1. 12. 123. etc ) # followed by optional exponent part (?: [Ee] [+-]? \d+ ) ? """ str_const_pattern = r'"(?:[^"]|"")*"' #range2d_pattern = recompile(r"\$?[A-I]?[A-Z]\$?\d+:\$?[A-I]?[A-Z]\$?\d+" ref2d_r1c1_pattern = r"[Rr]0*[1-9][0-9]*[Cc]0*[1-9][0-9]*" ref2d_pattern = r"\$?[A-I]?[A-Z]\$?0*[1-9][0-9]*" true_pattern = r"TRUE\b" false_pattern = r"FALSE\b" if_pattern = r"IF\b" choose_pattern = r"CHOOSE\b" name_pattern = r"\w[\.\w]*" quotename_pattern = r"'(?:[^']|'')*'" #### It's essential that this bracket be non-grouping. ne_pattern = r"<>" ge_pattern = r">=" le_pattern = r"<=" pattern_type_tuples = ( (flt_const_pattern, ExcelFormulaParser.NUM_CONST), (int_const_pattern, ExcelFormulaParser.INT_CONST), (str_const_pattern, ExcelFormulaParser.STR_CONST), # (range2d_pattern , ExcelFormulaParser.RANGE2D), (ref2d_r1c1_pattern, ExcelFormulaParser.REF2D_R1C1), (ref2d_pattern , ExcelFormulaParser.REF2D), (true_pattern , ExcelFormulaParser.TRUE_CONST), (false_pattern , ExcelFormulaParser.FALSE_CONST), (if_pattern , ExcelFormulaParser.FUNC_IF), (choose_pattern , ExcelFormulaParser.FUNC_CHOOSE), (name_pattern , ExcelFormulaParser.NAME), (quotename_pattern, ExcelFormulaParser.QUOTENAME), (ne_pattern, ExcelFormulaParser.NE), (ge_pattern, ExcelFormulaParser.GE), (le_pattern, ExcelFormulaParser.LE), ) _re = recompile( '(' + ')|('.join([i[0] for i in pattern_type_tuples]) + ')', VERBOSE+LOCALE+IGNORECASE) _toktype = [None] + [i[1] for i in pattern_type_tuples] # need dummy at start because re.MatchObject.lastindex counts from 1 single_char_lookup = { '=': ExcelFormulaParser.EQ, '<': ExcelFormulaParser.LT, '>': ExcelFormulaParser.GT, '+': ExcelFormulaParser.ADD, '-': ExcelFormulaParser.SUB, '*': ExcelFormulaParser.MUL, '/': ExcelFormulaParser.DIV, ':': ExcelFormulaParser.COLON, ';': ExcelFormulaParser.SEMICOLON, ',': ExcelFormulaParser.COMMA, '(': ExcelFormulaParser.LP, ')': ExcelFormulaParser.RP, '&': ExcelFormulaParser.CONCAT, '%': ExcelFormulaParser.PERCENT, '^': ExcelFormulaParser.POWER, '!': ExcelFormulaParser.BANG, } class Lexer(TokenStream): def __init__(self, text): self._text = text[:] self._pos = 0 self._line = 0 def isEOF(self): return len(self._text) <= self._pos def curr_ch(self): return self._text[self._pos] def next_ch(self, n = 1): self._pos += n def is_whitespace(self): return self.curr_ch() in " \t\n\r\f\v" def match_pattern(self): m = _re.match(self._text, self._pos) if not m: return None self._pos = m.end(0) return Tok(type = _toktype[m.lastindex], text = m.group(0), col = m.start(0) + 1) def nextToken(self): # skip whitespace while not self.isEOF() and self.is_whitespace(): self.next_ch() if self.isEOF(): return Tok(type = EOF) # first, try to match token with 2 or more chars t = self.match_pattern() if t: return t # second, we want 1-char tokens te = self.curr_ch() try: ty = single_char_lookup[te] except KeyError: raise TokenStreamException( "Unexpected char %r in column %u." % (self.curr_ch(), self._pos)) self.next_ch() return Tok(type=ty, text=te, col=self._pos) if __name__ == '__main__': try: for t in Lexer(""" 1.23 456 "abcd" R2C2 a1 iv65536 true false if choose a_name 'qname' <> >= <= """): print(t) except TokenStreamException as e: print("error:", e)
mit
rosmo/aurora
src/test/python/apache/aurora/client/test_base.py
3
3152
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from apache.aurora.client import base from gen.apache.aurora.api.ttypes import ( PopulateJobResult, Response, ResponseCode, ResponseDetail, Result, TaskConfig ) class TestBase(unittest.TestCase): def test_format_response_with_message(self): resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) formatted = base.format_response(resp) assert formatted == 'Response from scheduler: ERROR (message: Error)' def test_format_response_with_details(self): resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) formatted = base.format_response(resp) assert formatted == 'Response from scheduler: ERROR (message: Error)' def test_combine_messages(self): resp = Response(responseCode=ResponseCode.ERROR) assert base.combine_messages(resp) == '' resp = Response(responseCode=ResponseCode.ERROR, details=[]) assert base.combine_messages(resp) == '' resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) assert base.combine_messages(resp) == 'Error' resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail()]) assert base.combine_messages(resp) == 'Unknown error' resp = Response( responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error1'), ResponseDetail(message='Error2')]) assert base.combine_messages(resp) == 'Error1, Error2' def test_get_populated_task_config_set(self): config = TaskConfig() resp = Response(responseCode=ResponseCode.OK, result=Result(populateJobResult=PopulateJobResult( taskConfig=config))) assert config == resp.result.populateJobResult.taskConfig def test_synthesize_url(self): base_url = 'http://example.com' role = 'some-role' environment = 'some-environment' job = 'some-job' update_id = 'some-update-id' assert (('%s/scheduler/%s/%s/%s/update/%s' % (base_url, role, environment, job, update_id)) == base.synthesize_url(base_url, role, environment, job, update_id=update_id)) assert (('%s/scheduler/%s/%s/%s' % (base_url, role, environment, job)) == base.synthesize_url(base_url, role, environment, job)) assert (('%s/scheduler/%s/%s' % (base_url, role, environment)) == base.synthesize_url(base_url, role, environment)) assert (('%s/scheduler/%s' % (base_url, role)) == base.synthesize_url(base_url, role)) assert (('%s/scheduler/%s' % (base_url, role)) == base.synthesize_url(base_url, role))
apache-2.0
jazzmes/pyroute2
tests/test_tc.py
2
7186
import socket from utils import require_user from pyroute2 import IPRoute from pyroute2 import protocols from pyroute2.netlink import NetlinkError from pyroute2.iproute import RTM_NEWQDISC from pyroute2.iproute import RTM_NEWTFILTER from pyroute2.iproute import RTM_NEWTCLASS from pyroute2.iproute import TC_H_INGRESS from nose.plugins.skip import SkipTest def try_qd(qd, call, *argv, **kwarg): try: call(*argv, **kwarg) except NetlinkError as e: # code 2 'no such file or directory) if e.code == 2: raise SkipTest('missing traffic control <%s>' % (qd)) raise class BasicTest(object): def setup(self): require_user('root') self.ip = IPRoute() self.ip.link('add', index=0, ifname='dummyX', linkinfo={'attrs': [['IFLA_INFO_KIND', 'dummy']]}) self.interface = self.ip.link_lookup(ifname='dummyX')[0] def teardown(self): self.ip.link('delete', index=self.interface) self.ip.close() def get_qdiscs(self): return [x for x in self.ip.get_qdiscs() if x['index'] == self.interface] def get_qdisc(self): # get qdiscs list and filter out our interface qds = self.get_qdiscs() if qds: return qds[0] else: return None class TestIngress(BasicTest): def test_simple(self): self.ip.tc(RTM_NEWQDISC, 'ingress', self.interface, 0xffff0000) qds = self.get_qdisc() # assert the list is not empty assert qds # assert there is the ingress queue assert qds.get_attr('TCA_KIND') == 'ingress' # assert it has proper handle and parent assert qds['handle'] == 0xffff0000 assert qds['parent'] == TC_H_INGRESS def test_filter(self): self.test_simple() self.ip.tc(RTM_NEWTFILTER, 'u32', self.interface, 0, protocol=socket.AF_INET, parent=0xffff0000, action='drop', target=0x1, rate='10kbit', burst=10240, limit=0, prio=50, keys=['0x0/0x0+12']) fls = self.ip.get_filters(index=self.interface, parent=0xffff0000) # assert there are filters assert fls # assert there is one police rule: prs = [x for x in fls if x.get_attr('TCA_OPTIONS') is not None and (x.get_attr('TCA_OPTIONS').get_attr('TCA_U32_POLICE') is not None or x.get_attr('TCA_OPTIONS').get_attr('TCA_U32_ACT') is not None)][0] # assert the police rule has specified parameters options = prs.get_attr('TCA_OPTIONS') police_u32 = options.get_attr('TCA_U32_POLICE') # on modern kernels there is no TCA_U32_POLICE under # TCA_OPTIONS, but there is TCA_U32_ACT if police_u32 is None: police_u32 = options.get_attr('TCA_U32_ACT').\ get_attr('TCA_ACT_PRIO_0').\ get_attr('TCA_ACT_OPTIONS') police_tbf = police_u32.get_attr('TCA_POLICE_TBF') assert police_tbf['rate'] == 1250 assert police_tbf['mtu'] == 2040 class TestPfifo(BasicTest): def test_pfifo(self): try_qd('pfifo_fast', self.ip.tc, RTM_NEWQDISC, 'pfifo_fast', self.interface, 0) qds = self.get_qdisc() assert qds assert qds.get_attr('TCA_KIND') == 'pfifo_fast' assert isinstance(qds.get_attr('TCA_OPTIONS')['priomap'], tuple) class TestSfq(BasicTest): def test_sfq(self): try_qd('sfq', self.ip.tc, RTM_NEWQDISC, 'sfq', self.interface, 0, perturb=10) qds = self.get_qdisc() assert qds assert qds.get_attr('TCA_KIND') == 'sfq' assert qds.get_attr('TCA_OPTIONS')['perturb_period'] == 10 class TestTbf(BasicTest): def test_tbf(self): try_qd('tbf', self.ip.tc, RTM_NEWQDISC, 'tbf', self.interface, 0, rate='220kbit', latency='50ms', burst=1540) qds = self.get_qdisc() assert qds assert qds.get_attr('TCA_KIND') == 'tbf' parms = qds.get_attr('TCA_OPTIONS').get_attr('TCA_TBF_PARMS') assert parms assert parms['rate'] == 27500 class TestHtb(BasicTest): def test_htb(self): # 8<----------------------------------------------------- # root queue, '1:0' handle notation try_qd('htb', self.ip.tc, RTM_NEWQDISC, 'htb', self.interface, '1:', default='20:0') qds = self.get_qdiscs() assert len(qds) == 1 assert qds[0].get_attr('TCA_KIND') == 'htb' # 8<----------------------------------------------------- # classes, both string and int handle notation try_qd('htb', self.ip.tc, RTM_NEWTCLASS, 'htb', self.interface, '1:1', parent='1:0', rate='256kbit', burst=1024 * 6) try_qd('htb', self.ip.tc, RTM_NEWTCLASS, 'htb', self.interface, 0x10010, parent=0x10001, rate='192kbit', burst=1024 * 6, prio=1) try_qd('htb', self.ip.tc, RTM_NEWTCLASS, 'htb', self.interface, '1:20', parent='1:1', rate='128kbit', burst=1024 * 6, prio=2) cls = self.ip.get_classes(index=self.interface) assert len(cls) == 3 # 8<----------------------------------------------------- # leaves, both string and int handle notation try_qd('sfq', self.ip.tc, RTM_NEWQDISC, 'sfq', self.interface, '10:', parent='1:10', perturb=10) try_qd('sfq', self.ip.tc, RTM_NEWQDISC, 'sfq', self.interface, 0x200000, parent=0x10020, perturb=10) qds = self.get_qdiscs() types = set([x.get_attr('TCA_KIND') for x in qds]) assert types == set(('htb', 'sfq')) # 8<----------------------------------------------------- # filters, both string and int handle notation # # Please note, that u32 filter requires ethernet protocol # numbers, as defined in protocols module. Do not provide # here socket.AF_INET and so on. # try_qd('u32', self.ip.tc, RTM_NEWTFILTER, 'u32', self.interface, '0:0', parent='1:0', prio=10, protocol=protocols.ETH_P_IP, target='1:10', keys=['0x0006/0x00ff+8', '0x0000/0xffc0+2']) try_qd('u32', self.ip.tc, RTM_NEWTFILTER, 'u32', self.interface, 0, parent=0x10000, prio=10, protocol=protocols.ETH_P_IP, target=0x10020, keys=['0x5/0xf+0', '0x10/0xff+33']) # 2 filters + 2 autogenerated fls = self.ip.get_filters(index=self.interface) assert len(fls) == 4
gpl-2.0
raysguy/HTPC-Manager
libs/requests/packages/chardet/escprober.py
2936
3187
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is mozilla.org code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from . import constants from .escsm import (HZSMModel, ISO2022CNSMModel, ISO2022JPSMModel, ISO2022KRSMModel) from .charsetprober import CharSetProber from .codingstatemachine import CodingStateMachine from .compat import wrap_ord class EscCharSetProber(CharSetProber): def __init__(self): CharSetProber.__init__(self) self._mCodingSM = [ CodingStateMachine(HZSMModel), CodingStateMachine(ISO2022CNSMModel), CodingStateMachine(ISO2022JPSMModel), CodingStateMachine(ISO2022KRSMModel) ] self.reset() def reset(self): CharSetProber.reset(self) for codingSM in self._mCodingSM: if not codingSM: continue codingSM.active = True codingSM.reset() self._mActiveSM = len(self._mCodingSM) self._mDetectedCharset = None def get_charset_name(self): return self._mDetectedCharset def get_confidence(self): if self._mDetectedCharset: return 0.99 else: return 0.00 def feed(self, aBuf): for c in aBuf: # PY3K: aBuf is a byte array, so c is an int, not a byte for codingSM in self._mCodingSM: if not codingSM: continue if not codingSM.active: continue codingState = codingSM.next_state(wrap_ord(c)) if codingState == constants.eError: codingSM.active = False self._mActiveSM -= 1 if self._mActiveSM <= 0: self._mState = constants.eNotMe return self.get_state() elif codingState == constants.eItsMe: self._mState = constants.eFoundIt self._mDetectedCharset = codingSM.get_coding_state_machine() # nopep8 return self.get_state() return self.get_state()
mit
tudorvio/tempest
tempest/services/compute/json/extensions_client.py
9
1337
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_serialization import jsonutils as json from tempest.api_schema.response.compute.v2_1 import extensions as schema from tempest.common import service_client class ExtensionsClient(service_client.ServiceClient): def list_extensions(self): url = 'extensions' resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.list_extensions, resp, body) return service_client.ResponseBodyList(resp, body['extensions']) def show_extension(self, extension_alias): resp, body = self.get('extensions/%s' % extension_alias) body = json.loads(body) return service_client.ResponseBody(resp, body['extension'])
apache-2.0
stevenewey/django
django/views/decorators/http.py
144
7467
""" Decorators for views based on HTTP headers. """ import logging from calendar import timegm from functools import wraps from django.http import ( HttpResponse, HttpResponseNotAllowed, HttpResponseNotModified, ) from django.middleware.http import ConditionalGetMiddleware from django.utils.decorators import available_attrs, decorator_from_middleware from django.utils.http import ( http_date, parse_etags, parse_http_date_safe, quote_etag, ) conditional_page = decorator_from_middleware(ConditionalGetMiddleware) logger = logging.getLogger('django.request') def require_http_methods(request_method_list): """ Decorator to make a view only accept particular request methods. Usage:: @require_http_methods(["GET", "POST"]) def my_view(request): # I can assume now that only GET or POST requests make it this far # ... Note that request methods should be in uppercase. """ def decorator(func): @wraps(func, assigned=available_attrs(func)) def inner(request, *args, **kwargs): if request.method not in request_method_list: logger.warning('Method Not Allowed (%s): %s', request.method, request.path, extra={ 'status_code': 405, 'request': request } ) return HttpResponseNotAllowed(request_method_list) return func(request, *args, **kwargs) return inner return decorator require_GET = require_http_methods(["GET"]) require_GET.__doc__ = "Decorator to require that a view only accepts the GET method." require_POST = require_http_methods(["POST"]) require_POST.__doc__ = "Decorator to require that a view only accepts the POST method." require_safe = require_http_methods(["GET", "HEAD"]) require_safe.__doc__ = "Decorator to require that a view only accepts safe methods: GET and HEAD." def _precondition_failed(request): logger.warning('Precondition Failed: %s', request.path, extra={ 'status_code': 412, 'request': request }, ) return HttpResponse(status=412) def condition(etag_func=None, last_modified_func=None): """ Decorator to support conditional retrieval (or change) for a view function. The parameters are callables to compute the ETag and last modified time for the requested resource, respectively. The callables are passed the same parameters as the view itself. The Etag function should return a string (or None if the resource doesn't exist), whilst the last_modified function should return a datetime object (or None if the resource doesn't exist). If both parameters are provided, all the preconditions must be met before the view is processed. This decorator will either pass control to the wrapped view function or return an HTTP 304 response (unmodified) or 412 response (preconditions failed), depending upon the request method. Any behavior marked as "undefined" in the HTTP spec (e.g. If-none-match plus If-modified-since headers) will result in the view function being called. """ def decorator(func): @wraps(func, assigned=available_attrs(func)) def inner(request, *args, **kwargs): # Get HTTP request headers if_modified_since = request.META.get("HTTP_IF_MODIFIED_SINCE") if if_modified_since: if_modified_since = parse_http_date_safe(if_modified_since) if_unmodified_since = request.META.get("HTTP_IF_UNMODIFIED_SINCE") if if_unmodified_since: if_unmodified_since = parse_http_date_safe(if_unmodified_since) if_none_match = request.META.get("HTTP_IF_NONE_MATCH") if_match = request.META.get("HTTP_IF_MATCH") etags = [] if if_none_match or if_match: # There can be more than one ETag in the request, so we # consider the list of values. try: etags = parse_etags(if_none_match or if_match) except ValueError: # In case of invalid etag ignore all ETag headers. # Apparently Opera sends invalidly quoted headers at times # (we should be returning a 400 response, but that's a # little extreme) -- this is Django bug #10681. if_none_match = None if_match = None # Compute values (if any) for the requested resource. def get_last_modified(): if last_modified_func: dt = last_modified_func(request, *args, **kwargs) if dt: return timegm(dt.utctimetuple()) res_etag = etag_func(request, *args, **kwargs) if etag_func else None res_last_modified = get_last_modified() response = None if not ((if_match and if_modified_since) or (if_none_match and if_unmodified_since) or (if_modified_since and if_unmodified_since) or (if_match and if_none_match)): # We only get here if no undefined combinations of headers are # specified. if ((if_none_match and (res_etag in etags or "*" in etags and res_etag)) and (not if_modified_since or (res_last_modified and if_modified_since and res_last_modified <= if_modified_since))): if request.method in ("GET", "HEAD"): response = HttpResponseNotModified() else: response = _precondition_failed(request) elif (if_match and ((not res_etag and "*" in etags) or (res_etag and res_etag not in etags) or (res_last_modified and if_unmodified_since and res_last_modified > if_unmodified_since))): response = _precondition_failed(request) elif (not if_none_match and request.method in ("GET", "HEAD") and res_last_modified and if_modified_since and res_last_modified <= if_modified_since): response = HttpResponseNotModified() elif (not if_match and res_last_modified and if_unmodified_since and res_last_modified > if_unmodified_since): response = _precondition_failed(request) if response is None: response = func(request, *args, **kwargs) # Set relevant headers on the response if they don't already exist. if res_last_modified and not response.has_header('Last-Modified'): response['Last-Modified'] = http_date(res_last_modified) if res_etag and not response.has_header('ETag'): response['ETag'] = quote_etag(res_etag) return response return inner return decorator # Shortcut decorators for common cases based on ETag or Last-Modified only def etag(etag_func): return condition(etag_func=etag_func) def last_modified(last_modified_func): return condition(last_modified_func=last_modified_func)
bsd-3-clause
srottem/indy-sdk
docs/how-tos/write-did-and-query-verkey/python/write_did_and_query_verkey.py
2
6316
""" Example demonstrating how to add DID with the role of Trust Anchor as Steward. Uses seed to obtain Steward's DID which already exists on the ledger. Then it generates new DID/Verkey pair for Trust Anchor. Using Steward's DID, NYM transaction request is built to add Trust Anchor's DID and Verkey on the ledger with the role of Trust Anchor. Once the NYM is successfully written on the ledger, it generates new DID/Verkey pair that represents a client, which are used to create GET_NYM request to query the ledger and confirm Trust Anchor's Verkey. For the sake of simplicity, a single wallet is used. In the real world scenario, three different wallets would be used and DIDs would be exchanged using some channel of communication """ import asyncio import json import pprint from indy import pool, ledger, wallet, did from indy.error import IndyError pool_name = 'pool' wallet_name = 'wallet' genesis_file_path = '/home/vagrant/code/evernym/indy-sdk/cli/docker_pool_transactions_genesis' wallet_credentials = json.dumps({"key": "wallet_key"}) def print_log(value_color="", value_noncolor=""): """set the colors for text.""" HEADER = '\033[92m' ENDC = '\033[0m' print(HEADER + value_color + ENDC + str(value_noncolor)) async def write_nym_and_query_verkey(): try: # 1. print_log('\n1. Creates a new local pool ledger configuration that is used ' 'later when connecting to ledger.\n') pool_config = json.dumps({'genesis_txn': genesis_file_path}) await pool.create_pool_ledger_config(config_name=pool_name, config=pool_config) # 2. print_log('\n2. Open pool ledger and get handle from libindy\n') pool_handle = await pool.open_pool_ledger(config_name=pool_name, config=None) # 3. print_log('\n3. Creating new secure wallet\n') await wallet.create_wallet(pool_name, wallet_name, None, None, wallet_credentials) # 4. print_log('\n4. Open wallet and get handle from libindy\n') wallet_handle = await wallet.open_wallet(wallet_name, None, wallet_credentials) # 5. print_log('\n5. Generating and storing steward DID and verkey\n') steward_seed = '000000000000000000000000Steward1' did_json = json.dumps({'seed': steward_seed}) steward_did, steward_verkey = await did.create_and_store_my_did(wallet_handle, did_json) print_log('Steward DID: ', steward_did) print_log('Steward Verkey: ', steward_verkey) # 6. print_log('\n6. Generating and storing trust anchor DID and verkey\n') trust_anchor_did, trust_anchor_verkey = await did.create_and_store_my_did(wallet_handle, "{}") print_log('Trust anchor DID: ', trust_anchor_did) print_log('Trust anchor Verkey: ', trust_anchor_verkey) # 7. print_log('\n7. Building NYM request to add Trust Anchor to the ledger\n') nym_transaction_request = await ledger.build_nym_request(submitter_did=steward_did, target_did=trust_anchor_did, ver_key=trust_anchor_verkey, alias=None, role='TRUST_ANCHOR') print_log('NYM transaction request: ') pprint.pprint(json.loads(nym_transaction_request)) # 8. print_log('\n8. Sending NYM request to the ledger\n') nym_transaction_response = await ledger.sign_and_submit_request(pool_handle=pool_handle, wallet_handle=wallet_handle, submitter_did=steward_did, request_json=nym_transaction_request) print_log('NYM transaction response: ') pprint.pprint(json.loads(nym_transaction_response)) # 9. print_log('\n9. Generating and storing DID and verkey representing a Client ' 'that wants to obtain Trust Anchor Verkey\n') client_did, client_verkey = await did.create_and_store_my_did(wallet_handle, "{}") print_log('Client DID: ', client_did) print_log('Client Verkey: ', client_verkey) # 10. print_log('\n10. Building the GET_NYM request to query trust anchor verkey\n') get_nym_request = await ledger.build_get_nym_request(submitter_did=client_did, target_did=trust_anchor_did) print_log('GET_NYM request: ') pprint.pprint(json.loads(get_nym_request)) # 11. print_log('\n11. Sending the Get NYM request to the ledger\n') get_nym_response_json = await ledger.submit_request(pool_handle=pool_handle, request_json=get_nym_request) get_nym_response = json.loads(get_nym_response_json) print_log('GET_NYM response: ') pprint.pprint(get_nym_response) # 12. print_log('\n12. Comparing Trust Anchor verkey as written by Steward and as retrieved in GET_NYM ' 'response submitted by Client\n') print_log('Written by Steward: ', trust_anchor_verkey) verkey_from_ledger = json.loads(get_nym_response['result']['data'])['verkey'] print_log('Queried from ledger: ', verkey_from_ledger) print_log('Matching: ', verkey_from_ledger == trust_anchor_verkey) # 13. print_log('\n13. Closing wallet and pool\n') await wallet.close_wallet(wallet_handle) await pool.close_pool_ledger(pool_handle) # 14. print_log('\n14. Deleting created wallet\n') await wallet.delete_wallet(wallet_name, wallet_credentials) # 15. print_log('\n15. Deleting pool ledger config\n') await pool.delete_pool_ledger_config(pool_name) except IndyError as e: print('Error occurred: %s' % e) def main(): loop = asyncio.get_event_loop() loop.run_until_complete(write_nym_and_query_verkey()) loop.close() if __name__ == '__main__': main()
apache-2.0
lucashmorais/x-Bench
mozmill-env/python/Lib/site-packages/hgext/convert/bzr.py
94
11295
# bzr.py - bzr support for the convert extension # # Copyright 2008, 2009 Marek Kubica <[email protected]> and others # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. # This module is for handling 'bzr', that was formerly known as Bazaar-NG; # it cannot access 'bar' repositories, but they were never used very much import os from mercurial import demandimport # these do not work with demandimport, blacklist demandimport.ignore.extend([ 'bzrlib.transactions', 'bzrlib.urlutils', 'ElementPath', ]) from mercurial.i18n import _ from mercurial import util from common import NoRepo, commit, converter_source try: # bazaar imports from bzrlib import bzrdir, revision, errors from bzrlib.revisionspec import RevisionSpec except ImportError: pass supportedkinds = ('file', 'symlink') class bzr_source(converter_source): """Reads Bazaar repositories by using the Bazaar Python libraries""" def __init__(self, ui, path, rev=None): super(bzr_source, self).__init__(ui, path, rev=rev) if not os.path.exists(os.path.join(path, '.bzr')): raise NoRepo(_('%s does not look like a Bazaar repository') % path) try: # access bzrlib stuff bzrdir except NameError: raise NoRepo(_('Bazaar modules could not be loaded')) path = os.path.abspath(path) self._checkrepotype(path) try: self.sourcerepo = bzrdir.BzrDir.open(path).open_repository() except errors.NoRepositoryPresent: raise NoRepo(_('%s does not look like a Bazaar repository') % path) self._parentids = {} def _checkrepotype(self, path): # Lightweight checkouts detection is informational but probably # fragile at API level. It should not terminate the conversion. try: from bzrlib import bzrdir dir = bzrdir.BzrDir.open_containing(path)[0] try: tree = dir.open_workingtree(recommend_upgrade=False) branch = tree.branch except (errors.NoWorkingTree, errors.NotLocalUrl): tree = None branch = dir.open_branch() if (tree is not None and tree.bzrdir.root_transport.base != branch.bzrdir.root_transport.base): self.ui.warn(_('warning: lightweight checkouts may cause ' 'conversion failures, try with a regular ' 'branch instead.\n')) except Exception: self.ui.note(_('bzr source type could not be determined\n')) def before(self): """Before the conversion begins, acquire a read lock for all the operations that might need it. Fortunately read locks don't block other reads or writes to the repository, so this shouldn't have any impact on the usage of the source repository. The alternative would be locking on every operation that needs locks (there are currently two: getting the file and getting the parent map) and releasing immediately after, but this approach can take even 40% longer.""" self.sourcerepo.lock_read() def after(self): self.sourcerepo.unlock() def _bzrbranches(self): return self.sourcerepo.find_branches(using=True) def getheads(self): if not self.rev: # Set using=True to avoid nested repositories (see issue3254) heads = sorted([b.last_revision() for b in self._bzrbranches()]) else: revid = None for branch in self._bzrbranches(): try: r = RevisionSpec.from_string(self.rev) info = r.in_history(branch) except errors.BzrError: pass revid = info.rev_id if revid is None: raise util.Abort(_('%s is not a valid revision') % self.rev) heads = [revid] # Empty repositories return 'null:', which cannot be retrieved heads = [h for h in heads if h != 'null:'] return heads def getfile(self, name, rev): revtree = self.sourcerepo.revision_tree(rev) fileid = revtree.path2id(name.decode(self.encoding or 'utf-8')) kind = None if fileid is not None: kind = revtree.kind(fileid) if kind not in supportedkinds: # the file is not available anymore - was deleted raise IOError(_('%s is not available in %s anymore') % (name, rev)) mode = self._modecache[(name, rev)] if kind == 'symlink': target = revtree.get_symlink_target(fileid) if target is None: raise util.Abort(_('%s.%s symlink has no target') % (name, rev)) return target, mode else: sio = revtree.get_file(fileid) return sio.read(), mode def getchanges(self, version): # set up caches: modecache and revtree self._modecache = {} self._revtree = self.sourcerepo.revision_tree(version) # get the parentids from the cache parentids = self._parentids.pop(version) # only diff against first parent id prevtree = self.sourcerepo.revision_tree(parentids[0]) return self._gettreechanges(self._revtree, prevtree) def getcommit(self, version): rev = self.sourcerepo.get_revision(version) # populate parent id cache if not rev.parent_ids: parents = [] self._parentids[version] = (revision.NULL_REVISION,) else: parents = self._filterghosts(rev.parent_ids) self._parentids[version] = parents branch = self.recode(rev.properties.get('branch-nick', u'default')) if branch == 'trunk': branch = 'default' return commit(parents=parents, date='%d %d' % (rev.timestamp, -rev.timezone), author=self.recode(rev.committer), desc=self.recode(rev.message), branch=branch, rev=version) def gettags(self): bytetags = {} for branch in self._bzrbranches(): if not branch.supports_tags(): return {} tagdict = branch.tags.get_tag_dict() for name, rev in tagdict.iteritems(): bytetags[self.recode(name)] = rev return bytetags def getchangedfiles(self, rev, i): self._modecache = {} curtree = self.sourcerepo.revision_tree(rev) if i is not None: parentid = self._parentids[rev][i] else: # no parent id, get the empty revision parentid = revision.NULL_REVISION prevtree = self.sourcerepo.revision_tree(parentid) changes = [e[0] for e in self._gettreechanges(curtree, prevtree)[0]] return changes def _gettreechanges(self, current, origin): revid = current._revision_id changes = [] renames = {} seen = set() # Process the entries by reverse lexicographic name order to # handle nested renames correctly, most specific first. curchanges = sorted(current.iter_changes(origin), key=lambda c: c[1][0] or c[1][1], reverse=True) for (fileid, paths, changed_content, versioned, parent, name, kind, executable) in curchanges: if paths[0] == u'' or paths[1] == u'': # ignore changes to tree root continue # bazaar tracks directories, mercurial does not, so # we have to rename the directory contents if kind[1] == 'directory': if kind[0] not in (None, 'directory'): # Replacing 'something' with a directory, record it # so it can be removed. changes.append((self.recode(paths[0]), revid)) if kind[0] == 'directory' and None not in paths: renaming = paths[0] != paths[1] # neither an add nor an delete - a move # rename all directory contents manually subdir = origin.inventory.path2id(paths[0]) # get all child-entries of the directory for name, entry in origin.inventory.iter_entries(subdir): # hg does not track directory renames if entry.kind == 'directory': continue frompath = self.recode(paths[0] + '/' + name) if frompath in seen: # Already handled by a more specific change entry # This is important when you have: # a => b # a/c => a/c # Here a/c must not be renamed into b/c continue seen.add(frompath) if not renaming: continue topath = self.recode(paths[1] + '/' + name) # register the files as changed changes.append((frompath, revid)) changes.append((topath, revid)) # add to mode cache mode = ((entry.executable and 'x') or (entry.kind == 'symlink' and 's') or '') self._modecache[(topath, revid)] = mode # register the change as move renames[topath] = frompath # no further changes, go to the next change continue # we got unicode paths, need to convert them path, topath = paths if path is not None: path = self.recode(path) if topath is not None: topath = self.recode(topath) seen.add(path or topath) if topath is None: # file deleted changes.append((path, revid)) continue # renamed if path and path != topath: renames[topath] = path changes.append((path, revid)) # populate the mode cache kind, executable = [e[1] for e in (kind, executable)] mode = ((executable and 'x') or (kind == 'symlink' and 'l') or '') self._modecache[(topath, revid)] = mode changes.append((topath, revid)) return changes, renames def _filterghosts(self, ids): """Filters out ghost revisions which hg does not support, see <http://bazaar-vcs.org/GhostRevision> """ parentmap = self.sourcerepo.get_parent_map(ids) parents = tuple([parent for parent in ids if parent in parentmap]) return parents
mit
msurovcak/PerfKitBenchmarker
perfkitbenchmarker/packages/fio.py
3
7242
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing fio installation, cleanup, parsing functions.""" import ConfigParser import io from perfkitbenchmarker import regex_util from perfkitbenchmarker import sample from perfkitbenchmarker import vm_util FIO_DIR = '%s/fio' % vm_util.VM_TMP_DIR GIT_REPO = 'http://git.kernel.dk/fio.git' GIT_TAG = 'fio-2.1.14' FIO_PATH = FIO_DIR + '/fio' FIO_CMD_PREFIX = '%s --output-format=json' % FIO_PATH SECTION_REGEX = r'\[(\w+)\]\n([\w\d\n=*$/]+)' PARAMETER_REGEX = r'(\w+)=([/\w\d$*]+)\n' GLOBAL = 'global' CMD_SECTION_REGEX = r'--name=(\w+)\s+' JOB_SECTION_REPL_REGEX = r'[\1]\n' CMD_PARAMETER_REGEX = r'--(\w+=[/\w\d]+)\n' CMD_PARAMETER_REPL_REGEX = r'\1\n' CMD_STONEWALL_PARAMETER = '--stonewall' JOB_STONEWALL_PARAMETER = 'stonewall' def _Install(vm): """Installs the fio package on the VM.""" vm.Install('build_tools') vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, FIO_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format(FIO_DIR, GIT_TAG)) vm.RemoteCommand('cd {0} && ./configure && make'.format(FIO_DIR)) def YumInstall(vm): """Installs the fio package on the VM.""" vm.InstallPackages('libaio-devel libaio bc') _Install(vm) def AptInstall(vm): """Installs the fio package on the VM.""" vm.InstallPackages('libaio-dev libaio1 bc') _Install(vm) def ParseJobFile(job_file): """Parse fio job file as dictionaries of sample metadata. Args: job_file: The contents of fio job file. Returns: A dictionary of dictionaries of sample metadata, using test name as keys, dictionaries of sample metadata as value. """ config = ConfigParser.RawConfigParser(allow_no_value=True) config.readfp(io.BytesIO(job_file)) global_metadata = {} if GLOBAL in config.sections(): global_metadata = dict(config.items(GLOBAL)) section_metadata = {} for section in config.sections(): if section != GLOBAL: metadata = {} metadata.update(dict(config.items(section))) metadata.update(global_metadata) if JOB_STONEWALL_PARAMETER in metadata: del metadata[JOB_STONEWALL_PARAMETER] section_metadata[section] = metadata return section_metadata def FioParametersToJob(fio_parameters): """Translate fio parameters into a job config file. Sample fio parameters: --filesize=10g --directory=/scratch0 --name=sequential_write --overwrite=0 --rw=write Output: [global] filesize=10g directory=/scratch0 [sequential_write] overwrite=0 rw=write Args: fio_parameter: string. Fio parameters in string format. Returns: A string representing a fio job config file. """ fio_parameters = fio_parameters.replace(' ', '\n') fio_parameters = regex_util.Substitute( CMD_SECTION_REGEX, JOB_SECTION_REPL_REGEX, fio_parameters) fio_parameters = '[%s]\n%s' % (GLOBAL, fio_parameters) fio_parameters = regex_util.Substitute( CMD_PARAMETER_REGEX, CMD_PARAMETER_REPL_REGEX, fio_parameters) return fio_parameters.replace(CMD_STONEWALL_PARAMETER, JOB_STONEWALL_PARAMETER) def ParseResults(job_file, fio_json_result): """Parse fio json output into samples. Args: job_file: The contents of the fio job file. fio_json_result: Fio results in json format. Returns: A list of sample.Sample objects. """ samples = [] parameter_metadata = ParseJobFile(job_file) io_modes = ['read', 'write', 'trim'] for job in fio_json_result['jobs']: job_name = job['jobname'] for mode in io_modes: if job[mode]['io_bytes']: metric_name = '%s:%s' % (job_name, mode) parameters = parameter_metadata[job_name] bw_metadata = { 'bw_min': job[mode]['bw_min'], 'bw_max': job[mode]['bw_max'], 'bw_dev': job[mode]['bw_dev'], 'bw_agg': job[mode]['bw_agg'], 'bw_mean': job[mode]['bw_mean']} bw_metadata.update(parameters) samples.append( sample.Sample('%s:bandwidth' % metric_name, job[mode]['bw'], 'KB/s', bw_metadata)) # There is one sample whose metric is '<metric_name>:latency' # with all of the latency statistics in its metadata, and then # a bunch of samples whose metrics are # '<metric_name>:latency:min' through # '<metric_name>:latency:p99.99' that hold the individual # latency numbers as values. This is for historical reasons. clat_section = job[mode]['clat'] percentiles = clat_section['percentile'] lat_statistics = [ ('min', clat_section['min']), ('max', clat_section['max']), ('mean', clat_section['mean']), ('stddev', clat_section['stddev']), ('p1', percentiles['1.000000']), ('p5', percentiles['5.000000']), ('p10', percentiles['10.000000']), ('p20', percentiles['20.000000']), ('p30', percentiles['30.000000']), ('p40', percentiles['40.000000']), ('p50', percentiles['50.000000']), ('p60', percentiles['60.000000']), ('p70', percentiles['70.000000']), ('p80', percentiles['80.000000']), ('p90', percentiles['90.000000']), ('p95', percentiles['95.000000']), ('p99', percentiles['99.000000']), ('p99.5', percentiles['99.500000']), ('p99.9', percentiles['99.900000']), ('p99.95', percentiles['99.950000']), ('p99.99', percentiles['99.990000'])] lat_metadata = parameters.copy() for name, val in lat_statistics: lat_metadata[name] = val samples.append( sample.Sample('%s:latency' % metric_name, job[mode]['clat']['mean'], 'usec', lat_metadata)) for stat_name, stat_val in lat_statistics: samples.append( sample.Sample('%s:latency:%s' % (metric_name, stat_name), stat_val, 'usec', parameters)) samples.append( sample.Sample('%s:iops' % metric_name, job[mode]['iops'], '', parameters)) return samples def DeleteParameterFromJobFile(job_file, parameter): """Delete all occurance of parameter from job_file. Args: job_file: The contents of the fio job file. parameter: The parameter to be deleted in job file. Returns: A string representing a fio job file after removing parameter. """ try: return regex_util.Substitute(r'%s=[\w\d_/]+\n' % parameter, '', job_file) except regex_util.NoMatchError: return job_file
apache-2.0
genenetwork/genenetwork2_diet
wqflask/utility/Plot.py
2
45616
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License # as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero General Public License for more details. # # This program is available from Source Forge: at GeneNetwork Project # (sourceforge.net/projects/genenetwork/). # # Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) # at [email protected] and [email protected] # # # # This module is used by GeneNetwork project (www.genenetwork.org) # # Created by GeneNetwork Core Team 2010/08/10 # # Last updated by GeneNetwork Core Team 2010/10/20 #import piddle as pid from __future__ import print_function from pprint import pformat as pf print("Lysol") from math import * import random import sys, os from numarray import linear_algebra as la from numarray import ones, array, dot, swapaxes import reaper sys.path.append("..") print(sys.path) from basicStatistics import corestats import svg import webqtlUtil from base import webqtlConfig def cformat(d, rank=0): 'custom string format' strD = "%2.6f" % d if rank == 0: while strD[-1] in ('0','.'): if strD[-1] == '0' and strD[-2] == '.' and len(strD) <= 4: break elif strD[-1] == '.': strD = strD[:-1] break else: strD = strD[:-1] else: strD = strD.split(".")[0] if strD == '-0.0': strD = '0.0' return strD def frange(start, end=None, inc=1.0): "A faster range-like function that does accept float increments..." if end == None: end = start + 0.0 start = 0.0 else: start += 0.0 # force it to be a float count = int((end - start) / inc) if start + count * inc != end: # Need to adjust the count. AFAICT, it always comes up one short. count += 1 L = [start] * count for i in xrange(1, count): L[i] = start + i * inc return L def gammln(xx): cof=[76.18009173,-86.50532033,24.01409822,-1.231739516,0.120858003e-2,-0.536382e-5] x=xx-1.0 tmp=x+5.5 tmp -=(x+0.5)*log(tmp) ser=1.0 for item in cof: x+=1.0 ser+=item/x return -tmp+log(2.50662827465*ser) def gser(a,x): gln=gammln(a) ITMAX=100 EPS=3.0e-7 if x<=0.0: gamser=0.0 return [gamser,gln] else: ap=a sum=1.0/a dele=sum for i in range(1,ITMAX+1): ap+=1.0 dele*=x/ap sum+=dele if abs(dele)<abs(sum)*EPS: gamser=sum*exp(-x+a*log(x)-gln) return [gamser,gln] return None def gcf(a,x): ITMAX=100 EPS=3.0e-7 gold=0.0 fac=1 b1=1.0 b0=0.0 a0=1.0 gln=gammln(a) a1=x for n in range(1,ITMAX+1): an=n+0.0 ana=an-a a0=(a1+a0*ana)*fac b0=(b1+b0*ana)*fac anf=an*fac a1=x*a0+anf*a1 b1=x*b0+anf*b1 if (a1): fac=1.0/a1 g=b1*fac if abs((g-gold)/g)<EPS: gammcf=exp(-x+a*log(x)-gln)*g return [gammcf,gln] gold=g return None def gammp(a,x): if x<0.0 or a<=0.0: return None if x<(a+1.0): a=gser(a,x)[0] return a else: a=gcf(a,x)[0] return 1.0-a def U(n): x=pow(0.5,1.0/n) m=[1-x] for i in range(2,n): a=(i-0.3175)/(n+0.365) m.append(a) m.append(x) return m def erf(x): if x<0.0: return -gammp(0.5,x*x) else: return gammp(0.5,x*x) def erfcc(x): z=abs(x) t=1.0/(1.0+0.5*z) ans=t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+t*(-0.82215223+t*0.17087277))))))))) if x>=0.0: return ans else: return 2.0-ans def calMeanVar(data): n=len(data) if n<2: return None else: sum=reduce(lambda x,y:x+y,data,0.0) mean=sum/n z=data[:] for i in range(n): z[i]=z[i]-mean variance=reduce(lambda x,y:x+y*y,z,0.0) variance /= n-1 variance =sqrt(variance) for i in range(n): z[i]=z[i]/variance return z def inverseCumul(p): #Coefficients in rational approximations. a = [-3.969683028665376e+01,2.209460984245205e+02,-2.759285104469687e+02,1.383577518672690e+02,-3.066479806614716e+01,2.506628277459239e+00] b = [-5.447609879822406e+01,1.615858368580409e+02,-1.556989798598866e+02,6.680131188771972e+01,-1.328068155288572e+01] c = [-7.784894002430293e-03,-3.223964580411365e-01,-2.400758277161838e+00,-2.549732539343734e+00,4.374664141464968e+00,2.938163982698783e+00] d = [7.784695709041462e-03,3.224671290700398e-01,2.445134137142996e+00,3.754408661907416e+00] #Define break-points. p_low = 0.02425 p_high = 1 - p_low #Rational approximation for lower region. if p > 0 and p < p_low: q = sqrt(-2*log(p)) x = (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1) #Rational approximation for central region. elif p>= p_low and p <= p_high: q = p - 0.5 r = q*q x = (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1) #Rational approximation for upper region. elif p>p_high and p < 1: q = sqrt(-2*log(1-p)) x = -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1) else: return None if p>0 and p < 1: e = 0.5 * erfcc(-x/sqrt(2)) - p u = e * sqrt(2*pi) * exp(x*x/2) x = x - u/(1 + x*u/2) return x else: return None def gmean(lst): N = len(lst) if N == 0: return 0 else: return (reduce(lambda x,y: x+y, lst, 0.0))/N def gmedian(lst2): lst = lst2[:] N = len(lst) if N == 0: return 0 else: lst.sort() if N % 2 == 0: return (lst[N/2]+lst[(N-2)/2])/2.0 else: return lst[(N-1)/2] def gpercentile(lst2, np): """Obsolete - use percentile in corestats instead""" lst = lst2[:] N = len(lst) if N == 0 or np > 100 or np < 0: return None else: lst.sort() pNadd1 = (np/100.0)*N k = int(pNadd1) d = pNadd1 - k if k == 0: return lst[0] elif k >= N-1: return lst[N-1] else: return lst[k-1] + d*(lst[k] - lst[k-1]) def find_outliers(vals): """Calculates the upper and lower bounds of a set of sample/case values >>> find_outliers([3.504, 5.234, 6.123, 7.234, 3.542, 5.341, 7.852, 4.555, 12.537]) (11.252500000000001, 0.5364999999999993) >>> >>> find_outliers([9,12,15,17,31,50,7,5,6,8]) (32.0, -8.0) If there are no vals, returns None for the upper and lower bounds, which code that calls it will have to deal with. >>> find_outliers([]) (None, None) """ print("xerxes vals is:", pf(vals)) if vals: #print("vals is:", pf(vals)) stats = corestats.Stats(vals) low_hinge = stats.percentile(25) up_hinge = stats.percentile(75) hstep = 1.5 * (up_hinge - low_hinge) upper_bound = up_hinge + hstep lower_bound = low_hinge - hstep else: upper_bound = None lower_bound = None print(pf(locals())) return upper_bound, lower_bound def plotBoxPlot(canvas, data, offset= (40, 40, 40, 40), XLabel="Category", YLabel="Value"): xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset plotWidth = canvas.size[0] - xLeftOffset - xRightOffset plotHeight = canvas.size[1] - yTopOffset - yBottomOffset iValues = [] for item in data: for item2 in item[1]: try: iValues.append(item2[1]) except: iValues.append(item2) #draw frame max_Y = max(iValues) min_Y = min(iValues) scaleY = detScale(min_Y, max_Y) Yll = scaleY[0] Yur = scaleY[1] nStep = scaleY[2] stepY = (Yur - Yll)/nStep stepYPixel = plotHeight/(nStep) canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) ##draw Y Scale YYY = Yll YCoord = plotHeight + yTopOffset scaleFont=pid.Font(ttf="cour",size=11,bold=1) for i in range(nStep+1): strY = cformat(d=YYY, rank=0) YCoord = max(YCoord, yTopOffset) canvas.drawLine(xLeftOffset,YCoord,xLeftOffset-5,YCoord) canvas.drawString(strY, xLeftOffset -30,YCoord +5,font=scaleFont) YYY += stepY YCoord -= stepYPixel ##draw X Scale stepX = plotWidth/len(data) XCoord = xLeftOffset + 0.5*stepX YCoord = plotHeight + yTopOffset scaleFont = pid.Font(ttf="tahoma",size=12,bold=0) labelFont = pid.Font(ttf="tahoma",size=13,bold=0) for item in data: itemname, itemvalue = item canvas.drawLine(XCoord, YCoord,XCoord, YCoord+5, color=pid.black) canvas.drawString(itemname, XCoord - canvas.stringWidth(itemname,font=labelFont)/2.0,\ YCoord +20,font=labelFont) nValue = len(itemvalue) catValue = [] for item2 in itemvalue: try: tstrain, tvalue = item2 except: tvalue = item2 if nValue <= 4: canvas.drawCross(XCoord, plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll), color=pid.red,size=5) else: catValue.append(tvalue) if catValue != []: catMean = gmean(catValue) catMedian = gmedian(catValue) lowHinge = gpercentile(catValue, 25) upHinge = gpercentile(catValue, 75) Hstep = 1.5*(upHinge - lowHinge) outlier = [] extrem = [] upperAdj = None for item in catValue: if item >= upHinge + 2*Hstep: extrem.append(item) elif item >= upHinge + Hstep: outlier.append(item) elif item > upHinge and item < upHinge + Hstep: if upperAdj == None or item > upperAdj: upperAdj = item else: pass lowerAdj = None for item in catValue: if item <= lowHinge - 2*Hstep: extrem.append(item) elif item <= lowHinge - Hstep: outlier.append(item) if item < lowHinge and item > lowHinge - Hstep: if lowerAdj == None or item < lowerAdj: lowerAdj = item else: pass canvas.drawRect(XCoord-20, plotHeight + yTopOffset - (lowHinge-Yll)*plotHeight/(Yur - Yll), \ XCoord+20, plotHeight + yTopOffset - (upHinge-Yll)*plotHeight/(Yur - Yll)) canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (catMedian-Yll)*plotHeight/(Yur - Yll), \ XCoord+20, plotHeight + yTopOffset - (catMedian-Yll)*plotHeight/(Yur - Yll)) if upperAdj != None: canvas.drawLine(XCoord, plotHeight + yTopOffset - (upHinge-Yll)*plotHeight/(Yur - Yll), \ XCoord, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll)) canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll), \ XCoord+20, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll)) if lowerAdj != None: canvas.drawLine(XCoord, plotHeight + yTopOffset - (lowHinge-Yll)*plotHeight/(Yur - Yll), \ XCoord, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll)) canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll), \ XCoord+20, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll)) outlierFont = pid.Font(ttf="cour",size=12,bold=0) if outlier != []: for item in outlier: yc = plotHeight + yTopOffset - (item-Yll)*plotHeight/(Yur - Yll) #canvas.drawEllipse(XCoord-3, yc-3, XCoord+3, yc+3) canvas.drawString('o', XCoord-3, yc+5, font=outlierFont, color=pid.orange) if extrem != []: for item in extrem: yc = plotHeight + yTopOffset - (item-Yll)*plotHeight/(Yur - Yll) #canvas.drawEllipse(XCoord-3, yc-3, XCoord+3, yc+3) canvas.drawString('*', XCoord-3, yc+6, font=outlierFont, color=pid.red) canvas.drawCross(XCoord, plotHeight + yTopOffset - (catMean-Yll)*plotHeight/(Yur - Yll), \ color=pid.blue,size=3) #print (catMean, catMedian, cat25per, cat75per) pass XCoord += stepX labelFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, \ YCoord +40, font=labelFont) canvas.drawString(YLabel,xLeftOffset-40, YCoord-(plotHeight -canvas.stringWidth(YLabel,font=labelFont))/2.0,\ font=labelFont, angle =90) def plotSecurity(canvas, text="12345"): if not text: return plotWidth = canvas.size[0] plotHeight = canvas.size[1] if plotHeight<=0 or plotWidth<=0: return bgColor = pid.Color(0.6+0.4*random.random(), 0.6+0.4*random.random(), 0.6+0.4*random.random()) canvas.drawRect(0,0,plotWidth,plotHeight, edgeColor=bgColor, fillColor=bgColor) for i in range(30): randomColor = pid.Color(0.6+0.4*random.random(), 0.6+0.4*random.random(), 0.6+0.4*random.random()) scaleFont=pid.Font(ttf="cour",size=random.choice(range(20, 50))) canvas.drawString(random.choice('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'), int(random.random()*plotWidth), int(random.random()*plotHeight), font=scaleFont, color=randomColor, angle=random.choice(range(-45, 50))) step = (plotWidth-20)/len(text) startX = 20 for item in text: randomColor = pid.Color(0.6*random.random(),0.6*random.random(), 0.6*random.random()) scaleFont=pid.Font(ttf="verdana",size=random.choice(range(50, 60)),bold=1) canvas.drawString(item, startX, plotHeight/2-10, font=scaleFont, color=randomColor, angle=random.choice(range(-45, 50))) startX += step # parameter: data is either object returned by reaper permutation function (called by MarkerRegressionPage.py) # or the first object returned by direct (pair-scan) permu function (called by DirectPlotPage.py) #def plotBar(canvas, data, barColor=pid.blue, axesColor=pid.black, labelColor=pid.black, XLabel=None, YLabel=None, title=None, offset= (60, 20, 40, 40), zoom = 1): # # xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset # # plotWidth = canvas.size[0] - xLeftOffset - xRightOffset # plotHeight = canvas.size[1] - yTopOffset - yBottomOffset # if plotHeight<=0 or plotWidth<=0: # return # # if len(data) < 2: # return # # max_D = max(data) # min_D = min(data) # #add by NL 06-20-2011: fix the error: when max_D is infinite, log function in detScale will go wrong # if max_D == float('inf') or max_D>webqtlConfig.MAXLRS: # max_D=webqtlConfig.MAXLRS #maximum LRS value # # xLow, xTop, stepX = detScale(min_D, max_D) # # #reduce data # step = ceil((xTop-xLow)/50.0) # j = xLow # dataXY = [] # Count = [] # while j <= xTop: # dataXY.append(j) # Count.append(0) # j += step # # for i, item in enumerate(data): # if item == float('inf') or item>webqtlConfig.MAXLRS: # item = webqtlConfig.MAXLRS #maximum LRS value # j = int((item-xLow)/step) # Count[j] += 1 # # yLow, yTop, stepY=detScale(0,max(Count)) # # #draw data # xScale = plotWidth/(xTop-xLow) # yScale = plotHeight/(yTop-yLow) # barWidth = xScale*step # # for i, count in enumerate(Count): # if count: # xc = (dataXY[i]-xLow)*xScale+xLeftOffset # yc =-(count-yLow)*yScale+yTopOffset+plotHeight # canvas.drawRect(xc+2,yc,xc+barWidth-2,yTopOffset+plotHeight,edgeColor=barColor,fillColor=barColor) # # #draw drawing region # canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight) # # #draw scale # scaleFont=pid.Font(ttf="cour",size=11,bold=1) # x=xLow # for i in range(stepX+1): # xc=xLeftOffset+(x-xLow)*xScale # canvas.drawLine(xc,yTopOffset+plotHeight,xc,yTopOffset+plotHeight+5, color=axesColor) # strX = cformat(d=x, rank=0) # canvas.drawString(strX,xc-canvas.stringWidth(strX,font=scaleFont)/2,yTopOffset+plotHeight+14,font=scaleFont) # x+= (xTop - xLow)/stepX # # y=yLow # for i in range(stepY+1): # yc=yTopOffset+plotHeight-(y-yLow)*yScale # canvas.drawLine(xLeftOffset,yc,xLeftOffset-5,yc, color=axesColor) # strY = "%d" %y # canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)-6,yc+5,font=scaleFont) # y+= (yTop - yLow)/stepY # # #draw label # labelFont=pid.Font(ttf="tahoma",size=17,bold=0) # if XLabel: # canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0, # yTopOffset+plotHeight+yBottomOffset-10,font=labelFont,color=labelColor) # # if YLabel: # canvas.drawString(YLabel, 19, yTopOffset+plotHeight-(plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0, # font=labelFont,color=labelColor,angle=90) # # labelFont=pid.Font(ttf="verdana",size=16,bold=0) # if title: # canvas.drawString(title,xLeftOffset+(plotWidth-canvas.stringWidth(title,font=labelFont))/2.0, # 20,font=labelFont,color=labelColor) # #def plotBarText(canvas, data, label, variance=None, barColor=pid.blue, axesColor=pid.black, labelColor=pid.black, XLabel=None, YLabel=None, title=None, sLabel = None, offset= (80, 20, 40, 100), barSpace = 2, zoom = 1): # xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset # plotWidth = canvas.size[0] - xLeftOffset - xRightOffset # plotHeight = canvas.size[1] - yTopOffset - yBottomOffset # if plotHeight<=0 or plotWidth<=0: # return # # NNN = len(data) # if NNN < 2 or NNN != len(label): # return # if variance and len(variance)!=NNN: # variance = [] # # Y2 = data[:] # if variance: # for i in range(NNN): # if variance[i]: # Y2 += [data[i]-variance[i]] # # #Y axis # YLow, YTop, stepY = detScale(min(Y2), max(Y2)) # YScale = plotHeight/(YTop - YLow) # # if YLow < 0 and YTop > 0: # drawZero = 1 # else: # drawZero = 0 # # #X axis # X = range(NNN) # Xll= 0 # Xur= NNN-1 # # # if drawZero: # YZero = yTopOffset+plotHeight-YScale*(0-YLow) # canvas.drawLine(xLeftOffset, YZero, xLeftOffset+plotWidth, YZero) # else: # YZero = yTopOffset+plotHeight # #draw data # spaceWidth = barSpace # if spaceWidth < 1: # spaceWidth = 1 # barWidth = int((plotWidth - (NNN-1.0)*spaceWidth)/NNN) # # xc= xLeftOffset # scaleFont=pid.Font(ttf="verdana",size=11,bold=0) # for i in range(NNN): # yc = yTopOffset+plotHeight-(data[i]-YLow)*YScale # canvas.drawRect(xc,YZero,xc+barWidth-1, yc, edgeColor=barColor,fillColor=barColor) # if variance and variance[i]: # varlen = variance[i]*YScale # if yc-varlen < yTopOffset: # topYd = yTopOffset # else: # topYd = yc-varlen # canvas.drawLine(xc+barWidth/2-2,yc-varlen,xc+barWidth/2+2,yc-varlen,color=pid.red) # canvas.drawLine(xc+barWidth/2,yc+varlen,xc+barWidth/2,topYd,color=pid.red) # canvas.drawLine(xc+barWidth/2-2,yc+varlen,xc+barWidth/2+2,yc+varlen,color=pid.red) # strX = label[i] # canvas.drawString(strX,xc+barWidth/2.0+2,yTopOffset+plotHeight+2+canvas.stringWidth(strX,font=scaleFont),font=scaleFont,angle=90) # xc += barWidth + spaceWidth # # #draw drawing region # canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight) # # #draw Y scale # scaleFont=pid.Font(ttf="cour",size=16,bold=1) # y=YLow # for i in range(stepY+1): # yc=yTopOffset+plotHeight-(y-YLow)*YScale # canvas.drawLine(xLeftOffset,yc,xLeftOffset-5,yc, color=axesColor) # strY = cformat(d=y, rank=0) # canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)-6,yc+5,font=scaleFont) # y+= (YTop - YLow)/stepY # # #draw label # labelFont=pid.Font(ttf="verdana",size=17,bold=0) # if XLabel: # canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0,yTopOffset+plotHeight+65,font=labelFont,color=labelColor) # # if YLabel: # canvas.drawString(YLabel,xLeftOffset-50, yTopOffset+plotHeight-(plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0,font=labelFont,color=labelColor,angle=90) # # labelFont=pid.Font(ttf="verdana",size=18,bold=0) # if title: # canvas.drawString(title,xLeftOffset,yTopOffset-15,font=labelFont,color=labelColor) # # return # #def plotXY(canvas, dataX, dataY, rank=0, dataLabel=[], plotColor = pid.black, axesColor=pid.black, labelColor=pid.black, lineSize="thin", lineColor=pid.grey, idFont="arial", idColor=pid.blue, idSize="14", symbolColor=pid.black, symbolType="circle", filled="yes", symbolSize="tiny", XLabel=None, YLabel=None, title=None, fitcurve=None, connectdot=1, displayR=None, loadingPlot = 0, offset= (80, 20, 40, 60), zoom = 1, specialCases=[], showLabel = 1, bufferSpace = 15): # 'displayR : correlation scatter plot, loadings : loading plot' # # dataXRanked, dataYRanked = webqtlUtil.calRank(dataX, dataY, len(dataX)) # # #get ID font size # idFontSize = int(idSize) # # #If filled is yes, set fill color # if filled == "yes": # fillColor = symbolColor # else: # fillColor = None # # if symbolSize == "large": # sizeModifier = 7 # fontModifier = 12 # elif symbolSize == "medium": # sizeModifier = 5 # fontModifier = 8 # elif symbolSize == "small": # sizeModifier = 3 # fontModifier = 3 # else: # sizeModifier = 1 # fontModifier = -1 # # if rank == 0: # Pearson correlation # bufferSpace = 0 # dataXPrimary = dataX # dataYPrimary = dataY # dataXAlt = dataXRanked #Values used just for printing the other corr type to the graph image # dataYAlt = dataYRanked #Values used just for printing the other corr type to the graph image # else: # Spearman correlation: Switching Ranked and Unranked X and Y values # dataXPrimary = dataXRanked # dataYPrimary = dataYRanked # dataXAlt = dataX #Values used just for printing the other corr type to the graph image # dataYAlt = dataY #Values used just for printing the other corr type to the graph image # # xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset # plotWidth = canvas.size[0] - xLeftOffset - xRightOffset # plotHeight = canvas.size[1] - yTopOffset - yBottomOffset # if plotHeight<=0 or plotWidth<=0: # return # if len(dataXPrimary) < 1 or len(dataXPrimary) != len(dataYPrimary) or (dataLabel and len(dataXPrimary) != len(dataLabel)): # return # # max_X=max(dataXPrimary) # min_X=min(dataXPrimary) # max_Y=max(dataYPrimary) # min_Y=min(dataYPrimary) # # #for some reason I forgot why I need to do this # if loadingPlot: # min_X = min(-0.1,min_X) # max_X = max(0.1,max_X) # min_Y = min(-0.1,min_Y) # max_Y = max(0.1,max_Y) # # xLow, xTop, stepX=detScale(min_X,max_X) # yLow, yTop, stepY=detScale(min_Y,max_Y) # xScale = plotWidth/(xTop-xLow) # yScale = plotHeight/(yTop-yLow) # # #draw drawing region # canvas.drawRect(xLeftOffset-bufferSpace, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight+bufferSpace) # canvas.drawRect(xLeftOffset-bufferSpace+1, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight+bufferSpace-1) # # #calculate data points # data = map(lambda X, Y: (X, Y), dataXPrimary, dataYPrimary) # xCoord = map(lambda X, Y: ((X-xLow)*xScale + xLeftOffset, yTopOffset+plotHeight-(Y-yLow)*yScale), dataXPrimary, dataYPrimary) # # labelFont=pid.Font(ttf=idFont,size=idFontSize,bold=0) # # if loadingPlot: # xZero = -xLow*xScale+xLeftOffset # yZero = yTopOffset+plotHeight+yLow*yScale # for point in xCoord: # canvas.drawLine(xZero,yZero,point[0],point[1],color=pid.red) # else: # if connectdot: # canvas.drawPolygon(xCoord,edgeColor=plotColor,closed=0) # else: # pass # # symbolFont = pid.Font(ttf="fnt_bs", size=12+fontModifier,bold=0) # # for i, item in enumerate(xCoord): # if dataLabel and dataLabel[i] in specialCases: # canvas.drawRect(item[0]-3, item[1]-3, item[0]+3, item[1]+3, edgeColor=pid.green) # #canvas.drawCross(item[0],item[1],color=pid.blue,size=5) # else: # if symbolType == "vertRect": # canvas.drawRect(x1=item[0]-sizeModifier+2,y1=item[1]-sizeModifier-2, x2=item[0]+sizeModifier-1,y2=item[1]+sizeModifier+2, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) # elif (symbolType == "circle" and filled != "yes"): # canvas.drawString(":", item[0]-canvas.stringWidth(":",font=symbolFont)/2+1,item[1]+2,color=symbolColor, font=symbolFont) # elif (symbolType == "circle" and filled == "yes"): # canvas.drawString("5", item[0]-canvas.stringWidth("5",font=symbolFont)/2+1,item[1]+2,color=symbolColor, font=symbolFont) # elif symbolType == "horiRect": # canvas.drawRect(x1=item[0]-sizeModifier-1,y1=item[1]-sizeModifier+3, x2=item[0]+sizeModifier+3,y2=item[1]+sizeModifier-2, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) # elif (symbolType == "square"): # canvas.drawRect(x1=item[0]-sizeModifier+1,y1=item[1]-sizeModifier-4, x2=item[0]+sizeModifier+2,y2=item[1]+sizeModifier-3, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) # elif (symbolType == "diamond" and filled != "yes"): # canvas.drawString(",", item[0]-canvas.stringWidth(",",font=symbolFont)/2+2, item[1]+6, font=symbolFont, color=symbolColor) # elif (symbolType == "diamond" and filled == "yes"): # canvas.drawString("D", item[0]-canvas.stringWidth("D",font=symbolFont)/2+2, item[1]+6, font=symbolFont, color=symbolColor) # elif symbolType == "4-star": # canvas.drawString("l", item[0]-canvas.stringWidth("l",font=symbolFont)/2+1, item[1]+3, font=symbolFont, color=symbolColor) # elif symbolType == "3-star": # canvas.drawString("k", item[0]-canvas.stringWidth("k",font=symbolFont)/2+1, item[1]+3, font=symbolFont, color=symbolColor) # else: # canvas.drawCross(item[0],item[1]-2,color=symbolColor, size=sizeModifier+2) # # if showLabel and dataLabel: # if (symbolType == "vertRect" or symbolType == "diamond"): # labelGap = 15 # elif (symbolType == "4-star" or symbolType == "3-star"): # labelGap = 12 # else: # labelGap = 11 # canvas.drawString(dataLabel[i], item[0]- canvas.stringWidth(dataLabel[i], # font=labelFont)/2 + 1, item[1]+(labelGap+sizeModifier+(idFontSize-12)), font=labelFont, color=idColor) # # #draw scale # scaleFont=pid.Font(ttf="cour",size=16,bold=1) # # # x=xLow # for i in range(stepX+1): # xc=xLeftOffset+(x-xLow)*xScale # if ((x == 0) & (rank == 1)): # pass # else: # canvas.drawLine(xc,yTopOffset+plotHeight + bufferSpace,xc,yTopOffset+plotHeight+5 + bufferSpace, color=axesColor) # strX = cformat(d=x, rank=rank) # if ((strX == "0") & (rank == 1)): # pass # else: # canvas.drawString(strX,xc-canvas.stringWidth(strX,font=scaleFont)/2,yTopOffset+plotHeight+20 + bufferSpace,font=scaleFont) # x+= (xTop - xLow)/stepX # # y=yLow # for i in range(stepY+1): # yc=yTopOffset+plotHeight-(y-yLow)*yScale # if ((y == 0) & (rank == 1)): # pass # else: # canvas.drawLine(xLeftOffset - bufferSpace,yc,xLeftOffset-5 - bufferSpace,yc, color=axesColor) # strY = cformat(d=y, rank=rank) # if ((strY == "0") & (rank == 1)): # pass # else: # canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)- 10 - bufferSpace,yc+4,font=scaleFont) # y+= (yTop - yLow)/stepY # # #draw label # # labelFont=pid.Font(ttf="verdana",size=canvas.size[0]/45,bold=0) # titleFont=pid.Font(ttf="verdana",size=canvas.size[0]/40,bold=0) # # if (rank == 1 and not title): # canvas.drawString("Spearman Rank Correlation", xLeftOffset-canvas.size[0]*.025+(plotWidth-canvas.stringWidth("Spearman Rank Correlation",font=titleFont))/2.0, # 25,font=titleFont,color=labelColor) # elif (rank == 0 and not title): # canvas.drawString("Pearson Correlation", xLeftOffset-canvas.size[0]*.025+(plotWidth-canvas.stringWidth("Pearson Correlation",font=titleFont))/2.0, # 25,font=titleFont,color=labelColor) # # if XLabel: # canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0, # yTopOffset+plotHeight+yBottomOffset-25,font=labelFont,color=labelColor) # # if YLabel: # canvas.drawString(YLabel, xLeftOffset-65, yTopOffset+plotHeight- (plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0, # font=labelFont,color=labelColor,angle=90) # # labelFont=pid.Font(ttf="verdana",size=20,bold=0) # if title: # canvas.drawString(title,xLeftOffset+(plotWidth-canvas.stringWidth(title,font=labelFont))/2.0, # 20,font=labelFont,color=labelColor) # # if fitcurve: # import sys # sys.argv = [ "mod_python" ] # #from numarray import linear_algebra as la # #from numarray import ones, array, dot, swapaxes # fitYY = array(dataYPrimary) # fitXX = array([ones(len(dataXPrimary)),dataXPrimary]) # AA = dot(fitXX,swapaxes(fitXX,0,1)) # BB = dot(fitXX,fitYY) # bb = la.linear_least_squares(AA,BB)[0] # # xc1 = xLeftOffset # yc1 = yTopOffset+plotHeight-(bb[0]+bb[1]*xLow-yLow)*yScale # if yc1 > yTopOffset+plotHeight: # yc1 = yTopOffset+plotHeight # xc1 = (yLow-bb[0])/bb[1] # xc1=(xc1-xLow)*xScale+xLeftOffset # elif yc1 < yTopOffset: # yc1 = yTopOffset # xc1 = (yTop-bb[0])/bb[1] # xc1=(xc1-xLow)*xScale+xLeftOffset # else: # pass # # xc2 = xLeftOffset + plotWidth # yc2 = yTopOffset+plotHeight-(bb[0]+bb[1]*xTop-yLow)*yScale # if yc2 > yTopOffset+plotHeight: # yc2 = yTopOffset+plotHeight # xc2 = (yLow-bb[0])/bb[1] # xc2=(xc2-xLow)*xScale+xLeftOffset # elif yc2 < yTopOffset: # yc2 = yTopOffset # xc2 = (yTop-bb[0])/bb[1] # xc2=(xc2-xLow)*xScale+xLeftOffset # else: # pass # # canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace,xc2,yc2,color=lineColor) # if lineSize == "medium": # canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace+1,xc2,yc2+1,color=lineColor) # if lineSize == "thick": # canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace+1,xc2,yc2+1,color=lineColor) # canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace-1,xc2,yc2-1,color=lineColor) # # # if displayR: # labelFont=pid.Font(ttf="trebuc",size=canvas.size[0]/60,bold=0) # NNN = len(dataX) # corr = webqtlUtil.calCorrelation(dataXPrimary,dataYPrimary,NNN)[0] # # if NNN < 3: # corrPValue = 1.0 # else: # if abs(corr) >= 1.0: # corrPValue = 0.0 # else: # ZValue = 0.5*log((1.0+corr)/(1.0-corr)) # ZValue = ZValue*sqrt(NNN-3) # corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) # # NStr = "N = %d" % NNN # strLenN = canvas.stringWidth(NStr,font=labelFont) # # if rank == 1: # if corrPValue < 0.0000000000000001: # corrStr = "Rho = %1.3f P < 1.00 E-16" % (corr) # else: # corrStr = "Rho = %1.3f P = %3.2E" % (corr, corrPValue) # else: # if corrPValue < 0.0000000000000001: # corrStr = "r = %1.3f P < 1.00 E-16" % (corr) # else: # corrStr = "r = %1.3f P = %3.2E" % (corr, corrPValue) # strLen = canvas.stringWidth(corrStr,font=labelFont) # # canvas.drawString(NStr,xLeftOffset,yTopOffset-10,font=labelFont,color=labelColor) # canvas.drawString(corrStr,xLeftOffset+plotWidth-strLen,yTopOffset-10,font=labelFont,color=labelColor) # # return xCoord def plotXYSVG(drawSpace, dataX, dataY, rank=0, dataLabel=[], plotColor = "black", axesColor="black", labelColor="black", symbolColor="red", XLabel=None, YLabel=None, title=None, fitcurve=None, connectdot=1, displayR=None, loadingPlot = 0, offset= (80, 20, 40, 60), zoom = 1, specialCases=[], showLabel = 1): 'displayR : correlation scatter plot, loadings : loading plot' dataXRanked, dataYRanked = webqtlUtil.calRank(dataX, dataY, len(dataX)) # Switching Ranked and Unranked X and Y values if a Spearman Rank Correlation if rank == 0: dataXPrimary = dataX dataYPrimary = dataY dataXAlt = dataXRanked dataYAlt = dataYRanked else: dataXPrimary = dataXRanked dataYPrimary = dataYRanked dataXAlt = dataX dataYAlt = dataY xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset plotWidth = drawSpace.attributes['width'] - xLeftOffset - xRightOffset plotHeight = drawSpace.attributes['height'] - yTopOffset - yBottomOffset if plotHeight<=0 or plotWidth<=0: return if len(dataXPrimary) < 1 or len(dataXPrimary) != len(dataYPrimary) or (dataLabel and len(dataXPrimary) != len(dataLabel)): return max_X=max(dataXPrimary) min_X=min(dataXPrimary) max_Y=max(dataYPrimary) min_Y=min(dataYPrimary) #for some reason I forgot why I need to do this if loadingPlot: min_X = min(-0.1,min_X) max_X = max(0.1,max_X) min_Y = min(-0.1,min_Y) max_Y = max(0.1,max_Y) xLow, xTop, stepX=detScale(min_X,max_X) yLow, yTop, stepY=detScale(min_Y,max_Y) xScale = plotWidth/(xTop-xLow) yScale = plotHeight/(yTop-yLow) #draw drawing region r = svg.rect(xLeftOffset, yTopOffset, plotWidth, plotHeight, 'none', axesColor, 1) drawSpace.addElement(r) #calculate data points data = map(lambda X, Y: (X, Y), dataXPrimary, dataYPrimary) xCoord = map(lambda X, Y: ((X-xLow)*xScale + xLeftOffset, yTopOffset+plotHeight-(Y-yLow)*yScale), dataXPrimary, dataYPrimary) labelFontF = "verdana" labelFontS = 11 if loadingPlot: xZero = -xLow*xScale+xLeftOffset yZero = yTopOffset+plotHeight+yLow*yScale for point in xCoord: drawSpace.addElement(svg.line(xZero,yZero,point[0],point[1], "red", 1)) else: if connectdot: pass #drawSpace.drawPolygon(xCoord,edgeColor=plotColor,closed=0) else: pass for i, item in enumerate(xCoord): if dataLabel and dataLabel[i] in specialCases: drawSpace.addElement(svg.rect(item[0]-3, item[1]-3, 6, 6, "none", "green", 0.5)) #drawSpace.drawCross(item[0],item[1],color=pid.blue,size=5) else: drawSpace.addElement(svg.line(item[0],item[1]+5,item[0],item[1]-5,symbolColor,1)) drawSpace.addElement(svg.line(item[0]+5,item[1],item[0]-5,item[1],symbolColor,1)) if showLabel and dataLabel: pass drawSpace.addElement(svg.text(item[0], item[1]+14, dataLabel[i], labelFontS, labelFontF, text_anchor="middle", style="stroke:blue;stroke-width:0.5;")) #canvas.drawString(, item[0]- canvas.stringWidth(dataLabel[i], # font=labelFont)/2, item[1]+14, font=labelFont, color=pid.blue) #draw scale #scaleFont=pid.Font(ttf="cour",size=14,bold=1) x=xLow for i in range(stepX+1): xc=xLeftOffset+(x-xLow)*xScale drawSpace.addElement(svg.line(xc,yTopOffset+plotHeight,xc,yTopOffset+plotHeight+5, axesColor, 1)) strX = cformat(d=x, rank=rank) drawSpace.addElement(svg.text(xc,yTopOffset+plotHeight+20,strX,13, "courier", text_anchor="middle")) x+= (xTop - xLow)/stepX y=yLow for i in range(stepY+1): yc=yTopOffset+plotHeight-(y-yLow)*yScale drawSpace.addElement(svg.line(xLeftOffset,yc,xLeftOffset-5,yc, axesColor, 1)) strY = cformat(d=y, rank=rank) drawSpace.addElement(svg.text(xLeftOffset-10,yc+5,strY,13, "courier", text_anchor="end")) y+= (yTop - yLow)/stepY #draw label labelFontF = "verdana" labelFontS = 17 if XLabel: drawSpace.addElement(svg.text(xLeftOffset+plotWidth/2.0, yTopOffset+plotHeight+yBottomOffset-10,XLabel, labelFontS, labelFontF, text_anchor="middle")) if YLabel: drawSpace.addElement(svg.text(xLeftOffset-50, yTopOffset+plotHeight/2,YLabel, labelFontS, labelFontF, text_anchor="middle", style="writing-mode:tb-rl", transform="rotate(270 %d %d)" % (xLeftOffset-50, yTopOffset+plotHeight/2))) #drawSpace.drawString(YLabel, xLeftOffset-50, yTopOffset+plotHeight- (plotHeight-drawSpace.stringWidth(YLabel,font=labelFont))/2.0, # font=labelFont,color=labelColor,angle=90) if fitcurve: sys.argv = [ "mod_python" ] #from numarray import linear_algebra as la #from numarray import ones, array, dot, swapaxes fitYY = array(dataYPrimary) fitXX = array([ones(len(dataXPrimary)),dataXPrimary]) AA = dot(fitXX,swapaxes(fitXX,0,1)) BB = dot(fitXX,fitYY) bb = la.linear_least_squares(AA,BB)[0] xc1 = xLeftOffset yc1 = yTopOffset+plotHeight-(bb[0]+bb[1]*xLow-yLow)*yScale if yc1 > yTopOffset+plotHeight: yc1 = yTopOffset+plotHeight xc1 = (yLow-bb[0])/bb[1] xc1=(xc1-xLow)*xScale+xLeftOffset elif yc1 < yTopOffset: yc1 = yTopOffset xc1 = (yTop-bb[0])/bb[1] xc1=(xc1-xLow)*xScale+xLeftOffset else: pass xc2 = xLeftOffset + plotWidth yc2 = yTopOffset+plotHeight-(bb[0]+bb[1]*xTop-yLow)*yScale if yc2 > yTopOffset+plotHeight: yc2 = yTopOffset+plotHeight xc2 = (yLow-bb[0])/bb[1] xc2=(xc2-xLow)*xScale+xLeftOffset elif yc2 < yTopOffset: yc2 = yTopOffset xc2 = (yTop-bb[0])/bb[1] xc2=(xc2-xLow)*xScale+xLeftOffset else: pass drawSpace.addElement(svg.line(xc1,yc1,xc2,yc2,"green", 1)) if displayR: labelFontF = "trebuc" labelFontS = 14 NNN = len(dataX) corr = webqtlUtil.calCorrelation(dataXPrimary,dataYPrimary,NNN)[0] if NNN < 3: corrPValue = 1.0 else: if abs(corr) >= 1.0: corrPValue = 0.0 else: ZValue = 0.5*log((1.0+corr)/(1.0-corr)) ZValue = ZValue*sqrt(NNN-3) corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) NStr = "N of Cases=%d" % NNN if rank == 1: corrStr = "Spearman's r=%1.3f P=%3.2E" % (corr, corrPValue) else: corrStr = "Pearson's r=%1.3f P=%3.2E" % (corr, corrPValue) drawSpace.addElement(svg.text(xLeftOffset,yTopOffset-10,NStr, labelFontS, labelFontF, text_anchor="start")) drawSpace.addElement(svg.text(xLeftOffset+plotWidth,yTopOffset-25,corrStr, labelFontS, labelFontF, text_anchor="end")) """ """ return # This function determines the scale of the plot def detScaleOld(min,max): if min>=max: return None elif min == -1.0 and max == 1.0: return [-1.2,1.2,12] else: a=max-min b=floor(log10(a)) c=pow(10.0,b) if a < c*5.0: c/=2.0 #print a,b,c low=c*floor(min/c) high=c*ceil(max/c) return [low,high,round((high-low)/c)] def detScale(min=0,max=0,bufferSpace=3): if min>=max: return None elif min == -1.0 and max == 1.0: return [-1.2,1.2,12] else: a=max-min if max != 0: max += 0.1*a if min != 0: if min > 0 and min < 0.1*a: min = 0.0 else: min -= 0.1*a a=max-min b=floor(log10(a)) c=pow(10.0,b) low=c*floor(min/c) high=c*ceil(max/c) n = round((high-low)/c) div = 2.0 while n < 5 or n > 15: if n < 5: c /= div else: c *= div if div == 2.0: div =5.0 else: div =2.0 low=c*floor(min/c) high=c*ceil(max/c) n = round((high-low)/c) return [low,high,n] def colorSpectrumOld(n): if n == 1: return [pid.Color(1,0,0)] elif n == 2: return [pid.Color(1,0,0),pid.Color(0,0,1)] elif n == 3: return [pid.Color(1,0,0),pid.Color(0,1,0),pid.Color(0,0,1)] else: step = 2.0/(n-1) red = 1.0 green = 0.0 blue = 0.0 colors = [pid.Color(red,green,blue)] i = 1 greenpeak = 0 while i < n: if red >= step: red -= step green += step if green >= 1.0: greenpeak = 1 blue += green -1.0 green = 1.0 else: red = 0.0 if greenpeak: green -= step blue += step else: green += step if green >= 1.0: greenpeak = 1 blue += green -1.0 green = 2.0 -green elif green < 0.0: green = 0.0 else: pass colors.append(pid.Color(red,green,blue)) i += 1 return colors def bluefunc(x): return 1.0 / (1.0 + exp(-10*(x-0.6))) def redfunc(x): return 1.0 / (1.0 + exp(10*(x-0.5))) def greenfunc(x): return 1 - pow(redfunc(x+0.2),2) - bluefunc(x-0.3) def colorSpectrum(n=100): multiple = 10 if n == 1: return [pid.Color(1,0,0)] elif n == 2: return [pid.Color(1,0,0),pid.Color(0,0,1)] elif n == 3: return [pid.Color(1,0,0),pid.Color(0,1,0),pid.Color(0,0,1)] N = n*multiple out = [None]*N; for i in range(N): x = float(i)/N out[i] = pid.Color(redfunc(x), greenfunc(x), bluefunc(x)); out2 = [out[0]] step = N/float(n-1) j = 0 for i in range(n-2): j += step out2.append(out[int(j)]) out2.append(out[-1]) return out2 def colorSpectrumSVG(n=100): multiple = 10 if n == 1: return ["rgb(255,0,0)"] elif n == 2: return ["rgb(255,0,0)","rgb(0,0,255)"] elif n == 3: return ["rgb(255,0,0)","rgb(0,255,0)","rgb(0,0,255)"] N = n*multiple out = [None]*N; for i in range(N): x = float(i)/N out[i] = "rgb(%d, %d, %d)" % (redfunc(x)*255, greenfunc(x)*255, bluefunc(x)*255); out2 = [out[0]] step = N/float(n-1) j = 0 for i in range(n-2): j += step out2.append(out[int(j)]) out2.append(out[-1]) return out2 def BWSpectrum(n=100): multiple = 10 if n == 1: return [pid.Color(0,0,0)] elif n == 2: return [pid.Color(0,0,0),pid.Color(1,1,1)] elif n == 3: return [pid.Color(0,0,0),pid.Color(0.5,0.5,0.5),pid.Color(1,1,1)] step = 1.0/n x = 0.0 out = [] for i in range(n): out.append(pid.Color(x,x,x)); x += step return out def _test(): import doctest doctest.testmod() if __name__=="__main__": _test()
agpl-3.0
mikeireland/pynrm
go.py
1
3044
# -*- coding: utf-8 -*- """ Created on Fri May 2 13:49:11 2014 @author: mireland A script for testing... Change this to try out your own analysis. """ import astropy.io.fits as pyfits import numpy as np import matplotlib.pyplot as plt from azimuthalAverage import * # This includes an AO Instrument called "aoinst" import pypoise import nirc2 import glob import pdb #Create a pypoise instance with a nirc2 AO instrument pp = pypoise.PYPOISE(nirc2.NIRC2()) plt.ion() #Reduction Directory - Lp full pupil pp.aoinst.rdir = '/Users/mireland/tel/nirc2/redux/generic2015/' pp.aoinst.cdir = '/Users/mireland/tel/nirc2/redux/TauPAH15/' #Data directory pp.aoinst.ddir = '/Users/mireland/data/nirc2/151128/' pp.aoinst.read_summary_csv() if(False): pp.process_block(fstart='n1251.fits',fend='n1293.fits', dither=True) if(False): pp.process_block(fstart='n1493.fits',fend='n1517.fits', dither=True) targname = 'AB Aur' targname = 'SU Aur' targname = 'RY Tau' if(True): #The argument "target_file" is just there to determine which object is the target. summary_files = pp.poise_process(target=targname, use_powerspect=False) print(summary_files) if(True): # summary_files = glob.glob('*LkCa*poise_cube*.fits') implane_file = pp.aoinst.cdir + targname + '_implane.fits' pxscale = 5.0 #pdb.set_trace() if (True): kp_implane = pp.kp_to_implane(summary_files=summary_files, out_file=implane_file, sz=141, pxscale=pxscale, use_powerspect=False) if (True): #Automatic from here... pgrid, crat, crat_sig, chi2, best_rchi2 = pp.implane_fit_binary(implane_file, maxrad=250) print "Grid Fit: ", pgrid pgrid = np.array(pgrid) if (pgrid[2] > 0.5): print "Contrast too high to use kerphase for fitting (i.e. near-equal binary)." else: p,errs,cov = pp.kp_binary_fit(summary_files,pgrid) fitfile = open(targname + '_binaryfit.txt','w') fitfile.write('Separation (mas) & Position angle (degs) & Contrast \\\\\n') fitfile.write('{0:5.2f} $\pm$ {1:5.2f} & {2:5.2f} $\pm$ {3:5.2f} & {4:6.4f} $\pm$ {5:6.4f} \\\\ \n'.format(\ p[0],errs[0], p[1],errs[1], p[2],errs[2])) fitfile.write('Contrast (mags) & Separation (mas) & Position angle (degs) \\\\\n') fit_crat = -2.5*np.log10(p[2]) fit_crat_sig = 2.5/np.log(10)*errs[2]/p[2] fitfile.write('{0:5.2f} $\pm$ {1:5.2f} & {2:5.2f} $\pm$ {3:5.2f} & {4:5.3f} $\pm$ {5:5.3f} \\\\ \n'.format(\ fit_crat, fit_crat_sig, p[0],errs[0], p[1],errs[1] )) fitfile.close() a = azimuthalAverage(crat_sig*np.sqrt(best_rchi2), returnradii=True,binsize=1) sep_null = a[0]*pxscale contrast_null = -2.5*np.log10(5*a[1]) plt.clf() plt.plot(sep_null, contrast_null) plt.title(targname) plt.xlabel("Separation (milli-arcsec)") plt.ylabel("5-sigma contrast (mags)") sep_out = np.arange(20,301,10) contrast_out = np.interp(sep_out, sep_null, contrast_null) for i in range(len(sep_out)): print '{0:4d} {1:5.1f}'.format(int(sep_out[i]),contrast_out[i]) plt.axis((0,300,2,7)) plt.savefig(pp.aoinst.cdir + targname + '_contrast_curve.png')
mit
Noviat/account-financial-reporting-V3-intrastat
account_journal_report_xls/wizard/print_journal_wizard.py
27
8349
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # # Copyright (c) 2014 Noviat nv/sa (www.noviat.com). All rights reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.tools.translate import _ from openerp.osv import orm, fields from openerp.addons.account.wizard.account_report_common_journal \ import account_common_journal_report import logging _logger = logging.getLogger(__name__) class account_print_journal_xls(orm.TransientModel): _inherit = 'account.print.journal' _name = 'account.print.journal.xls' _description = 'Print/Export Journal' _columns = { 'journal_ids': fields.many2many( 'account.journal', 'account_print_journal_xls_journal_rel', 'journal_xls_id', 'journal_id', string='Journals', required=True), 'group_entries': fields.boolean( 'Group Entries', help="Group entries with same General Account & Tax Code."), } _defaults = { 'group_entries': True, } def fields_get(self, cr, uid, fields=None, context=None): res = super(account_print_journal_xls, self).fields_get( cr, uid, fields, context) if context.get('print_by') == 'fiscalyear': if 'fiscalyear_id' in res: res['fiscalyear_id']['required'] = True if 'period_from' in res: res['period_from']['readonly'] = True if 'period_to' in res: res['period_to']['readonly'] = True else: if 'period_from' in res: res['period_from']['required'] = True if 'period_to' in res: res['period_to']['required'] = True return res def fy_period_ids(self, cr, uid, fiscalyear_id): """ returns all periods from a fiscalyear sorted by date """ fy_period_ids = [] cr.execute(''' SELECT id, coalesce(special, False) AS special FROM account_period WHERE fiscalyear_id=%s ORDER BY date_start, special DESC''', (fiscalyear_id,)) res = cr.fetchall() if res: fy_period_ids = [x[0] for x in res] return fy_period_ids def onchange_fiscalyear_id(self, cr, uid, ids, fiscalyear_id=False, context=None): res = {'value': {}} if context.get('print_by') == 'fiscalyear': # get period_from/to with opening/close periods fy_period_ids = self.fy_period_ids(cr, uid, fiscalyear_id) if fy_period_ids: res['value']['period_from'] = fy_period_ids[0] res['value']['period_to'] = fy_period_ids[-1] return res def fields_view_get(self, cr, uid, view_id=None, view_type='form', context=None, toolbar=False, submenu=False): """ skip account.common.journal.report,fields_view_get (adds domain filter on journal type) """ return super(account_common_journal_report, self).\ fields_view_get(cr, uid, view_id, view_type, context, toolbar, submenu) def xls_export(self, cr, uid, ids, context=None): return self.print_report(cr, uid, ids, context=context) def print_report(self, cr, uid, ids, context=None): if context is None: context = {} move_obj = self.pool.get('account.move') print_by = context.get('print_by') wiz_form = self.browse(cr, uid, ids)[0] fiscalyear_id = wiz_form.fiscalyear_id.id company_id = wiz_form.company_id.id if print_by == 'fiscalyear': wiz_period_ids = self.fy_period_ids(cr, uid, fiscalyear_id) else: period_from = wiz_form.period_from period_to = wiz_form.period_to cr.execute(""" SELECT id, coalesce(special, False) AS special FROM account_period ap WHERE ap.date_start>=%s AND ap.date_stop<=%s AND company_id=%s ORDER BY date_start, special DESC""", (period_from.date_start, period_to.date_stop, company_id)) wiz_period_ids = map(lambda x: x[0], cr.fetchall()) wiz_journal_ids = [j.id for j in wiz_form.journal_ids] # sort journals cr.execute('SELECT id FROM account_journal ' 'WHERE id IN %s ORDER BY type DESC', (tuple(wiz_journal_ids),)) wiz_journal_ids = map(lambda x: x[0], cr.fetchall()) datas = { 'model': 'account.journal', 'print_by': print_by, 'sort_selection': wiz_form.sort_selection, 'target_move': wiz_form.target_move, 'display_currency': wiz_form.amount_currency, 'group_entries': wiz_form.group_entries, } if wiz_form.target_move == 'posted': move_states = ['posted'] else: move_states = ['draft', 'posted'] if print_by == 'fiscalyear': journal_fy_ids = [] for journal_id in wiz_journal_ids: aml_ids = move_obj.search(cr, uid, [('journal_id', '=', journal_id), ('period_id', 'in', wiz_period_ids), ('state', 'in', move_states)], limit=1) if aml_ids: journal_fy_ids.append((journal_id, fiscalyear_id)) if not journal_fy_ids: raise orm.except_orm( _('No Data Available'), _('No records found for your selection!')) datas.update({ 'ids': [x[0] for x in journal_fy_ids], 'journal_fy_ids': journal_fy_ids, }) else: # perform account.move.line query in stead of # 'account.journal.period' since this table is not always reliable journal_period_ids = [] for journal_id in wiz_journal_ids: period_ids = [] for period_id in wiz_period_ids: aml_ids = move_obj.search(cr, uid, [('journal_id', '=', journal_id), ('period_id', '=', period_id), ('state', 'in', move_states)], limit=1) if aml_ids: period_ids.append(period_id) if period_ids: journal_period_ids.append((journal_id, period_ids)) if not journal_period_ids: raise orm.except_orm( _('No Data Available'), _('No records found for your selection!')) datas.update({ 'ids': [x[0] for x in journal_period_ids], 'journal_period_ids': journal_period_ids, }) if context.get('xls_export'): return {'type': 'ir.actions.report.xml', 'report_name': 'nov.account.journal.xls', 'datas': datas} else: return { 'type': 'ir.actions.report.xml', 'report_name': 'nov.account.journal.print', 'datas': datas}
agpl-3.0
CERT-Solucom/certitude
components/scanner/flatevaluators/services.py
2
1432
#!/usr/bin/env python # -*- coding: UTF-8 -*- ''' CERTitude: the seeker of IOC Copyright (c) 2016 CERT-W Contact: [email protected] Contributors: @iansus, @nervous, @fschwebel CERTitude is under licence GPL-2.0: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ''' import template class Evaluator(template.EvaluatorInterface): evalList = ['descriptiveName', 'mode', 'path', 'pathmd5sum', 'status', 'name'] def __init__(self, logger, ioc, remoteCommand, keepFiles, confidential, dirname): template.EvaluatorInterface.__init__(self, logger, ioc, remoteCommand, keepFiles, confidential, dirname) self.setEvaluatorParams(evalList=Evaluator.evalList, name='services', command='collector getservices')
gpl-2.0
akash1808/nova_test_latest
nova/tests/unit/virt/libvirt/test_host.py
43
42406
# Copyright 2010 OpenStack Foundation # Copyright 2012 University Of Minho # Copyright 2014 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import uuid import eventlet from eventlet import greenthread import mock from nova.compute import arch from nova import exception from nova import objects from nova import test from nova.tests.unit.virt.libvirt import fakelibvirt from nova.virt import event from nova.virt.libvirt import config as vconfig from nova.virt.libvirt import driver as libvirt_driver from nova.virt.libvirt import guest as libvirt_guest from nova.virt.libvirt import host host.libvirt = fakelibvirt libvirt_guest.libvirt = fakelibvirt class FakeVirtDomain(object): def __init__(self, id=-1, name=None): self._id = id self._name = name self._uuid = str(uuid.uuid4()) def name(self): return self._name def ID(self): return self._id def UUIDString(self): return self._uuid class HostTestCase(test.NoDBTestCase): def setUp(self): super(HostTestCase, self).setUp() self.useFixture(fakelibvirt.FakeLibvirtFixture()) self.host = host.Host("qemu:///system") @mock.patch.object(fakelibvirt.virConnect, "registerCloseCallback") def test_close_callback(self, mock_close): self.close_callback = None def set_close_callback(cb, opaque): self.close_callback = cb mock_close.side_effect = set_close_callback # verify that the driver registers for the close callback self.host.get_connection() self.assertTrue(self.close_callback) @mock.patch.object(fakelibvirt.virConnect, "registerCloseCallback") def test_close_callback_bad_signature(self, mock_close): '''Validates that a connection to libvirt exist, even when registerCloseCallback method has a different number of arguments in the libvirt python library. ''' mock_close.side_effect = TypeError('dd') connection = self.host.get_connection() self.assertTrue(connection) @mock.patch.object(fakelibvirt.virConnect, "registerCloseCallback") def test_close_callback_not_defined(self, mock_close): '''Validates that a connection to libvirt exist, even when registerCloseCallback method missing from the libvirt python library. ''' mock_close.side_effect = AttributeError('dd') connection = self.host.get_connection() self.assertTrue(connection) @mock.patch.object(fakelibvirt.virConnect, "getLibVersion") def test_broken_connection(self, mock_ver): for (error, domain) in ( (fakelibvirt.VIR_ERR_SYSTEM_ERROR, fakelibvirt.VIR_FROM_REMOTE), (fakelibvirt.VIR_ERR_SYSTEM_ERROR, fakelibvirt.VIR_FROM_RPC), (fakelibvirt.VIR_ERR_INTERNAL_ERROR, fakelibvirt.VIR_FROM_RPC)): conn = self.host._connect("qemu:///system", False) mock_ver.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "Connection broken", error_code=error, error_domain=domain) self.assertFalse(self.host._test_connection(conn)) @mock.patch.object(host, 'LOG') def test_connect_auth_cb_exception(self, log_mock): creds = dict(authname='nova', password='verybadpass') self.assertRaises(exception.NovaException, self.host._connect_auth_cb, creds, False) self.assertEqual(0, len(log_mock.method_calls), 'LOG should not be used in _connect_auth_cb.') @mock.patch.object(greenthread, 'spawn_after') def test_event_dispatch(self, mock_spawn_after): # Validate that the libvirt self-pipe for forwarding # events between threads is working sanely def handler(event): got_events.append(event) hostimpl = host.Host("qemu:///system", lifecycle_event_handler=handler) got_events = [] hostimpl._init_events_pipe() event1 = event.LifecycleEvent( "cef19ce0-0ca2-11df-855d-b19fbce37686", event.EVENT_LIFECYCLE_STARTED) event2 = event.LifecycleEvent( "cef19ce0-0ca2-11df-855d-b19fbce37686", event.EVENT_LIFECYCLE_PAUSED) hostimpl._queue_event(event1) hostimpl._queue_event(event2) hostimpl._dispatch_events() want_events = [event1, event2] self.assertEqual(want_events, got_events) event3 = event.LifecycleEvent( "cef19ce0-0ca2-11df-855d-b19fbce37686", event.EVENT_LIFECYCLE_RESUMED) event4 = event.LifecycleEvent( "cef19ce0-0ca2-11df-855d-b19fbce37686", event.EVENT_LIFECYCLE_STOPPED) hostimpl._queue_event(event3) hostimpl._queue_event(event4) hostimpl._dispatch_events() want_events = [event1, event2, event3] self.assertEqual(want_events, got_events) # STOPPED is delayed so it's handled separately mock_spawn_after.assert_called_once_with( hostimpl._lifecycle_delay, hostimpl._event_emit, event4) def test_event_lifecycle(self): got_events = [] # Validate that libvirt events are correctly translated # to Nova events def spawn_after(seconds, func, *args, **kwargs): got_events.append(args[0]) return mock.Mock(spec=greenthread.GreenThread) greenthread.spawn_after = mock.Mock(side_effect=spawn_after) hostimpl = host.Host("qemu:///system", lifecycle_event_handler=lambda e: None) conn = hostimpl.get_connection() hostimpl._init_events_pipe() fake_dom_xml = """ <domain type='kvm'> <uuid>cef19ce0-0ca2-11df-855d-b19fbce37686</uuid> <devices> <disk type='file'> <source file='filename'/> </disk> </devices> </domain> """ dom = fakelibvirt.Domain(conn, fake_dom_xml, False) hostimpl._event_lifecycle_callback( conn, dom, fakelibvirt.VIR_DOMAIN_EVENT_STOPPED, 0, hostimpl) hostimpl._dispatch_events() self.assertEqual(len(got_events), 1) self.assertIsInstance(got_events[0], event.LifecycleEvent) self.assertEqual(got_events[0].uuid, "cef19ce0-0ca2-11df-855d-b19fbce37686") self.assertEqual(got_events[0].transition, event.EVENT_LIFECYCLE_STOPPED) def test_event_emit_delayed_call_delayed(self): ev = event.LifecycleEvent( "cef19ce0-0ca2-11df-855d-b19fbce37686", event.EVENT_LIFECYCLE_STOPPED) for uri in ("qemu:///system", "xen:///"): spawn_after_mock = mock.Mock() greenthread.spawn_after = spawn_after_mock hostimpl = host.Host(uri, lifecycle_event_handler=lambda e: None) hostimpl._event_emit_delayed(ev) spawn_after_mock.assert_called_once_with( 15, hostimpl._event_emit, ev) @mock.patch.object(greenthread, 'spawn_after') def test_event_emit_delayed_call_delayed_pending(self, spawn_after_mock): hostimpl = host.Host("xen:///", lifecycle_event_handler=lambda e: None) uuid = "cef19ce0-0ca2-11df-855d-b19fbce37686" gt_mock = mock.Mock() hostimpl._events_delayed[uuid] = gt_mock ev = event.LifecycleEvent( uuid, event.EVENT_LIFECYCLE_STOPPED) hostimpl._event_emit_delayed(ev) gt_mock.cancel.assert_called_once_with() self.assertTrue(spawn_after_mock.called) def test_event_delayed_cleanup(self): hostimpl = host.Host("xen:///", lifecycle_event_handler=lambda e: None) uuid = "cef19ce0-0ca2-11df-855d-b19fbce37686" ev = event.LifecycleEvent( uuid, event.EVENT_LIFECYCLE_STARTED) gt_mock = mock.Mock() hostimpl._events_delayed[uuid] = gt_mock hostimpl._event_emit_delayed(ev) gt_mock.cancel.assert_called_once_with() self.assertNotIn(uuid, hostimpl._events_delayed.keys()) @mock.patch.object(fakelibvirt.virConnect, "domainEventRegisterAny") @mock.patch.object(host.Host, "_connect") def test_get_connection_serial(self, mock_conn, mock_event): def get_conn_currency(host): host.get_connection().getLibVersion() def connect_with_block(*a, **k): # enough to allow another connect to run eventlet.sleep(0) self.connect_calls += 1 return fakelibvirt.openAuth("qemu:///system", [[], lambda: 1, None], 0) def fake_register(*a, **k): self.register_calls += 1 self.connect_calls = 0 self.register_calls = 0 mock_conn.side_effect = connect_with_block mock_event.side_effect = fake_register # call serially get_conn_currency(self.host) get_conn_currency(self.host) self.assertEqual(self.connect_calls, 1) self.assertEqual(self.register_calls, 1) @mock.patch.object(fakelibvirt.virConnect, "domainEventRegisterAny") @mock.patch.object(host.Host, "_connect") def test_get_connection_concurrency(self, mock_conn, mock_event): def get_conn_currency(host): host.get_connection().getLibVersion() def connect_with_block(*a, **k): # enough to allow another connect to run eventlet.sleep(0) self.connect_calls += 1 return fakelibvirt.openAuth("qemu:///system", [[], lambda: 1, None], 0) def fake_register(*a, **k): self.register_calls += 1 self.connect_calls = 0 self.register_calls = 0 mock_conn.side_effect = connect_with_block mock_event.side_effect = fake_register # call concurrently thr1 = eventlet.spawn(get_conn_currency, self.host) thr2 = eventlet.spawn(get_conn_currency, self.host) # let threads run eventlet.sleep(0) thr1.wait() thr2.wait() self.assertEqual(self.connect_calls, 1) self.assertEqual(self.register_calls, 1) @mock.patch.object(fakelibvirt.virConnect, "getLibVersion") @mock.patch.object(fakelibvirt.virConnect, "getVersion") @mock.patch.object(fakelibvirt.virConnect, "getType") def test_has_min_version(self, fake_hv_type, fake_hv_ver, fake_lv_ver): fake_lv_ver.return_value = 1002003 fake_hv_ver.return_value = 4005006 fake_hv_type.return_value = 'xyz' lv_ver = (1, 2, 3) hv_ver = (4, 5, 6) hv_type = 'xyz' self.assertTrue(self.host.has_min_version(lv_ver, hv_ver, hv_type)) self.assertFalse(self.host.has_min_version(lv_ver, hv_ver, 'abc')) self.assertFalse(self.host.has_min_version(lv_ver, (4, 5, 7), hv_type)) self.assertFalse(self.host.has_min_version((1, 3, 3), hv_ver, hv_type)) self.assertTrue(self.host.has_min_version(lv_ver, hv_ver, None)) self.assertTrue(self.host.has_min_version(lv_ver, None, hv_type)) self.assertTrue(self.host.has_min_version(None, hv_ver, hv_type)) @mock.patch.object(fakelibvirt.virConnect, "getLibVersion") @mock.patch.object(fakelibvirt.virConnect, "getVersion") @mock.patch.object(fakelibvirt.virConnect, "getType") def test_has_version(self, fake_hv_type, fake_hv_ver, fake_lv_ver): fake_lv_ver.return_value = 1002003 fake_hv_ver.return_value = 4005006 fake_hv_type.return_value = 'xyz' lv_ver = (1, 2, 3) hv_ver = (4, 5, 6) hv_type = 'xyz' self.assertTrue(self.host.has_version(lv_ver, hv_ver, hv_type)) for lv_ver_ in [(1, 2, 2), (1, 2, 4)]: self.assertFalse(self.host.has_version(lv_ver_, hv_ver, hv_type)) for hv_ver_ in [(4, 4, 6), (4, 6, 6)]: self.assertFalse(self.host.has_version(lv_ver, hv_ver_, hv_type)) self.assertFalse(self.host.has_version(lv_ver, hv_ver, 'abc')) self.assertTrue(self.host.has_min_version(lv_ver, hv_ver, None)) self.assertTrue(self.host.has_min_version(lv_ver, None, hv_type)) self.assertTrue(self.host.has_min_version(None, hv_ver, hv_type)) @mock.patch.object(fakelibvirt.virConnect, "lookupByID") def test_get_domain_by_id(self, fake_lookup): dom = fakelibvirt.virDomain(self.host.get_connection(), "<domain id='7'/>") fake_lookup.return_value = dom self.assertEqual(dom, self.host._get_domain_by_id(7)) fake_lookup.assert_called_once_with(7) @mock.patch.object(fakelibvirt.virConnect, "lookupByID") def test_get_domain_by_id_raises(self, fake_lookup): fake_lookup.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, 'Domain not found: no domain with matching id 7', error_code=fakelibvirt.VIR_ERR_NO_DOMAIN, error_domain=fakelibvirt.VIR_FROM_QEMU) self.assertRaises(exception.InstanceNotFound, self.host._get_domain_by_id, 7) fake_lookup.assert_called_once_with(7) @mock.patch.object(fakelibvirt.virConnect, "lookupByName") def test_get_domain_by_name(self, fake_lookup): dom = fakelibvirt.virDomain(self.host.get_connection(), "<domain id='7'/>") fake_lookup.return_value = dom self.assertEqual(dom, self.host._get_domain_by_name("wibble")) fake_lookup.assert_called_once_with("wibble") @mock.patch.object(fakelibvirt.virConnect, "lookupByName") def test_get_domain_by_name_raises(self, fake_lookup): fake_lookup.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, 'Domain not found: no domain with matching name', error_code=fakelibvirt.VIR_ERR_NO_DOMAIN, error_domain=fakelibvirt.VIR_FROM_QEMU) self.assertRaises(exception.InstanceNotFound, self.host._get_domain_by_name, "wibble") fake_lookup.assert_called_once_with("wibble") @mock.patch.object(host.Host, "_get_domain_by_name") def test_get_domain(self, fake_get_domain): dom = fakelibvirt.virDomain(self.host.get_connection(), "<domain id='7'/>") fake_get_domain.return_value = dom instance = objects.Instance(id="124") self.assertEqual(dom, self.host.get_domain(instance)) fake_get_domain.assert_called_once_with("instance-0000007c") @mock.patch.object(host.Host, "_get_domain_by_name") def test_get_guest(self, fake_get_domain): dom = fakelibvirt.virDomain(self.host.get_connection(), "<domain id='7'/>") fake_get_domain.return_value = dom instance = objects.Instance(id="124") guest = self.host.get_guest(instance) self.assertEqual(dom, guest._domain) self.assertIsInstance(guest, libvirt_guest.Guest) fake_get_domain.assert_called_once_with("instance-0000007c") @mock.patch.object(fakelibvirt.Connection, "listAllDomains") def test_list_instance_domains_fast(self, mock_list_all): vm1 = FakeVirtDomain(id=3, name="instance00000001") vm2 = FakeVirtDomain(id=17, name="instance00000002") vm3 = FakeVirtDomain(name="instance00000003") vm4 = FakeVirtDomain(name="instance00000004") def fake_list_all(flags): vms = [] if flags & fakelibvirt.VIR_CONNECT_LIST_DOMAINS_ACTIVE: vms.extend([vm1, vm2]) if flags & fakelibvirt.VIR_CONNECT_LIST_DOMAINS_INACTIVE: vms.extend([vm3, vm4]) return vms mock_list_all.side_effect = fake_list_all doms = self.host._list_instance_domains_fast() mock_list_all.assert_called_once_with( fakelibvirt.VIR_CONNECT_LIST_DOMAINS_ACTIVE) mock_list_all.reset_mock() self.assertEqual(len(doms), 2) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) doms = self.host._list_instance_domains_fast(only_running=False) mock_list_all.assert_called_once_with( fakelibvirt.VIR_CONNECT_LIST_DOMAINS_ACTIVE | fakelibvirt.VIR_CONNECT_LIST_DOMAINS_INACTIVE) self.assertEqual(len(doms), 4) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) self.assertEqual(doms[2].name(), vm3.name()) self.assertEqual(doms[3].name(), vm4.name()) @mock.patch.object(fakelibvirt.Connection, "numOfDomains") @mock.patch.object(fakelibvirt.Connection, "listDefinedDomains") @mock.patch.object(fakelibvirt.Connection, "listDomainsID") @mock.patch.object(host.Host, "_get_domain_by_name") @mock.patch.object(host.Host, "_get_domain_by_id") def test_list_instance_domains_slow(self, mock_get_id, mock_get_name, mock_list_ids, mock_list_names, mock_num_ids): vm1 = FakeVirtDomain(id=3, name="instance00000001") vm2 = FakeVirtDomain(id=17, name="instance00000002") vm3 = FakeVirtDomain(name="instance00000003") vm4 = FakeVirtDomain(name="instance00000004") vms = [vm1, vm2, vm3, vm4] def fake_get_domain_by_id(id): for vm in vms: if vm.ID() == id: return vm raise exception.InstanceNotFound(instance_id=id) def fake_get_domain_by_name(name): for vm in vms: if vm.name() == name: return vm raise exception.InstanceNotFound(instance_id=name) def fake_list_ids(): # Include one ID that no longer exists return [vm1.ID(), vm2.ID(), 666] def fake_list_names(): # Include one name that no longer exists and # one dup from running list to show race in # transition from inactive -> running return [vm1.name(), vm3.name(), vm4.name(), "fishfood"] mock_get_id.side_effect = fake_get_domain_by_id mock_get_name.side_effect = fake_get_domain_by_name mock_list_ids.side_effect = fake_list_ids mock_list_names.side_effect = fake_list_names mock_num_ids.return_value = 2 doms = self.host._list_instance_domains_slow() mock_list_ids.assert_called_once_with() mock_num_ids.assert_called_once_with() self.assertFalse(mock_list_names.called) mock_list_ids.reset_mock() mock_list_names.reset_mock() mock_num_ids.reset_mock() self.assertEqual(len(doms), 2) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) doms = self.host._list_instance_domains_slow(only_running=False) mock_list_ids.assert_called_once_with() mock_num_ids.assert_called_once_with() mock_list_names.assert_called_once_with() self.assertEqual(len(doms), 4) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) self.assertEqual(doms[2].name(), vm3.name()) self.assertEqual(doms[3].name(), vm4.name()) @mock.patch.object(fakelibvirt.Connection, "listAllDomains") @mock.patch.object(fakelibvirt.Connection, "numOfDomains") @mock.patch.object(fakelibvirt.Connection, "listDomainsID") @mock.patch.object(host.Host, "_get_domain_by_id") def test_list_instance_domains_fallback(self, mock_get_id, mock_list_ids, mock_num_ids, mock_list_all): vm1 = FakeVirtDomain(id=3, name="instance00000001") vm2 = FakeVirtDomain(id=17, name="instance00000002") vms = [vm1, vm2] def fake_get_domain_by_id(id): for vm in vms: if vm.ID() == id: return vm raise exception.InstanceNotFound(instance_id=id) def fake_list_doms(): return [vm1.ID(), vm2.ID()] def fake_list_all(flags): ex = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "API is not supported", error_code=fakelibvirt.VIR_ERR_NO_SUPPORT) raise ex mock_get_id.side_effect = fake_get_domain_by_id mock_list_ids.side_effect = fake_list_doms mock_num_ids.return_value = 2 mock_list_all.side_effect = fake_list_all doms = self.host.list_instance_domains() mock_list_all.assert_called_once_with( fakelibvirt.VIR_CONNECT_LIST_DOMAINS_ACTIVE) mock_list_ids.assert_called_once_with() mock_num_ids.assert_called_once_with() self.assertEqual(len(doms), 2) self.assertEqual(doms[0].ID(), vm1.ID()) self.assertEqual(doms[1].ID(), vm2.ID()) @mock.patch.object(host.Host, "_list_instance_domains_fast") def test_list_instance_domains_filtering(self, mock_list): vm0 = FakeVirtDomain(id=0, name="Domain-0") # Xen dom-0 vm1 = FakeVirtDomain(id=3, name="instance00000001") vm2 = FakeVirtDomain(id=17, name="instance00000002") vm3 = FakeVirtDomain(name="instance00000003") vm4 = FakeVirtDomain(name="instance00000004") mock_list.return_value = [vm0, vm1, vm2] doms = self.host.list_instance_domains() self.assertEqual(len(doms), 2) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) mock_list.assert_called_with(True) mock_list.return_value = [vm0, vm1, vm2, vm3, vm4] doms = self.host.list_instance_domains(only_running=False) self.assertEqual(len(doms), 4) self.assertEqual(doms[0].name(), vm1.name()) self.assertEqual(doms[1].name(), vm2.name()) self.assertEqual(doms[2].name(), vm3.name()) self.assertEqual(doms[3].name(), vm4.name()) mock_list.assert_called_with(False) mock_list.return_value = [vm0, vm1, vm2] doms = self.host.list_instance_domains(only_guests=False) self.assertEqual(len(doms), 3) self.assertEqual(doms[0].name(), vm0.name()) self.assertEqual(doms[1].name(), vm1.name()) self.assertEqual(doms[2].name(), vm2.name()) mock_list.assert_called_with(True) def test_cpu_features_bug_1217630(self): self.host.get_connection() # Test old version of libvirt, it shouldn't see the `aes' feature with mock.patch('nova.virt.libvirt.host.libvirt') as mock_libvirt: del mock_libvirt.VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES caps = self.host.get_capabilities() self.assertNotIn('aes', [x.name for x in caps.host.cpu.features]) # Cleanup the capabilities cache firstly self.host._caps = None # Test new version of libvirt, should find the `aes' feature with mock.patch('nova.virt.libvirt.host.libvirt') as mock_libvirt: mock_libvirt['VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES'] = 1 caps = self.host.get_capabilities() self.assertIn('aes', [x.name for x in caps.host.cpu.features]) def test_cpu_features_are_not_duplicated(self): self.host.get_connection() # Test old version of libvirt. Should return single 'hypervisor' with mock.patch('nova.virt.libvirt.host.libvirt') as mock_libvirt: del mock_libvirt.VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES caps = self.host.get_capabilities() cnt = [x.name for x in caps.host.cpu.features].count('xtpr') self.assertEqual(1, cnt) # Cleanup the capabilities cache firstly self.host._caps = None # Test new version of libvirt. Should still return single 'hypervisor' with mock.patch('nova.virt.libvirt.host.libvirt') as mock_libvirt: mock_libvirt['VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES'] = 1 caps = self.host.get_capabilities() cnt = [x.name for x in caps.host.cpu.features].count('xtpr') self.assertEqual(1, cnt) def test_baseline_cpu_not_supported(self): # Handle just the NO_SUPPORT error not_supported_exc = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, 'this function is not supported by the connection driver:' ' virConnectBaselineCPU', error_code=fakelibvirt.VIR_ERR_NO_SUPPORT) with mock.patch.object(fakelibvirt.virConnect, 'baselineCPU', side_effect=not_supported_exc): caps = self.host.get_capabilities() self.assertEqual(vconfig.LibvirtConfigCaps, type(caps)) self.assertNotIn('aes', [x.name for x in caps.host.cpu.features]) # Clear cached result so we can test again... self.host._caps = None # Other errors should not be caught other_exc = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, 'other exc', error_code=fakelibvirt.VIR_ERR_NO_DOMAIN) with mock.patch.object(fakelibvirt.virConnect, 'baselineCPU', side_effect=other_exc): self.assertRaises(fakelibvirt.libvirtError, self.host.get_capabilities) def test_lxc_get_host_capabilities_failed(self): with mock.patch.object(fakelibvirt.virConnect, 'baselineCPU', return_value=-1): caps = self.host.get_capabilities() self.assertEqual(vconfig.LibvirtConfigCaps, type(caps)) self.assertNotIn('aes', [x.name for x in caps.host.cpu.features]) @mock.patch.object(fakelibvirt.virConnect, "getHostname") def test_get_hostname_caching(self, mock_hostname): mock_hostname.return_value = "foo" self.assertEqual('foo', self.host.get_hostname()) mock_hostname.assert_called_with() mock_hostname.reset_mock() mock_hostname.return_value = "bar" self.assertEqual('foo', self.host.get_hostname()) mock_hostname.assert_called_with() @mock.patch.object(fakelibvirt.virConnect, "getType") def test_get_driver_type(self, mock_type): mock_type.return_value = "qemu" self.assertEqual("qemu", self.host.get_driver_type()) mock_type.assert_called_once_with() @mock.patch.object(fakelibvirt.virConnect, "getVersion") def test_get_version(self, mock_version): mock_version.return_value = 1005001 self.assertEqual(1005001, self.host.get_version()) mock_version.assert_called_once_with() @mock.patch.object(fakelibvirt.virConnect, "secretLookupByUsage") def test_find_secret(self, mock_sec): """finding secrets with various usage_type.""" expected = [ mock.call(fakelibvirt.VIR_SECRET_USAGE_TYPE_CEPH, 'rbdvol'), mock.call(fakelibvirt.VIR_SECRET_USAGE_TYPE_CEPH, 'cephvol'), mock.call(fakelibvirt.VIR_SECRET_USAGE_TYPE_ISCSI, 'iscsivol'), mock.call(fakelibvirt.VIR_SECRET_USAGE_TYPE_VOLUME, 'vol')] self.host.find_secret('rbd', 'rbdvol') self.host.find_secret('ceph', 'cephvol') self.host.find_secret('iscsi', 'iscsivol') self.host.find_secret('volume', 'vol') self.assertEqual(expected, mock_sec.mock_calls) self.assertRaises(exception.NovaException, self.host.find_secret, "foo", "foovol") mock_sec.side_effect = fakelibvirt.libvirtError("") mock_sec.side_effect.err = (66, ) self.assertIsNone(self.host.find_secret('rbd', 'rbdvol')) @mock.patch.object(fakelibvirt.virConnect, "secretDefineXML") def test_create_secret(self, mock_sec): """creating secrets with various usage_type.""" self.host.create_secret('rbd', 'rbdvol') self.host.create_secret('ceph', 'cephvol') self.host.create_secret('iscsi', 'iscsivol') self.host.create_secret('volume', 'vol') self.assertRaises(exception.NovaException, self.host.create_secret, "foo", "foovol") secret = mock.MagicMock() mock_sec.return_value = secret self.host.create_secret('iscsi', 'iscsivol', password="foo") secret.setValue.assert_called_once_with("foo") @mock.patch('nova.virt.libvirt.host.Host.find_secret') def test_delete_secret(self, mock_find_secret): """deleting secret.""" secret = mock.MagicMock() mock_find_secret.return_value = secret expected = [mock.call('rbd', 'rbdvol'), mock.call().undefine()] self.host.delete_secret('rbd', 'rbdvol') self.assertEqual(expected, mock_find_secret.mock_calls) mock_find_secret.return_value = None self.host.delete_secret("rbd", "rbdvol") def test_get_cpu_count(self): with mock.patch.object(host.Host, "get_connection") as mock_conn: mock_conn().getInfo.return_value = ['zero', 'one', 'two'] self.assertEqual('two', self.host.get_cpu_count()) def test_get_memory_total(self): with mock.patch.object(host.Host, "get_connection") as mock_conn: mock_conn().getInfo.return_value = ['zero', 'one', 'two'] self.assertEqual('one', self.host.get_memory_mb_total()) def test_get_memory_used(self): m = mock.mock_open(read_data=""" MemTotal: 16194180 kB MemFree: 233092 kB MemAvailable: 8892356 kB Buffers: 567708 kB Cached: 8362404 kB SwapCached: 0 kB Active: 8381604 kB """) with contextlib.nested( mock.patch("__builtin__.open", m, create=True), mock.patch.object(host.Host, "get_connection"), mock.patch('sys.platform', 'linux2'), ) as (mock_file, mock_conn, mock_platform): mock_conn().getInfo.return_value = [ arch.X86_64, 15814, 8, 1208, 1, 1, 4, 2] self.assertEqual(6866, self.host.get_memory_mb_used()) def test_get_memory_used_xen(self): self.flags(virt_type='xen', group='libvirt') class DiagFakeDomain(object): def __init__(self, id, memmb): self.id = id self.memmb = memmb def info(self): return [0, 0, self.memmb * 1024] def ID(self): return self.id def name(self): return "instance000001" def UUIDString(self): return str(uuid.uuid4()) m = mock.mock_open(read_data=""" MemTotal: 16194180 kB MemFree: 233092 kB MemAvailable: 8892356 kB Buffers: 567708 kB Cached: 8362404 kB SwapCached: 0 kB Active: 8381604 kB """) with contextlib.nested( mock.patch("__builtin__.open", m, create=True), mock.patch.object(host.Host, "list_instance_domains"), mock.patch.object(libvirt_driver.LibvirtDriver, "_conn"), mock.patch('sys.platform', 'linux2'), ) as (mock_file, mock_list, mock_conn, mock_platform): mock_list.return_value = [ DiagFakeDomain(0, 15814), DiagFakeDomain(1, 750), DiagFakeDomain(2, 1042)] mock_conn.getInfo.return_value = [ arch.X86_64, 15814, 8, 1208, 1, 1, 4, 2] self.assertEqual(8657, self.host.get_memory_mb_used()) mock_list.assert_called_with(only_guests=False) def test_get_cpu_stats(self): stats = self.host.get_cpu_stats() self.assertEqual( {'kernel': 5664160000000, 'idle': 1592705190000000, 'frequency': 800, 'user': 26728850000000, 'iowait': 6121490000000}, stats) @mock.patch.object(fakelibvirt.virConnect, "defineXML") def test_write_instance_config(self, mock_defineXML): xml = "<x><name>foo</name></x>" self.host.write_instance_config(xml) mock_defineXML.assert_called_once_with(xml) @mock.patch.object(fakelibvirt.virConnect, "nodeDeviceLookupByName") def test_device_lookup_by_name(self, mock_nodeDeviceLookupByName): self.host.device_lookup_by_name("foo") mock_nodeDeviceLookupByName.assert_called_once_with("foo") @mock.patch.object(fakelibvirt.virConnect, "listDevices") def test_list_pci_devices(self, mock_listDevices): self.host.list_pci_devices(8) mock_listDevices.assert_called_once_with('pci', 8) @mock.patch.object(fakelibvirt.virConnect, "compareCPU") def test_compare_cpu(self, mock_compareCPU): self.host.compare_cpu("cpuxml") mock_compareCPU.assert_called_once_with("cpuxml", 0) class DomainJobInfoTestCase(test.NoDBTestCase): def setUp(self): super(DomainJobInfoTestCase, self).setUp() self.useFixture(fakelibvirt.FakeLibvirtFixture()) self.conn = fakelibvirt.openAuth("qemu:///system", [[], lambda: True]) xml = ("<domain type='kvm'>" " <name>instance-0000000a</name>" "</domain>") self.dom = self.conn.createXML(xml, 0) host.DomainJobInfo._have_job_stats = True @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_stats(self, mock_stats, mock_info): mock_stats.return_value = { "type": fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, "memory_total": 75, "memory_processed": 50, "memory_remaining": 33, "some_new_libvirt_stat_we_dont_know_about": 83 } info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, info.type) self.assertEqual(75, info.memory_total) self.assertEqual(50, info.memory_processed) self.assertEqual(33, info.memory_remaining) self.assertEqual(0, info.disk_total) self.assertEqual(0, info.disk_processed) self.assertEqual(0, info.disk_remaining) mock_stats.assert_called_once_with() self.assertFalse(mock_info.called) @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_info_no_support(self, mock_stats, mock_info): mock_stats.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "virDomainGetJobStats not implemented", fakelibvirt.VIR_ERR_NO_SUPPORT) mock_info.return_value = [ fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, 100, 99, 10, 11, 12, 75, 50, 33, 1, 2, 3] info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, info.type) self.assertEqual(100, info.time_elapsed) self.assertEqual(99, info.time_remaining) self.assertEqual(10, info.data_total) self.assertEqual(11, info.data_processed) self.assertEqual(12, info.data_remaining) self.assertEqual(75, info.memory_total) self.assertEqual(50, info.memory_processed) self.assertEqual(33, info.memory_remaining) self.assertEqual(1, info.disk_total) self.assertEqual(2, info.disk_processed) self.assertEqual(3, info.disk_remaining) mock_stats.assert_called_once_with() mock_info.assert_called_once_with() @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_info_attr_error(self, mock_stats, mock_info): mock_stats.side_effect = AttributeError("No such API") mock_info.return_value = [ fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, 100, 99, 10, 11, 12, 75, 50, 33, 1, 2, 3] info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_UNBOUNDED, info.type) self.assertEqual(100, info.time_elapsed) self.assertEqual(99, info.time_remaining) self.assertEqual(10, info.data_total) self.assertEqual(11, info.data_processed) self.assertEqual(12, info.data_remaining) self.assertEqual(75, info.memory_total) self.assertEqual(50, info.memory_processed) self.assertEqual(33, info.memory_remaining) self.assertEqual(1, info.disk_total) self.assertEqual(2, info.disk_processed) self.assertEqual(3, info.disk_remaining) mock_stats.assert_called_once_with() mock_info.assert_called_once_with() @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_stats_no_domain(self, mock_stats, mock_info): mock_stats.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "No such domain with UUID blah", fakelibvirt.VIR_ERR_NO_DOMAIN) info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_COMPLETED, info.type) self.assertEqual(0, info.time_elapsed) self.assertEqual(0, info.time_remaining) self.assertEqual(0, info.memory_total) self.assertEqual(0, info.memory_processed) self.assertEqual(0, info.memory_remaining) mock_stats.assert_called_once_with() self.assertFalse(mock_info.called) @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_info_no_domain(self, mock_stats, mock_info): mock_stats.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "virDomainGetJobStats not implemented", fakelibvirt.VIR_ERR_NO_SUPPORT) mock_info.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "No such domain with UUID blah", fakelibvirt.VIR_ERR_NO_DOMAIN) info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_COMPLETED, info.type) self.assertEqual(0, info.time_elapsed) self.assertEqual(0, info.time_remaining) self.assertEqual(0, info.memory_total) self.assertEqual(0, info.memory_processed) self.assertEqual(0, info.memory_remaining) mock_stats.assert_called_once_with() mock_info.assert_called_once_with() @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_stats_operation_invalid(self, mock_stats, mock_info): mock_stats.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "Domain is not running", fakelibvirt.VIR_ERR_OPERATION_INVALID) info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_COMPLETED, info.type) self.assertEqual(0, info.time_elapsed) self.assertEqual(0, info.time_remaining) self.assertEqual(0, info.memory_total) self.assertEqual(0, info.memory_processed) self.assertEqual(0, info.memory_remaining) mock_stats.assert_called_once_with() self.assertFalse(mock_info.called) @mock.patch.object(fakelibvirt.virDomain, "jobInfo") @mock.patch.object(fakelibvirt.virDomain, "jobStats") def test_job_info_operation_invalid(self, mock_stats, mock_info): mock_stats.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "virDomainGetJobStats not implemented", fakelibvirt.VIR_ERR_NO_SUPPORT) mock_info.side_effect = fakelibvirt.make_libvirtError( fakelibvirt.libvirtError, "Domain is not running", fakelibvirt.VIR_ERR_OPERATION_INVALID) info = host.DomainJobInfo.for_domain(self.dom) self.assertIsInstance(info, host.DomainJobInfo) self.assertEqual(fakelibvirt.VIR_DOMAIN_JOB_COMPLETED, info.type) self.assertEqual(0, info.time_elapsed) self.assertEqual(0, info.time_remaining) self.assertEqual(0, info.memory_total) self.assertEqual(0, info.memory_processed) self.assertEqual(0, info.memory_remaining) mock_stats.assert_called_once_with() mock_info.assert_called_once_with()
apache-2.0
Mj258/weiboapi
srapyDemo/envs/Lib/site-packages/twisted/web/test/test_util.py
5
11900
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.web.util}. """ from __future__ import absolute_import, division from twisted.python.failure import Failure from twisted.trial.unittest import TestCase from twisted.internet import defer from twisted.python.compat import _PY3, intToBytes, networkString from twisted.web import resource, util from twisted.web.error import FlattenerError from twisted.web.http import FOUND from twisted.web.server import Request from twisted.web.template import TagLoader, flattenString, tags from twisted.web.test.requesthelper import DummyChannel, DummyRequest from twisted.web.util import DeferredResource from twisted.web.util import _SourceFragmentElement, _FrameElement from twisted.web.util import _StackElement, FailureElement, formatFailure from twisted.web.util import redirectTo, _SourceLineElement class RedirectToTests(TestCase): """ Tests for L{redirectTo}. """ def test_headersAndCode(self): """ L{redirectTo} will set the C{Location} and C{Content-Type} headers on its request, and set the response code to C{FOUND}, so the browser will be redirected. """ request = Request(DummyChannel(), True) request.method = b'GET' targetURL = b"http://target.example.com/4321" redirectTo(targetURL, request) self.assertEqual(request.code, FOUND) self.assertEqual( request.responseHeaders.getRawHeaders(b'location'), [targetURL]) self.assertEqual( request.responseHeaders.getRawHeaders(b'content-type'), [b'text/html; charset=utf-8']) def test_redirectToUnicodeURL(self) : """ L{redirectTo} will raise TypeError if unicode object is passed in URL """ request = Request(DummyChannel(), True) request.method = b'GET' targetURL = u'http://target.example.com/4321' self.assertRaises(TypeError, redirectTo, targetURL, request) class FailureElementTests(TestCase): """ Tests for L{FailureElement} and related helpers which can render a L{Failure} as an HTML string. """ def setUp(self): """ Create a L{Failure} which can be used by the rendering tests. """ def lineNumberProbeAlsoBroken(): message = "This is a problem" raise Exception(message) # Figure out the line number from which the exception will be raised. self.base = lineNumberProbeAlsoBroken.__code__.co_firstlineno + 1 try: lineNumberProbeAlsoBroken() except: self.failure = Failure(captureVars=True) self.frame = self.failure.frames[-1] def test_sourceLineElement(self): """ L{_SourceLineElement} renders a source line and line number. """ element = _SourceLineElement( TagLoader(tags.div( tags.span(render="lineNumber"), tags.span(render="sourceLine"))), 50, " print 'hello'") d = flattenString(None, element) expected = ( u"<div><span>50</span><span>" u" \N{NO-BREAK SPACE} \N{NO-BREAK SPACE}print 'hello'</span></div>") d.addCallback( self.assertEqual, expected.encode('utf-8')) return d def test_sourceFragmentElement(self): """ L{_SourceFragmentElement} renders source lines at and around the line number indicated by a frame object. """ element = _SourceFragmentElement( TagLoader(tags.div( tags.span(render="lineNumber"), tags.span(render="sourceLine"), render="sourceLines")), self.frame) source = [ u' \N{NO-BREAK SPACE} \N{NO-BREAK SPACE}message = ' u'"This is a problem"', u' \N{NO-BREAK SPACE} \N{NO-BREAK SPACE}raise Exception(message)', u'# Figure out the line number from which the exception will be ' u'raised.', ] d = flattenString(None, element) if _PY3: stringToCheckFor = ''.join([ '<div class="snippet%sLine"><span>%d</span><span>%s</span>' '</div>' % ( ["", "Highlight"][lineNumber == 1], self.base + lineNumber, (u" \N{NO-BREAK SPACE}" * 4 + sourceLine)) for (lineNumber, sourceLine) in enumerate(source)]).encode("utf8") else: stringToCheckFor = ''.join([ '<div class="snippet%sLine"><span>%d</span><span>%s</span>' '</div>' % ( ["", "Highlight"][lineNumber == 1], self.base + lineNumber, (u" \N{NO-BREAK SPACE}" * 4 + sourceLine).encode('utf8')) for (lineNumber, sourceLine) in enumerate(source)]) d.addCallback(self.assertEqual, stringToCheckFor) return d def test_frameElementFilename(self): """ The I{filename} renderer of L{_FrameElement} renders the filename associated with the frame object used to initialize the L{_FrameElement}. """ element = _FrameElement( TagLoader(tags.span(render="filename")), self.frame) d = flattenString(None, element) d.addCallback( # __file__ differs depending on whether an up-to-date .pyc file # already existed. self.assertEqual, b"<span>" + networkString(__file__.rstrip('c')) + b"</span>") return d def test_frameElementLineNumber(self): """ The I{lineNumber} renderer of L{_FrameElement} renders the line number associated with the frame object used to initialize the L{_FrameElement}. """ element = _FrameElement( TagLoader(tags.span(render="lineNumber")), self.frame) d = flattenString(None, element) d.addCallback( self.assertEqual, b"<span>" + intToBytes(self.base + 1) + b"</span>") return d def test_frameElementFunction(self): """ The I{function} renderer of L{_FrameElement} renders the line number associated with the frame object used to initialize the L{_FrameElement}. """ element = _FrameElement( TagLoader(tags.span(render="function")), self.frame) d = flattenString(None, element) d.addCallback( self.assertEqual, b"<span>lineNumberProbeAlsoBroken</span>") return d def test_frameElementSource(self): """ The I{source} renderer of L{_FrameElement} renders the source code near the source filename/line number associated with the frame object used to initialize the L{_FrameElement}. """ element = _FrameElement(None, self.frame) renderer = element.lookupRenderMethod("source") tag = tags.div() result = renderer(None, tag) self.assertIsInstance(result, _SourceFragmentElement) self.assertIdentical(result.frame, self.frame) self.assertEqual([tag], result.loader.load()) def test_stackElement(self): """ The I{frames} renderer of L{_StackElement} renders each stack frame in the list of frames used to initialize the L{_StackElement}. """ element = _StackElement(None, self.failure.frames[:2]) renderer = element.lookupRenderMethod("frames") tag = tags.div() result = renderer(None, tag) self.assertIsInstance(result, list) self.assertIsInstance(result[0], _FrameElement) self.assertIdentical(result[0].frame, self.failure.frames[0]) self.assertIsInstance(result[1], _FrameElement) self.assertIdentical(result[1].frame, self.failure.frames[1]) # They must not share the same tag object. self.assertNotEqual(result[0].loader.load(), result[1].loader.load()) self.assertEqual(2, len(result)) def test_failureElementTraceback(self): """ The I{traceback} renderer of L{FailureElement} renders the failure's stack frames using L{_StackElement}. """ element = FailureElement(self.failure) renderer = element.lookupRenderMethod("traceback") tag = tags.div() result = renderer(None, tag) self.assertIsInstance(result, _StackElement) self.assertIdentical(result.stackFrames, self.failure.frames) self.assertEqual([tag], result.loader.load()) def test_failureElementType(self): """ The I{type} renderer of L{FailureElement} renders the failure's exception type. """ element = FailureElement( self.failure, TagLoader(tags.span(render="type"))) d = flattenString(None, element) if _PY3: exc = b"builtins.Exception" else: exc = b"exceptions.Exception" d.addCallback( self.assertEqual, b"<span>" + exc + b"</span>") return d def test_failureElementValue(self): """ The I{value} renderer of L{FailureElement} renders the value's exception value. """ element = FailureElement( self.failure, TagLoader(tags.span(render="value"))) d = flattenString(None, element) d.addCallback( self.assertEqual, b'<span>This is a problem</span>') return d class FormatFailureTests(TestCase): """ Tests for L{twisted.web.util.formatFailure} which returns an HTML string representing the L{Failure} instance passed to it. """ def test_flattenerError(self): """ If there is an error flattening the L{Failure} instance, L{formatFailure} raises L{FlattenerError}. """ self.assertRaises(FlattenerError, formatFailure, object()) def test_returnsBytes(self): """ The return value of L{formatFailure} is a C{str} instance (not a C{unicode} instance) with numeric character references for any non-ASCII characters meant to appear in the output. """ try: raise Exception("Fake bug") except: result = formatFailure(Failure()) self.assertIsInstance(result, bytes) if _PY3: self.assertTrue(all(ch < 128 for ch in result)) else: self.assertTrue(all(ord(ch) < 128 for ch in result)) # Indentation happens to rely on NO-BREAK SPACE self.assertIn(b"&#160;", result) class SDResource(resource.Resource): def __init__(self,default): self.default = default def getChildWithDefault(self, name, request): d = defer.succeed(self.default) resource = util.DeferredResource(d) return resource.getChildWithDefault(name, request) class DeferredResourceTests(TestCase): """ Tests for L{DeferredResource}. """ def testDeferredResource(self): r = resource.Resource() r.isLeaf = 1 s = SDResource(r) d = DummyRequest(['foo', 'bar', 'baz']) resource.getChildForRequest(s, d) self.assertEqual(d.postpath, ['bar', 'baz']) def test_render(self): """ L{DeferredResource} uses the request object's C{render} method to render the resource which is the result of the L{Deferred} being handled. """ rendered = [] request = DummyRequest([]) request.render = rendered.append result = resource.Resource() deferredResource = DeferredResource(defer.succeed(result)) deferredResource.render(request) self.assertEqual(rendered, [result])
mit
editxt/editxt
resources/syntax/scss.syntax.py
1
7181
# -*- coding: UTF-8 -*- # Syntax definition automatically generated by hljs2xt.py # source: scss.js name = 'SCSS' file_patterns = ['*.scss'] flags = re.IGNORECASE | re.MULTILINE class comment: default_text_color = DELIMITER rules = [ # ignore {'begin': {'pattern': "\\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\\b", 'type': 'RegExp'}}, ('doctag', [RE(r"(?:TODO|FIXME|NOTE|BUG|XXX):")]), ] selector_tag = [ RE(r"\b(?:a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(?:h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\b"), ] variable = ('variable', [RE(r"(?:\$[a-zA-Z-][a-zA-Z0-9_-]*)\b")]) attribute = [ RE(r"\b(?:z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\b"), ] number = ('number', [RE(r"#[0-9A-Fa-f]+")]) number0 = [ RE(r"\b\d+(?:\.\d+)?(?:%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?"), ] number1 = ('number', number0) operator_escape = ('operator.escape', [RE(r"\\[\s\S]")]) class string: default_text_color = DELIMITER rules = [operator_escape] string0 = ('string', RE(r"\""), [RE(r"\"")], string) string1 = ('string', RE(r"'"), [RE(r"'")], string) class _group4: default_text_color = DELIMITER rules = [ variable, number, number1, string0, string1, ('meta', [RE(r"!important")]), ] keyword = """ mixin include extend for if else each while charset import debug media page content font-face namespace warn """.split() class _group5: default_text_color = DELIMITER rules = [ ('keyword', keyword), variable, string0, string1, number, number1, # ignore {'begin': '\\s[A-Za-z0-9_.-]+', 'relevance': 0}, ] rules = [ ('comment', RE(r"//"), [RE(r"$")], comment), ('comment', RE(r"/\*"), [RE(r"\*/")], comment), ('selector-id', [RE(r"\#[A-Za-z0-9_-]+")]), ('selector-class', [RE(r"\.[A-Za-z0-9_-]+")]), ('selector-attr', RE(r"\["), [RE(r"\]")]), ('selector-tag', selector_tag), # ignore {'begin': ':(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)'}, # ignore {'begin': '::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)'}, variable, ('attribute', attribute), # ignore {'begin': '\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b'}, ('_group4', RE(r":"), [RE(r";")], _group4), ('_group5', RE(r"@"), [RE(r"[{;]")], _group5), ]
gpl-3.0
JeanKossaifi/scikit-learn
sklearn/neighbors/nearest_centroid.py
199
7249
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
willhardy/django
django/db/backends/oracle/compiler.py
59
2044
from django.db.models.sql import compiler class SQLCompiler(compiler.SQLCompiler): def as_sql(self, with_limits=True, with_col_aliases=False, subquery=False): """ Creates the SQL for this query. Returns the SQL string and list of parameters. This is overridden from the original Query class to handle the additional SQL Oracle requires to emulate LIMIT and OFFSET. If 'with_limits' is False, any limit/offset information is not included in the query. """ # The `do_offset` flag indicates whether we need to construct # the SQL needed to use limit/offset with Oracle. do_offset = with_limits and (self.query.high_mark is not None or self.query.low_mark) if not do_offset: sql, params = super(SQLCompiler, self).as_sql( with_limits=False, with_col_aliases=with_col_aliases, subquery=subquery, ) else: sql, params = super(SQLCompiler, self).as_sql( with_limits=False, with_col_aliases=True, subquery=subquery, ) # Wrap the base query in an outer SELECT * with boundaries on # the "_RN" column. This is the canonical way to emulate LIMIT # and OFFSET on Oracle. high_where = '' if self.query.high_mark is not None: high_where = 'WHERE ROWNUM <= %d' % (self.query.high_mark,) sql = ( 'SELECT * FROM (SELECT "_SUB".*, ROWNUM AS "_RN" FROM (%s) ' '"_SUB" %s) WHERE "_RN" > %d' % (sql, high_where, self.query.low_mark) ) return sql, params class SQLInsertCompiler(compiler.SQLInsertCompiler, SQLCompiler): pass class SQLDeleteCompiler(compiler.SQLDeleteCompiler, SQLCompiler): pass class SQLUpdateCompiler(compiler.SQLUpdateCompiler, SQLCompiler): pass class SQLAggregateCompiler(compiler.SQLAggregateCompiler, SQLCompiler): pass
bsd-3-clause
nysan/yocto-autobuilder
lib/python2.6/site-packages/buildbot-0.8.4p1-py2.6.egg/buildbot/cache.py
4
2588
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from buildbot.util import lru class CacheManager(object): """ A manager for a collection of caches, each for different types of objects and with potentially-overlapping key spaces. There is generally only one instance of this class, available at C{master.caches}. """ # a cache of length one still has many benefits: it collects objects that # remain referenced elsewhere; it collapses simultaneous misses into one # miss function; and it will optimize repeated fetches of the same object. DEFAULT_CACHE_SIZE = 1 def __init__(self): self.config = {} self._caches = {} def get_cache(self, cache_name, miss_fn): """ Get an L{AsyncLRUCache} object with the given name. If such an object does not exist, it will be created. Since the cache is permanent, this method can be called only once, e.g., in C{startService}, and it value stored indefinitely. @param cache_name: name of the cache (usually the name of the type of object it stores) @param miss_fn: miss function for the cache; see L{AsyncLRUCache} constructor. @returns: L{AsyncLRUCache} instance """ try: return self._caches[cache_name] except KeyError: max_size = self.config.get(cache_name, self.DEFAULT_CACHE_SIZE) assert max_size >= 1 c = self._caches[cache_name] = lru.AsyncLRUCache(miss_fn, max_size) return c def load_config(self, new_config): self.config = new_config for name, cache in self._caches.iteritems(): cache.set_max_size(new_config.get(name, self.DEFAULT_CACHE_SIZE)) def get_metrics(self): return dict([ (n, dict(hits=c.hits, refhits=c.refhits, misses=c.misses)) for n, c in self._caches.iteritems()])
gpl-2.0
liveaverage/baruwa
src/baruwa/messages/management/commands/updatesarules.py
1
2104
# # Baruwa - Web 2.0 MailScanner front-end. # Copyright (C) 2010-2012 Andrew Colin Kissa <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # vim: ai ts=4 sts=4 et sw=4 # import re import os import glob from django.core.management.base import NoArgsCommand from django.utils.translation import ugettext as _ from django.db import IntegrityError from django.conf import settings from baruwa.messages.models import SaRules class Command(NoArgsCommand): "update the rules table" help = _("Updates the database with the spam descriptions") def handle_noargs(self, **options): search_dirs = getattr(settings, 'SA_RULES_DIRS', []) regex = re.compile(r'^describe\s+(\S+)\s+(.+)$') for dirc in search_dirs: if not dirc.endswith(os.sep): dirc = dirc + os.sep for the_file in glob.glob(dirc + '*.cf'): rule_file = open(the_file, 'r') for line in rule_file.readlines(): match = regex.match(line) if match: print match.groups()[0] + ' ' + match.groups()[1] rule = SaRules(rule=match.groups()[0], rule_desc=match.groups()[1]) try: rule.save() except IntegrityError: pass rule_file.close()
gpl-2.0
shikil/sympy
sympy/utilities/tests/test_pytest.py
105
1601
from sympy.utilities.pytest import raises, USE_PYTEST if USE_PYTEST: import py.test pytestmark = py.test.mark.skipif(USE_PYTEST, reason=("using py.test")) # Test callables def test_expected_exception_is_silent_callable(): def f(): raise ValueError() raises(ValueError, f) def test_lack_of_exception_triggers_AssertionError_callable(): try: raises(Exception, lambda: 1 + 1) assert False except AssertionError as e: assert str(e) == "DID NOT RAISE" def test_unexpected_exception_is_passed_through_callable(): def f(): raise ValueError("some error message") try: raises(TypeError, f) assert False except ValueError as e: assert str(e) == "some error message" # Test with statement def test_expected_exception_is_silent_with(): with raises(ValueError): raise ValueError() def test_lack_of_exception_triggers_AssertionError_with(): try: with raises(Exception): 1 + 1 assert False except AssertionError as e: assert str(e) == "DID NOT RAISE" def test_unexpected_exception_is_passed_through_with(): try: with raises(TypeError): raise ValueError("some error message") assert False except ValueError as e: assert str(e) == "some error message" # Now we can use raises() instead of try/catch # to test that a specific exception class is raised def test_second_argument_should_be_callable_or_string(): raises(TypeError, lambda: raises("irrelevant", 42))
bsd-3-clause
LeartS/odoo
openerp/report/render/rml2txt/utils.py
443
4710
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy import re import reportlab import reportlab.lib.units from openerp.tools.safe_eval import safe_eval as eval _regex = re.compile('\[\[(.+?)\]\]') def _child_get(node, self=None, tagname=None): for n in node: if self and self.localcontext and n.get('rml_loop', False): oldctx = self.localcontext for ctx in eval(n.get('rml_loop'),{}, self.localcontext): self.localcontext.update(ctx) if (tagname is None) or (n.tag==tagname): if n.get('rml_except', False): try: eval(n.get('rml_except'), {}, self.localcontext) except Exception: continue if n.get('rml_tag'): try: (tag,attr) = eval(n.get('rml_tag'),{}, self.localcontext) n2 = copy.copy(n) n2.tag = tag n2.attrib.update(attr) yield n2 except Exception: yield n else: yield n self.localcontext = oldctx continue if self and self.localcontext and n.get('rml_except', False): try: eval(n.get('rml_except'), {}, self.localcontext) except Exception: continue if (tagname is None) or (n.tag==tagname): yield n def _process_text(self, txt): if not self.localcontext: return txt if not txt: return '' result = '' sps = _regex.split(txt) while sps: # This is a simple text to translate result += self.localcontext.get('translate', lambda x:x)(sps.pop(0)) if sps: try: txt2 = eval(sps.pop(0),self.localcontext) except Exception: txt2 = '' if isinstance(txt2, (int, float)): txt2 = str(txt2) if isinstance(txt2, basestring): result += txt2 return result def text_get(node): rc = '' for node in node.getchildren(): rc = rc + node.text return rc units = [ (re.compile('^(-?[0-9\.]+)\s*in$'), reportlab.lib.units.inch), (re.compile('^(-?[0-9\.]+)\s*cm$'), reportlab.lib.units.cm), (re.compile('^(-?[0-9\.]+)\s*mm$'), reportlab.lib.units.mm), (re.compile('^(-?[0-9\.]+)\s*$'), 1) ] def unit_get(size): global units if size: for unit in units: res = unit[0].search(size, 0) if res: return unit[1]*float(res.group(1)) return False def tuple_int_get(node, attr_name, default=None): if not node.get(attr_name): return default res = [int(x) for x in node.get(attr_name).split(',')] return res def bool_get(value): return (str(value)=="1") or (value.lower()=='yes') def attr_get(node, attrs, dict=None): if dict is None: dict = {} res = {} for name in attrs: if node.get(name): res[name] = unit_get(node.get(name)) for key in dict: if node.get(key): if dict[key]=='str': res[key] = str(node.get(key)) elif dict[key]=='bool': res[key] = bool_get(node.get(key)) elif dict[key]=='int': res[key] = int(node.get(key)) elif dict[key]=='unit': res[key] = unit_get(node.get(key)) return res # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
andrescodas/casadi
test/python/function.py
1
39929
# # This file is part of CasADi. # # CasADi -- A symbolic framework for dynamic optimization. # Copyright (C) 2010-2014 Joel Andersson, Joris Gillis, Moritz Diehl, # K.U. Leuven. All rights reserved. # Copyright (C) 2011-2014 Greg Horn # # CasADi is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # # CasADi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with CasADi; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # from casadi import * import casadi as c import numpy import unittest from types import * from helpers import * scipy_interpolate = False try: import scipy.interpolate scipy.interpolate.RectBivariateSpline scipy_interpolate = True except: pass class Functiontests(casadiTestCase): def test_call_empty(self): x = SX.sym("x",2) fsx = Function("fsx", [x,[]],[x]) x = MX.sym("x",2) fmx1 = Function("fmx1", [x,MX()],[x]) fmx2 = Function("fmx2", [x,[]],[x]) for f in [fsx,fmx1,fmx2]: f(0,0) X = MX.sym("X",2) F = f(X,MX()) g = Function("g", [X],[F]) g(0) x = SX.sym("x",2) fsx = Function("fsx", [x],[x,[]]) x = MX.sym("x",2) fmx1 = Function("fmx1", [x],[x,MX()]) fmx2 = Function("fmx2", [x],[x,[]]) for f in [fsx,fmx1,]: f(0) X = MX.sym("X",2) F = f(X) g = Function("g", [X],F) g(0) def test_MX_funSeed(self): self.message("MX_funSeed") x1 = MX.sym("x",2) y1 = MX.sym("y") x2 = MX.sym("x",2) y2 = MX.sym("y") p= Function("p", [x1,y1,x2,y2],[sin(x1) + y1,sin(x2) + y2]) n1 = DM([4,5]) N1 = 3 n2 = DM([5,7]) N2 = 8 out = p(n1,N1,n2,N2) self.checkarray(sin(n1)+N1,out[0],"output") self.checkarray(sin(n2)+N2,out[1],"output") def test_issue304(self): self.message("regression test for #304") # this code used to segfault x = SX.sym("x") f = Function("f", [x],[x**2,x**3]) X = MX.sym("X") z=f(X) g = Function("g", [X], z).expand() def test_jacobian(self): x = SX.sym("x",3,1) y = SX.sym("y",2,1) f = Function("f", [x,y],[x**2,y,x*y[0]]) g = f.jacobian_old(0, 0) self.assertEqual(g.n_in(),f.n_in()) self.assertEqual(g.n_out(),f.n_out()+1) def test_xfunction(self): x = SX.sym("x",3,1) y = SX.sym("y",2,1) f = Function("f", [x,y],[x**2,y,x*y[0]]) X = MX.sym("x",3,1) Y = MX.sym("y",2,1) F = Function("F", [X,Y],[X**2,Y,X*Y[0]]) self.checkfunction(f,F,inputs=[[0.1,0.7,1.3],[7.1,2.9]],sens_der=False,evals=False) @memory_heavy() def test_jacobians(self): x = SX.sym("x") self.assertEqual(jacobian(5,x).nnz(),0) def test(sp): x = SX.sym("x",sp.size2()) sp2 = jacobian(mtimes(DM.ones(sp),x),x).sparsity() self.checkarray(sp.row(),sp2.row()); self.checkarray(sp.colind(),sp2.colind()); for i in range(5): test(Sparsity.lower(i)) test(Sparsity.lower(i).T) test(Sparsity.dense(i,i)) test(Sparsity.diag(i)) for i in [63,64,65,127,128,129]: d = Sparsity.diag(i) test(d) test(d + Sparsity.rowcol([0],[5],i,i)) b = Sparsity.band(i,-1) + Sparsity.band(i,1) test(b + Sparsity.rowcol([0],[5],i,i)) m = IM.ones(Sparsity.diag(129)) m[:50,0] = 1 m[60:,0] = 1 m[6:9,6] = 1 m[9,9:12] = 1 sp = m[:,:120].sparsity() test(sp) #test(sp.T) m = IM.ones(Sparsity.diag(64)) m[:50,0] = 1 m[60:,0] = 1 sp = m.T[:40,:].sparsity() test(sp) test(sp.T) sp = m[:40,:].sparsity() test(sp) test(sp.T) sp = m.T[:20,:].sparsity() test(sp) test(sp.T) sp = m[:20,:].sparsity() test(sp) test(sp.T) for i in [63,64,65,127,128,129]: test(Sparsity.lower(i)) test(Sparsity.lower(i).T) for n in ([63,64,65,127,128,129] if args.run_slow else [63,64,65]): for m in ([63,64,65,127,128,129] if args.run_slow else [63,64,65]): print((n,m)) sp = Sparsity.dense(n,m) test(sp) random.seed(0) I = IM.ones(sp) for i in range(n): for j in range(m): if random.random()<0.5: I[i,j] = 0 I = sparsify(I) sp_holes = I.sparsity() test(sp_holes) z = IM(sp_holes.size1(), sp_holes.size2()) R = 5 v = [] for r in range(R): h = [z]*5 h[r] = I v.append(horzcat(*h)) d = vertcat(*v) test(d.sparsity()) @memory_heavy() def test_hessians(self): def test(sp): x = SX.sym("x",sp.size2()) self.assertTrue(sp==sp.T) f = Function("f", [x],[mtimes([x.T,DM.ones(sp),x])]) J = f.hessian_old(0, 0) sp2 = J.sparsity_out(0) self.checkarray(sp.row(),sp2.row()) self.checkarray(sp.colind(),sp2.colind()) A = IM([[1,1,0,0,0,0],[1,1,1,0,1,1],[0,1,1,1,0,0],[0,0,1,1,0,1],[0,1,0,0,1,0],[0,1,0,1,0,1]]) A = sparsify(A) C = A.sparsity() test(C) A = IM([[1,0,0,0,0,0],[0,1,1,0,1,1],[0,1,1,1,0,0],[0,0,1,1,0,1],[0,1,0,0,1,0],[0,1,0,1,0,1]]) A = sparsify(A) C = A.sparsity() test(C) A = IM([[1,0,0,0,0,0],[0,1,0,0,1,1],[0,0,1,1,0,0],[0,0,1,1,0,1],[0,1,0,0,1,0],[0,1,0,1,0,1]]) A = sparsify(A) C = A.sparsity() test(C) A = IM([[0,0,0,0,0,0],[0,1,0,0,1,1],[0,0,1,1,0,0],[0,0,1,1,0,1],[0,1,0,0,1,0],[0,1,0,1,0,1]]) A = sparsify(A) C = A.sparsity() test(C) A = IM([[0,0,0,0,0,0],[0,1,0,0,1,0],[0,0,1,1,0,0],[0,0,1,1,0,1],[0,1,0,0,1,0],[0,0,0,1,0,1]]) A = sparsify(A) C = A.sparsity() test(C) for i in [63,64,65,100,127,128,129]: d = Sparsity.diag(i) test(d) test(d + Sparsity.rowcol([0],[5],i,i) + Sparsity.rowcol([5],[0],i,i)) b = Sparsity.band(i,-1) + Sparsity.band(i,1) test(b) test(b + Sparsity.rowcol([0],[5],i,i) + Sparsity.rowcol([5],[0],i,i)) d = Sparsity.dense(i,i) test(d) d = Sparsity.diag(i) + Sparsity.triplet(i,i,[0]*i,list(range(i)))+Sparsity.triplet(i,i,list(range(i)),[0]*i) test(d) sp = Sparsity.dense(i,i) random.seed(0) I = IM.ones(sp) for ii in range(i): for jj in range(i): if random.random()<0.5: I[ii,jj] = 0 I[jj,ii] = 0 I = sparsify(I) sp_holes = I.sparsity() test(sp_holes) z = IM(sp_holes.size1(), sp_holes.size2()) R = 5 v = [] for r in range(R): h = [z]*5 h[r] = I v.append(horzcat(*h)) d = vertcat(*v) test(d.sparsity()) def test_customIO(self): x = SX.sym("x") f = Function('f',[x],[x*x, x],["i0"], ["foo","bar"]) ret = f(i0=12) self.checkarray(DM([144]),ret["foo"]) self.checkarray(DM([12]),ret["bar"]) with self.assertRaises(Exception): f_out["baz"] ret = f(i0=SX(12)) self.checkarray(ret["foo"],DM([144])) self.checkarray(ret["bar"],DM([12])) with self.assertRaises(Exception): self.checkarray(ret["baz"],DM([12])) def test_derivative_simplifications(self): n = 1 x = SX.sym("x",n) M = Function("M", [x],[mtimes((x-DM(list(range(n)))),x.T)]) P = MX.sym("P",n,n) X = MX.sym("X",n) M_X= M(X) Pf = Function("P", [X, P], [mtimes(M_X,P)]) P_P = Pf.jacobian_old(1, 0) self.assertFalse("derivative" in str(P_P)) def test_issue1464(self): n = 6 x = SX.sym("x",n) u = SX.sym("u") N = 9 rk4 = Function("f",[x,u],[x+u]) for XX,XFunction in [(SX,Function),(MX,Function)]: g = [] g2 = [] V = XX.sym("V",(N+1)*n+N) VX,VU = vertsplit(V,[0,(N+1)*n,(N+1)*n+N]) VXk = vertsplit(VX,n) VUk = vertsplit(VU,1) for k in range(N): xf = rk4(VXk[k],VUk[k]) xfp = vertsplit(xf,int(n/2)) vp = vertsplit(VXk[k+1],int(n/2)) g.append(xfp[0] - vp[0]) g.append(xfp[1] - vp[1]) g2.append(xf-VXk[k+1]) for i in range(2): f = XFunction("nlp",[V],[vertcat(*g)],{"ad_weight_sp":i}) assert f.sparsity_jac(0, 0).nnz()==162 f2 = XFunction("nlp",[V],[vertcat(*g2)],{"ad_weight_sp":i}) assert f2.sparsity_jac(0, 0).nnz()==162 def test_callback(self): class mycallback(Callback): def __init__(self, name, opts={}): Callback.__init__(self) self.construct(name, opts) def eval(self,argin): return [argin[0]**2] foo = mycallback("my_f") x = MX.sym('x') y = foo(x) f = Function("f",[x],[y]) out = f(5) self.checkarray(out,25) def test_callback_errors(self): class mycallback(Callback): def __init__(self, name, opts={}): Callback.__init__(self) self.construct(name, opts) def eval(self,argin): raise Exception("foobar") foo = mycallback("my_f") x = MX.sym('x') y = foo(x) f = Function("f",[x],[y]) try: f(3) except Exception as e: self.assertTrue("foobar" in str(e)) def test_mapdict(self): x = SX.sym("x") y = SX.sym("y",2) z = SX.sym("z",2,2) v = SX.sym("z",Sparsity.upper(3)) fun = Function("f",{"x":x,"y":y,"z":z,"v":v,"I":mtimes(z,y)+x,"II":sin(y*x).T,"III":v/x},["x","y","z","v"],["I","II","III"]) n = 2 X = [MX.sym("x") for i in range(n)] Y = [MX.sym("y",2) for i in range(n)] Z = [MX.sym("z",2,2) for i in range(n)] V = [MX.sym("z",Sparsity.upper(3)) for i in range(n)] res = fun.map(n).call({"x":horzcat(*X),"y":horzcat(*Y),"z":horzcat(*Z),"v":horzcat(*V)}) res2 = fun.map(n).call([horzcat(*X),horzcat(*Y),horzcat(*Z),horzcat(*V)]) F = Function("F",X+Y+Z+V,res2) F2 = Function("F",X+Y+Z+V,[res["I"],res["II"],res["III"]]) np.random.seed(0) X_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in X ] Y_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Y ] Z_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Z ] V_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in V ] self.checkfunction(F,F2,inputs=X_+Y_+Z_+V_,jacobian=False,hessian=False,evals=False) @memory_heavy() def test_map_node(self): x = SX.sym("x") y = SX.sym("y",2) z = SX.sym("z",2,2) v = SX.sym("z",Sparsity.upper(3)) fun = Function("f",[x,y,z,v],[mtimes(z,y)+x,sin(y*x).T,v/x]) n = 2 X = [MX.sym("x") for i in range(n)] Y = [MX.sym("y",2) for i in range(n)] Z = [MX.sym("z",2,2) for i in range(n)] V = [MX.sym("z",Sparsity.upper(3)) for i in range(n)] for parallelization in ["serial","openmp","unroll"] if args.run_slow else ["serial"]: print(parallelization) res = fun.map(n, parallelization).call([horzcat(*x) for x in [X,Y,Z,V]]) F = Function("F",X+Y+Z+V,list(map(sin,res))) resref = [[] for i in range(fun.n_out())] for r in zip(X,Y,Z,V): for i,e in enumerate(map(sin,fun.call(r))): resref[i] = resref[i] + [e] Fref = Function("F",X+Y+Z+V,[horzcat(*x) for x in resref]) np.random.seed(0) X_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in X ] Y_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Y ] Z_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Z ] V_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in V ] for f in [F, F.expand('expand_'+F.name())]: self.checkfunction(f,Fref,inputs=X_+Y_+Z_+V_,sparsity_mod=args.run_slow) @memory_heavy() def test_mapsum(self): x = SX.sym("x") y = SX.sym("y",2) z = SX.sym("z",2,2) v = SX.sym("z",Sparsity.upper(3)) fun = Function("f",[x,y,z,v],[mtimes(z,y)+x,sin(y*x).T,v/x]) n = 2 X = [MX.sym("x") for i in range(n)] Y = [MX.sym("y",2) for i in range(n)] Z = [MX.sym("z",2,2) for i in range(n)] V = [MX.sym("z",Sparsity.upper(3)) for i in range(n)] zi = 0 for Z_alt in [Z,[MX()]*3]: zi+= 1 for parallelization in ["serial","openmp","unroll"]: res = fun.mapsum([horzcat(*x) for x in [X,Y,Z_alt,V]],parallelization) # Joris - clean alternative for this? for ad_weight_sp in [0,1]: F = Function("F",X+Y+Z+V,list(map(sin,res)),{"ad_weight": 0,"ad_weight_sp":ad_weight_sp}) resref = [0 for i in range(fun.n_out())] for r in zip(X,Y,Z_alt,V): for i,e in enumerate(fun.call(r)): resref[i] = resref[i] + e Fref = Function("F",X+Y+Z+V,list(map(sin,resref))) np.random.seed(0) X_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in X ] Y_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Y ] Z_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Z ] V_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in V ] inputs = X_+Y_+Z_+V_ self.check_codegen(F,inputs=inputs) for f in [F,toSX_fun(F)]: self.checkfunction(f,Fref,inputs=inputs,sparsity_mod=args.run_slow) @memory_heavy() def test_mapsum2(self): x = SX.sym("x") y = SX.sym("y",2) z = SX.sym("z",2,2) v = SX.sym("z",Sparsity.upper(3)) fun = Function("f",[x,y,z,v],[mtimes(z,y)+x,sin(y*x).T,v/x]) n = 2 X = [MX.sym("x") for i in range(n)] Y = [MX.sym("y",2) for i in range(n)] Z = MX.sym("z",2,2) V = MX.sym("z",Sparsity.upper(3)) for Z_alt in [Z]: for parallelization in ["serial","openmp","unroll"]: for ad_weight_sp in [0,1]: for ad_weight in [0,1]: F = fun.map("map",parallelization,n,[2,3],[0],{"ad_weight_sp":ad_weight_sp,"ad_weight":ad_weight}) resref = [0 for i in range(fun.n_out())] acc = 0 bl = [] cl = [] for r in zip(X,Y,[Z_alt]*n,[V]*n): a,b,c= fun(*r) acc = acc + a bl.append(b) cl.append(c) Fref = Function("F",[horzcat(*X),horzcat(*Y),Z,V],[acc,horzcat(*bl),horzcat(*cl)]) np.random.seed(0) X_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in X ] Y_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Y ] Z_ = DM(Z.sparsity(),np.random.random(Z.nnz())) V_ = DM(V.sparsity(),np.random.random(V.nnz())) inputs = [horzcat(*X_),horzcat(*Y_),Z_,V_] self.check_codegen(F,inputs=inputs) for f in [F,toSX_fun(F)]: self.checkfunction(f,Fref,inputs=inputs,sparsity_mod=args.run_slow) def test_issue1522(self): V = MX.sym("X",2) P = MX.sym("X",0) x = V[0] y = V[1] obj = (x-(x+y))**2 nlp = Function("nlp", [V, P], [obj, MX()], ['x', 'p'], ['f', 'g']) self.assertTrue(nlp.hessian_old(0,0).sparsity_out(0).is_symmetric()) V = MX.sym("X",6) xs = [ V[0:2], V[2:4] ] travels = [ V[4], V[5] ] dist = 0 for j in range(2): dist+=sum1((xs[0]-(xs[j]+travels[j]))**2) nlp = Function("nlp", [V, P], [-dist, MX()], ['x', 'p'], ['f', 'g']) hs = [] for n in [nlp, nlp.expand('nlp_expanded')]: H = n.reverse(1).jacobian_old(0,0,False,True) h = H(der_x=1,adj_f=1)[H.name_out(0)] hs.append(h) self.checkarray(*hs) def test_repmatnode(self): x = MX.sym("x",2) y = sin(repmat(x**2,1,3)) z = MX.sym("y",2,2) F = Function("f",[x,z],[sum2(sum1(y))]) x = SX.sym("x",2) y = sin(repmat(x**2,1,3)) z = SX.sym("y",2,2) Fref = Function("f",[x,z],[sum2(sum1(y))]) x0 = DM([1,7]) x1 = DM([[3,0],[2,4]]) self.check_codegen(F,inputs=[x0,x1]) self.checkfunction(F,Fref,inputs=[x0,x1]) def test_repsumnode(self): x = MX.sym("x",2) z = MX.sym("y",2,2) F = Function("f",[x,z],[sin(repsum((x**2).T,1,2)),(cos(x**2)*2*x).T]) x = SX.sym("x",2) z = SX.sym("y",2,2) Fref = Function("f",[x,z],[sin(repsum((x**2).T,1,2)),(cos(x**2)*2*x).T]) x0 = DM([1,7]) x1 = DM([[3,0],[2,4]]) self.check_codegen(F,inputs=[x0,x1]) self.checkfunction(F,Fref,inputs=[x0,x1]) def test_unknown_options(self): x = SX.sym("x") with self.assertRaises(Exception): f = SXFunction("f", [x],[x],{"fooo": False}) with self.assertRaises(Exception): f = SXFunction("f", [x],[x],{"ad_weight": "foo"}) if not has_nlpsol("ipopt"): return @known_bug() def test_unknown_options_stringvector(self): x = SX.sym("x") solver = nlpsol("mysolver", "ipopt", {"x":x,"f":x**2}, {"monitor": ["eval_f"]}) with self.assertRaises(Exception): solver = nlpsol("mysolver", "ipopt", {"x":x,"f":x**2}, {"monitor": ["abc"]}) @memory_heavy() def test_mapaccum(self): x = SX.sym("x",2) y = SX.sym("y") z = SX.sym("z",2,2) v = SX.sym("v",Sparsity.upper(3)) fun = Function("f",[x,y,z,v],[mtimes(z,x)+y,sin(y*x).T,v/y]) n = 2 X = MX.sym("x",x.sparsity()) Y = [MX.sym("y",y.sparsity()) for i in range(n)] Z = [MX.sym("z",z.sparsity()) for i in range(n)] V = [MX.sym("v",v.sparsity()) for i in range(n)] np.random.seed(0) X_ = DM(x.sparsity(),np.random.random(x.nnz())) Y_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Y ] Z_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in Z ] V_ = [ DM(i.sparsity(),np.random.random(i.nnz())) for i in V ] for ad_weight in range(2): for ad_weight_sp in range(2): F = fun.mapaccum("map",n,[0],[0],{"ad_weight_sp":ad_weight_sp,"ad_weight": ad_weight}) F.forward(2) XP = X Y0s = [] Y1s = [] Xps = [] for k in range(n): XP, Y0,Y1 = fun(XP,Y[k],Z[k],V[k]) Y0s.append(Y0) Y1s.append(Y1) Xps.append(XP) Fref = Function("f",[X,horzcat(*Y),horzcat(*Z),horzcat(*V)],[horzcat(*Xps),horzcat(*Y0s),horzcat(*Y1s)]) inputs = [X_,horzcat(*Y_),horzcat(*Z_),horzcat(*V_)] for f in [F,toSX_fun(F)]: self.checkfunction(f,Fref,inputs=inputs) self.check_codegen(f,inputs=inputs) fun = Function("f",[y,x,z,v],[mtimes(z,x)+y+c.trace(v)**2,sin(y*x).T,v/y]) for ad_weight in range(2): for ad_weight_sp in range(2): F = fun.mapaccum("map",n,[1,3],[0,2],{"ad_weight_sp":ad_weight_sp,"ad_weight": ad_weight}) XP = X VP = V[0] Y0s = [] Y1s = [] Xps = [] Vps = [] for k in range(n): XP, Y0, VP = fun(Y[k],XP,Z[k],VP) Y0s.append(Y0) Xps.append(XP) Vps.append(VP) Fref = Function("f",[horzcat(*Y),X,horzcat(*Z),V[0]],[horzcat(*Xps),horzcat(*Y0s),horzcat(*Vps)]) inputs = [horzcat(*Y_),X_,horzcat(*Z_),V_[0]] for f in [F,toSX_fun(F)]: self.checkfunction(f,Fref,inputs=inputs) self.check_codegen(f,inputs=inputs) def test_mapaccum_schemes(self): x = SX.sym("x",2) y = SX.sym("y") z = SX.sym("z",2,2) v = SX.sym("v",Sparsity.upper(3)) fun = Function("f",[y,z,x,v],[mtimes(z,x)+y,sin(y*x).T,v/y],["y","z","x","v"],["out0","out1","out2"]) n = 2 F = fun.mapaccum("map",n,[2],[0]) scheme_in_fun = fun.name_in() scheme_out_fun = fun.name_out() scheme_in_F = F.name_in() scheme_out_F = F.name_out() self.assertTrue(len(scheme_in_fun),len(scheme_in_F)) self.assertTrue(len(scheme_out_fun),len(scheme_out_F)) for sf,sF in zip(scheme_in_fun,scheme_in_F): self.assertTrue(sf==sF) for sf,sF in zip(scheme_out_fun,scheme_out_F): self.assertTrue(sf==sF) fun = Function("f",[x,y,z,v],[mtimes(z,x)+y,sin(y*x).T,v/y],["x","y","z","v"],["out0","out1","out2"]) n = 2 F = fun.mapaccum("map",n) self.assertTrue(len(scheme_in_fun),len(scheme_in_F)) self.assertTrue(len(scheme_out_fun),len(scheme_out_F)) for sf,sF in zip(scheme_in_fun,scheme_in_F): self.assertTrue(sf==sF) for sf,sF in zip(scheme_out_fun,scheme_out_F): self.assertTrue(sf==sF) # @requiresPlugin(Importer,"clang") # def test_jitfunction_clang(self): # x = MX.sym("x") # F = Function("f",[x],[x**2],{'jit':True}) # out = F([5]) # self.checkarray(out[0],25) # @requiresPlugin(Importer,"clang") # def test_clang_c(self): # compiler = Importer('../data/helloworld.c', 'clang') # f = external("helloworld_c", compiler) # [v] = f([]) # self.checkarray(2.37683, v, digits=4) # @requiresPlugin(Importer,"clang") # def test_clang_cxx(self): # compiler = Importer('../data/helloworld.cxx', 'clang') # f = external("helloworld_cxx", compiler) # [v] = f([]) # self.checkarray(2.37683, v, digits=4) # @requiresPlugin(Importer,"shell") # def test_shell_c(self): # compiler = Importer('../data/helloworld.c', 'shell') # f = external("helloworld_c", compiler) # [v] = f([]) # self.checkarray(2.37683, v, digits=4) # @requiresPlugin(Importer,"shell") # def test_shell_cxx(self): # opts = {'compiler':'g++'} # compiler = Importer('../data/helloworld.cxx', 'shell', opts) # f = external("helloworld_cxx", compiler) # [v] = f([]) # self.checkarray(2.37683, v, digits=4) def test_depends_on(self): x = SX.sym("x") y = x**2 try: depends_on(x,y) except Exception as e: s = str(e) self.assertTrue("not symbolic" in s) try: Function("f",[y],[x]) except Exception as e: s = str(e) self.assertTrue("not symbolic" in s) def test_1d_interpolant(self): grid = [[0, 1, 1.5, 2, 3]] values = [0, 1, 2, 5, 3] F = interpolant('F', 'linear', grid, values) def same(a, b): return abs(float(a)-b)<1e-8 pairs = [ (3.4,3-0.4*2), (2.4,5-0.4*2), (1.6,2+3*0.1/0.5), (1.4,1+0.4/0.5), (0.4,0.4), (-.6,-0.6) ] X = MX.sym("x") J = Function("F",[X],[F(X)]) for a,r in pairs: self.assertTrue(same(F(a), r)) self.check_codegen(F,inputs=[a]) X = MX.sym("x") J = Function("F",[X],[jacobian(F(X),X)]) pairs = [ (3.4,-2), (2.4,-2), (1.6,6), (1.4,2), (0.4,1), (-.6,1), (1,2), (0.99,1), ] for a,r in pairs: self.assertTrue(same(J(a), r)) self.check_codegen(J,inputs=[a]) def test_2d_interpolant(self): grid = [[0, 1, 4, 5], [0, 2, 3]] values = [0, 1, 8, 3, 10, -11, 12, 13, 20, 31, -42, 53] F = interpolant('F', 'linear', grid, values) a0 = -11+0.4*(31+11) a1 = 12+0.4*(-42-12) pairs = [ (vertcat(1,2), -11), (vertcat(1,3), 31), (vertcat(4,2), 12), (vertcat(4,3), -42), (vertcat(1,2.4), a0), (vertcat(4,2.4), a1), (vertcat(3,2), -11+2.0/3*(12+11)), (vertcat(3,3), 31+2.0/3*(-42-31)), (vertcat(3,2.4), a0+2.0/3*(a1-a0)) ] for a,r in pairs: self.checkarray(F(a), r) self.check_codegen(F,inputs=[a]) X = MX.sym("x",2) J = Function("F",[X],[jacobian(F(X),X)]) jx0 = (12+11)/3.0 jx1 = (-42-31)/3.0 jx2 = (13-12) jx3 = (53+42) jy0 = 31+11 jy1 = -42-12 pairs = [ (vertcat(1,2), vertcat(jx0,jy0)), (vertcat(1,3), vertcat(jx1,jy0)), (vertcat(4,2), vertcat(jx2,jy1)), (vertcat(4,3), vertcat(jx3,jy1)), (vertcat(1,2.4), vertcat(jx0+(jx1-jx0)*0.4, 31+11)), (vertcat(4,2.4), vertcat(jx2+(jx3-jx2)*0.4, -42-12)), (vertcat(3,2), vertcat(jx0,jy0+(jy1-jy0)*2.0/3)), (vertcat(3,3), vertcat(jx1,jy0+(jy1-jy0)*2.0/3)), (vertcat(3,2.4), vertcat(jx0+(jx1-jx0)*0.4,jy0+(jy1-jy0)*2.0/3)), ] for a,r in pairs: self.checkarray(J(a).T, r) self.check_codegen(J,inputs=[a]) def test_1d_interpolant_uniform(self): grid = [[0, 1, 2]] values = [0, 1, 2] for opts in [{"lookup_mode": ["linear"]},{"lookup_mode": ["exact"]}]: F = interpolant('F', 'linear', grid, values, opts) def same(a, b): return abs(float(a)-b)<1e-8 self.assertTrue(same(F(2.4), 2.4)) self.assertTrue(same(F(1.4), 1.4)) self.assertTrue(same(F(0), 0)) self.assertTrue(same(F(1), 1)) self.assertTrue(same(F(2), 2)) self.assertTrue(same(F(6), 6)) self.assertTrue(same(F(0.4), 0.4)) self.assertTrue(same(F(-.6), -.6)) F = interpolant('F', 'linear', [np.linspace(0,1,7)], list(range(7)), {"lookup_mode": ["exact"]}) grid = [[2, 4, 6]] values = [10, 7, 1] for opts in [{"lookup_mode": ["linear"]},{"lookup_mode": ["exact"]}]: F = interpolant('F', 'linear', grid, values, opts) def same(a, b): return abs(float(a)-b)<1e-8 self.assertTrue(same(F(1), 11.5)) self.assertTrue(same(F(2), 10)) self.assertTrue(same(F(3), 8.5)) self.assertTrue(same(F(4), 7)) self.assertTrue(same(F(5), 4)) self.assertTrue(same(F(6), 1)) self.assertTrue(same(F(7), -2)) F = interpolant('F', 'linear', [np.linspace(0,1,7)], list(range(7)), {"lookup_mode": ["exact"]}) def test_2d_interpolant_uniform(self): grid = [[0, 1, 2], [0, 1, 2]] values = [0, 1, 2, 10, 11, 12, 20, 21, 22] for opts in [{"lookup_mode": ["linear","linear"]},{"lookup_mode": ["exact","exact"]}]: F = interpolant('F', 'linear', grid, values, opts) def same(a, b): return abs(float(a)-b)<1e-8 self.assertTrue(same(F([2.4, 0.5]), 7.4)) self.assertTrue(same(F([1.4, 0.5]), 6.4)) self.assertTrue(same(F([0.4, 0.5]), 5.4)) self.assertTrue(same(F([1, 0.5]), 6)) self.assertTrue(same(F([1, 0]), 1)) self.assertTrue(same(F([0, 0]), 0)) self.assertTrue(same(F([0.4, 1]), 10.4)) self.assertTrue(same(F([-.6, 0.5]), 4.4)) self.assertTrue(same(F([-.6, 1.5]), 14.4)) self.assertTrue(same(F([-.6, 2.5]), 24.4)) self.assertTrue(same(F([-.6, 3.5]), 34.4)) @skip(not scipy_interpolate) def test_2d_bspline(self): import scipy.interpolate np.random.seed(0) d_knots = [list(np.linspace(0,1,5)),list(np.linspace(0,1,6))] data = np.random.random([len(e) for e in d_knots]) r = np.meshgrid(*d_knots,indexing='ij') xyz = np.vstack(e.ravel(order='F') for e in r).ravel(order='F') d_flat = data.ravel(order='F') LUT = casadi.interpolant('name','bspline',d_knots,d_flat) LUTJ = LUT.jacobian_old(0, 0) LUTH = LUT.hessian_old(0, 0) self.check_codegen(LUT, [vertcat(0.2,0.3)]) #scipy.interpolate.interpn(d_knots, data, [0.2,0.3], method='splinef2d') interp = scipy.interpolate.RectBivariateSpline(d_knots[0], d_knots[1], data) for x in [0,0.01,0.1,0.2,0.9,0.99,1]: for y in [0,0.01,0.1,0.2,0.9,0.99,1]: m = LUT([x,y]) r = interp.ev(x,y) self.checkarray(m,r) m = LUTJ([x,y])[0] try: r = [interp.ev(x,y, 1, 0), interp.ev(x,y, 0, 1)] except: r = None if r is not None: self.checkarray(m,r) m = LUTH([x,y])[0] try: r = blockcat([[interp.ev(x,y, 2, 0),interp.ev(x,y, 1, 1)],[interp.ev(x,y, 1, 1), interp.ev(x,y, 0, 2)]]) except: r = None if r is not None: self.checkarray(m,r) @skip(not scipy_interpolate) def test_1d_bspline(self): import scipy.interpolate np.random.seed(0) d_knots = [list(np.linspace(0,1,5))] data = np.random.random([len(e) for e in d_knots]) r = np.array(d_knots) xyz = np.vstack(e.ravel(order='F') for e in r).ravel(order='F') d_flat = data.ravel(order='F') LUT = casadi.interpolant('name','bspline',d_knots,d_flat) self.check_codegen(LUT, [0.2]) LUTJ = LUT.jacobian_old(0, 0) LUTH = LUT.hessian_old(0, 0) interp = scipy.interpolate.InterpolatedUnivariateSpline(d_knots[0], data) for x in [0,0.01,0.1,0.2,0.9,0.99,1]: m = LUT(x) r = interp(x) self.checkarray(m,r) m = LUTJ(x)[0] try: r = interp(x, 1) except: r = None if r is not None: self.checkarray(m,r) m = LUTH(x)[0] try: r = interp(x, 2) except: r = None if r is not None: self.checkarray(m,r) def test_Callback_Jacobian(self): x = MX.sym("x") y = MX.sym("y") num_inputs = [0.2,0.7] g = Function("g", [x,y],[sin(x+3*y)]) class Fun(Callback): # sin(x+3*y) def __init__(self): Callback.__init__(self) self.construct("Fun", {}) def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): x = arg[0] y = arg[1] z0 = 3*y z1 = x+z0 z2 = sin(z1) return [z2] def get_n_forward(self): return 0 def get_n_reverse(self): return 0 def has_jacobian(self): return True def get_jacobian(self, name, opts): x = SX.sym("x") y = SX.sym("y") J = Function(name, [x,y],[horzcat(cos(x+3*y),3*cos(x+3*y))], opts) return J f = Fun() self.checkfunction(f,g,inputs=num_inputs,fwd=False,adj=False,indirect=False) def test_Callback_errors(self): class Fun(Callback): def __init__(self): Callback.__init__(self) self.construct("Fun", {}) def get_n_in(self): return 2 def get_n_out(self): return 1 def get_sparsity_in(i): return 4 def eval(self,arg): x = arg[0] y = arg[1] z0 = 3*y z1 = x+z0 z2 = sin(z1) return [z2] try: f = Fun() except Exception as e: s = str(e) print(s) self.assertTrue("get_sparsity_in" in s) def test_Callback(self): x = MX.sym("x") y = MX.sym("y") num_inputs = [0.2,0.7] g = Function("g", [x,y],[sin(x+3*y)]) # Simple syntax def getP(indirect=True): class Fun(Callback): def __init__(self): Callback.__init__(self) self.construct("Fun", {}) def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): x = arg[0] y = arg[1] z0 = 3*y z1 = x+z0 z2 = sin(z1) return [z2] f = Fun() f.__disown__() if not indirect: return f f = Function("f", [x,y],[f(x,y)]) return f for indirect in [True,False]: f = getP(indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,jacobian=False,gradient=False,hessian=False,evals=False) with self.assertRaises(Exception): f.gradient() with self.assertRaises(Exception): f.jacobian_old(0, 0) with self.assertRaises(Exception): f.forward(1) with self.assertRaises(Exception): f.reverse(1) def test_Callback_dimcheck(self): class Fun(Callback): def __init__(self): Callback.__init__(self) self.construct("Fun") def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): return [2, 1] f = Fun() s = "" try: f(2) except Exception as e: s = str(e) self.assertTrue("Incorrect number of inputs" in s) class Fun(Callback): def __init__(self): Callback.__init__(self) self.construct("Fun") def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): return [2, 1] f = Fun() s = "" try: f(2,3) except Exception as e: s = str(e) self.assertTrue("Callback::eval" in s) s = "" class Fun(Callback): def __init__(self): Callback.__init__(self) self.construct("Fun") def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): return [DM.zeros(2,2)] f = Fun() try: f(2,3) except Exception as e: s = str(e) self.assertTrue("Callback::eval" in s) def test_Callback_sens(self): x = MX.sym("x") y = MX.sym("y") num_inputs = [0.2,0.7] g = Function("g", [x,y],[sin(x+3*y)]) def getP(has_fwd=True,has_adj=True,indirect=True): class Fun(Callback): # sin(x+3*y) def __init__(self,opts): Callback.__init__(self) self.construct("Fun", opts) def get_n_in(self): return 2 def get_n_out(self): return 1 def eval(self,arg): x = arg[0] y = arg[1] z0 = 3*y z1 = x+z0 z2 = sin(z1) return [z2] if has_fwd: def get_n_forward(self): return 1 def get_forward(self,name,nfwd,inames,onames,opts): assert(nfwd==1) class ForwardFun(Callback): # sin(x+3*y) def __init__(self): Callback.__init__(self) self.construct(name, {"verbose":True}) def get_n_in(self): return 2+1+2 def get_n_out(self): return 1 def eval(self,arg): x,y = arg[0],arg[1] z = arg[2] seeds = arg[3:] z0 = 3*y z1 = x+z0 z2 = sin(z1) ret = [] for i in range(3,len(arg),2): dx = arg[i] dy = arg[i+1] dz0 = 3*dy dz1 = dx+dz0 dz2 = cos(z1)*dz1 ret.append(dz2) return ret ffun = ForwardFun() ffun.__disown__() return ffun if has_adj: def get_n_reverse(self): return 1 def get_reverse(self,name,nadj,inames,onames,opts): assert(nadj==1) class BackwardFun(Callback): # sin(x+3*y) def __init__(self): Callback.__init__(self) self.construct(name, {"verbose":True}) def get_n_in(self): return 2+1+1 def get_n_out(self): return 2 def eval(self,arg): x,y = arg[0],arg[1] z = arg[2] seeds = arg[3:] z0 = 3*y z1 = x+z0 z2 = sin(z1) ret = [] for i in range(3,len(arg)): z_bar = arg[i] bx = 0 by = 0 bz1 = 0 bz0 = 0 bz2 = z_bar bz1 += bz2*cos(z1) bx+= bz1;bz0+= bz1 by+= 3*bz0 ret.append(bx) ret.append(by) return ret bfun = BackwardFun() bfun.__disown__() return bfun opts = {"verbose":True} f = Fun(opts) f.__disown__() if not indirect: return f f = Function("f", [x,y],[f(x,y)]) return f for indirect in [True,False]: f = getP(has_fwd=True,has_adj=True,indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,hessian=False,evals=1) f = getP(has_fwd=True,has_adj=False,indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,hessian=False,adj=False,evals=1) f = getP(has_fwd=False,has_adj=True,indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,hessian=False,fwd=False,evals=1) f = getP(has_fwd=True,has_adj=False,indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,hessian=False,adj=False,evals=1) f = getP(has_fwd=False,has_adj=True,indirect=indirect) self.checkfunction(f,g,inputs=num_inputs,sens_der=False,hessian=False,fwd=False,evals=1) @requires_nlpsol("ipopt") def test_common_specific_options(self): x = SX.sym("x") nlp = {"x": x, "f": x**2} with capture() as out: solver = nlpsol("solver","ipopt",nlp) self.assertTrue("nlp_f" not in out[0]) with capture() as out: solver = nlpsol("solver","ipopt",nlp,{"common_options":{"verbose":True}}) self.assertTrue("nlp_f" in out[0]) with capture() as out: solver = nlpsol("solver","ipopt",nlp,{"specific_options":{ "nlp_f" : {"verbose":True}}}) self.assertTrue("nlp_f" in out[0]) with capture() as out: solver = nlpsol("solver","ipopt",nlp,{"common_options":{"verbose":True},"specific_options":{ "nlp_f" : {"verbose":False}}}) self.assertTrue("nlp_f" not in out[0]) with capture() as out: solver = nlpsol("solver","ipopt",nlp,{"common_options":{"verbose":False},"specific_options":{ "nlp_f" : {"verbose":True}}}) self.assertTrue("nlp_f" in out[0]) with capture() as out: solver = nlpsol("solver","ipopt",nlp) self.assertTrue(len(out[1])==0) with capture() as out: solver = nlpsol("solver","ipopt",nlp,{"specific_options":{ "nlp_foo" : {"verbose":True}}}) self.assertTrue("Ignoring" + out[1]) self.assertTrue("nlp_g" in out[1]) with self.assertRaises(Exception): solver = nlpsol("solver","ipopt",nlp,{"specific_options":{ "nlp_foo" : 3}}) @requires_expm("slicot") @memory_heavy() def test_expm(self): eps = 1e-6 t = MX.sym('t') tnum = 0.2 n = 4 np.random.seed(0) Anum = np.random.random((n,n)) Bnum = np.random.random((n,2)) Bb = np.random.random((n,2)) dA = np.random.random((n,n)) Yb = np.random.random((n,2)) def expm(A): n = A.shape[0] x = MX.sym('x',n) As = MX.sym('A',n,n) dae = {'x':x,'p':vec(As),'ode':mtimes(As,x)} intg = integrator('intg','cvodes',dae,{'reltol':1e-14,'abstol':1e-14}) Intg = intg.map('identity','serial',n,[1],[]) out = Intg(x0=DM.eye(n),p=vec(As)) expmF = Function('expm',[As],[out["xf"]]) return expmF(A) A = MX.sym("A",n,n) t = MX.sym("t") fr = Function('fr',[A,t],[expm(A*t)]) f = Function('f',[A,t],[casadi.expm(A*t)]) self.checkfunction(fr,f,inputs=[Anum, 1.1],digits=8) fr = Function('fr',[t],[expm(Anum*t)]) f = Function('f',[t],[casadi.expm_const(Anum,t)]) self.checkfunction(fr,f,inputs=[1.1],digits=8) JA = jacobian(casadi.expm(A*t),A) Jt = jacobian(casadi.expm(A*t),t) self.assertTrue(JA.nnz()==n**4) self.assertTrue(Jt.nnz()==n**2) JA = jacobian(casadi.expm_const(A,t),A) Jt = jacobian(casadi.expm_const(A,t),t) self.assertTrue(JA.nnz()==0) self.assertTrue(Jt.nnz()==n**2) def test_conditional(self): np.random.seed(5) x = MX.sym('x',2,2) y = MX.sym('y',2,2) sp1 = MX.sym('y',Sparsity.lower(2)) sp2 = MX.sym('z',Sparsity.diag(2)) f1 = Function("f",[sp2,x],[x**2,x*sp2]) f2 = Function("f",[sp1,x],[2*x**2,sin(sp1)]) f3 = Function("f",[sp1,sp2],[sp1*sp2,sp1+sp2]) F = Function.conditional("test",[f1,f2], f3) Fsx = F.expand() A = np.random.random((2,2)) B = np.random.random((2,2)) for i in range(-1,3): self.checkfunction(F,Fsx,inputs = [i,A,B]) self.check_codegen(F,inputs=[i,A,B]) if __name__ == '__main__': unittest.main()
lgpl-3.0
jamesrobertlloyd/gpss-research
source/utils/misc.py
4
7881
import collections import itertools import numpy as np nax = np.newaxis # import Image import mkl_hack import scipy.linalg import scipy.stats import random def set_all_random_seeds(seed=0): random.seed(seed) np.random.seed(seed) def sample_truncated_normal(loc=0, scale=1, min_value=-np.Inf): '''Uses inverse cdf method - actually uses survival function sf = 1-cdf''' return scipy.stats.norm.isf(np.random.rand() * scipy.stats.norm.sf(min_value, loc=loc, scale=scale), loc=loc, scale=scale) def min_abs_diff(x): '''Minimum absolute difference between all pairs in an iterable''' return min([abs(i - j) if (i != j) else np.Inf for i in x for j in x]) def _err_string(arr1, arr2): try: if np.allclose(arr1, arr2): return 'OK' elif arr1.shape == arr2.shape: return 'off by %s' % np.abs(arr1 - arr2).max() else: return 'incorrect shapes: %s and %s' % (arr1.shape, arr2.shape) except: return 'error comparing' err_info = collections.defaultdict(list) def set_err_info(key, info): err_info[key] = info def summarize_error(key): """Print a helpful description of the reason a condition was not satisfied. Intended usage: assert pot1.allclose(pot2), summarize_error()""" if type(err_info[key]) == str: return ' ' + err_info[key] else: return '\n' + '\n'.join([' %s: %s' % (name, err) for name, err in err_info[key]]) + '\n' def broadcast(idx, shape): result = [] for i, d in zip(idx, shape): if d == 1: result.append(0) else: result.append(i) return tuple(result) def full_shape(shapes): """The shape of the full array that results from broadcasting the arrays of the given shapes.""" #return tuple(np.array(shapes).max(0)) temp = np.array(shapes) temp1 = np.where((temp==0).any(0), 0, temp.max(0)) return tuple(temp1) def array_map(fn, arrs, n): """Takes a list of arrays a_1, ..., a_n where the elements of the first n dimensions line up. For every possible index into the first n dimensions, apply fn to the corresponding slices, and combine the results into an n-dimensional array. Supports broadcasting but does not prepend 1's to the shapes.""" # we shouldn't need a special case for n == 0, but NumPy complains about indexing into a zero-dimensional # array a using a[(Ellipsis,)]. if n == 0: return fn(*arrs) full_shape = tuple(np.array([a.shape[:n] for a in arrs]).max(0)) result = None for full_idx in itertools.product(*map(range, full_shape)): inputs = [a[broadcast(full_idx, a.shape[:n]) + (Ellipsis,)] for a in arrs] curr = fn(*inputs) if result is None: if type(curr) == tuple: result = tuple(np.zeros(full_shape + np.asarray(c).shape) for c in curr) else: result = np.zeros(full_shape + np.asarray(curr).shape) if type(curr) == tuple: for i, c in enumerate(curr): result[i][full_idx + (Ellipsis,)] = c else: result[full_idx + (Ellipsis,)] = curr return result def extend_slice(slc, n): if not isinstance(slc, tuple): slc = (slc,) #if any([isinstance(s, np.ndarray) for s in slc]): # raise NotImplementedError('Advanced slicing not implemented yet') return slc + (slice(None),) * n def process_slice(slc, shape, n): """Takes a slice and returns the appropriate slice into an array that's being broadcast (i.e. by converting the appropriate entries to 0's and :'s.""" if not isinstance(slc, tuple): slc = (slc,) slc = list(slc) ndim = len(shape) - n assert ndim >= 0 shape_idx = 0 for slice_idx, s in enumerate(slc): if s == nax: continue if shape[shape_idx] == 1: if type(s) == int: slc[slice_idx] = 0 else: slc[slice_idx] = slice(None) shape_idx += 1 if shape_idx != ndim: raise IndexError('Must have %d terms in the slice object' % ndim) return extend_slice(tuple(slc), n) def my_sum(a, axis, count): """For an array a which might be broadcast, return the value of a.sum() were a to be expanded out in full.""" if a.shape[axis] == count: return a.sum(axis) elif a.shape[axis] == 1: return count * a.sum(axis) else: raise IndexError('Cannot be broadcast: a.shape=%s, axis=%d, count=%d' % (a.shape, axis, count)) def match_shapes(arrs): """Prepend 1's to the shapes so that the dimensions line up.""" #temp = [(name, np.asarray(a), deg) for name, a, deg in arrs] #ndim = max([a.ndim - deg for _, a, deg in arrs]) temp = [a for name, a, deg in arrs] for i in range(len(temp)): if np.isscalar(temp[i]): temp[i] = np.array(temp[i]) ndim = max([a.ndim - deg for a, (_, _, deg) in zip(temp, arrs)]) prep_arrs = [] for name, a, deg in arrs: if np.isscalar(a): a = np.asarray(a) if a.ndim < deg: raise RuntimeError('%s.ndim must be at least %d' % (name, deg)) if a.ndim < ndim + deg: #a = a.reshape((1,) * (ndim + deg - a.ndim) + a.shape) slc = (nax,) * (ndim + deg - a.ndim) + (Ellipsis,) a = a[slc] prep_arrs.append(a) return prep_arrs def lstsq(A, b): # do this rather than call lstsq to support efficient broadcasting P = array_map(np.linalg.pinv, [A], A.ndim - 2) return array_map(np.dot, [P, b], A.ndim - 2) def dot(A, b): return array_map(np.dot, [A, b], A.ndim - 2) def vdot(x, y): return (x*y).sum(-1) def my_inv(A): """Compute the inverse of a symmetric positive definite matrix.""" cho = scipy.linalg.flapack.dpotrf(A) choinv = scipy.linalg.flapack.dtrtri(cho[0]) upper = scipy.linalg.flapack.dlauum(choinv[0])[0] # upper is the upper triangular entries of A^{-1}, so need to fill in the # lower triangular ones; unfortunately this has nontrivial overhead temp = np.diag(upper) return upper + upper.T - np.diag(temp) def transp(A): return A.swapaxes(-2, -1) # def resize(arr, size): # assert arr.ndim in [2, 3] # if arr.ndim == 3: # #return np.concatenate([shape_to_cons('**1', resize(arr[:,:,i], size)) # # for i in range(3)], axis=2) # ans = np.concatenate([resize(arr[:,:,i], size)[:,:,nax] for i in range(3)], axis=2) # return ans # M, N = arr.shape # assert arr.dtype in ['float64', 'float32'] # dtype = arr.dtype # m, n = size # if m is None: # assert n is not None # m = int(M * (float(n)/float(N))) # if n is None: # assert m is not None # n = int(N * (float(m)/float(M))) # result = np.array(Image.fromarray(arr.astype('float32'), 'F').resize((n, m), Image.ANTIALIAS), # dtype=dtype) # return result # Pretty printing try: import termcolor has_termcolor = True except: has_termcolor = False try: import config color_scheme = config.COLOR_SCHEME except: color_scheme = 'dark' def paren_colors(): if color_scheme == 'dark': return ['red', 'green', 'cyan', 'magenta', 'yellow'] elif color_scheme == 'light': return ['blue', 'red', 'magenta', 'green', 'cyan'] else: raise RuntimeError('Unknown color scheme: %s' % color_scheme) def colored(text, depth): if has_termcolor: colors = paren_colors() color = colors[depth % len(colors)] return termcolor.colored(text, color, attrs=['bold']) else: return text def format_if_possible(format, value): try: return format % value except: return '%s' % value
mit
unicef/un-partner-portal
backend/unpp_api/apps/project/exports/pdf/cfei.py
1
10729
import hashlib import os import tempfile from urllib.parse import quote from collections import defaultdict from babel.dates import get_timezone, format_datetime, format_date from django.http import HttpResponse from django.utils import timezone from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER, TA_RIGHT from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, ListFlowable, ListItem, Image from common.consts import SELECTION_CRITERIA_CHOICES from common.mapping import render_point_to_image_file from common.models import Point from project.models import EOI, EOIAttachment CRITERIA_DISPLAY_DICT = dict(SELECTION_CRITERIA_CHOICES) IMAGE_WIDTH = 450 class CFEIPDFExporter: def __init__(self, cfei, timezone_name='UTC'): self.cfei: EOI = cfei self.tzinfo = get_timezone(timezone_name) filename = hashlib.sha256(str(cfei.id).encode()).hexdigest() self.file_path = os.path.join(tempfile.gettempdir(), filename + '.pdf') styles = getSampleStyleSheet() styles.add(ParagraphStyle(name='Center', alignment=TA_CENTER)) styles.add(ParagraphStyle(name='SmallRight', alignment=TA_CENTER)) self.style_center = styles["Center"] self.style_normal = styles["Normal"] self.style_right = styles["SmallRight"] self.style_h1 = styles["Heading1"] self.style_h3 = styles["Heading3"] self.style_h4 = styles["Heading4"] self.style_h1.alignment = TA_CENTER self.style_h3.alignment = TA_CENTER self.style_right.alignment = TA_RIGHT self.style_right.fontSize = 8 self.margin = 24 def get_timeline_table(self): if self.cfei.is_open: table_rows = [ [ 'Posted', format_date(self.cfei.published_timestamp), ], [ 'Clarification Request Deadline', format_date(self.cfei.clarification_request_deadline_date), ], [ 'Application Deadline', format_date(self.cfei.deadline_date), ], [ 'Notification of Results', format_date(self.cfei.notif_results_date), ], [ 'Start Date', format_date(self.cfei.start_date), ], [ 'End Date', format_date(self.cfei.end_date), ], ] else: table_rows = [ [ 'Posted', format_date(self.cfei.published_timestamp), ], [ 'Start Date', format_date(self.cfei.start_date), ], [ 'End Date', format_date(self.cfei.end_date), ], ] table = Table(table_rows, colWidths='*') table.setStyle(TableStyle([ ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black), ('BOX', (0, 0), (-1, -1), 0.25, colors.black), ('BACKGROUND', (0, 0), (0, -1), colors.darkgrey), ('TEXTCOLOR', (0, 0), (0, -1), colors.white), ])) return table def get_selection_criteria_table(self): table_rows = [ ['Name', 'Description', 'Weight'], ] for criteria in self.cfei.assessments_criteria: table_rows.append([ CRITERIA_DISPLAY_DICT[criteria['selection_criteria']], Paragraph(criteria.get('description', ''), style=self.style_normal), Paragraph(str(criteria.get('weight', 'N/A')), style=self.style_normal), ]) table = Table(table_rows, colWidths=['45%', '45%', '*']) table.setStyle(TableStyle([ ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black), ('BOX', (0, 0), (-1, -1), 0.25, colors.black), ('BACKGROUND', (0, 0), (-1, 0), colors.darkgrey), ('TEXTCOLOR', (0, 0), (-1, 0), colors.white), ])) return table def get_specializations_grouped_by_sector(self): grouped = defaultdict(list) for specialization in self.cfei.specializations.all(): grouped[specialization.category.name].append(specialization.name) paragraph = ListFlowable(([ *[ Paragraph(sector_name, style=self.style_normal), ListFlowable([ Paragraph(spec, style=self.style_normal) for spec in sorted(grouped[sector_name]) ], bulletType='a'), Spacer(1, self.margin / 3), ] ] for sector_name in sorted(grouped.keys())), bulletType='A') return paragraph def get_locations(self): grouped = defaultdict(list) point: Point for point in self.cfei.locations.all(): grouped[point.admin_level_1.country_name].append(point) paragraphs = [] for country_name, point_list in grouped.items(): subitems = [] for point in point_list: rendered_point_filename = render_point_to_image_file( point, height=IMAGE_WIDTH // 2, width=IMAGE_WIDTH ) point_paragraphs = [ Paragraph(point.admin_level_1.name, style=self.style_normal), ] if rendered_point_filename: point_paragraphs.extend(( Spacer(1, self.margin / 4), Image(rendered_point_filename), )) subitems.append(point_paragraphs) paragraphs.append([ Paragraph(country_name, style=self.style_normal), ListFlowable(subitems, bulletType='a'), Spacer(1, self.margin / 3), ]) return ListFlowable(paragraphs, bulletType='A') def get_attachments_table(self): table_rows = [ ['Description', 'URL'], ] attachment: EOIAttachment for attachment in self.cfei.attachments.all(): table_rows.append([ Paragraph(attachment.description, style=self.style_normal), Paragraph(attachment.file.file_field.url, style=self.style_normal), ]) table = Table(table_rows, colWidths='*') table.setStyle(TableStyle([ ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black), ('BOX', (0, 0), (-1, -1), 0.25, colors.black), ('BACKGROUND', (0, 0), (-1, 0), colors.darkgrey), ('TEXTCOLOR', (0, 0), (-1, 0), colors.white), ])) return table def generate(self): document = SimpleDocTemplate( self.file_path, title=self.cfei.title, rightMargin=self.margin, leftMargin=self.margin, topMargin=self.margin, bottomMargin=self.margin ) paragraphs = [] timestamp = timezone.now() paragraphs.append(Paragraph( format_datetime(timestamp, 'medium', tzinfo=self.tzinfo), self.style_right )) if self.cfei.is_open: header = 'Call for Expression of Interest' else: header = 'Direct Selection / Retention' paragraphs.append(Paragraph(header, self.style_h3)) paragraphs.append(Paragraph(self.cfei.title, self.style_h1)) paragraphs.append(Spacer(1, self.margin)) main_content = [ ListItem([ Paragraph('Timeline', style=self.style_h4), self.get_timeline_table(), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Locations', style=self.style_h4), self.get_locations(), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Sector(s) and area(s) of specialization', style=self.style_h4), self.get_specializations_grouped_by_sector(), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Issuing Agency', style=self.style_h4), Paragraph(self.cfei.agency.name, style=self.style_normal), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Project Background', style=self.style_h4), Paragraph(self.cfei.description, style=self.style_normal), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Expected Results', style=self.style_h4), Paragraph(self.cfei.goal or '-', style=self.style_normal), Spacer(1, self.margin / 2) ]), ListItem([ Paragraph('Other Information', style=self.style_h4), Paragraph(self.cfei.other_information or '-', style=self.style_normal), Spacer(1, self.margin / 2) ]), ] if self.cfei.is_open: main_content.append(ListItem([ Paragraph('Selection Criteria', style=self.style_h4), self.get_selection_criteria_table(), Spacer(1, self.margin / 2) ])) if self.cfei.attachments.exists(): main_content.append(ListItem([ Paragraph('Attachments', style=self.style_h4), self.get_attachments_table(), Spacer(1, self.margin / 2) ])) if self.cfei.is_open: cn_template = self.cfei.agency.profile.eoi_template main_content.append(ListItem([ Paragraph('Concept Note Template', style=self.style_h4), Paragraph(cn_template.url if cn_template else '-', style=self.style_normal), ])) paragraphs.append(ListFlowable(main_content)) document.build(paragraphs) def get_as_response(self): self.generate() response = HttpResponse() response.content_type = 'application/pdf' with open(self.file_path, 'rb') as content: response.write(content.read()) self.cleanup() response['Content-Disposition'] = 'attachment; filename="{}"'.format(f'{quote(self.cfei.title)}.pdf') return response def cleanup(self): os.remove(self.file_path)
apache-2.0
BladeSmithJohn/nixysa
nixysa/nullable_binding.py
9
24217
#!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """nullable binding model module. This module implements the glue functions for the nullable binding model, used for nullable types. In C++, objects using this binding model are represented by a pointer. For JS bindings, the nullable type is represented by a JavaScript reference. """ import by_pointer_binding import string class InvalidNullableUsage(Exception): """Raised when a nullable is used in conjuction with a type that is not a pointer pointer binding.""" pass def JavaMemberString(scope, type_defn): """Gets the representation of a member name in Java. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a string representing the type """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.JavaMemberString(scope, data_type) def CppTypedefString(scope, type_defn): """Gets the representation of a type when used in a C++ typedef. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the representation of the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppTypedefString(scope, data_type) def CppMemberString(scope, type_defn): """Gets the representation of a type when used as a C++ class member. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the representation of the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppMemberString(scope, data_type) def CppReturnValueString(scope, type_defn): """Gets the representation of a type when used as a C++ function return value. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the representation of the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppReturnValueString(scope, data_type) def CppParameterString(scope, type_defn): """Gets the representation of a type when used for a function parameter. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the representation of the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppParameterString(scope, data_type) def CppMutableParameterString(scope, type_defn): """Gets the representation of a type for a mutable function parameter. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the string representing the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppMutableParameterString(scope, data_type) def CppMutableToNonMutable(scope, type_defn, expr): """Gets the string converting a mutable expression to a non-mutable one. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. expr: a string for the mutable expression. Returns: a string, which is the non-mutable expression. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model return data_type_bm.CppMutableToNonMutable(scope, data_type, expr) def CppBaseClassString(scope, type_defn): """Gets the representation of a type for a base class. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition for the type. Returns: a (string, boolean) pair, the first element being the string representing the type, the second element indicating whether or not the definition of the type is needed for the expression to be valid. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ raise InvalidNullableUsage def CppCallMethod(scope, type_defn, object_expr, mutable, method, param_exprs): """Gets the representation of a member function call. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object being called. object_expr: a string, which is the expression for the object being called. mutable: a boolean, whether or not the 'object_expr' expression is mutable or not method: a Function, representing the function to call. param_exprs: a list of strings, each being the expression for the value of each parameter. Returns: a string, which is the expression for the function call. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppCallStaticMethod(scope, type_defn, method, param_exprs): """Gets the representation of a static function call. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object being called. method: a Function, representing the function to call. param_exprs: a list of strings, each being the expression for the value of each parameter. Returns: a string, which is the expression for the function call. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppCallConstructor(scope, type_defn, method, param_exprs): """Gets the representation of a constructor call. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object being called. method: a Function, representing the constructor to call. param_exprs: a list of strings, each being the expression for the value of each parameter. Returns: a string, which is the expression for the constructor call. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppSetField(scope, type_defn, object_expr, field, param_expr): """Gets the representation of an expression setting a field in an object. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object containing the field being set. object_expr: a string, which is the expression for the object containing the field being set. field: a string, the name of the field to be set. param_expr: a strings, being the expression for the value to be set. Returns: a string, which is the expression for setting the field. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppGetField(scope, type_defn, object_expr, field): """Gets the representation of an expression getting a field in an object. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object containing the field being retrieved. object_expr: a string, which is the expression for the object containing the field being retrieved. field: a string, the name of the field to be retrieved. Returns: a string, which is the expression for getting the field. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppSetStatic(scope, type_defn, field, param_expr): """Gets the representation of an expression setting a static field. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object containing the field being set. field: a string, the name of the field to be set. param_expr: a strings, being the expression for the value to be set. Returns: a string, which is the expression for setting the field. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def CppGetStatic(scope, type_defn, field): """Gets the representation of an expression getting a static field. Args: scope: a Definition for the scope in which the expression will be written. type_defn: a Definition, representing the type of the object containing the field being retrieved. field: a string, the name of the field to be retrieved. Returns: a string, which is the expression for getting the field. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def JSDocTypeString(type_defn): """Gets the representation of a type in JSDoc notation. Args: type_defn: a Definition for the type. Returns: a string that is the JSDoc notation of type_defn. """ type_defn = type_defn.GetFinalType() element_type_defn = type_defn.data_type.GetFinalType() type = element_type_defn.binding_model.JSDocTypeString(element_type_defn) if type[0] == '!': type = type[1:] return type def NpapiBindingGlueHeader(scope, type_defn): """Gets the NPAPI glue header for a given type. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. Returns: a string, the glue header. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def NpapiBindingGlueCpp(scope, type_defn): """Gets the NPAPI glue implementation for a given type. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. Returns: a string, the glue implementation. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage def NpapiDispatchFunctionHeader(scope, type_defn, variable, npp, success): """Gets a header for NPAPI glue dispatch functions. This function creates a string containing a C++ code snippet that should be included at the beginning of NPAPI glue dispatch functions like Invoke or GetProperty. This code snippet will declare and initialize certain variables that will be used in the dispatch functions, like the NPObject representing the object, or a pointer to the NPP instance. First it checks whether the NPVariant is null. If so it simply sets the value to null. It relies on the later compilation of the glue to detect when it is used with a binding model that cannot be used with nthe value null. It is binding model independent. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. variable: a string, representing a name of a variable that can be used to store a reference to the object. npp: a string, representing the name of the variable that holds the pointer to the NPP instance. Will be declared by the code snippet. success: the name of a bool variable containing the current success status. (is not declared by the code snippet). Returns: a (string, string) pair, the first string being the code snippet, and the second string being an expression to access the object. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ return InvalidNullableUsage _from_npvariant_template = string.Template(""" ${Type} ${variable}; if (NPVARIANT_IS_NULL(${input})) { ${variable} = NULL; } else { ${text} ${variable} = ${value}; } """) def NpapiFromNPVariant(scope, type_defn, input_expr, variable, success, exception_context, npp): """Gets the string to get a value from a NPVariant. This function creates a string containing a C++ code snippet that is used to retrieve a value from a NPVariant. If an error occurs, like if the NPVariant is not of the correct type, the snippet will set the success status variable to false. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type of the value. input_expr: an expression representing the NPVariant to get the value from. variable: a string, representing a name of a variable that can be used to store a reference to the value. success: the name of a bool variable containing the current success status. exception_context: the name of a string containing context information, for use in exception reporting. npp: a string, representing the name of the variable that holds the pointer to the NPP instance. Returns: a (string, string) pair, the first string being the code snippet and the second one being the expression to access that value. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model text, value = data_type_bm.NpapiFromNPVariant( scope, data_type, input_expr, variable + '_nullable', success, exception_context, npp); data_type_name, dummy = data_type_bm.CppMemberString(scope, data_type) nullable_text = _from_npvariant_template.substitute( Type=data_type_name, variable=variable, text=text, input=input_expr, value=value) return (nullable_text, variable) _to_npvariant_pre_template = string.Template(""" ${pre_text} if (!${variable}) { success = true; } """) _to_npvariant_post_template = string.Template(""" if (${variable}) { ${post_text} } else { NULL_TO_NPVARIANT(*${output}); } """) def NpapiExprToNPVariant(scope, type_defn, variable, expression, output, success, npp): """Gets the string to store a value into a NPVariant. This function creates a string containing a C++ code snippet that is used to store a value into a NPVariant. That operation takes two phases, one that allocates necessary NPAPI resources, and that can fail, and one that actually sets the NPVariant (that can't fail). If an error occurs, the snippet will set the success status variable to false. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type of the value. variable: a string, representing a name of a variable that can be used to store a reference to the value. expression: a string representing the expression that yields the value to be stored. output: an expression representing a pointer to the NPVariant to store the value into. success: the name of a bool variable containing the current success status. npp: a string, representing the name of the variable that holds the pointer to the NPP instance. Returns: a (string, string) pair, the first string being the code snippet for the first phase, and the second one being the code snippet for the second phase. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model pre_text, post_text = data_type_bm.NpapiExprToNPVariant( scope, data_type, variable, expression, output, success, npp) nullable_pre_text = _to_npvariant_pre_template.substitute( variable=variable, npp=npp, pre_text=pre_text, success=success) nullable_post_text = _to_npvariant_post_template.substitute( variable=variable, output=output, npp=npp, post_text=post_text, success=success) return nullable_pre_text, nullable_post_text def PpapiBindingGlueHeader(scope, type_defn): """Gets the PPAPI glue header for a given type. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. Returns: a string, the glue header. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ raise InvalidNullableUsage def PpapiBindingGlueCpp(scope, type_defn): """Gets the PPAPI glue implementation for a given type. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. Returns: a string, the glue implementation. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ raise InvalidNullableUsage def PpapiDispatchFunctionHeader(scope, type_defn, variable, npp, success): """Gets a header for PPAPI glue dispatch functions. This function creates a string containing a C++ code snippet that should be included at the beginning of PPAPI glue dispatch functions like Call or GetProperty. This code snippet will declare and initialize certain variables that will be used in the dispatch functions, like the pp::Var representing the object, or a pointer to the pp::Instance. First it checks whether the pp::Var is null. If so it simply sets the value to null. It relies on the later compilation of the glue to detect when it is used with a binding model that cannot be used with the value null. It is binding model independent. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type. variable: a string, representing a name of a variable that can be used to store a reference to the object. npp: a string, representing the name of the variable that holds the pointer to the pp::Instance. Will be declared by the code snippet. success: the name of a bool variable containing the current success status. (is not declared by the code snippet). Returns: a (string, string) pair, the first string being the code snippet, and the second string being an expression to access the object. Raises: InvalidNullableUsage: always. This function should not be called on a nullable. """ raise InvalidNullableUsage _ppapi_from_ppvar_template = string.Template(""" ${Type} ${variable}; if (${input}.is_null()) { ${variable} = NULL; } else { ${text} ${variable} = ${value}; } """) def PpapiFromPPVar(scope, type_defn, input_expr, variable, success, exception_context, npp): """Gets the string to get a value from a pp::Var. This function creates a string containing a C++ code snippet that is used to retrieve a value from a pp::Var. If an error occurs, like if the pp::Var is not of the correct type, the snippet will set the success status variable to false. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type of the value. input_expr: an expression representing the pp::Var to get the value from. variable: a string, representing a name of a variable that can be used to store a reference to the value. success: the name of a bool variable containing the current success status. exception_context: the name of a string containing context information, for use in exception reporting. npp: a string, representing the name of the variable that holds the pointer to the pp::Instance. Returns: a (string, string) pair, the first string being the code snippet and the second one being the expression to access that value. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model text, value = data_type_bm.PpapiFromPPVar( scope, data_type, input_expr, variable + '_nullable', success, exception_context, npp); data_type_name, dummy = data_type_bm.CppMemberString(scope, data_type) nullable_text = _ppapi_from_ppvar_template.substitute( Type=data_type_name, variable=variable, text=text, input=input_expr, value=value) return (nullable_text, variable) _ppapi_to_ppvar_pre_template = string.Template(""" ${pre_text} if (!${variable}) { ${success} = true; *exception = pp::Var(); } """) _ppapi_to_ppvar_post_template = string.Template(""" if (${variable}) { ${post_text} } else { *${output} = pp::Var::Null(); } """) def PpapiExprToPPVar(scope, type_defn, variable, expression, output, success, npp): """Gets the string to store a value into a pp::Var. This function creates a string containing a C++ code snippet that is used to store a value into a pp::Var. That operation takes two phases, one that allocates necessary PPAPI resources, and that can fail, and one that actually sets the pp::Var (that can't fail). If an error occurs, the snippet will set the success status variable to false. Args: scope: a Definition for the scope in which the glue will be written. type_defn: a Definition, representing the type of the value. variable: a string, representing a name of a variable that can be used to store a reference to the value. expression: a string representing the expression that yields the value to be stored. output: an expression representing a pointer to the pp::Var to store the value into. success: the name of a bool variable containing the current success status. npp: a string, representing the name of the variable that holds the pointer to the pp::Instance. Returns: a (string, string) pair, the first string being the code snippet for the first phase, and the second one being the code snippet for the second phase. """ data_type = type_defn.GetFinalType().data_type data_type_bm = data_type.binding_model pre_text, post_text = data_type_bm.PpapiExprToPPVar( scope, data_type, variable, expression, output, success, npp) nullable_pre_text = _ppapi_to_ppvar_pre_template.substitute( variable=variable, npp=npp, pre_text=pre_text, success=success) nullable_post_text = _ppapi_to_ppvar_post_template.substitute( variable=variable, output=output, npp=npp, post_text=post_text, success=success) return nullable_pre_text, nullable_post_text def main(): pass if __name__ == '__main__': main()
apache-2.0
samdowd/drumm-farm
drumm_env/lib/python2.7/site-packages/boto/cloudtrail/exceptions.py
127
2246
""" Exceptions that are specific to the cloudtrail module. """ from boto.exception import BotoServerError class InvalidSnsTopicNameException(BotoServerError): """ Raised when an invalid SNS topic name is passed to Cloudtrail. """ pass class InvalidS3BucketNameException(BotoServerError): """ Raised when an invalid S3 bucket name is passed to Cloudtrail. """ pass class TrailAlreadyExistsException(BotoServerError): """ Raised when the given trail name already exists. """ pass class InsufficientSnsTopicPolicyException(BotoServerError): """ Raised when the SNS topic does not allow Cloudtrail to post messages. """ pass class InvalidTrailNameException(BotoServerError): """ Raised when the trail name is invalid. """ pass class InternalErrorException(BotoServerError): """ Raised when there was an internal Cloudtrail error. """ pass class TrailNotFoundException(BotoServerError): """ Raised when the given trail name is not found. """ pass class S3BucketDoesNotExistException(BotoServerError): """ Raised when the given S3 bucket does not exist. """ pass class TrailNotProvidedException(BotoServerError): """ Raised when no trail name was provided. """ pass class InvalidS3PrefixException(BotoServerError): """ Raised when an invalid key prefix is given. """ pass class MaximumNumberOfTrailsExceededException(BotoServerError): """ Raised when no more trails can be created. """ pass class InsufficientS3BucketPolicyException(BotoServerError): """ Raised when the S3 bucket does not allow Cloudtrail to write files into the prefix. """ pass class InvalidMaxResultsException(BotoServerError): pass class InvalidTimeRangeException(BotoServerError): pass class InvalidLookupAttributesException(BotoServerError): pass class InvalidCloudWatchLogsLogGroupArnException(BotoServerError): pass class InvalidCloudWatchLogsRoleArnException(BotoServerError): pass class CloudWatchLogsDeliveryUnavailableException(BotoServerError): pass class InvalidNextTokenException(BotoServerError): pass
mit
adishjain/youtube-dl
youtube_dl/extractor/common.py
6
55808
from __future__ import unicode_literals import base64 import datetime import hashlib import json import netrc import os import re import socket import sys import time import xml.etree.ElementTree from ..compat import ( compat_cookiejar, compat_cookies, compat_getpass, compat_HTTPError, compat_http_client, compat_urllib_error, compat_urllib_parse, compat_urllib_parse_urlparse, compat_urllib_request, compat_urlparse, compat_str, ) from ..utils import ( NO_DEFAULT, age_restricted, bug_reports_message, clean_html, compiled_regex_type, determine_ext, ExtractorError, fix_xml_ampersands, float_or_none, int_or_none, RegexNotFoundError, sanitize_filename, unescapeHTML, url_basename, xpath_text, xpath_with_ns, ) class InfoExtractor(object): """Information Extractor class. Information extractors are the classes that, given a URL, extract information about the video (or videos) the URL refers to. This information includes the real video URL, the video title, author and others. The information is stored in a dictionary which is then passed to the YoutubeDL. The YoutubeDL processes this information possibly downloading the video to the file system, among other possible outcomes. The type field determines the type of the result. By far the most common value (and the default if _type is missing) is "video", which indicates a single video. For a video, the dictionaries must include the following fields: id: Video identifier. title: Video title, unescaped. Additionally, it must contain either a formats entry or a url one: formats: A list of dictionaries for each format available, ordered from worst to best quality. Potential fields: * url Mandatory. The URL of the video file * ext Will be calculated from URL if missing * format A human-readable description of the format ("mp4 container with h264/opus"). Calculated from the format_id, width, height. and format_note fields if missing. * format_id A short description of the format ("mp4_h264_opus" or "19"). Technically optional, but strongly recommended. * format_note Additional info about the format ("3D" or "DASH video") * width Width of the video, if known * height Height of the video, if known * resolution Textual description of width and height * tbr Average bitrate of audio and video in KBit/s * abr Average audio bitrate in KBit/s * acodec Name of the audio codec in use * asr Audio sampling rate in Hertz * vbr Average video bitrate in KBit/s * fps Frame rate * vcodec Name of the video codec in use * container Name of the container format * filesize The number of bytes, if known in advance * filesize_approx An estimate for the number of bytes * player_url SWF Player URL (used for rtmpdump). * protocol The protocol that will be used for the actual download, lower-case. "http", "https", "rtsp", "rtmp", "rtmpe", "m3u8", or "m3u8_native". * preference Order number of this format. If this field is present and not None, the formats get sorted by this field, regardless of all other values. -1 for default (order by other properties), -2 or smaller for less than default. < -1000 to hide the format (if there is another one which is strictly better) * language_preference Is this in the correct requested language? 10 if it's what the URL is about, -1 for default (don't know), -10 otherwise, other values reserved for now. * quality Order number of the video quality of this format, irrespective of the file format. -1 for default (order by other properties), -2 or smaller for less than default. * source_preference Order number for this video source (quality takes higher priority) -1 for default (order by other properties), -2 or smaller for less than default. * http_headers A dictionary of additional HTTP headers to add to the request. * stretched_ratio If given and not 1, indicates that the video's pixels are not square. width : height ratio as float. * no_resume The server does not support resuming the (HTTP or RTMP) download. Boolean. url: Final video URL. ext: Video filename extension. format: The video format, defaults to ext (used for --get-format) player_url: SWF Player URL (used for rtmpdump). The following fields are optional: alt_title: A secondary title of the video. display_id An alternative identifier for the video, not necessarily unique, but available before title. Typically, id is something like "4234987", title "Dancing naked mole rats", and display_id "dancing-naked-mole-rats" thumbnails: A list of dictionaries, with the following entries: * "id" (optional, string) - Thumbnail format ID * "url" * "preference" (optional, int) - quality of the image * "width" (optional, int) * "height" (optional, int) * "resolution" (optional, string "{width}x{height"}, deprecated) thumbnail: Full URL to a video thumbnail image. description: Full video description. uploader: Full name of the video uploader. creator: The main artist who created the video. timestamp: UNIX timestamp of the moment the video became available. upload_date: Video upload date (YYYYMMDD). If not explicitly set, calculated from timestamp. uploader_id: Nickname or id of the video uploader. location: Physical location where the video was filmed. subtitles: The available subtitles as a dictionary in the format {language: subformats}. "subformats" is a list sorted from lower to higher preference, each element is a dictionary with the "ext" entry and one of: * "data": The subtitles file contents * "url": A URL pointing to the subtitles file automatic_captions: Like 'subtitles', used by the YoutubeIE for automatically generated captions duration: Length of the video in seconds, as an integer. view_count: How many users have watched the video on the platform. like_count: Number of positive ratings of the video dislike_count: Number of negative ratings of the video average_rating: Average rating give by users, the scale used depends on the webpage comment_count: Number of comments on the video comments: A list of comments, each with one or more of the following properties (all but one of text or html optional): * "author" - human-readable name of the comment author * "author_id" - user ID of the comment author * "id" - Comment ID * "html" - Comment as HTML * "text" - Plain text of the comment * "timestamp" - UNIX timestamp of comment * "parent" - ID of the comment this one is replying to. Set to "root" to indicate that this is a comment to the original video. age_limit: Age restriction for the video, as an integer (years) webpage_url: The URL to the video webpage, if given to youtube-dl it should allow to get the same result again. (It will be set by YoutubeDL if it's missing) categories: A list of categories that the video falls in, for example ["Sports", "Berlin"] tags: A list of tags assigned to the video, e.g. ["sweden", "pop music"] is_live: True, False, or None (=unknown). Whether this video is a live stream that goes on instead of a fixed-length video. start_time: Time in seconds where the reproduction should start, as specified in the URL. end_time: Time in seconds where the reproduction should end, as specified in the URL. Unless mentioned otherwise, the fields should be Unicode strings. Unless mentioned otherwise, None is equivalent to absence of information. _type "playlist" indicates multiple videos. There must be a key "entries", which is a list, an iterable, or a PagedList object, each element of which is a valid dictionary by this specification. Additionally, playlists can have "title", "description" and "id" attributes with the same semantics as videos (see above). _type "multi_video" indicates that there are multiple videos that form a single show, for examples multiple acts of an opera or TV episode. It must have an entries key like a playlist and contain all the keys required for a video at the same time. _type "url" indicates that the video must be extracted from another location, possibly by a different extractor. Its only required key is: "url" - the next URL to extract. The key "ie_key" can be set to the class name (minus the trailing "IE", e.g. "Youtube") if the extractor class is known in advance. Additionally, the dictionary may have any properties of the resolved entity known in advance, for example "title" if the title of the referred video is known ahead of time. _type "url_transparent" entities have the same specification as "url", but indicate that the given additional information is more precise than the one associated with the resolved URL. This is useful when a site employs a video service that hosts the video and its technical metadata, but that video service does not embed a useful title, description etc. Subclasses of this one should re-define the _real_initialize() and _real_extract() methods and define a _VALID_URL regexp. Probably, they should also be added to the list of extractors. Finally, the _WORKING attribute should be set to False for broken IEs in order to warn the users and skip the tests. """ _ready = False _downloader = None _WORKING = True def __init__(self, downloader=None): """Constructor. Receives an optional downloader.""" self._ready = False self.set_downloader(downloader) @classmethod def suitable(cls, url): """Receives a URL and returns True if suitable for this IE.""" # This does not use has/getattr intentionally - we want to know whether # we have cached the regexp for *this* class, whereas getattr would also # match the superclass if '_VALID_URL_RE' not in cls.__dict__: cls._VALID_URL_RE = re.compile(cls._VALID_URL) return cls._VALID_URL_RE.match(url) is not None @classmethod def _match_id(cls, url): if '_VALID_URL_RE' not in cls.__dict__: cls._VALID_URL_RE = re.compile(cls._VALID_URL) m = cls._VALID_URL_RE.match(url) assert m return m.group('id') @classmethod def working(cls): """Getter method for _WORKING.""" return cls._WORKING def initialize(self): """Initializes an instance (authentication, etc).""" if not self._ready: self._real_initialize() self._ready = True def extract(self, url): """Extracts URL information and returns it in list of dicts.""" try: self.initialize() return self._real_extract(url) except ExtractorError: raise except compat_http_client.IncompleteRead as e: raise ExtractorError('A network error has occured.', cause=e, expected=True) except (KeyError, StopIteration) as e: raise ExtractorError('An extractor error has occured.', cause=e) def set_downloader(self, downloader): """Sets the downloader for this IE.""" self._downloader = downloader def _real_initialize(self): """Real initialization process. Redefine in subclasses.""" pass def _real_extract(self, url): """Real extraction process. Redefine in subclasses.""" pass @classmethod def ie_key(cls): """A string for getting the InfoExtractor with get_info_extractor""" return cls.__name__[:-2] @property def IE_NAME(self): return type(self).__name__[:-2] def _request_webpage(self, url_or_request, video_id, note=None, errnote=None, fatal=True): """ Returns the response handle """ if note is None: self.report_download_webpage(video_id) elif note is not False: if video_id is None: self.to_screen('%s' % (note,)) else: self.to_screen('%s: %s' % (video_id, note)) try: return self._downloader.urlopen(url_or_request) except (compat_urllib_error.URLError, compat_http_client.HTTPException, socket.error) as err: if errnote is False: return False if errnote is None: errnote = 'Unable to download webpage' errmsg = '%s: %s' % (errnote, compat_str(err)) if fatal: raise ExtractorError(errmsg, sys.exc_info()[2], cause=err) else: self._downloader.report_warning(errmsg) return False def _download_webpage_handle(self, url_or_request, video_id, note=None, errnote=None, fatal=True, encoding=None): """ Returns a tuple (page content as string, URL handle) """ # Strip hashes from the URL (#1038) if isinstance(url_or_request, (compat_str, str)): url_or_request = url_or_request.partition('#')[0] urlh = self._request_webpage(url_or_request, video_id, note, errnote, fatal) if urlh is False: assert not fatal return False content = self._webpage_read_content(urlh, url_or_request, video_id, note, errnote, fatal, encoding=encoding) return (content, urlh) @staticmethod def _guess_encoding_from_content(content_type, webpage_bytes): m = re.match(r'[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+\s*;\s*charset=(.+)', content_type) if m: encoding = m.group(1) else: m = re.search(br'<meta[^>]+charset=[\'"]?([^\'")]+)[ /\'">]', webpage_bytes[:1024]) if m: encoding = m.group(1).decode('ascii') elif webpage_bytes.startswith(b'\xff\xfe'): encoding = 'utf-16' else: encoding = 'utf-8' return encoding def _webpage_read_content(self, urlh, url_or_request, video_id, note=None, errnote=None, fatal=True, prefix=None, encoding=None): content_type = urlh.headers.get('Content-Type', '') webpage_bytes = urlh.read() if prefix is not None: webpage_bytes = prefix + webpage_bytes if not encoding: encoding = self._guess_encoding_from_content(content_type, webpage_bytes) if self._downloader.params.get('dump_intermediate_pages', False): try: url = url_or_request.get_full_url() except AttributeError: url = url_or_request self.to_screen('Dumping request to ' + url) dump = base64.b64encode(webpage_bytes).decode('ascii') self._downloader.to_screen(dump) if self._downloader.params.get('write_pages', False): try: url = url_or_request.get_full_url() except AttributeError: url = url_or_request basen = '%s_%s' % (video_id, url) if len(basen) > 240: h = '___' + hashlib.md5(basen.encode('utf-8')).hexdigest() basen = basen[:240 - len(h)] + h raw_filename = basen + '.dump' filename = sanitize_filename(raw_filename, restricted=True) self.to_screen('Saving request to ' + filename) # Working around MAX_PATH limitation on Windows (see # http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx) if os.name == 'nt': absfilepath = os.path.abspath(filename) if len(absfilepath) > 259: filename = '\\\\?\\' + absfilepath with open(filename, 'wb') as outf: outf.write(webpage_bytes) try: content = webpage_bytes.decode(encoding, 'replace') except LookupError: content = webpage_bytes.decode('utf-8', 'replace') if ('<title>Access to this site is blocked</title>' in content and 'Websense' in content[:512]): msg = 'Access to this webpage has been blocked by Websense filtering software in your network.' blocked_iframe = self._html_search_regex( r'<iframe src="([^"]+)"', content, 'Websense information URL', default=None) if blocked_iframe: msg += ' Visit %s for more details' % blocked_iframe raise ExtractorError(msg, expected=True) if '<title>The URL you requested has been blocked</title>' in content[:512]: msg = ( 'Access to this webpage has been blocked by Indian censorship. ' 'Use a VPN or proxy server (with --proxy) to route around it.') block_msg = self._html_search_regex( r'</h1><p>(.*?)</p>', content, 'block message', default=None) if block_msg: msg += ' (Message: "%s")' % block_msg.replace('\n', ' ') raise ExtractorError(msg, expected=True) return content def _download_webpage(self, url_or_request, video_id, note=None, errnote=None, fatal=True, tries=1, timeout=5, encoding=None): """ Returns the data of the page as a string """ success = False try_count = 0 while success is False: try: res = self._download_webpage_handle(url_or_request, video_id, note, errnote, fatal, encoding=encoding) success = True except compat_http_client.IncompleteRead as e: try_count += 1 if try_count >= tries: raise e self._sleep(timeout, video_id) if res is False: return res else: content, _ = res return content def _download_xml(self, url_or_request, video_id, note='Downloading XML', errnote='Unable to download XML', transform_source=None, fatal=True, encoding=None): """Return the xml as an xml.etree.ElementTree.Element""" xml_string = self._download_webpage( url_or_request, video_id, note, errnote, fatal=fatal, encoding=encoding) if xml_string is False: return xml_string if transform_source: xml_string = transform_source(xml_string) return xml.etree.ElementTree.fromstring(xml_string.encode('utf-8')) def _download_json(self, url_or_request, video_id, note='Downloading JSON metadata', errnote='Unable to download JSON metadata', transform_source=None, fatal=True, encoding=None): json_string = self._download_webpage( url_or_request, video_id, note, errnote, fatal=fatal, encoding=encoding) if (not fatal) and json_string is False: return None return self._parse_json( json_string, video_id, transform_source=transform_source, fatal=fatal) def _parse_json(self, json_string, video_id, transform_source=None, fatal=True): if transform_source: json_string = transform_source(json_string) try: return json.loads(json_string) except ValueError as ve: errmsg = '%s: Failed to parse JSON ' % video_id if fatal: raise ExtractorError(errmsg, cause=ve) else: self.report_warning(errmsg + str(ve)) def report_warning(self, msg, video_id=None): idstr = '' if video_id is None else '%s: ' % video_id self._downloader.report_warning( '[%s] %s%s' % (self.IE_NAME, idstr, msg)) def to_screen(self, msg): """Print msg to screen, prefixing it with '[ie_name]'""" self._downloader.to_screen('[%s] %s' % (self.IE_NAME, msg)) def report_extraction(self, id_or_name): """Report information extraction.""" self.to_screen('%s: Extracting information' % id_or_name) def report_download_webpage(self, video_id): """Report webpage download.""" self.to_screen('%s: Downloading webpage' % video_id) def report_age_confirmation(self): """Report attempt to confirm age.""" self.to_screen('Confirming age') def report_login(self): """Report attempt to log in.""" self.to_screen('Logging in') # Methods for following #608 @staticmethod def url_result(url, ie=None, video_id=None, video_title=None): """Returns a URL that points to a page that should be processed""" # TODO: ie should be the class used for getting the info video_info = {'_type': 'url', 'url': url, 'ie_key': ie} if video_id is not None: video_info['id'] = video_id if video_title is not None: video_info['title'] = video_title return video_info @staticmethod def playlist_result(entries, playlist_id=None, playlist_title=None, playlist_description=None): """Returns a playlist""" video_info = {'_type': 'playlist', 'entries': entries} if playlist_id: video_info['id'] = playlist_id if playlist_title: video_info['title'] = playlist_title if playlist_description: video_info['description'] = playlist_description return video_info def _search_regex(self, pattern, string, name, default=NO_DEFAULT, fatal=True, flags=0, group=None): """ Perform a regex search on the given string, using a single or a list of patterns returning the first matching group. In case of failure return a default value or raise a WARNING or a RegexNotFoundError, depending on fatal, specifying the field name. """ if isinstance(pattern, (str, compat_str, compiled_regex_type)): mobj = re.search(pattern, string, flags) else: for p in pattern: mobj = re.search(p, string, flags) if mobj: break if not self._downloader.params.get('no_color') and os.name != 'nt' and sys.stderr.isatty(): _name = '\033[0;34m%s\033[0m' % name else: _name = name if mobj: if group is None: # return the first matching group return next(g for g in mobj.groups() if g is not None) else: return mobj.group(group) elif default is not NO_DEFAULT: return default elif fatal: raise RegexNotFoundError('Unable to extract %s' % _name) else: self._downloader.report_warning('unable to extract %s' % _name + bug_reports_message()) return None def _html_search_regex(self, pattern, string, name, default=NO_DEFAULT, fatal=True, flags=0, group=None): """ Like _search_regex, but strips HTML tags and unescapes entities. """ res = self._search_regex(pattern, string, name, default, fatal, flags, group) if res: return clean_html(res).strip() else: return res def _get_login_info(self): """ Get the login info as (username, password) It will look in the netrc file using the _NETRC_MACHINE value If there's no info available, return (None, None) """ if self._downloader is None: return (None, None) username = None password = None downloader_params = self._downloader.params # Attempt to use provided username and password or .netrc data if downloader_params.get('username', None) is not None: username = downloader_params['username'] password = downloader_params['password'] elif downloader_params.get('usenetrc', False): try: info = netrc.netrc().authenticators(self._NETRC_MACHINE) if info is not None: username = info[0] password = info[2] else: raise netrc.NetrcParseError('No authenticators for %s' % self._NETRC_MACHINE) except (IOError, netrc.NetrcParseError) as err: self._downloader.report_warning('parsing .netrc: %s' % compat_str(err)) return (username, password) def _get_tfa_info(self, note='two-factor verification code'): """ Get the two-factor authentication info TODO - asking the user will be required for sms/phone verify currently just uses the command line option If there's no info available, return None """ if self._downloader is None: return None downloader_params = self._downloader.params if downloader_params.get('twofactor', None) is not None: return downloader_params['twofactor'] return compat_getpass('Type %s and press [Return]: ' % note) # Helper functions for extracting OpenGraph info @staticmethod def _og_regexes(prop): content_re = r'content=(?:"([^>]+?)"|\'([^>]+?)\')' property_re = r'(?:name|property)=[\'"]og:%s[\'"]' % re.escape(prop) template = r'<meta[^>]+?%s[^>]+?%s' return [ template % (property_re, content_re), template % (content_re, property_re), ] @staticmethod def _meta_regex(prop): return r'''(?isx)<meta (?=[^>]+(?:itemprop|name|property|id|http-equiv)=(["\']?)%s\1) [^>]+?content=(["\'])(?P<content>.*?)\2''' % re.escape(prop) def _og_search_property(self, prop, html, name=None, **kargs): if name is None: name = 'OpenGraph %s' % prop escaped = self._search_regex(self._og_regexes(prop), html, name, flags=re.DOTALL, **kargs) if escaped is None: return None return unescapeHTML(escaped) def _og_search_thumbnail(self, html, **kargs): return self._og_search_property('image', html, 'thumbnail URL', fatal=False, **kargs) def _og_search_description(self, html, **kargs): return self._og_search_property('description', html, fatal=False, **kargs) def _og_search_title(self, html, **kargs): return self._og_search_property('title', html, **kargs) def _og_search_video_url(self, html, name='video url', secure=True, **kargs): regexes = self._og_regexes('video') + self._og_regexes('video:url') if secure: regexes = self._og_regexes('video:secure_url') + regexes return self._html_search_regex(regexes, html, name, **kargs) def _og_search_url(self, html, **kargs): return self._og_search_property('url', html, **kargs) def _html_search_meta(self, name, html, display_name=None, fatal=False, **kwargs): if display_name is None: display_name = name return self._html_search_regex( self._meta_regex(name), html, display_name, fatal=fatal, group='content', **kwargs) def _dc_search_uploader(self, html): return self._html_search_meta('dc.creator', html, 'uploader') def _rta_search(self, html): # See http://www.rtalabel.org/index.php?content=howtofaq#single if re.search(r'(?ix)<meta\s+name="rating"\s+' r' content="RTA-5042-1996-1400-1577-RTA"', html): return 18 return 0 def _media_rating_search(self, html): # See http://www.tjg-designs.com/WP/metadata-code-examples-adding-metadata-to-your-web-pages/ rating = self._html_search_meta('rating', html) if not rating: return None RATING_TABLE = { 'safe for kids': 0, 'general': 8, '14 years': 14, 'mature': 17, 'restricted': 19, } return RATING_TABLE.get(rating.lower(), None) def _family_friendly_search(self, html): # See http://schema.org/VideoObject family_friendly = self._html_search_meta('isFamilyFriendly', html) if not family_friendly: return None RATING_TABLE = { '1': 0, 'true': 0, '0': 18, 'false': 18, } return RATING_TABLE.get(family_friendly.lower(), None) def _twitter_search_player(self, html): return self._html_search_meta('twitter:player', html, 'twitter card player') @staticmethod def _hidden_inputs(html): hidden_inputs = {} for input in re.findall(r'<input([^>]+)>', html): if not re.search(r'type=(["\'])hidden\1', input): continue name = re.search(r'name=(["\'])(?P<value>.+?)\1', input) if not name: continue value = re.search(r'value=(["\'])(?P<value>.*?)\1', input) if not value: continue hidden_inputs[name.group('value')] = value.group('value') return hidden_inputs def _form_hidden_inputs(self, form_id, html): form = self._search_regex( r'(?s)<form[^>]+?id=(["\'])%s\1[^>]*>(?P<form>.+?)</form>' % form_id, html, '%s form' % form_id, group='form') return self._hidden_inputs(form) def _sort_formats(self, formats, field_preference=None): if not formats: raise ExtractorError('No video formats found') def _formats_key(f): # TODO remove the following workaround from ..utils import determine_ext if not f.get('ext') and 'url' in f: f['ext'] = determine_ext(f['url']) if isinstance(field_preference, (list, tuple)): return tuple(f.get(field) if f.get(field) is not None else -1 for field in field_preference) preference = f.get('preference') if preference is None: proto = f.get('protocol') if proto is None: proto = compat_urllib_parse_urlparse(f.get('url', '')).scheme preference = 0 if proto in ['http', 'https'] else -0.1 if f.get('ext') in ['f4f', 'f4m']: # Not yet supported preference -= 0.5 if f.get('vcodec') == 'none': # audio only if self._downloader.params.get('prefer_free_formats'): ORDER = ['aac', 'mp3', 'm4a', 'webm', 'ogg', 'opus'] else: ORDER = ['webm', 'opus', 'ogg', 'mp3', 'aac', 'm4a'] ext_preference = 0 try: audio_ext_preference = ORDER.index(f['ext']) except ValueError: audio_ext_preference = -1 else: if self._downloader.params.get('prefer_free_formats'): ORDER = ['flv', 'mp4', 'webm'] else: ORDER = ['webm', 'flv', 'mp4'] try: ext_preference = ORDER.index(f['ext']) except ValueError: ext_preference = -1 audio_ext_preference = 0 return ( preference, f.get('language_preference') if f.get('language_preference') is not None else -1, f.get('quality') if f.get('quality') is not None else -1, f.get('tbr') if f.get('tbr') is not None else -1, f.get('filesize') if f.get('filesize') is not None else -1, f.get('vbr') if f.get('vbr') is not None else -1, f.get('height') if f.get('height') is not None else -1, f.get('width') if f.get('width') is not None else -1, ext_preference, f.get('abr') if f.get('abr') is not None else -1, audio_ext_preference, f.get('fps') if f.get('fps') is not None else -1, f.get('filesize_approx') if f.get('filesize_approx') is not None else -1, f.get('source_preference') if f.get('source_preference') is not None else -1, f.get('format_id') if f.get('format_id') is not None else '', ) formats.sort(key=_formats_key) def _check_formats(self, formats, video_id): if formats: formats[:] = filter( lambda f: self._is_valid_url( f['url'], video_id, item='%s video format' % f.get('format_id') if f.get('format_id') else 'video'), formats) def _is_valid_url(self, url, video_id, item='video'): url = self._proto_relative_url(url, scheme='http:') # For now assume non HTTP(S) URLs always valid if not (url.startswith('http://') or url.startswith('https://')): return True try: self._request_webpage(url, video_id, 'Checking %s URL' % item) return True except ExtractorError as e: if isinstance(e.cause, compat_HTTPError): self.to_screen( '%s: %s URL is invalid, skipping' % (video_id, item)) return False raise def http_scheme(self): """ Either "http:" or "https:", depending on the user's preferences """ return ( 'http:' if self._downloader.params.get('prefer_insecure', False) else 'https:') def _proto_relative_url(self, url, scheme=None): if url is None: return url if url.startswith('//'): if scheme is None: scheme = self.http_scheme() return scheme + url else: return url def _sleep(self, timeout, video_id, msg_template=None): if msg_template is None: msg_template = '%(video_id)s: Waiting for %(timeout)s seconds' msg = msg_template % {'video_id': video_id, 'timeout': timeout} self.to_screen(msg) time.sleep(timeout) def _extract_f4m_formats(self, manifest_url, video_id, preference=None, f4m_id=None, transform_source=lambda s: fix_xml_ampersands(s).strip()): manifest = self._download_xml( manifest_url, video_id, 'Downloading f4m manifest', 'Unable to download f4m manifest', # Some manifests may be malformed, e.g. prosiebensat1 generated manifests # (see https://github.com/rg3/youtube-dl/issues/6215#issuecomment-121704244) transform_source=transform_source) formats = [] manifest_version = '1.0' media_nodes = manifest.findall('{http://ns.adobe.com/f4m/1.0}media') if not media_nodes: manifest_version = '2.0' media_nodes = manifest.findall('{http://ns.adobe.com/f4m/2.0}media') for i, media_el in enumerate(media_nodes): if manifest_version == '2.0': media_url = media_el.attrib.get('href') or media_el.attrib.get('url') if not media_url: continue manifest_url = ( media_url if media_url.startswith('http://') or media_url.startswith('https://') else ('/'.join(manifest_url.split('/')[:-1]) + '/' + media_url)) # If media_url is itself a f4m manifest do the recursive extraction # since bitrates in parent manifest (this one) and media_url manifest # may differ leading to inability to resolve the format by requested # bitrate in f4m downloader if determine_ext(manifest_url) == 'f4m': formats.extend(self._extract_f4m_formats(manifest_url, video_id, preference, f4m_id)) continue tbr = int_or_none(media_el.attrib.get('bitrate')) formats.append({ 'format_id': '-'.join(filter(None, [f4m_id, compat_str(i if tbr is None else tbr)])), 'url': manifest_url, 'ext': 'flv', 'tbr': tbr, 'width': int_or_none(media_el.attrib.get('width')), 'height': int_or_none(media_el.attrib.get('height')), 'preference': preference, }) self._sort_formats(formats) return formats def _extract_m3u8_formats(self, m3u8_url, video_id, ext=None, entry_protocol='m3u8', preference=None, m3u8_id=None, note=None, errnote=None, fatal=True): formats = [{ 'format_id': '-'.join(filter(None, [m3u8_id, 'meta'])), 'url': m3u8_url, 'ext': ext, 'protocol': 'm3u8', 'preference': preference - 1 if preference else -1, 'resolution': 'multiple', 'format_note': 'Quality selection URL', }] format_url = lambda u: ( u if re.match(r'^https?://', u) else compat_urlparse.urljoin(m3u8_url, u)) m3u8_doc = self._download_webpage( m3u8_url, video_id, note=note or 'Downloading m3u8 information', errnote=errnote or 'Failed to download m3u8 information', fatal=fatal) if m3u8_doc is False: return m3u8_doc last_info = None last_media = None kv_rex = re.compile( r'(?P<key>[a-zA-Z_-]+)=(?P<val>"[^"]+"|[^",]+)(?:,|$)') for line in m3u8_doc.splitlines(): if line.startswith('#EXT-X-STREAM-INF:'): last_info = {} for m in kv_rex.finditer(line): v = m.group('val') if v.startswith('"'): v = v[1:-1] last_info[m.group('key')] = v elif line.startswith('#EXT-X-MEDIA:'): last_media = {} for m in kv_rex.finditer(line): v = m.group('val') if v.startswith('"'): v = v[1:-1] last_media[m.group('key')] = v elif line.startswith('#') or not line.strip(): continue else: if last_info is None: formats.append({'url': format_url(line)}) continue tbr = int_or_none(last_info.get('BANDWIDTH'), scale=1000) format_id = [] if m3u8_id: format_id.append(m3u8_id) last_media_name = last_media.get('NAME') if last_media and last_media.get('TYPE') != 'SUBTITLES' else None format_id.append(last_media_name if last_media_name else '%d' % (tbr if tbr else len(formats))) f = { 'format_id': '-'.join(format_id), 'url': format_url(line.strip()), 'tbr': tbr, 'ext': ext, 'protocol': entry_protocol, 'preference': preference, } codecs = last_info.get('CODECS') if codecs: # TODO: looks like video codec is not always necessarily goes first va_codecs = codecs.split(',') if va_codecs[0]: f['vcodec'] = va_codecs[0].partition('.')[0] if len(va_codecs) > 1 and va_codecs[1]: f['acodec'] = va_codecs[1].partition('.')[0] resolution = last_info.get('RESOLUTION') if resolution: width_str, height_str = resolution.split('x') f['width'] = int(width_str) f['height'] = int(height_str) if last_media is not None: f['m3u8_media'] = last_media last_media = None formats.append(f) last_info = {} self._sort_formats(formats) return formats @staticmethod def _xpath_ns(path, namespace=None): if not namespace: return path out = [] for c in path.split('/'): if not c or c == '.': out.append(c) else: out.append('{%s}%s' % (namespace, c)) return '/'.join(out) def _extract_smil_formats(self, smil_url, video_id, fatal=True, f4m_params=None): smil = self._download_smil(smil_url, video_id, fatal=fatal) if smil is False: assert not fatal return [] namespace = self._parse_smil_namespace(smil) return self._parse_smil_formats( smil, smil_url, video_id, namespace=namespace, f4m_params=f4m_params) def _extract_smil_info(self, smil_url, video_id, fatal=True, f4m_params=None): smil = self._download_smil(smil_url, video_id, fatal=fatal) if smil is False: return {} return self._parse_smil(smil, smil_url, video_id, f4m_params=f4m_params) def _download_smil(self, smil_url, video_id, fatal=True): return self._download_xml( smil_url, video_id, 'Downloading SMIL file', 'Unable to download SMIL file', fatal=fatal) def _parse_smil(self, smil, smil_url, video_id, f4m_params=None): namespace = self._parse_smil_namespace(smil) formats = self._parse_smil_formats( smil, smil_url, video_id, namespace=namespace, f4m_params=f4m_params) subtitles = self._parse_smil_subtitles(smil, namespace=namespace) video_id = os.path.splitext(url_basename(smil_url))[0] title = None description = None for meta in smil.findall(self._xpath_ns('./head/meta', namespace)): name = meta.attrib.get('name') content = meta.attrib.get('content') if not name or not content: continue if not title and name == 'title': title = content elif not description and name in ('description', 'abstract'): description = content return { 'id': video_id, 'title': title or video_id, 'description': description, 'formats': formats, 'subtitles': subtitles, } def _parse_smil_namespace(self, smil): return self._search_regex( r'(?i)^{([^}]+)?}smil$', smil.tag, 'namespace', default=None) def _parse_smil_formats(self, smil, smil_url, video_id, namespace=None, f4m_params=None): base = smil_url for meta in smil.findall(self._xpath_ns('./head/meta', namespace)): b = meta.get('base') or meta.get('httpBase') if b: base = b break formats = [] rtmp_count = 0 http_count = 0 videos = smil.findall(self._xpath_ns('.//video', namespace)) for video in videos: src = video.get('src') if not src: continue bitrate = int_or_none(video.get('system-bitrate') or video.get('systemBitrate'), 1000) filesize = int_or_none(video.get('size') or video.get('fileSize')) width = int_or_none(video.get('width')) height = int_or_none(video.get('height')) proto = video.get('proto') ext = video.get('ext') src_ext = determine_ext(src) streamer = video.get('streamer') or base if proto == 'rtmp' or streamer.startswith('rtmp'): rtmp_count += 1 formats.append({ 'url': streamer, 'play_path': src, 'ext': 'flv', 'format_id': 'rtmp-%d' % (rtmp_count if bitrate is None else bitrate), 'tbr': bitrate, 'filesize': filesize, 'width': width, 'height': height, }) continue src_url = src if src.startswith('http') else compat_urlparse.urljoin(base, src) if proto == 'm3u8' or src_ext == 'm3u8': formats.extend(self._extract_m3u8_formats( src_url, video_id, ext or 'mp4', m3u8_id='hls')) continue if src_ext == 'f4m': f4m_url = src_url if not f4m_params: f4m_params = { 'hdcore': '3.2.0', 'plugin': 'flowplayer-3.2.0.1', } f4m_url += '&' if '?' in f4m_url else '?' f4m_url += compat_urllib_parse.urlencode(f4m_params) formats.extend(self._extract_f4m_formats(f4m_url, video_id, f4m_id='hds')) continue if src_url.startswith('http'): http_count += 1 formats.append({ 'url': src_url, 'ext': ext or src_ext or 'flv', 'format_id': 'http-%d' % (bitrate or http_count), 'tbr': bitrate, 'filesize': filesize, 'width': width, 'height': height, }) continue self._sort_formats(formats) return formats def _parse_smil_subtitles(self, smil, namespace=None): subtitles = {} for num, textstream in enumerate(smil.findall(self._xpath_ns('.//textstream', namespace))): src = textstream.get('src') if not src: continue ext = textstream.get('ext') or determine_ext(src) if not ext: type_ = textstream.get('type') if type_ == 'text/srt': ext = 'srt' lang = textstream.get('systemLanguage') or textstream.get('systemLanguageName') subtitles.setdefault(lang, []).append({ 'url': src, 'ext': ext, }) return subtitles def _extract_xspf_playlist(self, playlist_url, playlist_id, fatal=True): xspf = self._download_xml( playlist_url, playlist_id, 'Downloading xpsf playlist', 'Unable to download xspf manifest', fatal=fatal) if xspf is False: return [] return self._parse_xspf(xspf, playlist_id) def _parse_xspf(self, playlist, playlist_id): NS_MAP = { 'xspf': 'http://xspf.org/ns/0/', 's1': 'http://static.streamone.nl/player/ns/0', } entries = [] for track in playlist.findall(xpath_with_ns('./xspf:trackList/xspf:track', NS_MAP)): title = xpath_text( track, xpath_with_ns('./xspf:title', NS_MAP), 'title', default=playlist_id) description = xpath_text( track, xpath_with_ns('./xspf:annotation', NS_MAP), 'description') thumbnail = xpath_text( track, xpath_with_ns('./xspf:image', NS_MAP), 'thumbnail') duration = float_or_none( xpath_text(track, xpath_with_ns('./xspf:duration', NS_MAP), 'duration'), 1000) formats = [{ 'url': location.text, 'format_id': location.get(xpath_with_ns('s1:label', NS_MAP)), 'width': int_or_none(location.get(xpath_with_ns('s1:width', NS_MAP))), 'height': int_or_none(location.get(xpath_with_ns('s1:height', NS_MAP))), } for location in track.findall(xpath_with_ns('./xspf:location', NS_MAP))] self._sort_formats(formats) entries.append({ 'id': playlist_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'formats': formats, }) return entries def _live_title(self, name): """ Generate the title for a live video """ now = datetime.datetime.now() now_str = now.strftime("%Y-%m-%d %H:%M") return name + ' ' + now_str def _int(self, v, name, fatal=False, **kwargs): res = int_or_none(v, **kwargs) if 'get_attr' in kwargs: print(getattr(v, kwargs['get_attr'])) if res is None: msg = 'Failed to extract %s: Could not parse value %r' % (name, v) if fatal: raise ExtractorError(msg) else: self._downloader.report_warning(msg) return res def _float(self, v, name, fatal=False, **kwargs): res = float_or_none(v, **kwargs) if res is None: msg = 'Failed to extract %s: Could not parse value %r' % (name, v) if fatal: raise ExtractorError(msg) else: self._downloader.report_warning(msg) return res def _set_cookie(self, domain, name, value, expire_time=None): cookie = compat_cookiejar.Cookie( 0, name, value, None, None, domain, None, None, '/', True, False, expire_time, '', None, None, None) self._downloader.cookiejar.set_cookie(cookie) def _get_cookies(self, url): """ Return a compat_cookies.SimpleCookie with the cookies for the url """ req = compat_urllib_request.Request(url) self._downloader.cookiejar.add_cookie_header(req) return compat_cookies.SimpleCookie(req.get_header('Cookie')) def get_testcases(self, include_onlymatching=False): t = getattr(self, '_TEST', None) if t: assert not hasattr(self, '_TESTS'), \ '%s has _TEST and _TESTS' % type(self).__name__ tests = [t] else: tests = getattr(self, '_TESTS', []) for t in tests: if not include_onlymatching and t.get('only_matching', False): continue t['name'] = type(self).__name__[:-len('IE')] yield t def is_suitable(self, age_limit): """ Test whether the extractor is generally suitable for the given age limit (i.e. pornographic sites are not, all others usually are) """ any_restricted = False for tc in self.get_testcases(include_onlymatching=False): if 'playlist' in tc: tc = tc['playlist'][0] is_restricted = age_restricted( tc.get('info_dict', {}).get('age_limit'), age_limit) if not is_restricted: return True any_restricted = any_restricted or is_restricted return not any_restricted def extract_subtitles(self, *args, **kwargs): if (self._downloader.params.get('writesubtitles', False) or self._downloader.params.get('listsubtitles')): return self._get_subtitles(*args, **kwargs) return {} def _get_subtitles(self, *args, **kwargs): raise NotImplementedError("This method must be implemented by subclasses") def extract_automatic_captions(self, *args, **kwargs): if (self._downloader.params.get('writeautomaticsub', False) or self._downloader.params.get('listsubtitles')): return self._get_automatic_captions(*args, **kwargs) return {} def _get_automatic_captions(self, *args, **kwargs): raise NotImplementedError("This method must be implemented by subclasses") class SearchInfoExtractor(InfoExtractor): """ Base class for paged search queries extractors. They accept URLs in the format _SEARCH_KEY(|all|[0-9]):{query} Instances should define _SEARCH_KEY and _MAX_RESULTS. """ @classmethod def _make_valid_url(cls): return r'%s(?P<prefix>|[1-9][0-9]*|all):(?P<query>[\s\S]+)' % cls._SEARCH_KEY @classmethod def suitable(cls, url): return re.match(cls._make_valid_url(), url) is not None def _real_extract(self, query): mobj = re.match(self._make_valid_url(), query) if mobj is None: raise ExtractorError('Invalid search query "%s"' % query) prefix = mobj.group('prefix') query = mobj.group('query') if prefix == '': return self._get_n_results(query, 1) elif prefix == 'all': return self._get_n_results(query, self._MAX_RESULTS) else: n = int(prefix) if n <= 0: raise ExtractorError('invalid download number %s for query "%s"' % (n, query)) elif n > self._MAX_RESULTS: self._downloader.report_warning('%s returns max %i results (you requested %i)' % (self._SEARCH_KEY, self._MAX_RESULTS, n)) n = self._MAX_RESULTS return self._get_n_results(query, n) def _get_n_results(self, query, n): """Get a specified number of results for a query""" raise NotImplementedError("This method must be implemented by subclasses") @property def SEARCH_KEY(self): return self._SEARCH_KEY
unlicense
TommiHelander/quabro
pgu/gui/__init__.py
3
1226
"""Modules for creating a widget-based user interface. See the examples folder for sample scripts that use this module.""" import pygame # The basestring class was removed in Python 3, but we want to keep it to maintain # compatibility with previous versions of python. try: __builtins__["basestring"] except KeyError: __builtins__["basestring"] = str from .theme import Theme from .style import Style from .widget import Widget from .surface import subsurface, ProxySurface from .const import * from .container import Container from .app import App, Desktop from .table import Table from .document import Document #html from .area import SlideBox, ScrollArea, List from .form import Form from .group import Group from .basic import Spacer, Color, Label, Image, parse_color from .button import Icon, Button, Switch, Checkbox, Radio, Tool, Link from .input import Input, Password from .keysym import Keysym from .slider import VSlider, HSlider, VScrollBar, HScrollBar from .select import Select from .misc import ProgressBar from .menus import Menus from .dialog import Dialog, FileDialog from .textarea import TextArea from .deprecated import Toolbox, action_open, action_setvalue, action_quit, action_exec
gpl-3.0
mlperf/training_results_v0.6
Google/benchmarks/transformer/implementations/tpu-v3-2048-transformer/dataset_preproc/data_generators/subject_verb_agreement.py
7
8527
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data generators for subject-verb agreement dataset. https://arxiv.org/pdf/1611.01368.pdf Based on he main paper, predicting verb's number can be done in two setups: - Language Modeling - Binary Classification """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import gzip import os import random from tensor2tensor.data_generators import generator_utils from tensor2tensor.data_generators import problem from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import text_problems from tensor2tensor.utils import metrics from tensor2tensor.utils import registry import tensorflow as tf _FILE_NAME = 'agr_50_mostcommon_10K' _TAR = _FILE_NAME + '.tsv.gz' _URL = 'http://tallinzen.net/media/rnn_agreement/' + _TAR _LABEL_DICT = {'VBZ': 0, 'VBP': 1} def _build_vocab(examples, example_field, vocab_dir, vocab_name): """Build a vocabulary from examples. Args: examples: a dict containing all the examples. example_field: field of example from which the vocabulary is built. vocab_dir: directory where to save the vocabulary. vocab_name: vocab file name. Returns: text encoder. """ vocab_path = os.path.join(vocab_dir, vocab_name) if not tf.gfile.Exists(vocab_path): data = [] for e in examples: data.extend(e[example_field].split()) counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) encoder = text_encoder.TokenTextEncoder(None, vocab_list=words) encoder.store_to_file(vocab_path) else: encoder = text_encoder.TokenTextEncoder(vocab_path) return encoder def load_examples(tmp_dir, prop_train=0.09, prop_val=0.01): """Loads exampls from the tsv file. Args: tmp_dir: temp directory. prop_train: proportion of the train data prop_val: proportion of the validation data Returns: All examples in the dataset pluse train, test, and development splits. """ infile = generator_utils.maybe_download(tmp_dir, _TAR, _URL) tf.logging.info('Loading examples') all_examples = [] for i, d in enumerate(csv.DictReader(gzip.open(infile), delimiter='\t')): if i % 100000 == 0: tf.logging.info('%d examples have been loaded....' % i) ex = {x: int(y) if y.isdigit() else y for x, y in d.items()} all_examples.append(ex) random.seed(1) random.shuffle(all_examples) n_train = int(len(all_examples) * prop_train) n_val = n_train + int(len(all_examples) * prop_val) train = all_examples[:n_train] val = all_examples[n_train:n_val] test = [] for e in all_examples[n_val:]: if e['n_intervening'] == e['n_diff_intervening']: test.append(e) return all_examples, train, val, test @registry.register_problem class SvaNumberPrediction(text_problems.Text2ClassProblem): """Subject verb agreement as verb number predicion (binary classification).""" @property def is_generate_per_split(self): # generate_data will shard the data into TRAIN and EVAL for us. return True @property def dataset_splits(self): """Splits of data to produce and number of output shards for each. This is the setup of the main paper. 10% train/ 90% eval Returns: A dict containing splits information. """ return [{ 'split': problem.DatasetSplit.TRAIN, 'shards': 1, }, { 'split': problem.DatasetSplit.EVAL, 'shards': 1, }, { 'split': problem.DatasetSplit.TEST, 'shards': 10, }] @property def train_proportion(self): # generate_data will shard the data into TRAIN and EVAL for us. return 0.09 @property def validation_proportion(self): # generate_data will shard the data into TRAIN and EVAL for us. return 0.01 @property def vocab_type(self): return text_problems.VocabType.TOKEN @property def num_classes(self): return 2 def class_labels(self, data_dir): """Class labels.""" del data_dir return ['VBZ', 'VBP'] def generate_samples(self, data_dir, tmp_dir, dataset_split): """Generate samples of text and label pairs. Each yielded dict will be a single example. The inputs should be raw text. The label should be an int in [0, self.num_classes). Args: data_dir: final data directory. Typically only used in this method to copy over user-supplied vocab files (for example, if vocab_type == VocabType.TOKEN). tmp_dir: temporary directory that you can use for downloading and scratch. dataset_split: problem.DatasetSplit, which data split to generate samples for (for example, training and evaluation). Returns: sample generator. """ example_filed = 'sentence' examples_for_vocab, train, val, test = load_examples( tmp_dir, self.train_proportion, self.validation_proportion) _build_vocab( examples_for_vocab, example_filed, data_dir, self.vocab_filename) if dataset_split == problem.DatasetSplit.TRAIN: examples = train elif dataset_split == problem.DatasetSplit.EVAL: examples = val elif dataset_split == problem.DatasetSplit.TEST: examples = test def _generate_samples(): for example in examples: index = int(example['verb_index']) - 1 inputs = example[example_filed].split()[:index] yield { 'inputs': ' '.join(inputs), 'label': _LABEL_DICT[example['verb_pos']] } return _generate_samples() def eval_metrics(self): """Specify the set of evaluation metrics for this problem. Returns: List of evaluation metrics of interest. """ # TODO(dehghani): Implement accuracy of the target word as a t2t metric. return [metrics.Metrics.ACC] @registry.register_problem class SvaLanguageModeling(text_problems.Text2SelfProblem): """Subject verb agreement as language modeling task.""" @property def is_generate_per_split(self): # generate_data will shard the data into TRAIN and EVAL for us. return True @property def dataset_splits(self): """Splits of data to produce and number of output shards for each. This is the setup of the main paper. 10% train/ 90% eval Returns: A dict containing splits information. """ return [{ 'split': problem.DatasetSplit.TRAIN, 'shards': 1, }, { 'split': problem.DatasetSplit.EVAL, 'shards': 1, }, { 'split': problem.DatasetSplit.TEST, 'shards': 10, }] @property def train_proportion(self): # generate_data will shard the data into TRAIN and EVAL for us. return 0.09 @property def validation_proportion(self): # generate_data will shard the data into TRAIN and EVAL for us. return 0.01 @property def vocab_type(self): return text_problems.VocabType.TOKEN def generate_samples(self, data_dir, tmp_dir, dataset_split): """Generates samples. Args: data_dir: data directory tmp_dir: temp directory dataset_split: dataset split Returns: sample generator. """ example_filed = 'sentence' examples_for_vocab, train, val, test = load_examples( tmp_dir, self.train_proportion, self.validation_proportion) _build_vocab( examples_for_vocab, example_filed, data_dir, self.vocab_filename) if dataset_split == problem.DatasetSplit.TRAIN: examples = train elif dataset_split == problem.DatasetSplit.EVAL: examples = val elif dataset_split == problem.DatasetSplit.TEST: examples = test def _generate_samples(): for example in examples: index = int(example['verb_index']) - 1 targets = example[example_filed].split()[:index + 1] yield {'targets': ' '.join(targets)} return _generate_samples()
apache-2.0
shssoichiro/servo
tests/wpt/web-platform-tests/tools/pytest/_pytest/junitxml.py
168
12879
""" report test results in JUnit-XML format, for use with Jenkins and build integration servers. Based on initial code from Ross Lawley. """ # Output conforms to https://github.com/jenkinsci/xunit-plugin/blob/master/ # src/main/resources/org/jenkinsci/plugins/xunit/types/model/xsd/junit-10.xsd import py import os import re import sys import time import pytest # Python 2.X and 3.X compatibility if sys.version_info[0] < 3: from codecs import open else: unichr = chr unicode = str long = int class Junit(py.xml.Namespace): pass # We need to get the subset of the invalid unicode ranges according to # XML 1.0 which are valid in this python build. Hence we calculate # this dynamically instead of hardcoding it. The spec range of valid # chars is: Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] # | [#x10000-#x10FFFF] _legal_chars = (0x09, 0x0A, 0x0d) _legal_ranges = ( (0x20, 0x7E), (0x80, 0xD7FF), (0xE000, 0xFFFD), (0x10000, 0x10FFFF), ) _legal_xml_re = [ unicode("%s-%s") % (unichr(low), unichr(high)) for (low, high) in _legal_ranges if low < sys.maxunicode ] _legal_xml_re = [unichr(x) for x in _legal_chars] + _legal_xml_re illegal_xml_re = re.compile(unicode('[^%s]') % unicode('').join(_legal_xml_re)) del _legal_chars del _legal_ranges del _legal_xml_re _py_ext_re = re.compile(r"\.py$") def bin_xml_escape(arg): def repl(matchobj): i = ord(matchobj.group()) if i <= 0xFF: return unicode('#x%02X') % i else: return unicode('#x%04X') % i return py.xml.raw(illegal_xml_re.sub(repl, py.xml.escape(arg))) class _NodeReporter(object): def __init__(self, nodeid, xml): self.id = nodeid self.xml = xml self.add_stats = self.xml.add_stats self.duration = 0 self.properties = [] self.nodes = [] self.testcase = None self.attrs = {} def append(self, node): self.xml.add_stats(type(node).__name__) self.nodes.append(node) def add_property(self, name, value): self.properties.append((str(name), bin_xml_escape(value))) def make_properties_node(self): """Return a Junit node containing custom properties, if any. """ if self.properties: return Junit.properties([ Junit.property(name=name, value=value) for name, value in self.properties ]) return '' def record_testreport(self, testreport): assert not self.testcase names = mangle_test_address(testreport.nodeid) classnames = names[:-1] if self.xml.prefix: classnames.insert(0, self.xml.prefix) attrs = { "classname": ".".join(classnames), "name": bin_xml_escape(names[-1]), "file": testreport.location[0], } if testreport.location[1] is not None: attrs["line"] = testreport.location[1] self.attrs = attrs def to_xml(self): testcase = Junit.testcase(time=self.duration, **self.attrs) testcase.append(self.make_properties_node()) for node in self.nodes: testcase.append(node) return testcase def _add_simple(self, kind, message, data=None): data = bin_xml_escape(data) node = kind(data, message=message) self.append(node) def _write_captured_output(self, report): for capname in ('out', 'err'): allcontent = "" for name, content in report.get_sections("Captured std%s" % capname): allcontent += content if allcontent: tag = getattr(Junit, 'system-' + capname) self.append(tag(bin_xml_escape(allcontent))) def append_pass(self, report): self.add_stats('passed') self._write_captured_output(report) def append_failure(self, report): # msg = str(report.longrepr.reprtraceback.extraline) if hasattr(report, "wasxfail"): self._add_simple( Junit.skipped, "xfail-marked test passes unexpectedly") else: if hasattr(report.longrepr, "reprcrash"): message = report.longrepr.reprcrash.message elif isinstance(report.longrepr, (unicode, str)): message = report.longrepr else: message = str(report.longrepr) message = bin_xml_escape(message) fail = Junit.failure(message=message) fail.append(bin_xml_escape(report.longrepr)) self.append(fail) self._write_captured_output(report) def append_collect_error(self, report): # msg = str(report.longrepr.reprtraceback.extraline) self.append(Junit.error(bin_xml_escape(report.longrepr), message="collection failure")) def append_collect_skipped(self, report): self._add_simple( Junit.skipped, "collection skipped", report.longrepr) def append_error(self, report): self._add_simple( Junit.error, "test setup failure", report.longrepr) self._write_captured_output(report) def append_skipped(self, report): if hasattr(report, "wasxfail"): self._add_simple( Junit.skipped, "expected test failure", report.wasxfail ) else: filename, lineno, skipreason = report.longrepr if skipreason.startswith("Skipped: "): skipreason = bin_xml_escape(skipreason[9:]) self.append( Junit.skipped("%s:%s: %s" % (filename, lineno, skipreason), type="pytest.skip", message=skipreason)) self._write_captured_output(report) def finalize(self): data = self.to_xml().unicode(indent=0) self.__dict__.clear() self.to_xml = lambda: py.xml.raw(data) @pytest.fixture def record_xml_property(request): """Fixture that adds extra xml properties to the tag for the calling test. The fixture is callable with (name, value), with value being automatically xml-encoded. """ request.node.warn( code='C3', message='record_xml_property is an experimental feature', ) xml = getattr(request.config, "_xml", None) if xml is not None: node_reporter = xml.node_reporter(request.node.nodeid) return node_reporter.add_property else: def add_property_noop(name, value): pass return add_property_noop def pytest_addoption(parser): group = parser.getgroup("terminal reporting") group.addoption( '--junitxml', '--junit-xml', action="store", dest="xmlpath", metavar="path", default=None, help="create junit-xml style report file at given path.") group.addoption( '--junitprefix', '--junit-prefix', action="store", metavar="str", default=None, help="prepend prefix to classnames in junit-xml output") def pytest_configure(config): xmlpath = config.option.xmlpath # prevent opening xmllog on slave nodes (xdist) if xmlpath and not hasattr(config, 'slaveinput'): config._xml = LogXML(xmlpath, config.option.junitprefix) config.pluginmanager.register(config._xml) def pytest_unconfigure(config): xml = getattr(config, '_xml', None) if xml: del config._xml config.pluginmanager.unregister(xml) def mangle_test_address(address): path, possible_open_bracket, params = address.partition('[') names = path.split("::") try: names.remove('()') except ValueError: pass # convert file path to dotted path names[0] = names[0].replace("/", '.') names[0] = _py_ext_re.sub("", names[0]) # put any params back names[-1] += possible_open_bracket + params return names class LogXML(object): def __init__(self, logfile, prefix): logfile = os.path.expanduser(os.path.expandvars(logfile)) self.logfile = os.path.normpath(os.path.abspath(logfile)) self.prefix = prefix self.stats = dict.fromkeys([ 'error', 'passed', 'failure', 'skipped', ], 0) self.node_reporters = {} # nodeid -> _NodeReporter self.node_reporters_ordered = [] def finalize(self, report): nodeid = getattr(report, 'nodeid', report) # local hack to handle xdist report order slavenode = getattr(report, 'node', None) reporter = self.node_reporters.pop((nodeid, slavenode)) if reporter is not None: reporter.finalize() def node_reporter(self, report): nodeid = getattr(report, 'nodeid', report) # local hack to handle xdist report order slavenode = getattr(report, 'node', None) key = nodeid, slavenode if key in self.node_reporters: # TODO: breasks for --dist=each return self.node_reporters[key] reporter = _NodeReporter(nodeid, self) self.node_reporters[key] = reporter self.node_reporters_ordered.append(reporter) return reporter def add_stats(self, key): if key in self.stats: self.stats[key] += 1 def _opentestcase(self, report): reporter = self.node_reporter(report) reporter.record_testreport(report) return reporter def pytest_runtest_logreport(self, report): """handle a setup/call/teardown report, generating the appropriate xml tags as necessary. note: due to plugins like xdist, this hook may be called in interlaced order with reports from other nodes. for example: usual call order: -> setup node1 -> call node1 -> teardown node1 -> setup node2 -> call node2 -> teardown node2 possible call order in xdist: -> setup node1 -> call node1 -> setup node2 -> call node2 -> teardown node2 -> teardown node1 """ if report.passed: if report.when == "call": # ignore setup/teardown reporter = self._opentestcase(report) reporter.append_pass(report) elif report.failed: reporter = self._opentestcase(report) if report.when == "call": reporter.append_failure(report) else: reporter.append_error(report) elif report.skipped: reporter = self._opentestcase(report) reporter.append_skipped(report) self.update_testcase_duration(report) if report.when == "teardown": self.finalize(report) def update_testcase_duration(self, report): """accumulates total duration for nodeid from given report and updates the Junit.testcase with the new total if already created. """ reporter = self.node_reporter(report) reporter.duration += getattr(report, 'duration', 0.0) def pytest_collectreport(self, report): if not report.passed: reporter = self._opentestcase(report) if report.failed: reporter.append_collect_error(report) else: reporter.append_collect_skipped(report) def pytest_internalerror(self, excrepr): reporter = self.node_reporter('internal') reporter.attrs.update(classname="pytest", name='internal') reporter._add_simple(Junit.error, 'internal error', excrepr) def pytest_sessionstart(self): self.suite_start_time = time.time() def pytest_sessionfinish(self): dirname = os.path.dirname(os.path.abspath(self.logfile)) if not os.path.isdir(dirname): os.makedirs(dirname) logfile = open(self.logfile, 'w', encoding='utf-8') suite_stop_time = time.time() suite_time_delta = suite_stop_time - self.suite_start_time numtests = self.stats['passed'] + self.stats['failure'] logfile.write('<?xml version="1.0" encoding="utf-8"?>') logfile.write(Junit.testsuite( [x.to_xml() for x in self.node_reporters_ordered], name="pytest", errors=self.stats['error'], failures=self.stats['failure'], skips=self.stats['skipped'], tests=numtests, time="%.3f" % suite_time_delta, ).unicode(indent=0)) logfile.close() def pytest_terminal_summary(self, terminalreporter): terminalreporter.write_sep("-", "generated xml file: %s" % (self.logfile))
mpl-2.0
josephlewis42/autopilot
extern/gtest/test/gtest_break_on_failure_unittest.py
2140
7339
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's break-on-failure mode. A user can ask Google Test to seg-fault when an assertion fails, using either the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag. This script tests such functionality by invoking gtest_break_on_failure_unittest_ (a program written with Google Test) with different environments and command line flags. """ __author__ = '[email protected] (Zhanyong Wan)' import gtest_test_utils import os import sys # Constants. IS_WINDOWS = os.name == 'nt' # The environment variable for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_ENV_VAR = 'GTEST_BREAK_ON_FAILURE' # The command line flag for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_FLAG = 'gtest_break_on_failure' # The environment variable for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE_ENV_VAR = 'GTEST_THROW_ON_FAILURE' # The environment variable for enabling/disabling the catch-exceptions mode. CATCH_EXCEPTIONS_ENV_VAR = 'GTEST_CATCH_EXCEPTIONS' # Path to the gtest_break_on_failure_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'gtest_break_on_failure_unittest_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) def Run(command): """Runs a command; returns 1 if it was killed by a signal, or 0 otherwise.""" p = gtest_test_utils.Subprocess(command, env=environ) if p.terminated_by_signal: return 1 else: return 0 # The tests. class GTestBreakOnFailureUnitTest(gtest_test_utils.TestCase): """Tests using the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag to turn assertion failures into segmentation faults. """ def RunAndVerify(self, env_var_value, flag_value, expect_seg_fault): """Runs gtest_break_on_failure_unittest_ and verifies that it does (or does not) have a seg-fault. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. expect_seg_fault: 1 if the program is expected to generate a seg-fault; 0 otherwise. """ SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % BREAK_ON_FAILURE_FLAG else: flag = '--%s' % BREAK_ON_FAILURE_FLAG command = [EXE_PATH] if flag: command.append(flag) if expect_seg_fault: should_or_not = 'should' else: should_or_not = 'should not' has_seg_fault = Run(command) SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a seg-fault.' % (BREAK_ON_FAILURE_ENV_VAR, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(has_seg_fault == expect_seg_fault, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, expect_seg_fault=0) def testEnvVar(self): """Tests using the GTEST_BREAK_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value=None, expect_seg_fault=1) def testFlag(self): """Tests using the --gtest_break_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) def testFlagOverridesEnvVar(self): """Tests that the flag overrides the environment variable.""" self.RunAndVerify(env_var_value='0', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='0', flag_value='1', expect_seg_fault=1) self.RunAndVerify(env_var_value='1', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) def testBreakOnFailureOverridesThrowOnFailure(self): """Tests that gtest_break_on_failure overrides gtest_throw_on_failure.""" SetEnvVar(THROW_ON_FAILURE_ENV_VAR, '1') try: self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) finally: SetEnvVar(THROW_ON_FAILURE_ENV_VAR, None) if IS_WINDOWS: def testCatchExceptionsDoesNotInterfere(self): """Tests that gtest_catch_exceptions doesn't interfere.""" SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, '1') try: self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) finally: SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, None) if __name__ == '__main__': gtest_test_utils.Main()
gpl-3.0
nburn42/tensorflow
tensorflow/python/ops/linalg/linear_operator_kronecker.py
23
22568
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Construct the Kronecker product of one or more `LinearOperators`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import common_shapes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl as linalg from tensorflow.python.ops.linalg import linear_operator from tensorflow.python.util.tf_export import tf_export __all__ = [ "LinearOperatorKronecker", ] def _vec(x): """Stacks column of matrix to form a single column.""" return array_ops.reshape( array_ops.matrix_transpose(x), array_ops.concat( [array_ops.shape(x)[:-2], [-1]], axis=0)) def _unvec_by(y, num_col): """Unstack vector to form a matrix, with a specified amount of columns.""" return array_ops.matrix_transpose( array_ops.reshape( y, array_ops.concat( [array_ops.shape(y)[:-1], [num_col, -1]], axis=0))) def _rotate_last_dim(x, rotate_right=False): """Rotate the last dimension either left or right.""" ndims = array_ops.rank(x) if rotate_right: transpose_perm = array_ops.concat( [[ndims - 1], math_ops.range(0, ndims - 1)], axis=0) else: transpose_perm = array_ops.concat( [math_ops.range(1, ndims), [0]], axis=0) return array_ops.transpose(x, transpose_perm) @tf_export("linalg.LinearOperatorKronecker") class LinearOperatorKronecker(linear_operator.LinearOperator): """Kronecker product between two `LinearOperators`. This operator composes one or more linear operators `[op1,...,opJ]`, building a new `LinearOperator` representing the Kronecker product: `op1 x op2 x .. opJ` (we omit parentheses as the Kronecker product is associative). If `opj` has shape `batch_shape_j` + [M_j, N_j`, then the composed operator will have shape equal to `broadcast_batch_shape + [prod M_j, prod N_j]`, where the product is over all operators. ```python # Create a 4 x 4 linear operator composed of two 2 x 2 operators. operator_1 = LinearOperatorFullMatrix([[1., 2.], [3., 4.]]) operator_2 = LinearOperatorFullMatrix([[1., 0.], [2., 1.]]) operator = LinearOperatorKronecker([operator_1, operator_2]) operator.to_dense() ==> [[1., 2., 0., 0.], [3., 4., 0., 0.], [2., 4., 1., 2.], [6., 8., 3., 4.]] operator.shape ==> [4, 4] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [4, 2] Tensor operator.matmul(x) ==> Shape [4, 2] Tensor # Create a [2, 3] batch of 4 x 5 linear operators. matrix_45 = tf.random_normal(shape=[2, 3, 4, 5]) operator_45 = LinearOperatorFullMatrix(matrix) # Create a [2, 3] batch of 5 x 6 linear operators. matrix_56 = tf.random_normal(shape=[2, 3, 5, 6]) operator_56 = LinearOperatorFullMatrix(matrix_56) # Compose to create a [2, 3] batch of 20 x 30 operators. operator_large = LinearOperatorKronecker([operator_45, operator_56]) # Create a shape [2, 3, 20, 2] vector. x = tf.random_normal(shape=[2, 3, 6, 2]) operator_large.matmul(x) ==> Shape [2, 3, 30, 2] Tensor ``` #### Performance The performance of `LinearOperatorKronecker` on any operation is equal to the sum of the individual operators' operations. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, operators, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name=None): r"""Initialize a `LinearOperatorKronecker`. `LinearOperatorKronecker` is initialized with a list of operators `[op_1,...,op_J]`. Args: operators: Iterable of `LinearOperator` objects, each with the same `dtype` and composable shape, representing the Kronecker factors. is_non_singular: Expect that this operator is non-singular. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Default is the individual operators names joined with `_x_`. Raises: TypeError: If all operators do not have the same `dtype`. ValueError: If `operators` is empty. """ # Validate operators. check_ops.assert_proper_iterable(operators) operators = list(operators) if not operators: raise ValueError( "Expected a list of >=1 operators. Found: %s" % operators) self._operators = operators # Validate dtype. dtype = operators[0].dtype for operator in operators: if operator.dtype != dtype: name_type = (str((o.name, o.dtype)) for o in operators) raise TypeError( "Expected all operators to have the same dtype. Found %s" % " ".join(name_type)) # Auto-set and check hints. # A Kronecker product is invertible, if and only if all factors are # invertible. if all(operator.is_non_singular for operator in operators): if is_non_singular is False: raise ValueError( "The Kronecker product of non-singular operators is always " "non-singular.") is_non_singular = True if all(operator.is_self_adjoint for operator in operators): if is_self_adjoint is False: raise ValueError( "The Kronecker product of self-adjoint operators is always " "self-adjoint.") is_self_adjoint = True # The eigenvalues of a Kronecker product are equal to the products of eigen # values of the corresponding factors. if all(operator.is_positive_definite for operator in operators): if is_positive_definite is False: raise ValueError("The Kronecker product of positive-definite operators " "is always positive-definite.") is_positive_definite = True # Initialization. graph_parents = [] for operator in operators: graph_parents.extend(operator.graph_parents) if name is None: name = operators[0].name for operator in operators[1:]: name += "_x_" + operator.name with ops.name_scope(name, values=graph_parents): super(LinearOperatorKronecker, self).__init__( dtype=dtype, graph_parents=graph_parents, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name) @property def operators(self): return self._operators def _shape(self): # Get final matrix shape. domain_dimension = self.operators[0].domain_dimension for operator in self.operators[1:]: domain_dimension *= operator.domain_dimension range_dimension = self.operators[0].range_dimension for operator in self.operators[1:]: range_dimension *= operator.range_dimension matrix_shape = tensor_shape.TensorShape([ range_dimension, domain_dimension]) # Get broadcast batch shape. # broadcast_shape checks for compatibility. batch_shape = self.operators[0].batch_shape for operator in self.operators[1:]: batch_shape = common_shapes.broadcast_shape( batch_shape, operator.batch_shape) return batch_shape.concatenate(matrix_shape) def _shape_tensor(self): domain_dimension = self.operators[0].domain_dimension_tensor() for operator in self.operators[1:]: domain_dimension *= operator.domain_dimension_tensor() range_dimension = self.operators[0].range_dimension_tensor() for operator in self.operators[1:]: range_dimension *= operator.range_dimension_tensor() matrix_shape = [range_dimension, domain_dimension] # Get broadcast batch shape. # broadcast_shape checks for compatibility. batch_shape = self.operators[0].batch_shape_tensor() for operator in self.operators[1:]: batch_shape = array_ops.broadcast_dynamic_shape( batch_shape, operator.batch_shape_tensor()) return array_ops.concat((batch_shape, matrix_shape), 0) def _matmul(self, x, adjoint=False, adjoint_arg=False): # Here we heavily rely on Roth's column Lemma [1]: # (A x B) * vec X = vec BXA^T, # where vec stacks all the columns of the matrix under each other. In our # case, x represents a batch of vec X (i.e. we think of x as a batch of # column vectors, rather than a matrix). Each member of the batch can be # reshaped to a matrix (hence we get a batch of matrices). # We can iteratively apply this lemma by noting that if B is a Kronecker # product, then we can apply the lemma again. # [1] W. E. Roth, "On direct product matrices," # Bulletin of the American Mathematical Society, vol. 40, pp. 461-468, # 1934 # Efficiency # Naively doing the Kronecker product, by calculating the dense matrix and # applying it will can take cubic time in the size of domain_dimension # (assuming a square matrix). The other issue is that calculating the dense # matrix can be prohibitively expensive, in that it can take a large amount # of memory. # # This implementation avoids this memory blow up by only computing matmuls # with the factors. In this way, we don't have to realize the dense matrix. # In terms of complexity, if we have Kronecker Factors of size: # (n1, n1), (n2, n2), (n3, n3), ... (nJ, nJ), with N = \prod n_i, and we # have as input a [N, M] matrix, the naive approach would take O(N^2 M). # With this approach (ignoring reshaping of tensors and transposes for now), # the time complexity can be O(M * (\sum n_i) * N). There is also the # benefit of batched multiplication (In this example, the batch size is # roughly M * N) so this can be much faster. However, not factored in are # the costs of the several transposing of tensors, which can affect cache # behavior. # Below we document the shape manipulation for adjoint=False, # adjoint_arg=False, but the general case of different adjoints is still # handled. if adjoint_arg: x = linalg.adjoint(x) # Always add a batch dimension to enable broadcasting to work. batch_shape = array_ops.concat( [array_ops.ones_like(self.batch_shape_tensor()), [1, 1]], 0) x += array_ops.zeros(batch_shape, dtype=x.dtype.base_dtype) # x has shape [B, R, C], where B represent some number of batch dimensions, # R represents the number of rows, and C represents the number of columns. # In order to apply Roth's column lemma, we need to operate on a batch of # column vectors, so we reshape into a batch of column vectors. We put it # at the front to ensure that broadcasting between operators to the batch # dimensions B still works. output = _rotate_last_dim(x, rotate_right=True) # Also expand the shape to be [A, C, B, R]. The first dimension will be # used to accumulate dimensions from each operator matmul. output = output[array_ops.newaxis, ...] # In this loop, A is going to refer to the value of the accumulated # dimension. A = 1 at the start, and will end up being self.range_dimension. # V will refer to the last dimension. V = R at the start, and will end up # being 1 in the end. for operator in self.operators[:-1]: # Reshape output from [A, C, B, V] to be # [A, C, B, V / op.domain_dimension, op.domain_dimension] if adjoint: operator_dimension = operator.range_dimension_tensor() else: operator_dimension = operator.domain_dimension_tensor() output = _unvec_by(output, operator_dimension) # We are computing (XA^T) = (AX^T)^T. # output has [A, C, B, V / op.domain_dimension, op.domain_dimension], # which is being converted to: # [A, C, B, V / op.domain_dimension, op.range_dimension] output = array_ops.matrix_transpose(output) output = operator.matmul(output, adjoint=adjoint, adjoint_arg=False) output = array_ops.matrix_transpose(output) # Rearrange it to [A * op.range_dimension, C, B, V / op.domain_dimension] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=True) # After the loop, we will have # A = self.range_dimension / op[-1].range_dimension # V = op[-1].domain_dimension # We convert that using matvec to get: # [A, C, B, op[-1].range_dimension] output = self.operators[-1].matvec(output, adjoint=adjoint) # Rearrange shape to be [B1, ... Bn, self.range_dimension, C] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=False) if x.shape.is_fully_defined(): column_dim = x.shape[-1] broadcast_batch_shape = common_shapes.broadcast_shape( x.shape[:-2], self.batch_shape) if adjoint: matrix_dimensions = [self.domain_dimension, column_dim] else: matrix_dimensions = [self.range_dimension, column_dim] output.set_shape(broadcast_batch_shape.concatenate( matrix_dimensions)) return output def _determinant(self): # Note that we have |X1 x X2| = |X1| ** n * |X2| ** m, where X1 is an m x m # matrix, and X2 is an n x n matrix. We can iteratively apply this property # to get the determinant of |X1 x X2 x X3 ...|. If T is the product of the # domain dimension of all operators, then we have: # |X1 x X2 x X3 ...| = # |X1| ** (T / m) * |X2 x X3 ... | ** m = # |X1| ** (T / m) * |X2| ** (m * (T / m) / n) * ... = # |X1| ** (T / m) * |X2| ** (T / n) * | X3 x X4... | ** (m * n) # And by doing induction we have product(|X_i| ** (T / dim(X_i))). total = self.domain_dimension_tensor() determinant = 1. for operator in self.operators: determinant *= operator.determinant() ** math_ops.cast( total / operator.domain_dimension_tensor(), dtype=operator.dtype) return determinant def _log_abs_determinant(self): # This will be sum((total / dim(x_i)) * log |X_i|) total = self.domain_dimension_tensor() log_abs_det = 0. for operator in self.operators: log_abs_det += operator.log_abs_determinant() * math_ops.cast( total / operator.domain_dimension_tensor(), dtype=operator.dtype) return log_abs_det def _trace(self): # tr(A x B) = tr(A) * tr(B) trace = 1. for operator in self.operators: trace *= operator.trace() return trace def _solve(self, rhs, adjoint=False, adjoint_arg=False): # Here we follow the same use of Roth's column lemma as in `matmul`, with # the key difference that we replace all `matmul` instances with `solve`. # This follows from the property that inv(A x B) = inv(A) x inv(B). # Below we document the shape manipulation for adjoint=False, # adjoint_arg=False, but the general case of different adjoints is still # handled. if adjoint_arg: rhs = linalg.adjoint(rhs) # Always add a batch dimension to enable broadcasting to work. batch_shape = array_ops.concat( [array_ops.ones_like(self.batch_shape_tensor()), [1, 1]], 0) rhs += array_ops.zeros(batch_shape, dtype=rhs.dtype.base_dtype) # rhs has shape [B, R, C], where B represent some number of batch # dimensions, # R represents the number of rows, and C represents the number of columns. # In order to apply Roth's column lemma, we need to operate on a batch of # column vectors, so we reshape into a batch of column vectors. We put it # at the front to ensure that broadcasting between operators to the batch # dimensions B still works. output = _rotate_last_dim(rhs, rotate_right=True) # Also expand the shape to be [A, C, B, R]. The first dimension will be # used to accumulate dimensions from each operator matmul. output = output[array_ops.newaxis, ...] # In this loop, A is going to refer to the value of the accumulated # dimension. A = 1 at the start, and will end up being self.range_dimension. # V will refer to the last dimension. V = R at the start, and will end up # being 1 in the end. for operator in self.operators[:-1]: # Reshape output from [A, C, B, V] to be # [A, C, B, V / op.domain_dimension, op.domain_dimension] if adjoint: operator_dimension = operator.range_dimension_tensor() else: operator_dimension = operator.domain_dimension_tensor() output = _unvec_by(output, operator_dimension) # We are computing (XA^-1^T) = (A^-1 X^T)^T. # output has [A, C, B, V / op.domain_dimension, op.domain_dimension], # which is being converted to: # [A, C, B, V / op.domain_dimension, op.range_dimension] output = array_ops.matrix_transpose(output) output = operator.solve(output, adjoint=adjoint, adjoint_arg=False) output = array_ops.matrix_transpose(output) # Rearrange it to [A * op.range_dimension, C, B, V / op.domain_dimension] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=True) # After the loop, we will have # A = self.range_dimension / op[-1].range_dimension # V = op[-1].domain_dimension # We convert that using matvec to get: # [A, C, B, op[-1].range_dimension] output = self.operators[-1].solvevec(output, adjoint=adjoint) # Rearrange shape to be [B1, ... Bn, self.range_dimension, C] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=False) if rhs.shape.is_fully_defined(): column_dim = rhs.shape[-1] broadcast_batch_shape = common_shapes.broadcast_shape( rhs.shape[:-2], self.batch_shape) if adjoint: matrix_dimensions = [self.domain_dimension, column_dim] else: matrix_dimensions = [self.range_dimension, column_dim] output.set_shape(broadcast_batch_shape.concatenate( matrix_dimensions)) return output def _diag_part(self): diag_part = self.operators[0].diag_part() for operator in self.operators[1:]: diag_part = diag_part[..., :, array_ops.newaxis] op_diag_part = operator.diag_part()[..., array_ops.newaxis, :] diag_part *= op_diag_part diag_part = array_ops.reshape( diag_part, shape=array_ops.concat( [array_ops.shape(diag_part)[:-2], [-1]], axis=0)) if self.range_dimension > self.domain_dimension: diag_dimension = self.domain_dimension else: diag_dimension = self.range_dimension diag_part.set_shape( self.batch_shape.concatenate(diag_dimension)) return diag_part def _to_dense(self): product = self.operators[0].to_dense() for operator in self.operators[1:]: # Product has shape [B, R1, 1, C1]. product = product[ ..., :, array_ops.newaxis, :, array_ops.newaxis] # Operator has shape [B, 1, R2, 1, C2]. op_to_mul = operator.to_dense()[ ..., array_ops.newaxis, :, array_ops.newaxis, :] # This is now [B, R1, R2, C1, C2]. product *= op_to_mul # Now merge together dimensions to get [B, R1 * R2, C1 * C2]. product = array_ops.reshape( product, shape=array_ops.concat( [array_ops.shape(product)[:-4], [array_ops.shape(product)[-4] * array_ops.shape(product)[-3], array_ops.shape(product)[-2] * array_ops.shape(product)[-1]] ], axis=0)) product.set_shape(self.shape) return product def _assert_non_singular(self): if all(operator.is_square for operator in self.operators): asserts = [operator.assert_non_singular() for operator in self.operators] return control_flow_ops.group(asserts) else: raise errors.InvalidArgumentError( node_def=None, op=None, message="All Kronecker factors must be " "square for the product to be invertible.") def _assert_self_adjoint(self): if all(operator.is_square for operator in self.operators): asserts = [operator.assert_self_adjoint() for operator in self.operators] return control_flow_ops.group(asserts) else: raise errors.InvalidArgumentError( node_def=None, op=None, message="All Kronecker factors must be " "square for the product to be self adjoint.")
apache-2.0
mbkumar/pymatgen
pymatgen/symmetry/structure.py
3
5251
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module implements symmetry-related structure forms. """ from typing import Sequence, List import numpy as np from tabulate import tabulate from pymatgen.core.structure import Structure, PeriodicSite class SymmetrizedStructure(Structure): """ This class represents a symmetrized structure, i.e. a structure where the spacegroup and symmetry operations are defined. This class is typically not called but instead is typically obtained by calling pymatgen.symmetry.analyzer.SpacegroupAnalyzer.get_symmetrized_structure. .. attribute: equivalent_indices indices of structure grouped by equivalency """ def __init__(self, structure: Structure, spacegroup, equivalent_positions: Sequence[int], wyckoff_letters: Sequence[str]): """ Args: structure (Structure): Original structure spacegroup (SpacegroupOperations): An input SpacegroupOperations from SpacegroupAnalyzer. equivalent_positions: Equivalent positions from SpacegroupAnalyzer. wyckoff_letters: Wyckoff letters """ self.spacegroup = spacegroup u, inv = np.unique(equivalent_positions, return_inverse=True) self.site_labels = equivalent_positions super().__init__( structure.lattice, [site.species for site in structure], structure.frac_coords, site_properties=structure.site_properties) equivalent_indices = [[] for _ in range(len(u))] # type: ignore equivalent_sites = [[] for _ in range(len(u))] # type: ignore wyckoff_symbols = [[] for _ in range(len(u))] # type: ignore for i, inv in enumerate(inv): equivalent_indices[inv].append(i) equivalent_sites[inv].append(self.sites[i]) wyckoff_symbols[inv].append(wyckoff_letters[i]) self.equivalent_indices: List[int] = equivalent_indices # type: ignore self.equivalent_sites: List[PeriodicSite] = equivalent_sites # type: ignore self.wyckoff_letters = wyckoff_letters self.wyckoff_symbols = ["%d%s" % (len(w), w[0]) for w in wyckoff_symbols] def copy(self): """ :return: Copy of structure. """ return self.__class__(self, spacegroup=self.spacegroup, equivalent_positions=self.site_labels, wyckoff_letters=self.wyckoff_letters) def find_equivalent_sites(self, site) -> List[PeriodicSite]: """ Finds all symmetrically equivalent sites for a particular site Args: site (PeriodicSite): A site in the structure Returns: ([PeriodicSite]): List of all symmetrically equivalent sites. """ for sites in self.equivalent_sites: if site in sites: return sites raise ValueError("Site not in structure") def __repr__(self): return self.__str__() def __str__(self): outs = [ "SymmetrizedStructure", "Full Formula ({s})".format(s=self.composition.formula), "Reduced Formula: {}".format(self.composition.reduced_formula)] def to_s(x): return "%0.6f" % x outs.append("abc : " + " ".join([to_s(i).rjust(10) for i in self.lattice.abc])) outs.append("angles: " + " ".join([to_s(i).rjust(10) for i in self.lattice.angles])) if self._charge: if self._charge >= 0: outs.append("Overall Charge: +{}".format(self._charge)) else: outs.append("Overall Charge: -{}".format(self._charge)) outs.append("Sites ({i})".format(i=len(self))) data = [] props = self.site_properties keys = sorted(props.keys()) for i, sites in enumerate(self.equivalent_sites): site = sites[0] row = [str(i), site.species_string] row.extend([to_s(j) for j in site.frac_coords]) row.append(self.wyckoff_symbols[i]) for k in keys: row.append(props[k][i]) data.append(row) outs.append(tabulate(data, headers=["#", "SP", "a", "b", "c", "Wyckoff"] + keys, )) return "\n".join(outs) def as_dict(self): """ :return: MSONAble dict """ return { "structure": super().as_dict(), "spacegroup": self.spacegroup, "equivalent_positions": self.site_labels, "wyckoff_letters": self.wyckoff_letters } @classmethod def from_dict(cls, d): """ :param d: Dict representation :return: SymmetrizedStructure """ return SymmetrizedStructure( Structure.from_dict(d["structure"]), spacegroup=d["spacegroup"], equivalent_positions=d["equivalent_positions"], wyckoff_letters=d["wyckoff_letters"] )
mit
dmuhlhei/AliPhysics
PWGJE/EMCALJetTasks/Tracks/analysis/base/struct/EventHistogram.py
41
4257
#************************************************************************** #* Copyright(c) 1998-2014, ALICE Experiment at CERN, All rights reserved. * #* * #* Author: The ALICE Off-line Project. * #* Contributors are mentioned in the code where appropriate. * #* * #* Permission to use, copy, modify and distribute this software and its * #* documentation strictly for non-commercial purposes is hereby granted * #* without fee, provided that the above copyright notice appears in all * #* copies and that both the copyright notice and this permission notice * #* appear in the supporting documentation. The authors make no claims * #* about the suitability of this software for any purpose. It is * #* provided "as is" without express or implied warranty. * #************************************************************************** from copy import copy, deepcopy class EventHistogram(object): def __init__(self, histo): self._histo = histo self._vertexrange = {} def GetROOTHisto(self): return self._histo def GetVertexRange(self): return self._vertexrange def SetVertexRange(self, vtxmin, vtxmax): self._vertexrange["min"] = vtxmin self._vertexrange["max"] = vtxmax def GetEventCount(self): print "Method virtual - to be implemented by inheriting classes" def _Deepcopy(self, other, memo): underlyinghist = other.GetROOTHisto() self._histo = deepcopy(underlyinghist, memo) self._vertexrange = deepcopy(other.GetVertexRange(), memo) def _Copy(self, other): underlyinghist = other.GetROOTHisto() self._histo = copy(underlyinghist) self._vertexrange = copy(other.GetVertexRange()) def Add(self, otherhisto): self._histo.Add(otherhisto) def Scale(self, scalefactor): self._histo.Scale(scalefactor) class EventHistogramOld(EventHistogram): def __init__(self, histo): EventHistogram.__init__(self, histo) self.__usePileupRejected = True def SetUsePileupRejected(self, doUse = True): self.__usePileupRejected = doUse def IsUsingPileupRejected(self): return self.__usePileupRejected def GetEventCount(self): if len(self._vertexrange): binMin = self._histo.GetYaxis().FindBin(self._vertexrange["min"]) binMax = self._histo.GetYaxis().FindBin(self._vertexrange["max"]) eventcounter = self._histo.ProjectionX("eventCounter", binMin, binMax) else: eventcounter = self._histo.ProjectionX("eventcounter") pileupbin = 1 if self.__usePileupRejected: pileupbin = 2 return eventcounter.GetBinContent(pileupbin) def __copy__(self, other): newobj = EventHistogramOld(None) newobj._Copy(other) newobj.SetUsePileupRejected(other.IsUsingPileupRejected()) return newobj def __deepcopy__(self, other, memo): newobj = EventHistogramOld(None) newobj._Deepcopy(other, memo) newobj.SetUsePileupRejected(other.IsUsingPileupRejected()) return newobj class EventHistogramNew(EventHistogram): def __init__(self, histo): EventHistogram.__init__(self, histo) def SetUsePileupRejected(self, doUse = True): pass def GetEventCount(self): if not len(self._vertexrange): return self._histo.Integral() else: binmin = self._histo.GetXaxis().FindBin(self._vertexrange["min"]) binmax = self._histo.GetXaxis().FindBin(self._vertexrange["max"]) return self._histo.Integral(binmin, binmax) def __copy__(self, other): newobj = EventHistogramNew(None) newobj._Copy(other) return newobj def __deepcopy__(self, other, memo): newobj = EventHistogramNew(None) newobj._Deepcopy(other, memo) return newobj
bsd-3-clause
jdamick/openshift-ansible
playbooks/aws/openshift-cluster/library/ec2_ami_find.py
27
9772
#!/usr/bin/python #pylint: skip-file # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: ec2_ami_find version_added: 2.0 short_description: Searches for AMIs to obtain the AMI ID and other information description: - Returns list of matching AMIs with AMI ID, along with other useful information - Can search AMIs with different owners - Can search by matching tag(s), by AMI name and/or other criteria - Results can be sorted and sliced author: Tom Bamford notes: - This module is not backwards compatible with the previous version of the ec2_search_ami module which worked only for Ubuntu AMIs listed on cloud-images.ubuntu.com. - See the example below for a suggestion of how to search by distro/release. options: region: description: - The AWS region to use. required: true aliases: [ 'aws_region', 'ec2_region' ] owner: description: - Search AMIs owned by the specified owner - Can specify an AWS account ID, or one of the special IDs 'self', 'amazon' or 'aws-marketplace' - If not specified, all EC2 AMIs in the specified region will be searched. - You can include wildcards in many of the search options. An asterisk (*) matches zero or more characters, and a question mark (?) matches exactly one character. You can escape special characters using a backslash (\) before the character. For example, a value of \*amazon\?\\ searches for the literal string *amazon?\. required: false default: null ami_id: description: - An AMI ID to match. default: null required: false ami_tags: description: - A hash/dictionary of tags to match for the AMI. default: null required: false architecture: description: - An architecture type to match (e.g. x86_64). default: null required: false hypervisor: description: - A hypervisor type type to match (e.g. xen). default: null required: false is_public: description: - Whether or not the image(s) are public. choices: ['yes', 'no'] default: null required: false name: description: - An AMI name to match. default: null required: false platform: description: - Platform type to match. default: null required: false sort: description: - Optional attribute which with to sort the results. - If specifying 'tag', the 'tag_name' parameter is required. choices: ['name', 'description', 'tag'] default: null required: false sort_tag: description: - Tag name with which to sort results. - Required when specifying 'sort=tag'. default: null required: false sort_order: description: - Order in which to sort results. - Only used when the 'sort' parameter is specified. choices: ['ascending', 'descending'] default: 'ascending' required: false sort_start: description: - Which result to start with (when sorting). - Corresponds to Python slice notation. default: null required: false sort_end: description: - Which result to end with (when sorting). - Corresponds to Python slice notation. default: null required: false state: description: - AMI state to match. default: 'available' required: false virtualization_type: description: - Virtualization type to match (e.g. hvm). default: null required: false no_result_action: description: - What to do when no results are found. - "'success' reports success and returns an empty array" - "'fail' causes the module to report failure" choices: ['success', 'fail'] default: 'success' required: false requirements: - boto ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Search for the AMI tagged "project:website" - ec2_ami_find: owner: self tags: project: website no_result_action: fail register: ami_find # Search for the latest Ubuntu 14.04 AMI - ec2_ami_find: name: "ubuntu/images/ebs/ubuntu-trusty-14.04-amd64-server-*" owner: 099720109477 sort: name sort_order: descending sort_end: 1 register: ami_find # Launch an EC2 instance - ec2: image: "{{ ami_search.results[0].ami_id }}" instance_type: m4.medium key_name: mykey wait: yes ''' try: import boto.ec2 HAS_BOTO=True except ImportError: HAS_BOTO=False import json def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict( region = dict(required=True, aliases = ['aws_region', 'ec2_region']), owner = dict(required=False, default=None), ami_id = dict(required=False), ami_tags = dict(required=False, type='dict', aliases = ['search_tags', 'image_tags']), architecture = dict(required=False), hypervisor = dict(required=False), is_public = dict(required=False), name = dict(required=False), platform = dict(required=False), sort = dict(required=False, default=None, choices=['name', 'description', 'tag']), sort_tag = dict(required=False), sort_order = dict(required=False, default='ascending', choices=['ascending', 'descending']), sort_start = dict(required=False), sort_end = dict(required=False), state = dict(required=False, default='available'), virtualization_type = dict(required=False), no_result_action = dict(required=False, default='success', choices = ['success', 'fail']), ) ) module = AnsibleModule( argument_spec=argument_spec, ) if not HAS_BOTO: module.fail_json(msg='boto required for this module, install via pip or your package manager') ami_id = module.params.get('ami_id') ami_tags = module.params.get('ami_tags') architecture = module.params.get('architecture') hypervisor = module.params.get('hypervisor') is_public = module.params.get('is_public') name = module.params.get('name') owner = module.params.get('owner') platform = module.params.get('platform') sort = module.params.get('sort') sort_tag = module.params.get('sort_tag') sort_order = module.params.get('sort_order') sort_start = module.params.get('sort_start') sort_end = module.params.get('sort_end') state = module.params.get('state') virtualization_type = module.params.get('virtualization_type') no_result_action = module.params.get('no_result_action') filter = {'state': state} if ami_id: filter['image_id'] = ami_id if ami_tags: for tag in ami_tags: filter['tag:'+tag] = ami_tags[tag] if architecture: filter['architecture'] = architecture if hypervisor: filter['hypervisor'] = hypervisor if is_public: filter['is_public'] = is_public if name: filter['name'] = name if platform: filter['platform'] = platform if virtualization_type: filter['virtualization_type'] = virtualization_type ec2 = ec2_connect(module) images_result = ec2.get_all_images(owners=owner, filters=filter) if no_result_action == 'fail' and len(images_result) == 0: module.fail_json(msg="No AMIs matched the attributes: %s" % json.dumps(filter)) results = [] for image in images_result: data = { 'ami_id': image.id, 'architecture': image.architecture, 'description': image.description, 'is_public': image.is_public, 'name': image.name, 'owner_id': image.owner_id, 'platform': image.platform, 'root_device_name': image.root_device_name, 'root_device_type': image.root_device_type, 'state': image.state, 'tags': image.tags, 'virtualization_type': image.virtualization_type, } if image.kernel_id: data['kernel_id'] = image.kernel_id if image.ramdisk_id: data['ramdisk_id'] = image.ramdisk_id results.append(data) if sort == 'tag': if not sort_tag: module.fail_json(msg="'sort_tag' option must be given with 'sort=tag'") results.sort(key=lambda e: e['tags'][sort_tag], reverse=(sort_order=='descending')) elif sort: results.sort(key=lambda e: e[sort], reverse=(sort_order=='descending')) try: if sort and sort_start and sort_end: results = results[int(sort_start):int(sort_end)] elif sort and sort_start: results = results[int(sort_start):] elif sort and sort_end: results = results[:int(sort_end)] except TypeError: module.fail_json(msg="Please supply numeric values for sort_start and/or sort_end") module.exit_json(results=results) # import module snippets from ansible.module_utils.basic import * from ansible.module_utils.ec2 import * if __name__ == '__main__': main()
apache-2.0
orgito/ansible
lib/ansible/utils/module_docs_fragments/emc.py
35
1140
# # Copyright (c) 2018, Luca 'remix_tj' Lorenzetto <[email protected]> # # This file is part of Ansible # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) class ModuleDocFragment(object): DOCUMENTATION = """ options: - See respective platform section for more details requirements: - See respective platform section for more details notes: - Ansible modules are available for EMC VNX. """ # Documentation fragment for VNX (emc_vnx) EMC_VNX = """ options: sp_address: description: - Address of the SP of target/secondary storage. required: true sp_user: description: - Username for accessing SP. default: sysadmin required: false sp_password: description: - password for accessing SP. default: sysadmin required: false requirements: - An EMC VNX Storage device. - Ansible 2.7. - storops (0.5.10 or greater). Install using 'pip install storops'. notes: - The modules prefixed with emc_vnx are built to support the EMC VNX storage platform. """
gpl-3.0
CEG-FYP-OpenStack/scheduler
nova/tests/unit/scheduler/filters/test_compute_capabilities_filters.py
12
5114
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from nova import objects from nova.scheduler.filters import compute_capabilities_filter from nova import test from nova.tests.unit.scheduler import fakes class TestComputeCapabilitiesFilter(test.NoDBTestCase): def setUp(self): super(TestComputeCapabilitiesFilter, self).setUp() self.filt_cls = compute_capabilities_filter.ComputeCapabilitiesFilter() def _do_test_compute_filter_extra_specs(self, ecaps, especs, passes): # In real OpenStack runtime environment,compute capabilities # value may be number, so we should use number to do unit test. capabilities = {} capabilities.update(ecaps) spec_obj = objects.RequestSpec( flavor=objects.Flavor(memory_mb=1024, extra_specs=especs)) host_state = {'free_ram_mb': 1024} host_state.update(capabilities) host = fakes.FakeHostState('host1', 'node1', host_state) assertion = self.assertTrue if passes else self.assertFalse assertion(self.filt_cls.host_passes(host, spec_obj)) def test_compute_filter_passes_without_extra_specs(self): spec_obj = objects.RequestSpec( flavor=objects.Flavor(memory_mb=1024)) host_state = {'free_ram_mb': 1024} host = fakes.FakeHostState('host1', 'node1', host_state) self.assertTrue(self.filt_cls.host_passes(host, spec_obj)) def test_compute_filter_fails_without_host_state(self): especs = {'capabilities': '1'} spec_obj = objects.RequestSpec( flavor=objects.Flavor(memory_mb=1024, extra_specs=especs)) self.assertFalse(self.filt_cls.host_passes(None, spec_obj)) def test_compute_filter_fails_without_capabilites(self): cpu_info = """ { } """ cpu_info = six.text_type(cpu_info) self._do_test_compute_filter_extra_specs( ecaps={'cpu_info': cpu_info}, especs={'capabilities:cpu_info:vendor': 'Intel'}, passes=False) def test_compute_filter_pass_cpu_info_as_text_type(self): cpu_info = """ { "vendor": "Intel", "model": "core2duo", "arch": "i686","features": ["lahf_lm", "rdtscp"], "topology": {"cores": 1, "threads":1, "sockets": 1}} """ cpu_info = six.text_type(cpu_info) self._do_test_compute_filter_extra_specs( ecaps={'cpu_info': cpu_info}, especs={'capabilities:cpu_info:vendor': 'Intel'}, passes=True) def test_compute_filter_fail_cpu_info_as_text_type_not_valid(self): cpu_info = "cpu_info" cpu_info = six.text_type(cpu_info) self._do_test_compute_filter_extra_specs( ecaps={'cpu_info': cpu_info}, especs={'capabilities:cpu_info:vendor': 'Intel'}, passes=False) def test_compute_filter_passes_extra_specs_simple(self): self._do_test_compute_filter_extra_specs( ecaps={'stats': {'opt1': 1, 'opt2': 2}}, especs={'opt1': '1', 'opt2': '2', 'trust:trusted_host': 'true'}, passes=True) def test_compute_filter_fails_extra_specs_simple(self): self._do_test_compute_filter_extra_specs( ecaps={'stats': {'opt1': 1, 'opt2': 2}}, especs={'opt1': '1', 'opt2': '222', 'trust:trusted_host': 'true'}, passes=False) def test_compute_filter_pass_extra_specs_simple_with_scope(self): self._do_test_compute_filter_extra_specs( ecaps={'stats': {'opt1': 1, 'opt2': 2}}, especs={'capabilities:opt1': '1', 'trust:trusted_host': 'true'}, passes=True) def test_compute_filter_pass_extra_specs_same_as_scope(self): # Make sure this still works even if the key is the same as the scope self._do_test_compute_filter_extra_specs( ecaps={'capabilities': 1}, especs={'capabilities': '1'}, passes=True) def test_compute_filter_extra_specs_simple_with_wrong_scope(self): self._do_test_compute_filter_extra_specs( ecaps={'opt1': 1, 'opt2': 2}, especs={'wrong_scope:opt1': '1', 'trust:trusted_host': 'true'}, passes=True) def test_compute_filter_extra_specs_pass_multi_level_with_scope(self): self._do_test_compute_filter_extra_specs( ecaps={'stats': {'opt1': {'a': 1, 'b': {'aa': 2}}, 'opt2': 2}}, especs={'opt1:a': '1', 'capabilities:opt1:b:aa': '2', 'trust:trusted_host': 'true'}, passes=True)
apache-2.0
mifl/android_kernel_pantech_oscar
tools/perf/scripts/python/syscall-counts.py
11181
1522
# system call counts # (c) 2010, Tom Zanussi <[email protected]> # Licensed under the terms of the GNU GPL License version 2 # # Displays system-wide system call totals, broken down by syscall. # If a [comm] arg is specified, only syscalls called by [comm] are displayed. import os import sys sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import syscall_name usage = "perf script -s syscall-counts.py [comm]\n"; for_comm = None if len(sys.argv) > 2: sys.exit(usage) if len(sys.argv) > 1: for_comm = sys.argv[1] syscalls = autodict() def trace_begin(): print "Press control+C to stop and show the summary" def trace_end(): print_syscall_totals() def raw_syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, id, args): if for_comm is not None: if common_comm != for_comm: return try: syscalls[id] += 1 except TypeError: syscalls[id] = 1 def print_syscall_totals(): if for_comm is not None: print "\nsyscall events for %s:\n\n" % (for_comm), else: print "\nsyscall events:\n\n", print "%-40s %10s\n" % ("event", "count"), print "%-40s %10s\n" % ("----------------------------------------", \ "-----------"), for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \ reverse = True): print "%-40s %10d\n" % (syscall_name(id), val),
gpl-2.0
littlstar/chromium.src
native_client_sdk/src/build_tools/sdk_tools/sdk_update_common.py
168
3249
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility functions for sdk_update.py and sdk_update_main.py.""" import errno import logging import os import shutil import subprocess import sys import time class Error(Exception): """Generic error/exception for sdk_update module""" pass def MakeDirs(directory): if not os.path.exists(directory): logging.info('Making directory %s' % (directory,)) os.makedirs(directory) def RemoveDir(outdir): """Removes the given directory On Unix systems, this just runs shutil.rmtree, but on Windows, this doesn't work when the directory contains junctions (as does our SDK installer). Therefore, on Windows, it runs rmdir /S /Q as a shell command. This always does the right thing on Windows. If the directory already didn't exist, RemoveDir will return successfully without taking any action. Args: outdir: The directory to delete Raises: Error - If this operation fails for any reason. """ max_tries = 5 last_exception = None for num_tries in xrange(max_tries): try: shutil.rmtree(outdir) return except OSError as e: if not os.path.exists(outdir): # The directory can't be removed because it doesn't exist. return last_exception = e # On Windows this could be an issue with junctions, so try again with # rmdir. if sys.platform == 'win32': try: cmd = ['rmdir', '/S', '/Q', outdir] process = subprocess.Popen(cmd, stderr=subprocess.PIPE, shell=True) _, stderr = process.communicate() if process.returncode != 0: raise Error('\"%s\" failed with code %d. Output:\n %s' % ( ' '.join(cmd), process.returncode, stderr)) return # Ignore failures, we'll just try again. except subprocess.CalledProcessError as e: # CalledProcessError has no error message, generate one. last_exception = Error('\"%s\" failed with code %d.' % ( ' '.join(e.cmd), e.returncode)) except Error as e: last_exception = e # Didn't work, sleep and try again. time.sleep(num_tries + 1) # Failed. raise Error('Unable to remove directory "%s"\n %s' % (outdir, last_exception)) def RenameDir(srcdir, destdir): """Renames srcdir to destdir. Removes destdir before doing the rename if it already exists.""" max_tries = 5 num_tries = 0 for num_tries in xrange(max_tries): try: RemoveDir(destdir) shutil.move(srcdir, destdir) return except OSError as err: if err.errno != errno.EACCES: raise err # If we are here, we didn't exit due to raised exception, so we are # handling a Windows flaky access error. Sleep one second and try # again. time.sleep(num_tries + 1) # end of while loop -- could not RenameDir raise Error('Could not RenameDir %s => %s after %d tries.\n' 'Please check that no shells or applications ' 'are accessing files in %s.' % (srcdir, destdir, num_tries + 1, destdir))
bsd-3-clause
5hubh4m/CS231n
Assignment3/cs231n/im2col.py
53
2090
import numpy as np def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1): # First figure out what the size of the output should be N, C, H, W = x_shape assert (H + 2 * padding - field_height) % stride == 0 assert (W + 2 * padding - field_height) % stride == 0 out_height = (H + 2 * padding - field_height) / stride + 1 out_width = (W + 2 * padding - field_width) / stride + 1 i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) i1 = stride * np.repeat(np.arange(out_height), out_width) j0 = np.tile(np.arange(field_width), field_height * C) j1 = stride * np.tile(np.arange(out_width), out_height) i = i0.reshape(-1, 1) + i1.reshape(1, -1) j = j0.reshape(-1, 1) + j1.reshape(1, -1) k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1) return (k, i, j) def im2col_indices(x, field_height, field_width, padding=1, stride=1): """ An implementation of im2col based on some fancy indexing """ # Zero-pad the input p = padding x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') k, i, j = get_im2col_indices(x.shape, field_height, field_width, padding, stride) cols = x_padded[:, k, i, j] C = x.shape[1] cols = cols.transpose(1, 2, 0).reshape(field_height * field_width * C, -1) return cols def col2im_indices(cols, x_shape, field_height=3, field_width=3, padding=1, stride=1): """ An implementation of col2im based on fancy indexing and np.add.at """ N, C, H, W = x_shape H_padded, W_padded = H + 2 * padding, W + 2 * padding x_padded = np.zeros((N, C, H_padded, W_padded), dtype=cols.dtype) k, i, j = get_im2col_indices(x_shape, field_height, field_width, padding, stride) cols_reshaped = cols.reshape(C * field_height * field_width, -1, N) cols_reshaped = cols_reshaped.transpose(2, 0, 1) np.add.at(x_padded, (slice(None), k, i, j), cols_reshaped) if padding == 0: return x_padded return x_padded[:, :, padding:-padding, padding:-padding] pass
mit
vjmac15/Lyilis
lib/nacl/signing (VJ Washington's conflicted copy 2017-08-29).py
17
6661
# Copyright 2013 Donald Stufft and individual contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import six from nacl import encoding import nacl.bindings from nacl.public import (PrivateKey as _Curve25519_PrivateKey, PublicKey as _Curve25519_PublicKey) from nacl.utils import StringFixer, random class SignedMessage(six.binary_type): """ A bytes subclass that holds a messaged that has been signed by a :class:`SigningKey`. """ @classmethod def _from_parts(cls, signature, message, combined): obj = cls(combined) obj._signature = signature obj._message = message return obj @property def signature(self): """ The signature contained within the :class:`SignedMessage`. """ return self._signature @property def message(self): """ The message contained within the :class:`SignedMessage`. """ return self._message class VerifyKey(encoding.Encodable, StringFixer, object): """ The public key counterpart to an Ed25519 SigningKey for producing digital signatures. :param key: [:class:`bytes`] Serialized Ed25519 public key :param encoder: A class that is able to decode the `key` """ def __init__(self, key, encoder=encoding.RawEncoder): # Decode the key key = encoder.decode(key) if not isinstance(key, bytes): raise TypeError("VerifyKey must be created from 32 bytes") if len(key) != nacl.bindings.crypto_sign_PUBLICKEYBYTES: raise ValueError( "The key must be exactly %s bytes long" % nacl.bindings.crypto_sign_PUBLICKEYBYTES, ) self._key = key def __bytes__(self): return self._key def verify(self, smessage, signature=None, encoder=encoding.RawEncoder): """ Verifies the signature of a signed message, returning the message if it has not been tampered with else raising :class:`~nacl.signing.BadSignatureError`. :param smessage: [:class:`bytes`] Either the original messaged or a signature and message concated together. :param signature: [:class:`bytes`] If an unsigned message is given for smessage then the detached signature must be provided. :param encoder: A class that is able to decode the secret message and signature. :rtype: :class:`bytes` """ if signature is not None: # If we were given the message and signature separately, combine # them. smessage = signature + smessage # Decode the signed message smessage = encoder.decode(smessage) return nacl.bindings.crypto_sign_open(smessage, self._key) def to_curve25519_public_key(self): """ Converts a :class:`~nacl.signing.VerifyKey` to a :class:`~nacl.public.PublicKey` :rtype: :class:`~nacl.public.PublicKey` """ raw_pk = nacl.bindings.crypto_sign_ed25519_pk_to_curve25519(self._key) return _Curve25519_PublicKey(raw_pk) class SigningKey(encoding.Encodable, StringFixer, object): """ Private key for producing digital signatures using the Ed25519 algorithm. Signing keys are produced from a 32-byte (256-bit) random seed value. This value can be passed into the :class:`~nacl.signing.SigningKey` as a :func:`bytes` whose length is 32. .. warning:: This **must** be protected and remain secret. Anyone who knows the value of your :class:`~nacl.signing.SigningKey` or it's seed can masquerade as you. :param seed: [:class:`bytes`] Random 32-byte value (i.e. private key) :param encoder: A class that is able to decode the seed :ivar: verify_key: [:class:`~nacl.signing.VerifyKey`] The verify (i.e. public) key that corresponds with this signing key. """ def __init__(self, seed, encoder=encoding.RawEncoder): # Decode the seed seed = encoder.decode(seed) if not isinstance(seed, bytes): raise TypeError("SigningKey must be created from a 32 byte seed") # Verify that our seed is the proper size if len(seed) != nacl.bindings.crypto_sign_SEEDBYTES: raise ValueError( "The seed must be exactly %d bytes long" % nacl.bindings.crypto_sign_SEEDBYTES ) public_key, secret_key = nacl.bindings.crypto_sign_seed_keypair(seed) self._seed = seed self._signing_key = secret_key self.verify_key = VerifyKey(public_key) def __bytes__(self): return self._seed @classmethod def generate(cls): """ Generates a random :class:`~nacl.signing.SingingKey` object. :rtype: :class:`~nacl.signing.SigningKey` """ return cls( random(nacl.bindings.crypto_sign_SEEDBYTES), encoder=encoding.RawEncoder, ) def sign(self, message, encoder=encoding.RawEncoder): """ Sign a message using this key. :param message: [:class:`bytes`] The data to be signed. :param encoder: A class that is used to encode the signed message. :rtype: :class:`~nacl.signing.SignedMessage` """ raw_signed = nacl.bindings.crypto_sign(message, self._signing_key) crypto_sign_BYTES = nacl.bindings.crypto_sign_BYTES signature = encoder.encode(raw_signed[:crypto_sign_BYTES]) message = encoder.encode(raw_signed[crypto_sign_BYTES:]) signed = encoder.encode(raw_signed) return SignedMessage._from_parts(signature, message, signed) def to_curve25519_private_key(self): """ Converts a :class:`~nacl.signing.SigningKey` to a :class:`~nacl.public.PrivateKey` :rtype: :class:`~nacl.public.PrivateKey` """ sk = self._signing_key raw_private = nacl.bindings.crypto_sign_ed25519_sk_to_curve25519(sk) return _Curve25519_PrivateKey(raw_private)
gpl-3.0
marc-sensenich/ansible
lib/ansible/modules/cloud/google/gcp_redis_instance_facts.py
9
7546
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** AUTO GENERATED CODE *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_redis_instance_facts description: - Gather facts for GCP Instance short_description: Gather facts for GCP Instance version_added: 2.8 author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: region: description: - The name of the Redis region of the instance. required: true extends_documentation_fragment: gcp ''' EXAMPLES = ''' - name: a instance facts gcp_redis_instance_facts: region: us-central1 project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" ''' RETURN = ''' items: description: List of items returned: always type: complex contains: alternativeLocationId: description: - Only applicable to STANDARD_HA tier which protects the instance against zonal failures by provisioning it across two zones. - If provided, it must be a different zone from the one provided in [locationId]. returned: success type: str authorizedNetwork: description: - The full name of the Google Compute Engine network to which the instance is connected. If left unspecified, the default network will be used. returned: success type: str createTime: description: - The time the instance was created in RFC3339 UTC "Zulu" format, accurate to nanoseconds. returned: success type: str currentLocationId: description: - The current zone where the Redis endpoint is placed. - For Basic Tier instances, this will always be the same as the [locationId] provided by the user at creation time. For Standard Tier instances, this can be either [locationId] or [alternativeLocationId] and can change after a failover event. returned: success type: str displayName: description: - An arbitrary and optional user-provided name for the instance. returned: success type: str host: description: - Hostname or IP address of the exposed Redis endpoint used by clients to connect to the service. returned: success type: str labels: description: - Resource labels to represent user provided metadata. returned: success type: dict redisConfigs: description: - Redis configuration parameters, according to U(http://redis.io/topics/config.) - 'Please check Memorystore documentation for the list of supported parameters: U(https://cloud.google.com/memorystore/docs/redis/reference/rest/v1/projects.locations.instances#Instance.FIELDS.redis_configs) .' returned: success type: dict locationId: description: - The zone where the instance will be provisioned. If not provided, the service will choose a zone for the instance. For STANDARD_HA tier, instances will be created across two zones for protection against zonal failures. If [alternativeLocationId] is also provided, it must be different from [locationId]. returned: success type: str name: description: - The ID of the instance or a fully qualified identifier for the instance. . returned: success type: str memorySizeGb: description: - Redis memory size in GiB. returned: success type: int port: description: - The port number of the exposed Redis endpoint. returned: success type: int redisVersion: description: - The version of Redis software. If not provided, latest supported version will be used. Updating the version will perform an upgrade/downgrade to the new version. Currently, the supported values are REDIS_3_2 for Redis 3.2. returned: success type: str reservedIpRange: description: - The CIDR range of internal addresses that are reserved for this instance. If not provided, the service will choose an unused /29 block, for example, 10.0.0.0/29 or 192.168.0.0/29. Ranges must be unique and non-overlapping with existing subnets in an authorized network. returned: success type: str tier: description: - 'The service tier of the instance. Must be one of these values: - BASIC: standalone instance - STANDARD_HA: highly available primary/replica instances .' returned: success type: str region: description: - The name of the Redis region of the instance. returned: success type: str ''' ################################################################################ # Imports ################################################################################ from ansible.module_utils.gcp_utils import navigate_hash, GcpSession, GcpModule, GcpRequest import json ################################################################################ # Main ################################################################################ def main(): module = GcpModule(argument_spec=dict(region=dict(required=True, type='str'))) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/cloud-platform'] items = fetch_list(module, collection(module)) if items.get('instances'): items = items.get('instances') else: items = [] return_value = {'items': items} module.exit_json(**return_value) def collection(module): return "https://redis.googleapis.com/v1/projects/{project}/locations/{region}/instances".format(**module.params) def fetch_list(module, link): auth = GcpSession(module, 'redis') response = auth.get(link) return return_if_object(module, response) def return_if_object(module, response): # If not found, return nothing. if response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError) as inst: module.fail_json(msg="Invalid JSON response with error: %s" % inst) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result if __name__ == "__main__": main()
gpl-3.0
mrquim/repository.mrquim
plugin.video.neptune-1.2.2/resources/lib/modules/realdebrid.py
5
15187
import util import threading, time, json, os, ast import xbmc, xbmcplugin, xbmcaddon, xbmcgui import urllib, urllib2, cookielib import requests, string client_id="MN55HGIQEO2BE" #realdebrid clientid # reset realdebrid, for testing """xbmcaddon.Addon().setSetting('rd_id', "") xbmcaddon.Addon().setSetting('rd_secret', "") xbmcaddon.Addon().setSetting('rd_access', "") xbmcaddon.Addon().setSetting('rd_refresh', "")""" urlopen = urllib2.urlopen cj = cookielib.LWPCookieJar() Request = urllib2.Request ADDON_ID='plugin.video.neptune' addon=xbmcaddon.Addon(id=ADDON_ID) home=xbmc.translatePath(addon.getAddonInfo('path').decode('utf-8')) def checkDetails(): if xbmcaddon.Addon().getSetting('rd_id')=="" or xbmcaddon.Addon().getSetting('rd_secret')=="" or xbmcaddon.Addon().getSetting('rd_access')=="" or xbmcaddon.Addon().getSetting('rd_refresh')=="": ok = xbmcgui.Dialog().yesno("RealDebrid not configured", "You have not configured RealDebrid, you cannot proceed without doing this. Do you want to do this now?") if ok: return auth() else: return False else: refreshToken() return True def auth(): xbmc.executebuiltin('ActivateWindow(10138)') authData=util.getURL("https://api.real-debrid.com/oauth/v2/device/code?client_id="+client_id+"&new_credentials=yes") authThread=threading.Thread(target=verifyThread, args=(authData,)) authThread.start() def verifyThread(authData): xbmc.executebuiltin('Dialog.Close(10138)') # convert string to JSON authJSON=json.loads(authData) # create dialog with progress to show information authMsg="To authorise your RealDebrid account, use a browser to browse to [B]"+authJSON['verification_url']+"[/B] and enter the verification code [B]"+authJSON['user_code']+"[/B]" authDialog=util.progressStart("RealDebrid Authentication", authMsg) authorised=False timer=0 credJSON="" while not authorised: time.sleep(2) timer=timer+2 util.progressUpdate(authDialog, timer, authMsg) # check if we need to exit if util.progressCancelled(authDialog)==True: util.progressStop(authDialog) break if timer==100: util.progressStop(authDialog) util.alert("RealDebrid aithentication has timed out. Please try again.") break # all good to carry on lets check auth credentials=util.getURL("https://api.real-debrid.com/oauth/v2/device/credentials?client_id="+client_id+"&code="+authJSON['device_code']) if credentials!=False: try: if "error" in credentials: util.logError(credentials) else: credJSON=json.loads(credentials) #store credentials in settings xbmcaddon.Addon().setSetting('rd_id', credJSON['client_id']) xbmcaddon.Addon().setSetting('rd_secret', credJSON['client_secret']) cj_rd = cookielib.CookieJar() opener_rd = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj_rd)) data_rd = urllib.urlencode({'client_id' : credJSON['client_id'], 'client_secret' : credJSON['client_secret'], 'code': authJSON['device_code'], 'grant_type' : 'http://oauth.net/grant_type/device/1.0'}) try: #util.logError(str(data_rd)) resp = opener_rd.open('https://api.real-debrid.com/oauth/v2/token', data_rd) content=resp.read() credJSON=json.loads(content) xbmcaddon.Addon().setSetting('rd_access', credJSON['access_token']) xbmcaddon.Addon().setSetting('rd_refresh', credJSON['refresh_token']) authorised=True except Exception as e: util.logError(str(e)) except Exception as e: util.logError(str(e)) # check how we exited loop util.progressStop(authDialog) if authorised==True: util.alert("RealDebrid authenticated.") return True else: util.alert("There was an error authenticating with RealDebrid") return False def refreshToken(): cj_rd = cookielib.CookieJar() opener_rd = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj_rd)) data_rd = urllib.urlencode({'client_id' : xbmcaddon.Addon().getSetting('rd_id'), 'client_secret' : xbmcaddon.Addon().getSetting('rd_secret'), 'code': xbmcaddon.Addon().getSetting('rd_refresh'), 'grant_type' : 'http://oauth.net/grant_type/device/1.0'}) try: resp = opener_rd.open('https://api.real-debrid.com/oauth/v2/token', data_rd) content=resp.read() credJSON=json.loads(content) xbmcaddon.Addon().setSetting('rd_access', credJSON['access_token']) xbmcaddon.Addon().setSetting('rd_refresh', credJSON['refresh_token']) #util.logError("write complete: "+str(credJSON)) #util.logError("checking values"+xbmcaddon.Addon().getSetting('rd_access')+" "+xbmcaddon.Addon().getSetting('rd_refresh')) authorised=True except Exception as e: util.logError("Error Refreshing Token: "+str(e)) def hostStatus(): from collections import OrderedDict cj_rd = cookielib.CookieJar() opener_rd = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj_rd)) opener_rd.addheaders=[("Authorization", "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access')))] error=True attempts=0 while error: try: resp = opener_rd.open('https://api.real-debrid.com/rest/1.0/hosts/status') content=resp.read() credJSON=json.loads(content) #util.logError(str(credJSON)) return credJSON except Exception as e: e=str(e) util.logError("hoststaus error: "+e) attempts=attempts+1 if attempts>3: error=True return False elif "Unauthorized" in e: refreshToken() def unrestrict(parameters): cj_rd = cookielib.CookieJar() opener_rd = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj_rd)) opener_rd.addheaders=[("Authorization", "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access')))] if 'url' in parameters: link=parameters['url'] else: link=util.searchDialog("Enter link to unrestrict") if link: data_rd = urllib.urlencode({'link' : link}) error=True attempts=0 while error: try: resp = opener_rd.open('https://api.real-debrid.com/rest/1.0/unrestrict/link', data_rd) content=resp.read() credJSON=json.loads(content) error=True return credJSON except Exception as e: util.logError("realdebrid error: "+str(e)) attempts=attempts+1 if attempts>3: error=True break elif "Unauthorized" in e: refreshToken() return False def addTorrent(parameters, remove=False, all=False): refreshToken() if "torrent_file" not in parameters: dialog = xbmcgui.Dialog() link = dialog.browseSingle(1, 'Select .torrent file', 'files', '.torrent', False, False, 'special://masterprofile/script_data/Kodi Lyrics').decode('utf-8') else: link=parameters['torrent_file'] file=open(link, 'rb') cont=8 while cont==8: headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} r = requests.put("https://api.real-debrid.com/rest/1.0/torrents/addTorrent", data=file, headers=headers) content=json.loads(r.text) cont=isError(content) file.close() try: if remove: os.remove(link) except: util.logError("Unable to remove file '"+link+"'") if cont: return False else: return torrentSelect(content['id'], all) def addMagent(parameters): refreshToken() if 'link' not in parameters: link=util.searchDialog("Enter magnet link") else: link=parameters['link'] if 'all' not in parameters: all=False else: all=parameters['all'] headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} r = requests.post("https://api.real-debrid.com/rest/1.0/torrents/addMagnet", data={"magnet":link}, headers=headers) content=json.loads(r.text) cont=isError(content) if cont: return False else: return torrentSelect(content['id'], all) def torrentSelect(id, all): tinfo=torrentsInfo(id) if isinstance(tinfo, dict): if all: files=["all"] else: files=[] for file in tinfo['files']: files.append(file['path']) dialog = xbmcgui.Dialog() ret = dialog.multiselect("Select files you want to download", files) if ret: ret=map(lambda x: x + 1, ret) ret= map(str, ret) headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} r = requests.post('https://api.real-debrid.com/rest/1.0/torrents/selectFiles/'+id, data={'files' : ",".join(ret)}, headers=headers) return id else: torrentsDelete(id) return False else: return False def torrentsInfo(id): cj_rd = cookielib.CookieJar() opener_rd = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj_rd)) cont=8 while cont==8: opener_rd.addheaders=[("Authorization", "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access')))] resp = opener_rd.open("https://api.real-debrid.com/rest/1.0/torrents/info/"+str(id)) content=json.loads(resp.read()) cont=isError(content) if cont: return False else: return content def torrentsDelete(id): refreshToken() headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} r = requests.delete("https://api.real-debrid.com/rest/1.0/torrents/delete/"+str(id), headers=headers) if r.status_code==404: util.alert("Unable to delete torrent, permission denied.") return False elif r.status_code==403: util.alert("Unable to delete torrent, torrent not found.") return False elif r.status_code==401: util.alert("Unable to delete torrent.") return False return True def isError(toCheck): try: if toCheck['error']: if toCheck['error_code']==8: # need to refresh token refreshToken() return 8 else: util.alert("Error "+str(toCheck['error_code'])+": "+string.capwords(toCheck['error'].replace("_", " "))) util.logError("Error "+str(toCheck['error_code'])+": "+toCheck['error']) return True except: return False def downloads(parameters): refreshToken() headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} extras=ast.literal_eval(parameters['extras']) data={"offset":extras['offset'], "limit":extras['limit']} r = requests.get("https://api.real-debrid.com/rest/1.0/downloads", data=data, headers=headers) links=json.loads(r.text) menu=[] for item in links: menu.append({ "title": item['filename'], "url": item['download'], "mode":10, "poster":os.path.join(home, '', 'icon.png'), "icon":os.path.join(home, '', 'icon.png'), "fanart":os.path.join(home, '', 'fanart.jpg'), "type":"video", "plot":item['host'], "isFolder":False, "playable":False, "method":"downloads", "id":item['id'] }) util.addMenuItems(menu) def torrents(parameters): refreshToken() headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} extras=ast.literal_eval(parameters['extras']) data={"offset":extras['offset'], "limit":extras['limit'], "filter": "active"} r = requests.get("https://api.real-debrid.com/rest/1.0/torrents", data=data, headers=headers) links=json.loads(r.text) #util.logError(str(links)) menu=[] for item in links: if item['status'] == "downloaded": #util.logError(str(torrentsInfo(item['id']))) name=item['filename'] url=item['links'][0] mode=5 elif item['status']== "downloading": name="[Downloading "+str(item['progress'])+"%] "+item['filename'] url="" mode="" else: name="["+item['status']+"] "+item['filename'] url="" mode="" util.logError("..>"+name) menu.append({ "title": name, "url": url, "mode": mode, "poster":os.path.join(home, '', 'icon.png'), "icon":os.path.join(home, '', 'icon.png'), "fanart":os.path.join(home, '', 'fanart.jpg'), "type":"video", "plot":item['host'], "method":"torrent", "id":item['id'], "isFolder":False, "playable":False, "download":True }) util.addMenuItems(menu) def delID(parameters): util.logError(str(parameters)) refreshToken() headers={"Authorization": "Bearer "+str(xbmcaddon.Addon().getSetting('rd_access'))} if parameters['method']=="torrent": if xbmcgui.Dialog().yesno("Delete torrent?", line1="Do you want to delete the torret", line3=parameters['name'].encode('utf-8')): r = requests.delete("https://api.real-debrid.com/rest/1.0/torrents/delete/"+parameters['id'], headers=headers) try: isError(json.loads(r.text)) except: xbmc.executebuiltin('Container.Refresh') else: if xbmcgui.Dialog().yesno("Delete link?", line1="Do you want to delete the link", line3=parameters['name'].encode('utf-8')): util.logError("https://api.real-debrid.com/rest/1.0/downloads/delete/"+parameters['id']) r = requests.delete("https://api.real-debrid.com/rest/1.0/downloads/delete/"+parameters['id'], headers=headers) try: isError(json.loads(r.text)) except: xbmc.executebuiltin('Container.Refresh')
gpl-2.0
npe9/depot_tools
gsutil.py
11
3665
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Run a pinned gsutil.""" import argparse import base64 import hashlib import json import os import shutil import subprocess import sys import urllib2 import zipfile GSUTIL_URL = 'https://storage.googleapis.com/pub/' API_URL = 'https://www.googleapis.com/storage/v1/b/pub/o/' THIS_DIR = os.path.dirname(os.path.abspath(__file__)) DEFAULT_BIN_DIR = os.path.join(THIS_DIR, 'external_bin', 'gsutil') DEFAULT_FALLBACK_GSUTIL = os.path.join( THIS_DIR, 'third_party', 'gsutil', 'gsutil') class InvalidGsutilError(Exception): pass def download_gsutil(version, target_dir): """Downloads gsutil into the target_dir.""" filename = 'gsutil_%s.zip' % version target_filename = os.path.join(target_dir, filename) # Check if the target exists already. if os.path.exists(target_filename): md5_calc = hashlib.md5() with open(target_filename, 'rb') as f: while True: buf = f.read(4096) if not buf: break md5_calc.update(buf) local_md5 = md5_calc.hexdigest() metadata_url = '%s%s' % (API_URL, filename) metadata = json.load(urllib2.urlopen(metadata_url)) remote_md5 = base64.b64decode(metadata['md5Hash']) if local_md5 == remote_md5: return target_filename os.remove(target_filename) # Do the download. url = '%s%s' % (GSUTIL_URL, filename) u = urllib2.urlopen(url) with open(target_filename, 'wb') as f: while True: buf = u.read(4096) if not buf: break f.write(buf) return target_filename def check_gsutil(gsutil_bin): """Run gsutil version and make sure it runs.""" return subprocess.call( [sys.executable, gsutil_bin, 'version'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) == 0 def ensure_gsutil(version, target): bin_dir = os.path.join(target, 'gsutil_%s' % version) gsutil_bin = os.path.join(bin_dir, 'gsutil', 'gsutil') if os.path.isfile(gsutil_bin) and check_gsutil(gsutil_bin): # Everything is awesome! we're all done here. return gsutil_bin if os.path.isdir(bin_dir): # Clean up if we're redownloading a corrupted gsutil. shutil.rmtree(bin_dir) cache_dir = os.path.join(target, '.cache_dir') if not os.path.isdir(cache_dir): os.makedirs(cache_dir) target_zip_filename = download_gsutil(version, cache_dir) with zipfile.ZipFile(target_zip_filename, 'r') as target_zip: target_zip.extractall(bin_dir) # Final check that the gsutil bin is okay. This should never fail. if not check_gsutil(gsutil_bin): raise InvalidGsutilError() return gsutil_bin def run_gsutil(force_version, fallback, target, args): if force_version: gsutil_bin = ensure_gsutil(force_version, target) else: gsutil_bin = fallback cmd = [sys.executable, gsutil_bin] + args return subprocess.call(cmd) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--force-version') parser.add_argument('--fallback', default=DEFAULT_FALLBACK_GSUTIL) parser.add_argument('--target', default=DEFAULT_BIN_DIR) parser.add_argument('args', nargs=argparse.REMAINDER) args, extras = parser.parse_known_args() if args.args and args.args[0] == '--': args.args.pop(0) if extras: args.args = extras + args.args return args.force_version, args.fallback, args.target, args.args def main(): force_version, fallback, target, args = parse_args() return run_gsutil(force_version, fallback, target, args) if __name__ == '__main__': sys.exit(main())
bsd-3-clause
jodal/pykka
tests/test_registry.py
1
5406
import pytest from pykka import ActorRegistry pytestmark = pytest.mark.usefixtures("stop_all") class ActorBase: received_messages = None def __init__(self): super().__init__() self.received_messages = [] def on_receive(self, message): self.received_messages.append(message) @pytest.fixture(scope="module") def actor_a_class(runtime): class ActorA(ActorBase, runtime.actor_class): pass return ActorA @pytest.fixture(scope="module") def actor_b_class(runtime): class ActorB(ActorBase, runtime.actor_class): pass return ActorB @pytest.fixture def actor_ref(actor_a_class): return actor_a_class.start() @pytest.fixture def a_actor_refs(actor_a_class): return [actor_a_class.start() for _ in range(3)] @pytest.fixture def b_actor_refs(actor_b_class): return [actor_b_class.start() for _ in range(5)] def test_actor_is_registered_when_started(actor_ref): assert actor_ref in ActorRegistry.get_all() def test_actor_is_unregistered_when_stopped(actor_ref): assert actor_ref in ActorRegistry.get_all() actor_ref.stop() assert actor_ref not in ActorRegistry.get_all() def test_actor_may_be_registered_manually(actor_ref): ActorRegistry.unregister(actor_ref) assert actor_ref not in ActorRegistry.get_all() ActorRegistry.register(actor_ref) assert actor_ref in ActorRegistry.get_all() def test_actor_may_be_unregistered_multiple_times_without_error(actor_ref): ActorRegistry.unregister(actor_ref) assert actor_ref not in ActorRegistry.get_all() ActorRegistry.unregister(actor_ref) assert actor_ref not in ActorRegistry.get_all() ActorRegistry.register(actor_ref) assert actor_ref in ActorRegistry.get_all() def test_all_actors_can_be_stopped_through_registry(a_actor_refs, b_actor_refs): assert len(ActorRegistry.get_all()) == 8 ActorRegistry.stop_all(block=True) assert len(ActorRegistry.get_all()) == 0 def test_stop_all_stops_last_started_actor_first_if_blocking(mocker): mocker.patch.object(ActorRegistry, "get_all") stopped_actors = [] started_actors = [mocker.Mock(name=i) for i in range(3)] started_actors[0].stop.side_effect = lambda *a, **kw: stopped_actors.append( started_actors[0] ) started_actors[1].stop.side_effect = lambda *a, **kw: stopped_actors.append( started_actors[1] ) started_actors[2].stop.side_effect = lambda *a, **kw: stopped_actors.append( started_actors[2] ) ActorRegistry.get_all.return_value = started_actors ActorRegistry.stop_all(block=True) assert stopped_actors[0] == started_actors[2] assert stopped_actors[1] == started_actors[1] assert stopped_actors[2] == started_actors[0] def test_actors_may_be_looked_up_by_class(actor_a_class, a_actor_refs, b_actor_refs): result = ActorRegistry.get_by_class(actor_a_class) for a_actor in a_actor_refs: assert a_actor in result for b_actor in b_actor_refs: assert b_actor not in result def test_actors_may_be_looked_up_by_superclass( actor_a_class, a_actor_refs, b_actor_refs ): result = ActorRegistry.get_by_class(actor_a_class) for a_actor in a_actor_refs: assert a_actor in result for b_actor in b_actor_refs: assert b_actor not in result def test_actors_may_be_looked_up_by_class_name( actor_a_class, a_actor_refs, b_actor_refs ): result = ActorRegistry.get_by_class_name("ActorA") for a_actor in a_actor_refs: assert a_actor in result for b_actor in b_actor_refs: assert b_actor not in result def test_actors_may_be_looked_up_by_urn(actor_ref): result = ActorRegistry.get_by_urn(actor_ref.actor_urn) assert result == actor_ref def test_get_by_urn_returns_none_if_not_found(): result = ActorRegistry.get_by_urn("urn:foo:bar") assert result is None def test_broadcast_sends_message_to_all_actors_if_no_target(a_actor_refs, b_actor_refs): ActorRegistry.broadcast({"command": "foo"}) running_actors = ActorRegistry.get_all() assert running_actors for actor_ref in running_actors: received_messages = actor_ref.proxy().received_messages.get() assert {"command": "foo"} in received_messages def test_broadcast_sends_message_to_all_actors_of_given_class( actor_a_class, actor_b_class ): ActorRegistry.broadcast({"command": "foo"}, target_class=actor_a_class) for actor_ref in ActorRegistry.get_by_class(actor_a_class): received_messages = actor_ref.proxy().received_messages.get() assert {"command": "foo"} in received_messages for actor_ref in ActorRegistry.get_by_class(actor_b_class): received_messages = actor_ref.proxy().received_messages.get() assert {"command": "foo"} not in received_messages def test_broadcast_sends_message_to_all_actors_of_given_class_name( actor_a_class, actor_b_class ): ActorRegistry.broadcast({"command": "foo"}, target_class="ActorA") for actor_ref in ActorRegistry.get_by_class(actor_a_class): received_messages = actor_ref.proxy().received_messages.get() assert {"command": "foo"} in received_messages for actor_ref in ActorRegistry.get_by_class(actor_b_class): received_messages = actor_ref.proxy().received_messages.get() assert {"command": "foo"} not in received_messages
apache-2.0
Amechi101/concepteur-market-app
venv/lib/python2.7/site-packages/django/templatetags/future.py
130
1640
from django.template import Library from django.template import defaulttags register = Library() @register.tag def ssi(parser, token): # Used for deprecation path during 1.3/1.4, will be removed in 2.0 return defaulttags.ssi(parser, token) @register.tag def url(parser, token): # Used for deprecation path during 1.3/1.4, will be removed in 2.0 return defaulttags.url(parser, token) @register.tag def cycle(parser, token): """ This is the future version of `cycle` with auto-escaping. By default all strings are escaped. If you want to disable auto-escaping of variables you can use:: {% autoescape off %} {% cycle var1 var2 var3 as somecycle %} {% autoescape %} Or if only some variables should be escaped, you can use:: {% cycle var1 var2|safe var3|safe as somecycle %} """ return defaulttags.cycle(parser, token, escape=True) @register.tag def firstof(parser, token): """ This is the future version of `firstof` with auto-escaping. This is equivalent to:: {% if var1 %} {{ var1 }} {% elif var2 %} {{ var2 }} {% elif var3 %} {{ var3 }} {% endif %} If you want to disable auto-escaping of variables you can use:: {% autoescape off %} {% firstof var1 var2 var3 "<strong>fallback value</strong>" %} {% autoescape %} Or if only some variables should be escaped, you can use:: {% firstof var1 var2|safe var3 "<strong>fallback value</strong>"|safe %} """ return defaulttags.firstof(parser, token, escape=True)
mit
myarjunar/QGIS
python/plugins/processing/gui/ScriptEdit.py
1
7614
# -*- coding: utf-8 -*- """ *************************************************************************** ScriptEdit.py --------------------- Date : April 2013 Copyright : (C) 2013 by Alexander Bruy Email : alexander dot bruy at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Alexander Bruy' __date__ = 'April 2013' __copyright__ = '(C) 2013, Alexander Bruy' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os from qgis.PyQt.QtCore import Qt from qgis.PyQt.QtGui import QFont, QColor, QKeySequence from qgis.PyQt.QtWidgets import QShortcut from qgis.core import QgsApplication, QgsSettings from qgis.PyQt.Qsci import QsciScintilla, QsciLexerPython, QsciAPIs from processing.gui.LexerR import LexerR class ScriptEdit(QsciScintilla): LEXER_PYTHON = 0 LEXER_R = 1 def __init__(self, parent=None): QsciScintilla.__init__(self, parent) self.lexer = None self.api = None self.lexerType = -1 self.setCommonOptions() self.initShortcuts() def setCommonOptions(self): # Enable non-ASCII characters self.setUtf8(True) # Default font font = QFont() font.setFamily('Courier') font.setFixedPitch(True) font.setPointSize(20) self.setFont(font) self.setMarginsFont(font) self.initLexer() self.setBraceMatching(QsciScintilla.SloppyBraceMatch) self.setWrapMode(QsciScintilla.WrapWord) self.setWrapVisualFlags(QsciScintilla.WrapFlagByText, QsciScintilla.WrapFlagNone, 4) self.setSelectionForegroundColor(QColor('#2e3436')) self.setSelectionBackgroundColor(QColor('#babdb6')) # Show line numbers self.setMarginWidth(1, '000') self.setMarginLineNumbers(1, True) self.setMarginsForegroundColor(QColor('#2e3436')) self.setMarginsBackgroundColor(QColor('#babdb6')) # Highlight current line self.setCaretLineVisible(True) self.setCaretLineBackgroundColor(QColor('#d3d7cf')) # Folding self.setFolding(QsciScintilla.BoxedTreeFoldStyle) self.setFoldMarginColors(QColor('#d3d7cf'), QColor('#d3d7cf')) # Mark column 80 with vertical line self.setEdgeMode(QsciScintilla.EdgeLine) self.setEdgeColumn(80) self.setEdgeColor(QColor('#eeeeec')) # Indentation self.setAutoIndent(True) self.setIndentationsUseTabs(False) self.setIndentationWidth(4) self.setTabIndents(True) self.setBackspaceUnindents(True) self.setTabWidth(4) # Autocomletion self.setAutoCompletionThreshold(2) self.setAutoCompletionSource(QsciScintilla.AcsAPIs) self.setFonts(10) def setFonts(self, size): # Load font from Python console settings settings = QgsSettings() fontName = settings.value('pythonConsole/fontfamilytext', 'Monospace') fontSize = int(settings.value('pythonConsole/fontsize', size)) self.defaultFont = QFont(fontName) self.defaultFont.setFixedPitch(True) self.defaultFont.setPointSize(fontSize) self.defaultFont.setStyleHint(QFont.TypeWriter) self.defaultFont.setStretch(QFont.SemiCondensed) self.defaultFont.setLetterSpacing(QFont.PercentageSpacing, 87.0) self.defaultFont.setBold(False) self.boldFont = QFont(self.defaultFont) self.boldFont.setBold(True) self.italicFont = QFont(self.defaultFont) self.italicFont.setItalic(True) self.setFont(self.defaultFont) self.setMarginsFont(self.defaultFont) def initShortcuts(self): (ctrl, shift) = (self.SCMOD_CTRL << 16, self.SCMOD_SHIFT << 16) # Disable some shortcuts self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord('D') + ctrl) self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord('L') + ctrl) self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord('L') + ctrl + shift) self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord('T') + ctrl) # self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord("Z") + ctrl) # self.SendScintilla(QsciScintilla.SCI_CLEARCMDKEY, ord("Y") + ctrl) # Use Ctrl+Space for autocompletion self.shortcutAutocomplete = QShortcut(QKeySequence(Qt.CTRL + Qt.Key_Space), self) self.shortcutAutocomplete.setContext(Qt.WidgetShortcut) self.shortcutAutocomplete.activated.connect(self.autoComplete) def autoComplete(self): self.autoCompleteFromAll() def setLexerType(self, lexerType): self.lexerType = lexerType self.initLexer() def initLexer(self): if self.lexerType == self.LEXER_PYTHON: self.lexer = QsciLexerPython() colorDefault = QColor('#2e3436') colorComment = QColor('#c00') colorCommentBlock = QColor('#3465a4') colorNumber = QColor('#4e9a06') colorType = QColor('#4e9a06') colorKeyword = QColor('#204a87') colorString = QColor('#ce5c00') self.lexer.setDefaultFont(self.defaultFont) self.lexer.setDefaultColor(colorDefault) self.lexer.setColor(colorComment, 1) self.lexer.setColor(colorNumber, 2) self.lexer.setColor(colorString, 3) self.lexer.setColor(colorString, 4) self.lexer.setColor(colorKeyword, 5) self.lexer.setColor(colorString, 6) self.lexer.setColor(colorString, 7) self.lexer.setColor(colorType, 8) self.lexer.setColor(colorCommentBlock, 12) self.lexer.setColor(colorString, 15) self.lexer.setFont(self.italicFont, 1) self.lexer.setFont(self.boldFont, 5) self.lexer.setFont(self.boldFont, 8) self.lexer.setFont(self.italicFont, 12) self.api = QsciAPIs(self.lexer) settings = QgsSettings() useDefaultAPI = bool(settings.value('pythonConsole/preloadAPI', True)) if useDefaultAPI: # Load QGIS API shipped with Python console self.api.loadPrepared( os.path.join(QgsApplication.pkgDataPath(), 'python', 'qsci_apis', 'pyqgis.pap')) else: # Load user-defined API files apiPaths = settings.value('pythonConsole/userAPI', []) for path in apiPaths: self.api.load(path) self.api.prepare() self.lexer.setAPIs(self.api) elif self.lexerType == self.LEXER_R: # R lexer self.lexer = LexerR() self.setLexer(self.lexer)
gpl-2.0
rockfruit/bika.lims
bika/lims/browser/viewlets.py
1
5596
# This file is part of Bika LIMS # # Copyright 2011-2016 by it's authors. # Some rights reserved. See LICENSE.txt, AUTHORS.txt. import json import urllib import time from Products.CMFCore.utils import getToolByName from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from plone import api from plone.app.layout.viewlets.common import ViewletBase from zope.component import getMultiAdapter from bika.lims import logger class DocumentActionsViewlet(ViewletBase): """Overload the default to print pretty icons """ index = ViewPageTemplateFile("templates/document_actions.pt") def render(self): portal_factory = getToolByName(self.context, 'portal_factory') if portal_factory.isTemporary(self.context): return self.index() self.actions = [] portal_actions = getToolByName(self.context, 'portal_actions') actions = portal_actions.listFilteredActionsFor(self.context) if 'document_actions' in actions: for action in actions['document_actions']: self.actions.append(action) return self.index() class NewVersionsViewlet(ViewletBase): """ Handle notifications related to new version of Bika LIMS 1) Check pypi for new version 2) Check prefs to see if upgrade steps are required. """ index = ViewPageTemplateFile("templates/new_version.pt") def get_versions(self): """Configure self.versions, a list of product versions from portal.quickinstaller """ self.versions = {} qi = self.context.portal_quickinstaller for key in qi.keys(): self.versions[key] = qi.getProductVersion(key) def check_new_version(self): """Look for new updates at pypi """ self.current_version = self.versions['bika.lims'] if not self.current_version: self.has_new_version = False return url = "https://pypi.python.org/pypi/bika.lims/json" try: jsonstr = urllib.urlopen(url).read() self.pypi = json.loads(jsonstr) v = self.new_version = self.pypi['info']['version'] self.new_date = \ self.pypi['releases'][v][0]['upload_time'].split('T')[0] except Exception as e: logger.info("Failed to retrieve new version info: %s" % e) v = self.current_version self.new_date = "" self.has_new_version = v > self.current_version def check_new_upgrade_step(self): """Warn about upgrade steps that have not been run. This will override the users choice in settings: un-executed upgrade steps are always alerted. """ qi = self.context.portal_quickinstaller self.info = qi.upgradeInfo('bika.lims') if self.info['installedVersion'] < self.info['newVersion']: self.has_upgrade_step = True else: self.has_upgrade_step = False def check_session(self): """Return False if the session hint claims that we already checked. Return True if the session has no record, or if more than one day has passed since we last checked. """ et = time.time() try: sdm = self.context.session_data_manager except AttributeError: # While testing, the session data manager is not yet instantiated. return False session = sdm.getSessionData(create=True) diff = et - session.get('bika.lims-version-check', et) if diff > 86400 or diff == 0: session['bika.lims-version-check'] = et return True else: return False def render(self): if not self.check_session(): return "" self.get_versions() self.check_new_version() self.check_new_upgrade_step() mtool = getToolByName(self.context, 'portal_membership') member = mtool.getAuthenticatedMember() roles = member.getRoles() allowed = 'LabManager' in roles or 'Manager' in roles if allowed \ and self.context.bika_setup.getShowNewReleasesInfo() \ and self.has_new_version: return self.index() elif allowed and self.has_upgrade_step: return self.index() else: return "" class PathBarViewlet(ViewletBase): index = ViewPageTemplateFile('templates/path_bar.pt') def update(self): super(PathBarViewlet, self).update() self.is_rtl = self.portal_state.is_rtl() breadcrumbs_view = getMultiAdapter((self.context, self.request), name='breadcrumbs_view') self.breadcrumbs = breadcrumbs_view.breadcrumbs() class AuthenticatorViewlet(ViewletBase): index = ViewPageTemplateFile('templates/authenticator.pt') class ImportButtonViewlet(ViewletBase): index = ViewPageTemplateFile('templates/import_button_viewlet.pt') def changeStatus(self): workflow = api.portal.get_tool("portal_workflow") state = api.content.get_state(self.context) available_transions = workflow.getTransitionsFor(self.context) self.import_buttons = [] contextURL = self.context.absolute_url() changeWorkFlow = 'content_status_modify?workflow_action=' for state in available_transions: url = '%s/%s%s' % (contextURL, changeWorkFlow, state['id']) self.import_buttons.append({'state': state['name'], 'url': url}) return self.import_buttons
agpl-3.0
tst-lsavoie/earthenterprise
earth_enterprise/src/google/protobuf-py/google/protobuf/internal/type_checkers.py
9
12112
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Provides type checking routines. This module defines type checking utilities in the forms of dictionaries: VALUE_CHECKERS: A dictionary of field types and a value validation object. TYPE_TO_BYTE_SIZE_FN: A dictionary with field types and a size computing function. TYPE_TO_SERIALIZE_METHOD: A dictionary with field types and serialization function. FIELD_TYPE_TO_WIRE_TYPE: A dictionary with field typed and their coresponding wire types. TYPE_TO_DESERIALIZE_METHOD: A dictionary with field types and deserialization function. """ from google.protobuf.internal import decoder from google.protobuf.internal import encoder from google.protobuf.internal import wire_format from google.protobuf import descriptor _FieldDescriptor = descriptor.FieldDescriptor def GetTypeChecker(cpp_type, field_type): """Returns a type checker for a message field of the specified types. Args: cpp_type: C++ type of the field (see descriptor.py). field_type: Protocol message field type (see descriptor.py). Returns: An instance of TypeChecker which can be used to verify the types of values assigned to a field of the specified type. """ if (cpp_type == _FieldDescriptor.CPPTYPE_STRING and field_type == _FieldDescriptor.TYPE_STRING): return UnicodeValueChecker() return _VALUE_CHECKERS[cpp_type] # None of the typecheckers below make any attempt to guard against people # subclassing builtin types and doing weird things. We're not trying to # protect against malicious clients here, just people accidentally shooting # themselves in the foot in obvious ways. class TypeChecker(object): """Type checker used to catch type errors as early as possible when the client is setting scalar fields in protocol messages. """ def __init__(self, *acceptable_types): self._acceptable_types = acceptable_types def CheckValue(self, proposed_value): if not isinstance(proposed_value, self._acceptable_types): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), self._acceptable_types)) raise TypeError(message) # IntValueChecker and its subclasses perform integer type-checks # and bounds-checks. class IntValueChecker(object): """Checker used for integer fields. Performs type-check and range check.""" def CheckValue(self, proposed_value): if not isinstance(proposed_value, (int, long)): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), (int, long))) raise TypeError(message) if not self._MIN <= proposed_value <= self._MAX: raise ValueError('Value out of range: %d' % proposed_value) class UnicodeValueChecker(object): """Checker used for string fields.""" def CheckValue(self, proposed_value): if not isinstance(proposed_value, (str, unicode)): message = ('%.1024r has type %s, but expected one of: %s' % (proposed_value, type(proposed_value), (str, unicode))) raise TypeError(message) # If the value is of type 'str' make sure that it is in 7-bit ASCII # encoding. if isinstance(proposed_value, str): try: unicode(proposed_value, 'ascii') except UnicodeDecodeError: raise ValueError('%.1024r has type str, but isn\'t in 7-bit ASCII ' 'encoding. Non-ASCII strings must be converted to ' 'unicode objects before being added.' % (proposed_value)) class Int32ValueChecker(IntValueChecker): # We're sure to use ints instead of longs here since comparison may be more # efficient. _MIN = -2147483648 _MAX = 2147483647 class Uint32ValueChecker(IntValueChecker): _MIN = 0 _MAX = (1 << 32) - 1 class Int64ValueChecker(IntValueChecker): _MIN = -(1 << 63) _MAX = (1 << 63) - 1 class Uint64ValueChecker(IntValueChecker): _MIN = 0 _MAX = (1 << 64) - 1 # Type-checkers for all scalar CPPTYPEs. _VALUE_CHECKERS = { _FieldDescriptor.CPPTYPE_INT32: Int32ValueChecker(), _FieldDescriptor.CPPTYPE_INT64: Int64ValueChecker(), _FieldDescriptor.CPPTYPE_UINT32: Uint32ValueChecker(), _FieldDescriptor.CPPTYPE_UINT64: Uint64ValueChecker(), _FieldDescriptor.CPPTYPE_DOUBLE: TypeChecker( float, int, long), _FieldDescriptor.CPPTYPE_FLOAT: TypeChecker( float, int, long), _FieldDescriptor.CPPTYPE_BOOL: TypeChecker(bool, int), _FieldDescriptor.CPPTYPE_ENUM: Int32ValueChecker(), _FieldDescriptor.CPPTYPE_STRING: TypeChecker(str), } # Map from field type to a function F, such that F(field_num, value) # gives the total byte size for a value of the given type. This # byte size includes tag information and any other additional space # associated with serializing "value". TYPE_TO_BYTE_SIZE_FN = { _FieldDescriptor.TYPE_DOUBLE: wire_format.DoubleByteSize, _FieldDescriptor.TYPE_FLOAT: wire_format.FloatByteSize, _FieldDescriptor.TYPE_INT64: wire_format.Int64ByteSize, _FieldDescriptor.TYPE_UINT64: wire_format.UInt64ByteSize, _FieldDescriptor.TYPE_INT32: wire_format.Int32ByteSize, _FieldDescriptor.TYPE_FIXED64: wire_format.Fixed64ByteSize, _FieldDescriptor.TYPE_FIXED32: wire_format.Fixed32ByteSize, _FieldDescriptor.TYPE_BOOL: wire_format.BoolByteSize, _FieldDescriptor.TYPE_STRING: wire_format.StringByteSize, _FieldDescriptor.TYPE_GROUP: wire_format.GroupByteSize, _FieldDescriptor.TYPE_MESSAGE: wire_format.MessageByteSize, _FieldDescriptor.TYPE_BYTES: wire_format.BytesByteSize, _FieldDescriptor.TYPE_UINT32: wire_format.UInt32ByteSize, _FieldDescriptor.TYPE_ENUM: wire_format.EnumByteSize, _FieldDescriptor.TYPE_SFIXED32: wire_format.SFixed32ByteSize, _FieldDescriptor.TYPE_SFIXED64: wire_format.SFixed64ByteSize, _FieldDescriptor.TYPE_SINT32: wire_format.SInt32ByteSize, _FieldDescriptor.TYPE_SINT64: wire_format.SInt64ByteSize } # Maps from field types to encoder constructors. TYPE_TO_ENCODER = { _FieldDescriptor.TYPE_DOUBLE: encoder.DoubleEncoder, _FieldDescriptor.TYPE_FLOAT: encoder.FloatEncoder, _FieldDescriptor.TYPE_INT64: encoder.Int64Encoder, _FieldDescriptor.TYPE_UINT64: encoder.UInt64Encoder, _FieldDescriptor.TYPE_INT32: encoder.Int32Encoder, _FieldDescriptor.TYPE_FIXED64: encoder.Fixed64Encoder, _FieldDescriptor.TYPE_FIXED32: encoder.Fixed32Encoder, _FieldDescriptor.TYPE_BOOL: encoder.BoolEncoder, _FieldDescriptor.TYPE_STRING: encoder.StringEncoder, _FieldDescriptor.TYPE_GROUP: encoder.GroupEncoder, _FieldDescriptor.TYPE_MESSAGE: encoder.MessageEncoder, _FieldDescriptor.TYPE_BYTES: encoder.BytesEncoder, _FieldDescriptor.TYPE_UINT32: encoder.UInt32Encoder, _FieldDescriptor.TYPE_ENUM: encoder.EnumEncoder, _FieldDescriptor.TYPE_SFIXED32: encoder.SFixed32Encoder, _FieldDescriptor.TYPE_SFIXED64: encoder.SFixed64Encoder, _FieldDescriptor.TYPE_SINT32: encoder.SInt32Encoder, _FieldDescriptor.TYPE_SINT64: encoder.SInt64Encoder, } # Maps from field types to sizer constructors. TYPE_TO_SIZER = { _FieldDescriptor.TYPE_DOUBLE: encoder.DoubleSizer, _FieldDescriptor.TYPE_FLOAT: encoder.FloatSizer, _FieldDescriptor.TYPE_INT64: encoder.Int64Sizer, _FieldDescriptor.TYPE_UINT64: encoder.UInt64Sizer, _FieldDescriptor.TYPE_INT32: encoder.Int32Sizer, _FieldDescriptor.TYPE_FIXED64: encoder.Fixed64Sizer, _FieldDescriptor.TYPE_FIXED32: encoder.Fixed32Sizer, _FieldDescriptor.TYPE_BOOL: encoder.BoolSizer, _FieldDescriptor.TYPE_STRING: encoder.StringSizer, _FieldDescriptor.TYPE_GROUP: encoder.GroupSizer, _FieldDescriptor.TYPE_MESSAGE: encoder.MessageSizer, _FieldDescriptor.TYPE_BYTES: encoder.BytesSizer, _FieldDescriptor.TYPE_UINT32: encoder.UInt32Sizer, _FieldDescriptor.TYPE_ENUM: encoder.EnumSizer, _FieldDescriptor.TYPE_SFIXED32: encoder.SFixed32Sizer, _FieldDescriptor.TYPE_SFIXED64: encoder.SFixed64Sizer, _FieldDescriptor.TYPE_SINT32: encoder.SInt32Sizer, _FieldDescriptor.TYPE_SINT64: encoder.SInt64Sizer, } # Maps from field type to a decoder constructor. TYPE_TO_DECODER = { _FieldDescriptor.TYPE_DOUBLE: decoder.DoubleDecoder, _FieldDescriptor.TYPE_FLOAT: decoder.FloatDecoder, _FieldDescriptor.TYPE_INT64: decoder.Int64Decoder, _FieldDescriptor.TYPE_UINT64: decoder.UInt64Decoder, _FieldDescriptor.TYPE_INT32: decoder.Int32Decoder, _FieldDescriptor.TYPE_FIXED64: decoder.Fixed64Decoder, _FieldDescriptor.TYPE_FIXED32: decoder.Fixed32Decoder, _FieldDescriptor.TYPE_BOOL: decoder.BoolDecoder, _FieldDescriptor.TYPE_STRING: decoder.StringDecoder, _FieldDescriptor.TYPE_GROUP: decoder.GroupDecoder, _FieldDescriptor.TYPE_MESSAGE: decoder.MessageDecoder, _FieldDescriptor.TYPE_BYTES: decoder.BytesDecoder, _FieldDescriptor.TYPE_UINT32: decoder.UInt32Decoder, _FieldDescriptor.TYPE_ENUM: decoder.EnumDecoder, _FieldDescriptor.TYPE_SFIXED32: decoder.SFixed32Decoder, _FieldDescriptor.TYPE_SFIXED64: decoder.SFixed64Decoder, _FieldDescriptor.TYPE_SINT32: decoder.SInt32Decoder, _FieldDescriptor.TYPE_SINT64: decoder.SInt64Decoder, } # Maps from field type to expected wiretype. FIELD_TYPE_TO_WIRE_TYPE = { _FieldDescriptor.TYPE_DOUBLE: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_FLOAT: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_INT64: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_UINT64: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_INT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_FIXED64: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_FIXED32: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_BOOL: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_STRING: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_GROUP: wire_format.WIRETYPE_START_GROUP, _FieldDescriptor.TYPE_MESSAGE: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_BYTES: wire_format.WIRETYPE_LENGTH_DELIMITED, _FieldDescriptor.TYPE_UINT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_ENUM: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_SFIXED32: wire_format.WIRETYPE_FIXED32, _FieldDescriptor.TYPE_SFIXED64: wire_format.WIRETYPE_FIXED64, _FieldDescriptor.TYPE_SINT32: wire_format.WIRETYPE_VARINT, _FieldDescriptor.TYPE_SINT64: wire_format.WIRETYPE_VARINT, }
apache-2.0
spnow/grr
lib/flows/general/services.py
2
2574
#!/usr/bin/env python # Copyright 2012 Google Inc. All Rights Reserved. """Get running/installed services.""" from grr.lib import aff4 from grr.lib import flow from grr.lib import rdfvalue from grr.proto import flows_pb2 from grr.proto import jobs_pb2 class ServiceInformation(rdfvalue.RDFProtoStruct): protobuf = jobs_pb2.ServiceInformation class EnumerateServicesArgs(rdfvalue.RDFProtoStruct): protobuf = flows_pb2.EnumerateServicesArgs # TODO(user): Mostly replaced with WindowsDrivers artifact. Remove this # flow once we can also do the binary download with artifacts. class EnumerateServices(flow.GRRFlow): """Enumerated windows services and kernel drivers using WMI. Optionally also download the binaries automatically. """ category = "/Services/" behaviours = flow.GRRFlow.behaviours + "Windows" args_type = EnumerateServicesArgs @flow.StateHandler(next_state=["StoreServices", "StoreWMIServices"]) def Start(self): """Setup output collections and issue WMI call.""" client = aff4.FACTORY.Open(self.client_id, token=self.token) system = client.Get(client.Schema.SYSTEM) # if system is None we'll try to run the flow anyway since it might work. if system == "Windows": self.CallClient("WmiQuery", query="Select * from Win32_SystemDriver", next_state="StoreWMIServices") else: self.CallClient("EnumerateRunningServices", next_state="StoreServices") @flow.StateHandler() def StoreServices(self, responses): """Store services in ServiceCollection.""" if not responses.success: raise flow.FlowError(str(responses.status)) for response in responses: self.SendReply(response) @flow.StateHandler(next_state="End") def StoreWMIServices(self, responses): """This stores the processes.""" if not responses.success: # If we failed with the wmi query we can not continue. raise flow.FlowError("Error during WMI query %s" % responses.status) paths = [] for response in responses: service_entry = rdfvalue.ServiceInformation() service_entry.wmi_information = response service_entry.name = response.GetItem("Name") service_entry.description = response.GetItem("Description") service_entry.state = response.GetItem("State") driver_path = response.GetItem("PathName") if driver_path: paths.append(driver_path) self.SendReply(service_entry) if paths: self.CallFlow("FetchFiles", paths=paths, pathtype=self.args.pathtype, next_state="End")
apache-2.0
fgesora/odoo
addons/l10n_be_coda/wizard/__init__.py
439
1098
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # # Copyright (c) 2011 Noviat nv/sa (www.noviat.be). All rights reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import account_coda_import # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/mpl_toolkits/axisartist/axis_artist.py
7
52735
""" axis_artist.py module provides axis-related artists. They are * axis line * tick lines * tick labels * axis label * grid lines The main artist class is a AxisArtist and a GridlinesCollection. The GridlinesCollection is responsible for drawing grid lines and the AxisArtist is responsible for all other artists. The AxisArtist class has attributes that are associated with each type of artists. * line : axis line * major_ticks : major tick lines * major_ticklabels : major tick labels * minor_ticks : minor tick lines * minor_ticklabels : minor tick labels * label : axis label Typically, the AxisArtist associated with a axes will be accessed with the *axis* dictionary of the axes, i.e., the AxisArtist for the bottom axis is ax.axis["bottom"] where *ax* is an instance of axes (mpl_toolkits.axislines.Axes). Thus, ax.axis["bottom"].line is an artist associated with the axis line, and ax.axis["bottom"].major_ticks is an artist associated with the major tick lines. You can change the colors, fonts, line widths, etc. of these artists by calling suitable set method. For example, to change the color of the major ticks of the bottom axis to red, ax.axis["bottom"].major_ticks.set_color("r") However, things like the locations of ticks, and their ticklabels need to be changed from the side of the grid_helper. axis_direction -------------- AxisArtist, AxisLabel, TickLabels have *axis_direction* attribute, which adjusts the location, angle, etc.,. The *axis_direction* must be one of [left, right, bottom, top] and they follow the matplotlib convention for the rectangle axis. For example, for the *bottom* axis (the left and right is relative to the direction of the increasing coordinate), * ticklabels and axislabel are on the right * ticklabels and axislabel have text angle of 0 * ticklabels are baseline, center-aligned * axislabel is top, center-aligned The text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. left bottom right top ticklabels location left right right left axislabel location left right right left ticklabels angle 90 0 -90 180 axislabel angle 180 0 0 180 ticklabel va center baseline center baseline axislabel va center top center bottom ticklabel ha right center right center axislabel ha right center right center Ticks are by default direct opposite side of the ticklabels. To make ticks to the same side of the ticklabels, ax.axis["bottom"].major_ticks.set_ticks_out(True) Following attributes can be customized (use set_xxx method) * Ticks : ticksize, tick_out * TickLabels : pad * AxisLabel : pad """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six # FIXME : # * : angles are given in data coordinate - need to convert it to canvas coordinate import matplotlib.axes as maxes import matplotlib.artist as martist import matplotlib.text as mtext import matplotlib.font_manager as font_manager from matplotlib.path import Path from matplotlib.transforms import Affine2D, ScaledTranslation, \ IdentityTransform, TransformedPath, Bbox from matplotlib.collections import LineCollection from matplotlib import rcParams from matplotlib.artist import allow_rasterization import warnings import numpy as np import matplotlib.lines as mlines from .axisline_style import AxislineStyle class BezierPath(mlines.Line2D): def __init__(self, path, *kl, **kw): mlines.Line2D.__init__(self, [], [], *kl, **kw) self._path = path self._invalid = False def recache(self): self._transformed_path = TransformedPath(self._path, self.get_transform()) self._invalid = False def set_path(self, path): self._path = path self._invalid = True def draw(self, renderer): if self._invalid: self.recache() if not self._visible: return renderer.open_group('line2d') gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self._color) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) gc.set_alpha(self._alpha) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) funcname = self._lineStyles.get(self._linestyle, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_path_and_affine() lineFunc = getattr(self, funcname) lineFunc(renderer, gc, tpath, affine.frozen()) gc.restore() renderer.close_group('line2d') class UnimplementedException(Exception): pass from matplotlib.artist import Artist class AttributeCopier(object): def __init__(self, ref_artist, klass=Artist): self._klass = klass self._ref_artist = ref_artist super(AttributeCopier, self).__init__() def set_ref_artist(self, artist): self._ref_artist = artist def get_ref_artist(self): raise RuntimeError("get_ref_artist must overridden") #return self._ref_artist def get_attribute_from_ref_artist(self, attr_name, default_value): get_attr_method_name = "get_"+attr_name c = getattr(self._klass, get_attr_method_name)(self) if c == 'auto': ref_artist = self.get_ref_artist() if ref_artist: attr = getattr(ref_artist, get_attr_method_name)() return attr else: return default_value return c from matplotlib.lines import Line2D class Ticks(Line2D, AttributeCopier): """ Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use set_mec, set_mew, etc. To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks (ticks are in opposite direction of ticklabels by default), use set_tick_out(False). """ def __init__(self, ticksize, tick_out=False, **kwargs): self._ticksize = ticksize self.locs_angles_labels = [] self.set_tick_out(tick_out) self._axis = kwargs.pop("axis", None) if self._axis is not None: if "color" not in kwargs: kwargs["color"] = "auto" if ("mew" not in kwargs) and ("markeredgewidth" not in kwargs): kwargs["markeredgewidth"] = "auto" Line2D.__init__(self, [0.], [0.], **kwargs) AttributeCopier.__init__(self, self._axis, klass=Line2D) self.set_snap(True) def get_ref_artist(self): #return self._ref_artist.get_ticklines()[0] return self._ref_artist.majorTicks[0].tick1line def get_color(self): return self.get_attribute_from_ref_artist("color", "k") def get_markeredgecolor(self): if self._markeredgecolor == 'auto': return self.get_color() else: return self._markeredgecolor def get_markeredgewidth(self): return self.get_attribute_from_ref_artist("markeredgewidth", .5) def set_tick_out(self, b): """ set True if tick need to be rotated by 180 degree. """ self._tick_out = b def get_tick_out(self): """ Return True if the tick will be rotated by 180 degree. """ return self._tick_out def set_ticksize(self, ticksize): """ set length of the ticks in points. """ self._ticksize = ticksize def get_ticksize(self): """ Return length of the ticks in points. """ return self._ticksize def set_locs_angles(self, locs_angles): self.locs_angles = locs_angles def _update(self, renderer): pass _tickvert_path = Path([[0., 0.], [1., 0.]]) def draw(self, renderer): if not self.get_visible(): return self._update(renderer) # update the tick size = self._ticksize path_trans = self.get_transform() # set gc : copied from lines.py # gc = renderer.new_gc() # self._set_gc_clip(gc) # gc.set_foreground(self.get_color()) # gc.set_antialiased(self._antialiased) # gc.set_linewidth(self._linewidth) # gc.set_alpha(self._alpha) # if self.is_dashed(): # cap = self._dashcapstyle # join = self._dashjoinstyle # else: # cap = self._solidcapstyle # join = self._solidjoinstyle # gc.set_joinstyle(join) # gc.set_capstyle(cap) # gc.set_snap(self.get_snap()) gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self.get_markeredgecolor()) gc.set_linewidth(self.get_markeredgewidth()) gc.set_alpha(self._alpha) offset = renderer.points_to_pixels(size) marker_scale = Affine2D().scale(offset, offset) if self.get_tick_out(): add_angle = 180 else: add_angle = 0 marker_rotation = Affine2D() marker_transform = marker_scale + marker_rotation for loc, angle in self.locs_angles: marker_rotation.rotate_deg(angle+add_angle) locs = path_trans.transform_non_affine(np.array([loc, loc])) renderer.draw_markers(gc, self._tickvert_path, marker_transform, Path(locs), path_trans.get_affine()) marker_rotation.clear() gc.restore() def test_ticks(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ticks = Ticks(ticksize=10, axis=ax.xaxis) ax.add_artist(ticks) locs_angles = [((0.2, 0.), 90), ((0.4, 0.), 120)] ticks.set_locs_angles(locs_angles) plt.draw() class LabelBase(mtext.Text): """ A base class for AxisLabel and TickLabels. The position and angle of the text are calculated by to offset_ref_angle, text_ref_angle, and offset_radius attributes. """ def __init__(self, *kl, **kwargs): self.locs_angles_labels = [] self._ref_angle = 0 self._offset_radius = 0. super(LabelBase, self).__init__(*kl, **kwargs) self.set_rotation_mode("anchor") self._text_follow_ref_angle = True #self._offset_ref_angle = 0 def _set_ref_angle(self, a): self._ref_angle = a def _get_ref_angle(self): return self._ref_angle def _get_text_ref_angle(self): if self._text_follow_ref_angle: return self._get_ref_angle()+90 else: return 0 #self.get_ref_angle() def _get_offset_ref_angle(self): return self._get_ref_angle() def _set_offset_radius(self, offset_radius): self._offset_radius = offset_radius def _get_offset_radius(self): return self._offset_radius _get_opposite_direction = {"left":"right", "right":"left", "top":"bottom", "bottom":"top"}.__getitem__ def _update(self, renderer): pass def draw(self, renderer): if not self.get_visible(): return self._update(renderer) # save original and adjust some properties tr = self.get_transform() angle_orig = self.get_rotation() offset_tr = Affine2D() self.set_transform(tr+offset_tr) text_ref_angle = self._get_text_ref_angle() offset_ref_angle = self._get_offset_ref_angle() theta = (offset_ref_angle)/180.*np.pi dd = self._get_offset_radius() dx, dy = dd * np.cos(theta), dd * np.sin(theta) offset_tr.translate(dx, dy) self.set_rotation(text_ref_angle+angle_orig) super(LabelBase, self).draw(renderer) offset_tr.clear() # restore original properties self.set_transform(tr) self.set_rotation(angle_orig) def get_window_extent(self, renderer): self._update(renderer) # save original and adjust some properties tr = self.get_transform() angle_orig = self.get_rotation() offset_tr = Affine2D() self.set_transform(tr+offset_tr) text_ref_angle = self._get_text_ref_angle() offset_ref_angle = self._get_offset_ref_angle() theta = (offset_ref_angle)/180.*np.pi dd = self._get_offset_radius() dx, dy = dd * np.cos(theta), dd * np.sin(theta) offset_tr.translate(dx, dy) self.set_rotation(text_ref_angle+angle_orig) bbox = super(LabelBase, self).get_window_extent(renderer).frozen() offset_tr.clear() # restore original properties self.set_transform(tr) self.set_rotation(angle_orig) return bbox def test_labelbase(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.plot([0.5], [0.5], "o") label = LabelBase(0.5, 0.5, "Test") a = -90 label._set_ref_angle(a) label._set_offset_radius(offset_radius=50) label.set_rotation(-90) label.set(ha="center", va="top") ax.add_artist(label) plt.draw() class AxisLabel(LabelBase, AttributeCopier): """ Axis Label. Derived from Text. The position of the text is updated in the fly, so changing text position has no effect. Otherwise, the properties can be changed as a normal Text. To change the pad between ticklabels and axis label, use set_pad. """ def __init__(self, *kl, **kwargs): axis_direction = kwargs.pop("axis_direction", "bottom") self._axis = kwargs.pop("axis", None) #super(AxisLabel, self).__init__(*kl, **kwargs) LabelBase.__init__(self, *kl, **kwargs) AttributeCopier.__init__(self, self._axis, klass=LabelBase) self.set_axis_direction(axis_direction) self._pad = 5 self._extra_pad = 0 def set_pad(self, pad): """ Set the pad in points. Note that the actual pad will be the sum of the internal pad and the external pad (that are set automatically by the AxisArtist), and it only set the internal pad """ self._pad = pad def get_pad(self): """ return pad in points. See set_pad for more details. """ return self._pad def _set_external_pad(self, p): """ Set external pad IN PIXELS. This is intended to be set by the AxisArtist, bot by user.. """ self._extra_pad = p def _get_external_pad(self): """ Get external pad. """ return self._extra_pad def get_ref_artist(self): return self._axis.get_label() def get_text(self): t = super(AxisLabel, self).get_text() if t == "__from_axes__": return self._axis.get_label().get_text() return self._text _default_alignments = dict(left=("bottom", "center"), right=("top", "center"), bottom=("top", "center"), top=("bottom", "center")) def set_default_alignment(self, d): if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') va, ha = self._default_alignments[d] self.set_va(va) self.set_ha(ha) _default_angles = dict(left=180, right=0, bottom=0, top=180) def set_default_angle(self, d): if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self.set_rotation(self._default_angles[d]) def set_axis_direction(self, d): """ Adjust the text angle and text alignment of axis label according to the matplotlib convention. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== axislabel angle 180 0 0 180 axislabel va center top center bottom axislabel ha right center right center ===================== ========== ========= ========== ========== Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if d not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self.set_default_alignment(d) self.set_default_angle(d) def get_color(self): return self.get_attribute_from_ref_artist("color", "k") def draw(self, renderer): if not self.get_visible(): return pad = renderer.points_to_pixels(self.get_pad()) r = self._get_external_pad() + pad self._set_offset_radius(r) super(AxisLabel, self).draw(renderer) def get_window_extent(self, renderer): if not self.get_visible(): return pad = renderer.points_to_pixels(self.get_pad()) r = self._get_external_pad() + pad self._set_offset_radius(r) bb = super(AxisLabel, self).get_window_extent(renderer) return bb class TickLabels(AxisLabel, AttributeCopier): # mtext.Text """ Tick Labels. While derived from Text, this single artist draws all ticklabels. As in AxisLabel, the position of the text is updated in the fly, so changing text position has no effect. Otherwise, the properties can be changed as a normal Text. Unlike the ticklabels of the mainline matplotlib, properties of single ticklabel alone cannot modified. To change the pad between ticks and ticklabels, use set_pad. """ def __init__(self, **kwargs): axis_direction = kwargs.pop("axis_direction", "bottom") AxisLabel.__init__(self, **kwargs) self.set_axis_direction(axis_direction) #self._axis_direction = axis_direction self._axislabel_pad = 0 #self._extra_pad = 0 # attribute copier def get_ref_artist(self): return self._axis.get_ticklabels()[0] def set_axis_direction(self, label_direction): """ Adjust the text angle and text alignment of ticklabels according to the matplotlib convention. The *label_direction* must be one of [left, right, bottom, top]. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== ticklabels angle 90 0 -90 180 ticklabel va center baseline center baseline ticklabel ha right center right center ===================== ========== ========= ========== ========== Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if label_direction not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be one of "left", "right", "top", "bottom"') self._axis_direction = label_direction self.set_default_alignment(label_direction) self.set_default_angle(label_direction) def invert_axis_direction(self): label_direction = self._get_opposite_direction(self._axis_direction) self.set_axis_direction(label_direction) def _get_ticklabels_offsets(self, renderer, label_direction): """ Calculates the offsets of the ticklabels from the tick and their total heights. The offset only takes account the offset due to the vertical alignment of the ticklabels, i.e.,if axis direction is bottom and va is ;top', it will return 0. if va is 'baseline', it will return (height-descent). """ whd_list = self.get_texts_widths_heights_descents(renderer) if not whd_list: return 0, 0 r = 0 va, ha = self.get_va(), self.get_ha() if label_direction == "left": pad = max([w for (w, h, d) in whd_list]) if ha == "left": r = pad elif ha == "center": r = .5 * pad elif label_direction == "right": pad = max([w for (w, h, d) in whd_list]) if ha == "right": r = pad elif ha == "center": r = .5 * pad elif label_direction == "bottom": pad = max([h for (w, h, d) in whd_list]) if va == "bottom": r = pad elif va == "center": r =.5 * pad elif va == "baseline": max_ascent = max([(h-d) for (w, h, d) in whd_list]) max_descent = max([d for (w, h, d) in whd_list]) r = max_ascent pad = max_ascent + max_descent elif label_direction == "top": pad = max([h for (w, h, d) in whd_list]) if va == "top": r = pad elif va == "center": r =.5 * pad elif va == "baseline": max_ascent = max([(h-d) for (w, h, d) in whd_list]) max_descent = max([d for (w, h, d) in whd_list]) r = max_descent pad = max_ascent + max_descent #tick_pad = renderer.points_to_pixels(self.get_pad()) # r : offset # pad : total height of the ticklabels. This will be used to # calculate the pad for the axislabel. return r, pad _default_alignments = dict(left=("center", "right"), right=("center", "left"), bottom=("baseline", "center"), top=("baseline", "center")) # set_default_alignments(self, d) _default_angles = dict(left=90, right=-90, bottom=0, top=180) def draw(self, renderer): if not self.get_visible(): self._axislabel_pad = self._get_external_pad() return r, total_width = self._get_ticklabels_offsets(renderer, self._axis_direction) #self._set_external_pad(r+self._get_external_pad()) pad = self._get_external_pad() + \ renderer.points_to_pixels(self.get_pad()) self._set_offset_radius(r+pad) #self._set_offset_radius(r) for (x, y), a, l in self._locs_angles_labels: if not l.strip(): continue self._set_ref_angle(a) #+ add_angle self.set_x(x) self.set_y(y) self.set_text(l) LabelBase.draw(self, renderer) self._axislabel_pad = total_width \ + pad # the value saved will be used to draw axislabel. def set_locs_angles_labels(self, locs_angles_labels): self._locs_angles_labels = locs_angles_labels def get_window_extents(self, renderer): if not self.get_visible(): self._axislabel_pad = self._get_external_pad() return [] bboxes = [] r, total_width = self._get_ticklabels_offsets(renderer, self._axis_direction) pad = self._get_external_pad() + \ renderer.points_to_pixels(self.get_pad()) self._set_offset_radius(r+pad) for (x, y), a, l in self._locs_angles_labels: self._set_ref_angle(a) #+ add_angle self.set_x(x) self.set_y(y) self.set_text(l) bb = LabelBase.get_window_extent(self, renderer) bboxes.append(bb) self._axislabel_pad = total_width \ + pad # the value saved will be used to draw axislabel. return bboxes def get_texts_widths_heights_descents(self, renderer): """ return a list of width, height, descent for ticklabels. """ whd_list = [] for (x, y), a, l in self._locs_angles_labels: if not l.strip(): continue clean_line, ismath = self.is_math_text(l) whd = renderer.get_text_width_height_descent( clean_line, self._fontproperties, ismath=ismath) whd_list.append(whd) return whd_list def test_ticklabels(): import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.plot([0.2, 0.4], [0.5, 0.5], "o") ticks = Ticks(ticksize=10, axis=ax.xaxis) ax.add_artist(ticks) locs_angles_labels = [((0.2, 0.5), -90, "0.2"), ((0.4, 0.5), -120, "0.4")] tick_locs_angles = [(xy, a+180) for xy, a, l in locs_angles_labels] ticks.set_locs_angles(tick_locs_angles) ax.plot([0.5], [0.5], ",") axislabel = AxisLabel(0.5, 0.5, "Test") axislabel._set_offset_radius(20) axislabel._set_ref_angle(0) axislabel.set_axis_direction("bottom") #axislabel._text_follow_ref_angle = True #axislabel.set(va="center", ha="right") ax.add_artist(axislabel) if 1: ticklabels = TickLabels(axis_direction="left") ticklabels._locs_angles_labels = locs_angles_labels #ticklabels.set_rotation(90) ticklabels.set_pad(10) ax.add_artist(ticklabels) ax.set_xlim(0, 1); ax.set_ylim(0, 1) plt.draw() class GridlinesCollection(LineCollection): def __init__(self, *kl, **kwargs): """ *which* : "major" or "minor" *axis* : "both", "x" or "y" """ self._which = kwargs.pop("which", "major") self._axis = kwargs.pop("axis", "both") super(GridlinesCollection, self).__init__(*kl, **kwargs) self.set_grid_helper(None) def set_which(self, which): self._which = which def set_axis(self, axis): self._axis = axis def set_grid_helper(self, grid_helper): self._grid_helper = grid_helper def draw(self, renderer): if self._grid_helper is not None: self._grid_helper.update_lim(self.axes) gl = self._grid_helper.get_gridlines(self._which, self._axis) if gl: self.set_segments([np.transpose(l) for l in gl]) else: self.set_segments([]) super(GridlinesCollection, self).draw(renderer) class AxisArtist(martist.Artist): """ An artist which draws axis (a line along which the n-th axes coord is constant) line, ticks, ticklabels, and axis label. """ ZORDER=2.5 # LABELPAD : as property def _set_labelpad(self, v): return self.label.set_pad(v) def _get_labelpad(self): return self.label.get_pad() LABELPAD = property(_get_labelpad, _set_labelpad) def __init__(self, axes, helper, offset=None, axis_direction="bottom", **kw): """ *axes* : axes *helper* : an AxisArtistHelper instance. """ #axes is also used to follow the axis attribute (tick color, etc). super(AxisArtist, self).__init__(**kw) self.axes = axes self._axis_artist_helper = helper if offset is None: offset = (0, 0) self.dpi_transform = Affine2D() self.offset_transform = ScaledTranslation(offset[0], offset[1], self.dpi_transform) self._label_visible = True self._majortick_visible = True self._majorticklabel_visible = True self._minortick_visible = True self._minorticklabel_visible = True #if self._axis_artist_helper._loc in ["left", "right"]: if axis_direction in ["left", "right"]: axis_name = "ytick" self.axis = axes.yaxis else: axis_name = "xtick" self.axis = axes.xaxis self._axisline_style = None self._axis_direction = axis_direction self._init_line() self._init_ticks(axis_name, **kw) self._init_offsetText(axis_direction) self._init_label() self.set_zorder(self.ZORDER) self._rotate_label_along_line = False # axis direction self._tick_add_angle = 180. self._ticklabel_add_angle = 0. self._axislabel_add_angle = 0. self.set_axis_direction(axis_direction) # axis direction def set_axis_direction(self, axis_direction): """ Adjust the direction, text angle, text alignment of ticklabels, labels following the matplotlib convention for the rectangle axes. The *axis_direction* must be one of [left, right, bottom, top]. ===================== ========== ========= ========== ========== property left bottom right top ===================== ========== ========= ========== ========== ticklabels location "-" "+" "+" "-" axislabel location "-" "+" "+" "-" ticklabels angle 90 0 -90 180 ticklabel va center baseline center baseline ticklabel ha right center right center axislabel angle 180 0 0 180 axislabel va center top center bottom axislabel ha right center right center ===================== ========== ========= ========== ========== Note that the direction "+" and "-" are relative to the direction of the increasing coordinate. Also, the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. """ if axis_direction not in ["left", "right", "top", "bottom"]: raise ValueError('direction must be on of "left", "right", "top", "bottom"') self._axis_direction = axis_direction if axis_direction in ["left", "top"]: #self._set_tick_direction("+") self.set_ticklabel_direction("-") self.set_axislabel_direction("-") else: #self._set_tick_direction("-") self.set_ticklabel_direction("+") self.set_axislabel_direction("+") self.major_ticklabels.set_axis_direction(axis_direction) self.label.set_axis_direction(axis_direction) # def _set_tick_direction(self, d): # if d not in ["+", "-"]: # raise ValueError('direction must be on of "in", "out"') # if d == "+": # self._tick_add_angle = 0 #get_helper()._extremes=0, 10 # else: # self._tick_add_angle = 180 #get_helper()._extremes=0, 10 def set_ticklabel_direction(self, tick_direction): """ Adjust the direction of the ticklabel. ACCEPTS: [ "+" | "-" ] Note that the label_direction '+' and '-' are relative to the direction of the increasing coordinate. """ if tick_direction not in ["+", "-"]: raise ValueError('direction must be one of "+", "-"') if tick_direction == "-": self._ticklabel_add_angle = 180 else: self._ticklabel_add_angle = 0 def invert_ticklabel_direction(self): self._ticklabel_add_angle = (self._ticklabel_add_angle + 180) % 360 self.major_ticklabels.invert_axis_direction() self.minor_ticklabels.invert_axis_direction() # def invert_ticks_direction(self): # self.major_ticks.set_tick_out(not self.major_ticks.get_tick_out()) # self.minor_ticks.set_tick_out(not self.minor_ticks.get_tick_out()) def set_axislabel_direction(self, label_direction): """ Adjust the direction of the axislabel. ACCEPTS: [ "+" | "-" ] Note that the label_direction '+' and '-' are relative to the direction of the increasing coordinate. """ if label_direction not in ["+", "-"]: raise ValueError('direction must be one of "+", "-"') if label_direction == "-": self._axislabel_add_angle = 180 else: self._axislabel_add_angle = 0 def get_transform(self): return self.axes.transAxes + self.offset_transform def get_helper(self): """ Return axis artist helper instance. """ return self._axis_artist_helper def set_axisline_style(self, axisline_style=None, **kw): """ Set the axisline style. *axisline_style* can be a string with axisline style name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords. set_arrowstyle("->,size=1.5") set_arrowstyle("->", size=1.5) Old attrs simply are forgotten. Without argument (or with arrowstyle=None), return available styles as a list of strings. """ if axisline_style==None: return AxislineStyle.pprint_styles() if isinstance(axisline_style, AxislineStyle._Base): self._axisline_style = axisline_style else: self._axisline_style = AxislineStyle(axisline_style, **kw) self._init_line() def get_axisline_style(self): """ return the current axisline style. """ return self._axisline_style def _init_line(self): """ Initialize the *line* artist that is responsible to draw the axis line. """ tran = self._axis_artist_helper.get_line_transform(self.axes) \ + self.offset_transform axisline_style = self.get_axisline_style() if axisline_style is None: self.line = BezierPath(self._axis_artist_helper.get_line(self.axes), color=rcParams['axes.edgecolor'], linewidth=rcParams['axes.linewidth'], transform=tran) else: self.line = axisline_style(self, transform=tran) def _draw_line(self, renderer): self.line.set_path(self._axis_artist_helper.get_line(self.axes)) if self.get_axisline_style() is not None: self.line.set_line_mutation_scale(self.major_ticklabels.get_size()) self.line.draw(renderer) def _init_ticks(self, axis_name, **kw): trans=self._axis_artist_helper.get_tick_transform(self.axes) \ + self.offset_transform major_tick_size = kw.get("major_tick_size", rcParams['%s.major.size'%axis_name]) major_tick_pad = kw.get("major_tick_pad", rcParams['%s.major.pad'%axis_name]) minor_tick_size = kw.get("minor_tick_size", rcParams['%s.minor.size'%axis_name]) minor_tick_pad = kw.get("minor_tick_pad", rcParams['%s.minor.pad'%axis_name]) self.major_ticks = Ticks(major_tick_size, axis=self.axis, transform=trans) self.minor_ticks = Ticks(minor_tick_size, axis=self.axis, transform=trans) if axis_name == "xaxis": size = rcParams['xtick.labelsize'] else: size = rcParams['ytick.labelsize'] fontprops = font_manager.FontProperties(size=size) self.major_ticklabels = TickLabels(size=size, axis=self.axis, axis_direction=self._axis_direction) self.minor_ticklabels = TickLabels(size=size, axis=self.axis, axis_direction=self._axis_direction) self.major_ticklabels.set(figure = self.axes.figure, transform=trans, fontproperties=fontprops) self.major_ticklabels.set_pad(major_tick_pad) self.minor_ticklabels.set(figure = self.axes.figure, transform=trans, fontproperties=fontprops) self.minor_ticklabels.set_pad(minor_tick_pad) def _get_tick_info(self, tick_iter): """ return ticks_loc_angle, ticklabels_loc_angle_label ticks_loc_angle : list of locs and angles for ticks ticklabels_loc_angle_label : list of locs, angles and labels for tickslabels """ ticks_loc_angle = [] ticklabels_loc_angle_label = [] tick_add_angle = self._tick_add_angle ticklabel_add_angle = self._ticklabel_add_angle for loc, angle_normal, angle_tangent, label in tick_iter: angle_label = angle_tangent - 90 angle_label += ticklabel_add_angle if np.cos((angle_label - angle_normal)/180.*np.pi) < 0.: angle_tick = angle_normal else: angle_tick = angle_normal + 180 ticks_loc_angle.append([loc, angle_tick]) ticklabels_loc_angle_label.append([loc, angle_label, label]) return ticks_loc_angle, ticklabels_loc_angle_label def _update_ticks(self, renderer): # set extra pad for major and minor ticklabels: # use ticksize of majorticks even for minor ticks. not clear what is best. dpi_cor = renderer.points_to_pixels(1.) if self.major_ticks.get_visible() and self.major_ticks.get_tick_out(): self.major_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) self.minor_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) else: self.major_ticklabels._set_external_pad(0) self.minor_ticklabels._set_external_pad(0) majortick_iter, minortick_iter = \ self._axis_artist_helper.get_tick_iterators(self.axes) tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(majortick_iter) self.major_ticks.set_locs_angles(tick_loc_angle) self.major_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) #self.major_ticks.draw(renderer) #self.major_ticklabels.draw(renderer) # minor ticks tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(minortick_iter) self.minor_ticks.set_locs_angles(tick_loc_angle) self.minor_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) #self.minor_ticks.draw(renderer) #self.minor_ticklabels.draw(renderer) #if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): # self._draw_offsetText(renderer) return self.major_ticklabels.get_window_extents(renderer) def _draw_ticks(self, renderer): extents = self._update_ticks(renderer) self.major_ticks.draw(renderer) self.major_ticklabels.draw(renderer) self.minor_ticks.draw(renderer) self.minor_ticklabels.draw(renderer) if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): self._draw_offsetText(renderer) return extents def _draw_ticks2(self, renderer): # set extra pad for major and minor ticklabels: # use ticksize of majorticks even for minor ticks. not clear what is best. dpi_cor = renderer.points_to_pixels(1.) if self.major_ticks.get_visible() and self.major_ticks.get_tick_out(): self.major_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) self.minor_ticklabels._set_external_pad(self.major_ticks._ticksize*dpi_cor) else: self.major_ticklabels._set_external_pad(0) self.minor_ticklabels._set_external_pad(0) majortick_iter, minortick_iter = \ self._axis_artist_helper.get_tick_iterators(self.axes) tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(majortick_iter) self.major_ticks.set_locs_angles(tick_loc_angle) self.major_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) self.major_ticks.draw(renderer) self.major_ticklabels.draw(renderer) # minor ticks tick_loc_angle, ticklabel_loc_angle_label \ = self._get_tick_info(minortick_iter) self.minor_ticks.set_locs_angles(tick_loc_angle) self.minor_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) self.minor_ticks.draw(renderer) self.minor_ticklabels.draw(renderer) if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): self._draw_offsetText(renderer) return self.major_ticklabels.get_window_extents(renderer) _offsetText_pos = dict(left=(0, 1, "bottom", "right"), right=(1, 1, "bottom", "left"), bottom=(1, 0, "top", "right"), top=(1, 1, "bottom", "right")) def _init_offsetText(self, direction): x,y,va,ha = self._offsetText_pos[direction] self.offsetText = mtext.Annotation("", xy=(x,y), xycoords="axes fraction", xytext=(0,0), textcoords="offset points", #fontproperties = fp, color = rcParams['xtick.color'], verticalalignment=va, horizontalalignment=ha, ) self.offsetText.set_transform(IdentityTransform()) self.axes._set_artist_props(self.offsetText) def _update_offsetText(self): self.offsetText.set_text( self.axis.major.formatter.get_offset() ) self.offsetText.set_size(self.major_ticklabels.get_size()) offset = self.major_ticklabels.get_pad() + self.major_ticklabels.get_size() + 2. self.offsetText.xyann= (0, offset) def _draw_offsetText(self, renderer): self._update_offsetText() self.offsetText.draw(renderer) def _init_label(self, **kw): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) labelsize = kw.get("labelsize", rcParams['axes.labelsize']) #labelcolor = kw.get("labelcolor", # rcParams['axes.labelcolor']) fontprops = font_manager.FontProperties( size=labelsize, weight=rcParams['axes.labelweight']) textprops = dict(fontproperties = fontprops) #color = labelcolor) tr = self._axis_artist_helper.get_axislabel_transform(self.axes) \ + self.offset_transform self.label = AxisLabel(0, 0, "__from_axes__", color = "auto", #rcParams['axes.labelcolor'], fontproperties=fontprops, axis=self.axis, transform=tr, axis_direction=self._axis_direction, ) self.label.set_figure(self.axes.figure) labelpad = kw.get("labelpad", 5) self.label.set_pad(labelpad) def _update_label(self, renderer): if not self.label.get_visible(): return fontprops = font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']) #pad_points = self.major_tick_pad #print self._ticklabel_add_angle - self._axislabel_add_angle #if abs(self._ticklabel_add_angle - self._axislabel_add_angle)%360 > 90: if self._ticklabel_add_angle != self._axislabel_add_angle: if (self.major_ticks.get_visible() and not self.major_ticks.get_tick_out()) \ or \ (self.minor_ticks.get_visible() and not self.major_ticks.get_tick_out()): axislabel_pad = self.major_ticks._ticksize else: axislabel_pad = 0 else: axislabel_pad = max([self.major_ticklabels._axislabel_pad, self.minor_ticklabels._axislabel_pad]) #label_offset = axislabel_pad + self.LABELPAD #self.label._set_offset_radius(label_offset) self.label._set_external_pad(axislabel_pad) xy, angle_tangent = self._axis_artist_helper.get_axislabel_pos_angle(self.axes) if xy is None: return angle_label = angle_tangent - 90 x, y = xy self.label._set_ref_angle(angle_label+self._axislabel_add_angle) self.label.set(x=x, y=y) def _draw_label(self, renderer): self._update_label(renderer) self.label.draw(renderer) def _draw_label2(self, renderer): if not self.label.get_visible(): return fontprops = font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']) #pad_points = self.major_tick_pad #print self._ticklabel_add_angle - self._axislabel_add_angle #if abs(self._ticklabel_add_angle - self._axislabel_add_angle)%360 > 90: if self._ticklabel_add_angle != self._axislabel_add_angle: if (self.major_ticks.get_visible() and not self.major_ticks.get_tick_out()) \ or \ (self.minor_ticks.get_visible() and not self.major_ticks.get_tick_out()): axislabel_pad = self.major_ticks._ticksize else: axislabel_pad = 0 else: axislabel_pad = max([self.major_ticklabels._axislabel_pad, self.minor_ticklabels._axislabel_pad]) #label_offset = axislabel_pad + self.LABELPAD #self.label._set_offset_radius(label_offset) self.label._set_external_pad(axislabel_pad) xy, angle_tangent = self._axis_artist_helper.get_axislabel_pos_angle(self.axes) if xy is None: return angle_label = angle_tangent - 90 x, y = xy self.label._set_ref_angle(angle_label+self._axislabel_add_angle) self.label.set(x=x, y=y) self.label.draw(renderer) def set_label(self, s): self.label.set_text(s) def get_tightbbox(self, renderer): if not self.get_visible(): return self._axis_artist_helper.update_lim(self.axes) dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear().scale(dpi_cor, dpi_cor) bb = [] self._update_ticks(renderer) #if self.major_ticklabels.get_visible(): bb.extend(self.major_ticklabels.get_window_extents(renderer)) #if self.minor_ticklabels.get_visible(): bb.extend(self.minor_ticklabels.get_window_extents(renderer)) self._update_label(renderer) #if self.label.get_visible(): bb.append(self.label.get_window_extent(renderer)) bb.append(self.offsetText.get_window_extent(renderer)) bb = [b for b in bb if b and (b.width!=0 or b.height!=0)] if bb: _bbox = Bbox.union(bb) return _bbox else: return None #self._draw_line(renderer) #self._draw_ticks(renderer) #self._draw_offsetText(renderer) #self._draw_label(renderer) @allow_rasterization def draw(self, renderer): 'Draw the axis lines, tick lines and labels' if not self.get_visible(): return renderer.open_group(__name__) self._axis_artist_helper.update_lim(self.axes) dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear().scale(dpi_cor, dpi_cor) self._draw_ticks(renderer) self._draw_line(renderer) #self._draw_offsetText(renderer) self._draw_label(renderer) renderer.close_group(__name__) #def get_ticklabel_extents(self, renderer): # pass def toggle(self, all=None, ticks=None, ticklabels=None, label=None): """ Toggle visibility of ticks, ticklabels, and (axis) label. To turn all off, :: axis.toggle(all=False) To turn all off but ticks on :: axis.toggle(all=False, ticks=True) To turn all on but (axis) label off :: axis.toggle(all=True, label=False)) """ if all: _ticks, _ticklabels, _label = True, True, True elif all is not None: _ticks, _ticklabels, _label = False, False, False else: _ticks, _ticklabels, _label = None, None, None if ticks is not None: _ticks = ticks if ticklabels is not None: _ticklabels = ticklabels if label is not None: _label = label if _ticks is not None: self.major_ticks.set_visible(_ticks) self.minor_ticks.set_visible(_ticks) if _ticklabels is not None: self.major_ticklabels.set_visible(_ticklabels) self.minor_ticklabels.set_visible(_ticklabels) if _label is not None: self.label.set_visible(_label) def test_axis_artist(): global axisline #self._axislines[loc] = new_fixed_axis(loc=loc, axes=axes) from mpl_toolkits.axisartist import AxisArtistHelperRectlinear fig = plt.figure(1) fig.clf() ax=fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if 1: _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="left") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="left") ax.add_artist(axisline) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="right") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="right") ax.add_artist(axisline) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="bottom") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="bottom") axisline.set_label("TTT") #axisline.label.set_visible(False) ax.add_artist(axisline) #axisline.major_ticklabels.set_axis_direction("bottom") axisline.major_ticks.set_tick_out(False) ax.set_ylabel("Test") axisline.label.set_pad(5) plt.draw() def test_axis_artist2(): global axisline #self._axislines[loc] = new_fixed_axis(loc=loc, axes=axes) from mpl_toolkits.axislines import AxisArtistHelperRectlinear fig = plt.figure(1) fig.clf() ax=fig.add_subplot(111) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) _helper = AxisArtistHelperRectlinear.Fixed(ax, loc="bottom") axisline = AxisArtist(ax, _helper, offset=None, axis_direction="bottom") axisline.set_label("TTT") ax.add_artist(axisline) #axisline.major_ticklabels.set_axis_direction("bottom") axisline.major_ticks.set_tick_out(False) ax.set_ylabel("Test") plt.draw() if __name__ == "__main__": #test_labelbase() #test_ticklabels() test_axis_artist() #test_axis_artist2() # DONE # *. ticks, ticklabels, axislabels # *. workon axisartist # TODO
mit
jgerschler/ESL-Games
Kinect/Adjective Adverb/Adverb or Adjective (Deprecated)/AdverbOrAdjectiveFullScreen.py
1
12778
# for python 3 # You'll need to customize this according to your needs. Proper orientation of # the kinect is vital; if participants are able to maintain their head or wrists # continuously inside the word rects, they will repeatedly trigger the collision # detection from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime import pygame import random import os import sys TRACKING_COLOR = pygame.color.Color("green") HIGHLIGHT_COLOR = pygame.color.Color("red") BG_COLOR = pygame.color.Color("white") GAME_TIME = 60# seconds class BodyGameRuntime(object): def __init__(self): pygame.init() pygame.mixer.init() self.beep_sound = pygame.mixer.Sound('audio\\beep.ogg') self.buzz_sound = pygame.mixer.Sound('audio\\buzz.ogg') self._screen = pygame.display.set_mode((0, 0), pygame.FULLSCREEN, 32) pygame.display.set_caption("Kinect Game Framework Test") self.finished = False self._clock = pygame.time.Clock() self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Body) self._frame_surface = pygame.Surface((self._kinect.color_frame_desc.Width, self._kinect.color_frame_desc.Height), 0, 32) self._bodies = None self.score = 0 self.vocab_dict = {"People drive ____ these days.":["quickly", "quick"], "She has an ____ dog.":["active", "actively"], "He ____ opens the mail.":["carefully", "careful"], "The man ____ greets his friends.":["cheerfully", "cheerful"], "That is a ____ sofa!":["comfortable", "comfortably"], "The alarm sounds ____.":["continuously", "continuous"], "That woman is ____!":["crazy", "crazily"], "The woman speaks ____.":["delightfully", "delightful"], "Juan is a very ____ carpenter.":["creative", "creatively"], "Wow! That is a ____ storm!":["destructive", "destructively"], "The racecar drove ____ by the school.":["powerfully", "powerful"], "Juana ____ said NO!":["firmly", "firm"], "He ____ opened the door.":["forcefully", "forceful"], "It was a ____ day.":["glorious", "gloriously"], "Maria ____ observed her ex-boyfriend.":["hatefully", "hateful"], "He had a ___ idea.":["hopeful", "hopefully"], "It was an ____ phrase.":["insulting", "insultingly"], "Jenny ____ ate the last cookie.":["intentionally", "intentional"], "He likes ____ music.":["irritating", "irritatingly"], "Careful! That is a ___ dog!":["bad", "badly"], "The man reacted ___ to the good news.":["speedily", "speedy"], "Susana has always been a ____ girl.":["nice", "nicely"], "The boys plunged into the ____ water.":["deep", "deeply"], "The girl ____ saved her cat from the fire.":["bravely", "brave"], "The man ____ drank too much alcohol.":["foolishly", "foolish"], "Mario is ____ and never does his homework.":["lazy", "lazily"], "The teacher is very ____.":["rude", "rudely"], "The girl plays soccer ____.":["perfectly", "perfect"], "It was an ____ crash.":["accidental", "accidentally"], "That is an ____ turtle!.":["angry", "angrily"], "She ____ ate her beans.":["happily", "happy"], "John spoke ____.":["seriously", "serious"], "Firulais is a ____ dog.":["loyal", "loyally"], "Margie yelled ____ into the night.":["blindly", "blind"], "He ran ____ toward me.":["wildly", "wild"], "Pedro is ____!":["innocent", "innocently"], "The gross man winked at her ____.":["sexually", "sexual"], "Concepcion is a ____ girlfriend.":["jealous", "jealously"], "Luis ____ goes to the bar.":["frequently", "frequent"], "We didn't go out because it was raining ____.":["heavily", "heavy"], "Our team lost the game because we played ____.":["badly", "bad"], "We waited ____.":["patiently", "patient"], "Jimmy arrived ____.":["unexpectedly", "unexpected"], "Mike stays fit by playing tennis ____.":["regularly", "regular"], "The driver of the car was ____ injured.":["seriously", "serious"], "The driver of the car had ____ injuries.":["serious", "seriously"], "Ismael looked ____ at Eleazar.":["hungrily", "hungry"], "She is a ____ driver.":["dangerous", "dangerously"]} self._frame_surface.fill((255, 255, 255)) def text_objects(self, text, font): text_surface = font.render(text, True, (0, 0, 0)) return text_surface, text_surface.get_rect() def message_display(self, text, loc_tuple, loc_int): # loc_int: 1 center, 2 top left, 3 bottom left, 4 bottom right, 5 top right text_surf, text_rect = self.text_objects(text, pygame.font.Font(None, 64)) loc_dict = {1:'text_rect.center', 2:'text_rect.topleft', 3:'text_rect.bottomleft', 4:'text_rect.bottomright', 5:'text_rect.topright'} exec(loc_dict[loc_int] + ' = loc_tuple') self._frame_surface.blit(text_surf, text_rect) return text_rect def draw_ind_point(self, joints, jointPoints, color, highlight_color, rect0, rect1, joint0, words, sentence, correct_word): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) if (rect0.collidepoint(center) and words[0] == correct_word) or (rect1.collidepoint(center) and words[1] == correct_word): self.score += 1 self.beep_sound.play() pygame.time.delay(500) self.new_round() elif rect0.collidepoint(center) or rect1.collidepoint(center): try: pygame.draw.circle(self._frame_surface, highlight_color, center, 20, 0) self.score -= 1 self.buzz_sound.play() pygame.time.delay(500) self.new_round() except: pass else: try: pygame.draw.circle(self._frame_surface, color, center, 20, 0) except: pass def draw_ind_intro_point(self, joints, jointPoints, color, joint0): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) try: pygame.draw.circle(self._frame_surface, color, center, 20, 0) except: pass def update_intro_screen(self, joints, jointPoints, color): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_Head) self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristLeft) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristRight) def update_screen(self, joints, jointPoints, color, highlight_color, words, sentence, correct_word, seconds): self._frame_surface.fill(BG_COLOR) self.message_display(sentence, (300, 900), 2) rect0 = self.message_display(words[0], (400, 300), 1) rect1 = self.message_display(words[1], (self._frame_surface.get_width() - 400, 300), 1) self.message_display(str(self.score), (self._frame_surface.get_width() / 2, 800), 1) self.message_display(str(seconds), (self._frame_surface.get_width() - 300, 800), 1) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_Head, words, sentence, correct_word) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_WristRight, words, sentence, correct_word) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_WristLeft, words, sentence, correct_word) def end_game(self): self._frame_surface.fill(BG_COLOR) self.message_display("Score: {}".format(self.score), (self._frame_surface.get_width() / 2, self._frame_surface.get_height() / 2), 1) self._screen.blit(self._frame_surface, (0, 0)) pygame.display.update() pygame.time.delay(3000) self.run() def new_round(self): sentence = random.sample(list(self.vocab_dict), 1)[0] words = self.vocab_dict[sentence][:] correct_word = words[0] random.shuffle(words) pygame.time.delay(500) while not self.finished: seconds = int(GAME_TIME - (pygame.time.get_ticks() - self.start_ticks)/1000) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True if seconds <= 0: self.end_game() if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_screen(joints, joint_points, TRACKING_COLOR, HIGHLIGHT_COLOR, words, sentence, correct_word, seconds) self._screen.blit(self._frame_surface, (0,0)) pygame.display.update() self._clock.tick(60) self.end_game() def run(self): self.score = 0 while not self.finished: if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_intro_screen(joints, joint_points, TRACKING_COLOR) self._screen.blit(self._frame_surface, (0,0)) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: self.start_ticks = pygame.time.get_ticks() self.new_round() if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True self._clock.tick(60) self._kinect.close() pygame.quit() #os._exit(0) sys.exit() if __name__ == "__main__": game = BodyGameRuntime() game.run()
mit
wxgeo/geophar
wxgeometrie/sympy/codegen/tests/test_applications.py
7
2142
# This file contains tests that exercise multiple AST nodes from sympy.external import import_module from sympy.printing.ccode import ccode from sympy.utilities._compilation import compile_link_import_strings, has_c from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail from sympy.utilities.pytest import skip from sympy.sets import Range from sympy.codegen.ast import ( FunctionDefinition, FunctionPrototype, Variable, Pointer, real, Assignment, integer, Variable, CodeBlock, While ) from sympy.codegen.cnodes import void, PreIncrement from sympy.codegen.cutils import render_as_source_file cython = import_module('cython') np = import_module('numpy') def _mk_func1(): declars = n, inp, out = Variable('n', integer), Pointer('inp', real), Pointer('out', real) i = Variable('i', integer) whl = While(i<n, [Assignment(out[i], inp[i]), PreIncrement(i)]) body = CodeBlock(i.as_Declaration(value=0), whl) return FunctionDefinition(void, 'our_test_function', declars, body) def _render_compile_import(funcdef, build_dir): code_str = render_as_source_file(funcdef, settings=dict(contract=False)) declar = ccode(FunctionPrototype.from_FunctionDefinition(funcdef)) return compile_link_import_strings([ ('our_test_func.c', code_str), ('_our_test_func.pyx', ("cdef extern {declar}\n" "def _{fname}({typ}[:] inp, {typ}[:] out):\n" " {fname}(inp.size, &inp[0], &out[0])").format( declar=declar, fname=funcdef.name, typ='double' )) ], build_dir=build_dir) @may_xfail def test_copying_function(): if not np: skip("numpy not installed.") if not has_c(): skip("No C compiler found.") if not cython: skip("Cython not found.") info = None with TemporaryDirectory() as folder: mod, info = _render_compile_import(_mk_func1(), build_dir=folder) inp = np.arange(10.0) out = np.empty_like(inp) mod._our_test_function(inp, out) assert np.allclose(inp, out)
gpl-2.0
mastizada/kuma
vendor/lib/python/south/migration/base.py
57
16235
from __future__ import print_function from collections import deque import datetime from imp import reload import os import re import sys from django.core.exceptions import ImproperlyConfigured from django.db import models from django.conf import settings from django.utils import importlib from south import exceptions from south.migration.utils import depends, dfs, flatten, get_app_label from south.orm import FakeORM from south.utils import memoize, ask_for_it_by_name, datetime_utils from south.migration.utils import app_label_to_app_module from south.utils.py3 import string_types, with_metaclass def all_migrations(applications=None): """ Returns all Migrations for all `applications` that are migrated. """ if applications is None: applications = models.get_apps() for model_module in applications: # The app they've passed is the models module - go up one level app_path = ".".join(model_module.__name__.split(".")[:-1]) app = ask_for_it_by_name(app_path) try: yield Migrations(app) except exceptions.NoMigrations: pass def application_to_app_label(application): "Works out the app label from either the app label, the app name, or the module" if isinstance(application, string_types): app_label = application.split('.')[-1] else: app_label = application.__name__.split('.')[-1] return app_label class MigrationsMetaclass(type): """ Metaclass which ensures there is only one instance of a Migrations for any given app. """ def __init__(self, name, bases, dict): super(MigrationsMetaclass, self).__init__(name, bases, dict) self.instances = {} def __call__(self, application, **kwds): app_label = application_to_app_label(application) # If we don't already have an instance, make one if app_label not in self.instances: self.instances[app_label] = super(MigrationsMetaclass, self).__call__(app_label_to_app_module(app_label), **kwds) return self.instances[app_label] def _clear_cache(self): "Clears the cache of Migration objects." self.instances = {} class Migrations(with_metaclass(MigrationsMetaclass, list)): """ Holds a list of Migration objects for a particular app. """ if getattr(settings, "SOUTH_USE_PYC", False): MIGRATION_FILENAME = re.compile(r'(?!__init__)' # Don't match __init__.py r'[0-9a-zA-Z_]*' # Don't match dotfiles, or names with dots/invalid chars in them r'(\.pyc?)?$') # Match .py or .pyc files, or module dirs else: MIGRATION_FILENAME = re.compile(r'(?!__init__)' # Don't match __init__.py r'[0-9a-zA-Z_]*' # Don't match dotfiles, or names with dots/invalid chars in them r'(\.py)?$') # Match only .py files, or module dirs def __init__(self, application, force_creation=False, verbose_creation=True): "Constructor. Takes the module of the app, NOT its models (like get_app returns)" self._cache = {} self.set_application(application, force_creation, verbose_creation) def create_migrations_directory(self, verbose=True): "Given an application, ensures that the migrations directory is ready." migrations_dir = self.migrations_dir() # Make the directory if it's not already there if not os.path.isdir(migrations_dir): if verbose: print("Creating migrations directory at '%s'..." % migrations_dir) os.mkdir(migrations_dir) # Same for __init__.py init_path = os.path.join(migrations_dir, "__init__.py") if not os.path.isfile(init_path): # Touch the init py file if verbose: print("Creating __init__.py in '%s'..." % migrations_dir) open(init_path, "w").close() def migrations_dir(self): """ Returns the full path of the migrations directory. If it doesn't exist yet, returns where it would exist, based on the app's migrations module (defaults to app.migrations) """ module_path = self.migrations_module() try: module = importlib.import_module(module_path) except ImportError: # There's no migrations module made yet; guess! try: parent = importlib.import_module(".".join(module_path.split(".")[:-1])) except ImportError: # The parent doesn't even exist, that's an issue. raise exceptions.InvalidMigrationModule( application = self.application.__name__, module = module_path, ) else: # Good guess. return os.path.join(os.path.dirname(parent.__file__), module_path.split(".")[-1]) else: # Get directory directly return os.path.dirname(module.__file__) def migrations_module(self): "Returns the module name of the migrations module for this" app_label = application_to_app_label(self.application) if hasattr(settings, "SOUTH_MIGRATION_MODULES"): if app_label in settings.SOUTH_MIGRATION_MODULES: # There's an override. return settings.SOUTH_MIGRATION_MODULES[app_label] return self._application.__name__ + '.migrations' def get_application(self): return self._application def set_application(self, application, force_creation=False, verbose_creation=True): """ Called when the application for this Migrations is set. Imports the migrations module object, and throws a paddy if it can't. """ self._application = application if not hasattr(application, 'migrations'): try: module = importlib.import_module(self.migrations_module()) self._migrations = application.migrations = module except ImportError: if force_creation: self.create_migrations_directory(verbose_creation) module = importlib.import_module(self.migrations_module()) self._migrations = application.migrations = module else: raise exceptions.NoMigrations(application) self._load_migrations_module(application.migrations) application = property(get_application, set_application) def _load_migrations_module(self, module): self._migrations = module filenames = [] dirname = self.migrations_dir() for f in os.listdir(dirname): if self.MIGRATION_FILENAME.match(os.path.basename(f)): full_path = os.path.join(dirname, f) # If it's a .pyc file, only append if the .py isn't already around if f.endswith(".pyc") and (os.path.isfile(full_path[:-1])): continue # If it's a module directory, only append if it contains __init__.py[c]. if os.path.isdir(full_path): if not (os.path.isfile(os.path.join(full_path, "__init__.py")) or \ (getattr(settings, "SOUTH_USE_PYC", False) and \ os.path.isfile(os.path.join(full_path, "__init__.pyc")))): continue filenames.append(f) filenames.sort() self.extend(self.migration(f) for f in filenames) def migration(self, filename): name = Migration.strip_filename(filename) if name not in self._cache: self._cache[name] = Migration(self, name) return self._cache[name] def __getitem__(self, value): if isinstance(value, string_types): return self.migration(value) return super(Migrations, self).__getitem__(value) def _guess_migration(self, prefix): prefix = Migration.strip_filename(prefix) matches = [m for m in self if m.name().startswith(prefix)] if len(matches) == 1: return matches[0] elif len(matches) > 1: raise exceptions.MultiplePrefixMatches(prefix, matches) else: raise exceptions.UnknownMigration(prefix, None) def guess_migration(self, target_name): if target_name == 'zero' or not self: return elif target_name is None: return self[-1] else: return self._guess_migration(prefix=target_name) def app_label(self): return self._application.__name__.split('.')[-1] def full_name(self): return self._migrations.__name__ @classmethod def calculate_dependencies(cls, force=False): "Goes through all the migrations, and works out the dependencies." if getattr(cls, "_dependencies_done", False) and not force: return for migrations in all_migrations(): for migration in migrations: migration.calculate_dependencies() cls._dependencies_done = True @staticmethod def invalidate_all_modules(): "Goes through all the migrations, and invalidates all cached modules." for migrations in all_migrations(): for migration in migrations: migration.invalidate_module() def next_filename(self, name): "Returns the fully-formatted filename of what a new migration 'name' would be" highest_number = 0 for migration in self: try: number = int(migration.name().split("_")[0]) highest_number = max(highest_number, number) except ValueError: pass # Work out the new filename return "%04i_%s.py" % ( highest_number + 1, name, ) class Migration(object): """ Class which represents a particular migration file on-disk. """ def __init__(self, migrations, filename): """ Returns the migration class implied by 'filename'. """ self.migrations = migrations self.filename = filename self.dependencies = set() self.dependents = set() def __str__(self): return self.app_label() + ':' + self.name() def __repr__(self): return '<Migration: %s>' % str(self) def __eq__(self, other): return self.app_label() == other.app_label() and self.name() == other.name() def __hash__(self): return hash(str(self)) def app_label(self): return self.migrations.app_label() @staticmethod def strip_filename(filename): return os.path.splitext(os.path.basename(filename))[0] def name(self): return self.strip_filename(os.path.basename(self.filename)) def full_name(self): return self.migrations.full_name() + '.' + self.name() def migration(self): "Tries to load the actual migration module" full_name = self.full_name() try: migration = sys.modules[full_name] except KeyError: try: migration = __import__(full_name, {}, {}, ['Migration']) except ImportError as e: raise exceptions.UnknownMigration(self, sys.exc_info()) except Exception as e: raise exceptions.BrokenMigration(self, sys.exc_info()) # Override some imports migration._ = lambda x: x # Fake i18n migration.datetime = datetime_utils return migration migration = memoize(migration) def migration_class(self): "Returns the Migration class from the module" return self.migration().Migration def migration_instance(self): "Instantiates the migration_class" return self.migration_class()() migration_instance = memoize(migration_instance) def previous(self): "Returns the migration that comes before this one in the sequence." index = self.migrations.index(self) - 1 if index < 0: return None return self.migrations[index] previous = memoize(previous) def next(self): "Returns the migration that comes after this one in the sequence." index = self.migrations.index(self) + 1 if index >= len(self.migrations): return None return self.migrations[index] next = memoize(next) def _get_dependency_objects(self, attrname): """ Given the name of an attribute (depends_on or needed_by), either yields a list of migration objects representing it, or errors out. """ for app, name in getattr(self.migration_class(), attrname, []): try: migrations = Migrations(app) except ImproperlyConfigured: raise exceptions.DependsOnUnmigratedApplication(self, app) migration = migrations.migration(name) try: migration.migration() except exceptions.UnknownMigration: raise exceptions.DependsOnUnknownMigration(self, migration) if migration.is_before(self) == False: raise exceptions.DependsOnHigherMigration(self, migration) yield migration def calculate_dependencies(self): """ Loads dependency info for this migration, and stores it in itself and any other relevant migrations. """ # Normal deps first for migration in self._get_dependency_objects("depends_on"): self.dependencies.add(migration) migration.dependents.add(self) # And reverse deps for migration in self._get_dependency_objects("needed_by"): self.dependents.add(migration) migration.dependencies.add(self) # And implicit ordering deps previous = self.previous() if previous: self.dependencies.add(previous) previous.dependents.add(self) def invalidate_module(self): """ Removes the cached version of this migration's module import, so we have to re-import it. Used when south.db.db changes. """ reload(self.migration()) self.migration._invalidate() def forwards(self): return self.migration_instance().forwards def backwards(self): return self.migration_instance().backwards def forwards_plan(self): """ Returns a list of Migration objects to be applied, in order. This list includes `self`, which will be applied last. """ return depends(self, lambda x: x.dependencies) def _backwards_plan(self): return depends(self, lambda x: x.dependents) def backwards_plan(self): """ Returns a list of Migration objects to be unapplied, in order. This list includes `self`, which will be unapplied last. """ return list(self._backwards_plan()) def is_before(self, other): if self.migrations == other.migrations: if self.filename < other.filename: return True return False def is_after(self, other): if self.migrations == other.migrations: if self.filename > other.filename: return True return False def prev_orm(self): if getattr(self.migration_class(), 'symmetrical', False): return self.orm() previous = self.previous() if previous is None: # First migration? The 'previous ORM' is empty. return FakeORM(None, self.app_label()) return previous.orm() prev_orm = memoize(prev_orm) def orm(self): return FakeORM(self.migration_class(), self.app_label()) orm = memoize(orm) def no_dry_run(self): migration_class = self.migration_class() try: return migration_class.no_dry_run except AttributeError: return False
mpl-2.0
overtherain/scriptfile
software/googleAppEngine/lib/django_0_96/django/core/servers/fastcgi.py
32
5506
""" FastCGI server that implements the WSGI protocol. Uses the flup python package: http://www.saddi.com/software/flup/ This is a adaptation of the flup package to add FastCGI server support to run Django apps from Web servers that support the FastCGI protocol. This module can be run standalone or from the django-admin / manage.py scripts using the "runfcgi" directive. Run with the extra option "help" for a list of additional options you can pass to this server. """ import sys, os __version__ = "0.1" __all__ = ["runfastcgi"] FASTCGI_HELP = r"""runfcgi: Run this project as a fastcgi application. To do this, the flup package from http://www.saddi.com/software/flup/ is required. Usage: django-admin.py runfcgi --settings=yourproject.settings [fcgi settings] manage.py runfcgi [fcgi settings] Optional Fcgi settings: (setting=value) host=HOSTNAME hostname to listen on.. port=PORTNUM port to listen on. socket=FILE UNIX socket to listen on. method=IMPL prefork or threaded (default prefork) maxrequests=NUMBER number of requests a child handles before it is killed and a new child is forked (0 = no limit). maxspare=NUMBER max number of spare processes / threads minspare=NUMBER min number of spare processes / threads. maxchildren=NUMBER hard limit number of processes / threads daemonize=BOOL whether to detach from terminal. pidfile=FILE write the spawned process-id to this file. workdir=DIRECTORY change to this directory when daemonizing Examples: Run a "standard" fastcgi process on a file-descriptor (for webservers which spawn your processes for you) $ manage.py runfcgi method=threaded Run a fastcgi server on a TCP host/port $ manage.py runfcgi method=prefork host=127.0.0.1 port=8025 Run a fastcgi server on a UNIX domain socket (posix platforms only) $ manage.py runfcgi method=prefork socket=/tmp/fcgi.sock Run a fastCGI as a daemon and write the spawned PID in a file $ manage.py runfcgi socket=/tmp/fcgi.sock method=prefork \ daemonize=true pidfile=/var/run/django-fcgi.pid """ FASTCGI_OPTIONS = { 'host': None, 'port': None, 'socket': None, 'method': 'fork', 'daemonize': None, 'workdir': '/', 'pidfile': None, 'maxspare': 5, 'minspare': 2, 'maxchildren': 50, 'maxrequests': 0, } def fastcgi_help(message=None): print FASTCGI_HELP if message: print message return False def runfastcgi(argset=[], **kwargs): options = FASTCGI_OPTIONS.copy() options.update(kwargs) for x in argset: if "=" in x: k, v = x.split('=', 1) else: k, v = x, True options[k.lower()] = v if "help" in options: return fastcgi_help() try: import flup except ImportError, e: print >> sys.stderr, "ERROR: %s" % e print >> sys.stderr, " Unable to load the flup package. In order to run django" print >> sys.stderr, " as a FastCGI application, you will need to get flup from" print >> sys.stderr, " http://www.saddi.com/software/flup/ If you've already" print >> sys.stderr, " installed flup, then make sure you have it in your PYTHONPATH." return False if options['method'] in ('prefork', 'fork'): from flup.server.fcgi_fork import WSGIServer wsgi_opts = { 'maxSpare': int(options["maxspare"]), 'minSpare': int(options["minspare"]), 'maxChildren': int(options["maxchildren"]), 'maxRequests': int(options["maxrequests"]), } elif options['method'] in ('thread', 'threaded'): from flup.server.fcgi import WSGIServer wsgi_opts = { 'maxSpare': int(options["maxspare"]), 'minSpare': int(options["minspare"]), 'maxThreads': int(options["maxchildren"]), } else: return fastcgi_help("ERROR: Implementation must be one of prefork or thread.") wsgi_opts['debug'] = False # Turn off flup tracebacks # Prep up and go from django.core.handlers.wsgi import WSGIHandler if options["host"] and options["port"] and not options["socket"]: wsgi_opts['bindAddress'] = (options["host"], int(options["port"])) elif options["socket"] and not options["host"] and not options["port"]: wsgi_opts['bindAddress'] = options["socket"] elif not options["socket"] and not options["host"] and not options["port"]: wsgi_opts['bindAddress'] = None else: return fastcgi_help("Invalid combination of host, port, socket.") if options["daemonize"] is None: # Default to daemonizing if we're running on a socket/named pipe. daemonize = (wsgi_opts['bindAddress'] is not None) else: if options["daemonize"].lower() in ('true', 'yes', 't'): daemonize = True elif options["daemonize"].lower() in ('false', 'no', 'f'): daemonize = False else: return fastcgi_help("ERROR: Invalid option for daemonize parameter.") if daemonize: from django.utils.daemonize import become_daemon become_daemon(our_home_dir=options["workdir"]) if options["pidfile"]: fp = open(options["pidfile"], "w") fp.write("%d\n" % os.getpid()) fp.close() WSGIServer(WSGIHandler(), **wsgi_opts).run() if __name__ == '__main__': runfastcgi(sys.argv[1:])
mit
apporc/nova
nova/virt/xenapi/volumeops.py
17
9667
# Copyright (c) 2010 Citrix Systems, Inc. # Copyright (c) 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Management class for Storage-related functions (attach, detach, etc). """ from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import strutils from nova import exception from nova.i18n import _LI, _LW from nova.virt.xenapi import vm_utils from nova.virt.xenapi import volume_utils LOG = logging.getLogger(__name__) class VolumeOps(object): """Management class for Volume-related tasks.""" def __init__(self, session): self._session = session def attach_volume(self, connection_info, instance_name, mountpoint, hotplug=True): """Attach volume to VM instance.""" # TODO(johngarbutt) move this into _attach_volume_to_vm dev_number = volume_utils.get_device_number(mountpoint) vm_ref = vm_utils.vm_ref_or_raise(self._session, instance_name) return self._attach_volume(connection_info, vm_ref, instance_name, dev_number, hotplug) def connect_volume(self, connection_info): """Attach volume to hypervisor, but not the VM.""" return self._attach_volume(connection_info) def _attach_volume(self, connection_info, vm_ref=None, instance_name=None, dev_number=None, hotplug=False): self._check_is_supported_driver_type(connection_info) connection_data = connection_info['data'] sr_ref, sr_uuid = self._connect_to_volume_provider(connection_data, instance_name) try: vdi_ref = self._connect_hypervisor_to_volume(sr_ref, connection_data) vdi_uuid = self._session.VDI.get_uuid(vdi_ref) LOG.info(_LI('Connected volume (vdi_uuid): %s'), vdi_uuid) if vm_ref: self._attach_volume_to_vm(vdi_ref, vm_ref, instance_name, dev_number, hotplug) return (sr_uuid, vdi_uuid) except Exception: with excutils.save_and_reraise_exception(): # NOTE(sirp): Forgetting the SR will have the effect of # cleaning up the VDI and VBD records, so no need to handle # that explicitly. volume_utils.forget_sr(self._session, sr_ref) def _check_is_supported_driver_type(self, connection_info): driver_type = connection_info['driver_volume_type'] if driver_type not in ['iscsi', 'xensm']: raise exception.VolumeDriverNotFound(driver_type=driver_type) def _connect_to_volume_provider(self, connection_data, instance_name): sr_uuid, sr_label, sr_params = volume_utils.parse_sr_info( connection_data, 'Disk-for:%s' % instance_name) sr_ref = volume_utils.find_sr_by_uuid(self._session, sr_uuid) if not sr_ref: # introduce SR because not already present sr_ref = volume_utils.introduce_sr( self._session, sr_uuid, sr_label, sr_params) return (sr_ref, sr_uuid) def _connect_hypervisor_to_volume(self, sr_ref, connection_data): # connection_data can have credentials in it so make sure to scrub # those before logging. LOG.debug("Connect volume to hypervisor: %s", strutils.mask_password(connection_data)) if 'vdi_uuid' in connection_data: vdi_ref = volume_utils.introduce_vdi( self._session, sr_ref, vdi_uuid=connection_data['vdi_uuid']) elif 'target_lun' in connection_data: vdi_ref = volume_utils.introduce_vdi( self._session, sr_ref, target_lun=connection_data['target_lun']) else: # NOTE(sirp): This will introduce the first VDI in the SR vdi_ref = volume_utils.introduce_vdi(self._session, sr_ref) return vdi_ref def _attach_volume_to_vm(self, vdi_ref, vm_ref, instance_name, dev_number, hotplug): LOG.debug('Attach_volume vdi: %(vdi_ref)s vm: %(vm_ref)s', {'vdi_ref': vdi_ref, 'vm_ref': vm_ref}) # osvol is added to the vbd so we can spot which vbds are volumes vbd_ref = vm_utils.create_vbd(self._session, vm_ref, vdi_ref, dev_number, bootable=False, osvol=True) if hotplug: # NOTE(johngarbutt) can only call VBD.plug on a running vm running = not vm_utils.is_vm_shutdown(self._session, vm_ref) if running: LOG.debug("Plugging VBD: %s", vbd_ref) self._session.VBD.plug(vbd_ref, vm_ref) LOG.info(_LI('Dev %(dev_number)s attached to' ' instance %(instance_name)s'), {'instance_name': instance_name, 'dev_number': dev_number}) def detach_volume(self, connection_info, instance_name, mountpoint): """Detach volume storage to VM instance.""" LOG.debug("Detach_volume: %(instance_name)s, %(mountpoint)s", {'instance_name': instance_name, 'mountpoint': mountpoint}) vm_ref = vm_utils.vm_ref_or_raise(self._session, instance_name) device_number = volume_utils.get_device_number(mountpoint) vbd_ref = volume_utils.find_vbd_by_number(self._session, vm_ref, device_number) if vbd_ref is None: # NOTE(sirp): If we don't find the VBD then it must have been # detached previously. LOG.warning(_LW('Skipping detach because VBD for %s was ' 'not found'), instance_name) else: self._detach_vbds_and_srs(vm_ref, [vbd_ref]) LOG.info(_LI('Mountpoint %(mountpoint)s detached from instance' ' %(instance_name)s'), {'instance_name': instance_name, 'mountpoint': mountpoint}) def _detach_vbds_and_srs(self, vm_ref, vbd_refs): is_vm_shutdown = vm_utils.is_vm_shutdown(self._session, vm_ref) for vbd_ref in vbd_refs: # find sr before we destroy the vbd sr_ref = volume_utils.find_sr_from_vbd(self._session, vbd_ref) if not is_vm_shutdown: vm_utils.unplug_vbd(self._session, vbd_ref, vm_ref) vm_utils.destroy_vbd(self._session, vbd_ref) # Forget (i.e. disconnect) SR only if not in use volume_utils.purge_sr(self._session, sr_ref) def detach_all(self, vm_ref): """Detach all cinder volumes.""" vbd_refs = self._get_all_volume_vbd_refs(vm_ref) if vbd_refs: self._detach_vbds_and_srs(vm_ref, vbd_refs) def _get_all_volume_vbd_refs(self, vm_ref): """Return VBD refs for all Nova/Cinder volumes.""" vbd_refs = self._session.VM.get_VBDs(vm_ref) for vbd_ref in vbd_refs: other_config = self._session.VBD.get_other_config(vbd_ref) if other_config.get('osvol'): yield vbd_ref def find_bad_volumes(self, vm_ref): """Find any volumes with their connection severed. Certain VM operations (e.g. `VM.start`, `VM.reboot`, etc.) will not work when a VBD is present that points to a non-working volume. To work around this, we scan for non-working volumes and detach them before retrying a failed operation. """ bad_devices = [] vbd_refs = self._get_all_volume_vbd_refs(vm_ref) for vbd_ref in vbd_refs: sr_ref = volume_utils.find_sr_from_vbd(self._session, vbd_ref) try: # TODO(sirp): bug1152401 This relies on a 120 sec timeout # within XenServer, update this to fail-fast when this is fixed # upstream self._session.SR.scan(sr_ref) except self._session.XenAPI.Failure as exc: if exc.details[0] == 'SR_BACKEND_FAILURE_40': device = self._session.VBD.get_device(vbd_ref) bad_devices.append('/dev/%s' % device) else: raise return bad_devices def safe_cleanup_from_vdis(self, vdi_refs): # A helper method to detach volumes that are not associated with an # instance for vdi_ref in vdi_refs: try: sr_ref = volume_utils.find_sr_from_vdi(self._session, vdi_ref) except exception.StorageError as exc: LOG.debug(exc.format_message()) continue try: # Forget (i.e. disconnect) SR only if not in use volume_utils.purge_sr(self._session, sr_ref) except Exception: LOG.debug('Ignoring error while purging sr: %s' % sr_ref, exc_info=True)
apache-2.0
TNosredna/CouchPotatoServer
libs/tornado/process.py
18
10100
#!/usr/bin/env python # # Copyright 2011 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Utilities for working with multiple processes, including both forking the server into multiple processes and managing subprocesses. """ from __future__ import absolute_import, division, print_function, with_statement import errno import multiprocessing import os import signal import subprocess import sys import time from binascii import hexlify from tornado import ioloop from tornado.iostream import PipeIOStream from tornado.log import gen_log from tornado.platform.auto import set_close_exec from tornado import stack_context try: long # py2 except NameError: long = int # py3 def cpu_count(): """Returns the number of processors on this machine.""" try: return multiprocessing.cpu_count() except NotImplementedError: pass try: return os.sysconf("SC_NPROCESSORS_CONF") except ValueError: pass gen_log.error("Could not detect number of processors; assuming 1") return 1 def _reseed_random(): if 'random' not in sys.modules: return import random # If os.urandom is available, this method does the same thing as # random.seed (at least as of python 2.6). If os.urandom is not # available, we mix in the pid in addition to a timestamp. try: seed = long(hexlify(os.urandom(16)), 16) except NotImplementedError: seed = int(time.time() * 1000) ^ os.getpid() random.seed(seed) def _pipe_cloexec(): r, w = os.pipe() set_close_exec(r) set_close_exec(w) return r, w _task_id = None def fork_processes(num_processes, max_restarts=100): """Starts multiple worker processes. If ``num_processes`` is None or <= 0, we detect the number of cores available on this machine and fork that number of child processes. If ``num_processes`` is given and > 0, we fork that specific number of sub-processes. Since we use processes and not threads, there is no shared memory between any server code. Note that multiple processes are not compatible with the autoreload module (or the debug=True option to `tornado.web.Application`). When using multiple processes, no IOLoops can be created or referenced until after the call to ``fork_processes``. In each child process, ``fork_processes`` returns its *task id*, a number between 0 and ``num_processes``. Processes that exit abnormally (due to a signal or non-zero exit status) are restarted with the same id (up to ``max_restarts`` times). In the parent process, ``fork_processes`` returns None if all child processes have exited normally, but will otherwise only exit by throwing an exception. """ global _task_id assert _task_id is None if num_processes is None or num_processes <= 0: num_processes = cpu_count() if ioloop.IOLoop.initialized(): raise RuntimeError("Cannot run in multiple processes: IOLoop instance " "has already been initialized. You cannot call " "IOLoop.instance() before calling start_processes()") gen_log.info("Starting %d processes", num_processes) children = {} def start_child(i): pid = os.fork() if pid == 0: # child process _reseed_random() global _task_id _task_id = i return i else: children[pid] = i return None for i in range(num_processes): id = start_child(i) if id is not None: return id num_restarts = 0 while children: try: pid, status = os.wait() except OSError as e: if e.errno == errno.EINTR: continue raise if pid not in children: continue id = children.pop(pid) if os.WIFSIGNALED(status): gen_log.warning("child %d (pid %d) killed by signal %d, restarting", id, pid, os.WTERMSIG(status)) elif os.WEXITSTATUS(status) != 0: gen_log.warning("child %d (pid %d) exited with status %d, restarting", id, pid, os.WEXITSTATUS(status)) else: gen_log.info("child %d (pid %d) exited normally", id, pid) continue num_restarts += 1 if num_restarts > max_restarts: raise RuntimeError("Too many child restarts, giving up") new_id = start_child(id) if new_id is not None: return new_id # All child processes exited cleanly, so exit the master process # instead of just returning to right after the call to # fork_processes (which will probably just start up another IOLoop # unless the caller checks the return value). sys.exit(0) def task_id(): """Returns the current task id, if any. Returns None if this process was not created by `fork_processes`. """ global _task_id return _task_id class Subprocess(object): """Wraps ``subprocess.Popen`` with IOStream support. The constructor is the same as ``subprocess.Popen`` with the following additions: * ``stdin``, ``stdout``, and ``stderr`` may have the value ``tornado.process.Subprocess.STREAM``, which will make the corresponding attribute of the resulting Subprocess a `.PipeIOStream`. * A new keyword argument ``io_loop`` may be used to pass in an IOLoop. """ STREAM = object() _initialized = False _waiting = {} def __init__(self, *args, **kwargs): self.io_loop = kwargs.pop('io_loop', None) or ioloop.IOLoop.current() to_close = [] if kwargs.get('stdin') is Subprocess.STREAM: in_r, in_w = _pipe_cloexec() kwargs['stdin'] = in_r to_close.append(in_r) self.stdin = PipeIOStream(in_w, io_loop=self.io_loop) if kwargs.get('stdout') is Subprocess.STREAM: out_r, out_w = _pipe_cloexec() kwargs['stdout'] = out_w to_close.append(out_w) self.stdout = PipeIOStream(out_r, io_loop=self.io_loop) if kwargs.get('stderr') is Subprocess.STREAM: err_r, err_w = _pipe_cloexec() kwargs['stderr'] = err_w to_close.append(err_w) self.stderr = PipeIOStream(err_r, io_loop=self.io_loop) self.proc = subprocess.Popen(*args, **kwargs) for fd in to_close: os.close(fd) for attr in ['stdin', 'stdout', 'stderr', 'pid']: if not hasattr(self, attr): # don't clobber streams set above setattr(self, attr, getattr(self.proc, attr)) self._exit_callback = None self.returncode = None def set_exit_callback(self, callback): """Runs ``callback`` when this process exits. The callback takes one argument, the return code of the process. This method uses a ``SIGCHILD`` handler, which is a global setting and may conflict if you have other libraries trying to handle the same signal. If you are using more than one ``IOLoop`` it may be necessary to call `Subprocess.initialize` first to designate one ``IOLoop`` to run the signal handlers. In many cases a close callback on the stdout or stderr streams can be used as an alternative to an exit callback if the signal handler is causing a problem. """ self._exit_callback = stack_context.wrap(callback) Subprocess.initialize(self.io_loop) Subprocess._waiting[self.pid] = self Subprocess._try_cleanup_process(self.pid) @classmethod def initialize(cls, io_loop=None): """Initializes the ``SIGCHILD`` handler. The signal handler is run on an `.IOLoop` to avoid locking issues. Note that the `.IOLoop` used for signal handling need not be the same one used by individual Subprocess objects (as long as the ``IOLoops`` are each running in separate threads). """ if cls._initialized: return if io_loop is None: io_loop = ioloop.IOLoop.current() cls._old_sigchld = signal.signal( signal.SIGCHLD, lambda sig, frame: io_loop.add_callback_from_signal(cls._cleanup)) cls._initialized = True @classmethod def uninitialize(cls): """Removes the ``SIGCHILD`` handler.""" if not cls._initialized: return signal.signal(signal.SIGCHLD, cls._old_sigchld) cls._initialized = False @classmethod def _cleanup(cls): for pid in list(cls._waiting.keys()): # make a copy cls._try_cleanup_process(pid) @classmethod def _try_cleanup_process(cls, pid): try: ret_pid, status = os.waitpid(pid, os.WNOHANG) except OSError as e: if e.args[0] == errno.ECHILD: return if ret_pid == 0: return assert ret_pid == pid subproc = cls._waiting.pop(pid) subproc.io_loop.add_callback_from_signal( subproc._set_returncode, status) def _set_returncode(self, status): if os.WIFSIGNALED(status): self.returncode = -os.WTERMSIG(status) else: assert os.WIFEXITED(status) self.returncode = os.WEXITSTATUS(status) if self._exit_callback: callback = self._exit_callback self._exit_callback = None callback(self.returncode)
gpl-3.0
dwlehman/blivet
blivet/errors.py
2
4729
# errors.py # Exception classes for anaconda's storage configuration module. # # Copyright (C) 2009 Red Hat, Inc. # # This copyrighted material is made available to anyone wishing to use, # modify, copy, or redistribute it subject to the terms and conditions of # the GNU General Public License v.2, or (at your option) any later version. # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY expressed or implied, including the implied warranties of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. You should have received a copy of the # GNU General Public License along with this program; if not, write to the # Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. Any Red Hat trademarks that are incorporated in the # source code or documentation are not subject to the GNU General Public # License and may only be used or replicated with the express permission of # Red Hat, Inc. # # Red Hat Author(s): Dave Lehman <[email protected]> # from .i18n import N_ class StorageError(Exception): def __init__(self, *args, **kwargs): self.hardware_fault = kwargs.pop("hardware_fault", False) super(StorageError, self).__init__(*args, **kwargs) class NoDisksError(StorageError): pass # Device class DeviceError(StorageError): pass class DeviceCreateError(DeviceError): pass class DeviceDestroyError(DeviceError): pass class DeviceResizeError(DeviceError): pass class DeviceSetupError(DeviceError): pass class DeviceTeardownError(DeviceError): pass class DeviceUserDeniedFormatError(DeviceError): pass # DeviceFormat class DeviceFormatError(StorageError): pass class FormatCreateError(DeviceFormatError): pass class FormatDestroyError(DeviceFormatError): pass class FormatSetupError(DeviceFormatError): pass class FormatTeardownError(DeviceFormatError): pass class DMRaidMemberError(DeviceFormatError): pass class MultipathMemberError(DeviceFormatError): pass class FSError(DeviceFormatError): pass class FSResizeError(FSError): def __init__(self, message, details): FSError.__init__(self, message) self.details = details class LUKSError(DeviceFormatError): pass class MDMemberError(DeviceFormatError): pass class PhysicalVolumeError(DeviceFormatError): pass class SinglePhysicalVolumeError(DeviceFormatError): pass class SwapSpaceError(DeviceFormatError): pass class DiskLabelError(DeviceFormatError): pass class InvalidDiskLabelError(DiskLabelError): pass class DiskLabelCommitError(DiskLabelError): pass # devicelibs class RaidError(StorageError): pass class DMError(StorageError): pass class MPathError(StorageError): pass class BTRFSError(StorageError): pass class BTRFSValueError(BTRFSError, ValueError): pass # DeviceTree class DeviceTreeError(StorageError): pass class DeviceNotFoundError(StorageError): pass class UnusableConfigurationError(StorageError): """ User has an unusable initial storage configuration. """ suggestion = "" class DiskLabelScanError(UnusableConfigurationError): suggestion = N_("For some reason we were unable to locate a disklabel on a " "disk that the kernel is reporting partitions on. It is " "unclear what the exact problem is. Please file a bug at " "http://bugzilla.redhat.com") class CorruptGPTError(UnusableConfigurationError): suggestion = N_("Either restore the disklabel to a completely working " "state or remove it completely.\n" "Hint: parted can restore it or wipefs can remove it.") class DuplicateVGError(UnusableConfigurationError): suggestion = N_("Rename one of the volume groups so the names are " "distinct.\n" "Hint 1: vgrename accepts UUID in place of the old name.\n" "Hint 2: You can get the VG UUIDs by running " "'pvs -o +vg_uuid'.") # DeviceAction class DeviceActionError(StorageError): pass # partitioning class PartitioningError(StorageError): pass class NotEnoughFreeSpaceError(StorageError): pass # udev class UdevError(StorageError): pass # fstab class UnrecognizedFSTabEntryError(StorageError): pass class FSTabTypeMismatchError(StorageError): pass # dasd class DasdFormatError(StorageError): pass # size class SizePlacesError(StorageError): pass # probing class UnknownSourceDeviceError(StorageError): pass # factories class DeviceFactoryError(StorageError): pass
lgpl-2.1
gram526/VTK
ThirdParty/Twisted/twisted/internet/wxreactor.py
80
5221
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ This module provides wxPython event loop support for Twisted. In order to use this support, simply do the following:: | from twisted.internet import wxreactor | wxreactor.install() Then, when your root wxApp has been created:: | from twisted.internet import reactor | reactor.registerWxApp(yourApp) | reactor.run() Then use twisted.internet APIs as usual. Stop the event loop using reactor.stop(), not yourApp.ExitMainLoop(). IMPORTANT: tests will fail when run under this reactor. This is expected and probably does not reflect on the reactor's ability to run real applications. """ import Queue try: from wx import PySimpleApp as wxPySimpleApp, CallAfter as wxCallAfter, \ Timer as wxTimer except ImportError: # older version of wxPython: from wxPython.wx import wxPySimpleApp, wxCallAfter, wxTimer from twisted.python import log, runtime from twisted.internet import _threadedselect class ProcessEventsTimer(wxTimer): """ Timer that tells wx to process pending events. This is necessary on OS X, probably due to a bug in wx, if we want wxCallAfters to be handled when modal dialogs, menus, etc. are open. """ def __init__(self, wxapp): wxTimer.__init__(self) self.wxapp = wxapp def Notify(self): """ Called repeatedly by wx event loop. """ self.wxapp.ProcessPendingEvents() class WxReactor(_threadedselect.ThreadedSelectReactor): """ wxPython reactor. wxPython drives the event loop, select() runs in a thread. """ _stopping = False def registerWxApp(self, wxapp): """ Register wxApp instance with the reactor. """ self.wxapp = wxapp def _installSignalHandlersAgain(self): """ wx sometimes removes our own signal handlers, so re-add them. """ try: # make _handleSignals happy: import signal signal.signal(signal.SIGINT, signal.default_int_handler) except ImportError: return self._handleSignals() def stop(self): """ Stop the reactor. """ if self._stopping: return self._stopping = True _threadedselect.ThreadedSelectReactor.stop(self) def _runInMainThread(self, f): """ Schedule function to run in main wx/Twisted thread. Called by the select() thread. """ if hasattr(self, "wxapp"): wxCallAfter(f) else: # wx shutdown but twisted hasn't self._postQueue.put(f) def _stopWx(self): """ Stop the wx event loop if it hasn't already been stopped. Called during Twisted event loop shutdown. """ if hasattr(self, "wxapp"): self.wxapp.ExitMainLoop() def run(self, installSignalHandlers=True): """ Start the reactor. """ self._postQueue = Queue.Queue() if not hasattr(self, "wxapp"): log.msg("registerWxApp() was not called on reactor, " "registering my own wxApp instance.") self.registerWxApp(wxPySimpleApp()) # start select() thread: self.interleave(self._runInMainThread, installSignalHandlers=installSignalHandlers) if installSignalHandlers: self.callLater(0, self._installSignalHandlersAgain) # add cleanup events: self.addSystemEventTrigger("after", "shutdown", self._stopWx) self.addSystemEventTrigger("after", "shutdown", lambda: self._postQueue.put(None)) # On Mac OS X, work around wx bug by starting timer to ensure # wxCallAfter calls are always processed. We don't wake up as # often as we could since that uses too much CPU. if runtime.platform.isMacOSX(): t = ProcessEventsTimer(self.wxapp) t.Start(2) # wake up every 2ms self.wxapp.MainLoop() wxapp = self.wxapp del self.wxapp if not self._stopping: # wx event loop exited without reactor.stop() being # called. At this point events from select() thread will # be added to _postQueue, but some may still be waiting # unprocessed in wx, thus the ProcessPendingEvents() # below. self.stop() wxapp.ProcessPendingEvents() # deal with any queued wxCallAfters while 1: try: f = self._postQueue.get(timeout=0.01) except Queue.Empty: continue else: if f is None: break try: f() except: log.err() def install(): """ Configure the twisted mainloop to be run inside the wxPython mainloop. """ reactor = WxReactor() from twisted.internet.main import installReactor installReactor(reactor) return reactor __all__ = ['install']
bsd-3-clause
marissazhou/django
django/conf/locale/mk/formats.py
504
1742
# -*- encoding: utf-8 -*- # This file is distributed under the same license as the Django package. # from __future__ import unicode_literals # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'd F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j. F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'j.m.Y' SHORT_DATETIME_FORMAT = 'j.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', '%d.%m.%y', # '25.10.2006', '25.10.06' '%d. %m. %Y', '%d. %m. %y', # '25. 10. 2006', '25. 10. 06' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y', # '25.10.06' '%d. %m. %Y %H:%M:%S', # '25. 10. 2006 14:30:59' '%d. %m. %Y %H:%M:%S.%f', # '25. 10. 2006 14:30:59.000200' '%d. %m. %Y %H:%M', # '25. 10. 2006 14:30' '%d. %m. %Y', # '25. 10. 2006' '%d. %m. %y %H:%M:%S', # '25. 10. 06 14:30:59' '%d. %m. %y %H:%M:%S.%f', # '25. 10. 06 14:30:59.000200' '%d. %m. %y %H:%M', # '25. 10. 06 14:30' '%d. %m. %y', # '25. 10. 06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
bsd-3-clause
popazerty/EG-2
lib/python/Components/Converter/ServiceInfo.py
7
9467
from Components.Converter.Converter import Converter from enigma import iServiceInformation, iPlayableService from Components.Element import cached from os import path WIDESCREEN = [3, 4, 7, 8, 0xB, 0xC, 0xF, 0x10] class ServiceInfo(Converter, object): HAS_TELETEXT = 1 IS_MULTICHANNEL = 2 AUDIO_STEREO = 3 IS_CRYPTED = 4 IS_WIDESCREEN = 5 IS_NOT_WIDESCREEN = 6 SUBSERVICES_AVAILABLE = 7 XRES = 8 YRES = 9 APID = 10 VPID = 11 PCRPID = 12 PMTPID = 13 TXTPID = 14 TSID = 15 ONID = 16 SID = 17 FRAMERATE = 18 TRANSFERBPS = 19 HAS_HBBTV = 20 AUDIOTRACKS_AVAILABLE = 21 SUBTITLES_AVAILABLE = 22 EDITMODE = 23 IS_STREAM = 24 IS_SD = 25 IS_HD = 26 IS_1080 = 27 IS_720 = 28 IS_576 = 29 IS_480 = 30 def __init__(self, type): Converter.__init__(self, type) self.type, self.interesting_events = { "HasTelext": (self.HAS_TELETEXT, (iPlayableService.evUpdatedInfo,)), "IsMultichannel": (self.IS_MULTICHANNEL, (iPlayableService.evUpdatedInfo,)), "IsStereo": (self.AUDIO_STEREO, (iPlayableService.evUpdatedInfo,)), "IsCrypted": (self.IS_CRYPTED, (iPlayableService.evUpdatedInfo,)), "IsWidescreen": (self.IS_WIDESCREEN, (iPlayableService.evVideoSizeChanged,)), "IsNotWidescreen": (self.IS_NOT_WIDESCREEN, (iPlayableService.evVideoSizeChanged,)), "SubservicesAvailable": (self.SUBSERVICES_AVAILABLE, (iPlayableService.evUpdatedEventInfo,)), "VideoWidth": (self.XRES, (iPlayableService.evVideoSizeChanged,)), "VideoHeight": (self.YRES, (iPlayableService.evVideoSizeChanged,)), "AudioPid": (self.APID, (iPlayableService.evUpdatedInfo,)), "VideoPid": (self.VPID, (iPlayableService.evUpdatedInfo,)), "PcrPid": (self.PCRPID, (iPlayableService.evUpdatedInfo,)), "PmtPid": (self.PMTPID, (iPlayableService.evUpdatedInfo,)), "TxtPid": (self.TXTPID, (iPlayableService.evUpdatedInfo,)), "TsId": (self.TSID, (iPlayableService.evUpdatedInfo,)), "OnId": (self.ONID, (iPlayableService.evUpdatedInfo,)), "Sid": (self.SID, (iPlayableService.evUpdatedInfo,)), "Framerate": (self.FRAMERATE, (iPlayableService.evVideoSizeChanged,iPlayableService.evUpdatedInfo,)), "TransferBPS": (self.TRANSFERBPS, (iPlayableService.evUpdatedInfo,)), "HasHBBTV": (self.HAS_HBBTV, (iPlayableService.evUpdatedInfo,iPlayableService.evHBBTVInfo,)), "AudioTracksAvailable": (self.AUDIOTRACKS_AVAILABLE, (iPlayableService.evUpdatedInfo,)), "SubtitlesAvailable": (self.SUBTITLES_AVAILABLE, (iPlayableService.evUpdatedInfo,)), "Editmode": (self.EDITMODE, (iPlayableService.evUpdatedInfo,)), "IsStream": (self.IS_STREAM, (iPlayableService.evUpdatedInfo,)), "IsSD": (self.IS_SD, (iPlayableService.evVideoSizeChanged,)), "IsHD": (self.IS_HD, (iPlayableService.evVideoSizeChanged,)), "Is1080": (self.IS_1080, (iPlayableService.evVideoSizeChanged,)), "Is720": (self.IS_720, (iPlayableService.evVideoSizeChanged,)), "Is576": (self.IS_576, (iPlayableService.evVideoSizeChanged,)), "Is480": (self.IS_480, (iPlayableService.evVideoSizeChanged,)), }[type] def getServiceInfoString(self, info, what, convert = lambda x: "%d" % x): v = info.getInfo(what) if v == -1: return "N/A" if v == -2: return info.getInfoString(what) return convert(v) @cached def getBoolean(self): service = self.source.service info = service and service.info() if not info: return False video_height = None video_aspect = None try: f = open("/proc/stb/vmpeg/0/yres", "r") video_height = int(f.read(),16) f.close() except: video_height = int(info.getInfo(iServiceInformation.sVideoHeight)) video_aspect = info.getInfo(iServiceInformation.sAspect) if self.type == self.HAS_TELETEXT: tpid = info.getInfo(iServiceInformation.sTXTPID) return tpid != -1 elif self.type in (self.IS_MULTICHANNEL, self.AUDIO_STEREO): # FIXME. but currently iAudioTrackInfo doesn't provide more information. audio = service.audioTracks() if audio: n = audio.getNumberOfTracks() idx = 0 while idx < n: i = audio.getTrackInfo(idx) description = i.getDescription() if description in ("AC3", "AC-3", "DTS"): if self.type == self.IS_MULTICHANNEL: return True elif self.type == self.AUDIO_STEREO: return False idx += 1 if self.type == self.IS_MULTICHANNEL: return False elif self.type == self.AUDIO_STEREO: return True return False elif self.type == self.IS_CRYPTED: return info.getInfo(iServiceInformation.sIsCrypted) == 1 elif self.type == self.IS_WIDESCREEN: return video_aspect in WIDESCREEN elif self.type == self.IS_NOT_WIDESCREEN: return video_aspect not in WIDESCREEN elif self.type == self.SUBSERVICES_AVAILABLE: subservices = service.subServices() return subservices and subservices.getNumberOfSubservices() > 0 elif self.type == self.HAS_HBBTV: return info.getInfoString(iServiceInformation.sHBBTVUrl) != "" elif self.type == self.AUDIOTRACKS_AVAILABLE: audio = service.audioTracks() return audio and audio.getNumberOfTracks() > 1 elif self.type == self.SUBTITLES_AVAILABLE: subtitle = service and service.subtitle() subtitlelist = subtitle and subtitle.getSubtitleList() if subtitlelist: return len(subtitlelist) > 0 return False elif self.type == self.EDITMODE: return hasattr(self.source, "editmode") and not not self.source.editmode elif self.type == self.IS_STREAM: return service.streamed() is not None elif self.type == self.IS_SD: return video_height < 720 elif self.type == self.IS_HD: return video_height >= 720 elif self.type == self.IS_1080: return video_height > 1000 and video_height <= 1080 elif self.type == self.IS_720: return video_height > 700 and video_height <= 720 elif self.type == self.IS_576: return video_height > 500 and video_height <= 576 elif self.type == self.IS_480: return video_height > 0 and video_height <= 480 return False boolean = property(getBoolean) @cached def getText(self): service = self.source.service info = service and service.info() if not info: return "" if self.type == self.XRES: video_width = None if path.exists("/proc/stb/vmpeg/0/xres"): f = open("/proc/stb/vmpeg/0/xres", "r") video_width = int(f.read(),16) f.close() if not video_width: video_width = int(self.getServiceInfoString(info, iServiceInformation.sVideoWidth)) return "%d" % video_width elif self.type == self.YRES: video_height = None if path.exists("/proc/stb/vmpeg/0/yres"): f = open("/proc/stb/vmpeg/0/yres", "r") video_height = int(f.read(),16) f.close() if not video_height: video_height = int(self.getServiceInfoString(info, iServiceInformation.sVideoHeight)) return "%d" % video_height elif self.type == self.APID: return self.getServiceInfoString(info, iServiceInformation.sAudioPID) elif self.type == self.VPID: return self.getServiceInfoString(info, iServiceInformation.sVideoPID) elif self.type == self.PCRPID: return self.getServiceInfoString(info, iServiceInformation.sPCRPID) elif self.type == self.PMTPID: return self.getServiceInfoString(info, iServiceInformation.sPMTPID) elif self.type == self.TXTPID: return self.getServiceInfoString(info, iServiceInformation.sTXTPID) elif self.type == self.TSID: return self.getServiceInfoString(info, iServiceInformation.sTSID) elif self.type == self.ONID: return self.getServiceInfoString(info, iServiceInformation.sONID) elif self.type == self.SID: return self.getServiceInfoString(info, iServiceInformation.sSID) elif self.type == self.FRAMERATE: video_rate = None if path.exists("/proc/stb/vmpeg/0/framerate"): f = open("/proc/stb/vmpeg/0/framerate", "r") video_rate = int(f.read()) f.close() if not video_rate: video_rate = int(self.getServiceInfoString(info, iServiceInformation.sFrameRate)) return video_rate, lambda x: "%d fps" % ((x+500)/1000) elif self.type == self.TRANSFERBPS: return self.getServiceInfoString(info, iServiceInformation.sTransferBPS, lambda x: "%d kB/s" % (x/1024)) elif self.type == self.HAS_HBBTV: return info.getInfoString(iServiceInformation.sHBBTVUrl) return "" text = property(getText) @cached def getValue(self): service = self.source.service info = service and service.info() if not info: return -1 if self.type == self.XRES: video_width = None if path.exists("/proc/stb/vmpeg/0/xres"): f = open("/proc/stb/vmpeg/0/xres", "r") video_width = int(f.read(),16) f.close() if not video_width: video_width = info.getInfo(iServiceInformation.sVideoWidth) return str(video_width) elif self.type == self.YRES: video_height = None if path.exists("/proc/stb/vmpeg/0/yres"): f = open("/proc/stb/vmpeg/0/yres", "r") video_height = int(f.read(),16) f.close() if not video_height: video_height = info.getInfo(iServiceInformation.sVideoHeight) return str(video_height) elif self.type == self.FRAMERATE: video_rate = None if path.exists("/proc/stb/vmpeg/0/framerate"): f = open("/proc/stb/vmpeg/0/framerate", "r") video_rate = f.read() f.close() if not video_rate: video_rate = info.getInfo(iServiceInformation.sFrameRate) return str(video_rate) return -1 value = property(getValue) def changed(self, what): if what[0] != self.CHANGED_SPECIFIC or what[1] in self.interesting_events: Converter.changed(self, what)
gpl-2.0
SickGear/SickGear
lib/urllib3/packages/ssl_match_hostname/_implementation.py
48
5679
"""The match_hostname() function from Python 3.3.3, essential when using SSL.""" # Note: This file is under the PSF license as the code comes from the python # stdlib. http://docs.python.org/3/license.html import re import sys # ipaddress has been backported to 2.6+ in pypi. If it is installed on the # system, use it to handle IPAddress ServerAltnames (this was added in # python-3.5) otherwise only do DNS matching. This allows # backports.ssl_match_hostname to continue to be used in Python 2.7. try: import ipaddress except ImportError: ipaddress = None __version__ = "3.5.0.1" class CertificateError(ValueError): pass def _dnsname_match(dn, hostname, max_wildcards=1): """Matching according to RFC 6125, section 6.4.3 http://tools.ietf.org/html/rfc6125#section-6.4.3 """ pats = [] if not dn: return False # Ported from python3-syntax: # leftmost, *remainder = dn.split(r'.') parts = dn.split(r".") leftmost = parts[0] remainder = parts[1:] wildcards = leftmost.count("*") if wildcards > max_wildcards: # Issue #17980: avoid denials of service by refusing more # than one wildcard per fragment. A survey of established # policy among SSL implementations showed it to be a # reasonable choice. raise CertificateError( "too many wildcards in certificate DNS name: " + repr(dn) ) # speed up common case w/o wildcards if not wildcards: return dn.lower() == hostname.lower() # RFC 6125, section 6.4.3, subitem 1. # The client SHOULD NOT attempt to match a presented identifier in which # the wildcard character comprises a label other than the left-most label. if leftmost == "*": # When '*' is a fragment by itself, it matches a non-empty dotless # fragment. pats.append("[^.]+") elif leftmost.startswith("xn--") or hostname.startswith("xn--"): # RFC 6125, section 6.4.3, subitem 3. # The client SHOULD NOT attempt to match a presented identifier # where the wildcard character is embedded within an A-label or # U-label of an internationalized domain name. pats.append(re.escape(leftmost)) else: # Otherwise, '*' matches any dotless string, e.g. www* pats.append(re.escape(leftmost).replace(r"\*", "[^.]*")) # add the remaining fragments, ignore any wildcards for frag in remainder: pats.append(re.escape(frag)) pat = re.compile(r"\A" + r"\.".join(pats) + r"\Z", re.IGNORECASE) return pat.match(hostname) def _to_unicode(obj): if isinstance(obj, str) and sys.version_info < (3,): obj = unicode(obj, encoding="ascii", errors="strict") return obj def _ipaddress_match(ipname, host_ip): """Exact matching of IP addresses. RFC 6125 explicitly doesn't define an algorithm for this (section 1.7.2 - "Out of Scope"). """ # OpenSSL may add a trailing newline to a subjectAltName's IP address # Divergence from upstream: ipaddress can't handle byte str ip = ipaddress.ip_address(_to_unicode(ipname).rstrip()) return ip == host_ip def match_hostname(cert, hostname): """Verify that *cert* (in decoded format as returned by SSLSocket.getpeercert()) matches the *hostname*. RFC 2818 and RFC 6125 rules are followed, but IP addresses are not accepted for *hostname*. CertificateError is raised on failure. On success, the function returns nothing. """ if not cert: raise ValueError( "empty or no certificate, match_hostname needs a " "SSL socket or SSL context with either " "CERT_OPTIONAL or CERT_REQUIRED" ) try: # Divergence from upstream: ipaddress can't handle byte str host_ip = ipaddress.ip_address(_to_unicode(hostname)) except ValueError: # Not an IP address (common case) host_ip = None except UnicodeError: # Divergence from upstream: Have to deal with ipaddress not taking # byte strings. addresses should be all ascii, so we consider it not # an ipaddress in this case host_ip = None except AttributeError: # Divergence from upstream: Make ipaddress library optional if ipaddress is None: host_ip = None else: raise dnsnames = [] san = cert.get("subjectAltName", ()) for key, value in san: if key == "DNS": if host_ip is None and _dnsname_match(value, hostname): return dnsnames.append(value) elif key == "IP Address": if host_ip is not None and _ipaddress_match(value, host_ip): return dnsnames.append(value) if not dnsnames: # The subject is only checked when there is no dNSName entry # in subjectAltName for sub in cert.get("subject", ()): for key, value in sub: # XXX according to RFC 2818, the most specific Common Name # must be used. if key == "commonName": if _dnsname_match(value, hostname): return dnsnames.append(value) if len(dnsnames) > 1: raise CertificateError( "hostname %r " "doesn't match either of %s" % (hostname, ", ".join(map(repr, dnsnames))) ) elif len(dnsnames) == 1: raise CertificateError("hostname %r doesn't match %r" % (hostname, dnsnames[0])) else: raise CertificateError( "no appropriate commonName or subjectAltName fields were found" )
gpl-3.0
salfab/CouchPotatoServer
libs/sqlalchemy/connectors/mxodbc.py
18
5517
# connectors/mxodbc.py # Copyright (C) 2005-2013 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ Provide an SQLALchemy connector for the eGenix mxODBC commercial Python adapter for ODBC. This is not a free product, but eGenix provides SQLAlchemy with a license for use in continuous integration testing. This has been tested for use with mxODBC 3.1.2 on SQL Server 2005 and 2008, using the SQL Server Native driver. However, it is possible for this to be used on other database platforms. For more info on mxODBC, see http://www.egenix.com/ """ import sys import re import warnings from sqlalchemy.connectors import Connector class MxODBCConnector(Connector): driver='mxodbc' supports_sane_multi_rowcount = False supports_unicode_statements = False supports_unicode_binds = False supports_native_decimal = True @classmethod def dbapi(cls): # this classmethod will normally be replaced by an instance # attribute of the same name, so this is normally only called once. cls._load_mx_exceptions() platform = sys.platform if platform == 'win32': from mx.ODBC import Windows as module # this can be the string "linux2", and possibly others elif 'linux' in platform: from mx.ODBC import unixODBC as module elif platform == 'darwin': from mx.ODBC import iODBC as module else: raise ImportError, "Unrecognized platform for mxODBC import" return module @classmethod def _load_mx_exceptions(cls): """ Import mxODBC exception classes into the module namespace, as if they had been imported normally. This is done here to avoid requiring all SQLAlchemy users to install mxODBC. """ global InterfaceError, ProgrammingError from mx.ODBC import InterfaceError from mx.ODBC import ProgrammingError def on_connect(self): def connect(conn): conn.stringformat = self.dbapi.MIXED_STRINGFORMAT conn.datetimeformat = self.dbapi.PYDATETIME_DATETIMEFORMAT conn.decimalformat = self.dbapi.DECIMAL_DECIMALFORMAT conn.errorhandler = self._error_handler() return connect def _error_handler(self): """ Return a handler that adjusts mxODBC's raised Warnings to emit Python standard warnings. """ from mx.ODBC.Error import Warning as MxOdbcWarning def error_handler(connection, cursor, errorclass, errorvalue): if issubclass(errorclass, MxOdbcWarning): errorclass.__bases__ = (Warning,) warnings.warn(message=str(errorvalue), category=errorclass, stacklevel=2) else: raise errorclass, errorvalue return error_handler def create_connect_args(self, url): """ Return a tuple of *args,**kwargs for creating a connection. The mxODBC 3.x connection constructor looks like this: connect(dsn, user='', password='', clear_auto_commit=1, errorhandler=None) This method translates the values in the provided uri into args and kwargs needed to instantiate an mxODBC Connection. The arg 'errorhandler' is not used by SQLAlchemy and will not be populated. """ opts = url.translate_connect_args(username='user') opts.update(url.query) args = opts.pop('host') opts.pop('port', None) opts.pop('database', None) return (args,), opts def is_disconnect(self, e, connection, cursor): # TODO: eGenix recommends checking connection.closed here # Does that detect dropped connections ? if isinstance(e, self.dbapi.ProgrammingError): return "connection already closed" in str(e) elif isinstance(e, self.dbapi.Error): return '[08S01]' in str(e) else: return False def _get_server_version_info(self, connection): # eGenix suggests using conn.dbms_version instead # of what we're doing here dbapi_con = connection.connection version = [] r = re.compile('[.\-]') # 18 == pyodbc.SQL_DBMS_VER for n in r.split(dbapi_con.getinfo(18)[1]): try: version.append(int(n)) except ValueError: version.append(n) return tuple(version) def do_execute(self, cursor, statement, parameters, context=None): if context: native_odbc_execute = context.execution_options.\ get('native_odbc_execute', 'auto') if native_odbc_execute is True: # user specified native_odbc_execute=True cursor.execute(statement, parameters) elif native_odbc_execute is False: # user specified native_odbc_execute=False cursor.executedirect(statement, parameters) elif context.is_crud: # statement is UPDATE, DELETE, INSERT cursor.execute(statement, parameters) else: # all other statements cursor.executedirect(statement, parameters) else: cursor.executedirect(statement, parameters)
gpl-3.0
1kastner/analyse_weather_data
gather_weather_data/wunderground/summarize_raw_airport_data.py
1
8898
""" Summarize all downloaded airport weather station data files. Uses UTC time zone. Use -m gather_weather_data.wunderground.summarize_raw_airport_data to run the demo """ import os import json import datetime import logging import numpy import pandas import metar.Metar # needs https://github.com/tomp/python-metar/pull/25 to work stable from . import WUNDERGROUND_RAW_AIRPORT_DATA_DIR from . import PROCESSED_DATA_DIR from .summarize_raw_data import _parse_utc_date from .summarize_raw_data import _cast_number from .summarize_raw_data import _get_file_name HEADER_FORMAT = ("{datetime},{temperature},{dewpoint},{windspeed},{windgust},{winddirection},{pressure},{humidity}," "{precipitation},{cloudcover}") def _get_header(): """ :return: Formatted header complying csv standards """ return HEADER_FORMAT.replace("{", "").replace("}", "") def max_of_total_order(collection_of_interest, given_total_order): """ :param collection_of_interest: Find the maximum in this collection :param given_total_order: Describe the total order to use on the collection :return: max element """ l = [given_total_order.index(e) for e in collection_of_interest] return given_total_order[max(l)] def get_cloud_cover(metar_string, date_of_observation): """ This needs a small modification as described in https://github.com/tomp/python-metar/pull/25 :param metar_string: A classical meteorological METAR :param date_of_observation: Used to parse the metar at hand :return: The cloud cover name """ d = date_of_observation m = metar.Metar.Metar( metar_string, d.month, d.year, drop_unsupported_observations=True ) cloud_cover = "CAVOC" # 0 octas if not m.sky: return cloud_cover else: sorted_possible_cloud_covers = [ "SKC", "CLR", "NSC", # 0 octas "FEW", # 1-2 octas "SCT", # 3-4 octas "BKN", # 5-7 octas "OVC", # 8 octas "VV", # clouds can not be seen because of fog or rain ] sky_covers = [cover for (cover, height, cloud) in m.sky] return max_of_total_order(sky_covers, sorted_possible_cloud_covers) def _get_data_for_single_day(station, day): """ At the current time the day provided is interpreted as local time at wunderground. :param station: The name of the station, e.g. 'IHAMBURG69' :param day: The day to pick the json from :return: A valid csv file content with header :rtype: str """ json_file_name = _get_file_name(station, day, 'json') json_file_path = os.path.join(WUNDERGROUND_RAW_AIRPORT_DATA_DIR, station, json_file_name) if not os.path.isfile(json_file_path): # search for files of other project json_file_name = station + "_" + day.strftime("%Y%m%d") + ".json" json_file_path = os.path.join(WUNDERGROUND_RAW_AIRPORT_DATA_DIR, station, json_file_name) if not os.path.isfile(json_file_path): # search for files created by yet another project json_file_name = day.strftime("%Y-%m-%d") + ".json" json_file_path = os.path.join(WUNDERGROUND_RAW_AIRPORT_DATA_DIR, station, json_file_name) if not os.path.isfile(json_file_path): logging.warning("missing input file: " + json_file_path) return if os.path.getsize(json_file_path) == 0: logging.warning("encountered an empty file: ", json_file_path) os.remove(json_file_path) return with open(json_file_path) as f: raw_json_weather_data = json.load(f) # These are the relevant observations we want to keep observations = [] header = _get_header() observations.append(header) for raw_observation in raw_json_weather_data["history"]["observations"]: observation = {} utc_date = _parse_utc_date(raw_observation["utcdate"]) observation["datetime"] = utc_date.isoformat() observation["temperature"] = _cast_number(raw_observation["tempm"]) observation["dewpoint"] = _cast_number(raw_observation["dewptm"]) observation["windspeed"] = _cast_number(raw_observation["wspdm"], raw_observation["wspdi"]) observation["windgust"] = _cast_number(raw_observation["wgustm"], raw_observation["wgusti"]) observation["winddirection"] = _cast_number(raw_observation["wdird"], raw_observation["wdird"]) observation["pressure"] = _cast_number(raw_observation["pressurem"]) observation["humidity"] = _cast_number(raw_observation["hum"]) if "precip_ratem" in raw_observation: observation["precipitation"] = _cast_number(raw_observation["precip_ratem"], raw_observation["precip_ratei"]) else: observation["precipitation"] = "" if raw_observation["metar"].startswith("METAR"): # some other record observation["cloudcover"] = get_cloud_cover(raw_observation["metar"], utc_date) else: observation["cloudcover"] = numpy.nan observations.append(HEADER_FORMAT.format(**observation)) return "\n".join(observations) def _open_daily_summary(station, day): """ :param station: The name of the station, e.g. 'IHAMBURG69' :param day: The day to get the summary for (can be naive) :return: The corresponding data frame """ csv_file = os.path.join(WUNDERGROUND_RAW_AIRPORT_DATA_DIR, station, _get_file_name(station, day, "csv")) data_frame = pandas.read_csv(csv_file, index_col="datetime", parse_dates=["datetime"]) return data_frame def _create_csv_from_json(station, day, force_overwrite): """ :param force_overwrite: Whether to overwrite old daily summary files. :param station: The name of the station, e.g. 'IHAMBURG69' :param day: The day to pick the json from """ processed_station_dir = os.path.join(WUNDERGROUND_RAW_AIRPORT_DATA_DIR, station) if not os.path.isdir(processed_station_dir): os.mkdir(processed_station_dir) csv_path = os.path.join(processed_station_dir, _get_file_name(station, day, 'csv')) if os.path.isfile(csv_path) and os.path.getsize(csv_path) and not force_overwrite: logging.info("skip " + csv_path) return with open(csv_path, "w") as f: csv_file_content = _get_data_for_single_day(station, day) if csv_file_content is not None: f.write(csv_file_content) else: f.write(_get_header()) def join_daily_summaries(station, start_date, end_date, force_overwrite): """ :param station: :param start_date: :param end_date: :param force_overwrite: :return: """ date_to_check = start_date span_summary_file_name = station + "_" + start_date.strftime("%Y%m%d") + "_" + end_date.strftime("%Y%m%d") + ".csv" output_dir = os.path.join(PROCESSED_DATA_DIR, "station_summaries") if not os.path.isdir(output_dir): os.mkdir(output_dir) span_summary_path = os.path.join(output_dir, span_summary_file_name) if os.path.isdir(span_summary_path) and not force_overwrite: logging.info("skip " + span_summary_path) return data_frame = _open_daily_summary(station, start_date) start_date += datetime.timedelta(days=1) while date_to_check <= end_date: data_frame_next = _open_daily_summary(station, date_to_check) data_frame = data_frame.append(data_frame_next) date_to_check = date_to_check + datetime.timedelta(days=1) # remove duplicates (happens if same entry exists for two days) data_frame.groupby(data_frame.index).first() data_frame.sort_index(inplace=True) data_frame.to_csv(span_summary_path) def create_daily_summaries_for_time_span(station, start_date, end_date, force_overwrite): """ :param force_overwrite: Whether to overwrite old daily summary files. :param station: The name of the station, e.g. 'IHAMBURG69' :param start_date: The date to start (included) :param end_date: The date to stop (included) :return: """ date_to_check = start_date while date_to_check <= end_date: _create_csv_from_json(station, date_to_check, force_overwrite) date_to_check = date_to_check + datetime.timedelta(days=1) def demo(): stations = ["EDDH"] for station in stations: logging.info(station) start_date = datetime.datetime(2016, 1, 1) end_date = datetime.datetime(2016, 12, 31) logging.info("create daily summaries") create_daily_summaries_for_time_span(station, start_date, end_date, False) logging.info("create time span summary") join_daily_summaries(station, start_date, end_date, True) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) demo()
agpl-3.0
jpbrucker/mbed
workspace_tools/host_tests/default_auto.py
101
1236
""" mbed SDK Copyright (c) 2011-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from sys import stdout class DefaultAuto(): """ Simple, basic host test's test runner waiting for serial port output from MUT, no supervision over test running in MUT is executed. """ def test(self, selftest): result = selftest.RESULT_SUCCESS try: while True: c = selftest.mbed.serial_read(512) if c is None: return selftest.RESULT_IO_SERIAL stdout.write(c) stdout.flush() except KeyboardInterrupt, _: selftest.notify("\r\n[CTRL+C] exit") result = selftest.RESULT_ERROR return result
apache-2.0
vitay/ANNarchy
ANNarchy/core/PopulationView.py
2
12538
#=============================================================================== # # PopulationView # # This file is part of ANNarchy. # # Copyright (C) 2013-2016 Julien Vitay <[email protected]>, # Helge Uelo Dinkelbach <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ANNarchy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # #=============================================================================== from ANNarchy.core import Global as Global from .Random import RandomDistribution import numpy as np class PopulationView(object): """ Container representing a subset of neurons of a Population.""" def __init__(self, population, ranks, geometry=None): """ Create a view of a subset of neurons within the same population. :param population: population object :param ranks: list or numpy array containing the ranks of the selected neurons. :param geometry: a geometry for the Populationview (optional) """ self.population = population self.ranks = ranks self.geometry = geometry self.size = len(self.ranks) # For people using Individual neuron if self.size == 1: self.rank = self.ranks[0] else: self.rank = self.ranks self.neuron_type = self.population.neuron_type self.id = self.population.id self.name = population.name self.cyInstance = population.cyInstance self.variables = population.variables self.attributes = population.attributes self.max_delay = population.max_delay def _copy(self): "Returns a copy of the population when creating networks. Internal use only." return PopulationView(population=self.population, ranks=self.ranks, geometry=self.geometry) ################################ # Indexing ################################ def __len__(self): """ Number of neurons in the population view. """ return self.size def rank_from_coordinates(self, coord, local=False): """ Returns the rank of a neuron based on coordinates. When local is False (default), the coordinates are relative to the ORIGINAL population, not the PopulationView. When local is True, the coordinates are interpreted relative to the geometry of the PopulationView if available. When you add two population views, the geometry is lost and the method will return an error. The rank is relative to the original population. Iterate over len(pop) otherwise. :param coord: coordinate tuple, can be multidimensional. :param local: whther the coordinates are local to the PopulationView or not (default: False). """ if not local: rk = self.population.rank_from_coordinates(coord) if not rk in self.ranks: Global._error("There is no neuron of coordinates", coord, "in the PopulationView.") return rk else: if not self.geometry: Global._error("The population view does not have a geometry, cannot use local coordinates.") else: try: intern_rank = np.ravel_multi_index(coord, self.geometry) except: Global._error("There is no neuron of coordinates", coord, "in a PopulationView of geometry", self.geometry) return self.ranks[intern_rank] def coordinates_from_rank(self, rank, local=False): """ Returns the coordinates of a neuron based on its rank. When local is False (default), the coordinates are relative to the ORIGINAL population, not the PopulationView. When local is True, the coordinates are interpreted relative to the geometry of the PopulationView if available. When you add two population views, the geometry is lost and the method will return an error. The rank is relative to the original population. Iterate over len(pop) otherwise. :param rank: rank of the neuron in the original population :param local: whether the coordinates are local to the PopulationView or not (default: False). """ if not local: return self.population.coordinates_from_rank(rank) else: if not self.geometry: Global._error("The population view does not have a geometry, cannot use local coordinates.") else: if not rank in self.ranks: Global._error("There is no neuron of rank", rank, "in the PopulationView.") intern_rk = self.ranks.index(rank) coord = np.unravel_index(intern_rk, self.geometry) return coord ################################ # Targets must match the population, both in read and write ################################ @property def targets(self): "List of targets connected to the population." return self.population.targets @targets.setter def targets(self, value): self.population.targets.append(value) ################################ ## Access to attributes ################################ def __getattr__(self, name): " Method called when accessing an attribute." if name == 'population': return object.__getattribute__(self, name) elif hasattr(self.population, 'attributes'): if name in self.population.attributes: return self.get(name) else: return object.__getattribute__(self, name) else: return object.__getattribute__(self, name) def __setattr__(self, name, value): " Method called when setting an attribute." if name == 'population': object.__setattr__(self, name, value) elif hasattr(self, 'population'): if name in self.population.attributes: self.set({name: value}) else: object.__setattr__(self, name, value) else: object.__setattr__(self, name, value) def get(self, name): """ Returns current variable/parameter value. :param name: name of the parameter/variable. """ if name in self.population.attributes: all_val = getattr(self.population, name).reshape(self.population.size) return all_val[self.ranks] else: Global._error("Population does not have a parameter/variable called " + name + ".") def set(self, value): """ Updates the neurons' variable/parameter values. :param value: dictionary of parameters/variables to be updated for the corresponding subset of neurons. It can be a single value or a list/1D array of the same size as the PopulationView. .. code-block:: python >>> subpop = pop[0:5] >>> subpop.set( {'tau' : 20, 'r'= np.random.rand(subpop.size) } ) .. warning:: If you modify the value of a global parameter, this will be the case for ALL neurons of the population, not only the subset. """ def _set_single(name, rank, value): if not self.population.initialized: if not name in self.population.neuron_type.description['local']: Global._error('can not set the value of a global attribute from a PopulationView.') return if isinstance(self.population.init[name], np.ndarray): if len(self.population.geometry) == 1: self.population.init[name][rank] = value else: # Need to access the coordinates coords = self.population.coordinates_from_rank(rank) self.population.init[name][coords] = value else: val = self.population.init[name] data = val * np.ones(self.population.size) data[rank] = value self.population.init[name] = data.reshape(self.population.geometry) else: getattr(self.population.cyInstance, 'set_single_'+name)(rank, value) for val_key in value.keys(): if hasattr(self.population, val_key): # Check the value if isinstance(value[val_key], RandomDistribution): # Make sure it is generated only once value[val_key] = np.array(value[val_key].get_values(self.size)) if isinstance(value[val_key], np.ndarray): # np.array if value[val_key].ndim >1 or len(value[val_key]) != self.size: Global._error("You can only provide an array of the same size as the PopulationView", self.size) return None if val_key in self.population.neuron_type.description['global']: Global._error("Global attributes can only have one value in a population.") return None # Assign the value for idx, rk in enumerate(self.ranks): _set_single(val_key, rk, value[val_key][idx]) elif isinstance(value[val_key], list): # list if len(value[val_key]) != self.size: Global._error("You can only provide a list of the same size as the PopulationView", self.size) return None if val_key in self.population.neuron_type.description['global']: Global._error("Global attributes can only have one value in a population.") return None # Assign the value for idx, rk in enumerate(self.ranks): _set_single(val_key, rk, value[val_key][idx]) else: # single value for rk in self.ranks: _set_single(val_key, rk, value[val_key]) else: Global._error("the population has no attribute called ", val_key) return None ################################ ## Access to weighted sums ################################ def sum(self, target): """ Returns the array of weighted sums corresponding to the target:: excitatory = pop.sum('exc') For spiking networks, this is equivalent to accessing the conductances directly:: excitatory = pop.g_exc If no incoming projection has the given target, the method returns zeros. :param target: the desired projection target. **Note:** it is not possible to distinguish the original population when the same target is used. """ return self.population.sum(target)[self.ranks] ################################ ## Composition ################################ def __add__(self, other): """Allows to join two PopulationViews if they have the same population.""" from ANNarchy.core.Neuron import IndividualNeuron if other.population == self.population: if isinstance(other, IndividualNeuron): return PopulationView(self.population, list(set(self.ranks + [other.rank]))) elif isinstance(other, PopulationView): return PopulationView(self.population, list(set(self.ranks + other.ranks))) else: Global._error("can only add two PopulationViews of the same population.") def __repr__(self): """Defines the printing behaviour.""" string ="PopulationView of " + str(self.population.name) + '\n' string += ' Ranks: ' + str(self.ranks) string += '\n' for rk in self.ranks: string += '* ' + str(self.population.neuron(rk)) + '\n' return string
gpl-2.0
EvanK/ansible
lib/ansible/modules/remote_management/manageiq/manageiq_user.py
64
10097
#!/usr/bin/python # # (c) 2017, Daniel Korn <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' module: manageiq_user short_description: Management of users in ManageIQ. extends_documentation_fragment: manageiq version_added: '2.4' author: Daniel Korn (@dkorn) description: - The manageiq_user module supports adding, updating and deleting users in ManageIQ. options: state: description: - absent - user should not exist, present - user should be. choices: ['absent', 'present'] default: 'present' userid: description: - The unique userid in manageiq, often mentioned as username. required: true name: description: - The users' full name. password: description: - The users' password. group: description: - The name of the group to which the user belongs. email: description: - The users' E-mail address. update_password: default: always choices: ['always', 'on_create'] description: - C(always) will update passwords unconditionally. C(on_create) will only set the password for a newly created user. version_added: '2.5' ''' EXAMPLES = ''' - name: Create a new user in ManageIQ manageiq_user: userid: 'jdoe' name: 'Jane Doe' password: 'VerySecret' group: 'EvmGroup-user' email: '[email protected]' manageiq_connection: url: 'http://127.0.0.1:3000' username: 'admin' password: 'smartvm' verify_ssl: False - name: Create a new user in ManageIQ using a token manageiq_user: userid: 'jdoe' name: 'Jane Doe' password: 'VerySecret' group: 'EvmGroup-user' email: '[email protected]' manageiq_connection: url: 'http://127.0.0.1:3000' token: 'sometoken' verify_ssl: False - name: Delete a user in ManageIQ manageiq_user: state: 'absent' userid: 'jdoe' manageiq_connection: url: 'http://127.0.0.1:3000' username: 'admin' password: 'smartvm' verify_ssl: False - name: Delete a user in ManageIQ using a token manageiq_user: state: 'absent' userid: 'jdoe' manageiq_connection: url: 'http://127.0.0.1:3000' token: 'sometoken' verify_ssl: False - name: Update email of user in ManageIQ manageiq_user: userid: 'jdoe' email: '[email protected]' manageiq_connection: url: 'http://127.0.0.1:3000' username: 'admin' password: 'smartvm' verify_ssl: False - name: Update email of user in ManageIQ using a token manageiq_user: userid: 'jdoe' email: '[email protected]' manageiq_connection: url: 'http://127.0.0.1:3000' token: 'sometoken' verify_ssl: False ''' RETURN = ''' ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.manageiq import ManageIQ, manageiq_argument_spec class ManageIQUser(object): """ Object to execute user management operations in manageiq. """ def __init__(self, manageiq): self.manageiq = manageiq self.module = self.manageiq.module self.api_url = self.manageiq.api_url self.client = self.manageiq.client def group_id(self, description): """ Search for group id by group description. Returns: the group id, or send a module Fail signal if group not found. """ group = self.manageiq.find_collection_resource_by('groups', description=description) if not group: # group doesn't exist self.module.fail_json( msg="group %s does not exist in manageiq" % (description)) return group['id'] def user(self, userid): """ Search for user object by userid. Returns: the user, or None if user not found. """ return self.manageiq.find_collection_resource_by('users', userid=userid) def compare_user(self, user, name, group_id, password, email): """ Compare user fields with new field values. Returns: false if user fields have some difference from new fields, true o/w. """ found_difference = ( (name and user['name'] != name) or (password is not None) or (email and user['email'] != email) or (group_id and user['current_group_id'] != group_id) ) return not found_difference def delete_user(self, user): """ Deletes a user from manageiq. Returns: a short message describing the operation executed. """ try: url = '%s/users/%s' % (self.api_url, user['id']) result = self.client.post(url, action='delete') except Exception as e: self.module.fail_json(msg="failed to delete user %s: %s" % (user['userid'], str(e))) return dict(changed=True, msg=result['message']) def edit_user(self, user, name, group, password, email): """ Edit a user from manageiq. Returns: a short message describing the operation executed. """ group_id = None url = '%s/users/%s' % (self.api_url, user['id']) resource = dict(userid=user['userid']) if group is not None: group_id = self.group_id(group) resource['group'] = dict(id=group_id) if name is not None: resource['name'] = name if email is not None: resource['email'] = email # if there is a password param, but 'update_password' is 'on_create' # then discard the password (since we're editing an existing user) if self.module.params['update_password'] == 'on_create': password = None if password is not None: resource['password'] = password # check if we need to update ( compare_user is true is no difference found ) if self.compare_user(user, name, group_id, password, email): return dict( changed=False, msg="user %s is not changed." % (user['userid'])) # try to update user try: result = self.client.post(url, action='edit', resource=resource) except Exception as e: self.module.fail_json(msg="failed to update user %s: %s" % (user['userid'], str(e))) return dict( changed=True, msg="successfully updated the user %s: %s" % (user['userid'], result)) def create_user(self, userid, name, group, password, email): """ Creates the user in manageiq. Returns: the created user id, name, created_on timestamp, updated_on timestamp, userid and current_group_id. """ # check for required arguments for key, value in dict(name=name, group=group, password=password).items(): if value in (None, ''): self.module.fail_json(msg="missing required argument: %s" % (key)) group_id = self.group_id(group) url = '%s/users' % (self.api_url) resource = {'userid': userid, 'name': name, 'password': password, 'group': {'id': group_id}} if email is not None: resource['email'] = email # try to create a new user try: result = self.client.post(url, action='create', resource=resource) except Exception as e: self.module.fail_json(msg="failed to create user %s: %s" % (userid, str(e))) return dict( changed=True, msg="successfully created the user %s: %s" % (userid, result['results'])) def main(): argument_spec = dict( userid=dict(required=True, type='str'), name=dict(), password=dict(no_log=True), group=dict(), email=dict(), state=dict(choices=['absent', 'present'], default='present'), update_password=dict(choices=['always', 'on_create'], default='always'), ) # add the manageiq connection arguments to the arguments argument_spec.update(manageiq_argument_spec()) module = AnsibleModule( argument_spec=argument_spec, ) userid = module.params['userid'] name = module.params['name'] password = module.params['password'] group = module.params['group'] email = module.params['email'] state = module.params['state'] manageiq = ManageIQ(module) manageiq_user = ManageIQUser(manageiq) user = manageiq_user.user(userid) # user should not exist if state == "absent": # if we have a user, delete it if user: res_args = manageiq_user.delete_user(user) # if we do not have a user, nothing to do else: res_args = dict( changed=False, msg="user %s: does not exist in manageiq" % (userid)) # user shoult exist if state == "present": # if we have a user, edit it if user: res_args = manageiq_user.edit_user(user, name, group, password, email) # if we do not have a user, create it else: res_args = manageiq_user.create_user(userid, name, group, password, email) module.exit_json(**res_args) if __name__ == "__main__": main()
gpl-3.0
diogommartins/pox
pox/messenger/web_transport.py
40
8822
# Copyright 2011,2012 James McCauley # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Connects the POX messenger bus to HTTP. Requires the "webserver" component. NOTE: The web_transport keeps its own session IDs. Since it was first written, though, sessions IDs have become part of every Connection, and we could (but are not) reuse those. """ from SocketServer import ThreadingMixIn from BaseHTTPServer import * import time import select import random import hashlib import base64 import json from pox.lib.recoco import Timer from pox.messenger import Connection, Transport from pox.core import core from pox.web.webcore import * log = core.getLogger() class HTTPConnection (Connection): def __init__ (self, transport): Connection.__init__(self, transport) self._messages = [] self._cond = threading.Condition() self._quitting = False # We're really protected from attack by the session key, we hope self._tx_seq = -1 #random.randint(0, 1 << 32) self._rx_seq = None #self._t = Timer(10, lambda : self.send({'hi':'again'}), recurring=True) self._touched = time.time() self._send_welcome() def _check_timeout (self): if (time.time() - self._touched) > 120: log.info("Session " + str(self) + " timed out") self._close() def _new_tx_seq (self): self._tx_seq = (self._tx_seq + 1) & 0x7fFFffFF return self._tx_seq def _check_rx_seq (self, seq): seq = int(seq) if self._rx_seq is None: self._rx_seq = seq if seq != self._rx_seq: return False self._rx_seq = (self._rx_seq + 1) & 0x7fFFffFF return True def _close (self): super(HTTPConnection, self)._close() #TODO: track request sockets and cancel them? self._quitting = True def send_raw (self, data): self._cond.acquire() self._messages.append(data) self._cond.notify() self._cond.release() def _do_rx_message (self, items): for item in items: self._rx_message(item) class HTTPTransport (Transport): def __init__ (self, nexus = None): Transport.__init__(self, nexus) self._connections = {} #self._t = Timer(5, self._check_timeouts, recurring=True) self._t = Timer(60*2, self._check_timeouts, recurring=True) def _check_timeouts (self): for c in self._connections.values(): c._check_timeout() def _forget (self, connection): # From MessengerTransport if connection._session_id in self._connections: del self._connections[connection._session_id] else: #print "Failed to forget", connection pass def create_session (self): ses = HTTPConnection(self) self._connections[ses._session_id] = ses return ses def get_session (self, key): return self._connections.get(key, None) class CometRequestHandler (SplitRequestHandler): protocol_version = 'HTTP/1.1' # def __init__ (self, *args, **kw): # super(CometRequestHandler, self).__init__(*args, **kw) def _init (self): self.transport = self.args['transport'] self.auth_function = self.args.get('auth', None) def _doAuth (self): if self.auth_function: auth = self.headers.get("Authorization", "").strip().lower() success = False if auth.startswith("basic "): try: auth = base64.decodestring(auth[6:].strip()).split(':', 1) success = self.auth_function(auth[0], auth[1]) except: pass if success is not True: self.send_response(401, "Authorization Required") self.send_header("WWW-Authenticate", 'Basic realm="POX"') self.end_headers() return def _getSession (self): session_key = self.headers.get("X-POX-Messenger-Session-Key") if session_key is None: session_key = self.path.split('/')[-1] session_key = session_key.strip() if len(session_key) == 0: #TODO: return some bad response and log return None if session_key == "new": hmh = self.transport.create_session() else: hmh = self.transport.get_session(session_key) #print session_key, hmh.session_key return hmh def _enter (self): self._doAuth() hmh = self._getSession() if hmh is None: #TODO: return some bad response and log pass else: hmh._touched = time.time() return hmh def do_POST (self): hmh = self._enter() if hmh is None: return None l = self.headers.get("Content-Length", "") if l == "": data = json.loads(self.rfile.read()) else: data = json.loads(self.rfile.read(int(l))) payload = data['data'] # We send null payload for timeout poking and initial setup if 'seq' in data: if not hmh._check_rx_seq(data['seq']): # Bad seq! data = '{"seq":-1,"ses":"%s"}' % (hmh._session_id,) self.send_response(400, "Bad sequence number") self.send_header("Content-Type", "application/json") self.send_header("Content-Length", len(data)) self.send_header("X-POX-Messenger-Sequence-Number", "-1") if self.auth_function: self.send_header("WWW-Authenticate", 'Basic realm="POX"') self.end_headers() self.wfile.write(data) hmh._close() return if payload is not None: core.callLater(hmh._do_rx_message, payload) try: data = '{"seq":-1,"ses":"%s"}' % (hmh._session_id,) self.send_response(200, "OK") self.send_header("Content-Type", "application/json") self.send_header("Content-Length", len(data)) self.send_header("X-POX-Messenger-Sequence-Number", "-1") if self.auth_function: self.send_header("WWW-Authenticate", 'Basic realm="POX"') self.end_headers() self.wfile.write(data) except: import traceback traceback.print_exc() pass return def do_GET (self): hmh = self._enter() if hmh is None: return None hmh._cond.acquire() if len(hmh._messages) == 0: # Wait for messages while True: # Every couple seconds check if the socket is dead hmh._cond.wait(2) if len(hmh._messages): break if hmh._quitting: break r,w,x = select.select([self.wfile],[],[self.wfile], 0) if len(r) or len(x): # Other side disconnected? hmh._cond.release() return # Okay... if hmh._quitting: #NOTE: we don't drain the messages first, but maybe we should? try: data = '{"seq":-1,"ses":"%s"}' % (hmh._session_id,) self.send_response(200, "OK") self.send_header("Content-Type", "application/json") self.send_header("Content-Length", len(data)) self.send_header("X-POX-Messenger-Sequence-Number", "-1") if self.auth_function: self.send_header("WWW-Authenticate", 'Basic realm="POX"') self.end_headers() self.wfile.write(data) except: pass hmh._cond.release() return num_messages = min(20, len(hmh._messages)) data = hmh._messages[:num_messages] old_seq = hmh._tx_seq seq = hmh._new_tx_seq() data = '{"seq":%i,"ses":"%s","data":[%s]}' % (seq, hmh._session_id, ','.join(data)) try: self.send_response(200, "OK") self.send_header("Content-Type", "application/json") self.send_header("Content-Length", len(data)) self.send_header("X-POX-Messenger-Sequence-Number", str(seq)) if self.auth_function: self.send_header("WWW-Authenticate", 'Basic realm="POX"') self.end_headers() self.wfile.write(data) del hmh._messages[:num_messages] except: hmh._tx_seq = old_seq hmh._cond.release() def launch (username='', password=''): def _launch (): transport = core.registerNew(HTTPTransport) # Set up config info config = {"transport":transport} if len(username) and len(password): config['auth'] = lambda u, p: (u == username) and (p == password) core.WebServer.set_handler("/_webmsg/",CometRequestHandler,config,True) core.call_when_ready(_launch, ["WebServer","MessengerNexus"], name = "webmessenger")
apache-2.0
adrienbrault/home-assistant
homeassistant/components/elv/switch.py
5
2665
"""Support for PCA 301 smart switch.""" import logging import pypca from serial import SerialException from homeassistant.components.switch import ATTR_CURRENT_POWER_W, SwitchEntity from homeassistant.const import EVENT_HOMEASSISTANT_STOP _LOGGER = logging.getLogger(__name__) ATTR_TOTAL_ENERGY_KWH = "total_energy_kwh" DEFAULT_NAME = "PCA 301" def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the PCA switch platform.""" if discovery_info is None: return serial_device = discovery_info["device"] try: pca = pypca.PCA(serial_device) pca.open() entities = [SmartPlugSwitch(pca, device) for device in pca.get_devices()] add_entities(entities, True) except SerialException as exc: _LOGGER.warning("Unable to open serial port: %s", exc) return hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, pca.close) pca.start_scan() class SmartPlugSwitch(SwitchEntity): """Representation of a PCA Smart Plug switch.""" def __init__(self, pca, device_id): """Initialize the switch.""" self._device_id = device_id self._name = "PCA 301" self._state = None self._available = True self._emeter_params = {} self._pca = pca @property def name(self): """Return the name of the Smart Plug, if any.""" return self._name @property def available(self) -> bool: """Return if switch is available.""" return self._available @property def is_on(self): """Return true if switch is on.""" return self._state def turn_on(self, **kwargs): """Turn the switch on.""" self._pca.turn_on(self._device_id) def turn_off(self, **kwargs): """Turn the switch off.""" self._pca.turn_off(self._device_id) @property def extra_state_attributes(self): """Return the state attributes of the device.""" return self._emeter_params def update(self): """Update the PCA switch's state.""" try: self._emeter_params[ ATTR_CURRENT_POWER_W ] = f"{self._pca.get_current_power(self._device_id):.1f}" self._emeter_params[ ATTR_TOTAL_ENERGY_KWH ] = f"{self._pca.get_total_consumption(self._device_id):.2f}" self._available = True self._state = self._pca.get_state(self._device_id) except (OSError) as ex: if self._available: _LOGGER.warning("Could not read state for %s: %s", self.name, ex) self._available = False
mit
superdesk/superdesk-aap
server/aap/macros/remove_place_with_no_qcode_test.py
3
1704
# -*- coding: utf-8; -*- # # This file is part of Superdesk. # # Copyright 2013, 2014 Sourcefabric z.u. and contributors. # # For the full copyright and license information, please see the # AUTHORS and LICENSE files distributed with this source code, or # at https://www.sourcefabric.org/superdesk/license from superdesk.tests import TestCase from .remove_place_with_no_qcode import remove_place_with_no_qcode class RemovePlaceTests(TestCase): def simple_case_test(self): item = { "_id": "tag:localhost:2017:77b03a97-df04-446e-a112-94941f1bb12c", "place": [ { "name": "United States" } ] } remove_place_with_no_qcode(item) self.assertEqual(item['place'], []) def multiple_case_test(self): item = { "_id": "tag:localhost:2017:77b03a97-df04-446e-a112-94941f1bb12c", "place": [ { "name": "United States" }, { "name": "Wagga Wagga" } ] } remove_place_with_no_qcode(item) self.assertEqual(item['place'], []) def keep_one_case_test(self): item = { "_id": "tag:localhost:2017:77b03a97-df04-446e-a112-94941f1bb12c", "place": [ { "name": "United States" }, { "name": "Wagga Wagga", "qcode": '1' } ] } remove_place_with_no_qcode(item) self.assertEqual(item['place'], [{"name": "Wagga Wagga", "qcode": '1'}])
agpl-3.0
hyunokoh/s4_qemu
scripts/vmstate-static-checker.py
51
15334
#!/usr/bin/python # # Compares vmstate information stored in JSON format, obtained from # the -dump-vmstate QEMU command. # # Copyright 2014 Amit Shah <[email protected]> # Copyright 2014 Red Hat, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, see <http://www.gnu.org/licenses/>. import argparse import json import sys # Count the number of errors found taint = 0 def bump_taint(): global taint # Ensure we don't wrap around or reset to 0 -- the shell only has # an 8-bit return value. if taint < 255: taint = taint + 1 def check_fields_match(name, s_field, d_field): if s_field == d_field: return True # Some fields changed names between qemu versions. This list # is used to whitelist such changes in each section / description. changed_names = { 'apic': ['timer', 'timer_expiry'], 'e1000': ['dev', 'parent_obj'], 'ehci': ['dev', 'pcidev'], 'I440FX': ['dev', 'parent_obj'], 'ich9_ahci': ['card', 'parent_obj'], 'ich9-ahci': ['ahci', 'ich9_ahci'], 'ioh3420': ['PCIDevice', 'PCIEDevice'], 'ioh-3240-express-root-port': ['port.br.dev', 'parent_obj.parent_obj.parent_obj', 'port.br.dev.exp.aer_log', 'parent_obj.parent_obj.parent_obj.exp.aer_log'], 'lsiscsi': ['dev', 'parent_obj'], 'mch': ['d', 'parent_obj'], 'pci_bridge': ['bridge.dev', 'parent_obj', 'bridge.dev.shpc', 'shpc'], 'pcnet': ['pci_dev', 'parent_obj'], 'PIIX3': ['pci_irq_levels', 'pci_irq_levels_vmstate'], 'piix4_pm': ['dev', 'parent_obj', 'pci0_status', 'acpi_pci_hotplug.acpi_pcihp_pci_status[0x0]', 'pm1a.sts', 'ar.pm1.evt.sts', 'pm1a.en', 'ar.pm1.evt.en', 'pm1_cnt.cnt', 'ar.pm1.cnt.cnt', 'tmr.timer', 'ar.tmr.timer', 'tmr.overflow_time', 'ar.tmr.overflow_time', 'gpe', 'ar.gpe'], 'rtl8139': ['dev', 'parent_obj'], 'qxl': ['num_surfaces', 'ssd.num_surfaces'], 'usb-ccid': ['abProtocolDataStructure', 'abProtocolDataStructure.data'], 'usb-host': ['dev', 'parent_obj'], 'usb-mouse': ['usb-ptr-queue', 'HIDPointerEventQueue'], 'usb-tablet': ['usb-ptr-queue', 'HIDPointerEventQueue'], 'vmware_vga': ['card', 'parent_obj'], 'vmware_vga_internal': ['depth', 'new_depth'], 'xhci': ['pci_dev', 'parent_obj'], 'x3130-upstream': ['PCIDevice', 'PCIEDevice'], 'xio3130-express-downstream-port': ['port.br.dev', 'parent_obj.parent_obj.parent_obj', 'port.br.dev.exp.aer_log', 'parent_obj.parent_obj.parent_obj.exp.aer_log'], 'xio3130-downstream': ['PCIDevice', 'PCIEDevice'], 'xio3130-express-upstream-port': ['br.dev', 'parent_obj.parent_obj', 'br.dev.exp.aer_log', 'parent_obj.parent_obj.exp.aer_log'], } if not name in changed_names: return False if s_field in changed_names[name] and d_field in changed_names[name]: return True return False def get_changed_sec_name(sec): # Section names can change -- see commit 292b1634 for an example. changes = { "ICH9 LPC": "ICH9-LPC", } for item in changes: if item == sec: return changes[item] if changes[item] == sec: return item return "" def exists_in_substruct(fields, item): # Some QEMU versions moved a few fields inside a substruct. This # kept the on-wire format the same. This function checks if # something got shifted inside a substruct. For example, the # change in commit 1f42d22233b4f3d1a2933ff30e8d6a6d9ee2d08f if not "Description" in fields: return False if not "Fields" in fields["Description"]: return False substruct_fields = fields["Description"]["Fields"] if substruct_fields == []: return False return check_fields_match(fields["Description"]["name"], substruct_fields[0]["field"], item) def check_fields(src_fields, dest_fields, desc, sec): # This function checks for all the fields in a section. If some # fields got embedded into a substruct, this function will also # attempt to check inside the substruct. d_iter = iter(dest_fields) s_iter = iter(src_fields) # Using these lists as stacks to store previous value of s_iter # and d_iter, so that when time comes to exit out of a substruct, # we can go back one level up and continue from where we left off. s_iter_list = [] d_iter_list = [] advance_src = True advance_dest = True unused_count = 0 while True: if advance_src: try: s_item = s_iter.next() except StopIteration: if s_iter_list == []: break s_iter = s_iter_list.pop() continue else: if unused_count == 0: # We want to avoid advancing just once -- when entering a # dest substruct, or when exiting one. advance_src = True if advance_dest: try: d_item = d_iter.next() except StopIteration: if d_iter_list == []: # We were not in a substruct print "Section \"" + sec + "\",", print "Description " + "\"" + desc + "\":", print "expected field \"" + s_item["field"] + "\",", print "while dest has no further fields" bump_taint() break d_iter = d_iter_list.pop() advance_src = False continue else: if unused_count == 0: advance_dest = True if unused_count > 0: if advance_dest == False: unused_count = unused_count - s_item["size"] if unused_count == 0: advance_dest = True continue if unused_count < 0: print "Section \"" + sec + "\",", print "Description \"" + desc + "\":", print "unused size mismatch near \"", print s_item["field"] + "\"" bump_taint() break continue if advance_src == False: unused_count = unused_count - d_item["size"] if unused_count == 0: advance_src = True continue if unused_count < 0: print "Section \"" + sec + "\",", print "Description \"" + desc + "\":", print "unused size mismatch near \"", print d_item["field"] + "\"" bump_taint() break continue if not check_fields_match(desc, s_item["field"], d_item["field"]): # Some fields were put in substructs, keeping the # on-wire format the same, but breaking static tools # like this one. # First, check if dest has a new substruct. if exists_in_substruct(d_item, s_item["field"]): # listiterators don't have a prev() function, so we # have to store our current location, descend into the # substruct, and ensure we come out as if nothing # happened when the substruct is over. # # Essentially we're opening the substructs that got # added which didn't change the wire format. d_iter_list.append(d_iter) substruct_fields = d_item["Description"]["Fields"] d_iter = iter(substruct_fields) advance_src = False continue # Next, check if src has substruct that dest removed # (can happen in backward migration: 2.0 -> 1.5) if exists_in_substruct(s_item, d_item["field"]): s_iter_list.append(s_iter) substruct_fields = s_item["Description"]["Fields"] s_iter = iter(substruct_fields) advance_dest = False continue if s_item["field"] == "unused" or d_item["field"] == "unused": if s_item["size"] == d_item["size"]: continue if d_item["field"] == "unused": advance_dest = False unused_count = d_item["size"] - s_item["size"] continue if s_item["field"] == "unused": advance_src = False unused_count = s_item["size"] - d_item["size"] continue print "Section \"" + sec + "\",", print "Description \"" + desc + "\":", print "expected field \"" + s_item["field"] + "\",", print "got \"" + d_item["field"] + "\"; skipping rest" bump_taint() break check_version(s_item, d_item, sec, desc) if not "Description" in s_item: # Check size of this field only if it's not a VMSTRUCT entry check_size(s_item, d_item, sec, desc, s_item["field"]) check_description_in_list(s_item, d_item, sec, desc) def check_subsections(src_sub, dest_sub, desc, sec): for s_item in src_sub: found = False for d_item in dest_sub: if s_item["name"] != d_item["name"]: continue found = True check_descriptions(s_item, d_item, sec) if not found: print "Section \"" + sec + "\", Description \"" + desc + "\":", print "Subsection \"" + s_item["name"] + "\" not found" bump_taint() def check_description_in_list(s_item, d_item, sec, desc): if not "Description" in s_item: return if not "Description" in d_item: print "Section \"" + sec + "\", Description \"" + desc + "\",", print "Field \"" + s_item["field"] + "\": missing description" bump_taint() return check_descriptions(s_item["Description"], d_item["Description"], sec) def check_descriptions(src_desc, dest_desc, sec): check_version(src_desc, dest_desc, sec, src_desc["name"]) if not check_fields_match(sec, src_desc["name"], dest_desc["name"]): print "Section \"" + sec + "\":", print "Description \"" + src_desc["name"] + "\"", print "missing, got \"" + dest_desc["name"] + "\" instead; skipping" bump_taint() return for f in src_desc: if not f in dest_desc: print "Section \"" + sec + "\"", print "Description \"" + src_desc["name"] + "\":", print "Entry \"" + f + "\" missing" bump_taint() continue if f == 'Fields': check_fields(src_desc[f], dest_desc[f], src_desc["name"], sec) if f == 'Subsections': check_subsections(src_desc[f], dest_desc[f], src_desc["name"], sec) def check_version(s, d, sec, desc=None): if s["version_id"] > d["version_id"]: print "Section \"" + sec + "\"", if desc: print "Description \"" + desc + "\":", print "version error:", s["version_id"], ">", d["version_id"] bump_taint() if not "minimum_version_id" in d: return if s["version_id"] < d["minimum_version_id"]: print "Section \"" + sec + "\"", if desc: print "Description \"" + desc + "\":", print "minimum version error:", s["version_id"], "<", print d["minimum_version_id"] bump_taint() def check_size(s, d, sec, desc=None, field=None): if s["size"] != d["size"]: print "Section \"" + sec + "\"", if desc: print "Description \"" + desc + "\"", if field: print "Field \"" + field + "\"", print "size mismatch:", s["size"], ",", d["size"] bump_taint() def check_machine_type(s, d): if s["Name"] != d["Name"]: print "Warning: checking incompatible machine types:", print "\"" + s["Name"] + "\", \"" + d["Name"] + "\"" return def main(): help_text = "Parse JSON-formatted vmstate dumps from QEMU in files SRC and DEST. Checks whether migration from SRC to DEST QEMU versions would break based on the VMSTATE information contained within the JSON outputs. The JSON output is created from a QEMU invocation with the -dump-vmstate parameter and a filename argument to it. Other parameters to QEMU do not matter, except the -M (machine type) parameter." parser = argparse.ArgumentParser(description=help_text) parser.add_argument('-s', '--src', type=file, required=True, help='json dump from src qemu') parser.add_argument('-d', '--dest', type=file, required=True, help='json dump from dest qemu') parser.add_argument('--reverse', required=False, default=False, action='store_true', help='reverse the direction') args = parser.parse_args() src_data = json.load(args.src) dest_data = json.load(args.dest) args.src.close() args.dest.close() if args.reverse: temp = src_data src_data = dest_data dest_data = temp for sec in src_data: dest_sec = sec if not dest_sec in dest_data: # Either the section name got changed, or the section # doesn't exist in dest. dest_sec = get_changed_sec_name(sec) if not dest_sec in dest_data: print "Section \"" + sec + "\" does not exist in dest" bump_taint() continue s = src_data[sec] d = dest_data[dest_sec] if sec == "vmschkmachine": check_machine_type(s, d) continue check_version(s, d, sec) for entry in s: if not entry in d: print "Section \"" + sec + "\": Entry \"" + entry + "\"", print "missing" bump_taint() continue if entry == "Description": check_descriptions(s[entry], d[entry], sec) return taint if __name__ == '__main__': sys.exit(main())
gpl-2.0
sdphome/UHF_Reader
rfs/rootfs/usr/lib/python2.7/encodings/mac_latin2.py
647
8565
""" Python Character Mapping Codec generated from 'LATIN2.TXT' with gencodec.py. Written by Marc-Andre Lemburg ([email protected]). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. (c) Copyright 2000 Guido van Rossum. """#" import codecs ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): return codecs.charmap_encode(input,errors,encoding_map) def decode(self,input,errors='strict'): return codecs.charmap_decode(input,errors,decoding_map) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.charmap_encode(input,self.errors,encoding_map)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.charmap_decode(input,self.errors,decoding_map)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='mac-latin2', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, ) ### Decoding Map decoding_map = codecs.make_identity_dict(range(256)) decoding_map.update({ 0x0080: 0x00c4, # LATIN CAPITAL LETTER A WITH DIAERESIS 0x0081: 0x0100, # LATIN CAPITAL LETTER A WITH MACRON 0x0082: 0x0101, # LATIN SMALL LETTER A WITH MACRON 0x0083: 0x00c9, # LATIN CAPITAL LETTER E WITH ACUTE 0x0084: 0x0104, # LATIN CAPITAL LETTER A WITH OGONEK 0x0085: 0x00d6, # LATIN CAPITAL LETTER O WITH DIAERESIS 0x0086: 0x00dc, # LATIN CAPITAL LETTER U WITH DIAERESIS 0x0087: 0x00e1, # LATIN SMALL LETTER A WITH ACUTE 0x0088: 0x0105, # LATIN SMALL LETTER A WITH OGONEK 0x0089: 0x010c, # LATIN CAPITAL LETTER C WITH CARON 0x008a: 0x00e4, # LATIN SMALL LETTER A WITH DIAERESIS 0x008b: 0x010d, # LATIN SMALL LETTER C WITH CARON 0x008c: 0x0106, # LATIN CAPITAL LETTER C WITH ACUTE 0x008d: 0x0107, # LATIN SMALL LETTER C WITH ACUTE 0x008e: 0x00e9, # LATIN SMALL LETTER E WITH ACUTE 0x008f: 0x0179, # LATIN CAPITAL LETTER Z WITH ACUTE 0x0090: 0x017a, # LATIN SMALL LETTER Z WITH ACUTE 0x0091: 0x010e, # LATIN CAPITAL LETTER D WITH CARON 0x0092: 0x00ed, # LATIN SMALL LETTER I WITH ACUTE 0x0093: 0x010f, # LATIN SMALL LETTER D WITH CARON 0x0094: 0x0112, # LATIN CAPITAL LETTER E WITH MACRON 0x0095: 0x0113, # LATIN SMALL LETTER E WITH MACRON 0x0096: 0x0116, # LATIN CAPITAL LETTER E WITH DOT ABOVE 0x0097: 0x00f3, # LATIN SMALL LETTER O WITH ACUTE 0x0098: 0x0117, # LATIN SMALL LETTER E WITH DOT ABOVE 0x0099: 0x00f4, # LATIN SMALL LETTER O WITH CIRCUMFLEX 0x009a: 0x00f6, # LATIN SMALL LETTER O WITH DIAERESIS 0x009b: 0x00f5, # LATIN SMALL LETTER O WITH TILDE 0x009c: 0x00fa, # LATIN SMALL LETTER U WITH ACUTE 0x009d: 0x011a, # LATIN CAPITAL LETTER E WITH CARON 0x009e: 0x011b, # LATIN SMALL LETTER E WITH CARON 0x009f: 0x00fc, # LATIN SMALL LETTER U WITH DIAERESIS 0x00a0: 0x2020, # DAGGER 0x00a1: 0x00b0, # DEGREE SIGN 0x00a2: 0x0118, # LATIN CAPITAL LETTER E WITH OGONEK 0x00a4: 0x00a7, # SECTION SIGN 0x00a5: 0x2022, # BULLET 0x00a6: 0x00b6, # PILCROW SIGN 0x00a7: 0x00df, # LATIN SMALL LETTER SHARP S 0x00a8: 0x00ae, # REGISTERED SIGN 0x00aa: 0x2122, # TRADE MARK SIGN 0x00ab: 0x0119, # LATIN SMALL LETTER E WITH OGONEK 0x00ac: 0x00a8, # DIAERESIS 0x00ad: 0x2260, # NOT EQUAL TO 0x00ae: 0x0123, # LATIN SMALL LETTER G WITH CEDILLA 0x00af: 0x012e, # LATIN CAPITAL LETTER I WITH OGONEK 0x00b0: 0x012f, # LATIN SMALL LETTER I WITH OGONEK 0x00b1: 0x012a, # LATIN CAPITAL LETTER I WITH MACRON 0x00b2: 0x2264, # LESS-THAN OR EQUAL TO 0x00b3: 0x2265, # GREATER-THAN OR EQUAL TO 0x00b4: 0x012b, # LATIN SMALL LETTER I WITH MACRON 0x00b5: 0x0136, # LATIN CAPITAL LETTER K WITH CEDILLA 0x00b6: 0x2202, # PARTIAL DIFFERENTIAL 0x00b7: 0x2211, # N-ARY SUMMATION 0x00b8: 0x0142, # LATIN SMALL LETTER L WITH STROKE 0x00b9: 0x013b, # LATIN CAPITAL LETTER L WITH CEDILLA 0x00ba: 0x013c, # LATIN SMALL LETTER L WITH CEDILLA 0x00bb: 0x013d, # LATIN CAPITAL LETTER L WITH CARON 0x00bc: 0x013e, # LATIN SMALL LETTER L WITH CARON 0x00bd: 0x0139, # LATIN CAPITAL LETTER L WITH ACUTE 0x00be: 0x013a, # LATIN SMALL LETTER L WITH ACUTE 0x00bf: 0x0145, # LATIN CAPITAL LETTER N WITH CEDILLA 0x00c0: 0x0146, # LATIN SMALL LETTER N WITH CEDILLA 0x00c1: 0x0143, # LATIN CAPITAL LETTER N WITH ACUTE 0x00c2: 0x00ac, # NOT SIGN 0x00c3: 0x221a, # SQUARE ROOT 0x00c4: 0x0144, # LATIN SMALL LETTER N WITH ACUTE 0x00c5: 0x0147, # LATIN CAPITAL LETTER N WITH CARON 0x00c6: 0x2206, # INCREMENT 0x00c7: 0x00ab, # LEFT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00c8: 0x00bb, # RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00c9: 0x2026, # HORIZONTAL ELLIPSIS 0x00ca: 0x00a0, # NO-BREAK SPACE 0x00cb: 0x0148, # LATIN SMALL LETTER N WITH CARON 0x00cc: 0x0150, # LATIN CAPITAL LETTER O WITH DOUBLE ACUTE 0x00cd: 0x00d5, # LATIN CAPITAL LETTER O WITH TILDE 0x00ce: 0x0151, # LATIN SMALL LETTER O WITH DOUBLE ACUTE 0x00cf: 0x014c, # LATIN CAPITAL LETTER O WITH MACRON 0x00d0: 0x2013, # EN DASH 0x00d1: 0x2014, # EM DASH 0x00d2: 0x201c, # LEFT DOUBLE QUOTATION MARK 0x00d3: 0x201d, # RIGHT DOUBLE QUOTATION MARK 0x00d4: 0x2018, # LEFT SINGLE QUOTATION MARK 0x00d5: 0x2019, # RIGHT SINGLE QUOTATION MARK 0x00d6: 0x00f7, # DIVISION SIGN 0x00d7: 0x25ca, # LOZENGE 0x00d8: 0x014d, # LATIN SMALL LETTER O WITH MACRON 0x00d9: 0x0154, # LATIN CAPITAL LETTER R WITH ACUTE 0x00da: 0x0155, # LATIN SMALL LETTER R WITH ACUTE 0x00db: 0x0158, # LATIN CAPITAL LETTER R WITH CARON 0x00dc: 0x2039, # SINGLE LEFT-POINTING ANGLE QUOTATION MARK 0x00dd: 0x203a, # SINGLE RIGHT-POINTING ANGLE QUOTATION MARK 0x00de: 0x0159, # LATIN SMALL LETTER R WITH CARON 0x00df: 0x0156, # LATIN CAPITAL LETTER R WITH CEDILLA 0x00e0: 0x0157, # LATIN SMALL LETTER R WITH CEDILLA 0x00e1: 0x0160, # LATIN CAPITAL LETTER S WITH CARON 0x00e2: 0x201a, # SINGLE LOW-9 QUOTATION MARK 0x00e3: 0x201e, # DOUBLE LOW-9 QUOTATION MARK 0x00e4: 0x0161, # LATIN SMALL LETTER S WITH CARON 0x00e5: 0x015a, # LATIN CAPITAL LETTER S WITH ACUTE 0x00e6: 0x015b, # LATIN SMALL LETTER S WITH ACUTE 0x00e7: 0x00c1, # LATIN CAPITAL LETTER A WITH ACUTE 0x00e8: 0x0164, # LATIN CAPITAL LETTER T WITH CARON 0x00e9: 0x0165, # LATIN SMALL LETTER T WITH CARON 0x00ea: 0x00cd, # LATIN CAPITAL LETTER I WITH ACUTE 0x00eb: 0x017d, # LATIN CAPITAL LETTER Z WITH CARON 0x00ec: 0x017e, # LATIN SMALL LETTER Z WITH CARON 0x00ed: 0x016a, # LATIN CAPITAL LETTER U WITH MACRON 0x00ee: 0x00d3, # LATIN CAPITAL LETTER O WITH ACUTE 0x00ef: 0x00d4, # LATIN CAPITAL LETTER O WITH CIRCUMFLEX 0x00f0: 0x016b, # LATIN SMALL LETTER U WITH MACRON 0x00f1: 0x016e, # LATIN CAPITAL LETTER U WITH RING ABOVE 0x00f2: 0x00da, # LATIN CAPITAL LETTER U WITH ACUTE 0x00f3: 0x016f, # LATIN SMALL LETTER U WITH RING ABOVE 0x00f4: 0x0170, # LATIN CAPITAL LETTER U WITH DOUBLE ACUTE 0x00f5: 0x0171, # LATIN SMALL LETTER U WITH DOUBLE ACUTE 0x00f6: 0x0172, # LATIN CAPITAL LETTER U WITH OGONEK 0x00f7: 0x0173, # LATIN SMALL LETTER U WITH OGONEK 0x00f8: 0x00dd, # LATIN CAPITAL LETTER Y WITH ACUTE 0x00f9: 0x00fd, # LATIN SMALL LETTER Y WITH ACUTE 0x00fa: 0x0137, # LATIN SMALL LETTER K WITH CEDILLA 0x00fb: 0x017b, # LATIN CAPITAL LETTER Z WITH DOT ABOVE 0x00fc: 0x0141, # LATIN CAPITAL LETTER L WITH STROKE 0x00fd: 0x017c, # LATIN SMALL LETTER Z WITH DOT ABOVE 0x00fe: 0x0122, # LATIN CAPITAL LETTER G WITH CEDILLA 0x00ff: 0x02c7, # CARON }) ### Encoding Map encoding_map = codecs.make_encoding_map(decoding_map)
gpl-3.0
rickerc/glance_audit
glance/cmd/manage.py
3
4395
#!/usr/bin/env python # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Glance Management Utility """ # FIXME(sirp): When we have glance-admin we can consider merging this into it # Perhaps for consistency with Nova, we would then rename glance-admin -> # glance-manage (or the other way around) import os import sys # If ../glance/__init__.py exists, add ../ to Python search path, so that # it will override what happens to be installed in /usr/(local/)lib/python... possible_topdir = os.path.normpath(os.path.join(os.path.abspath(sys.argv[0]), os.pardir, os.pardir)) if os.path.exists(os.path.join(possible_topdir, 'glance', '__init__.py')): sys.path.insert(0, possible_topdir) from oslo.config import cfg from glance.common import config from glance.common import exception import glance.db.sqlalchemy.api import glance.db.sqlalchemy.migration from glance.openstack.common import log CONF = cfg.CONF def do_db_version(): """Print database's current migration level""" print glance.db.sqlalchemy.migration.db_version() def do_upgrade(): """Upgrade the database's migration level""" glance.db.sqlalchemy.migration.upgrade(CONF.command.version) def do_downgrade(): """Downgrade the database's migration level""" glance.db.sqlalchemy.migration.downgrade(CONF.command.version) def do_version_control(): """Place a database under migration control""" glance.db.sqlalchemy.migration.version_control(CONF.command.version) def do_db_sync(): """ Place a database under migration control and upgrade, creating first if necessary. """ glance.db.sqlalchemy.migration.db_sync(CONF.command.version, CONF.command.current_version) def add_command_parsers(subparsers): parser = subparsers.add_parser('db_version') parser.set_defaults(func=do_db_version) parser = subparsers.add_parser('upgrade') parser.set_defaults(func=do_upgrade) parser.add_argument('version', nargs='?') parser = subparsers.add_parser('downgrade') parser.set_defaults(func=do_downgrade) parser.add_argument('version') parser = subparsers.add_parser('version_control') parser.set_defaults(func=do_version_control) parser.add_argument('version', nargs='?') parser = subparsers.add_parser('db_sync') parser.set_defaults(func=do_db_sync) parser.add_argument('version', nargs='?') parser.add_argument('current_version', nargs='?') command_opt = cfg.SubCommandOpt('command', title='Commands', help='Available commands', handler=add_command_parsers) def main(): CONF.register_cli_opt(command_opt) try: # We load the glance-registry config section because # sql_connection is only part of the glance registry. glance.db.sqlalchemy.api.add_cli_options() cfg_files = cfg.find_config_files(project='glance', prog='glance-registry') if not cfg_files: cfg_files = cfg.find_config_files(project='glance', prog='glance-api') config.parse_args(default_config_files=cfg_files, usage="%(prog)s [options] <cmd>") log.setup('glance') except RuntimeError as e: sys.exit("ERROR: %s" % e) try: CONF.command.func() except exception.GlanceException as e: sys.exit("ERROR: %s" % e) if __name__ == '__main__': main()
apache-2.0
peterayeni/libforensics
code/lf/win/shell/recyclebin/dtypes.py
13
1410
# Copyright 2010 Michael Murr # # This file is part of LibForensics. # # LibForensics is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # LibForensics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with LibForensics. If not, see <http://www.gnu.org/licenses/>. """Data structures to read recycle bin INFO2 files.""" # local imports from lf.dtypes import raw, LERecord from lf.win.dtypes import DWORD, FILETIME_LE __docformat__ = "restructuredtext en" __all__ = [ "INFO2Header", "INFO2Item" ] class INFO2Header(LERecord): version = DWORD unknown1 = DWORD unknown2 = DWORD # Number of entries in file? item_size = DWORD unknown3 = DWORD # Varies per file, a timestamp? # end class Header class INFO2Item(LERecord): name_asc = raw(260) id = DWORD # DcXX (this is the XX) drive_num = DWORD # 0 = A, 1 = B, 2 = C, ... dtime = FILETIME_LE file_size = DWORD name_uni = raw(520) # end class Item
lgpl-3.0
shanot/imp
modules/rmf/dependency/RMF/tools/dev_tools/python_tools/cpp_format.py
2
5358
"""Use the Python pygments library to perform extra checks on C++ grammar.""" from pygments import token from pygments.lexers.compiled import CppLexer import re import os def check_header_file(fh_name, project_name, errors): """Check a single C++ header file""" _check_file(fh_name, project_name, True, errors) def check_cpp_file(fh_name, project_name, errors): """Check a single C++ source file""" _check_file(fh_name, project_name, False, errors) def _check_file(fh_name, project_name, header, errors): fh, filename = fh_name s = tokenize_file(fh) check_tokens(s, filename, project_name, header, errors) def tokenize_file(fh): """Use the Python pygments library to tokenize a C++ file""" code = fh.read() c = CppLexer() scan = [] for (index, tok, value) in c.get_tokens_unprocessed(code): scan.append((tok, value)) return scan def check_tokens(scan, filename, project_name, header, errors): if filename.find("test_") == -1: # we don't do it for python tests check_comment_header(scan, filename, errors) if header: # Handle older versions of pygments which concatenate \n and # tokens if len(scan) >= 3 and scan[2][0] == token.Comment.Preproc \ and scan[2][1] == '\n#': scan[2] = (token.Comment.Preproc, '#') scan.insert(2, (token.Comment.Text, '\n')) check_header_start_end(scan, filename, project_name, errors) def check_comment_header(scan, filename, errors): if len(scan) < 1 or scan[0][0] not in (token.Comment, token.Comment.Multiline): errors.append('%s:1: First line should be a comment ' % filename + 'with a copyright notice and a description of the file') def have_header_guard(scan): return len(scan) >= 11 \ and scan[4][0] == token.Comment.Preproc \ and scan[4][1].startswith('ifndef') \ and scan[7][0] == token.Comment.Preproc \ and scan[7][1].startswith('define') \ and scan[-3][0] == token.Comment.Preproc \ and scan[-3][1].startswith('endif') \ and scan[-2][0] in (token.Comment, token.Comment.Multiline) def get_header_guard(filename, project_name): """Get prefix and suffix for header guard""" guard_prefix = project_name.replace(".", "").upper() guard_suffix = os.path.split(filename)[1].replace(".", "_").upper() return guard_prefix, guard_suffix def check_header_start_end(scan, filename, project_name, errors): guard_prefix, guard_suffix = get_header_guard(filename, project_name) header_guard = guard_prefix + '_' + guard_suffix if len(scan) < 11: bad = True else: bad = False if not scan[4][0] == token.Comment.Preproc: bad = True if not scan[4][1].startswith('ifndef'): errors.append('%s:%d: Header guard missing #ifndef.' % (filename, 1)) bad = True if not scan[7][0] == token.Comment.Preproc: bad = True if not scan[7][1].startswith('define'): errors.append('%s:%d: Header guard missing #define.' % (filename, 1)) bad = True if not scan[-3][0] == token.Comment.Preproc \ and not scan[-4][0] == token.Comment.Preproc: bad = True if not scan[-3][1].startswith('endif') \ and not scan[-4][1].startswith('endif'): errors.append('%s:%d: Header guard missing #endif.' % (filename, 1)) bad = True if not scan[-2][0] in (token.Comment, token.Comment.Multiline) \ and not scan[-3][0] in (token.Comment, token.Comment.Multiline): errors.append('%s:%d: Header guard missing closing comment.' % (filename, 1)) bad = True guard = scan[4][1][7:] if not guard.startswith(guard_prefix): errors.append('%s:%d: Header guard does not start with "%s".' % (filename, 1, guard_prefix)) bad = True if not guard.replace("_", "").endswith(guard_suffix.replace("_", "")): errors.append('%s:%d: Header guard does not end with "%s".' % (filename, 1, guard_suffix)) bad = True if not scan[7][1] == 'define ' + guard: errors.append('%s:%d: Header guard does not define "%s".' % (filename, 1, guard)) bad = True if not scan[-2][1] == '/* %s */' % guard \ and not scan[-3][1] == '/* %s */' % guard: errors.append('%s:%d: Header guard close does not have a ' 'comment of "/* %s */".' % (filename, 1, guard)) bad = True if bad: errors.append('%s:%d: Missing or incomplete header guard.' % (filename, 1) + """ Header files should start with a comment, then a blank line, then the rest of the file wrapped with a header guard. This must start with %s and end with %s - in between can be placed extra qualifiers, e.g. for a namespace. For example, /** Copyright and file description */ #ifndef %s #define %s ... #endif /* %s */ """ % (guard_prefix, guard_suffix, header_guard, header_guard, header_guard))
gpl-3.0
shangwuhencc/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
pheanex/xpython
exercises/point-mutations/point_mutations_test.py
2
1286
import unittest from point_mutations import hamming_distance class DNATest(unittest.TestCase): def test_no_difference_between_empty_strands(self): self.assertEqual(hamming_distance('', ''), 0) def test_no_difference_between_identical_strands(self): self.assertEqual(hamming_distance('GGACTGA', 'GGACTGA'), 0) def test_complete_hamming_distance_in_small_strand(self): self.assertEqual(hamming_distance('ACT', 'GGA'), 3) def test_hamming_distance_in_off_by_one_strand(self): self.assertEqual( hamming_distance('GGACGGATTCTGACCTGGACTAATTTTGGGG', 'AGGACGGATTCTGACCTGGACTAATTTTGGGG'), 19) def test_small_hamming_distance_in_middle_somewhere(self): self.assertEqual(hamming_distance('GGACG', 'GGTCG'), 1) def test_larger_distance(self): self.assertEqual(hamming_distance('ACCAGGG', 'ACTATGG'), 2) def test_ignores_extra_length_on_other_strand_when_longer(self): self.assertEqual(hamming_distance('AAACTAGGGG', 'AGGCTAGCGGTAGGAC'), 3) def test_ignores_extra_length_on_original_strand_when_longer(self): self.assertEqual( hamming_distance('GACTACGGACAGGGTAGGGAAT', 'GACATCGCACACC'), 5) if __name__ == '__main__': unittest.main()
mit
ptoraskar/django
django/contrib/gis/utils/layermapping.py
335
27300
# LayerMapping -- A Django Model/OGR Layer Mapping Utility """ The LayerMapping class provides a way to map the contents of OGR vector files (e.g. SHP files) to Geographic-enabled Django models. For more information, please consult the GeoDjango documentation: https://docs.djangoproject.com/en/dev/ref/contrib/gis/layermapping/ """ import sys from decimal import Decimal, InvalidOperation as DecimalInvalidOperation from django.contrib.gis.db.models import GeometryField from django.contrib.gis.gdal import ( CoordTransform, DataSource, GDALException, OGRGeometry, OGRGeomType, SpatialReference, ) from django.contrib.gis.gdal.field import ( OFTDate, OFTDateTime, OFTInteger, OFTReal, OFTString, OFTTime, ) from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist from django.db import connections, models, router, transaction from django.utils import six from django.utils.encoding import force_text # LayerMapping exceptions. class LayerMapError(Exception): pass class InvalidString(LayerMapError): pass class InvalidDecimal(LayerMapError): pass class InvalidInteger(LayerMapError): pass class MissingForeignKey(LayerMapError): pass class LayerMapping(object): "A class that maps OGR Layers to GeoDjango Models." # Acceptable 'base' types for a multi-geometry type. MULTI_TYPES = {1: OGRGeomType('MultiPoint'), 2: OGRGeomType('MultiLineString'), 3: OGRGeomType('MultiPolygon'), OGRGeomType('Point25D').num: OGRGeomType('MultiPoint25D'), OGRGeomType('LineString25D').num: OGRGeomType('MultiLineString25D'), OGRGeomType('Polygon25D').num: OGRGeomType('MultiPolygon25D'), } # Acceptable Django field types and corresponding acceptable OGR # counterparts. FIELD_TYPES = { models.AutoField: OFTInteger, models.IntegerField: (OFTInteger, OFTReal, OFTString), models.FloatField: (OFTInteger, OFTReal), models.DateField: OFTDate, models.DateTimeField: OFTDateTime, models.EmailField: OFTString, models.TimeField: OFTTime, models.DecimalField: (OFTInteger, OFTReal), models.CharField: OFTString, models.SlugField: OFTString, models.TextField: OFTString, models.URLField: OFTString, models.BigIntegerField: (OFTInteger, OFTReal, OFTString), models.SmallIntegerField: (OFTInteger, OFTReal, OFTString), models.PositiveSmallIntegerField: (OFTInteger, OFTReal, OFTString), } def __init__(self, model, data, mapping, layer=0, source_srs=None, encoding='utf-8', transaction_mode='commit_on_success', transform=True, unique=None, using=None): """ A LayerMapping object is initialized using the given Model (not an instance), a DataSource (or string path to an OGR-supported data file), and a mapping dictionary. See the module level docstring for more details and keyword argument usage. """ # Getting the DataSource and the associated Layer. if isinstance(data, six.string_types): self.ds = DataSource(data, encoding=encoding) else: self.ds = data self.layer = self.ds[layer] self.using = using if using is not None else router.db_for_write(model) self.spatial_backend = connections[self.using].ops # Setting the mapping & model attributes. self.mapping = mapping self.model = model # Checking the layer -- initialization of the object will fail if # things don't check out before hand. self.check_layer() # Getting the geometry column associated with the model (an # exception will be raised if there is no geometry column). if connections[self.using].features.supports_transform: self.geo_field = self.geometry_field() else: transform = False # Checking the source spatial reference system, and getting # the coordinate transformation object (unless the `transform` # keyword is set to False) if transform: self.source_srs = self.check_srs(source_srs) self.transform = self.coord_transform() else: self.transform = transform # Setting the encoding for OFTString fields, if specified. if encoding: # Making sure the encoding exists, if not a LookupError # exception will be thrown. from codecs import lookup lookup(encoding) self.encoding = encoding else: self.encoding = None if unique: self.check_unique(unique) transaction_mode = 'autocommit' # Has to be set to autocommit. self.unique = unique else: self.unique = None # Setting the transaction decorator with the function in the # transaction modes dictionary. self.transaction_mode = transaction_mode if transaction_mode == 'autocommit': self.transaction_decorator = None elif transaction_mode == 'commit_on_success': self.transaction_decorator = transaction.atomic else: raise LayerMapError('Unrecognized transaction mode: %s' % transaction_mode) # #### Checking routines used during initialization #### def check_fid_range(self, fid_range): "This checks the `fid_range` keyword." if fid_range: if isinstance(fid_range, (tuple, list)): return slice(*fid_range) elif isinstance(fid_range, slice): return fid_range else: raise TypeError else: return None def check_layer(self): """ This checks the Layer metadata, and ensures that it is compatible with the mapping information and model. Unlike previous revisions, there is no need to increment through each feature in the Layer. """ # The geometry field of the model is set here. # TODO: Support more than one geometry field / model. However, this # depends on the GDAL Driver in use. self.geom_field = False self.fields = {} # Getting lists of the field names and the field types available in # the OGR Layer. ogr_fields = self.layer.fields ogr_field_types = self.layer.field_types # Function for determining if the OGR mapping field is in the Layer. def check_ogr_fld(ogr_map_fld): try: idx = ogr_fields.index(ogr_map_fld) except ValueError: raise LayerMapError('Given mapping OGR field "%s" not found in OGR Layer.' % ogr_map_fld) return idx # No need to increment through each feature in the model, simply check # the Layer metadata against what was given in the mapping dictionary. for field_name, ogr_name in self.mapping.items(): # Ensuring that a corresponding field exists in the model # for the given field name in the mapping. try: model_field = self.model._meta.get_field(field_name) except FieldDoesNotExist: raise LayerMapError('Given mapping field "%s" not in given Model fields.' % field_name) # Getting the string name for the Django field class (e.g., 'PointField'). fld_name = model_field.__class__.__name__ if isinstance(model_field, GeometryField): if self.geom_field: raise LayerMapError('LayerMapping does not support more than one GeometryField per model.') # Getting the coordinate dimension of the geometry field. coord_dim = model_field.dim try: if coord_dim == 3: gtype = OGRGeomType(ogr_name + '25D') else: gtype = OGRGeomType(ogr_name) except GDALException: raise LayerMapError('Invalid mapping for GeometryField "%s".' % field_name) # Making sure that the OGR Layer's Geometry is compatible. ltype = self.layer.geom_type if not (ltype.name.startswith(gtype.name) or self.make_multi(ltype, model_field)): raise LayerMapError('Invalid mapping geometry; model has %s%s, ' 'layer geometry type is %s.' % (fld_name, '(dim=3)' if coord_dim == 3 else '', ltype)) # Setting the `geom_field` attribute w/the name of the model field # that is a Geometry. Also setting the coordinate dimension # attribute. self.geom_field = field_name self.coord_dim = coord_dim fields_val = model_field elif isinstance(model_field, models.ForeignKey): if isinstance(ogr_name, dict): # Is every given related model mapping field in the Layer? rel_model = model_field.remote_field.model for rel_name, ogr_field in ogr_name.items(): idx = check_ogr_fld(ogr_field) try: rel_model._meta.get_field(rel_name) except FieldDoesNotExist: raise LayerMapError('ForeignKey mapping field "%s" not in %s fields.' % (rel_name, rel_model.__class__.__name__)) fields_val = rel_model else: raise TypeError('ForeignKey mapping must be of dictionary type.') else: # Is the model field type supported by LayerMapping? if model_field.__class__ not in self.FIELD_TYPES: raise LayerMapError('Django field type "%s" has no OGR mapping (yet).' % fld_name) # Is the OGR field in the Layer? idx = check_ogr_fld(ogr_name) ogr_field = ogr_field_types[idx] # Can the OGR field type be mapped to the Django field type? if not issubclass(ogr_field, self.FIELD_TYPES[model_field.__class__]): raise LayerMapError('OGR field "%s" (of type %s) cannot be mapped to Django %s.' % (ogr_field, ogr_field.__name__, fld_name)) fields_val = model_field self.fields[field_name] = fields_val def check_srs(self, source_srs): "Checks the compatibility of the given spatial reference object." if isinstance(source_srs, SpatialReference): sr = source_srs elif isinstance(source_srs, self.spatial_backend.spatial_ref_sys()): sr = source_srs.srs elif isinstance(source_srs, (int, six.string_types)): sr = SpatialReference(source_srs) else: # Otherwise just pulling the SpatialReference from the layer sr = self.layer.srs if not sr: raise LayerMapError('No source reference system defined.') else: return sr def check_unique(self, unique): "Checks the `unique` keyword parameter -- may be a sequence or string." if isinstance(unique, (list, tuple)): # List of fields to determine uniqueness with for attr in unique: if attr not in self.mapping: raise ValueError elif isinstance(unique, six.string_types): # Only a single field passed in. if unique not in self.mapping: raise ValueError else: raise TypeError('Unique keyword argument must be set with a tuple, list, or string.') # Keyword argument retrieval routines #### def feature_kwargs(self, feat): """ Given an OGR Feature, this will return a dictionary of keyword arguments for constructing the mapped model. """ # The keyword arguments for model construction. kwargs = {} # Incrementing through each model field and OGR field in the # dictionary mapping. for field_name, ogr_name in self.mapping.items(): model_field = self.fields[field_name] if isinstance(model_field, GeometryField): # Verify OGR geometry. try: val = self.verify_geom(feat.geom, model_field) except GDALException: raise LayerMapError('Could not retrieve geometry from feature.') elif isinstance(model_field, models.base.ModelBase): # The related _model_, not a field was passed in -- indicating # another mapping for the related Model. val = self.verify_fk(feat, model_field, ogr_name) else: # Otherwise, verify OGR Field type. val = self.verify_ogr_field(feat[ogr_name], model_field) # Setting the keyword arguments for the field name with the # value obtained above. kwargs[field_name] = val return kwargs def unique_kwargs(self, kwargs): """ Given the feature keyword arguments (from `feature_kwargs`) this routine will construct and return the uniqueness keyword arguments -- a subset of the feature kwargs. """ if isinstance(self.unique, six.string_types): return {self.unique: kwargs[self.unique]} else: return {fld: kwargs[fld] for fld in self.unique} # #### Verification routines used in constructing model keyword arguments. #### def verify_ogr_field(self, ogr_field, model_field): """ Verifies if the OGR Field contents are acceptable to the Django model field. If they are, the verified value is returned, otherwise the proper exception is raised. """ if (isinstance(ogr_field, OFTString) and isinstance(model_field, (models.CharField, models.TextField))): if self.encoding: # The encoding for OGR data sources may be specified here # (e.g., 'cp437' for Census Bureau boundary files). val = force_text(ogr_field.value, self.encoding) else: val = ogr_field.value if model_field.max_length and len(val) > model_field.max_length: raise InvalidString('%s model field maximum string length is %s, given %s characters.' % (model_field.name, model_field.max_length, len(val))) elif isinstance(ogr_field, OFTReal) and isinstance(model_field, models.DecimalField): try: # Creating an instance of the Decimal value to use. d = Decimal(str(ogr_field.value)) except DecimalInvalidOperation: raise InvalidDecimal('Could not construct decimal from: %s' % ogr_field.value) # Getting the decimal value as a tuple. dtup = d.as_tuple() digits = dtup[1] d_idx = dtup[2] # index where the decimal is # Maximum amount of precision, or digits to the left of the decimal. max_prec = model_field.max_digits - model_field.decimal_places # Getting the digits to the left of the decimal place for the # given decimal. if d_idx < 0: n_prec = len(digits[:d_idx]) else: n_prec = len(digits) + d_idx # If we have more than the maximum digits allowed, then throw an # InvalidDecimal exception. if n_prec > max_prec: raise InvalidDecimal( 'A DecimalField with max_digits %d, decimal_places %d must ' 'round to an absolute value less than 10^%d.' % (model_field.max_digits, model_field.decimal_places, max_prec) ) val = d elif isinstance(ogr_field, (OFTReal, OFTString)) and isinstance(model_field, models.IntegerField): # Attempt to convert any OFTReal and OFTString value to an OFTInteger. try: val = int(ogr_field.value) except ValueError: raise InvalidInteger('Could not construct integer from: %s' % ogr_field.value) else: val = ogr_field.value return val def verify_fk(self, feat, rel_model, rel_mapping): """ Given an OGR Feature, the related model and its dictionary mapping, this routine will retrieve the related model for the ForeignKey mapping. """ # TODO: It is expensive to retrieve a model for every record -- # explore if an efficient mechanism exists for caching related # ForeignKey models. # Constructing and verifying the related model keyword arguments. fk_kwargs = {} for field_name, ogr_name in rel_mapping.items(): fk_kwargs[field_name] = self.verify_ogr_field(feat[ogr_name], rel_model._meta.get_field(field_name)) # Attempting to retrieve and return the related model. try: return rel_model.objects.using(self.using).get(**fk_kwargs) except ObjectDoesNotExist: raise MissingForeignKey( 'No ForeignKey %s model found with keyword arguments: %s' % (rel_model.__name__, fk_kwargs) ) def verify_geom(self, geom, model_field): """ Verifies the geometry -- will construct and return a GeometryCollection if necessary (for example if the model field is MultiPolygonField while the mapped shapefile only contains Polygons). """ # Downgrade a 3D geom to a 2D one, if necessary. if self.coord_dim != geom.coord_dim: geom.coord_dim = self.coord_dim if self.make_multi(geom.geom_type, model_field): # Constructing a multi-geometry type to contain the single geometry multi_type = self.MULTI_TYPES[geom.geom_type.num] g = OGRGeometry(multi_type) g.add(geom) else: g = geom # Transforming the geometry with our Coordinate Transformation object, # but only if the class variable `transform` is set w/a CoordTransform # object. if self.transform: g.transform(self.transform) # Returning the WKT of the geometry. return g.wkt # #### Other model methods #### def coord_transform(self): "Returns the coordinate transformation object." SpatialRefSys = self.spatial_backend.spatial_ref_sys() try: # Getting the target spatial reference system target_srs = SpatialRefSys.objects.using(self.using).get(srid=self.geo_field.srid).srs # Creating the CoordTransform object return CoordTransform(self.source_srs, target_srs) except Exception as msg: new_msg = 'Could not translate between the data source and model geometry: %s' % msg six.reraise(LayerMapError, LayerMapError(new_msg), sys.exc_info()[2]) def geometry_field(self): "Returns the GeometryField instance associated with the geographic column." # Use `get_field()` on the model's options so that we # get the correct field instance if there's model inheritance. opts = self.model._meta return opts.get_field(self.geom_field) def make_multi(self, geom_type, model_field): """ Given the OGRGeomType for a geometry and its associated GeometryField, determine whether the geometry should be turned into a GeometryCollection. """ return (geom_type.num in self.MULTI_TYPES and model_field.__class__.__name__ == 'Multi%s' % geom_type.django) def save(self, verbose=False, fid_range=False, step=False, progress=False, silent=False, stream=sys.stdout, strict=False): """ Saves the contents from the OGR DataSource Layer into the database according to the mapping dictionary given at initialization. Keyword Parameters: verbose: If set, information will be printed subsequent to each model save executed on the database. fid_range: May be set with a slice or tuple of (begin, end) feature ID's to map from the data source. In other words, this keyword enables the user to selectively import a subset range of features in the geographic data source. step: If set with an integer, transactions will occur at every step interval. For example, if step=1000, a commit would occur after the 1,000th feature, the 2,000th feature etc. progress: When this keyword is set, status information will be printed giving the number of features processed and successfully saved. By default, progress information will pe printed every 1000 features processed, however, this default may be overridden by setting this keyword with an integer for the desired interval. stream: Status information will be written to this file handle. Defaults to using `sys.stdout`, but any object with a `write` method is supported. silent: By default, non-fatal error notifications are printed to stdout, but this keyword may be set to disable these notifications. strict: Execution of the model mapping will cease upon the first error encountered. The default behavior is to attempt to continue. """ # Getting the default Feature ID range. default_range = self.check_fid_range(fid_range) # Setting the progress interval, if requested. if progress: if progress is True or not isinstance(progress, int): progress_interval = 1000 else: progress_interval = progress def _save(feat_range=default_range, num_feat=0, num_saved=0): if feat_range: layer_iter = self.layer[feat_range] else: layer_iter = self.layer for feat in layer_iter: num_feat += 1 # Getting the keyword arguments try: kwargs = self.feature_kwargs(feat) except LayerMapError as msg: # Something borked the validation if strict: raise elif not silent: stream.write('Ignoring Feature ID %s because: %s\n' % (feat.fid, msg)) else: # Constructing the model using the keyword args is_update = False if self.unique: # If we want unique models on a particular field, handle the # geometry appropriately. try: # Getting the keyword arguments and retrieving # the unique model. u_kwargs = self.unique_kwargs(kwargs) m = self.model.objects.using(self.using).get(**u_kwargs) is_update = True # Getting the geometry (in OGR form), creating # one from the kwargs WKT, adding in additional # geometries, and update the attribute with the # just-updated geometry WKT. geom = getattr(m, self.geom_field).ogr new = OGRGeometry(kwargs[self.geom_field]) for g in new: geom.add(g) setattr(m, self.geom_field, geom.wkt) except ObjectDoesNotExist: # No unique model exists yet, create. m = self.model(**kwargs) else: m = self.model(**kwargs) try: # Attempting to save. m.save(using=self.using) num_saved += 1 if verbose: stream.write('%s: %s\n' % ('Updated' if is_update else 'Saved', m)) except Exception as msg: if strict: # Bailing out if the `strict` keyword is set. if not silent: stream.write( 'Failed to save the feature (id: %s) into the ' 'model with the keyword arguments:\n' % feat.fid ) stream.write('%s\n' % kwargs) raise elif not silent: stream.write('Failed to save %s:\n %s\nContinuing\n' % (kwargs, msg)) # Printing progress information, if requested. if progress and num_feat % progress_interval == 0: stream.write('Processed %d features, saved %d ...\n' % (num_feat, num_saved)) # Only used for status output purposes -- incremental saving uses the # values returned here. return num_saved, num_feat if self.transaction_decorator is not None: _save = self.transaction_decorator(_save) nfeat = self.layer.num_feat if step and isinstance(step, int) and step < nfeat: # Incremental saving is requested at the given interval (step) if default_range: raise LayerMapError('The `step` keyword may not be used in conjunction with the `fid_range` keyword.') beg, num_feat, num_saved = (0, 0, 0) indices = range(step, nfeat, step) n_i = len(indices) for i, end in enumerate(indices): # Constructing the slice to use for this step; the last slice is # special (e.g, [100:] instead of [90:100]). if i + 1 == n_i: step_slice = slice(beg, None) else: step_slice = slice(beg, end) try: num_feat, num_saved = _save(step_slice, num_feat, num_saved) beg = end except: # Deliberately catch everything stream.write('%s\nFailed to save slice: %s\n' % ('=-' * 20, step_slice)) raise else: # Otherwise, just calling the previously defined _save() function. _save()
bsd-3-clause
swenson/sagewiki
unidecode/unidecode/x070.py
252
4693
data = ( 'You ', # 0x00 'Yang ', # 0x01 'Lu ', # 0x02 'Si ', # 0x03 'Jie ', # 0x04 'Ying ', # 0x05 'Du ', # 0x06 'Wang ', # 0x07 'Hui ', # 0x08 'Xie ', # 0x09 'Pan ', # 0x0a 'Shen ', # 0x0b 'Biao ', # 0x0c 'Chan ', # 0x0d 'Mo ', # 0x0e 'Liu ', # 0x0f 'Jian ', # 0x10 'Pu ', # 0x11 'Se ', # 0x12 'Cheng ', # 0x13 'Gu ', # 0x14 'Bin ', # 0x15 'Huo ', # 0x16 'Xian ', # 0x17 'Lu ', # 0x18 'Qin ', # 0x19 'Han ', # 0x1a 'Ying ', # 0x1b 'Yong ', # 0x1c 'Li ', # 0x1d 'Jing ', # 0x1e 'Xiao ', # 0x1f 'Ying ', # 0x20 'Sui ', # 0x21 'Wei ', # 0x22 'Xie ', # 0x23 'Huai ', # 0x24 'Hao ', # 0x25 'Zhu ', # 0x26 'Long ', # 0x27 'Lai ', # 0x28 'Dui ', # 0x29 'Fan ', # 0x2a 'Hu ', # 0x2b 'Lai ', # 0x2c '[?] ', # 0x2d '[?] ', # 0x2e 'Ying ', # 0x2f 'Mi ', # 0x30 'Ji ', # 0x31 'Lian ', # 0x32 'Jian ', # 0x33 'Ying ', # 0x34 'Fen ', # 0x35 'Lin ', # 0x36 'Yi ', # 0x37 'Jian ', # 0x38 'Yue ', # 0x39 'Chan ', # 0x3a 'Dai ', # 0x3b 'Rang ', # 0x3c 'Jian ', # 0x3d 'Lan ', # 0x3e 'Fan ', # 0x3f 'Shuang ', # 0x40 'Yuan ', # 0x41 'Zhuo ', # 0x42 'Feng ', # 0x43 'She ', # 0x44 'Lei ', # 0x45 'Lan ', # 0x46 'Cong ', # 0x47 'Qu ', # 0x48 'Yong ', # 0x49 'Qian ', # 0x4a 'Fa ', # 0x4b 'Guan ', # 0x4c 'Que ', # 0x4d 'Yan ', # 0x4e 'Hao ', # 0x4f 'Hyeng ', # 0x50 'Sa ', # 0x51 'Zan ', # 0x52 'Luan ', # 0x53 'Yan ', # 0x54 'Li ', # 0x55 'Mi ', # 0x56 'Shan ', # 0x57 'Tan ', # 0x58 'Dang ', # 0x59 'Jiao ', # 0x5a 'Chan ', # 0x5b '[?] ', # 0x5c 'Hao ', # 0x5d 'Ba ', # 0x5e 'Zhu ', # 0x5f 'Lan ', # 0x60 'Lan ', # 0x61 'Nang ', # 0x62 'Wan ', # 0x63 'Luan ', # 0x64 'Xun ', # 0x65 'Xian ', # 0x66 'Yan ', # 0x67 'Gan ', # 0x68 'Yan ', # 0x69 'Yu ', # 0x6a 'Huo ', # 0x6b 'Si ', # 0x6c 'Mie ', # 0x6d 'Guang ', # 0x6e 'Deng ', # 0x6f 'Hui ', # 0x70 'Xiao ', # 0x71 'Xiao ', # 0x72 'Hu ', # 0x73 'Hong ', # 0x74 'Ling ', # 0x75 'Zao ', # 0x76 'Zhuan ', # 0x77 'Jiu ', # 0x78 'Zha ', # 0x79 'Xie ', # 0x7a 'Chi ', # 0x7b 'Zhuo ', # 0x7c 'Zai ', # 0x7d 'Zai ', # 0x7e 'Can ', # 0x7f 'Yang ', # 0x80 'Qi ', # 0x81 'Zhong ', # 0x82 'Fen ', # 0x83 'Niu ', # 0x84 'Jiong ', # 0x85 'Wen ', # 0x86 'Po ', # 0x87 'Yi ', # 0x88 'Lu ', # 0x89 'Chui ', # 0x8a 'Pi ', # 0x8b 'Kai ', # 0x8c 'Pan ', # 0x8d 'Yan ', # 0x8e 'Kai ', # 0x8f 'Pang ', # 0x90 'Mu ', # 0x91 'Chao ', # 0x92 'Liao ', # 0x93 'Gui ', # 0x94 'Kang ', # 0x95 'Tun ', # 0x96 'Guang ', # 0x97 'Xin ', # 0x98 'Zhi ', # 0x99 'Guang ', # 0x9a 'Guang ', # 0x9b 'Wei ', # 0x9c 'Qiang ', # 0x9d '[?] ', # 0x9e 'Da ', # 0x9f 'Xia ', # 0xa0 'Zheng ', # 0xa1 'Zhu ', # 0xa2 'Ke ', # 0xa3 'Zhao ', # 0xa4 'Fu ', # 0xa5 'Ba ', # 0xa6 'Duo ', # 0xa7 'Duo ', # 0xa8 'Ling ', # 0xa9 'Zhuo ', # 0xaa 'Xuan ', # 0xab 'Ju ', # 0xac 'Tan ', # 0xad 'Pao ', # 0xae 'Jiong ', # 0xaf 'Pao ', # 0xb0 'Tai ', # 0xb1 'Tai ', # 0xb2 'Bing ', # 0xb3 'Yang ', # 0xb4 'Tong ', # 0xb5 'Han ', # 0xb6 'Zhu ', # 0xb7 'Zha ', # 0xb8 'Dian ', # 0xb9 'Wei ', # 0xba 'Shi ', # 0xbb 'Lian ', # 0xbc 'Chi ', # 0xbd 'Huang ', # 0xbe '[?] ', # 0xbf 'Hu ', # 0xc0 'Shuo ', # 0xc1 'Lan ', # 0xc2 'Jing ', # 0xc3 'Jiao ', # 0xc4 'Xu ', # 0xc5 'Xing ', # 0xc6 'Quan ', # 0xc7 'Lie ', # 0xc8 'Huan ', # 0xc9 'Yang ', # 0xca 'Xiao ', # 0xcb 'Xiu ', # 0xcc 'Xian ', # 0xcd 'Yin ', # 0xce 'Wu ', # 0xcf 'Zhou ', # 0xd0 'Yao ', # 0xd1 'Shi ', # 0xd2 'Wei ', # 0xd3 'Tong ', # 0xd4 'Xue ', # 0xd5 'Zai ', # 0xd6 'Kai ', # 0xd7 'Hong ', # 0xd8 'Luo ', # 0xd9 'Xia ', # 0xda 'Zhu ', # 0xdb 'Xuan ', # 0xdc 'Zheng ', # 0xdd 'Po ', # 0xde 'Yan ', # 0xdf 'Hui ', # 0xe0 'Guang ', # 0xe1 'Zhe ', # 0xe2 'Hui ', # 0xe3 'Kao ', # 0xe4 '[?] ', # 0xe5 'Fan ', # 0xe6 'Shao ', # 0xe7 'Ye ', # 0xe8 'Hui ', # 0xe9 '[?] ', # 0xea 'Tang ', # 0xeb 'Jin ', # 0xec 'Re ', # 0xed '[?] ', # 0xee 'Xi ', # 0xef 'Fu ', # 0xf0 'Jiong ', # 0xf1 'Che ', # 0xf2 'Pu ', # 0xf3 'Jing ', # 0xf4 'Zhuo ', # 0xf5 'Ting ', # 0xf6 'Wan ', # 0xf7 'Hai ', # 0xf8 'Peng ', # 0xf9 'Lang ', # 0xfa 'Shan ', # 0xfb 'Hu ', # 0xfc 'Feng ', # 0xfd 'Chi ', # 0xfe 'Rong ', # 0xff )
gpl-2.0
jacklopessapo/support-tools
googlecode-issues-exporter/bitbucket_issue_converter.py
92
6834
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tool for converting Google Code issues to a format accepted by BitBucket. Most BitBucket concepts map cleanly to their Google Code equivalent, with the exception of the following: - Issue Assignee is called an Owner - Issue Reporter is called an Author - Comment User is called an Author """ import argparse import json import sys import issues def _getKind(kind): mapping = { "defect": "bug", "enhancement": "enhancement", "task": "task", "review": "proposal", "other": "bug", } return mapping.get(kind.lower(), "bug") def _getPriority(priority): mapping = { "low": "trivial", "medium": "minor", "high": "major", "critical": "critical", } return mapping.get(priority.lower(), "minor") def _getStatus(status): mapping = { "new": "new", "fixed": "resolved", "invalid": "invalid", "duplicate": "duplicate", "wontfix": "wontfix", } return mapping.get(status.lower(), "new") def _getTitle(title): if len(title) < 255: return title return title[:250] + "[...]" class UserService(issues.UserService): """BitBucket user operations. """ def IsUser(self, username): """Returns wheter a username is a valid user. BitBucket does not have a user api, so accept all usernames. """ return True class IssueService(issues.IssueService): """Abstract issue operations. Handles creating and updating issues and comments on an user API. """ def __init__(self): self._bitbucket_issues = [] self._bitbucket_comments = [] def GetIssues(self, state="open"): """Gets all of the issue for the repository. Since BitBucket does not have an issue API, always returns an empty list. Args: state: The state of the repository can be either 'open' or 'closed'. Returns: An empty list. """ return [] def CreateIssue(self, googlecode_issue): """Creates an issue. Args: googlecode_issue: An instance of GoogleCodeIssue Returns: The issue number of the new issue. Raises: ServiceError: An error occurred creating the issue. """ bitbucket_issue = { "assignee": googlecode_issue.GetOwner(), "content": googlecode_issue.GetDescription(), "content_updated_on": googlecode_issue.GetContentUpdatedOn(), "created_on": googlecode_issue.GetCreatedOn(), "id": googlecode_issue.GetId(), "kind": _getKind(googlecode_issue.GetKind()), "priority": _getPriority(googlecode_issue.GetPriority()), "reporter": googlecode_issue.GetAuthor(), "status": _getStatus(googlecode_issue.GetStatus()), "title": _getTitle(googlecode_issue.GetTitle()), "updated_on": googlecode_issue.GetUpdatedOn() } self._bitbucket_issues.append(bitbucket_issue) return googlecode_issue.GetId() def CloseIssue(self, issue_number): """Closes an issue. Args: issue_number: The issue number. """ def CreateComment(self, issue_number, googlecode_comment): """Creates a comment on an issue. Args: issue_number: The issue number. googlecode_comment: An instance of GoogleCodeComment """ bitbucket_comment = { "content": googlecode_comment.GetDescription(), "created_on": googlecode_comment.GetCreatedOn(), "id": googlecode_comment.GetId(), "issue": googlecode_comment.GetIssue().GetId(), "updated_on": googlecode_comment.GetUpdatedOn(), "user": googlecode_comment.GetAuthor() } self._bitbucket_comments.append(bitbucket_comment) def WriteIssueData(self, default_issue_kind): """Writes out the json issue and comments data to db-1.0.json. """ issues_data = { "issues": self._bitbucket_issues, "comments": self._bitbucket_comments, "meta": { "default_kind": default_issue_kind } } with open("db-1.0.json", "w") as issues_file: issues_json = json.dumps(issues_data, sort_keys=True, indent=4, separators=(",", ": ")) issues_file.write(issues_json) def ExportIssues(issue_file_path, project_name, user_file_path, default_issue_kind): """Exports all issues for a given project. """ issue_service = IssueService() user_service = UserService() issue_data = issues.LoadIssueData(issue_file_path, project_name) user_map = issues.LoadUserData(user_file_path, user_service) issue_exporter = issues.IssueExporter( issue_service, user_service, issue_data, project_name, user_map) try: issue_exporter.Init() issue_exporter.Start() issue_service.WriteIssueData(default_issue_kind) print "\nDone!\n" except IOError, e: print "[IOError] ERROR: %s" % e except issues.InvalidUserError, e: print "[InvalidUserError] ERROR: %s" % e def main(args): """The main function. Args: args: The command line arguments. Raises: ProjectNotFoundError: The user passed in an invalid project name. """ parser = argparse.ArgumentParser() parser.add_argument("--issue_file_path", required=True, help="The path to the file containing the issues from" "Google Code.") parser.add_argument("--project_name", required=True, help="The name of the Google Code project you wish to" "export") parser.add_argument("--user_file_path", required=False, help="The path to the file containing a mapping from" "email address to bitbucket username") parser.add_argument("--default_issue_kind", required=False, help="A non-null string containing one of the following" "values: bug, enhancement, proposal, task. Defaults to" "bug") parsed_args, _ = parser.parse_known_args(args) # Default value. if not parsed_args.default_issue_kind: print "Using default issue kind of 'bug'." parsed_args.default_issue_kind = "bug" ExportIssues( parsed_args.issue_file_path, parsed_args.project_name, parsed_args.user_file_path, parsed_args.default_issue_kind) if __name__ == "__main__": main(sys.argv)
apache-2.0
patrickm/chromium.src
build/android/test_runner.py
2
28778
#!/usr/bin/env python # # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs all types of tests from one unified interface.""" import collections import logging import optparse import os import shutil import signal import sys import threading from pylib import android_commands from pylib import constants from pylib import forwarder from pylib import ports from pylib.base import base_test_result from pylib.base import test_dispatcher from pylib.gtest import gtest_config from pylib.gtest import setup as gtest_setup from pylib.gtest import test_options as gtest_test_options from pylib.linker import setup as linker_setup from pylib.host_driven import setup as host_driven_setup from pylib.instrumentation import setup as instrumentation_setup from pylib.instrumentation import test_options as instrumentation_test_options from pylib.monkey import setup as monkey_setup from pylib.monkey import test_options as monkey_test_options from pylib.perf import setup as perf_setup from pylib.perf import test_options as perf_test_options from pylib.perf import test_runner as perf_test_runner from pylib.uiautomator import setup as uiautomator_setup from pylib.uiautomator import test_options as uiautomator_test_options from pylib.utils import command_option_parser from pylib.utils import report_results from pylib.utils import reraiser_thread from pylib.utils import run_tests_helper def AddCommonOptions(option_parser): """Adds all common options to |option_parser|.""" group = optparse.OptionGroup(option_parser, 'Common Options') default_build_type = os.environ.get('BUILDTYPE', 'Debug') group.add_option('--debug', action='store_const', const='Debug', dest='build_type', default=default_build_type, help=('If set, run test suites under out/Debug. ' 'Default is env var BUILDTYPE or Debug.')) group.add_option('--release', action='store_const', const='Release', dest='build_type', help=('If set, run test suites under out/Release.' ' Default is env var BUILDTYPE or Debug.')) group.add_option('-c', dest='cleanup_test_files', help='Cleanup test files on the device after run', action='store_true') group.add_option('--num_retries', dest='num_retries', type='int', default=2, help=('Number of retries for a test before ' 'giving up.')) group.add_option('-v', '--verbose', dest='verbose_count', default=0, action='count', help='Verbose level (multiple times for more)') group.add_option('--tool', dest='tool', help=('Run the test under a tool ' '(use --tool help to list them)')) group.add_option('--flakiness-dashboard-server', dest='flakiness_dashboard_server', help=('Address of the server that is hosting the ' 'Chrome for Android flakiness dashboard.')) group.add_option('--skip-deps-push', dest='push_deps', action='store_false', default=True, help=('Do not push dependencies to the device. ' 'Use this at own risk for speeding up test ' 'execution on local machine.')) group.add_option('-d', '--device', dest='test_device', help=('Target device for the test suite ' 'to run on.')) option_parser.add_option_group(group) def ProcessCommonOptions(options): """Processes and handles all common options.""" run_tests_helper.SetLogLevel(options.verbose_count) constants.SetBuildType(options.build_type) def AddGTestOptions(option_parser): """Adds gtest options to |option_parser|.""" option_parser.usage = '%prog gtest [options]' option_parser.commands_dict = {} option_parser.example = '%prog gtest -s base_unittests' # TODO(gkanwar): Make this option required option_parser.add_option('-s', '--suite', dest='suite_name', help=('Executable name of the test suite to run ' '(use -s help to list them).')) option_parser.add_option('-f', '--gtest_filter', '--gtest-filter', dest='test_filter', help='googletest-style filter string.') option_parser.add_option('--gtest_also_run_disabled_tests', '--gtest-also-run-disabled-tests', dest='run_disabled', action='store_true', help='Also run disabled tests if applicable.') option_parser.add_option('-a', '--test-arguments', dest='test_arguments', default='', help='Additional arguments to pass to the test.') option_parser.add_option('-t', dest='timeout', help='Timeout to wait for each test', type='int', default=60) # TODO(gkanwar): Move these to Common Options once we have the plumbing # in our other test types to handle these commands AddCommonOptions(option_parser) def AddLinkerTestOptions(option_parser): option_parser.usage = '%prog linker' option_parser.commands_dict = {} option_parser.example = '%prog linker' option_parser.add_option('-f', '--gtest-filter', dest='test_filter', help='googletest-style filter string.') AddCommonOptions(option_parser) def ProcessGTestOptions(options): """Intercept test suite help to list test suites. Args: options: Command line options. """ if options.suite_name == 'help': print 'Available test suites are:' for test_suite in (gtest_config.STABLE_TEST_SUITES + gtest_config.EXPERIMENTAL_TEST_SUITES): print test_suite sys.exit(0) # Convert to a list, assuming all test suites if nothing was specified. # TODO(gkanwar): Require having a test suite if options.suite_name: options.suite_name = [options.suite_name] else: options.suite_name = [s for s in gtest_config.STABLE_TEST_SUITES] def AddJavaTestOptions(option_parser): """Adds the Java test options to |option_parser|.""" option_parser.add_option('-f', '--test-filter', dest='test_filter', help=('Test filter (if not fully qualified, ' 'will run all matches).')) option_parser.add_option( '-A', '--annotation', dest='annotation_str', help=('Comma-separated list of annotations. Run only tests with any of ' 'the given annotations. An annotation can be either a key or a ' 'key-values pair. A test that has no annotation is considered ' '"SmallTest".')) option_parser.add_option( '-E', '--exclude-annotation', dest='exclude_annotation_str', help=('Comma-separated list of annotations. Exclude tests with these ' 'annotations.')) option_parser.add_option('--screenshot', dest='screenshot_failures', action='store_true', help='Capture screenshots of test failures') option_parser.add_option('--save-perf-json', action='store_true', help='Saves the JSON file for each UI Perf test.') option_parser.add_option('--official-build', action='store_true', help='Run official build tests.') option_parser.add_option('--test_data', action='append', default=[], help=('Each instance defines a directory of test ' 'data that should be copied to the target(s) ' 'before running the tests. The argument ' 'should be of the form <target>:<source>, ' '<target> is relative to the device data' 'directory, and <source> is relative to the ' 'chromium build directory.')) def ProcessJavaTestOptions(options): """Processes options/arguments and populates |options| with defaults.""" if options.annotation_str: options.annotations = options.annotation_str.split(',') elif options.test_filter: options.annotations = [] else: options.annotations = ['Smoke', 'SmallTest', 'MediumTest', 'LargeTest', 'EnormousTest'] if options.exclude_annotation_str: options.exclude_annotations = options.exclude_annotation_str.split(',') else: options.exclude_annotations = [] def AddInstrumentationTestOptions(option_parser): """Adds Instrumentation test options to |option_parser|.""" option_parser.usage = '%prog instrumentation [options]' option_parser.commands_dict = {} option_parser.example = ('%prog instrumentation ' '--test-apk=ChromeShellTest') AddJavaTestOptions(option_parser) AddCommonOptions(option_parser) option_parser.add_option('-j', '--java-only', action='store_true', default=False, help='Run only the Java tests.') option_parser.add_option('-p', '--python-only', action='store_true', default=False, help='Run only the host-driven tests.') option_parser.add_option('--host-driven-root', help='Root of the host-driven tests.') option_parser.add_option('-w', '--wait_debugger', dest='wait_for_debugger', action='store_true', help='Wait for debugger.') option_parser.add_option( '--test-apk', dest='test_apk', help=('The name of the apk containing the tests ' '(without the .apk extension; e.g. "ContentShellTest").')) option_parser.add_option('--coverage-dir', help=('Directory in which to place all generated ' 'EMMA coverage files.')) def ProcessInstrumentationOptions(options, error_func): """Processes options/arguments and populate |options| with defaults. Args: options: optparse.Options object. error_func: Function to call with the error message in case of an error. Returns: An InstrumentationOptions named tuple which contains all options relevant to instrumentation tests. """ ProcessJavaTestOptions(options) if options.java_only and options.python_only: error_func('Options java_only (-j) and python_only (-p) ' 'are mutually exclusive.') options.run_java_tests = True options.run_python_tests = True if options.java_only: options.run_python_tests = False elif options.python_only: options.run_java_tests = False if not options.host_driven_root: options.run_python_tests = False if not options.test_apk: error_func('--test-apk must be specified.') options.test_apk_path = os.path.join(constants.GetOutDirectory(), constants.SDK_BUILD_APKS_DIR, '%s.apk' % options.test_apk) options.test_apk_jar_path = os.path.join( constants.GetOutDirectory(), constants.SDK_BUILD_TEST_JAVALIB_DIR, '%s.jar' % options.test_apk) return instrumentation_test_options.InstrumentationOptions( options.tool, options.cleanup_test_files, options.push_deps, options.annotations, options.exclude_annotations, options.test_filter, options.test_data, options.save_perf_json, options.screenshot_failures, options.wait_for_debugger, options.coverage_dir, options.test_apk, options.test_apk_path, options.test_apk_jar_path) def AddUIAutomatorTestOptions(option_parser): """Adds UI Automator test options to |option_parser|.""" option_parser.usage = '%prog uiautomator [options]' option_parser.commands_dict = {} option_parser.example = ( '%prog uiautomator --test-jar=chrome_shell_uiautomator_tests' ' --package=chrome_shell') option_parser.add_option( '--package', help=('Package under test. Possible values: %s' % constants.PACKAGE_INFO.keys())) option_parser.add_option( '--test-jar', dest='test_jar', help=('The name of the dexed jar containing the tests (without the ' '.dex.jar extension). Alternatively, this can be a full path ' 'to the jar.')) AddJavaTestOptions(option_parser) AddCommonOptions(option_parser) def ProcessUIAutomatorOptions(options, error_func): """Processes UIAutomator options/arguments. Args: options: optparse.Options object. error_func: Function to call with the error message in case of an error. Returns: A UIAutomatorOptions named tuple which contains all options relevant to uiautomator tests. """ ProcessJavaTestOptions(options) if not options.package: error_func('--package is required.') if options.package not in constants.PACKAGE_INFO: error_func('Invalid package.') if not options.test_jar: error_func('--test-jar must be specified.') if os.path.exists(options.test_jar): # The dexed JAR is fully qualified, assume the info JAR lives along side. options.uiautomator_jar = options.test_jar else: options.uiautomator_jar = os.path.join( constants.GetOutDirectory(), constants.SDK_BUILD_JAVALIB_DIR, '%s.dex.jar' % options.test_jar) options.uiautomator_info_jar = ( options.uiautomator_jar[:options.uiautomator_jar.find('.dex.jar')] + '_java.jar') return uiautomator_test_options.UIAutomatorOptions( options.tool, options.cleanup_test_files, options.push_deps, options.annotations, options.exclude_annotations, options.test_filter, options.test_data, options.save_perf_json, options.screenshot_failures, options.uiautomator_jar, options.uiautomator_info_jar, options.package) def AddMonkeyTestOptions(option_parser): """Adds monkey test options to |option_parser|.""" option_parser.usage = '%prog monkey [options]' option_parser.commands_dict = {} option_parser.example = ( '%prog monkey --package=chrome_shell') option_parser.add_option( '--package', help=('Package under test. Possible values: %s' % constants.PACKAGE_INFO.keys())) option_parser.add_option( '--event-count', default=10000, type='int', help='Number of events to generate [default: %default].') option_parser.add_option( '--category', default='', help='A list of allowed categories.') option_parser.add_option( '--throttle', default=100, type='int', help='Delay between events (ms) [default: %default]. ') option_parser.add_option( '--seed', type='int', help=('Seed value for pseudo-random generator. Same seed value generates ' 'the same sequence of events. Seed is randomized by default.')) option_parser.add_option( '--extra-args', default='', help=('String of other args to pass to the command verbatim ' '[default: "%default"].')) AddCommonOptions(option_parser) def ProcessMonkeyTestOptions(options, error_func): """Processes all monkey test options. Args: options: optparse.Options object. error_func: Function to call with the error message in case of an error. Returns: A MonkeyOptions named tuple which contains all options relevant to monkey tests. """ if not options.package: error_func('--package is required.') if options.package not in constants.PACKAGE_INFO: error_func('Invalid package.') category = options.category if category: category = options.category.split(',') return monkey_test_options.MonkeyOptions( options.verbose_count, options.package, options.event_count, category, options.throttle, options.seed, options.extra_args) def AddPerfTestOptions(option_parser): """Adds perf test options to |option_parser|.""" option_parser.usage = '%prog perf [options]' option_parser.commands_dict = {} option_parser.example = ('%prog perf ' '[--single-step -- command args] or ' '[--steps perf_steps.json] or ' '[--print-step step]') option_parser.add_option( '--single-step', action='store_true', help='Execute the given command with retries, but only print the result ' 'for the "most successful" round.') option_parser.add_option( '--steps', help='JSON file containing the list of commands to run.') option_parser.add_option( '--flaky-steps', help=('A JSON file containing steps that are flaky ' 'and will have its exit code ignored.')) option_parser.add_option( '--print-step', help='The name of a previously executed perf step to print.') option_parser.add_option( '--no-timeout', action='store_true', help=('Do not impose a timeout. Each perf step is responsible for ' 'implementing the timeout logic.')) option_parser.add_option( '-f', '--test-filter', help=('Test filter (will match against the names listed in --steps).')) option_parser.add_option( '--dry-run', action='store_true', help='Just print the steps without executing.') AddCommonOptions(option_parser) def ProcessPerfTestOptions(options, args, error_func): """Processes all perf test options. Args: options: optparse.Options object. error_func: Function to call with the error message in case of an error. Returns: A PerfOptions named tuple which contains all options relevant to perf tests. """ # Only one of steps, print_step or single_step must be provided. count = len(filter(None, [options.steps, options.print_step, options.single_step])) if count != 1: error_func('Please specify one of: --steps, --print-step, --single-step.') single_step = None if options.single_step: single_step = ' '.join(args[2:]) return perf_test_options.PerfOptions( options.steps, options.flaky_steps, options.print_step, options.no_timeout, options.test_filter, options.dry_run, single_step) def _RunGTests(options, devices): """Subcommand of RunTestsCommands which runs gtests.""" ProcessGTestOptions(options) exit_code = 0 for suite_name in options.suite_name: # TODO(gkanwar): Move this into ProcessGTestOptions once we require -s for # the gtest command. gtest_options = gtest_test_options.GTestOptions( options.tool, options.cleanup_test_files, options.push_deps, options.test_filter, options.run_disabled, options.test_arguments, options.timeout, suite_name) runner_factory, tests = gtest_setup.Setup(gtest_options, devices) results, test_exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=None, num_retries=options.num_retries) if test_exit_code and exit_code != constants.ERROR_EXIT_CODE: exit_code = test_exit_code report_results.LogFull( results=results, test_type='Unit test', test_package=suite_name, flakiness_server=options.flakiness_dashboard_server) if os.path.isdir(constants.ISOLATE_DEPS_DIR): shutil.rmtree(constants.ISOLATE_DEPS_DIR) return exit_code def _RunLinkerTests(options, devices): """Subcommand of RunTestsCommands which runs linker tests.""" runner_factory, tests = linker_setup.Setup(options, devices) results, exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=60, num_retries=options.num_retries) report_results.LogFull( results=results, test_type='Linker test', test_package='ChromiumLinkerTest') return exit_code def _RunInstrumentationTests(options, error_func, devices): """Subcommand of RunTestsCommands which runs instrumentation tests.""" instrumentation_options = ProcessInstrumentationOptions(options, error_func) if len(devices) > 1 and options.wait_for_debugger: logging.warning('Debugger can not be sharded, using first available device') devices = devices[:1] results = base_test_result.TestRunResults() exit_code = 0 if options.run_java_tests: runner_factory, tests = instrumentation_setup.Setup(instrumentation_options) test_results, exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=None, num_retries=options.num_retries) results.AddTestRunResults(test_results) if options.run_python_tests: runner_factory, tests = host_driven_setup.InstrumentationSetup( options.host_driven_root, options.official_build, instrumentation_options) if tests: test_results, test_exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=None, num_retries=options.num_retries) results.AddTestRunResults(test_results) # Only allow exit code escalation if test_exit_code and exit_code != constants.ERROR_EXIT_CODE: exit_code = test_exit_code report_results.LogFull( results=results, test_type='Instrumentation', test_package=os.path.basename(options.test_apk), annotation=options.annotations, flakiness_server=options.flakiness_dashboard_server) return exit_code def _RunUIAutomatorTests(options, error_func, devices): """Subcommand of RunTestsCommands which runs uiautomator tests.""" uiautomator_options = ProcessUIAutomatorOptions(options, error_func) runner_factory, tests = uiautomator_setup.Setup(uiautomator_options) results, exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=None, num_retries=options.num_retries) report_results.LogFull( results=results, test_type='UIAutomator', test_package=os.path.basename(options.test_jar), annotation=options.annotations, flakiness_server=options.flakiness_dashboard_server) return exit_code def _RunMonkeyTests(options, error_func, devices): """Subcommand of RunTestsCommands which runs monkey tests.""" monkey_options = ProcessMonkeyTestOptions(options, error_func) runner_factory, tests = monkey_setup.Setup(monkey_options) results, exit_code = test_dispatcher.RunTests( tests, runner_factory, devices, shard=False, test_timeout=None, num_retries=options.num_retries) report_results.LogFull( results=results, test_type='Monkey', test_package='Monkey') return exit_code def _RunPerfTests(options, args, error_func, devices): """Subcommand of RunTestsCommands which runs perf tests.""" perf_options = ProcessPerfTestOptions(options, args, error_func) # Just print the results from a single previously executed step. if perf_options.print_step: return perf_test_runner.PrintTestOutput(perf_options.print_step) runner_factory, tests = perf_setup.Setup(perf_options) results, _ = test_dispatcher.RunTests( tests, runner_factory, devices, shard=True, test_timeout=None, num_retries=options.num_retries) report_results.LogFull( results=results, test_type='Perf', test_package='Perf') if perf_options.single_step: return perf_test_runner.PrintTestOutput('single_step') perf_test_runner.PrintSummary(tests) # Always return 0 on the sharding stage. Individual tests exit_code # will be returned on the print_step stage. return 0 def _GetAttachedDevices(test_device=None): """Get all attached devices. Args: test_device: Name of a specific device to use. Returns: A list of attached devices. """ attached_devices = [] attached_devices = android_commands.GetAttachedDevices() if test_device: assert test_device in attached_devices, ( 'Did not find device %s among attached device. Attached devices: %s' % (test_device, ', '.join(attached_devices))) attached_devices = [test_device] assert attached_devices, 'No devices attached.' return sorted(attached_devices) def RunTestsCommand(command, options, args, option_parser): """Checks test type and dispatches to the appropriate function. Args: command: String indicating the command that was received to trigger this function. options: optparse options dictionary. args: List of extra args from optparse. option_parser: optparse.OptionParser object. Returns: Integer indicated exit code. Raises: Exception: Unknown command name passed in, or an exception from an individual test runner. """ # Check for extra arguments if len(args) > 2 and command != 'perf': option_parser.error('Unrecognized arguments: %s' % (' '.join(args[2:]))) return constants.ERROR_EXIT_CODE if command == 'perf': if ((options.single_step and len(args) <= 2) or (not options.single_step and len(args) > 2)): option_parser.error('Unrecognized arguments: %s' % (' '.join(args))) return constants.ERROR_EXIT_CODE ProcessCommonOptions(options) devices = _GetAttachedDevices(options.test_device) forwarder.Forwarder.RemoveHostLog() if not ports.ResetTestServerPortAllocation(): raise Exception('Failed to reset test server port.') if command == 'gtest': return _RunGTests(options, devices) elif command == 'linker': return _RunLinkerTests(options, devices) elif command == 'instrumentation': return _RunInstrumentationTests(options, option_parser.error, devices) elif command == 'uiautomator': return _RunUIAutomatorTests(options, option_parser.error, devices) elif command == 'monkey': return _RunMonkeyTests(options, option_parser.error, devices) elif command == 'perf': return _RunPerfTests(options, args, option_parser.error, devices) else: raise Exception('Unknown test type.') def HelpCommand(command, _options, args, option_parser): """Display help for a certain command, or overall help. Args: command: String indicating the command that was received to trigger this function. options: optparse options dictionary. unused. args: List of extra args from optparse. option_parser: optparse.OptionParser object. Returns: Integer indicated exit code. """ # If we don't have any args, display overall help if len(args) < 3: option_parser.print_help() return 0 # If we have too many args, print an error if len(args) > 3: option_parser.error('Unrecognized arguments: %s' % (' '.join(args[3:]))) return constants.ERROR_EXIT_CODE command = args[2] if command not in VALID_COMMANDS: option_parser.error('Unrecognized command.') # Treat the help command as a special case. We don't care about showing a # specific help page for itself. if command == 'help': option_parser.print_help() return 0 VALID_COMMANDS[command].add_options_func(option_parser) option_parser.usage = '%prog ' + command + ' [options]' option_parser.commands_dict = {} option_parser.print_help() return 0 # Define a named tuple for the values in the VALID_COMMANDS dictionary so the # syntax is a bit prettier. The tuple is two functions: (add options, run # command). CommandFunctionTuple = collections.namedtuple( 'CommandFunctionTuple', ['add_options_func', 'run_command_func']) VALID_COMMANDS = { 'gtest': CommandFunctionTuple(AddGTestOptions, RunTestsCommand), 'instrumentation': CommandFunctionTuple( AddInstrumentationTestOptions, RunTestsCommand), 'uiautomator': CommandFunctionTuple( AddUIAutomatorTestOptions, RunTestsCommand), 'monkey': CommandFunctionTuple( AddMonkeyTestOptions, RunTestsCommand), 'perf': CommandFunctionTuple( AddPerfTestOptions, RunTestsCommand), 'linker': CommandFunctionTuple( AddLinkerTestOptions, RunTestsCommand), 'help': CommandFunctionTuple(lambda option_parser: None, HelpCommand) } def DumpThreadStacks(_signal, _frame): for thread in threading.enumerate(): reraiser_thread.LogThreadStack(thread) def main(): signal.signal(signal.SIGUSR1, DumpThreadStacks) option_parser = command_option_parser.CommandOptionParser( commands_dict=VALID_COMMANDS) return command_option_parser.ParseAndExecute(option_parser) if __name__ == '__main__': sys.exit(main())
bsd-3-clause
jkankiewicz/kivy
examples/canvas/lines_extended.py
21
3977
''' Lines Extended Demo =================== This demonstrates how to use the extended line drawing routines such as circles, ellipses, and rectangles. You should see a static image of labelled shapes on the screen. ''' from kivy.app import App from kivy.uix.gridlayout import GridLayout from kivy.uix.widget import Widget from kivy.lang import Builder Builder.load_string(''' <LineEllipse1>: canvas: Color: rgba: 1, .1, .1, .9 Line: width: 2. ellipse: (self.x, self.y, self.width, self.height) Label: center: root.center text: 'Ellipse' <LineEllipse2>: canvas: Color: rgba: 1, .1, .1, .9 Line: width: 2. ellipse: (self.x, self.y, self.width, self.height, 90, 180) Label: center: root.center text: 'Ellipse from 90 to 180' # fun result with low segments! <LineEllipse3>: canvas: Color: rgba: 1, .1, .1, .9 Line: width: 2. ellipse: (self.x, self.y, self.width, self.height, 90, 720, 10) Label: center: root.center text: 'Ellipse from 90 to 720\\n10 segments' halign: 'center' <LineCircle1>: canvas: Color: rgba: .1, 1, .1, .9 Line: width: 2. circle: (self.center_x, self.center_y, min(self.width, self.height) / 2) Label: center: root.center text: 'Circle' <LineCircle2>: canvas: Color: rgba: .1, 1, .1, .9 Line: width: 2. circle: (self.center_x, self.center_y, min(self.width, self.height) / 2, 90, 180) Label: center: root.center text: 'Circle from 90 to 180' <LineCircle3>: canvas: Color: rgba: .1, 1, .1, .9 Line: width: 2. circle: (self.center_x, self.center_y, min(self.width, self.height) / 2, 90, 180, 10) Label: center: root.center text: 'Circle from 90 to 180\\n10 segments' halign: 'center' <LineCircle4>: canvas: Color: rgba: .1, 1, .1, .9 Line: width: 2. circle: (self.center_x, self.center_y, min(self.width, self.height) / 2, 0, 360) Label: center: root.center text: 'Circle from 0 to 360' halign: 'center' <LineRectangle>: canvas: Color: rgba: .1, .1, 1, .9 Line: width: 2. rectangle: (self.x, self.y, self.width, self.height) Label: center: root.center text: 'Rectangle' <LineBezier>: canvas: Color: rgba: .1, .1, 1, .9 Line: width: 2. bezier: (self.x, self.y, self.center_x - 40, self.y + 100, self.center_x + 40, self.y - 100, self.right, self.y) Label: center: root.center text: 'Bezier' ''') class LineEllipse1(Widget): pass class LineEllipse2(Widget): pass class LineEllipse3(Widget): pass class LineCircle1(Widget): pass class LineCircle2(Widget): pass class LineCircle3(Widget): pass class LineCircle4(Widget): pass class LineRectangle(Widget): pass class LineBezier(Widget): pass class LineExtendedApp(App): def build(self): root = GridLayout(cols=2, padding=50, spacing=50) root.add_widget(LineEllipse1()) root.add_widget(LineEllipse2()) root.add_widget(LineEllipse3()) root.add_widget(LineCircle1()) root.add_widget(LineCircle2()) root.add_widget(LineCircle3()) root.add_widget(LineCircle4()) root.add_widget(LineRectangle()) root.add_widget(LineBezier()) return root if __name__ == '__main__': LineExtendedApp().run()
mit
manjunaths/tensorflow
tensorflow/contrib/learn/__init__.py
8
2286
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # TODO(ptucker,ipolosukhin): Improve descriptions. """High level API for learning with TensorFlow. ## Estimators Train and evaluate TensorFlow models. @@BaseEstimator @@Estimator @@Trainable @@Evaluable @@KMeansClustering @@ModeKeys @@ModelFnOps @@MetricSpec @@PredictionKey @@DNNClassifier @@DNNRegressor @@DNNLinearCombinedRegressor @@DNNLinearCombinedClassifier @@LinearClassifier @@LinearRegressor @@LogisticRegressor ## Distributed training utilities @@Experiment @@ExportStrategy @@TaskType ## Graph actions Perform various training, evaluation, and inference actions on a graph. @@NanLossDuringTrainingError @@RunConfig @@evaluate @@infer @@run_feeds @@run_n @@train ## Input processing Queue and read batched input data. @@extract_dask_data @@extract_dask_labels @@extract_pandas_data @@extract_pandas_labels @@extract_pandas_matrix @@infer_real_valued_columns_from_input @@infer_real_valued_columns_from_input_fn @@read_batch_examples @@read_batch_features @@read_batch_record_features Export utilities @@build_parsing_serving_input_fn @@ProblemType """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn import * # pylint: enable=wildcard-import from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = ['datasets', 'head', 'io', 'models', 'monitors', 'NotFittedError', 'ops', 'preprocessing', 'utils', 'graph_actions'] remove_undocumented(__name__, _allowed_symbols)
apache-2.0
tangfeixiong/nova
nova/tests/functional/v3/test_multiple_create.py
30
2240
# Copyright 2012 Nebula, Inc. # Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from nova.tests.functional.v3 import test_servers from nova.tests.unit.image import fake CONF = cfg.CONF CONF.import_opt('osapi_compute_extension', 'nova.api.openstack.compute.extensions') class MultipleCreateJsonTest(test_servers.ServersSampleBase): extension_name = "os-multiple-create" _api_version = 'v2' def _get_flags(self): f = super(MultipleCreateJsonTest, self)._get_flags() f['osapi_compute_extension'] = CONF.osapi_compute_extension[:] f['osapi_compute_extension'].append( 'nova.api.openstack.compute.contrib.multiple_create.' 'Multiple_create') return f def test_multiple_create(self): subs = { 'image_id': fake.get_valid_image_id(), 'host': self._get_host(), 'min_count': "2", 'max_count': "3" } response = self._do_post('servers', 'multiple-create-post-req', subs) subs.update(self._get_regexes()) self._verify_response('multiple-create-post-resp', subs, response, 202) def test_multiple_create_without_reservation_id(self): subs = { 'image_id': fake.get_valid_image_id(), 'host': self._get_host(), 'min_count': "2", 'max_count': "3" } response = self._do_post('servers', 'multiple-create-no-resv-post-req', subs) subs.update(self._get_regexes()) self._verify_response('multiple-create-no-resv-post-resp', subs, response, 202)
apache-2.0
uber/ludwig
ludwig/encoders/sequence_encoders.py
1
102959
#! /usr/bin/env python # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import logging from abc import ABC import tensorflow as tf from tensorflow.keras.layers import Dense from ludwig.encoders.base import Encoder from ludwig.utils.registry import Registry, register, register_default from ludwig.modules.attention_modules import TrasformerStack from ludwig.modules.convolutional_modules import Conv1DStack, \ ParallelConv1DStack, ParallelConv1D from ludwig.modules.embedding_modules import EmbedSequence, \ TokenAndPositionEmbedding from ludwig.modules.fully_connected_modules import FCStack from ludwig.modules.recurrent_modules import RecurrentStack from ludwig.modules.reduction_modules import SequenceReducer logger = logging.getLogger(__name__) ENCODER_REGISTRY = Registry() class SequenceEncoder(Encoder, ABC): @classmethod def register(cls, name): ENCODER_REGISTRY[name] = cls @register_default(name='passthrough') class SequencePassthroughEncoder(SequenceEncoder): def __init__( self, reduce_output=None, **kwargs ): """ :param reduce_output: defines how to reduce the output tensor along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(SequencePassthroughEncoder, self).__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) if self.reduce_output is None: self.supports_masking = True def call( self, input_sequence, training=True, mask=None ): """ :param input_sequence: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type input_sequence: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ input_sequence = tf.cast(input_sequence, tf.float32) while len(input_sequence.shape) < 3: input_sequence = tf.expand_dims( input_sequence, -1 ) hidden = self.reduce_sequence(input_sequence) return {'encoder_output': hidden} @register(name='embed') class SequenceEmbedEncoder(SequenceEncoder): def __init__( self, vocab, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, weights_initializer=None, weights_regularizer=None, dropout=0, reduce_output='sum', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param weights_initializer: the initializer to use. If `None`, the default initialized of each variable is used (`glorot_uniform` in most cases). Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type weights_initializer: str :param regularize: if `True` the embedding wieghts are added to the set of weights that get reularized by a regularization loss (if the `regularization_lambda` in `training` is greater than 0). :type regularize: Boolean :param reduce_output: defines how to reduce the output tensor along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str :param weights_regularizer: The regularizer to use for the weights of the encoder. :type weights_regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor """ super(SequenceEmbedEncoder, self).__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output if self.reduce_output is None: self.supports_masking = True self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) def call(self, inputs, training=None, mask=None): """ :param inputs: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type inputs: Tensor :param training: specifying if in training mode (important for dropout) :type training: Boolean """ # ================ Embeddings ================ embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) hidden = self.reduce_sequence(embedded_sequence) return {'encoder_output': hidden} @register(name='parallel_cnn') class ParallelCNN(SequenceEncoder): def __init__( self, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, conv_layers=None, num_conv_layers=None, filter_size=3, num_filters=256, pool_function='max', pool_size=None, fc_layers=None, num_fc_layers=None, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, activation='relu', dropout=0, reduce_output='max', **kwargs): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param conv_layers: it is a list of dictionaries containing the parameters of all the convolutional layers. The length of the list determines the number of parallel convolutional layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `filter_size`, `num_filters`, `pool`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `conv_layers` and `num_conv_layers` are `None`, a default list will be assigned to `conv_layers` with the value `[{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}]`. :type conv_layers: List :param num_conv_layers: if `conv_layers` is `None`, this is the number of parallel convolutional layers. :type num_conv_layers: Integer :param filter_size: if a `filter_size` is not already specified in `conv_layers` this is the default `filter_size` that will be used for each layer. It indicates how wide is the 1d convolutional filter. :type filter_size: Integer :param num_filters: if a `num_filters` is not already specified in `conv_layers` this is the default `num_filters` that will be used for each layer. It indicates the number of filters, and by consequence the output channels of the 1d convolution. :type num_filters: Integer :param pool_size: if a `pool_size` is not already specified in `conv_layers` this is the default `pool_size` that will be used for each layer. It indicates the size of the max pooling that will be performed along the `s` sequence dimension after the convolution operation. :type pool_size: Integer :param fc_layers: it is a list of dictionaries containing the parameters of all the fully connected layers. The length of the list determines the number of stacked fully connected layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `fc_size`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `fc_layers` and `num_fc_layers` are `None`, a default list will be assigned to `fc_layers` with the value `[{fc_size: 512}, {fc_size: 256}]` (only applies if `reduce_output` is not `None`). :type fc_layers: List :param num_fc_layers: if `fc_layers` is `None`, this is the number of stacked fully connected layers (only applies if `reduce_output` is not `None`). :type num_fc_layers: Integer :param fc_size: if a `fc_size` is not already specified in `fc_layers` this is the default `fc_size` that will be used for each layer. It indicates the size of the output of a fully connected layer. :type fc_size: Integer :param norm: if a `norm` is not already specified in `conv_layers` or `fc_layers` this is the default `norm` that will be used for each layer. It indicates the norm of the output. :type norm: str :param activation: Default activation function to use :type activation: Str :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(ParallelCNN, self).__init__() logger.debug(' {}'.format(self.name)) if conv_layers is not None and num_conv_layers is None: # use custom-defined layers self.conv_layers = conv_layers self.num_conv_layers = len(conv_layers) elif conv_layers is None and num_conv_layers is not None: # generate num_conv_layers with default parameters self.conv_layers = None self.num_conv_layers = num_conv_layers elif conv_layers is None and num_conv_layers is None: # use default layers with varying filter sizes self.conv_layers = [ {'filter_size': 2}, {'filter_size': 3}, {'filter_size': 4}, {'filter_size': 5} ] self.num_conv_layers = 4 else: raise ValueError( 'Invalid layer parametrization, use either conv_layers or' ' num_conv_layers' ) # The user is expected to provide fc_layers or num_fc_layers # The following logic handles the case where the user either provides # both or neither. if fc_layers is None and num_fc_layers is None: # use default layers with varying filter sizes fc_layers = [ {'fc_size': 512}, {'fc_size': 256} ] num_fc_layers = 2 elif fc_layers is not None and num_fc_layers is not None: raise ValueError( 'Invalid layer parametrization, use either fc_layers or ' 'num_fc_layers only. Not both.' ) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) self.should_embed = should_embed self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) logger.debug(' ParallelConv1D') self.parallel_conv1d = ParallelConv1D( layers=self.conv_layers, default_num_filters=num_filters, default_filter_size=filter_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=None, # default_bias_constraint=None, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, default_pool_function=pool_function, default_pool_size=pool_size, default_pool_padding='same', ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, ) def call(self, inputs, training=None, mask=None): """ :param inputs: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int :type inputs: Tensor :param training: bool specifying if in training mode (important for dropout) :type training: bool """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) hidden = embedded_sequence # ================ Conv Layers ================ hidden = self.parallel_conv1d( hidden, training=training, mask=mask ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return {'encoder_output': hidden} @register(name='stacked_cnn') class StackedCNN(SequenceEncoder): def __init__( self, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, conv_layers=None, num_conv_layers=None, num_filters=256, filter_size=5, strides=1, padding='same', dilation_rate=1, pool_function='max', pool_size=None, pool_strides=None, pool_padding='same', fc_layers=None, num_fc_layers=None, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, activation='relu', dropout=0, reduce_output='max', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param conv_layers: it is a list of dictionaries containing the parameters of all the convolutional layers. The length of the list determines the number of parallel convolutional layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `filter_size`, `num_filters`, `pool`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `conv_layers` and `num_conv_layers` are `None`, a default list will be assigned to `conv_layers` with the value `[{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}]`. :type conv_layers: List :param num_conv_layers: if `conv_layers` is `None`, this is the number of stacked convolutional layers. :type num_conv_layers: Integer :param filter_size: if a `filter_size` is not already specified in `conv_layers` this is the default `filter_size` that will be used for each layer. It indicates how wide is the 1d convolutional filter. :type filter_size: Integer :param num_filters: if a `num_filters` is not already specified in `conv_layers` this is the default `num_filters` that will be used for each layer. It indicates the number of filters, and by consequence the output channels of the 1d convolution. :type num_filters: Integer :param pool_size: if a `pool_size` is not already specified in `conv_layers` this is the default `pool_size` that will be used for each layer. It indicates the size of the max pooling that will be performed along the `s` sequence dimension after the convolution operation. :type pool_size: Integer :param fc_layers: it is a list of dictionaries containing the parameters of all the fully connected layers. The length of the list determines the number of stacked fully connected layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `fc_size`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `fc_layers` and `num_fc_layers` are `None`, a default list will be assigned to `fc_layers` with the value `[{fc_size: 512}, {fc_size: 256}]` (only applies if `reduce_output` is not `None`). :type fc_layers: List :param num_fc_layers: if `fc_layers` is `None`, this is the number of stacked fully connected layers (only applies if `reduce_output` is not `None`). :type num_fc_layers: Integer :param fc_size: if a `fc_size` is not already specified in `fc_layers` this is the default `fc_size` that will be used for each layer. It indicates the size of the output of a fully connected layer. :type fc_size: Integer :param norm: if a `norm` is not already specified in `conv_layers` or `fc_layers` this is the default `norm` that will be used for each layer. It indicates the norm of the output. :type norm: str :param activation: Default activation function to use :type activation: Str :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(StackedCNN, self).__init__() logger.debug(' {}'.format(self.name)) if conv_layers is not None and num_conv_layers is None: # use custom-defined layers self.conv_layers = conv_layers self.num_conv_layers = len(conv_layers) elif conv_layers is None and num_conv_layers is not None: # generate num_conv_layers with default parameters self.conv_layers = None self.num_conv_layers = num_conv_layers elif conv_layers is None and num_conv_layers is None: # use default layers with varying filter sizes self.conv_layers = [ { 'filter_size': 7, 'pool_size': 3, 'regularize': False }, { 'filter_size': 7, 'pool_size': 3, 'regularize': False }, { 'filter_size': 3, 'pool_size': None, 'regularize': False }, { 'filter_size': 3, 'pool_size': None, 'regularize': False }, { 'filter_size': 3, 'pool_size': None, 'regularize': True }, { 'filter_size': 3, 'pool_size': 3, 'regularize': True } ] self.num_conv_layers = 6 else: raise ValueError( 'Invalid layer parametrization, use either conv_layers or ' 'num_conv_layers' ) # The user is expected to provide fc_layers or num_fc_layers # The following logic handles the case where the user either provides # both or neither. if fc_layers is None and num_fc_layers is None: # use default layers with varying filter sizes fc_layers = [ {'fc_size': 512}, {'fc_size': 256} ] num_fc_layers = 2 elif fc_layers is not None and num_fc_layers is not None: raise ValueError( 'Invalid layer parametrization, use either fc_layers or ' 'num_fc_layers only. Not both.' ) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) self.should_embed = should_embed self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) logger.debug(' Conv1DStack') self.conv1d_stack = Conv1DStack( layers=self.conv_layers, default_num_filters=num_filters, default_filter_size=filter_size, default_strides=strides, default_padding=padding, default_dilation_rate=dilation_rate, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=None, # default_bias_constraint=None, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, default_pool_function=pool_function, default_pool_size=pool_size, default_pool_strides=pool_strides, default_pool_padding=pool_padding, ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, ) def call(self, inputs, training=None, mask=None): """ :param input_sequence: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type input_sequence: Tensor :param regularizer: The regularizer to use for the weights of the encoder. :type regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) hidden = embedded_sequence # ================ Conv Layers ================ hidden = self.conv1d_stack( hidden, training=training, mask=mask ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return {'encoder_output': hidden} @register(name='stacked_parallel_cnn') class StackedParallelCNN(SequenceEncoder): def __init__( self, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, stacked_layers=None, num_stacked_layers=None, filter_size=3, num_filters=256, pool_function='max', pool_size=None, fc_layers=None, num_fc_layers=None, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, activation='relu', dropout=0, reduce_output='max', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param stacked_layers: it is a of lists of list of dictionaries containing the parameters of the stack of parallel convolutional layers. The length of the list determines the number of stacked parallel convolutional layers, length of the sub-lists determines the number of parallel conv layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `filter_size`, `num_filters`, `pool_size`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `stacked_layers` and `num_stacked_layers` are `None`, a default list will be assigned to `stacked_layers` with the value `[[{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}], [{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}], [{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}]]`. :type stacked_layers: List :param num_stacked_layers: if `stacked_layers` is `None`, this is the number of elements in the stack of parallel convolutional layers. :type num_stacked_layers: Integer :param filter_size: if a `filter_size` is not already specified in `conv_layers` this is the default `filter_size` that will be used for each layer. It indicates how wide is the 1d convolutional filter. :type filter_size: Integer :param num_filters: if a `num_filters` is not already specified in `conv_layers` this is the default `num_filters` that will be used for each layer. It indicates the number of filters, and by consequence the output channels of the 1d convolution. :type num_filters: Integer :param pool_size: if a `pool_size` is not already specified in `conv_layers` this is the default `pool_size` that will be used for each layer. It indicates the size of the max pooling that will be performed along the `s` sequence dimension after the convolution operation. :type pool_size: Integer :param fc_layers: it is a list of dictionaries containing the parameters of all the fully connected layers. The length of the list determines the number of stacked fully connected layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `fc_size`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `fc_layers` and `num_fc_layers` are `None`, a default list will be assigned to `fc_layers` with the value `[{fc_size: 512}, {fc_size: 256}]` (only applies if `reduce_output` is not `None`). :type fc_layers: List :param num_fc_layers: if `fc_layers` is `None`, this is the number of stacked fully connected layers (only applies if `reduce_output` is not `None`). :type num_fc_layers: Integer :param fc_size: if a `fc_size` is not already specified in `fc_layers` this is the default `fc_size` that will be used for each layer. It indicates the size of the output of a fully connected layer. :type fc_size: Integer :param norm: if a `norm` is not already specified in `conv_layers` or `fc_layers` this is the default `norm` that will be used for each layer. It indicates the norm of the output. :type norm: str :param activation: Default activation function to use :type activation: Str :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(StackedParallelCNN, self).__init__() logger.debug(' {}'.format(self.name)) if stacked_layers is not None and num_stacked_layers is None: # use custom-defined layers self.stacked_layers = stacked_layers self.num_stacked_layers = len(stacked_layers) elif stacked_layers is None and num_stacked_layers is not None: # generate num_conv_layers with default parameters self.stacked_layers = None self.num_stacked_layers = num_stacked_layers elif stacked_layers is None and num_stacked_layers is None: # use default layers with varying filter sizes self.stacked_layers = [ [ {'filter_size': 2}, {'filter_size': 3}, {'filter_size': 4}, {'filter_size': 5} ], [ {'filter_size': 2}, {'filter_size': 3}, {'filter_size': 4}, {'filter_size': 5} ], [ {'filter_size': 2}, {'filter_size': 3}, {'filter_size': 4}, {'filter_size': 5} ] ] self.num_stacked_layers = 6 else: raise ValueError( 'Invalid layer parametrization, use either stacked_layers or' ' num_stacked_layers' ) # The user is expected to provide fc_layers or num_fc_layers # The following logic handles the case where the user either provides # both or neither. if fc_layers is None and num_fc_layers is None: # use default layers with varying filter sizes fc_layers = [ {'fc_size': 512}, {'fc_size': 256} ] num_fc_layers = 2 elif fc_layers is not None and num_fc_layers is not None: raise ValueError( 'Invalid layer parametrization, use either fc_layers or ' 'num_fc_layers only. Not both.' ) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) self.should_embed = should_embed self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) logger.debug(' ParallelConv1DStack') self.parallel_conv1d_stack = ParallelConv1DStack( stacked_layers=self.stacked_layers, default_num_filters=num_filters, default_filter_size=filter_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, default_pool_function=pool_function, default_pool_size=pool_size, ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, ) def call(self, inputs, training=None, mask=None): """ :param inputs: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type inputs: Tensor :param regularizer: The regularizer to use for the weights of the encoder. :type regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) hidden = embedded_sequence # ================ Conv Layers ================ hidden = self.parallel_conv1d_stack( hidden, training=training, mask=mask ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return {'encoder_output': hidden} @register(name='rnn') class StackedRNN(SequenceEncoder): def __init__( self, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, num_layers=1, state_size=256, cell_type='rnn', bidirectional=False, activation='tanh', recurrent_activation='sigmoid', unit_forget_bias=True, recurrent_initializer='orthogonal', recurrent_regularizer=None, # recurrent_constraint=None, dropout=0.0, recurrent_dropout=0.0, fc_layers=None, num_fc_layers=0, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, fc_activation='relu', fc_dropout=0, reduce_output='last', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param conv_layers: it is a list of dictionaries containing the parameters of all the convolutional layers. The length of the list determines the number of parallel convolutional layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `filter_size`, `num_filters`, `pool`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `conv_layers` and `num_conv_layers` are `None`, a default list will be assigned to `conv_layers` with the value `[{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}]`. :type conv_layers: List :param num_conv_layers: if `conv_layers` is `None`, this is the number of stacked convolutional layers. :type num_conv_layers: Integer :param filter_size: if a `filter_size` is not already specified in `conv_layers` this is the default `filter_size` that will be used for each layer. It indicates how wide is the 1d convolutional filter. :type filter_size: Integer :param num_filters: if a `num_filters` is not already specified in `conv_layers` this is the default `num_filters` that will be used for each layer. It indicates the number of filters, and by consequence the output channels of the 1d convolution. :type num_filters: Integer :param pool_size: if a `pool_size` is not already specified in `conv_layers` this is the default `pool_size` that will be used for each layer. It indicates the size of the max pooling that will be performed along the `s` sequence dimension after the convolution operation. :type pool_size: Integer :param num_rec_layers: the number of stacked recurrent layers. :type num_rec_layers: Integer :param cell_type: the type of recurrent cell to use. Avalable values are: `rnn`, `lstm`, `lstm_block`, `lstm`, `ln`, `lstm_cudnn`, `gru`, `gru_block`, `gru_cudnn`. For reference about the differences between the cells please refer to TensorFlow's documentstion. We suggest to use the `block` variants on CPU and the `cudnn` variants on GPU because of their increased speed. :type cell_type: str :param state_size: the size of the state of the rnn. :type state_size: Integer :param bidirectional: if `True` two recurrent networks will perform encoding in the forward and backward direction and their outputs will be concatenated. :type bidirectional: Boolean :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(StackedRNN, self).__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) if self.reduce_output is None: self.supports_masking = True self.should_embed = should_embed self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=fc_dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) logger.debug(' RecurrentStack') self.recurrent_stack = RecurrentStack( state_size=state_size, cell_type=cell_type, num_layers=num_layers, bidirectional=bidirectional, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, unit_forget_bias=unit_forget_bias, weights_initializer=weights_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, weights_regularizer=weights_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, # kernel_constraint=kernel_constraint, # recurrent_constraint=recurrent_constraint, # bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=fc_activation, default_dropout=fc_dropout, ) def call(self, inputs, training=None, mask=None): """ :param input_sequence: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type input_sequence: Tensor :param regularizer: The regularizer to use for the weights of the encoder. :type regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) hidden = embedded_sequence # ================ Recurrent Layers ================ hidden, final_state = self.recurrent_stack( hidden, training=training, mask=mask ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return { 'encoder_output': hidden, 'encoder_output_state': final_state } @register(name='cnnrnn') class StackedCNNRNN(SequenceEncoder): def __init__( self, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, conv_layers=None, num_conv_layers=1, num_filters=256, filter_size=5, strides=1, padding='same', dilation_rate=1, conv_activation='relu', conv_dropout=0.0, pool_function='max', pool_size=2, pool_strides=None, pool_padding='same', num_rec_layers=1, state_size=256, cell_type='rnn', bidirectional=False, activation='tanh', recurrent_activation='sigmoid', unit_forget_bias=True, recurrent_initializer='orthogonal', recurrent_regularizer=None, # recurrent_constraint=None, dropout=0.0, recurrent_dropout=0.0, fc_layers=None, num_fc_layers=0, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, fc_activation='relu', fc_dropout=0, reduce_output='last', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param num_layers: the number of stacked recurrent layers. :type num_layers: Integer :param cell_type: the type of recurrent cell to use. Avalable values are: `rnn`, `lstm`, `lstm_block`, `lstm`, `ln`, `lstm_cudnn`, `gru`, `gru_block`, `gru_cudnn`. For reference about the differences between the cells please refer to TensorFlow's documentstion. We suggest to use the `block` variants on CPU and the `cudnn` variants on GPU because of their increased speed. :type cell_type: str :param state_size: the size of the state of the rnn. :type state_size: Integer :param bidirectional: if `True` two recurrent networks will perform encoding in the forward and backward direction and their outputs will be concatenated. :type bidirectional: Boolean :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(StackedCNNRNN, self).__init__() logger.debug(' {}'.format(self.name)) if conv_layers is not None and num_conv_layers is None: # use custom-defined layers self.conv_layers = conv_layers self.num_conv_layers = len(conv_layers) elif conv_layers is None and num_conv_layers is not None: # generate num_conv_layers with default parameters self.conv_layers = None self.num_conv_layers = num_conv_layers elif conv_layers is None and num_conv_layers is None: # use default layers with varying filter sizes self.conv_layers = [ {'pool_size': 3}, {'pool_size': None} ] self.num_conv_layers = 2 else: raise ValueError( 'Invalid layer parametrization, use either conv_layers or ' 'num_conv_layers' ) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) self.should_embed = should_embed self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = EmbedSequence( vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=fc_dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) logger.debug(' Conv1DStack') self.conv1d_stack = Conv1DStack( layers=self.conv_layers, default_num_filters=num_filters, default_filter_size=filter_size, default_strides=strides, default_padding=padding, default_dilation_rate=dilation_rate, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=None, # default_bias_constraint=None, default_norm=norm, default_norm_params=norm_params, default_activation=conv_activation, default_dropout=conv_dropout, default_pool_function=pool_function, default_pool_size=pool_size, default_pool_strides=pool_strides, default_pool_padding=pool_padding, ) logger.debug(' RecurrentStack') self.recurrent_stack = RecurrentStack( state_size=state_size, cell_type=cell_type, num_layers=num_rec_layers, bidirectional=bidirectional, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, unit_forget_bias=unit_forget_bias, weights_initializer=weights_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, weights_regularizer=weights_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, # kernel_constraint=kernel_constraint, # recurrent_constraint=recurrent_constraint, # bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=fc_activation, default_dropout=fc_dropout, ) def call(self, inputs, training=None, mask=None): """ :param input_sequence: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type input_sequence: Tensor :param regularizer: The regularizer to use for the weights of the encoder. :type regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) hidden = embedded_sequence # ================ Conv Layers ================ hidden = self.conv1d_stack( hidden, training=training, mask=mask ) # ================ Recurrent Layers ================ hidden, final_state = self.recurrent_stack( hidden, training=training ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return { 'encoder_output': hidden, 'encoder_output_state': final_state } @register(name='transformer') class StackedTransformer(SequenceEncoder): def __init__( self, max_sequence_length, should_embed=True, vocab=None, representation='dense', embedding_size=256, embeddings_trainable=True, pretrained_embeddings=None, embeddings_on_cpu=False, num_layers=1, hidden_size=256, num_heads=8, transformer_fc_size=256, dropout=0.1, fc_layers=None, num_fc_layers=0, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, fc_activation='relu', fc_dropout=0, reduce_output='last', **kwargs ): """ :param should_embed: If True the input sequence is expected to be made of integers and will be mapped into embeddings :type should_embed: Boolean :param vocab: Vocabulary of the input feature to encode :type vocab: List :param representation: the possible values are `dense` and `sparse`. `dense` means the mebeddings are initialized randomly, `sparse` meanse they are initialized to be one-hot encodings. :type representation: Str (one of 'dense' or 'sparse') :param embedding_size: it is the maximum embedding size, the actual size will be `min(vocaularyb_size, embedding_size)` for `dense` representations and exacly `vocaularyb_size` for the `sparse` encoding, where `vocabulary_size` is the number of different strings appearing in the training set in the column the feature is named after (plus 1 for `<UNK>`). :type embedding_size: Integer :param embeddings_trainable: If `True` embeddings are trained during the training process, if `False` embeddings are fixed. It may be useful when loading pretrained embeddings for avoiding finetuning them. This parameter has effect only for `representation` is `dense` as `sparse` one-hot encodings are not trainable. :type embeddings_trainable: Boolean :param pretrained_embeddings: by default `dense` embeddings are initialized randomly, but this parameter allows to specify a path to a file containing embeddings in the GloVe format. When the file containing the embeddings is loaded, only the embeddings with labels present in the vocabulary are kept, the others are discarded. If the vocabulary contains strings that have no match in the embeddings file, their embeddings are initialized with the average of all other embedding plus some random noise to make them different from each other. This parameter has effect only if `representation` is `dense`. :type pretrained_embeddings: str (filepath) :param embeddings_on_cpu: by default embedings matrices are stored on GPU memory if a GPU is used, as it allows for faster access, but in some cases the embedding matrix may be really big and this parameter forces the placement of the embedding matrix in regular memroy and the CPU is used to resolve them, slightly slowing down the process as a result of data transfer between CPU and GPU memory. :param conv_layers: it is a list of dictionaries containing the parameters of all the convolutional layers. The length of the list determines the number of parallel convolutional layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are: `filter_size`, `num_filters`, `pool`, `norm`, `activation` and `regularize`. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead. If both `conv_layers` and `num_conv_layers` are `None`, a default list will be assigned to `conv_layers` with the value `[{filter_size: 2}, {filter_size: 3}, {filter_size: 4}, {filter_size: 5}]`. :type conv_layers: List :param num_conv_layers: if `conv_layers` is `None`, this is the number of stacked convolutional layers. :type num_conv_layers: Integer :param filter_size: if a `filter_size` is not already specified in `conv_layers` this is the default `filter_size` that will be used for each layer. It indicates how wide is the 1d convolutional filter. :type filter_size: Integer :param num_filters: if a `num_filters` is not already specified in `conv_layers` this is the default `num_filters` that will be used for each layer. It indicates the number of filters, and by consequence the output channels of the 1d convolution. :type num_filters: Integer :param pool_size: if a `pool_size` is not already specified in `conv_layers` this is the default `pool_size` that will be used for each layer. It indicates the size of the max pooling that will be performed along the `s` sequence dimension after the convolution operation. :type pool_size: Integer :param num_rec_layers: the number of stacked recurrent layers. :type num_rec_layers: Integer :param cell_type: the type of recurrent cell to use. Avalable values are: `rnn`, `lstm`, `lstm_block`, `lstm`, `ln`, `lstm_cudnn`, `gru`, `gru_block`, `gru_cudnn`. For reference about the differences between the cells please refer to TensorFlow's documentstion. We suggest to use the `block` variants on CPU and the `cudnn` variants on GPU because of their increased speed. :type cell_type: str :param state_size: the size of the state of the rnn. :type state_size: Integer :param bidirectional: if `True` two recurrent networks will perform encoding in the forward and backward direction and their outputs will be concatenated. :type bidirectional: Boolean :param dropout: determines if there should be a dropout layer before returning the encoder output. :type dropout: Boolean :param initializer: the initializer to use. If `None` it uses `glorot_uniform`. Options are: `constant`, `identity`, `zeros`, `ones`, `orthogonal`, `normal`, `uniform`, `truncated_normal`, `variance_scaling`, `glorot_normal`, `glorot_uniform`, `xavier_normal`, `xavier_uniform`, `he_normal`, `he_uniform`, `lecun_normal`, `lecun_uniform`. Alternatively it is possible to specify a dictionary with a key `type` that identifies the type of initialzier and other keys for its parameters, e.g. `{type: normal, mean: 0, stddev: 0}`. To know the parameters of each initializer, please refer to TensorFlow's documentation. :type initializer: str :param regularize: if a `regularize` is not already specified in `conv_layers` or `fc_layers` this is the default `regularize` that will be used for each layer. It indicates if the layer weights should be considered when computing a regularization loss. :type regularize: :param reduce_output: defines how to reduce the output tensor of the convolutional layers along the `s` sequence length dimention if the rank of the tensor is greater than 2. Available values are: `sum`, `mean` or `avg`, `max`, `concat` (concatenates along the first dimension), `last` (returns the last vector of the first dimension) and `None` or `null` (which does not reduce and returns the full tensor). :type reduce_output: str """ super(StackedTransformer, self).__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) if self.reduce_output is None: self.supports_masking = True self.should_embed = should_embed self.should_project = False self.embed_sequence = None if self.should_embed: logger.debug(' EmbedSequence') self.embed_sequence = TokenAndPositionEmbedding( max_sequence_length, vocab, embedding_size, representation=representation, embeddings_trainable=embeddings_trainable, pretrained_embeddings=pretrained_embeddings, embeddings_on_cpu=embeddings_on_cpu, dropout=dropout, embedding_initializer=weights_initializer, embedding_regularizer=weights_regularizer ) if embedding_size != hidden_size: logger.debug(' project_to_embed_size Dense') self.project_to_hidden_size = Dense(hidden_size) self.should_project = True else: logger.debug(' project_to_embed_size Dense') self.project_to_hidden_size = Dense(hidden_size) self.should_project = True logger.debug(' TransformerStack') self.transformer_stack = TrasformerStack( hidden_size=hidden_size, num_heads=num_heads, fc_size=transformer_fc_size, num_layers=num_layers, dropout=dropout ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=fc_activation, default_dropout=fc_dropout, ) def call(self, inputs, training=None, mask=None): """ :param input_sequence: The input sequence fed into the encoder. Shape: [batch x sequence length], type tf.int32 :type input_sequence: Tensor :param regularizer: The regularizer to use for the weights of the encoder. :type regularizer: :param dropout: Tensor (tf.float) of the probability of dropout :type dropout: Tensor :param is_training: Tesnor (tf.bool) specifying if in training mode (important for dropout) :type is_training: Tensor """ # ================ Embeddings ================ if self.should_embed: embedded_sequence = self.embed_sequence( inputs, training=training, mask=mask ) else: embedded_sequence = inputs while len(embedded_sequence.shape) < 3: embedded_sequence = tf.expand_dims(embedded_sequence, -1) # shape=(?, sequence_length, embedding_size) if self.should_project: hidden = self.project_to_hidden_size(embedded_sequence) else: hidden = embedded_sequence # shape=(?, sequence_length, hidden) # ================ Transformer Layers ================ hidden = self.transformer_stack( hidden, training=training, mask=mask ) # ================ Sequence Reduction ================ if self.reduce_output is not None: hidden = self.reduce_sequence(hidden) # ================ FC Layers ================ hidden = self.fc_stack( hidden, training=training, mask=mask ) return {'encoder_output': hidden}
apache-2.0
knifenomad/django
tests/utils_tests/test_timezone.py
149
7857
import copy import datetime import pickle import unittest from django.test import override_settings from django.utils import timezone try: import pytz except ImportError: pytz = None requires_pytz = unittest.skipIf(pytz is None, "this test requires pytz") if pytz is not None: CET = pytz.timezone("Europe/Paris") EAT = timezone.get_fixed_timezone(180) # Africa/Nairobi ICT = timezone.get_fixed_timezone(420) # Asia/Bangkok class TimezoneTests(unittest.TestCase): def test_localtime(self): now = datetime.datetime.utcnow().replace(tzinfo=timezone.utc) local_tz = timezone.LocalTimezone() local_now = timezone.localtime(now, local_tz) self.assertEqual(local_now.tzinfo, local_tz) def test_localtime_naive(self): with self.assertRaises(ValueError): timezone.localtime(datetime.datetime.now()) def test_localtime_out_of_range(self): local_tz = timezone.LocalTimezone() long_ago = datetime.datetime(1900, 1, 1, tzinfo=timezone.utc) try: timezone.localtime(long_ago, local_tz) except (OverflowError, ValueError) as exc: self.assertIn("install pytz", exc.args[0]) else: raise unittest.SkipTest("Failed to trigger an OverflowError or ValueError") def test_now(self): with override_settings(USE_TZ=True): self.assertTrue(timezone.is_aware(timezone.now())) with override_settings(USE_TZ=False): self.assertTrue(timezone.is_naive(timezone.now())) def test_override(self): default = timezone.get_default_timezone() try: timezone.activate(ICT) with timezone.override(EAT): self.assertIs(EAT, timezone.get_current_timezone()) self.assertIs(ICT, timezone.get_current_timezone()) with timezone.override(None): self.assertIs(default, timezone.get_current_timezone()) self.assertIs(ICT, timezone.get_current_timezone()) timezone.deactivate() with timezone.override(EAT): self.assertIs(EAT, timezone.get_current_timezone()) self.assertIs(default, timezone.get_current_timezone()) with timezone.override(None): self.assertIs(default, timezone.get_current_timezone()) self.assertIs(default, timezone.get_current_timezone()) finally: timezone.deactivate() def test_override_decorator(self): default = timezone.get_default_timezone() @timezone.override(EAT) def func_tz_eat(): self.assertIs(EAT, timezone.get_current_timezone()) @timezone.override(None) def func_tz_none(): self.assertIs(default, timezone.get_current_timezone()) try: timezone.activate(ICT) func_tz_eat() self.assertIs(ICT, timezone.get_current_timezone()) func_tz_none() self.assertIs(ICT, timezone.get_current_timezone()) timezone.deactivate() func_tz_eat() self.assertIs(default, timezone.get_current_timezone()) func_tz_none() self.assertIs(default, timezone.get_current_timezone()) finally: timezone.deactivate() def test_copy(self): self.assertIsInstance(copy.copy(timezone.UTC()), timezone.UTC) self.assertIsInstance(copy.copy(timezone.LocalTimezone()), timezone.LocalTimezone) def test_deepcopy(self): self.assertIsInstance(copy.deepcopy(timezone.UTC()), timezone.UTC) self.assertIsInstance(copy.deepcopy(timezone.LocalTimezone()), timezone.LocalTimezone) def test_pickling_unpickling(self): self.assertIsInstance(pickle.loads(pickle.dumps(timezone.UTC())), timezone.UTC) self.assertIsInstance(pickle.loads(pickle.dumps(timezone.LocalTimezone())), timezone.LocalTimezone) def test_is_aware(self): self.assertTrue(timezone.is_aware(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT))) self.assertFalse(timezone.is_aware(datetime.datetime(2011, 9, 1, 13, 20, 30))) def test_is_naive(self): self.assertFalse(timezone.is_naive(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT))) self.assertTrue(timezone.is_naive(datetime.datetime(2011, 9, 1, 13, 20, 30))) def test_make_aware(self): self.assertEqual( timezone.make_aware(datetime.datetime(2011, 9, 1, 13, 20, 30), EAT), datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT)) with self.assertRaises(ValueError): timezone.make_aware(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), EAT) def test_make_naive(self): self.assertEqual( timezone.make_naive(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), EAT), datetime.datetime(2011, 9, 1, 13, 20, 30)) self.assertEqual( timezone.make_naive(datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT), EAT), datetime.datetime(2011, 9, 1, 13, 20, 30)) with self.assertRaises(ValueError): timezone.make_naive(datetime.datetime(2011, 9, 1, 13, 20, 30), EAT) @requires_pytz def test_make_aware2(self): self.assertEqual( timezone.make_aware(datetime.datetime(2011, 9, 1, 12, 20, 30), CET), CET.localize(datetime.datetime(2011, 9, 1, 12, 20, 30))) with self.assertRaises(ValueError): timezone.make_aware(CET.localize(datetime.datetime(2011, 9, 1, 12, 20, 30)), CET) @requires_pytz def test_make_aware_pytz(self): self.assertEqual( timezone.make_naive(CET.localize(datetime.datetime(2011, 9, 1, 12, 20, 30)), CET), datetime.datetime(2011, 9, 1, 12, 20, 30)) self.assertEqual( timezone.make_naive( pytz.timezone("Asia/Bangkok").localize(datetime.datetime(2011, 9, 1, 17, 20, 30)), CET ), datetime.datetime(2011, 9, 1, 12, 20, 30)) with self.assertRaises(ValueError): timezone.make_naive(datetime.datetime(2011, 9, 1, 12, 20, 30), CET) @requires_pytz def test_make_aware_pytz_ambiguous(self): # 2:30 happens twice, once before DST ends and once after ambiguous = datetime.datetime(2015, 10, 25, 2, 30) with self.assertRaises(pytz.AmbiguousTimeError): timezone.make_aware(ambiguous, timezone=CET) std = timezone.make_aware(ambiguous, timezone=CET, is_dst=False) dst = timezone.make_aware(ambiguous, timezone=CET, is_dst=True) self.assertEqual(std - dst, datetime.timedelta(hours=1)) self.assertEqual(std.tzinfo.utcoffset(std), datetime.timedelta(hours=1)) self.assertEqual(dst.tzinfo.utcoffset(dst), datetime.timedelta(hours=2)) @requires_pytz def test_make_aware_pytz_non_existent(self): # 2:30 never happened due to DST non_existent = datetime.datetime(2015, 3, 29, 2, 30) with self.assertRaises(pytz.NonExistentTimeError): timezone.make_aware(non_existent, timezone=CET) std = timezone.make_aware(non_existent, timezone=CET, is_dst=False) dst = timezone.make_aware(non_existent, timezone=CET, is_dst=True) self.assertEqual(std - dst, datetime.timedelta(hours=1)) self.assertEqual(std.tzinfo.utcoffset(std), datetime.timedelta(hours=1)) self.assertEqual(dst.tzinfo.utcoffset(dst), datetime.timedelta(hours=2)) # round trip to UTC then back to CET std = timezone.localtime(timezone.localtime(std, timezone.UTC()), CET) dst = timezone.localtime(timezone.localtime(dst, timezone.UTC()), CET) self.assertEqual((std.hour, std.minute), (3, 30)) self.assertEqual((dst.hour, dst.minute), (1, 30))
bsd-3-clause
kenshay/ImageScript
ProgramData/Android/ADB/platform-tools/systrace/catapult/telemetry/third_party/pyfakefs/pyfakefs/example.py
23
3559
# Copyright 2014 Altera Corporation. All Rights Reserved. # Author: John McGehee # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example module that is tested in :py:class`pyfakefs.example_test.TestExample`. This demonstrates the usage of the :py:class`pyfakefs.fake_filesystem_unittest.TestCase` base class. The modules related to file handling are bound to the respective fake modules: >>> os #doctest: +ELLIPSIS <fake_filesystem.FakeOsModule object...> >>> os.path #doctest: +ELLIPSIS <fake_filesystem.FakePathModule object...> >>> glob #doctest: +ELLIPSIS <fake_filesystem_glob.FakeGlobModule object...> >>> shutil #doctest: +ELLIPSIS <fake_filesystem_shutil.FakeShutilModule object...> The `open()` built-in is bound to the fake `open()`: >>> open #doctest: +ELLIPSIS <fake_filesystem.FakeFileOpen object...> In Python 2 the `file()` built-in is also bound to the fake `open()`. `file()` was eliminated in Python 3. """ import os import glob import shutil def create_file(path): '''Create the specified file and add some content to it. Use the `open()` built in function. For example, the following file operations occur in the fake file system. In the real file system, we would not even have permission to write `/test`: >>> os.path.isdir('/test') False >>> os.mkdir('/test') >>> os.path.isdir('/test') True >>> os.path.exists('/test/file.txt') False >>> create_file('/test/file.txt') >>> os.path.exists('/test/file.txt') True >>> with open('/test/file.txt') as f: ... f.readlines() ["This is test file '/test/file.txt'.\\n", 'It was created using the open() function.\\n'] ''' with open(path, 'w') as f: f.write("This is test file '{}'.\n".format(path)) f.write("It was created using the open() function.\n") def delete_file(path): '''Delete the specified file. For example: >>> os.mkdir('/test') >>> os.path.exists('/test/file.txt') False >>> create_file('/test/file.txt') >>> os.path.exists('/test/file.txt') True >>> delete_file('/test/file.txt') >>> os.path.exists('/test/file.txt') False ''' os.remove(path) def path_exists(path): '''Return True if the specified file exists. For example: >>> path_exists('/test') False >>> os.mkdir('/test') >>> path_exists('/test') True >>> >>> path_exists('/test/file.txt') False >>> create_file('/test/file.txt') >>> path_exists('/test/file.txt') True ''' return os.path.exists(path) def get_glob(glob_path): '''Return the list of paths matching the specified glob expression. For example: >>> os.mkdir('/test') >>> create_file('/test/file1.txt') >>> create_file('/test/file2.txt') >>> get_glob('/test/file*.txt') ['/test/file1.txt', '/test/file2.txt'] ''' return glob.glob(glob_path) def rm_tree(path): '''Delete the specified file hierarchy.''' shutil.rmtree(path)
gpl-3.0
caseyrollins/osf.io
addons/gitlab/tests/test_views.py
4
23654
# -*- coding: utf-8 -*- import httplib as http import mock import datetime import pytest import unittest from json import dumps from nose.tools import * # noqa (PEP8 asserts) from tests.base import OsfTestCase, get_default_metaschema from osf_tests.factories import ProjectFactory, UserFactory, AuthUserFactory from github3.repos.branch import Branch from framework.exceptions import HTTPError from framework.auth import Auth from addons.base.tests.views import ( OAuthAddonAuthViewsTestCaseMixin, OAuthAddonConfigViewsTestCaseMixin ) from addons.gitlab import utils from addons.gitlab.api import GitLabClient from addons.gitlab.serializer import GitLabSerializer from addons.gitlab.utils import check_permissions from addons.gitlab.tests.utils import create_mock_gitlab, GitLabAddonTestCase from addons.gitlab.tests.factories import GitLabAccountFactory pytestmark = pytest.mark.django_db class TestGitLabAuthViews(GitLabAddonTestCase, OAuthAddonAuthViewsTestCaseMixin, OsfTestCase): @mock.patch( 'addons.gitlab.models.UserSettings.revoke_remote_oauth_access', mock.PropertyMock() ) def test_delete_external_account(self): super(TestGitLabAuthViews, self).test_delete_external_account() def test_oauth_start(self): pass def test_oauth_finish(self): pass class TestGitLabConfigViews(GitLabAddonTestCase, OAuthAddonConfigViewsTestCaseMixin, OsfTestCase): folder = None Serializer = GitLabSerializer client = GitLabClient ## Overrides ## def setUp(self): super(TestGitLabConfigViews, self).setUp() self.mock_api_user = mock.patch('addons.gitlab.api.GitLabClient.user') self.mock_api_user.return_value = mock.Mock() self.mock_api_user.start() def tearDown(self): self.mock_api_user.stop() super(TestGitLabConfigViews, self).tearDown() def test_folder_list(self): # GH only lists root folder (repos), this test is superfluous pass @mock.patch('addons.gitlab.models.NodeSettings.add_hook') @mock.patch('addons.gitlab.views.GitLabClient.repo') def test_set_config(self, mock_repo, mock_add_hook): # GH selects repos, not folders, so this needs to be overriden mock_repo.return_value = 'repo_name' url = self.project.api_url_for('{0}_set_config'.format(self.ADDON_SHORT_NAME)) res = self.app.post_json(url, { 'gitlab_user': 'octocat', 'gitlab_repo': 'repo_name', 'gitlab_repo_id': '123', }, auth=self.user.auth) assert_equal(res.status_code, http.OK) self.project.reload() assert_equal( self.project.logs.latest().action, '{0}_repo_linked'.format(self.ADDON_SHORT_NAME) ) mock_add_hook.assert_called_once_with(save=False) # TODO: Test remaining CRUD methods # TODO: Test exception handling class TestCRUD(OsfTestCase): def setUp(self): super(TestCRUD, self).setUp() self.gitlab = create_mock_gitlab(user='fred', private=False) self.user = AuthUserFactory() self.consolidated_auth = Auth(user=self.user) self.project = ProjectFactory(creator=self.user) self.project.add_addon('gitlab', auth=self.consolidated_auth) self.project.creator.add_addon('gitlab') self.node_settings = self.project.get_addon('gitlab') self.node_settings.user_settings = self.project.creator.get_addon('gitlab') # Set the node addon settings to correspond to the values of the mock repo self.node_settings.user = self.gitlab.repo.return_value.owner.login self.node_settings.repo = self.gitlab.repo.return_value.name self.node_settings.save() class TestGitLabViews(OsfTestCase): def setUp(self): super(TestGitLabViews, self).setUp() self.user = AuthUserFactory() self.consolidated_auth = Auth(user=self.user) self.project = ProjectFactory(creator=self.user) self.non_authenticator = UserFactory() self.project.add_contributor( contributor=self.non_authenticator, auth=self.consolidated_auth, ) self.project.save() self.project.add_addon('gitlab', auth=self.consolidated_auth) self.project.creator.add_addon('gitlab') self.project.creator.external_accounts.add(GitLabAccountFactory()) self.project.creator.save() self.gitlab = create_mock_gitlab(user='fred', private=False) self.node_settings = self.project.get_addon('gitlab') self.node_settings.user_settings = self.project.creator.get_addon('gitlab') # Set the node addon settings to correspond to the values of the mock repo self.node_settings.user = 'fred' self.node_settings.repo = 'mock-repo' self.node_settings.repo_id = 1748448 self.node_settings.save() def _get_sha_for_branch(self, branch=None, mock_branches=None): gitlab_mock = self.gitlab if mock_branches is None: mock_branches = gitlab_mock.branches if branch is None: # Get default branch name branch = self.gitlab.repo.default_branch for each in mock_branches: if each.name == branch: branch_sha = each.commit['id'] return branch_sha # Tests for _get_refs @mock.patch('addons.gitlab.api.GitLabClient.branches') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_get_refs_defaults(self, mock_repo, mock_branches): gitlab_mock = self.gitlab mock_repo.return_value = gitlab_mock.repo mock_branches.return_value = gitlab_mock.branches.return_value branch, sha, branches = utils.get_refs(self.node_settings) assert_equal( branch, gitlab_mock.repo.default_branch ) assert_equal(sha, branches[0].commit['id']) # Get refs for default branch assert_equal( branches, gitlab_mock.branches.return_value ) @mock.patch('addons.gitlab.api.GitLabClient.branches') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_get_refs_branch(self, mock_repo, mock_branches): gitlab_mock = self.gitlab mock_repo.return_value = gitlab_mock.repo.return_value mock_branches.return_value = gitlab_mock.branches.return_value branch, sha, branches = utils.get_refs(self.node_settings, 'master') assert_equal(branch, 'master') assert_equal(sha, branches[0].commit['id']) assert_equal( branches, gitlab_mock.branches.return_value ) def test_before_fork(self): url = self.project.api_url + 'fork/before/' res = self.app.get(url, auth=self.user.auth).maybe_follow() assert_equal(len(res.json['prompts']), 1) @mock.patch('addons.gitlab.models.UserSettings.has_auth') def test_before_register(self, mock_has_auth): mock_has_auth.return_value = True url = self.project.api_url + 'beforeregister/' res = self.app.get(url, auth=self.user.auth).maybe_follow() assert_true('GitLab' in res.json['prompts'][1]) def test_get_refs_sha_no_branch(self): with assert_raises(HTTPError): utils.get_refs(self.node_settings, sha='12345') # Tests for _check_permissions # make a user with no authorization; make sure check_permissions returns false def test_permissions_no_auth(self): gitlab_mock = self.gitlab # project is set to private right now connection = gitlab_mock non_authenticated_user = UserFactory() non_authenticated_auth = Auth(user=non_authenticated_user) branch = 'master' assert_false(check_permissions(self.node_settings, non_authenticated_auth, connection, branch)) # make a repository that doesn't allow push access for this user; # make sure check_permissions returns false @mock.patch('addons.gitlab.models.UserSettings.has_auth') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_permissions_no_access(self, mock_repo, mock_has_auth): gitlab_mock = self.gitlab mock_has_auth.return_value = True connection = gitlab_mock branch = 'master' mock_repository = mock.Mock(**{ 'user': 'fred', 'repo': 'mock-repo', 'permissions': { 'project_access': {'access_level': 20, 'notification_level': 3} }, }) mock_repo.attributes.return_value = mock_repository assert_false(check_permissions(self.node_settings, self.consolidated_auth, connection, branch, repo=mock_repository)) # make a branch with a different commit than the commit being passed into check_permissions @mock.patch('addons.gitlab.models.UserSettings.has_auth') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_permissions_not_head(self, mock_repo, mock_has_auth): gitlab_mock = self.gitlab mock_has_auth.return_value = True connection = gitlab_mock mock_branch = mock.Mock(**{ 'commit': {'id': '67890'} }) connection.branches.return_value = mock_branch sha = '12345' assert_false(check_permissions(self.node_settings, self.consolidated_auth, connection, mock_branch, sha=sha)) # make sure permissions are not granted for editing a registration @mock.patch('addons.gitlab.models.UserSettings.has_auth') def test_permissions(self, mock_has_auth): gitlab_mock = self.gitlab mock_has_auth.return_value = True connection = gitlab_mock with mock.patch('osf.models.node.AbstractNode.is_registration', new_callable=mock.PropertyMock) as mock_is_reg: mock_is_reg.return_value = True assert_false(check_permissions(self.node_settings, self.consolidated_auth, connection, 'master')) def check_hook_urls(self, urls, node, path, sha): url = node.web_url_for('addon_view_or_download_file', path=path, provider='gitlab') expected_urls = { 'view': '{0}?branch={1}'.format(url, sha), 'download': '{0}?action=download&branch={1}'.format(url, sha) } assert_equal(urls['view'], expected_urls['view']) assert_equal(urls['download'], expected_urls['download']) @mock.patch('addons.gitlab.views.verify_hook_signature') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_hook_callback_add_file_not_thro_osf(self, mock_repo, mock_verify): gitlab_mock = self.gitlab gitlab_mock.repo = mock_repo url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) timestamp = str(datetime.datetime.utcnow()) self.app.post_json( url, { 'test': True, 'commits': [{ 'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': 'foo', 'timestamp': timestamp, 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': ['PRJWN3TV'], 'removed': [], 'modified': [], }] }, content_type='application/json', ).maybe_follow() self.project.reload() assert_equal(self.project.logs.latest().action, 'gitlab_file_added') urls = self.project.logs.latest().params['urls'] self.check_hook_urls( urls, self.project, path='PRJWN3TV', sha='b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', ) @mock.patch('addons.gitlab.views.verify_hook_signature') def test_hook_callback_modify_file_not_thro_osf(self, mock_verify): url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) timestamp = str(datetime.datetime.utcnow()) self.app.post_json( url, {'test': True, 'commits': [{'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': ' foo', 'timestamp': timestamp, 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': [], 'removed':[], 'modified':['PRJWN3TV']}]}, content_type='application/json').maybe_follow() self.project.reload() assert_equal(self.project.logs.latest().action, 'gitlab_file_updated') urls = self.project.logs.latest().params['urls'] self.check_hook_urls( urls, self.project, path='PRJWN3TV', sha='b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', ) @mock.patch('addons.gitlab.views.verify_hook_signature') def test_hook_callback_remove_file_not_thro_osf(self, mock_verify): url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) timestamp = str(datetime.datetime.utcnow()) self.app.post_json( url, {'test': True, 'commits': [{'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': 'foo', 'timestamp': timestamp, 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': [], 'removed': ['PRJWN3TV'], 'modified':[]}]}, content_type='application/json').maybe_follow() self.project.reload() assert_equal(self.project.logs.latest().action, 'gitlab_file_removed') urls = self.project.logs.latest().params['urls'] assert_equal(urls, {}) @mock.patch('addons.gitlab.views.verify_hook_signature') def test_hook_callback_add_file_thro_osf(self, mock_verify): url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) self.app.post_json( url, {'test': True, 'commits': [{'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': 'Added via the Open Science Framework', 'timestamp': '2014-01-08T14:15:51-08:00', 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': ['PRJWN3TV'], 'removed':[], 'modified':[]}]}, content_type='application/json').maybe_follow() self.project.reload() assert_not_equal(self.project.logs.latest().action, 'gitlab_file_added') @mock.patch('addons.gitlab.views.verify_hook_signature') def test_hook_callback_modify_file_thro_osf(self, mock_verify): url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) self.app.post_json( url, {'test': True, 'commits': [{'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': 'Updated via the Open Science Framework', 'timestamp': '2014-01-08T14:15:51-08:00', 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': [], 'removed':[], 'modified':['PRJWN3TV']}]}, content_type='application/json').maybe_follow() self.project.reload() assert_not_equal(self.project.logs.latest().action, 'gitlab_file_updated') @mock.patch('addons.gitlab.views.verify_hook_signature') def test_hook_callback_remove_file_thro_osf(self, mock_verify): url = '/api/v1/project/{0}/gitlab/hook/'.format(self.project._id) self.app.post_json( url, {'test': True, 'commits': [{'id': 'b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'distinct': True, 'message': 'Deleted via the Open Science Framework', 'timestamp': '2014-01-08T14:15:51-08:00', 'url': 'https://gitlab.com/tester/addontesting/commit/b08dbb5b6fcd74a592e5281c9d28e2020a1db4ce', 'author': {'name': 'Illidan', 'email': '[email protected]'}, 'committer': {'name': 'Testor', 'email': '[email protected]', 'username': 'tester'}, 'added': [], 'removed':['PRJWN3TV'], 'modified':[]}]}, content_type='application/json').maybe_follow() self.project.reload() assert_not_equal(self.project.logs.latest().action, 'gitlab_file_removed') class TestRegistrationsWithGitLab(OsfTestCase): def setUp(self): super(TestRegistrationsWithGitLab, self).setUp() self.project = ProjectFactory.build() self.project.save() self.consolidated_auth = Auth(user=self.project.creator) self.project.add_addon('gitlab', auth=self.consolidated_auth) self.project.creator.add_addon('gitlab') self.node_settings = self.project.get_addon('gitlab') self.user_settings = self.project.creator.get_addon('gitlab') self.node_settings.user_settings = self.user_settings self.node_settings.user = 'Queen' self.node_settings.repo = 'Sheer-Heart-Attack' self.node_settings.save() class TestGitLabSettings(OsfTestCase): def setUp(self): super(TestGitLabSettings, self).setUp() self.gitlab = create_mock_gitlab(user='fred', private=False) self.project = ProjectFactory() self.auth = self.project.creator.auth self.consolidated_auth = Auth(user=self.project.creator) self.project.add_addon('gitlab', auth=self.consolidated_auth) self.project.creator.add_addon('gitlab') self.node_settings = self.project.get_addon('gitlab') self.user_settings = self.project.creator.get_addon('gitlab') self.node_settings.user_settings = self.user_settings self.node_settings.user = 'Queen' self.node_settings.repo = 'Sheer-Heart-Attack' self.node_settings.repo_id = 'sheer-heart-attack' self.node_settings.save() @mock.patch('addons.gitlab.models.NodeSettings.add_hook') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_link_repo(self, mock_repo, mock_add_hook): gitlab_mock = self.gitlab mock_repo.return_value = gitlab_mock.repo.return_value url = self.project.api_url + 'gitlab/settings/' self.app.post_json( url, { 'gitlab_user': 'queen', 'gitlab_repo': 'night at the opera', 'gitlab_repo_id': 'abc', }, auth=self.auth ).maybe_follow() self.project.reload() self.node_settings.reload() assert_equal(self.node_settings.user, 'queen') assert_equal(self.node_settings.repo, 'night at the opera') assert_equal(self.project.logs.latest().action, 'gitlab_repo_linked') mock_add_hook.assert_called_once_with(save=False) @mock.patch('addons.gitlab.models.NodeSettings.add_hook') @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_link_repo_no_change(self, mock_repo, mock_add_hook): gitlab_mock = self.gitlab mock_repo.return_value = gitlab_mock.repo.return_value log_count = self.project.logs.count() url = self.project.api_url + 'gitlab/settings/' self.app.post_json( url, { 'gitlab_user': self.node_settings.user, 'gitlab_repo': self.node_settings.repo, 'gitlab_repo_id': self.node_settings.repo_id, }, auth=self.auth ).maybe_follow() self.project.reload() self.node_settings.reload() assert_equal(self.project.logs.count(), log_count) assert_false(mock_add_hook.called) @mock.patch('addons.gitlab.api.GitLabClient.repo') def test_link_repo_non_existent(self, mock_repo): mock_repo.return_value = None url = self.project.api_url + 'gitlab/settings/' res = self.app.post_json( url, { 'gitlab_user': 'queen', 'gitlab_repo': 'night at the opera', }, auth=self.auth, expect_errors=True ).maybe_follow() assert_equal(res.status_code, 400) @mock.patch('addons.gitlab.api.GitLabClient.branches') def test_link_repo_registration(self, mock_branches): mock_branches.return_value = [ Branch.from_json(dumps({ 'name': 'master', 'commit': { 'sha': '6dcb09b5b57875f334f61aebed695e2e4193db5e', 'url': 'https://api.gitlab.com/repos/octocat/Hello-World/commits/c5b97d5ae6c19d5c5df71a34c7fbeeda2479ccbc', } })), Branch.from_json(dumps({ 'name': 'develop', 'commit': { 'sha': '6dcb09b5b57875asdasedawedawedwedaewdwdass', 'url': 'https://api.gitlab.com/repos/octocat/Hello-World/commits/cdcb09b5b57875asdasedawedawedwedaewdwdass', } })) ] registration = self.project.register_node( schema=get_default_metaschema(), auth=self.consolidated_auth, data='' ) url = registration.api_url + 'gitlab/settings/' res = self.app.post_json( url, { 'gitlab_user': 'queen', 'gitlab_repo': 'night at the opera', }, auth=self.auth, expect_errors=True ).maybe_follow() assert_equal(res.status_code, 400) @mock.patch('addons.gitlab.models.NodeSettings.delete_hook') def test_deauthorize(self, mock_delete_hook): url = self.project.api_url + 'gitlab/user_auth/' self.app.delete(url, auth=self.auth).maybe_follow() self.project.reload() self.node_settings.reload() assert_equal(self.node_settings.user, None) assert_equal(self.node_settings.repo, None) assert_equal(self.node_settings.user_settings, None) assert_equal(self.project.logs.latest().action, 'gitlab_node_deauthorized') if __name__ == '__main__': unittest.main()
apache-2.0
Jorge-Rodriguez/ansible
lib/ansible/modules/cloud/openstack/os_server_action.py
54
8029
#!/usr/bin/python # coding: utf-8 -*- # Copyright (c) 2015, Jesse Keating <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: os_server_action short_description: Perform actions on Compute Instances from OpenStack extends_documentation_fragment: openstack version_added: "2.0" author: "Jesse Keating (@omgjlk)" description: - Perform server actions on an existing compute instance from OpenStack. This module does not return any data other than changed true/false. When I(action) is 'rebuild', then I(image) parameter is required. options: server: description: - Name or ID of the instance required: true wait: description: - If the module should wait for the instance action to be performed. type: bool default: 'yes' timeout: description: - The amount of time the module should wait for the instance to perform the requested action. default: 180 action: description: - Perform the given action. The lock and unlock actions always return changed as the servers API does not provide lock status. choices: [stop, start, pause, unpause, lock, unlock, suspend, resume, rebuild] default: present image: description: - Image the server should be rebuilt with version_added: "2.3" availability_zone: description: - Ignored. Present for backwards compatibility requirements: - "python >= 2.7" - "openstacksdk" ''' EXAMPLES = ''' # Pauses a compute instance - os_server_action: action: pause auth: auth_url: https://identity.example.com username: admin password: admin project_name: admin server: vm1 timeout: 200 ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.openstack import openstack_full_argument_spec, openstack_module_kwargs, openstack_cloud_from_module _action_map = {'stop': 'SHUTOFF', 'start': 'ACTIVE', 'pause': 'PAUSED', 'unpause': 'ACTIVE', 'lock': 'ACTIVE', # API doesn't show lock/unlock status 'unlock': 'ACTIVE', 'suspend': 'SUSPENDED', 'resume': 'ACTIVE', 'rebuild': 'ACTIVE'} _admin_actions = ['pause', 'unpause', 'suspend', 'resume', 'lock', 'unlock'] def _action_url(server_id): return '/servers/{server_id}/action'.format(server_id=server_id) def _wait(timeout, cloud, server, action, module, sdk): """Wait for the server to reach the desired state for the given action.""" for count in sdk.utils.iterate_timeout( timeout, "Timeout waiting for server to complete %s" % action): try: server = cloud.get_server(server.id) except Exception: continue if server.status == _action_map[action]: return if server.status == 'ERROR': module.fail_json(msg="Server reached ERROR state while attempting to %s" % action) def _system_state_change(action, status): """Check if system state would change.""" if status == _action_map[action]: return False return True def main(): argument_spec = openstack_full_argument_spec( server=dict(required=True), action=dict(required=True, choices=['stop', 'start', 'pause', 'unpause', 'lock', 'unlock', 'suspend', 'resume', 'rebuild']), image=dict(required=False), ) module_kwargs = openstack_module_kwargs() module = AnsibleModule(argument_spec, supports_check_mode=True, required_if=[('action', 'rebuild', ['image'])], **module_kwargs) action = module.params['action'] wait = module.params['wait'] timeout = module.params['timeout'] image = module.params['image'] sdk, cloud = openstack_cloud_from_module(module) try: server = cloud.get_server(module.params['server']) if not server: module.fail_json(msg='Could not find server %s' % server) status = server.status if module.check_mode: module.exit_json(changed=_system_state_change(action, status)) if action == 'stop': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'os-stop': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) if action == 'start': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'os-start': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) if action == 'pause': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'pause': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) elif action == 'unpause': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'unpause': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) elif action == 'lock': # lock doesn't set a state, just do it cloud.compute.post( _action_url(server.id), json={'lock': None}) module.exit_json(changed=True) elif action == 'unlock': # unlock doesn't set a state, just do it cloud.compute.post( _action_url(server.id), json={'unlock': None}) module.exit_json(changed=True) elif action == 'suspend': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'suspend': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) elif action == 'resume': if not _system_state_change(action, status): module.exit_json(changed=False) cloud.compute.post( _action_url(server.id), json={'resume': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) elif action == 'rebuild': image = cloud.get_image(image) if image is None: module.fail_json(msg="Image does not exist") # rebuild doesn't set a state, just do it cloud.compute.post( _action_url(server.id), json={'rebuild': None}) if wait: _wait(timeout, cloud, server, action, module, sdk) module.exit_json(changed=True) except sdk.exceptions.OpenStackCloudException as e: module.fail_json(msg=str(e), extra_data=e.extra_data) if __name__ == '__main__': main()
gpl-3.0
listamilton/supermilton.repository
script.module.youtube.dl/lib/youtube_dl/extractor/giga.py
142
3819
# coding: utf-8 from __future__ import unicode_literals import itertools from .common import InfoExtractor from ..utils import ( qualities, compat_str, parse_duration, parse_iso8601, str_to_int, ) class GigaIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?giga\.de/(?:[^/]+/)*(?P<id>[^/]+)' _TESTS = [{ 'url': 'http://www.giga.de/filme/anime-awesome/trailer/anime-awesome-chihiros-reise-ins-zauberland-das-beste-kommt-zum-schluss/', 'md5': '6bc5535e945e724640664632055a584f', 'info_dict': { 'id': '2622086', 'display_id': 'anime-awesome-chihiros-reise-ins-zauberland-das-beste-kommt-zum-schluss', 'ext': 'mp4', 'title': 'Anime Awesome: Chihiros Reise ins Zauberland – Das Beste kommt zum Schluss', 'description': 'md5:afdf5862241aded4718a30dff6a57baf', 'thumbnail': 're:^https?://.*\.jpg$', 'duration': 578, 'timestamp': 1414749706, 'upload_date': '20141031', 'uploader': 'Robin Schweiger', 'view_count': int, }, }, { 'url': 'http://www.giga.de/games/channel/giga-top-montag/giga-topmontag-die-besten-serien-2014/', 'only_matching': True, }, { 'url': 'http://www.giga.de/extra/netzkultur/videos/giga-games-tom-mats-robin-werden-eigene-wege-gehen-eine-ankuendigung/', 'only_matching': True, }, { 'url': 'http://www.giga.de/tv/jonas-liest-spieletitel-eingedeutscht-episode-2/', 'only_matching': True, }] def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) video_id = self._search_regex( [r'data-video-id="(\d+)"', r'/api/video/jwplayer/#v=(\d+)'], webpage, 'video id') playlist = self._download_json( 'http://www.giga.de/api/syndication/video/video_id/%s/playlist.json?content=syndication/key/368b5f151da4ae05ced7fa296bdff65a/' % video_id, video_id)[0] quality = qualities(['normal', 'hd720']) formats = [] for format_id in itertools.count(0): fmt = playlist.get(compat_str(format_id)) if not fmt: break formats.append({ 'url': fmt['src'], 'format_id': '%s-%s' % (fmt['quality'], fmt['type'].split('/')[-1]), 'quality': quality(fmt['quality']), }) self._sort_formats(formats) title = self._html_search_meta( 'title', webpage, 'title', fatal=True) description = self._html_search_meta( 'description', webpage, 'description') thumbnail = self._og_search_thumbnail(webpage) duration = parse_duration(self._search_regex( r'(?s)(?:data-video-id="{0}"|data-video="[^"]*/api/video/jwplayer/#v={0}[^"]*")[^>]*>.+?<span class="duration">([^<]+)</span>'.format(video_id), webpage, 'duration', fatal=False)) timestamp = parse_iso8601(self._search_regex( r'datetime="([^"]+)"', webpage, 'upload date', fatal=False)) uploader = self._search_regex( r'class="author">([^<]+)</a>', webpage, 'uploader', fatal=False) view_count = str_to_int(self._search_regex( r'<span class="views"><strong>([\d.,]+)</strong>', webpage, 'view count', fatal=False)) return { 'id': video_id, 'display_id': display_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'timestamp': timestamp, 'uploader': uploader, 'view_count': view_count, 'formats': formats, }
gpl-2.0
tima/ansible
lib/ansible/module_utils/facts/system/selinux.py
162
3207
# Collect facts related to selinux # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.module_utils.facts.collector import BaseFactCollector try: import selinux HAVE_SELINUX = True except ImportError: HAVE_SELINUX = False SELINUX_MODE_DICT = { 1: 'enforcing', 0: 'permissive', -1: 'disabled' } class SelinuxFactCollector(BaseFactCollector): name = 'selinux' _fact_ids = set() def collect(self, module=None, collected_facts=None): facts_dict = {} selinux_facts = {} # If selinux library is missing, only set the status and selinux_python_present since # there is no way to tell if SELinux is enabled or disabled on the system # without the library. if not HAVE_SELINUX: selinux_facts['status'] = 'Missing selinux Python library' facts_dict['selinux'] = selinux_facts facts_dict['selinux_python_present'] = False return facts_dict # Set a boolean for testing whether the Python library is present facts_dict['selinux_python_present'] = True if not selinux.is_selinux_enabled(): selinux_facts['status'] = 'disabled' else: selinux_facts['status'] = 'enabled' try: selinux_facts['policyvers'] = selinux.security_policyvers() except (AttributeError, OSError): selinux_facts['policyvers'] = 'unknown' try: (rc, configmode) = selinux.selinux_getenforcemode() if rc == 0: selinux_facts['config_mode'] = SELINUX_MODE_DICT.get(configmode, 'unknown') else: selinux_facts['config_mode'] = 'unknown' except (AttributeError, OSError): selinux_facts['config_mode'] = 'unknown' try: mode = selinux.security_getenforce() selinux_facts['mode'] = SELINUX_MODE_DICT.get(mode, 'unknown') except (AttributeError, OSError): selinux_facts['mode'] = 'unknown' try: (rc, policytype) = selinux.selinux_getpolicytype() if rc == 0: selinux_facts['type'] = policytype else: selinux_facts['type'] = 'unknown' except (AttributeError, OSError): selinux_facts['type'] = 'unknown' facts_dict['selinux'] = selinux_facts return facts_dict
gpl-3.0
husman/WoTrack
apps/wordtrack/levenshtein_reduce.py
1
1308
from nltk import metrics class LevenshteinReduce(object): def __init__(self, phrase, tracks): """ :param phrase: (str) phrase or ngram :param tracks: (list) tacks to perform best string matching with :return: Returns the track from the list of tracks best matching the given phrase """ self.phrases = phrase self.tracks = tracks def get_most_similar_track(self): """ Determines the levenshtein distance between each track and phrase :return: track (object) the track with the smallest levenshtein with the phrase """ if self.tracks is None: return levenshteins = [ { 'levenshtein': metrics.edit_distance(self.phrases, track['name']), 'url': track['url'], 'name': track['name'], 'artist': track['artist'], 'image': track['image'], 'phrase': self.phrases, } for track in self.tracks ] minimum_distance = None if levenshteins: minimum_distance = reduce( lambda d1, d2: d1 if d1['levenshtein'] < d2['levenshtein'] else d2, levenshteins ) return minimum_distance
mit
samuelclay/NewsBlur
apps/monitor/views/newsblur_app_times.py
1
1188
from django.views import View from django.shortcuts import render import datetime from django.conf import settings class AppTimes(View): def get(self, request): servers = dict((("%s" % s['_id'], s['page_load']) for s in self.stats)) data = servers chart_name = "app_times" chart_type = "counter" formatted_data = {} for k, v in data.items(): formatted_data[k] = f'{chart_name}{{app_server="{k}"}} {v}' context = { "data": formatted_data, "chart_name": chart_name, "chart_type": chart_type, } return render(request, 'monitor/prometheus_data.html', context, content_type="text/plain") @property def stats(self): stats = settings.MONGOANALYTICSDB.nbanalytics.page_loads.aggregate([{ "$match": { "date": { "$gt": datetime.datetime.now() - datetime.timedelta(minutes=5), }, }, }, { "$group": { "_id" : "$server", "page_load" : {"$avg": "$page_load"}, }, }]) return list(stats)
mit
oritwas/bonzini
scripts/tracetool/backend/stderr.py
114
1385
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Stderr built-in backend. """ __author__ = "Lluís Vilanova <[email protected]>" __copyright__ = "Copyright 2012, Lluís Vilanova <[email protected]>" __license__ = "GPL version 2 or (at your option) any later version" __maintainer__ = "Stefan Hajnoczi" __email__ = "[email protected]" from tracetool import out def c(events): out('#include "trace.h"', '', 'TraceEvent trace_list[] = {') for e in events: out('{.tp_name = "%(name)s", .state=0},', name = e.name, ) out('};') def h(events): out('#include <stdio.h>', '#include "trace/stderr.h"', '', 'extern TraceEvent trace_list[];') for num, e in enumerate(events): argnames = ", ".join(e.args.names()) if len(e.args) > 0: argnames = ", " + argnames out('static inline void trace_%(name)s(%(args)s)', '{', ' if (trace_list[%(event_num)s].state != 0) {', ' fprintf(stderr, "%(name)s " %(fmt)s "\\n" %(argnames)s);', ' }', '}', name = e.name, args = e.args, event_num = num, fmt = e.fmt, argnames = argnames, ) out('', '#define NR_TRACE_EVENTS %d' % len(events))
gpl-2.0
MrLoick/python-for-android
python-modules/twisted/twisted/trial/unittest.py
59
57773
# -*- test-case-name: twisted.trial.test.test_tests -*- # Copyright (c) 2001-2009 Twisted Matrix Laboratories. # See LICENSE for details. """ Things likely to be used by writers of unit tests. Maintainer: Jonathan Lange """ import doctest, inspect import os, warnings, sys, tempfile, gc, types from pprint import pformat try: from dis import findlinestarts as _findlinestarts except ImportError: # Definition copied from Python's Lib/dis.py - findlinestarts was not # available in Python 2.3. This function is copyright Python Software # Foundation, released under the Python license: # http://www.python.org/psf/license/ def _findlinestarts(code): """Find the offsets in a byte code which are start of lines in the source. Generate pairs (offset, lineno) as described in Python/compile.c. """ byte_increments = [ord(c) for c in code.co_lnotab[0::2]] line_increments = [ord(c) for c in code.co_lnotab[1::2]] lastlineno = None lineno = code.co_firstlineno addr = 0 for byte_incr, line_incr in zip(byte_increments, line_increments): if byte_incr: if lineno != lastlineno: yield (addr, lineno) lastlineno = lineno addr += byte_incr lineno += line_incr if lineno != lastlineno: yield (addr, lineno) from twisted.internet import defer, utils from twisted.python import components, failure, log, monkey from twisted.python.deprecate import getDeprecationWarningString from twisted.trial import itrial, reporter, util pyunit = __import__('unittest') from zope.interface import implements class SkipTest(Exception): """ Raise this (with a reason) to skip the current test. You may also set method.skip to a reason string to skip it, or set class.skip to skip the entire TestCase. """ class FailTest(AssertionError): """Raised to indicate the current test has failed to pass.""" class Todo(object): """ Internal object used to mark a L{TestCase} as 'todo'. Tests marked 'todo' are reported differently in Trial L{TestResult}s. If todo'd tests fail, they do not fail the suite and the errors are reported in a separate category. If todo'd tests succeed, Trial L{TestResult}s will report an unexpected success. """ def __init__(self, reason, errors=None): """ @param reason: A string explaining why the test is marked 'todo' @param errors: An iterable of exception types that the test is expected to raise. If one of these errors is raised by the test, it will be trapped. Raising any other kind of error will fail the test. If C{None} is passed, then all errors will be trapped. """ self.reason = reason self.errors = errors def __repr__(self): return "<Todo reason=%r errors=%r>" % (self.reason, self.errors) def expected(self, failure): """ @param failure: A L{twisted.python.failure.Failure}. @return: C{True} if C{failure} is expected, C{False} otherwise. """ if self.errors is None: return True for error in self.errors: if failure.check(error): return True return False def makeTodo(value): """ Return a L{Todo} object built from C{value}. If C{value} is a string, return a Todo that expects any exception with C{value} as a reason. If C{value} is a tuple, the second element is used as the reason and the first element as the excepted error(s). @param value: A string or a tuple of C{(errors, reason)}, where C{errors} is either a single exception class or an iterable of exception classes. @return: A L{Todo} object. """ if isinstance(value, str): return Todo(reason=value) if isinstance(value, tuple): errors, reason = value try: errors = list(errors) except TypeError: errors = [errors] return Todo(reason=reason, errors=errors) class _Warning(object): """ A L{_Warning} instance represents one warning emitted through the Python warning system (L{warnings}). This is used to insulate callers of L{_collectWarnings} from changes to the Python warnings system which might otherwise require changes to the warning objects that function passes to the observer object it accepts. @ivar message: The string which was passed as the message parameter to L{warnings.warn}. @ivar category: The L{Warning} subclass which was passed as the category parameter to L{warnings.warn}. @ivar filename: The name of the file containing the definition of the code object which was C{stacklevel} frames above the call to L{warnings.warn}, where C{stacklevel} is the value of the C{stacklevel} parameter passed to L{warnings.warn}. @ivar lineno: The source line associated with the active instruction of the code object object which was C{stacklevel} frames above the call to L{warnings.warn}, where C{stacklevel} is the value of the C{stacklevel} parameter passed to L{warnings.warn}. """ def __init__(self, message, category, filename, lineno): self.message = message self.category = category self.filename = filename self.lineno = lineno def _collectWarnings(observeWarning, f, *args, **kwargs): """ Call C{f} with C{args} positional arguments and C{kwargs} keyword arguments and collect all warnings which are emitted as a result in a list. @param observeWarning: A callable which will be invoked with a L{_Warning} instance each time a warning is emitted. @return: The return value of C{f(*args, **kwargs)}. """ def showWarning(message, category, filename, lineno, file=None, line=None): assert isinstance(message, Warning) observeWarning(_Warning( message.args[0], category, filename, lineno)) # Disable the per-module cache for every module otherwise if the warning # which the caller is expecting us to collect was already emitted it won't # be re-emitted by the call to f which happens below. for v in sys.modules.itervalues(): if v is not None: try: v.__warningregistry__ = None except: # Don't specify a particular exception type to handle in case # some wacky object raises some wacky exception in response to # the setattr attempt. pass origFilters = warnings.filters[:] origShow = warnings.showwarning warnings.simplefilter('always') try: warnings.showwarning = showWarning result = f(*args, **kwargs) finally: warnings.filters[:] = origFilters warnings.showwarning = origShow return result class _Assertions(pyunit.TestCase, object): """ Replaces many of the built-in TestCase assertions. In general, these assertions provide better error messages and are easier to use in callbacks. Also provides new assertions such as L{failUnlessFailure}. Although the tests are defined as 'failIf*' and 'failUnless*', they can also be called as 'assertNot*' and 'assert*'. """ def fail(self, msg=None): """ Absolutely fail the test. Do not pass go, do not collect $200. @param msg: the message that will be displayed as the reason for the failure """ raise self.failureException(msg) def failIf(self, condition, msg=None): """ Fail the test if C{condition} evaluates to True. @param condition: any object that defines __nonzero__ """ if condition: raise self.failureException(msg) return condition assertNot = assertFalse = failUnlessFalse = failIf def failUnless(self, condition, msg=None): """ Fail the test if C{condition} evaluates to False. @param condition: any object that defines __nonzero__ """ if not condition: raise self.failureException(msg) return condition assert_ = assertTrue = failUnlessTrue = failUnless def failUnlessRaises(self, exception, f, *args, **kwargs): """ Fail the test unless calling the function C{f} with the given C{args} and C{kwargs} raises C{exception}. The failure will report the traceback and call stack of the unexpected exception. @param exception: exception type that is to be expected @param f: the function to call @return: The raised exception instance, if it is of the given type. @raise self.failureException: Raised if the function call does not raise an exception or if it raises an exception of a different type. """ try: result = f(*args, **kwargs) except exception, inst: return inst except: raise self.failureException('%s raised instead of %s:\n %s' % (sys.exc_info()[0], exception.__name__, failure.Failure().getTraceback())) else: raise self.failureException('%s not raised (%r returned)' % (exception.__name__, result)) assertRaises = failUnlessRaises def failUnlessEqual(self, first, second, msg=''): """ Fail the test if C{first} and C{second} are not equal. @param msg: A string describing the failure that's included in the exception. """ if not first == second: if msg is None: msg = '' if len(msg) > 0: msg += '\n' raise self.failureException( '%snot equal:\na = %s\nb = %s\n' % (msg, pformat(first), pformat(second))) return first assertEqual = assertEquals = failUnlessEquals = failUnlessEqual def failUnlessIdentical(self, first, second, msg=None): """ Fail the test if C{first} is not C{second}. This is an obect-identity-equality test, not an object equality (i.e. C{__eq__}) test. @param msg: if msg is None, then the failure message will be '%r is not %r' % (first, second) """ if first is not second: raise self.failureException(msg or '%r is not %r' % (first, second)) return first assertIdentical = failUnlessIdentical def failIfIdentical(self, first, second, msg=None): """ Fail the test if C{first} is C{second}. This is an obect-identity-equality test, not an object equality (i.e. C{__eq__}) test. @param msg: if msg is None, then the failure message will be '%r is %r' % (first, second) """ if first is second: raise self.failureException(msg or '%r is %r' % (first, second)) return first assertNotIdentical = failIfIdentical def failIfEqual(self, first, second, msg=None): """ Fail the test if C{first} == C{second}. @param msg: if msg is None, then the failure message will be '%r == %r' % (first, second) """ if not first != second: raise self.failureException(msg or '%r == %r' % (first, second)) return first assertNotEqual = assertNotEquals = failIfEquals = failIfEqual def failUnlessIn(self, containee, container, msg=None): """ Fail the test if C{containee} is not found in C{container}. @param containee: the value that should be in C{container} @param container: a sequence type, or in the case of a mapping type, will follow semantics of 'if key in dict.keys()' @param msg: if msg is None, then the failure message will be '%r not in %r' % (first, second) """ if containee not in container: raise self.failureException(msg or "%r not in %r" % (containee, container)) return containee assertIn = failUnlessIn def failIfIn(self, containee, container, msg=None): """ Fail the test if C{containee} is found in C{container}. @param containee: the value that should not be in C{container} @param container: a sequence type, or in the case of a mapping type, will follow semantics of 'if key in dict.keys()' @param msg: if msg is None, then the failure message will be '%r in %r' % (first, second) """ if containee in container: raise self.failureException(msg or "%r in %r" % (containee, container)) return containee assertNotIn = failIfIn def failIfAlmostEqual(self, first, second, places=7, msg=None): """ Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero. @note: decimal places (from zero) is usually not the same as significant digits (measured from the most signficant digit). @note: included for compatiblity with PyUnit test cases """ if round(second-first, places) == 0: raise self.failureException(msg or '%r == %r within %r places' % (first, second, places)) return first assertNotAlmostEqual = assertNotAlmostEquals = failIfAlmostEqual failIfAlmostEquals = failIfAlmostEqual def failUnlessAlmostEqual(self, first, second, places=7, msg=None): """ Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero. @note: decimal places (from zero) is usually not the same as significant digits (measured from the most signficant digit). @note: included for compatiblity with PyUnit test cases """ if round(second-first, places) != 0: raise self.failureException(msg or '%r != %r within %r places' % (first, second, places)) return first assertAlmostEqual = assertAlmostEquals = failUnlessAlmostEqual failUnlessAlmostEquals = failUnlessAlmostEqual def failUnlessApproximates(self, first, second, tolerance, msg=None): """ Fail if C{first} - C{second} > C{tolerance} @param msg: if msg is None, then the failure message will be '%r ~== %r' % (first, second) """ if abs(first - second) > tolerance: raise self.failureException(msg or "%s ~== %s" % (first, second)) return first assertApproximates = failUnlessApproximates def failUnlessFailure(self, deferred, *expectedFailures): """ Fail if C{deferred} does not errback with one of C{expectedFailures}. Returns the original Deferred with callbacks added. You will need to return this Deferred from your test case. """ def _cb(ignore): raise self.failureException( "did not catch an error, instead got %r" % (ignore,)) def _eb(failure): if failure.check(*expectedFailures): return failure.value else: output = ('\nExpected: %r\nGot:\n%s' % (expectedFailures, str(failure))) raise self.failureException(output) return deferred.addCallbacks(_cb, _eb) assertFailure = failUnlessFailure def failUnlessSubstring(self, substring, astring, msg=None): """ Fail if C{substring} does not exist within C{astring}. """ return self.failUnlessIn(substring, astring, msg) assertSubstring = failUnlessSubstring def failIfSubstring(self, substring, astring, msg=None): """ Fail if C{astring} contains C{substring}. """ return self.failIfIn(substring, astring, msg) assertNotSubstring = failIfSubstring def failUnlessWarns(self, category, message, filename, f, *args, **kwargs): """ Fail if the given function doesn't generate the specified warning when called. It calls the function, checks the warning, and forwards the result of the function if everything is fine. @param category: the category of the warning to check. @param message: the output message of the warning to check. @param filename: the filename where the warning should come from. @param f: the function which is supposed to generate the warning. @type f: any callable. @param args: the arguments to C{f}. @param kwargs: the keywords arguments to C{f}. @return: the result of the original function C{f}. """ warningsShown = [] result = _collectWarnings(warningsShown.append, f, *args, **kwargs) if not warningsShown: self.fail("No warnings emitted") first = warningsShown[0] for other in warningsShown[1:]: if ((other.message, other.category) != (first.message, first.category)): self.fail("Can't handle different warnings") self.assertEqual(first.message, message) self.assertIdentical(first.category, category) # Use starts with because of .pyc/.pyo issues. self.failUnless( filename.startswith(first.filename), 'Warning in %r, expected %r' % (first.filename, filename)) # It would be nice to be able to check the line number as well, but # different configurations actually end up reporting different line # numbers (generally the variation is only 1 line, but that's enough # to fail the test erroneously...). # self.assertEqual(lineno, xxx) return result assertWarns = failUnlessWarns def failUnlessIsInstance(self, instance, classOrTuple): """ Fail if C{instance} is not an instance of the given class or of one of the given classes. @param instance: the object to test the type (first argument of the C{isinstance} call). @type instance: any. @param classOrTuple: the class or classes to test against (second argument of the C{isinstance} call). @type classOrTuple: class, type, or tuple. """ if not isinstance(instance, classOrTuple): self.fail("%r is not an instance of %s" % (instance, classOrTuple)) assertIsInstance = failUnlessIsInstance def failIfIsInstance(self, instance, classOrTuple): """ Fail if C{instance} is not an instance of the given class or of one of the given classes. @param instance: the object to test the type (first argument of the C{isinstance} call). @type instance: any. @param classOrTuple: the class or classes to test against (second argument of the C{isinstance} call). @type classOrTuple: class, type, or tuple. """ if isinstance(instance, classOrTuple): self.fail("%r is an instance of %s" % (instance, classOrTuple)) assertNotIsInstance = failIfIsInstance class _LogObserver(object): """ Observes the Twisted logs and catches any errors. @ivar _errors: A C{list} of L{Failure} instances which were received as error events from the Twisted logging system. @ivar _added: A C{int} giving the number of times C{_add} has been called less the number of times C{_remove} has been called; used to only add this observer to the Twisted logging since once, regardless of the number of calls to the add method. @ivar _ignored: A C{list} of exception types which will not be recorded. """ def __init__(self): self._errors = [] self._added = 0 self._ignored = [] def _add(self): if self._added == 0: log.addObserver(self.gotEvent) self._oldFE, log._flushErrors = (log._flushErrors, self.flushErrors) self._oldIE, log._ignore = (log._ignore, self._ignoreErrors) self._oldCI, log._clearIgnores = (log._clearIgnores, self._clearIgnores) self._added += 1 def _remove(self): self._added -= 1 if self._added == 0: log.removeObserver(self.gotEvent) log._flushErrors = self._oldFE log._ignore = self._oldIE log._clearIgnores = self._oldCI def _ignoreErrors(self, *errorTypes): """ Do not store any errors with any of the given types. """ self._ignored.extend(errorTypes) def _clearIgnores(self): """ Stop ignoring any errors we might currently be ignoring. """ self._ignored = [] def flushErrors(self, *errorTypes): """ Flush errors from the list of caught errors. If no arguments are specified, remove all errors. If arguments are specified, only remove errors of those types from the stored list. """ if errorTypes: flushed = [] remainder = [] for f in self._errors: if f.check(*errorTypes): flushed.append(f) else: remainder.append(f) self._errors = remainder else: flushed = self._errors self._errors = [] return flushed def getErrors(self): """ Return a list of errors caught by this observer. """ return self._errors def gotEvent(self, event): """ The actual observer method. Called whenever a message is logged. @param event: A dictionary containing the log message. Actual structure undocumented (see source for L{twisted.python.log}). """ if event.get('isError', False) and 'failure' in event: f = event['failure'] if len(self._ignored) == 0 or not f.check(*self._ignored): self._errors.append(f) _logObserver = _LogObserver() _wait_is_running = [] class TestCase(_Assertions): """ A unit test. The atom of the unit testing universe. This class extends C{unittest.TestCase} from the standard library. The main feature is the ability to return C{Deferred}s from tests and fixture methods and to have the suite wait for those C{Deferred}s to fire. To write a unit test, subclass C{TestCase} and define a method (say, 'test_foo') on the subclass. To run the test, instantiate your subclass with the name of the method, and call L{run} on the instance, passing a L{TestResult} object. The C{trial} script will automatically find any C{TestCase} subclasses defined in modules beginning with 'test_' and construct test cases for all methods beginning with 'test'. If an error is logged during the test run, the test will fail with an error. See L{log.err}. @ivar failureException: An exception class, defaulting to C{FailTest}. If the test method raises this exception, it will be reported as a failure, rather than an exception. All of the assertion methods raise this if the assertion fails. @ivar skip: C{None} or a string explaining why this test is to be skipped. If defined, the test will not be run. Instead, it will be reported to the result object as 'skipped' (if the C{TestResult} supports skipping). @ivar suppress: C{None} or a list of tuples of C{(args, kwargs)} to be passed to C{warnings.filterwarnings}. Use these to suppress warnings raised in a test. Useful for testing deprecated code. See also L{util.suppress}. @ivar timeout: A real number of seconds. If set, the test will raise an error if it takes longer than C{timeout} seconds. If not set, util.DEFAULT_TIMEOUT_DURATION is used. @ivar todo: C{None}, a string or a tuple of C{(errors, reason)} where C{errors} is either an exception class or an iterable of exception classes, and C{reason} is a string. See L{Todo} or L{makeTodo} for more information. """ implements(itrial.ITestCase) failureException = FailTest def __init__(self, methodName='runTest'): """ Construct an asynchronous test case for C{methodName}. @param methodName: The name of a method on C{self}. This method should be a unit test. That is, it should be a short method that calls some of the assert* methods. If C{methodName} is unspecified, L{runTest} will be used as the test method. This is mostly useful for testing Trial. """ super(TestCase, self).__init__(methodName) self._testMethodName = methodName testMethod = getattr(self, methodName) self._parents = [testMethod, self] self._parents.extend(util.getPythonContainers(testMethod)) self._passed = False self._cleanups = [] if sys.version_info >= (2, 6): # Override the comparison defined by the base TestCase which considers # instances of the same class with the same _testMethodName to be # equal. Since trial puts TestCase instances into a set, that # definition of comparison makes it impossible to run the same test # method twice. Most likely, trial should stop using a set to hold # tests, but until it does, this is necessary on Python 2.6. Only # __eq__ and __ne__ are required here, not __hash__, since the # inherited __hash__ is compatible with these equality semantics. A # different __hash__ might be slightly more efficient (by reducing # collisions), but who cares? -exarkun def __eq__(self, other): return self is other def __ne__(self, other): return self is not other def _run(self, methodName, result): from twisted.internet import reactor timeout = self.getTimeout() def onTimeout(d): e = defer.TimeoutError("%r (%s) still running at %s secs" % (self, methodName, timeout)) f = failure.Failure(e) # try to errback the deferred that the test returns (for no gorram # reason) (see issue1005 and test_errorPropagation in # test_deferred) try: d.errback(f) except defer.AlreadyCalledError: # if the deferred has been called already but the *back chain # is still unfinished, crash the reactor and report timeout # error ourself. reactor.crash() self._timedOut = True # see self._wait todo = self.getTodo() if todo is not None and todo.expected(f): result.addExpectedFailure(self, f, todo) else: result.addError(self, f) onTimeout = utils.suppressWarnings( onTimeout, util.suppress(category=DeprecationWarning)) method = getattr(self, methodName) d = defer.maybeDeferred(utils.runWithWarningsSuppressed, self.getSuppress(), method) call = reactor.callLater(timeout, onTimeout, d) d.addBoth(lambda x : call.active() and call.cancel() or x) return d def shortDescription(self): desc = super(TestCase, self).shortDescription() if desc is None: return self._testMethodName return desc def __call__(self, *args, **kwargs): return self.run(*args, **kwargs) def deferSetUp(self, ignored, result): d = self._run('setUp', result) d.addCallbacks(self.deferTestMethod, self._ebDeferSetUp, callbackArgs=(result,), errbackArgs=(result,)) return d def _ebDeferSetUp(self, failure, result): if failure.check(SkipTest): result.addSkip(self, self._getReason(failure)) else: result.addError(self, failure) if failure.check(KeyboardInterrupt): result.stop() return self.deferRunCleanups(None, result) def deferTestMethod(self, ignored, result): d = self._run(self._testMethodName, result) d.addCallbacks(self._cbDeferTestMethod, self._ebDeferTestMethod, callbackArgs=(result,), errbackArgs=(result,)) d.addBoth(self.deferRunCleanups, result) d.addBoth(self.deferTearDown, result) return d def _cbDeferTestMethod(self, ignored, result): if self.getTodo() is not None: result.addUnexpectedSuccess(self, self.getTodo()) else: self._passed = True return ignored def _ebDeferTestMethod(self, f, result): todo = self.getTodo() if todo is not None and todo.expected(f): result.addExpectedFailure(self, f, todo) elif f.check(self.failureException, FailTest): result.addFailure(self, f) elif f.check(KeyboardInterrupt): result.addError(self, f) result.stop() elif f.check(SkipTest): result.addSkip(self, self._getReason(f)) else: result.addError(self, f) def deferTearDown(self, ignored, result): d = self._run('tearDown', result) d.addErrback(self._ebDeferTearDown, result) return d def _ebDeferTearDown(self, failure, result): result.addError(self, failure) if failure.check(KeyboardInterrupt): result.stop() self._passed = False def deferRunCleanups(self, ignored, result): """ Run any scheduled cleanups and report errors (if any to the result object. """ d = self._runCleanups() d.addCallback(self._cbDeferRunCleanups, result) return d def _cbDeferRunCleanups(self, cleanupResults, result): for flag, failure in cleanupResults: if flag == defer.FAILURE: result.addError(self, failure) if failure.check(KeyboardInterrupt): result.stop() self._passed = False def _cleanUp(self, result): try: clean = util._Janitor(self, result).postCaseCleanup() if not clean: self._passed = False except: result.addError(self, failure.Failure()) self._passed = False for error in self._observer.getErrors(): result.addError(self, error) self._passed = False self.flushLoggedErrors() self._removeObserver() if self._passed: result.addSuccess(self) def _classCleanUp(self, result): try: util._Janitor(self, result).postClassCleanup() except: result.addError(self, failure.Failure()) def _makeReactorMethod(self, name): """ Create a method which wraps the reactor method C{name}. The new method issues a deprecation warning and calls the original. """ def _(*a, **kw): warnings.warn("reactor.%s cannot be used inside unit tests. " "In the future, using %s will fail the test and may " "crash or hang the test run." % (name, name), stacklevel=2, category=DeprecationWarning) return self._reactorMethods[name](*a, **kw) return _ def _deprecateReactor(self, reactor): """ Deprecate C{iterate}, C{crash} and C{stop} on C{reactor}. That is, each method is wrapped in a function that issues a deprecation warning, then calls the original. @param reactor: The Twisted reactor. """ self._reactorMethods = {} for name in ['crash', 'iterate', 'stop']: self._reactorMethods[name] = getattr(reactor, name) setattr(reactor, name, self._makeReactorMethod(name)) def _undeprecateReactor(self, reactor): """ Restore the deprecated reactor methods. Undoes what L{_deprecateReactor} did. @param reactor: The Twisted reactor. """ for name, method in self._reactorMethods.iteritems(): setattr(reactor, name, method) self._reactorMethods = {} def _installObserver(self): self._observer = _logObserver self._observer._add() def _removeObserver(self): self._observer._remove() def flushLoggedErrors(self, *errorTypes): """ Remove stored errors received from the log. C{TestCase} stores each error logged during the run of the test and reports them as errors during the cleanup phase (after C{tearDown}). @param *errorTypes: If unspecifed, flush all errors. Otherwise, only flush errors that match the given types. @return: A list of failures that have been removed. """ return self._observer.flushErrors(*errorTypes) def flushWarnings(self, offendingFunctions=None): """ Remove stored warnings from the list of captured warnings and return them. @param offendingFunctions: If C{None}, all warnings issued during the currently running test will be flushed. Otherwise, only warnings which I{point} to a function included in this list will be flushed. All warnings include a filename and source line number; if these parts of a warning point to a source line which is part of a function, then the warning I{points} to that function. @type offendingFunctions: L{NoneType} or L{list} of functions or methods. @raise ValueError: If C{offendingFunctions} is not C{None} and includes an object which is not a L{FunctionType} or L{MethodType} instance. @return: A C{list}, each element of which is a C{dict} giving information about one warning which was flushed by this call. The keys of each C{dict} are: - C{'message'}: The string which was passed as the I{message} parameter to L{warnings.warn}. - C{'category'}: The warning subclass which was passed as the I{category} parameter to L{warnings.warn}. - C{'filename'}: The name of the file containing the definition of the code object which was C{stacklevel} frames above the call to L{warnings.warn}, where C{stacklevel} is the value of the C{stacklevel} parameter passed to L{warnings.warn}. - C{'lineno'}: The source line associated with the active instruction of the code object object which was C{stacklevel} frames above the call to L{warnings.warn}, where C{stacklevel} is the value of the C{stacklevel} parameter passed to L{warnings.warn}. """ if offendingFunctions is None: toFlush = self._warnings[:] self._warnings[:] = [] else: toFlush = [] for aWarning in self._warnings: for aFunction in offendingFunctions: if not isinstance(aFunction, ( types.FunctionType, types.MethodType)): raise ValueError("%r is not a function or method" % ( aFunction,)) # inspect.getabsfile(aFunction) sometimes returns a # filename which disagrees with the filename the warning # system generates. This seems to be because a # function's code object doesn't deal with source files # being renamed. inspect.getabsfile(module) seems # better (or at least agrees with the warning system # more often), and does some normalization for us which # is desirable. inspect.getmodule() is attractive, but # somewhat broken in Python 2.3. See Python bug 4845. aModule = sys.modules[aFunction.__module__] filename = inspect.getabsfile(aModule) if filename != os.path.normcase(aWarning.filename): continue lineStarts = list(_findlinestarts(aFunction.func_code)) first = lineStarts[0][1] last = lineStarts[-1][1] if not (first <= aWarning.lineno <= last): continue # The warning points to this function, flush it and move on # to the next warning. toFlush.append(aWarning) break # Remove everything which is being flushed. map(self._warnings.remove, toFlush) return [ {'message': w.message, 'category': w.category, 'filename': w.filename, 'lineno': w.lineno} for w in toFlush] def addCleanup(self, f, *args, **kwargs): """ Add the given function to a list of functions to be called after the test has run, but before C{tearDown}. Functions will be run in reverse order of being added. This helps ensure that tear down complements set up. The function C{f} may return a Deferred. If so, C{TestCase} will wait until the Deferred has fired before proceeding to the next function. """ self._cleanups.append((f, args, kwargs)) def callDeprecated(self, version, f, *args, **kwargs): """ Call a function that was deprecated at a specific version. @param version: The version that the function was deprecated in. @param f: The deprecated function to call. @return: Whatever the function returns. """ result = f(*args, **kwargs) warningsShown = self.flushWarnings([self.callDeprecated]) if len(warningsShown) == 0: self.fail('%r is not deprecated.' % (f,)) observedWarning = warningsShown[0]['message'] expectedWarning = getDeprecationWarningString(f, version) self.assertEqual(expectedWarning, observedWarning) return result def _runCleanups(self): """ Run the cleanups added with L{addCleanup} in order. @return: A C{Deferred} that fires when all cleanups are run. """ def _makeFunction(f, args, kwargs): return lambda: f(*args, **kwargs) callables = [] while len(self._cleanups) > 0: f, args, kwargs = self._cleanups.pop() callables.append(_makeFunction(f, args, kwargs)) return util._runSequentially(callables) def patch(self, obj, attribute, value): """ Monkey patch an object for the duration of the test. The monkey patch will be reverted at the end of the test using the L{addCleanup} mechanism. The L{MonkeyPatcher} is returned so that users can restore and re-apply the monkey patch within their tests. @param obj: The object to monkey patch. @param attribute: The name of the attribute to change. @param value: The value to set the attribute to. @return: A L{monkey.MonkeyPatcher} object. """ monkeyPatch = monkey.MonkeyPatcher((obj, attribute, value)) monkeyPatch.patch() self.addCleanup(monkeyPatch.restore) return monkeyPatch def runTest(self): """ If no C{methodName} argument is passed to the constructor, L{run} will treat this method as the thing with the actual test inside. """ def run(self, result): """ Run the test case, storing the results in C{result}. First runs C{setUp} on self, then runs the test method (defined in the constructor), then runs C{tearDown}. Any of these may return L{Deferred}s. After they complete, does some reactor cleanup. @param result: A L{TestResult} object. """ log.msg("--> %s <--" % (self.id())) from twisted.internet import reactor new_result = itrial.IReporter(result, None) if new_result is None: result = PyUnitResultAdapter(result) else: result = new_result self._timedOut = False result.startTest(self) if self.getSkip(): # don't run test methods that are marked as .skip result.addSkip(self, self.getSkip()) result.stopTest(self) return self._installObserver() # All the code inside runThunk will be run such that warnings emitted # by it will be collected and retrievable by flushWarnings. def runThunk(): self._passed = False self._deprecateReactor(reactor) try: d = self.deferSetUp(None, result) try: self._wait(d) finally: self._cleanUp(result) self._classCleanUp(result) finally: self._undeprecateReactor(reactor) self._warnings = [] _collectWarnings(self._warnings.append, runThunk) # Any collected warnings which the test method didn't flush get # re-emitted so they'll be logged or show up on stdout or whatever. for w in self.flushWarnings(): try: warnings.warn_explicit(**w) except: result.addError(self, failure.Failure()) result.stopTest(self) def _getReason(self, f): if len(f.value.args) > 0: reason = f.value.args[0] else: warnings.warn(("Do not raise unittest.SkipTest with no " "arguments! Give a reason for skipping tests!"), stacklevel=2) reason = f return reason def getSkip(self): """ Return the skip reason set on this test, if any is set. Checks on the instance first, then the class, then the module, then packages. As soon as it finds something with a C{skip} attribute, returns that. Returns C{None} if it cannot find anything. See L{TestCase} docstring for more details. """ return util.acquireAttribute(self._parents, 'skip', None) def getTodo(self): """ Return a L{Todo} object if the test is marked todo. Checks on the instance first, then the class, then the module, then packages. As soon as it finds something with a C{todo} attribute, returns that. Returns C{None} if it cannot find anything. See L{TestCase} docstring for more details. """ todo = util.acquireAttribute(self._parents, 'todo', None) if todo is None: return None return makeTodo(todo) def getTimeout(self): """ Returns the timeout value set on this test. Checks on the instance first, then the class, then the module, then packages. As soon as it finds something with a C{timeout} attribute, returns that. Returns L{util.DEFAULT_TIMEOUT_DURATION} if it cannot find anything. See L{TestCase} docstring for more details. """ timeout = util.acquireAttribute(self._parents, 'timeout', util.DEFAULT_TIMEOUT_DURATION) try: return float(timeout) except (ValueError, TypeError): # XXX -- this is here because sometimes people will have methods # called 'timeout', or set timeout to 'orange', or something # Particularly, test_news.NewsTestCase and ReactorCoreTestCase # both do this. warnings.warn("'timeout' attribute needs to be a number.", category=DeprecationWarning) return util.DEFAULT_TIMEOUT_DURATION def getSuppress(self): """ Returns any warning suppressions set for this test. Checks on the instance first, then the class, then the module, then packages. As soon as it finds something with a C{suppress} attribute, returns that. Returns any empty list (i.e. suppress no warnings) if it cannot find anything. See L{TestCase} docstring for more details. """ return util.acquireAttribute(self._parents, 'suppress', []) def visit(self, visitor): """ Visit this test case. Call C{visitor} with C{self} as a parameter. Deprecated in Twisted 8.0. @param visitor: A callable which expects a single parameter: a test case. @return: None """ warnings.warn("Test visitors deprecated in Twisted 8.0", category=DeprecationWarning) visitor(self) def mktemp(self): """Returns a unique name that may be used as either a temporary directory or filename. @note: you must call os.mkdir on the value returned from this method if you wish to use it as a directory! """ MAX_FILENAME = 32 # some platforms limit lengths of filenames base = os.path.join(self.__class__.__module__[:MAX_FILENAME], self.__class__.__name__[:MAX_FILENAME], self._testMethodName[:MAX_FILENAME]) if not os.path.exists(base): os.makedirs(base) dirname = tempfile.mkdtemp('', '', base) return os.path.join(dirname, 'temp') def _wait(self, d, running=_wait_is_running): """Take a Deferred that only ever callbacks. Block until it happens. """ from twisted.internet import reactor if running: raise RuntimeError("_wait is not reentrant") results = [] def append(any): if results is not None: results.append(any) def crash(ign): if results is not None: reactor.crash() crash = utils.suppressWarnings( crash, util.suppress(message=r'reactor\.crash cannot be used.*', category=DeprecationWarning)) def stop(): reactor.crash() stop = utils.suppressWarnings( stop, util.suppress(message=r'reactor\.crash cannot be used.*', category=DeprecationWarning)) running.append(None) try: d.addBoth(append) if results: # d might have already been fired, in which case append is # called synchronously. Avoid any reactor stuff. return d.addBoth(crash) reactor.stop = stop try: reactor.run() finally: del reactor.stop # If the reactor was crashed elsewhere due to a timeout, hopefully # that crasher also reported an error. Just return. # _timedOut is most likely to be set when d has fired but hasn't # completed its callback chain (see self._run) if results or self._timedOut: #defined in run() and _run() return # If the timeout didn't happen, and we didn't get a result or # a failure, then the user probably aborted the test, so let's # just raise KeyboardInterrupt. # FIXME: imagine this: # web/test/test_webclient.py: # exc = self.assertRaises(error.Error, wait, method(url)) # # wait() will raise KeyboardInterrupt, and assertRaises will # swallow it. Therefore, wait() raising KeyboardInterrupt is # insufficient to stop trial. A suggested solution is to have # this code set a "stop trial" flag, or otherwise notify trial # that it should really try to stop as soon as possible. raise KeyboardInterrupt() finally: results = None running.pop() class UnsupportedTrialFeature(Exception): """A feature of twisted.trial was used that pyunit cannot support.""" class PyUnitResultAdapter(object): """ Wrap a C{TestResult} from the standard library's C{unittest} so that it supports the extended result types from Trial, and also supports L{twisted.python.failure.Failure}s being passed to L{addError} and L{addFailure}. """ def __init__(self, original): """ @param original: A C{TestResult} instance from C{unittest}. """ self.original = original def _exc_info(self, err): return util.excInfoOrFailureToExcInfo(err) def startTest(self, method): self.original.startTest(method) def stopTest(self, method): self.original.stopTest(method) def addFailure(self, test, fail): self.original.addFailure(test, self._exc_info(fail)) def addError(self, test, error): self.original.addError(test, self._exc_info(error)) def _unsupported(self, test, feature, info): self.original.addFailure( test, (UnsupportedTrialFeature, UnsupportedTrialFeature(feature, info), None)) def addSkip(self, test, reason): """ Report the skip as a failure. """ self._unsupported(test, 'skip', reason) def addUnexpectedSuccess(self, test, todo): """ Report the unexpected success as a failure. """ self._unsupported(test, 'unexpected success', todo) def addExpectedFailure(self, test, error): """ Report the expected failure (i.e. todo) as a failure. """ self._unsupported(test, 'expected failure', error) def addSuccess(self, test): self.original.addSuccess(test) def upDownError(self, method, error, warn, printStatus): pass def suiteVisit(suite, visitor): """ Visit each test in C{suite} with C{visitor}. Deprecated in Twisted 8.0. @param visitor: A callable which takes a single argument, the L{TestCase} instance to visit. @return: None """ warnings.warn("Test visitors deprecated in Twisted 8.0", category=DeprecationWarning) for case in suite._tests: visit = getattr(case, 'visit', None) if visit is not None: visit(visitor) elif isinstance(case, pyunit.TestCase): case = itrial.ITestCase(case) case.visit(visitor) elif isinstance(case, pyunit.TestSuite): suiteVisit(case, visitor) else: case.visit(visitor) class TestSuite(pyunit.TestSuite): """ Extend the standard library's C{TestSuite} with support for the visitor pattern and a consistently overrideable C{run} method. """ visit = suiteVisit def __call__(self, result): return self.run(result) def run(self, result): """ Call C{run} on every member of the suite. """ # we implement this because Python 2.3 unittest defines this code # in __call__, whereas 2.4 defines the code in run. for test in self._tests: if result.shouldStop: break test(result) return result class TestDecorator(components.proxyForInterface(itrial.ITestCase, "_originalTest")): """ Decorator for test cases. @param _originalTest: The wrapped instance of test. @type _originalTest: A provider of L{itrial.ITestCase} """ implements(itrial.ITestCase) def __call__(self, result): """ Run the unit test. @param result: A TestResult object. """ return self.run(result) def run(self, result): """ Run the unit test. @param result: A TestResult object. """ return self._originalTest.run( reporter._AdaptedReporter(result, self.__class__)) def _clearSuite(suite): """ Clear all tests from C{suite}. This messes with the internals of C{suite}. In particular, it assumes that the suite keeps all of its tests in a list in an instance variable called C{_tests}. """ suite._tests = [] def decorate(test, decorator): """ Decorate all test cases in C{test} with C{decorator}. C{test} can be a test case or a test suite. If it is a test suite, then the structure of the suite is preserved. L{decorate} tries to preserve the class of the test suites it finds, but assumes the presence of the C{_tests} attribute on the suite. @param test: The C{TestCase} or C{TestSuite} to decorate. @param decorator: A unary callable used to decorate C{TestCase}s. @return: A decorated C{TestCase} or a C{TestSuite} containing decorated C{TestCase}s. """ try: tests = iter(test) except TypeError: return decorator(test) # At this point, we know that 'test' is a test suite. _clearSuite(test) for case in tests: test.addTest(decorate(case, decorator)) return test class _PyUnitTestCaseAdapter(TestDecorator): """ Adapt from pyunit.TestCase to ITestCase. """ def visit(self, visitor): """ Deprecated in Twisted 8.0. """ warnings.warn("Test visitors deprecated in Twisted 8.0", category=DeprecationWarning) visitor(self) class _BrokenIDTestCaseAdapter(_PyUnitTestCaseAdapter): """ Adapter for pyunit-style C{TestCase} subclasses that have undesirable id() methods. That is L{pyunit.FunctionTestCase} and L{pyunit.DocTestCase}. """ def id(self): """ Return the fully-qualified Python name of the doctest. """ testID = self._originalTest.shortDescription() if testID is not None: return testID return self._originalTest.id() class _ForceGarbageCollectionDecorator(TestDecorator): """ Forces garbage collection to be run before and after the test. Any errors logged during the post-test collection are added to the test result as errors. """ def run(self, result): gc.collect() TestDecorator.run(self, result) _logObserver._add() gc.collect() for error in _logObserver.getErrors(): result.addError(self, error) _logObserver.flushErrors() _logObserver._remove() components.registerAdapter( _PyUnitTestCaseAdapter, pyunit.TestCase, itrial.ITestCase) components.registerAdapter( _BrokenIDTestCaseAdapter, pyunit.FunctionTestCase, itrial.ITestCase) _docTestCase = getattr(doctest, 'DocTestCase', None) if _docTestCase: components.registerAdapter( _BrokenIDTestCaseAdapter, _docTestCase, itrial.ITestCase) def _iterateTests(testSuiteOrCase): """ Iterate through all of the test cases in C{testSuiteOrCase}. """ try: suite = iter(testSuiteOrCase) except TypeError: yield testSuiteOrCase else: for test in suite: for subtest in _iterateTests(test): yield subtest # Support for Python 2.3 try: iter(pyunit.TestSuite()) except TypeError: # Python 2.3's TestSuite doesn't support iteration. Let's monkey patch it! def __iter__(self): return iter(self._tests) pyunit.TestSuite.__iter__ = __iter__ class _SubTestCase(TestCase): def __init__(self): TestCase.__init__(self, 'run') _inst = _SubTestCase() def _deprecate(name): """ Internal method used to deprecate top-level assertions. Do not use this. """ def _(*args, **kwargs): warnings.warn("unittest.%s is deprecated. Instead use the %r " "method on unittest.TestCase" % (name, name), stacklevel=2, category=DeprecationWarning) return getattr(_inst, name)(*args, **kwargs) return _ _assertions = ['fail', 'failUnlessEqual', 'failIfEqual', 'failIfEquals', 'failUnless', 'failUnlessIdentical', 'failUnlessIn', 'failIfIdentical', 'failIfIn', 'failIf', 'failUnlessAlmostEqual', 'failIfAlmostEqual', 'failUnlessRaises', 'assertApproximates', 'assertFailure', 'failUnlessSubstring', 'failIfSubstring', 'assertAlmostEqual', 'assertAlmostEquals', 'assertNotAlmostEqual', 'assertNotAlmostEquals', 'assertEqual', 'assertEquals', 'assertNotEqual', 'assertNotEquals', 'assertRaises', 'assert_', 'assertIdentical', 'assertNotIdentical', 'assertIn', 'assertNotIn', 'failUnlessFailure', 'assertSubstring', 'assertNotSubstring'] for methodName in _assertions: globals()[methodName] = _deprecate(methodName) __all__ = ['TestCase', 'FailTest', 'SkipTest']
apache-2.0