Dataset Viewer
Auto-converted to Parquet
platform
stringclasses
2 values
topic
stringclasses
4 values
content
stringlengths
3
507
toxic
int64
0
1
toxic_one_hot
sequencelengths
2
2
toxic_type
int64
0
2
toxic_type_one_hot
sequencelengths
2
2
expression
int64
0
3
expression_one_hot
sequencelengths
3
3
target
sequencelengths
5
5
length
int64
5
507
zhihu
region
ๅฐฑๅ‡ญไฝ ็š„ๅŒ—ไบฌๆˆทๅฃๆˆ‘ๅฐฑๆ„Ÿ่ง‰ไฝ ๆฏ”ๆˆ‘้ซ˜็บงไบ”ไธช้˜ถ็บง๏ผŒๆˆ‘ๆ˜ฏๆฒณๅŒ—ไบบ๐Ÿ˜†
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
31
tieba
race
ๆŠ“่™ซๅคงๆˆ˜๏ผŒไบบไบบๆœ‰่ดฃ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 1, 0 ]
9
tieba
race
ๅฅฝไน…้ƒฝๆฒกๆœ‰่ง่ฟ‡้‚ฃไนˆๅนฒๅ‡€็š„็™ฝไบบ็ญ็บงไบ†๏ผŒไธ€ไธช้ป‘ไน่‰ฒ้ƒฝๆฒกๆœ‰
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
26
zhihu
race
ๆˆ‘่ง‰ๅพ—ไธญๅ›ฝๅฅณๆ€งๅชšๅค–ๅ€ผๅพ—ๆ‰น่ฏ„็š„ๆ˜ฏไธญๅ›ฝ็”ทๆ€ง๏ผŒไฝ ไปฌ็œ‹ไธ€็œ‹ๅ‡บ่ฝจ็š„ๅฅณไบบ็š„่€ๅ…ฌไธ€็œ‹ๅฐฑๅพˆ่ฝฏๅผฑ๏ผŒ่€Œไปฅๅ‰ๅœจ็คพไผšไธŠๆทท็š„็”ทไบบ็š„่€ๅฉ†ๆˆ‘ๆฒกๅ‘็Žฐ่ฐๆ•ขๅ‡บ่ฝจ๏ผŒไธญๅ›ฝ็”ทไบบๅฆ‚ๆžœ่ƒฝๅ’Œ้ป‘ไบบๆˆ–็ฉ†ๆ–ฏๆž—็”ทๆ€งไธ€ๆ ทๆšดๅŠ›๏ผŒ้‚ฃไธญๅ›ฝๅฐฑๆฒกๆœ‰ๅชšๅค–็š„่ฏดๆณ•ใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 0 ]
96
tieba
gender
ๅ‘ผๅซ่…•่ฑช๏ผ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
5
tieba
gender
ไบ‹ๅฎžๅฐฑๆ˜ฏ่ฟ™ๆ ท๏ผŒๅพˆๅคšๅฅณไบบๅคฉๅคฉ่ขซๅฎถๆšด๏ผŒ่ขซๆๅพ—้ผป้’่„ธ่‚ฟไป€ไนˆไผผ็š„๏ผŒๅˆฐๅค„ๆŠฑๆ€จ่‡ชๅทฑ็š„ไธๅนธ๏ผŒไฝ†ๅฐฑๆ˜ฏไธ็ฆปๅฉš๏ผŒๅ่ฟ‡ๆฅ่ขซ็”ท็š„ๆงๅœจๆ‰‹ๅฟƒๅจ‡็€ๆƒฏ็€็š„ๆฏๅคฉๅฐฑๅ„็งไธๆปก่ฏด็”ท็š„ไธๅฅฝๅŠจไธๅŠจ้—น็ฆปๅฉš่ฟ˜ๅฏน็”ท็š„ไธŠๆผ”ๅฎถๅบญๆšดๅŠ›ใ€‚่ฟ™ๅฐฑๆ˜ฏ?
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 0, 0 ]
94
zhihu
race
้‚ฃๅฒ‚ไธๆ˜ฏๅฉŠๅญ้ƒฝไธๅฆ‚๐Ÿค”
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
13
zhihu
race
ไผฐ่ฎกๅทฒ็ปๆˆไบ†้žๆดฒๆŸ้ƒจ่ฝ็š„็ฌฌ36ๅท็Ž‹ๅฆƒ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 1, 0 ]
18
tieba
gender
ๅฏนๅทๅ…ฅๅบงไบ†๏ผŒ่Œถๅฃถๅ˜ด็ ด้˜ฒไบ†๏ผŒๆˆณๅˆฐ็—›ๅค„ไบ†ๅฟƒ่„ไธๅฅฝ็š„้ƒฝๆฅๆˆ‘่ฟ™ๆŽฅ็ง้ข„้˜ฒ้’ˆ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 0, 0 ]
32
zhihu
region
๐Ÿ˜…็ฌ‘ๆญป๏ผŒ่ƒฝ็ป™ๆˆ‘็‘žๅ…ธ็ปฟๅกๅ—
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
15
zhihu
race
ๆˆ‘ไธญๅ›ฝไบบ๏ผŒไฝ ๅ–œๆฌข้ป‘ไบบ้บป็ƒฆไฝ ่ตฐ๐Ÿ˜ ๐Ÿ˜ ๐Ÿ˜ 
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 1, 0 ]
26
zhihu
region
ๆˆ‘ไธๆ˜ฏๆฒณๅŒ—ไบบ๏ผŒไฝ†ๆฏๆฌก็œ‹ๅˆฐๆœ‰ไบบ้ป‘ๅ”ๅฑฑไนŸ่ง‰ๅพ—ๆถๅฟƒ๏ผŒไธ€ไปถๆ‰“ๆžถๆ–—ๆฎด็š„ๆ™ฎ้€šๅˆ‘ไบ‹ๆกˆไปถ่ƒฝไธŠ็ƒญๆœๅๅ‡ ไบŒๅๅคฉ๏ผŒๅคฉๅคฉ่ƒฝ็œ‹ๅˆฐ้ช‚ๅ”ๅฑฑ็š„๏ผŒ้‚ฃไธชๅœฐๆ–นๆฒกๆœ‰่ฟ™็งไบ‹๏ผŒๆ–ฐ้—ปไธ€ๅคงๅ †๏ผŒ้ช‚ไบบ็ฎ—ไป€ไนˆๆœฌไบ‹๏ผŒๆœ‰ๆœฌไบ‹่‡ชๅทฑๅŽปๅˆถๆญข็Šฏ็ฝช๏ผŒ่€Œไธๆ˜ฏๅฃๅ—จใ€‚ๆˆ‘ๆ„Ÿ่ง‰ๅœฐๅŸŸ้ป‘้€ ๆˆ็š„็คพไผšๅฑๅฎณ่ฟœๅคงไบŽ่ฟ™ไธชๆกˆไปถๆœฌ่บซ
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
119
tieba
gender
ๅ—ๆ•™่‚ฒ็จ‹ๅบฆ่Š‚่Š‚้ซ˜ๅ‡๏ผŒๆœๅŠกไธšๅ ๆฏ”่Š‚่Š‚ๆ”€ๅ‡ใ€‚้ƒฝๅญฆ็š„ๆ˜ฏๆœๅŠกไธ“ไธšๆ˜ฏๅง
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 0, 1 ]
30
tieba
lgbt
ๅฅฝๅนธ็ฆ๏ผŒๅ–œ็ฟปๅ„ฟๅ–œ็ฟปๅ„ฟ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
10
tieba
gender
็Œชๅคด่‚‰ๅ“ˆๅ“ˆๅ“ˆๅ“ˆๅ“ˆ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
8
zhihu
race
ไฝ ไปฌไนŸๅฏไปฅๆžไธ€ไธช่ทŸ้ป‘ๅฅณไบคๅพ€่ฟ‡็š„็”ท็š„็š„ๅๅ•ๅ•Šใ€‚ๅ…ฌๅนณๅ˜›ใ€‚๐Ÿ˜†
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 1, 0 ]
30
tieba
gender
ไธ่ฆๅ‡บ็”Ÿๆ˜ฏๅฏนๅฅนไปฌๆœ€ๅฅฝ็š„ไฟๆŠค
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
13
tieba
gender
่ฏดๆ˜Žไธ€ไธ‹๏ผŒๆˆ‘ๅชๅ…ณ็ˆฑ่‡ชๅทฑ่บซ่พน็š„ๅฅณๆ€ง๏ผŒๆฏ”ๅฆ‚่€ๅฉ†ๅฅณๅ„ฟ็ญ‰๏ผŒๅˆซ็š„ๅฅณไบบๅ…ณๆˆ‘้ธŸไบ‹ใ€‚v
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
35
zhihu
region
ๆˆ‘็Žฐๅœจๅœจๆฏไธ€ๆกๅœฐๅŸŸ้ป‘ๅ›ž็ญ”ไธ‹้ข้ƒฝ่ƒฝ็œ‹่งๆต™ๆฑŸไบบ๏ผŒ้ป‘ๅฑฑไธœ๏ผŒๅฑฑ่ฅฟ๏ผŒๅนฟไธœ๏ผŒๆน–ๅŒ—๏ผŒไธœๅŒ—๏ผŒ้ƒฝๆ˜ฏๆต™ๆฑŸไบบ๏ผŒๆˆ‘ๆ˜ฏ็œŸ็š„็†่งฃไธไบ†๏ผŒๆต™ๆฑŸไบบๆ˜ฏไธๆ˜ฏ้™คไบ†่‡ชๅทฑ่ฐ้ƒฝ็œ‹ไธ่ตทๅ•Š๐Ÿ˜…
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 1, 0, 0, 0 ]
73
zhihu
region
ไธไธ€ๅฎšโ€ฆโ€ฆๅ› ไธบๅพˆๅคšไบบไผš็ˆฑๅฑ‹ๅŠไนŒ๏ผŒ่ฎจๅŽŒไนŸๅŒ็†ใ€‚ ๆฏ”ๅฆ‚่ฏดๆ่ตทๅฐๆนพไฝ ่ƒฝๆƒณๅˆฐๅ‘จๆฐไผฆ๏ผŒๅถๅƒๅ‰งใ€‚ๆๆฒณๅ—99%ๆ˜ฏไบ•็›–ๅ„ฟใ€‚ใ€‚ใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
55
zhihu
region
่ฟ™ไธช้—ฎ้ข˜ไธ‹ๆœ‰ไบบๆœ‰ไบบๅœจๅธฆ่Š‚ๅฅ๏ผŒ้‚ฃไธชๅซๅŠกๅฎžๅธ…็”ท็š„๏ผŒๅ…„ๅผŸๆณจๆ„ไธ€ไธ‹๏ผŒไป–ๅœจๆŒ‘ๆ‹จ็ฆป้—ด๏ผŒๅ…ˆ่ฃ…ๆˆไธœๅŒ—ไบบๅœจๆฒณๅ—ไธบไป€ไนˆ่ขซๅœฐๅŸŸ้ป‘็š„้—ฎ้ข˜ไธ‹้ช‚ๆฒณๅ—ไบบ๏ผŒ็„ถๅŽ็งไฟกๅ›žๅคไป–็š„ๆฒณๅ—ไบบๅผ€ๅง‹้ช‚ไบบ๏ผŒ็„ถๅŽๆŠŠไธคไธชไบบๅฏน้ช‚็š„่ฎฐๅฝ•ๆˆชๅ–ๆฒณๅ—ไบบ้ช‚ไธœๅŒ—ไบบ็š„็‰‡ๆฎตๆ”พๅœจไธœๅŒ—ไบบไธบไป€ไนˆ่ขซ้ป‘็š„้—ฎ้ข˜ไธ‹ๅธๅผ•ไธœๅŒ—ไบบๆฅ้ช‚ๆฒณๅ—ไบบ๏ผŒๆŒ‘ๆ‹จไธคไธชๅœฐๅŒบ็š„ๅ…ณ็ณป
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
135
zhihu
region
๐Ÿ˜…็œ‹ๅˆฐไฝ ่ฟ™่ฏ„่ฎบ๏ผŒๆˆ‘็œŸ็š„ๅฟไธไฝไบ†๏ผŒๆˆ‘ๆœ‰ไธช็Žฉๅพ—ๅพˆๅฅฝ็š„ๅŒไบ‹๏ผŒๆˆ‘ไธ€็›ดไปฅไธบไป–ๆ˜ฏ้ป‘้พ™ๆฑŸ็š„๏ผŒไป–ๆ— ๅฅˆ็š„ไธ€ๆฌกๆฌกๅ‘Š่ฏ‰ๆˆ‘๏ผŒไป–ๆ˜ฏๅ‰ๆž—็š„
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
58
zhihu
region
ๆฏ”ๅฆ‚่ฏดๅˆฐ็ŸฅไนŽไธ‰ๅคง็พŽ้ฃŸ่’ๆผ ๏ผŒๅŒ—ไบฌไบบ็›ดๆŽฅๆ‰ฟ่ฎค๏ผŒ่ฟ˜่ทŸ็€้ช‚๏ผŒๆทฑๅœณๅค–ๆฅไบบๅฃๅคš๏ผŒๅฝ’ๅฑžๆ„Ÿๅทฎ๏ผŒไนŸไธ่ฏดไป€ไนˆใ€‚ๅ”ฏ็‹ฌๆญๅทžไบบ้‚ฃไธช่ทณ๏ผŒไฝ ่ฏดๆˆ‘ไปฌ่’ๆผ ๆ˜ฏๅ› ไธบไฝ ๅƒไธ่ตทๅทดๆ‹‰ๅทดๆ‹‰๐Ÿ˜ข
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 1, 0, 0, 0 ]
75
zhihu
race
ๆ•ดๆ€ฅ็œผไบ†ๆˆ‘ๅฏไปฅๅนฒ็Œช๏ผŒไฝ†ๆ˜ฏไธไผšๅนฒๆœ‰่ฟ‡้ป‘ไบบ็”ทๅ‹็š„ๅฅณไบบ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 1, 0 ]
24
zhihu
region
ไป€ไนˆๅซๆœฌๅœฐไบบๅนฒ็š„ๅไบ‹ๅ…จ่ต–ๅˆฐๅค–ๅœฐไบบๅคดไธŠ๏ผŒๆณ•ๅˆถ่Š‚็›ฎ้‡Œ็Šฏ็ฝช็š„ๅŸบๆœฌ้ƒฝๆ˜ฏ่‹ๅŒ—ๅฎ‰ๅพฝ็š„๏ผŒ่บซ่พนไฝ†ๅ‡กๆœ‰็‚นๅไบ‹้ƒฝๆ˜ฏๅค–ๅœฐไบบๅนฒ็š„๏ผŒๅด่ฏญๅŒบๆœฌๅœฐไบบๅฐฑๆžๅฐ‘ๆœ‰ๅนฒๅไบ‹็š„ไบบ
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
68
zhihu
region
Xgๆœ‰ไบ›่€ๅนดไบบไนŸๆ˜ฏ้€™ๆจฃใ€‚ไธๆ•ข่ˆ‰ไพ‹่ฉณ็ดฐ่ชช๏ผŒๆ€•่ขซ้—œ้€ฒๅฐ้ป‘ๅฑ‹ใ€‚
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
28
zhihu
lgbt
่ฏ่ฏดๅ›žๆฅไฝ ๅˆ่ƒฝๆ‹ฟๅŒๆ€งๆ‹ๆ€Žไนˆๆ ทๅ‘ข๏ผŸ๏ผŸๆœ‰ๆœฌไบ‹ๅฐฑๅผ„ๆญปไป–ไปฌๅ•Šใ€‚ๅ‡ ๅƒไธ‡ไธช๏ผŒๆ…ขๆ…ขๆฅใ€‚ๅๆญฃๅฏนไบŽไฝ ่ฟ™็งไปฅๅผบๅ‡Œๅผฑ็š„๏ผŒไนŸๅฐฑ่ฟ™ไบ›ๆœฌไบ‹่ฟ™็งๅฟƒ่ƒธไบ†ใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 1, 0, 0, 0, 0 ]
61
tieba
gender
่ฟ™ไธๆ˜ฏ50w๏ผŸ๏ผŸ๏ผŸ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
9
zhihu
region
่พฝๅฎๅคง่ฟž็š„๏ผŒไธ€็›ดๆƒณๅคงๅ†ฌๅคฉๅŽปๅ‰ๆž—้•ฟ็™ฝๅฑฑ็ž…็ž…๏ผŒๆ„Ÿๅ—ๅคง้›ชๅฐๅฑฑ็š„ๆ„Ÿ่ง‰
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
30
zhihu
race
ๆ—ฅๆœฌๅฅณไบบ่ดคไธ่ดคๆƒ ๆˆ‘ไธๅคชๅœจไนŽ๏ผŒๅๆญฃไธญๅ›ฝๅฅณไบบๅทฒ็ป่ทŸ่ดคๅฆป่‰ฏๆฏไธๆฒพ่พนไบ†ใ€‚ๅฐๅบฆๅฅณไบบ็ป™ไธ็ป™ๅซๅฆ†ๆ— ๆ‰€่ฐ“๏ผŒๅๆญฃไธญๅ›ฝ่ฟ™่พนๅฝฉ็คผ่ฆ็ป™๏ผŒๅซๅฆ†ไนŸไธๆ˜ฏ็”ทไบบ็š„ใ€‚็พŽๅ›ฝๅฅณไบบ้š็ˆถๅง“ไนŸๆ˜ฏๅฐไบ‹ๅ„ฟ๏ผŒๅๆญฃไธญๅ›ฝๅฅณไบบไธไป…ไธๆ”นๅง“๏ผŒ่ฟ˜่ฆๆฑ‚ๅญฉๅญ่ทŸๅฅนไปฌๅง“ใ€‚็ฉ†ๆ–ฏๆž—ๅฅณไบบ่ดžไธ่ดžๆดไนŸไธๆ˜ฏๆˆ‘ๅ…ณๅฟƒ็š„๏ผŒๅๆญฃไธญๅ›ฝๅฅณไบบไธๅคช่ดžๆดไบ†ใ€‚ไฟ„็ฝ—ๆ–ฏไนŒๅ…‹ๅ…ฐๅฅณไบบๆผ‚ไธๆผ‚ไบฎไนŸๅฐฑ้‚ฃไนˆๅ›žไบ‹ๅ„ฟ๏ผŒๅๆญฃไธญๅ›ฝๅฅณไบบๅทฒ็ป้ ็€็พŽ้ขœใ€ๅŒ–ๅฆ†ๅ˜ๆˆไธ–็•Œ็ฌฌไธ€ไบ†ใ€‚้žๆดฒๅฅณไบบ่บซๆๅฅฝไธๅฅฝๆˆ‘ๆ˜ฏๆฒกๆณจๆ„่ฟ‡๏ผŒๅๆญฃไธญๅ›ฝๅฅณไบบๅฐฑ็ฎ—่บซๆไธๅฅฝไนŸๆ˜ฏโ€œไป™ๅฅณโ€ใ€‚๐Ÿ˜†
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 0, 0 ]
211
tieba
race
ไธ่ƒฝๅ‘ผๅธๆ˜ฏๅฏน็š„
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
7
tieba
race
้žๆดฒ้ป‘ไบบๆ™บๅ•†70๏ผŒ่ขซๅญฆ่€…ๅฝ’็ฑปไธบๆ™บ้šœๆฐดๅนณใ€‚็พŽๅ›ฝ้ป‘ไบบๆทท่ก€ๅ„ฟๆ™บๅ•†85๏ผŒไธญ้žๆทท่ก€ๅ„ฟๆ™บๅ•†ๅบ”่ฏฅๅพ˜ๅพŠๅœจ90ๅทฆๅณ๏ผŒๅฆฅๅฆฅ็š„็ญ้‡Œๅ€’ๆ•ฐ
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
56
zhihu
race
ๅ–œๆฌข้ป‘ไบบ่ฏทๅŽปไฝ ็”ทไบบๅ›ฝๅฎถ๏ผŒ่ต–ๅœจไธญๅ›ฝๅฐฑไธ่ฆๆ€ชๅˆซไบบ้ช‚ไบ†๏ผŒๅŠจๆ‰‹้ƒฝๆ˜ฏๅบ”่ฏฅ็š„
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 0 ]
32
tieba
gender
ไฝ ไธไผšๆ˜ฏๆ€•ๅฐ†ๆฅไฝ ๅฆปๅญๅ‘Šไฝ ๅผบๅฅธ็ฝชๅง๏ผไฝ ๆ”พๅฟƒ่ฟ™้กน็ฝชๅๅพˆ้šพๅ–่ฏ็š„๏ผŒๅฅณ็š„ไธ€ๅ‘Šๅฐฑไผ—ๅ›ไบฒ็ฆป่ขซไบบๅ˜ฒ็ฌ‘๏ผŒๅฅณ็š„่ฟ˜ๆ€Žไนˆๅœจๅฎถ้‡Œๅ‘†ไธ‹ๅŽป๏ผŒ่ฟ˜ไธๅฆ‚็›ดๆŽฅๅ‘Š็ฆปๅฉš
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 0, 0 ]
64
tieba
race
่ฟž่ฏด่ฏดไนŸไธๅ‡†๏ผŸ้ป‘ๅนๅฅฝ็Œ–็—
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
12
zhihu
region
่ตท็ ๅœจๅ†ฏไธฝ่ฟ™ไปถไบ‹ๆƒ…ไธŠ๏ผŒๆ˜ฏ่ฟ™ๅ‡ ไธชๅšไธปๅˆฐๅ†ฏไธฝๅพฎๅšไธ‹็•™่จ€ๅŠ ่พฑ้ช‚ๆฒณๅ—ไบบ็š„๏ผŒๅˆฐๅค„่นญ็ƒญๅบฆ๏ผŒๆˆ‘้ƒฝๆ€€็–‘่ฟ™ไบ›ไบบๆ˜ฏไธๆ˜ฏๆœ‰็—…ๅ‘€๏ผไฝ ้ช‚ไป–ไป–ๅฐฑๆˆชๅฑ๏ผŒ่ฏดไฝ ็ฝ‘ๆšดไป–๏ผŒไฝ ไธ้ช‚ไป–้ฉฌไธŠๅฐฑ่ท‘ๅˆฐ่ฏ้ข˜ไธ‹็ปง็ปญๅœฐๅŸŸ้ป‘๏ผŒๆˆ‘ๅŽป่ฟ‡่ฅฟๅฎ‰๏ผŒๆ˜ฏไธ€ๅบง็พŽไธฝ็š„ๅŸŽๅธ‚๏ผŒๆ–‡ๅŒ–ๅพˆๅŽš้‡๏ผŒไฝ†ๅŽๅคๆŠŠไธญๅŽŸ่ฏดๅš้™•่ฅฟ๏ผŒ้ป„ๅธๆ•…้‡Œๆ˜ฏ่ฅฟๅฎ‰็ญ‰็ญ‰ๅธธ่ฏ†ๆ€ง้”™่ฏฏ็š„่จ€่ฎบ๏ผŒ่ฟ˜ไธ่ฎฉไบบ่ฏดๆด›้˜ณๆ˜ฏๅไธ‰ๆœๅค้ƒฝ๏ผŒไธๆ˜ฏๆด›้˜ณๆ˜ฏๅค้ƒฝไผšๅฝฑๅ“่ฅฟๅฎ‰ไป€ไนˆๅ—๏ผŸๆ— ่ฏญ๐Ÿ˜ฒ๐Ÿ˜ฒ๐Ÿ˜ฒ๐Ÿ˜ฒ
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
183
tieba
lgbt
ไธ่ดŸๅฎถๅบญ่ดฃไปป็š„ๆฒกๆœ‰ๅ†™ๅพˆๅคš๏ผŒๅ› ไธบ่ฟ™็งๅพˆๅฟซๅฐฑ็ฆปไบ†
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
22
zhihu
region
ๆฑŸ่ฅฟไธบไป€ไนˆๆ˜ฏ็ฌฌไธ‰ๅทๅไบบ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
11
tieba
gender
ๆฅผไธปๅ•Š๏ผๆˆ‘่ฎฐๅพ—่ฟ™ๆ˜ฏๆŸไฝๆ™ฎไฟกๅฅณๅ†™็š„ๅ…ณไบŽ็”ทๆ€ง็š„ๆกไปถๅง๏ผŒๆ”น็š„ๅฅฝ๏ผŒ่ฟ˜ๆœ‰๏ผŒๆ‚จ็š„ๅธ–ๅญ้‡Œ้ขๆœ‰ๆก็›ฎ๐Ÿถ๏ผŒ่ตถ็ดง็ฝฎ้กถ็พž่พฑ
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 0, 0 ]
49
tieba
race
ๅชๆœ‰่ต„ๆœฌๅฎถๆ‰่ƒฝๅ…ฅ็Šนๅคชๆ•™ๅฝ“็Šนๅคชไบบ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
15
zhihu
region
้ƒจๅˆ†ๅœฐๅŒบ็ฉทๅง๏ผŒๆˆ‘่ฏด็š„ไธๅผ€ๅŒ–่ฟ™ไธ€็‚น
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 1, 0, 0, 0 ]
16
zhihu
region
๐Ÿถๅ…„ๅผŸ๏ผไปฅๅŽๆˆ‘ๅฐฑ่ทŸไฝ ๆททไบ†๏ผ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
18
zhihu
region
็ปๅฏนๆ˜ฏ 7ๅนดๅ‰ๆˆ‘ๅฐฑ้‡่ง่ฟ‡ๆœ‰ๅ›ฝๅค–็ป„็ป‡ๅธฆ้ข†ๆŸไบ›ไบบๅคงๅŠ›้ป‘ๅฎ‰ๅพฝ็š„ ็ป„็ป‡็š„ๅคดๆ˜ฏไธชไธญๅ›ฝ้€š็š„็พŽๅ›ฝไบบ ๅฝ“ๆ—ถไป–ไฝๅœจไธŠๆตท ๅฏนไธญๅ›ฝๆ–‡ๅŒ–ไบ†ๅฆ‚ๆŒ‡ๆŽŒ ไธญๆ–‡ๅพˆๅฅฝ่ฟ˜ๆ‡‚ๅค่ฏ—ไป€ไนˆ็š„ ไป–ไปฌๅ‡่ฃ…ไธŠๆตทไบบ้ป‘ๅฎ‰ๅพฝไบบ ๅธฆๅŠจ็œŸ็š„็ฝ‘ไธŠไธŠๆตทไบบ้ป‘ๅฎ‰ๅพฝไบบ ๅŽๆฅ้ป‘ๅฎŒๅฎ‰ๅพฝๅˆ้€‰ๆ‹ฉ้ป‘ๆฒณๅ— ๅŽŸๅ› ๆ˜ฏๅ› ไธบไป–ไปฌ่ฎคไธบๆฒณๅ—ๆ˜ฏๅŽๅคไธญๅฟƒ่ตทๆบ็ญ‰็ญ‰ ๅ…ถๅฎžๆˆ‘่ฟ˜ๆƒณ่ฏดๆ›ดๅคš ไฝ†ๆ˜ฏๆˆ‘ไธ่ƒฝ ๆˆ‘ๅพˆๆ€• ๆˆ‘ๅช่ƒฝ่ฏด่ฟ™ไนˆๅคš
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
159
tieba
gender
็Žฐๅฎžไธญๅ‘ข๏ผŒ่‡ชๅคไปฅๆฅๅ“ชไธช้ป„็ฒพ็ตๅธฆๅคดๅ†ฒๆ ผๆ ผๅทซ็š„๏ผŸๅฐฑ็ฎ—ๆœ‰ไนŸๆžๅฐ‘ใ€‚้‡ๅˆฐ็”Ÿๅญ˜ๅฑๆœบไบ†ๅ่€Œๆ˜ฏ้ป„็ฒพ็ต็ปๅธธไพ้™„ไบŽๆ ผๆ ผๅทซ๏ผŒ้€ ๅฐฑไบ†ๅŽ้™ข้ป„็ฒพ็ตไธ‰ๅƒ็š„ไฝณ่ฏ๏ผŒ่€Œ่“็ฒพ็ตๅœจๅ‰็บฟ้€ๅ‘ฝ็ฉถ็ซŸๆ˜ฏ่ฐๆŒกๅœจๆ ผๆ ผๅทซๅ‰้ขๅކๅฒๅทฒ็ปๅ‘Š่ฏ‰ๆˆ‘ไปฌ็ญ”ๆกˆไบ†
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
96
tieba
gender
ๅบ”่ฏฅๅคš็ง‘ๆ™ฎ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
5
tieba
gender
ๆˆ‘185๏ผŒไฝ†่ฟ™ๅน•ๅˆƒๆ˜ฏ้ฒจbee
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 0, 0 ]
14
zhihu
race
ๅฅน่‡ชๅทฑไธไนŸๆ˜ฏไธ€ไธชๅ“—ไผ—ๅ–ๅฎ ็š„ๅฐไธ‘๏ผŸๆ™ฎไฟก็”ทๆœ‰ไป€ไนˆไธๅฅฝ๏ผŸ้šพ้“ๅคฉๅคฉ่ทŸไธชๅ…ซๅฉ†ไธ€ๆ ทๆ€จๅคฉๆ€จๅœฐๆ€ชๅผ‚ๆ€งๆ‰ๅฅฝ๏ผŸไธญๅ›ฝไบบ่ฎฒ็ฉถๅคฉ่กŒๅฅๅ›ๅญไปฅ่‡ชๅผบไธๆฏ๏ผŒๆ™ฎ้€šไบบไนŸ่ฆไธๆ–ญ่‡ชๅผบ๏ผŒ่€Œไธๆ˜ฏๅƒๆŸไบ›็พคไฝ“ไธ€ๆ ทไธ€ๅ‘ณๅด‡ๆด‹ๅชšๅค–๏ผŒ้€†ๅ‘็งๆ—ไธปไน‰๏ผŒๆˆ–่€…ๆ€งๅˆซไธปไน‰ใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 0 ]
102
tieba
race
ๆœ€่ฟ‘ๆŒบ็ƒญ้—นๅ•Š๏ผŒๆ˜ฏไธๆ˜ฏๆ”พๆš‘ๅ‡็š„ๅŽŸๅ› ไฝฟๅพ—ไธ€ไบ›ๅๆŸๆŸๆญง่ง†็š„ๅคšไบ†่ตทๆฅ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
30
zhihu
region
่ฟ™ๆ˜ฏไบ‹ๅฎžๅง๏ผŒ่ฏๆฎๆ˜Žๆ‘†็€๏ผŒๆˆ‘ๆ˜จๅคฉ็œ‹ๅˆฐ็œŸๆ˜ฏๆฐ”ๅพ—ไธ่กŒๅ›ง
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
27
zhihu
region
ๅ› ไธบๆˆ‘ๅคช่ฎค็œŸไบ†~~ๆˆ‘ๆ˜ฏ็œŸ็š„ๆŠŠๅคๅ…ฐ็ปใ€ๅœฃ็ปใ€ไฝ›็ป(ไฝ›็ปไธๆ˜ฏๅŽŸ็‰ˆ้‚ฃ็ง็œ‹ไธๆ‡‚็š„)๏ผŒ่ฎค่ฎค็œŸ็œŸ็š„่ฏปไบ†ไธ€้ƒจๅˆ†๏ผŒๆ˜ฏๆฒกๆœ‰่ฏปๅฎŒ็š„๏ผŒ็„ถๅŽๆˆ‘ๅ‘็Žฐๆˆ‘ๅฎžๅœจๆ˜ฏ่ฏปไธไธ‹ๅŽป๏ผŒไฝ›็ป่ฟ˜่ƒฝ็œ‹็‚นไบบ็”Ÿๆ„Ÿๆ‚Ÿไป€ไนˆ็š„๏ผŒ่€Œๅ‰ไธค่€…ๅฎžๅœจๆ˜ฏ๏ผŒๆˆ‘ไธๅฅฝ่ฏด่ดฌไฝŽๅฎƒไปฌ็š„่ฏ๏ผŒไฝ†ๆ˜ฏ็œŸ็š„ๆ˜ฏ๏ผŒๅฎŒๅ…จๆŽฅๅ—ไธ่ƒฝ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
115
tieba
lgbt
่ƒฝไธ่ƒฝๅ›žๅคๅ•Š๏ผŒ็ฌ‘ๆญปไบ†๏ผŒๆฒก่ง่ฟ‡่ฟ™ไนˆๅ˜ด็กฌๅฐ่ƒ†็š„fw๏ผŒๆ˜ฏไธๆ˜ฏๅพ…ไผš่ฟ˜่ฆ่‡ชๅทฑ็ฒพ็ฅž่ƒœๅˆฉไธ€ๆŠŠ่ฏดๆˆ‘ไธๅฑ‘ไบŽๅ’Œไฝ ่ฏด่ฏๅ•Š
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
49
zhihu
race
ๆ‹่™ซ็™–ๆ˜ฏไป€ไนˆ๐Ÿค”
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
7
zhihu
region
ๆฝฎๆฑ•็ซ้”…ๅคชๅ…ป็”Ÿไบ†ๅง
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
9
tieba
gender
็œ‹ๆ–ฐ้—ป่ฐ่ฏดๅŽไธœ็†ๅทฅๅคงๅญฆ็š„ๅญฆ็”Ÿๆฒกๆœ‰ๅ‡บๅฃฐไบ†๏ผŸ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
20
tieba
gender
ๆ˜ฏ็”ทๆŒ™ๅฎšไน‰ๅฎ ๅฅณไบบ็š„็”ทไบบไธบ็‹—๏ผŒไป€ไนˆๅซๅ–œๆฌขๅฝ“็‹—ใ€‚
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
22
tieba
gender
ๆ‰€่ฐ“โ€œๅฅณ็”Ÿๆ–‡็ง‘ๅผบ๏ผŒ็”ท็”Ÿ็†็ง‘ๅผบโ€็š„ๅˆปๆฟๅฐ่ฑกๆ˜ฏๅ’‹ๅ‡บๆฅ็š„๏ผŸๆˆ‘ๅฐฑ็‰นๅˆซ็š„ๅ็†็ง‘
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 0, 1, 0, 0 ]
34
zhihu
region
ไพ็„ถๆœ‰ๆญง่ง†ใ€‚ๆˆ‘ๆ˜ฏๆฒณๅŒ—็š„๏ผŒ2019ๅนดๅŽปๅŒ—ไบฌๅฝ“ไฟๅฎ‰ๆŒฃๅญฆ่ดน๏ผŒไบบๅฎถ่ฏด๏ผšไฝ ๆ˜ฏๆฒณๅ—ไบบ๏ผŸ๏ผˆๆˆ‘ๅฎถๆ˜ฏๆฒณๅŒ—ๅ—้ƒจ้‚ขๅฐ็š„๏ผŒๆ‰€ไปฅ่ฏด่ฏๆŽฅ่ฟ‘ๆฒณๅ—ๅฃ้Ÿณ๏ผ‰ๆˆ‘่ฏดไธๆ˜ฏ๏ผŒไฝ†ๆ˜ฏๆœ‰ไป€ไนˆๅ…ณ็ณปๅ‘ขใ€‚ๅ…ฌๅธไบบไบ‹ๅฏนๆˆ‘่ฏด๏ผšๆ—ฉไบ›ๅนดๅช่ฆๆ˜ฏๆฒณๅ—็š„๏ผŒ้ƒฝไธ่ฆใ€‚ๆˆ‘ๅนด้พ„ไนŸไธๅคง๏ผŒๆˆ‘ไผฐ่ฎกๅฐฑๆ˜ฏๆ—ฉๆœŸๅธฆๅคด้ป‘ๆฒณๅ—็š„๏ผŒ็„ถๅŽๆ…ขๆ…ขๅฝขๆˆๅ›บๆœ‰่ฎค็Ÿฅไบ†๏ผŒๅ…ถๅฎž้ƒฝๆ˜ฏ็ฉบ็ฉดๆฅ้ฃŽใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
3
[ 0, 0, 1 ]
[ 0, 1, 0, 0, 0 ]
138
tieba
lgbt
ๅง้‡Œ่ฟ™ๅ‡ ไธชๅๅŒๆ นๆœฌๆฒกไป€ไนˆ่ƒฝๅŠ›๏ผŒๅๅŒ่ฟ˜ๅพ—้ ๅŒๆ€งๆ‹
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 1, 0, 0, 0, 0 ]
23
tieba
lgbt
็ปˆไบŽๅฏไปฅ่ฏด่ฏไบ†๏ผŒ่ฟ™็ญ‰็บง้™ๅˆถ๏ผŒ่ฟ™ไฝ ไปฌๅซ็š„โ€œ็Œช่…ฐโ€ๆ˜ฏไธๆ˜ฏๅฐฑๆ˜ฏ้ช‚้ช‚ๅ’งๅ’ง่ฏด่ฆๅŽปไบบๅฎถๅญฆๆ กๅ ตไบบๅฎถ็š„้‚ฃไธช?
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
46
tieba
lgbt
็Œช็ŒชๆŒบๅฏ็ˆฑ็š„
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
6
zhihu
region
ๆฒณๅŒ—ๆฌฒๅ“ญๆ— ๆณช
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
6
tieba
race
ๅƒๆžฃ่ฏไธธ๐Ÿ™‚
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
5
tieba
race
็ฌ‘ๆญปๆˆ‘ไบ†ๆ™บๅ•†ๆ˜ฏ็กฌไผคๅ•Š
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
10
tieba
gender
่ดดๅงๅˆ†ๅง๏ผŒไธๅŒ็š„ๅงๆœ‰ไธๅŒ็š„ๆฐ›ๅ›ดใ€‚่€Œไธ”่ดดๅงไธ€่ˆฌไธ็ซ็š„ๅงไฝ ไนŸๅˆทไธๅˆฐใ€‚่ดดๅงๅ…ถๅฎžๆ˜ฏๆœ€ๅฎนๆ˜“ๆŠฅๅ›ข็š„๏ผŒไฝ†ๆ˜ฏๆ„Ÿ่ง‰ๅๅ€’็”ทๆ€งๅŠฟๅŠ›่พƒๅผฑใ€‚้™คไบ†ไธชๅˆซ็”ทๆ€งๅงๅค–๏ผŒๅพˆ้šพๅœจๅˆซ็š„ๆถ‰ๅŠ็”ทๅฅณ้—ฎ้ข˜ไธŠ็”ทๆ€ง็š„ๅๆŠ—
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
83
zhihu
race
่บซ่พนไธ€ๅ †ๆ‰พ่ฟ‡ๅค–ๅ›ฝ็š„ไป€ไนˆๆˆๅˆ†ๅพˆๆ˜Žๆ˜พไบ†
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 1, 0 ]
17
zhihu
race
ๅˆซๅฌไป–็š„๏ผŒไป–ๅœจๅฑ่จ€่€ธๅฌ๏ผŒไธบไบ†็ˆฑๆƒ…๏ผŒๅŽป็พŽๅฅฝ็š„้žๆดฒๅคง่‰ๅŽŸๅง
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 1, 0 ]
27
zhihu
race
่‚ฏๅฎšไธ่ƒฝๆŽฅๅ—๏ผŒๆˆ‘ๆƒณ่ฟ™ๆ˜ฏ็”ทๆ€งๅฏน่‡ชๅทฑ็งๆ—็š„ไฟๆŠคๆŽชๆ–ฝๅง๏ผๅฆ‚ๆžœๆŽฅๅ—ๅ’Œๅ’Œไบบ่ฐˆ่ฟ‡ๆ‹็ˆฑ็š„ๅฅณไบบ๏ผŒๅฐฑไธ€ๅฎš็จ‹ๅบฆไธŠ็ญ‰ไบŽๆŽฅๅ—้ป‘้ป„ๆทท่ก€๏ผŒ่ฆไธไบ†ๅ‡ ๅๅนด็‚Ž้ป„ๅญๅญ™ๅฐฑๅพ—็ญ็ปใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 0 ]
70
tieba
gender
ๆ„Ÿ่ฐข็š„ๅคชๆ—ฉไบ†ๅง๏ผๅคšๅธŒๆœ›่ކ็”ฐ็š„ๆฌงๆŸๆญปไน‹ๅ‰็Ÿฅ้“ไบบ้—ดๆ˜ฏๆœ‰ๆธฉๅบฆ็š„ใ€‚
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
29
zhihu
race
ไฝ ่ฟ™ๅŒฟๅๆžๅพ—ๆˆ‘ไปฌไธๅคชๅฅฝๅ‘ๆŒฅๅ‘€๐Ÿ˜“๐Ÿ˜“๐Ÿ˜“
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
26
tieba
gender
็”ทไบบ็š„ๆƒๅˆฉๅพ—ไธๅˆฐ็ปดๆŠค้‡่ง†๏ผŒๅฅณไบบ่ขซๆƒฏๅ๏ผŒ้ƒฝๆ˜ฏๅ› ไธบ่ฟ™ไบ›ไผชๅ›ๅญไปฌไฝœๅ‡บๆฅ็š„
1
[ 0, 1 ]
1
[ 1, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
33
zhihu
race
+1ไฝ†ๅฆ‚ๆžœๅง‘ๅจ˜่ฟฝๆฑ‚็œŸ็ˆฑ่ทŸ้ป‘ไบบไธ€่ตทๅ›ž้žๆดฒ๏ผŒๆˆ‘ๆ‰“ๅฟƒๅบ•้‡Œ็ฅ็ฆไป–ไปฌไฟฉ????็•™ๅœจๅ›ฝๅ†…ไธ่ฎจ้ช‚่›ฎ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
42
zhihu
race
ๆ”ฏๆŒๆญฃไน‰ๅ‰ฅๅ‰Š๐Ÿ˜†
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 0, 1 ]
10
tieba
lgbt
ๅคๅฐ่ฟ˜ๅพ—ๆ˜ฏไฝ ไปฌtxlๅމๅฎณ๏ผŒๆ็ŸฅไนŽไธŠไธ€ๅคๅˆถๆฅ่ฟ™ไธ€็ฒ˜่ดดๅฐฑๆŠŠๆญฃๅธธไบบ็š„ๆ™บๅ•†ๅฆๅฎšไบ†๏ผŒๅฐฑ้‚ฃไธคไธช่ตž็š„ๆ–‡็ซ ่ฐไฟก่ฐๆ‰ๆ™บๅ•†ๆœ‰้—ฎ้ข˜
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 1, 0, 0, 0, 0 ]
54
zhihu
race
ๆŒบๆญฃๅธธ็š„๏ผŒไธŠๆฌกๆœ‰ไธช้‡‡่ฎฟ๏ผŒไธ€ไธช็™ฝไบบๅฅณๅซไบ†ไธญๅ›ฝไบบ๏ผŒไนŸๆ˜ฏ่ขซๅฅน็š„ๅœˆๅญ่ธขๆމใ€‚ๅฝ“ไฝ ้€‰ๆ‹ฉไบ†ๅผ‚็ฑป๏ผŒๅฐฑ่ฆๆœ‰่ขซๆŽ’ๆ–ฅ็š„่ง‰ๆ‚Ÿใ€‚ไธ่ฟ‡๏ผŒๅฅ‡ๆ€ช็š„ๆ˜ฏ๏ผŒๅจถไบ†้ป‘ไบบ๏ผŒ็™ฝไบบๆˆ–่€…่ถŠๅ—ไบบ็š„็”ทๆ€งๅ€’ๆ˜ฏๅพˆๅฐ‘่งไป–ไปฌ่ขซๆŽ’ๆ–ฅโ€ฆโ€ฆ
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 0 ]
86
tieba
gender
่ฟ™ๆณข่‡ชๆ€็œŸไบ๏ผŒไธบๅ•ฅๆฒกๆŠŠ้‚ฃไธช่ฏ„่ฎบๅŒบ็š„้‚ฃๅ‡ ไธชๅฅณๆƒไปฌๅธฆ่ตฐใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 0, 0 ]
26
tieba
lgbt
่ฟ™ๆ ท็š„ๅ‡่ฎพ๏ผŒ็Žฐๅฎžไธญๅนถไธๅญ˜ๅœจๆˆ–ๆž็ซฏ็ฝ•่ง
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
18
tieba
lgbt
ๅงไธปๆ˜ฏ้‡ๅบ†็š„ๅ•Š๏ผŒไฝ ไปฌ้‚ฃๅ„ฟไนŸ็ฎ—ๆ˜ฏ้‡็พๅŒบไบ†ๅง
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 1, 0, 0, 0 ]
20
tieba
lgbt
็œ‹ๆฅๅŒๆ€งๆ‹ๅช็Ÿฅ้“ๆฑก่”‘ไป–ไบบไบ†
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 1, 0, 0, 0, 0 ]
13
zhihu
race
ๅœจๅฎถ้ช‚้ป‘้ฌผๅ‡บ้—จๆƒฆๅฟตๅผ—ๆด›ไผŠๅพท๏ผŸ๐Ÿค”
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
18
zhihu
race
้ป‘ไบŒไปฃ็œŸๆ˜ฏ้ป‘๏ผŒๅทๆธกๆฅไธญๅ›ฝ๏ผŒ่ฟžไธชๅ›ž็ญ”้ƒฝ่ฆๅญฆไฝ ็ขŸ้ป‘็€ๆฅๅŒฟๅไธๆ•ขๆ˜Ž้ขๅ›ž็ญ”
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
33
tieba
race
ไธบไป€ไนˆ่ฆ็ฎกๅ•Š๏ผŒ่ฟ™ๆ˜ฏไบบๅฎถ็งไบ‹ๅง๏ผŒๆฑ‚ๆ•‘ไบ†ๅ—ๅ†่ฏดไฝ ่ฟ™ไธคๅผ ๅ›พ?้ƒฝ็œ‹ๅˆฐๅฅฝไน…็š„่ดดไบ†
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
35
zhihu
lgbt
่ฏด็š„ๅพˆๅฏนใ€‚ไฝ†ๆ˜ฏๅƒๅฑŽ็š„ไนŸไธ่ƒฝ่ฆๅƒๅฐฟ็š„ๅผบ่กŒ่ฎคๅŒๅง๏ผ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
23
tieba
lgbt
ไฝ ่ฟ˜ๆœชๆŸ“่‰พ่บซไบก๏ผŸไฝ ไธŠ่ฏๅคšไน…ไบ†๏ผŸ
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 0, 1 ]
15
tieba
race
ไธŠๆตทๆœฑๅฎถ่ง’
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
5
tieba
gender
ๅฝ“ๆ—ถ้‚ฃไธชๆธ…ๅŽ่…šๅŽ้ข็œ‹็›‘ๆŽงไนŸๅ่ฝฌไบ†๏ผŒๆ‰€ไปฅๅˆซๅŽปไฟกๅฐไฝœๆ–‡
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
25
zhihu
race
็ปๅธธๅฌ็”ท็š„ๅ›žๅฎถ่ทชๆ“่กฃๆฟ๏ผŒๅฐฑ่ฏดโ€œๆญฃๅธธๅ•Š๏ผŒ่ฟ™ไธๆŒบๆญฃๅธธ็š„ๅ—๏ผŸโ€๏ผŒๆฒกๅฌ่ฏด่ฟ‡ๅฅณ็š„่ทช๏ผŒๅฆ‚ๆžœ่ทชๆ“่กฃๆฟไบ†๏ผŒๅฐฑโ€œ่ฟ™ๆ˜ฏๅœจๅฎถๆšดๅ•Šโ€๏ผŒไปฅๅ‰ๅคไปฃไปปๆ„ๆœไปฃ้ƒฝๆฒกๆœ‰่ฟ™ๆ ท็š„ๅ“ฆ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 0, 0 ]
70
zhihu
region
ๅฏไปฅ่ฆๆฑ‚ๅญฆๆ กๅ†่ฃ…็”ตๆขฏ๏ผŒๅฏไปฅ่ฆๆฑ‚ๅญฆๆ กๅˆ†ๅผ€็”ทๅฅณๅฎฟ่ˆ๏ผŒไธ่ฎฉไบบๅ็”ตๆขฏๆ˜ฏไธชไป€ไนˆ้ฌผโ‰โ‰
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
43
zhihu
region
ไนŸๅฏไปฅ่ฏด๏ผŒๅคงๅคšๆ•ฐไธญๅ›ฝไบบ็ฅ–ๅ…ˆ้ƒฝๆ˜ฏๅคๆฒณๅ—ไบบใ€‚
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
20
zhihu
race
้˜Ž็Ž‹่€ๅญๆฅไบ† ๆˆ‘ๅฐฑๆ˜ฏ็งๆ—ๅ†…ไธชๆญง่ง†ไบ†๐Ÿถๅธฝๅญๆˆ‘่‡ชๅทฑๅธฆๅฅฝ
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 0, 1, 0 ]
30
zhihu
region
ๆฒณๅ—ๆ–ฐ็–†ๅ›žๆ—ไบบ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 1, 0, 0, 0 ]
7
zhihu
region
ๅ“ˆๅ“ˆๅ“ˆๅ“ˆๅ“ˆๆˆ‘ๅทฒ็ปๅผ€ๅง‹็ฌ‘ไบ†
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
12
zhihu
race
ๅ› ไธบ้ป‘ไบบๅฅณๅญฉ่ทŸ้ป‘ไบบ็”ทๅญฉ็ป“ๅฉš๏ผŒๅฅนไปฌไธ่ฆๅฝฉ็คผ๏ผŒ้ป‘ไบบๅฅณๅญฉ่ทŸไธญๅ›ฝ็”ทๅญฉ็ป“ๅฉš๏ผŒๅฅนไปฌไนŸไธ่ฆๅฝฉ็คผ๏ผ›ไธญๅ›ฝๅฅณไบบ่ทŸไธญๅ›ฝ็”ทๅญฉ็ป“ๅฉš๏ผŒๅฅนไปฌ่ฆๅคง้ขๅฝฉ็คผ๏ผŒๅฉšๅŽๅๆŒ‡ไธๆฒพ้˜ณๆ˜ฅๆฐด๏ผŒไธญๅ›ฝๅฅณไบบๆ‰พ้ป‘ไบบ็”ทไบบ๏ผŒๅฅนไปฌไธ่ฆไธ€ๅˆ†ๅฝฉ็คผ๏ผŒ่ฟ˜ๆฒก็ป“ๅฉšไนŸๅฏไปฅ็”Ÿๅญฉๅญ๏ผŒๆŠŠ้ป‘ไบบ็…ง้กพ็š„้‚ฃๅซไธ€ไธช่ˆ’ๆœ๏ผŒๅค–ๅ›ฝๅ‹ไบบ้ƒฝไบคๅฃ็งฐ่ตž๐Ÿ‘
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 1, 1, 0 ]
126
tieba
gender
ไบบ็ฑปไธญๆ™บๅ•†ๆž็ซฏ้ซ˜็š„้€šๅธธๆ˜ฏ็บขไธธ่ง‰้†’่€…๏ผŒไป–ไปฌๆทฑๅˆป่ฎค่ฏ†ๅˆฐไบ†ๆฏไบบๅธ่ก€็š„ๆœฌ่ƒฝๅ’Œ็”Ÿๅ‘ฝ็š„้›Œๆœฌไฝๅบ•ๅฑ‚ไปฃ็ ๏ผŒๆ‰€ไปฅๆ‰ๆŠŠๆฏไบบๅฝ“ๆˆ็นๆฎ–ๅ’Œๆณ„ๆฌฒ็š„ๅทฅๅ…ท๏ผŒๆˆ–่€…ๅนฒ่„†ๅฐฑๆ˜ฏ็”ทๅŒใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 1, 0, 1, 0, 0 ]
71
tieba
race
ๅช่ƒฝๆ€ชๅฅนๆฒกๆฅ้ป‘ไบบๅงใ€‚
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
10
zhihu
race
ๆ˜ฏๅง๏ผŒไฝ ๅฎž่ทต่ฟ‡?่ฟ™ๆ ทๆฅ่ฏดๆญชๆžœไปไผ ็ป™ๅ›ฝๅฅณ๏ผŒๅ›ฝๅฅณไผ ๆ’ญๆ…ข?ไฝ ่ฐƒ็ ”่ฟ‡ๅ•Š?ๆ‰พไบ†1000ไธช็”ท็š„ๅ’Œ1000ไธชๅฅณ็š„ไบ’็›ธไผ ๆ’ญ?็”ท็š„ๆ‰พๅฅณไบบไธŠๅบŠ่ฆไนˆๅธ…๏ผŒ่ฆไนˆๅ‡บ้’ฑ๏ผŒ่ฆไนˆๅ…ถไป–ๆˆ‘๏ผŒๆœ‰ๆˆๆœฌ๏ผŒๅฅณ็š„ๆฒกๆœ‰ไผ ๆ’ญๆˆๆœฌใ€‚ไผ ๆ’ญๅŽŸ็†ๆ˜ฏไธ€ๆ ท็š„ไฝ“ๆถฒไบคๆข๏ผŒไฝ ๅ“ชๆฅ็š„ๅฅณไผ ็”ทไฝŽ๏ผŒ่ฟ˜่ฏดๆ‚ฃไธŠ่‰พๆป‹็—…ๅŽๆญฃๅธธๅƒ่ฏๆดป็š„ๅพˆไน…ๅ‘ข๏ผŒไฝ ไนŸไฟก?ๅพˆๅคšไธ‰ไบ”ๅนดไน‹ๅ†…ๅฐฑๅพ—ๆญป๏ผŒไป€ไนˆๆดป็š„ๅพˆ้•ฟใ€‚
1
[ 0, 1 ]
2
[ 0, 1 ]
1
[ 1, 0, 0 ]
[ 0, 0, 1, 1, 1 ]
151
zhihu
race
ๅ•ฅไนŸๅˆซ่ฏดไบ†ๅคงๅ“ฅ๏ผŒๅช่ƒฝๅŠๅ‘Šไฝ ไธ€ๅฅ:ๅฐๅฟƒๅคงๆ•ฐๆฎๆ€็†Ÿ!
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
24
zhihu
region
(ใ€œ๏ฟฃโ–ณ๏ฟฃ)ใ€œ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
7
tieba
gender
ๆŠ–้Ÿณๅฏ่ƒฝๆ˜ฏ่ง†้ข‘ๆŽจ่็š„้—ฎ้ข˜๏ผŒ็œ‹ๅˆฐ็š„ๅคงๅคšๆ•ฐ่ง†้ข‘่ฆไนˆๆ˜ฏๅŠๅฅณๆ€งๆธ…้†’็š„๏ผŒ่ฆไนˆๆ˜ฏๅ–ทๅฅนไปฌ็š„ใ€‚ๆ€ปไน‹็”ทๆ€ง่ตท็ 55ๅผ€
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
48
tieba
lgbt
่‰พๅ‘€๏ผŒๆข…ไบ‹็š„ๅ•ฆ๏ผŒ็–ฃๆฒกไป€ไนˆๅคงไธไบ†็š„๏ผŒไธญๅฅ–ๅ‡ ็އไธบๆท‹๏ผŒ็—ฟไป€ไนˆ่ฆๆ‹…ๅฟƒๅ‘ข๏ผŒๆ‰“ไธช็–ฑ่€Œๅทฒๅ˜›๏ผŒไธ‹ๆฌกๅฐฑไธ่ฏๅ•ฆ
1
[ 0, 1 ]
2
[ 0, 1 ]
2
[ 0, 1, 0 ]
[ 0, 0, 0, 0, 1 ]
45
tieba
gender
็”Ÿไธ‹ๆฅๅšไธช้‰ดๅฎšๅฐฑๅฅฝไบ†๏ผŒไธๆ€•ไธ€ไธ‡๏ผŒๅฐฑๆ€•ไธ‡ไธ€ใ€‚ๆ€•็š„ๅฐฑๆ˜ฏไนŒ้พ™ๅšไบ†ๅไบบ
0
[ 1, 0 ]
0
[ 0, 0 ]
0
[ 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]
31
End of preview. Expand in Data Studio

Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmark

๐ŸŽ‰2024.9 Our related study, titled "Towards Comprehensive Detection of Chinese Harmful Meme", has been accepted to NeurIPS 2024! In this paper, we present ToxiCN_MM, the first Chinese harmful meme dataset. Here is the link: https://github.com/DUT-lujunyu/ToxiCN_MM. Welcome to star or fork it!

๐ŸŽ‰2024.9 Our related study, titled "PclGPT: A Large Language Model for Patronizing and Condescending Language Detection", has been accepted to EMNLP 2024! In this paper, we focus on a specific type of implicit toxicity, patronizing, and condescending language. link paper

๐ŸŽ‰2024.5 Our proposed dataset, ToxiCN, has been adopted by the international evaluation CLEF 2024: Multilingual Text Detoxification as the sole Chinese data source. Report


The paper has been accepted in ACL 2023 (main conference, long paper). Paper

โ˜ ๏ธ Warning: The samples presented by this paper may be considered offensive or vulgar.

โ—๏ธ Ethics Statement

The opinions and findings contained in the samples of our presented dataset should not be interpreted as representing the views expressed or implied by the authors. We acknowledge the risk of malicious actors attempting to reverse-engineer comments. We sincerely hope that users will employ the dataset responsibly and appropriately, avoiding misuse or abuse. We believe the benefits of our proposed resources outweigh the associated risks. All resources are intended solely for scientific research and are prohibited from commercial use.

๐Ÿ“œ Monitor Toxic Frame

we introduce a hierarchical taxonomy Monitor Toxic Frame. Based on the taxonomy, the posts are progressively divided into diverse granularities as follows: (I) Whether Toxic, (II) Toxic Type (general offensive language or hate speech), (III) Targeted Group, (IV) Expression Category (explicitness, implicitness, or reporting).

๐Ÿ“œ ToxiCN

We conduct a fine-grained annotation of posts crawled from Zhihu and Tieba, including both direct and indirect toxic samples. And ToxiCN dataset is presented, which has 12k comments containing Sexism, Racism, Regional Bias, Anti-LGBTQ, and Others. The dataset is presented in ToxiCN_1.0.csv. Here we simply describe each fine-grain label.

Label Description
toxic Identify if a comment is toxic (1) or non-toxic (0).
toxic_type non-toxic: 0, general offensive language: 1, hate speech: 2
expression non-hate: 0, explicit hate speech: 1, implicit hate speech: 2, reporting: 3
target (a list) LGBTQ: Index 0, Region: Index 1, Sexism: Index 2, Racism: Index 3, others: Index 4, non-hate: Index 5

๐Ÿ“œ Insult Lexicon

See https://github.com/DUT-lujunyu/ToxiCN/tree/main/ToxiCN_ex/ToxiCN/lexicon

๐Ÿ“œ Benchmark

We present a migratable benchmark of Toxic Knowledge Enhancement (TKE), enriching the text representation. The code is shown in modeling_bert.py, which is based on transformers 3.1.0.

โ—๏ธ Licenses

This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Poster

CCAC_2

Cite

If you want to use the resources, please cite the following paper:

@inproceedings{lu-etal-2023-facilitating,
    title = "Facilitating Fine-grained Detection of {C}hinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmarks",
    author = "Lu, Junyu  and
      Xu, Bo  and
      Zhang, Xiaokun  and
      Min, Changrong  and
      Yang, Liang  and
      Lin, Hongfei",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.898",
    doi = "10.18653/v1/2023.acl-long.898",
    pages = "16235--16250",
}
Downloads last month
77