JunyuLu commited on
Commit
e82a469
·
verified ·
1 Parent(s): 55f571f

Upload 17 files

Browse files
README.md CHANGED
@@ -1,3 +1,67 @@
1
- ---
2
- license: cc-by-nc-nd-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmark
2
+
3
+ 🎉**2024.9 Our related study, titled "Towards Comprehensive Detection of Chinese Harmful Meme", has been accepted to NeurIPS 2024! In this paper, we present ToxiCN_MM, the first Chinese harmful meme dataset. Here is the link: [https://github.com/DUT-lujunyu/ToxiCN_MM](https://github.com/DUT-lujunyu/ToxiCN_MM). Welcome to star or fork it!**
4
+
5
+ 🎉**2024.9 Our related study, titled "PclGPT: A Large Language Model for Patronizing and Condescending Language Detection", has been accepted to EMNLP 2024! In this paper, we focus on a specific type of implicit toxicity, patronizing, and condescending language. [link](https://github.com/dut-laowang/emnlp24-PclGPT/tree/main) [paper](https://arxiv.org/abs/2410.00361)**
6
+
7
+ 🎉**2024.5 Our proposed dataset, ToxiCN, has been adopted by the international evaluation [CLEF 2024: Multilingual Text Detoxification](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) as the sole Chinese data source. [Report](https://ceur-ws.org/Vol-3740/paper-223.pdf)**
8
+ ___
9
+
10
+
11
+
12
+ **The paper has been accepted in ACL 2023 (main conference, long paper).** [Paper](https://aclanthology.org/2023.acl-long.898/)
13
+
14
+ ☠️ ***Warning: The samples presented by this paper may be considered offensive or vulgar.***
15
+
16
+ ## ❗️ Ethics Statement
17
+ The opinions and findings contained in the samples of our presented dataset should not be interpreted as representing the views expressed or implied by the authors. We acknowledge the risk of malicious actors attempting to reverse-engineer comments. **We sincerely hope that users will employ the dataset responsibly and appropriately, avoiding misuse or abuse.** We believe the benefits of our proposed resources outweigh the associated risks. **All resources are intended solely for scientific research and are prohibited from commercial use.**
18
+
19
+
20
+ ## 📜 Monitor Toxic Frame
21
+ we introduce a hierarchical taxonomy **Monitor Toxic Frame**. Based on the taxonomy, the posts are progressively divided into diverse granularities as follows: **_(I) Whether Toxic_**, ***(II) Toxic Type*** (general offensive language or hate speech), ***(III) Targeted Group***, ***(IV) Expression Category*** (explicitness, implicitness, or reporting).
22
+
23
+ ## 📜 ToxiCN
24
+ We conduct a fine-grained annotation of posts crawled from _Zhihu_ and _Tieba_, including both direct and indirect toxic samples. And ToxiCN dataset is presented, which has 12k comments containing **_Sexism_**, **_Racism_**, **_Regional Bias_**, **_Anti-LGBTQ_**, and **_Others_**. The dataset is presented in ***ToxiCN_1.0.csv***. Here we simply describe each fine-grain label.
25
+
26
+ | Label | Description |
27
+ | ----------------- | ------------------------------------------------------------ |
28
+ | toxic | Identify if a comment is toxic (1) or non-toxic (0). |
29
+ | toxic_type | non-toxic: 0, general offensive language: 1, hate speech: 2 |
30
+ | expression | non-hate: 0, explicit hate speech: 1, implicit hate speech: 2, reporting: 3|
31
+ | target (a list) | LGBTQ: Index 0, Region: Index 1, Sexism: Index 2, Racism: Index 3, others: Index 4, non-hate: Index 5 |
32
+
33
+ ## 📜 Insult Lexicon
34
+ See https://github.com/DUT-lujunyu/ToxiCN/tree/main/ToxiCN_ex/ToxiCN/lexicon
35
+ ## 📜 Benchmark
36
+ We present a migratable benchmark of **Toxic Knowledge Enhancement** (**TKE**), enriching the text representation. The code is shown in **_modeling_bert.py_**, which is based on **transformers 3.1.0**.
37
+
38
+
39
+ ## ❗️ Licenses
40
+ This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
41
+
42
+ ## Poster
43
+ ![CCAC_2](https://github.com/DUT-lujunyu/ToxiCN/assets/53985277/8e26c649-0952-4d04-a562-b971f441df07)
44
+
45
+
46
+
47
+ ## Cite
48
+ If you want to use the resources, please cite the following paper:
49
+ ~~~
50
+ @inproceedings{lu-etal-2023-facilitating,
51
+ title = "Facilitating Fine-grained Detection of {C}hinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmarks",
52
+ author = "Lu, Junyu and
53
+ Xu, Bo and
54
+ Zhang, Xiaokun and
55
+ Min, Changrong and
56
+ Yang, Liang and
57
+ Lin, Hongfei",
58
+ booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
59
+ month = jul,
60
+ year = "2023",
61
+ address = "Toronto, Canada",
62
+ publisher = "Association for Computational Linguistics",
63
+ url = "https://aclanthology.org/2023.acl-long.898",
64
+ doi = "10.18653/v1/2023.acl-long.898",
65
+ pages = "16235--16250",
66
+ }
67
+ ~~~
ToxiCN_1.0.csv ADDED
The diff for this file is too large to render. See raw diff
 
ToxiCN_ex/ToxiCN/data/test.json ADDED
The diff for this file is too large to render. See raw diff
 
ToxiCN_ex/ToxiCN/data/train.json ADDED
The diff for this file is too large to render. See raw diff
 
ToxiCN_ex/ToxiCN/lexicon/LGBT.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"基佬": [1825, 878], "炼铜": [4159, 7198], "txl": [162, 8206, 8178], "基蛆": [1825, 6025], "男同": [4511, 1398], "反同": [1353, 1398], "恐同": [2607, 1398], "同志": [1398, 2562], "gay": [149, 143, 167], "通讯录": [6858, 6380, 2497], "撑同": [3053, 1398], "鸡老": [7883, 5439], "直佬": [4684, 878], "反铜": [1353, 7198], "艾基": [5687, 1825], "艾兹佬": [5687, 1074, 878], "男铜": [4511, 7198], "鸡佬": [7883, 878], "ltp": [10413, 8187], "屠同": [2248, 1398], "繁殖批": [5246, 3658, 2821], "染艾": [3381, 5687], "同杏恋": [1398, 3331, 2605], "断袖": [3171, 6153], "龙阳之好": [7987, 7345, 722, 1962], "击佬": [1140, 878], "男童": [4511, 4997]}
ToxiCN_ex/ToxiCN/lexicon/general.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"神经": [4868, 5307], "神经病": [4868, 5307, 4567], "垃圾": [1796, 1769], "艹": [5685], "草": [5770], "辣鸡": [6793, 7883], "傻逼": [1004, 6873], "萨比": [5855, 3683], "煞笔": [4208, 5011], "沙软": [3763, 6763], "沙軟": [3763, 6727], "法西斯": [3791, 6205, 3172], "几把": [1126, 2828], "肥猪": [5503, 4343], "尼玛": [2225, 4377], "傻X": [1004, 166], "舔狗": [5654, 4318], "狗": [4318], "猪": [4343], "废物": [2426, 4289], "儒猴": [1027, 4347], "他妈": [800, 1968], "鬼话": [7787, 6413], "脑瘫": [5554, 4611], "巨婴": [2342, 2048], "驴": [7723], "蠢驴": [6111, 7723], "特么": [4294, 720], "捏麻麻的": [2934, 7937, 7937, 4638], "绿毛龟": [5344, 3688, 7991], "不得house": [679, 2533, 150, 157, 163, 161, 147], "你妈妈的": [872, 1968, 1968, 4638], "捏妈妈的": [2934, 1968, 1968, 4638], "小屁孩": [2207, 2230, 2111], "弱智": [2483, 3255], "批": [2821], "贵物": [6586, 4289], "畜生": [4523, 4495], "蛆": [6025], "屎": [2241], "货色": [6573, 5682], "勾八": [1256, 1061], "妈的": [1968, 4638], "傻卵": [1004, 1317], "啥卵": [1567, 1317], "放屁": [3123, 2230], "牛鬼蛇神": [4281, 7787, 6026, 4868], "精神病": [5125, 4868, 4567], "狗屁": [4318, 2230], "猪精": [4343, 5125], "沸物": [3778, 4289], "伞兵": [835, 1070], "乞丐": [737, 681], "疯狗": [4556, 4318], "嘴炮": [1673, 4152], "鬼母": [7787, 3678], "智障": [3255, 7397], "变态": [1359, 2578], "他妈的": [800, 1968, 4638], "你妈的": [872, 1968, 4638], "你他妈的": [872, 800, 1968, 4638], "鸟事": [7881, 752], "活该": [3833, 6421], "操蛋": [3082, 6028], "烂裤裆": [4162, 6175, 6164], "孝子": [2105, 2094], "奴隶": [1958, 7405], "死一死": [3647, 671, 3647], "傻B": [1004, 144], "爆杀": [4255, 3324], "下头": [678, 1928], "鲨bee": [7835, 8815, 8154], "牲口": [4291, 1366], "吸血虫": [1429, 6117, 6001], "吸血鬼": [1429, 6117, 7787], "吊": [1396], "网曝": [5381, 3284], "网暴": [5381, 3274], "畜牲": [4523, 4291], "孽": [2121], "寄生虫": [2164, 4495, 6001], "弱指": [2483, 2900], "坦克": [1788, 1046], "鲨鼻": [7835, 7965], "捧杀": [2942, 3324], "寄吧": [2164, 1416], "p事": [158, 752], "贱": [6583], "蠢": [6111], "傻子": [1004, 2094], "粪": [5116], "崽子": [2312, 2094], "苟": [5732], "穷b": [4956, 144], "魔怔": [7795, 2585], "牛头人": [4281, 1928, 782], "牛马": [4281, 7716], "乐子人": [727, 2094, 782], "鸵鸟": [7893, 7881], "呆子": [1438, 2094], "歪皮": [3639, 4649], "憨憨": [2736, 2736], "矮子": [4765, 2094], "蒻痣": [5894, 4582], "撒币": [3054, 2355], "小丑": [2207, 682], "你妈": [872, 1968], "菊花": [5825, 5709], "喷子": [1613, 2094], "傻*": [1004, 115], "给爷爬": [5314, 4267, 4260], "狗腿子": [4318, 5597, 2094], "÷剩": [193, 1197], "恶熏": [2626, 4221], "鼠鼠": [7962, 7962], "僵尸": [1018, 2221], "暴毙": [3274, 3687], "孙杂": [2101, 3325], "杂皮": [3325, 4649], "有大病": [3300, 1920, 4567], "你是个什么东西": [872, 3221, 702, 784, 720, 691, 6205], "沙币": [3763, 2355], "白莲": [4635, 5813], "沙峦": [3763, 2287], "熊孩子": [4220, 2111, 2094], "嘿涩蕙": [1678, 3886, 5936], "瘪三": [4610, 676], "老鼠": [5439, 7962], "二极管": [753, 3353, 5052], "恶心": [2626, 2552], "下三滥": [678, 676, 4010], "双标": [1352, 3403], "口区": [1366, 1277], "蛀虫": [6024, 6001], "搅屎棍": [3009, 2241, 3471], "蛆丝": [6025, 692], "傻呗": [1004, 1446], "强奸犯": [2487, 1960, 4306], "吃枣药丸": [1391, 3365, 5790, 709], "呸": [1459], "这b": [6821, 144], "铁花生": [7188, 5709, 4495], "牠": [4284], "吉拔": [1395, 2869], "屌逼": [2239, 6873], "冲爆": [1103, 4255], "孽畜": [2121, 4523], "眼瞎": [4706, 4735], "小鬼": [2207, 7787], "淦死": [3911, 3647], "淦": [3911], "瘠薄": [4603, 5946], "跪舔": [6661, 5654], "塌马": [1847, 7716], "跪族": [6661, 3184], "粪蛋": [5116, 6028], "乐色": [727, 5682], "渣子": [3942, 2094], "杂毛": [3325, 3688], "色狼": [5682, 4331], "杂碎": [3325, 4810], "杂种": [3325, 4905], "沙口": [3763, 1366], "瞎": [4735], "鬼子": [7787, 2094], "奴才": [1958, 2798], "走狗": [6624, 4318], "爪牙": [4259, 4280], "败类": [6571, 5102], "憨批": [2736, 2821], "狗东西": [4318, 691, 6205], "街溜子": [6125, 3977, 2094], "诡雷": [6417, 7440], "烂裤子": [4162, 6175, 2094], "色胚": [5682, 5524], "狗贼": [4318, 6592], "丁丁": [672, 672], "强奸": [2487, 1960], "造孽": [6863, 2121], "pussy": [11227, 8565, 8179], "一棒子打死": [671, 3472, 2094, 2802, 3647], "杠精": [3339, 5125], "tm": [9908], "jb": [13063], "sj": [161, 8334], "sb": [12359], "nm": [156, 8175], "der": [9157], "nt": [8495], "tmd": [9908, 8168], "qj": [159, 8334], "md": [11399], "fw": [148, 8220], "j8": [152, 8156], "ntr": [8495, 8180], "zz": [168, 8253], "lkd": [154, 8197, 8168], "ex": [9577], "pua": [11227, 8139], "qs": [11974], "loser": [12264, 9520]}
ToxiCN_ex/ToxiCN/lexicon/racism.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"黑叔叔": [7946, 1356, 1356], "原": [1333], "洋大人": [3817, 1920, 782], "洋爹": [3817, 4269], "默": [7949], "白楠": [4635, 3507], "n哥": [156, 1520], "ni哥": [10560, 1520], "歪果仁": [3639, 3362, 785], "歪果": [3639, 3362], "泥娃娃": [3799, 2015, 2015], "尼哥": [2225, 1520], "泥哥": [3799, 1520], "尼葛": [2225, 5867], "黒鬼": [7946, 7787], "昆仑奴": [3204, 796, 1958], "泥鸽": [3799, 7894], "嘿鬼": [1678, 7787], "黑蛆": [7946, 6025], "跪虫族": [6661, 6001, 3184], "虫族": [6001, 3184], "黒杂": [7947, 3325], "黑杂种": [7946, 3325, 4905], "黑混": [7946, 3921], "黑砸": [7946, 4790], "混黑": [3921, 7946], "嘿砸": [1678, 4790], "黑泥鳅": [7946, 3799, 7844], "嘿蛆": [1678, 6025], "嘿爹": [1678, 4269], "黑爹": [7946, 4269], "黑哥": [7946, 1520], "嘿哥": [1678, 1520], "猩猩": [4342, 4342], "命贵": [1462, 6586], "黑命贵": [7946, 1462, 6586], "nigger": [10560, 9949, 8196], "黑狗": [7946, 4318], "泥革": [3799, 7484], "嘿狗": [1678, 4318], "倪格": [960, 3419], "嘿虫": [1678, 6001], "黑虫": [7946, 6001], "嗨人": [1635, 782], "黑比": [7946, 3683], "嘿比": [1678, 3683], "黑逼": [7946, 6873], "嘿逼": [1678, 6873], "嘿砸肿": [1678, 4790, 5514], "犹太狗": [4310, 1922, 4318], "黑杂碎": [7946, 3325, 4810], "黑犬": [7946, 4305], "嘿嘿": [1678, 1678], "黑黑": [7946, 7946], "倪哥": [960, 1520], "反三非": [1353, 676, 7478], "三非": [676, 7478], "反黑": [1353, 7946], "小黑": [2207, 7946], "黑枸": [7946, 3375], "嘿枸": [1678, 3375], "黑猴子": [7946, 4347, 2094], "洋垃圾": [3817, 1796, 1769], "黑吹": [7946, 1430], "黑小子": [7946, 2207, 2094], "黑玩意": [7946, 4381, 2692], "嘿玩意": [1678, 4381, 2692], "嘿杂碎": [1678, 3325, 4810], "嘿杂种": [1678, 3325, 4905], "人妖": [782, 1973], "白皮猪": [4635, 4649, 4343], "串串": [706, 706], "嘿畜": [1678, 4523], "黑畜": [7946, 4523], "小二黑": [2207, 753, 7946], "小二嘿": [2207, 753, 1678], "黑贵": [7946, 6586], "嘿贵": [1678, 6586], "黑粪": [7946, 5116], "类人猿": [5102, 782, 4351], "人猿": [782, 4351], "舔黑": [5654, 7946], "黑皮": [7946, 4649], "嘿皮": [1678, 4649], "黑乐色": [7946, 727, 5682], "嘿乐色": [1678, 727, 5682], "黑沙口": [7946, 3763, 1366], "嘿沙口": [1678, 3763, 1366], "墨": [1874], "默人": [7949, 782], "墨人": [1874, 782], "黑醋": [7946, 7005], "黑杂": [7946, 3325], "默妖": [7949, 1973], "黑猩猩": [7946, 4342, 4342], "嘿猩猩": [1678, 4342, 4342], "媚黑": [2055, 7946], "飞周人": [7607, 1453, 782], "鬼子虫类": [7787, 2094, 6001, 5102], "虫混": [6001, 3921], "黑非洲": [7946, 7478, 3828], "媚白": [2055, 4635], "非洲佬": [7478, 3828, 878], "嘿硅": [1678, 4795], "黑硅": [7946, 4795], "黑不溜秋": [7946, 679, 3977, 4904], "黑子哥": [7946, 2094, 1520], "灭默": [4127, 7949], "屠默": [2248, 7949], "猎默": [4333, 7949], "杀默": [3324, 7949], "反默": [1353, 7949], "虫类": [6001, 5102], "国际鬼子虫类": [1744, 7354, 7787, 2094, 6001, 5102], "屠嘿": [2248, 1678], "屠黑": [2248, 7946], "媚嘿": [2055, 1678], "凯乐奇": [1132, 727, 1936], "hr": [8967], "凯乐奇计划": [1132, 727, 1936, 6369, 1153], "凯勒奇": [1132, 1239, 1936], "凯勒奇计划": [1132, 1239, 1936, 6369, 1153], "红毛鬼子": [5273, 3688, 7787, 2094], "煤精": [4209, 5125], "类人": [5102, 782], "黑哥哥": [7946, 1520, 1520], "黑妹妹": [7946, 1987, 1987], "黑族": [7946, 3184], "黑娃娃": [7946, 2015, 2015], "反白": [1353, 4635], "跪洋": [6661, 3817], "白皮": [4635, 4649], "哥布林": [1520, 2357, 3360], "肖万": [5494, 674], "h人": [150, 782], "黑北鼻": [7946, 1266, 7965], "羊大人": [5399, 1920, 782], "泥搁": [3799, 3007], "魄": [7790], "白腩": [4635, 5583], "黑男": [7946, 4511], "黑女": [7946, 1957], "崇洋媚外": [2300, 3817, 2055, 1912], "黑淫": [7946, 3915]}
ToxiCN_ex/ToxiCN/lexicon/region.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"南满": [1298, 4007], "南蛮": [1298, 6037], "蛮子": [6037, 2094], "棒子": [3472, 2094], "小日本": [2207, 3189, 3315], "漂亮国": [4023, 778, 1744], "南大人": [1298, 1920, 782], "弯弯": [2482, 2482], "湾湾": [3968, 3968], "西八": [6205, 1061], "棒男": [3472, 4511], "棒女": [3472, 1957], "山东葱": [2255, 691, 5876], "蛮": [6037], "满子": [4007, 2094], "蛮夷": [6037, 1929], "喃蛮": [1586, 6037], "南宋人": [1298, 2129, 782], "西戎": [6205, 2766], "北狄": [1266, 4313], "东夷": [691, 1929], "北佬": [1266, 878], "偷井盖": [982, 759, 4667], "山越猴": [2255, 6632, 4347], "京巴": [776, 2349], "九头鸟": [736, 1928, 7881], "东百": [691, 4636], "白完": [4635, 2130], "胡建": [5529, 2456], "陕蛋蛋": [7362, 6028, 6028], "百越": [4636, 6632], "狗日的": [4318, 3189, 4638], "红脖子": [5273, 5556, 2094], "巴铁": [2349, 7188], "三哥": [676, 1520], "阿三": [7350, 676], "小鬼子": [2207, 7787, 2094], "小日子": [2207, 3189, 2094], "倭狗": [963, 4318], "倭": [963], "倭寇": [963, 2167], "日杂": [3189, 3325], "飞周": [7607, 1453], "飞舟": [7607, 5660], "高卢乌鸡": [7770, 1306, 723, 7883], "美国佬": [5401, 1744, 878], "乡巴佬": [740, 2349, 878]}
ToxiCN_ex/ToxiCN/lexicon/sexism.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"婊": [2040], "婊子": [2040, 2094], "拳师": [2891, 2360], "开苞": [2458, 5731], "骚": [7746], "绝育": [5318, 5509], "奇趣蛋": [1936, 6637, 6028], "母狗": [3678, 4318], "牧狗": [4288, 4318], "幕刃": [2391, 1145], "慕刃": [2710, 1145], "亩人": [774, 782], "鸡": [7883], "龟男": [7991, 4511], "龟楠": [7991, 3507], "普信男": [3249, 928, 4511], "普信": [3249, 928], "女拳": [1957, 2891], "男拳": [4511, 2891], "仙女": [803, 1957], "小仙女": [2207, 803, 1957], "小藓女": [2207, 5968, 1957], "女厕所": [1957, 1329, 2792], "幕人": [2391, 782], "慕人": [2710, 782], "幕勾": [2391, 1256], "慕勾": [2710, 1256], "国铝": [1744, 7199], "亩狗": [774, 4318], "亩勾": [774, 1256], "亩篝": [774, 5068], "亩刃": [774, 1145], "亩": [774], "龟仙人": [7991, 803, 782], "姆蛆": [1990, 6025], "阿娜": [7350, 2025], "easygirl": [9935, 9375], "eg": [147, 8181], "÷女": [193, 1957], "姆搐": [1990, 3012], "蝈女": [6067, 1957], "木勾": [3312, 1256], "鲍鱼": [7828, 7824], "妓女": [1972, 1957], "母拳": [3678, 2891], "普信女": [3249, 928, 1957], "绿帽": [5344, 2384], "穆狗": [4946, 4318], "母猪": [3678, 4343], "厌女": [1328, 1957], "硅南": [4795, 1298], "粿": [5126], "公狗": [1062, 4318], "犬男": [4305, 4511], "沐勾": [3759, 1256], "拳畜": [2891, 4523], "母畜": [3678, 4523], "牧人": [4288, 782], "钼刃": [7184, 1145], "娘炮": [2023, 4152], "慕√": [2710, 380], "烧鸡": [4173, 7883], "女醛": [1957, 7010], "姆坦": [1990, 1788], "墓垢": [1867, 1803], "薇安妇": [5948, 2128, 1967], "慰安妇": [2720, 2128, 1967], "女犬": [1957, 4305], "妈宝女": [1968, 2140, 1957], "妈宝男": [1968, 2140, 4511], "腐女": [5576, 1957], "母坦": [3678, 1788], "肉便器": [5489, 912, 1690], "直男癌": [4684, 4511, 4617], "郭女": [6958, 1957], "田园女拳": [4506, 1736, 1957, 2891], "田园女权": [4506, 1736, 1957, 3326], "绿茶": [5344, 5763], "绿茶婊": [5344, 5763, 2040], "男淫": [4511, 3915], "烂货": [4162, 6573], "腩人": [5583, 782], "蝈腩": [6067, 5583], "女贼": [1957, 6592], "七尺大儒": [673, 2223, 1920, 1027], "拳虱": [2891, 6003], "圣母": [1760, 3678], "织女": [5302, 1957], "母朱": [3678, 3319], "腐癌": [5576, 4617], "站街女": [4991, 6125, 1957], "龟奴": [7991, 1958], "乌龟精": [723, 7991, 5125], "娘们": [2023, 812], "脑残女": [5554, 3655, 1957], "窑姐": [4965, 1995], "郭南": [6958, 1298], "ezg": [147, 8253, 8181], "田园表": [4506, 1736, 6134], "田园婊": [4506, 1736, 2040], "表子": [6134, 2094], "xdz": [8444, 8253], "小吊子": [2207, 1396, 2094], "金针菇": [7032, 7151, 5823], "田园女": [4506, 1736, 1957], "中华田园犬": [704, 1290, 4506, 1736, 4305], "国楠": [1744, 3507], "子宫战": [2094, 2151, 2773], "人造子宫": [782, 6863, 2094, 2151], "母沟": [3678, 3765], "锅女": [7222, 1957], "打拳": [2802, 2891], "姆的": [1990, 4638], "八婆": [1061, 2038], "sao": [3221, 12053], "骚女": [7746, 1957], "sao女": [3221, 12053, 1957], "幕√": [2391, 380]}
ToxiCN_ex/model/Config_base.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: UTF-8
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+
7
+ import os
8
+ from os import path
9
+
10
+
11
+ # 2022.7.27 config基类
12
+
13
+ class Config_base(object):
14
+
15
+ """配置参数"""
16
+ def __init__(self, model_name, dataset):
17
+ # path
18
+ self.model_name = model_name
19
+ self.train_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/train.json' # 训练集
20
+ self.dev_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/test.json' # 验证集
21
+ self.test_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/test.json' # 测试集
22
+
23
+ self.vocab_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/vocab.pkl'
24
+ self.lexicon_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/lexicon/' # 数据集、模型训练结果 # 词表
25
+ self.result_path = path.dirname(path.dirname(__file__))+'/' + dataset + '/result'
26
+ self.checkpoint_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/saved_dict' # 数据集、模型训练结果
27
+ self.data_path = self.checkpoint_path + '/data.tar'
28
+ # self.log_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/log/' + self.model_name
29
+ # self.embedding_pretrained = torch.tensor(
30
+ # np.load(path.dirname(path.dirname(__file__))+'/'+ 'THUCNews' + '/data/' + embedding)["embeddings"].astype('float32'))\
31
+ # if embedding != 'random' else None # 预训练词向量
32
+ self.word2vec_path = path.dirname(path.dirname(path.dirname(__file__)))+"/glove/source/glove.6B.300d.bin"
33
+ # self.plm = "roberta-base" # 预训练模型
34
+ # self.plm = "bert-base-chinese"
35
+
36
+ # dataset
37
+ self.seed = 1
38
+ # self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练 transformer:2000
39
+ self.num_classes = 2 # 类别数
40
+ # self.n_vocab = 0 # 词表大小,在运行时赋值
41
+ self.pad_size = 80 # 每句话处理成的长度(短填长切)
42
+
43
+ # model
44
+ self.dropout = 0.5 # 随机失活
45
+ self.vocab_dim = 768
46
+ self.fc_hidden_dim = 256
47
+
48
+ # train
49
+ self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 设备
50
+ self.learning_rate = 1e-5 # 学习率 transformer:5e-4
51
+ self.scheduler = False # 是否学习率衰减
52
+ self.adversarial = False # 是否对抗训练
53
+ self.num_warm = 0 # 开始验证的epoch数
54
+ self.num_epochs = 5 # epoch数
55
+ self.batch_size = 32 # mini-batch大小
56
+
57
+ # loss
58
+ self.alpha1 = 0.5
59
+ self.gamma1 = 4
60
+
61
+ # evaluate
62
+ self.threshold = 0.5 # 二分类阈值
63
+ self.score_key = "F1" # 评价指标
64
+
65
+ if __name__ == '__main__':
66
+ config = Config_base("BERT", "SWSR")
67
+ print(config.vocab_path)
68
+ print(config.word2vec_path)
69
+ print(path.dirname(__file__))
70
+ print(path.dirname(path.dirname(__file__)))
ToxiCN_ex/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ gensim==3.8.3
2
+ jieba==0.42.1
3
+ nltk==3.7
4
+ numpy==1.21.2
5
+ ray==1.13.0
6
+ scikit_learn==1.1.2
7
+ tensorboardX==2.5.1
8
+ torch==1.7.0
9
+ tqdm==4.64.0
10
+ transformers==3.4.0
ToxiCN_ex/run.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from importlib import import_module
2
+ from src.datasets import *
3
+ import os
4
+ from os import path
5
+ import numpy as np
6
+ from train_eval import train, eval
7
+ import argparse
8
+ from src.Models import *
9
+
10
+ from ray import tune
11
+ from ray.tune.schedulers import ASHAScheduler
12
+
13
+ parser = argparse.ArgumentParser(description='Chinese Toxic Classification')
14
+ parser.add_argument('--mode', default="train", type=str, help='train/test')
15
+ # 是否微调超参数
16
+ parser.add_argument('--tune_param', default=False, type=bool, help='True for param tuning')
17
+ parser.add_argument('--tune_samples', default=1, type=int, help='Number of tuning experiments to run')
18
+ parser.add_argument('--tune_asha', default=False, type=bool, help='If use ASHA scheduler for early stopping')
19
+ parser.add_argument('--tune_file', default='RoBERTa', type=str, help='Suffix of filename for parameter tuning results')
20
+ parser.add_argument('--tune_gpu', default=True, type=bool, help='Use GPU to tune parameters')
21
+ args = parser.parse_args()
22
+
23
+ # TOC
24
+ # search_space = {
25
+ # 'learning_rate': tune.choice([1e-5, 5e-5]),
26
+ # 'num_epochs': tune.choice([5]),
27
+ # 'batch_size': tune.choice([32, 64]),
28
+ # 'dropout': tune.choice([0.2, 0.5]),
29
+ # 'seed': tune.choice([1]),
30
+ # "pad_size" : tune.choice([50, 100])
31
+ # }
32
+
33
+ # THUCnews
34
+ search_space = {
35
+ 'learning_rate': tune.choice([1e-5]),
36
+ 'num_epochs': tune.choice([5]),
37
+ 'batch_size': tune.choice([32]),
38
+ # 'dropout': tune.choice([0.2, 0.3, 0.5]),
39
+ 'seed': tune.choice([1]),
40
+ "pad_size" : tune.choice([80]),
41
+ "alpha1" : tune.choice([0.5])
42
+ }
43
+
44
+ def convert_label(preds):
45
+ final_pred = []
46
+ for pred in preds:
47
+ if pred == [1, 0]:
48
+ final_pred.append("offensive")
49
+ else:
50
+ final_pred.append("non-offensive")
51
+ return final_pred
52
+
53
+ if __name__ == '__main__':
54
+ # dataset = 'TOC' # 数据集
55
+ dataset = "ToxiCN"
56
+ # model_name = "bert-base-chinese"
57
+ model_name = "hfl/chinese-roberta-wwm-ext"
58
+ # model_name = "junnyu/ChineseBERT-base"
59
+
60
+ np.random.seed(1)
61
+ torch.manual_seed(1)
62
+ torch.cuda.manual_seed_all(1)
63
+ torch.backends.cudnn.deterministic = True # 保证每次结果一样
64
+
65
+ start_time = time.time()
66
+ print("Loading data...")
67
+
68
+ x = import_module('model.' + "Config_base")
69
+ config = x.Config_base(model_name, dataset) # 引入Config参数,包括Config_base和各私有Config
70
+
71
+ if not os.path.exists(config.data_path):
72
+ trn_data = Datasets(config, config.train_path)
73
+ dev_data = Datasets(config, config.dev_path)
74
+ test_data = Datasets(config, config.test_path)
75
+ torch.save({
76
+ 'trn_data' : trn_data,
77
+ 'dev_data' : dev_data,
78
+ 'test_data' : test_data,
79
+ }, config.data_path)
80
+ else:
81
+ checkpoint = torch.load(config.data_path)
82
+ trn_data = checkpoint['trn_data']
83
+ dev_data = checkpoint['dev_data']
84
+ test_data = checkpoint['test_data']
85
+ print('The size of the Training dataset: {}'.format(len(trn_data)))
86
+ print('The size of the Validation dataset: {}'.format(len(dev_data)))
87
+ print('The size of the Test dataset: {}'.format(len(test_data)))
88
+ train_iter = Dataloader(trn_data, batch_size=int(config.batch_size), SEED=config.seed)
89
+ dev_iter = Dataloader(dev_data, batch_size=int(config.batch_size), shuffle=False)
90
+ test_iter = Dataloader(test_data, batch_size=int(config.batch_size), shuffle=False)
91
+
92
+ time_dif = get_time_dif(start_time)
93
+ print("Time usage:", time_dif)
94
+
95
+ def experiment(tune_config):
96
+ if tune_config:
97
+ for param in tune_config:
98
+ setattr(config, param, tune_config[param])
99
+ train(config, train_iter, dev_iter, test_iter)
100
+
101
+ if args.mode == "train":
102
+ if args.tune_param:
103
+ scheduler = ASHAScheduler(metric='metric', mode="max") if args.tune_asha else None
104
+ analysis = tune.run(experiment, num_samples=args.tune_samples, config=search_space, resources_per_trial={'gpu':int(args.tune_gpu)},
105
+ scheduler=scheduler,
106
+ verbose=3)
107
+ analysis.results_df.to_csv('tune_results_'+args.tune_file+'.csv')
108
+ # if not tune parameters
109
+ else:
110
+ experiment(tune_config=None)
111
+
112
+ else:
113
+ embed_model = Bert_Layer(config).to(config.device)
114
+ model = TwoLayerFFNNLayer(config).to(config.device)
115
+ # model_name = "ckp-bert-base-chinese-NN_ML-100_D-0.2_B-64_E-5_Lr-1e-05-BEST.tar"
116
+ model_name = "ckp-bert-base-chinese-NN_ML-150_D-0.5_B-32_E-2_Lr-1e-05-BEST.tar"
117
+ path = '{}/{}'.format(config.checkpoint_path, model_name)
118
+ checkpoint = torch.load(path)
119
+ embed_model.load_state_dict(checkpoint['embed_model_state_dict'])
120
+ model.load_state_dict(checkpoint['model_state_dict'])
121
+ loss_fn = nn.BCEWithLogitsLoss()
122
+ dev_scores, preds = eval(config, embed_model, model, loss_fn, dev_iter, data_name='TEST')
123
+ print(convert_label(preds))
ToxiCN_ex/src/BERT.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch BERT model. """
2
+
3
+
4
+ import logging
5
+ import math
6
+ import os
7
+ import warnings
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss, MSELoss
13
+
14
+ from transformers.activations import gelu, gelu_new, swish
15
+ from transformers.configuration_bert import BertConfig
16
+ from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
17
+ from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
18
+
19
+
20
+ logger = logging.getLogger(__name__)
21
+
22
+ BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
23
+ "bert-base-uncased",
24
+ "bert-large-uncased",
25
+ "bert-base-cased",
26
+ "bert-large-cased",
27
+ "bert-base-multilingual-uncased",
28
+ "bert-base-multilingual-cased",
29
+ "bert-base-chinese",
30
+ "bert-base-german-cased",
31
+ "bert-large-uncased-whole-word-masking",
32
+ "bert-large-cased-whole-word-masking",
33
+ "bert-large-uncased-whole-word-masking-finetuned-squad",
34
+ "bert-large-cased-whole-word-masking-finetuned-squad",
35
+ "bert-base-cased-finetuned-mrpc",
36
+ "bert-base-german-dbmdz-cased",
37
+ "bert-base-german-dbmdz-uncased",
38
+ "cl-tohoku/bert-base-japanese",
39
+ "cl-tohoku/bert-base-japanese-whole-word-masking",
40
+ "cl-tohoku/bert-base-japanese-char",
41
+ "cl-tohoku/bert-base-japanese-char-whole-word-masking",
42
+ "TurkuNLP/bert-base-finnish-cased-v1",
43
+ "TurkuNLP/bert-base-finnish-uncased-v1",
44
+ "wietsedv/bert-base-dutch-cased",
45
+ # See all BERT models at https://huggingface.co/models?filter=bert
46
+ ]
47
+
48
+
49
+ def mish(x):
50
+ return x * torch.tanh(nn.functional.softplus(x))
51
+
52
+
53
+ ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
54
+
55
+
56
+ BertLayerNorm = torch.nn.LayerNorm
57
+
58
+
59
+ class BertEmbeddings(nn.Module):
60
+ """Construct the embeddings from word, position and token_type embeddings.
61
+ """
62
+
63
+ def __init__(self, config):
64
+ super().__init__()
65
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
66
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
67
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
68
+
69
+ # 2022.10.8 toxic_embeddings: non-toxic + 5 kinds of toxic
70
+ self.toxic_embeddings = nn.Embedding(6, config.hidden_size)
71
+
72
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
73
+ # any TensorFlow checkpoint file
74
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
75
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
76
+
77
+ # 2022.05.02 test token_tags
78
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, token_tags=None, toxic_ids=None, inputs_embeds=None):
79
+ if input_ids is not None:
80
+ input_shape = input_ids.size()
81
+ else:
82
+ input_shape = inputs_embeds.size()[:-1]
83
+
84
+ seq_length = input_shape[1]
85
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
86
+ if position_ids is None:
87
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
88
+ position_ids = position_ids.unsqueeze(0).expand(input_shape)
89
+ if token_type_ids is None:
90
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
91
+
92
+ if inputs_embeds is None:
93
+ inputs_embeds = self.word_embeddings(input_ids)
94
+ position_embeddings = self.position_embeddings(position_ids)
95
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
96
+
97
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
98
+ # 2022.10.8 toxic_embeddings
99
+ if toxic_ids is not None:
100
+ toxic_embeddings = self.toxic_embeddings(toxic_ids)
101
+ embeddings += toxic_embeddings
102
+
103
+ embeddings = self.LayerNorm(embeddings)
104
+ embeddings = self.dropout(embeddings)
105
+ return embeddings
106
+
107
+
108
+ class BertSelfAttention(nn.Module):
109
+ def __init__(self, config):
110
+ super().__init__()
111
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
112
+ raise ValueError(
113
+ "The hidden size (%d) is not a multiple of the number of attention "
114
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
115
+ )
116
+
117
+ self.num_attention_heads = config.num_attention_heads
118
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
119
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
120
+
121
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
122
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
123
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
124
+
125
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
126
+
127
+ def transpose_for_scores(self, x):
128
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
129
+ x = x.view(*new_x_shape)
130
+ return x.permute(0, 2, 1, 3)
131
+
132
+ def forward(
133
+ self,
134
+ hidden_states,
135
+ attention_mask=None,
136
+ head_mask=None,
137
+ encoder_hidden_states=None,
138
+ encoder_attention_mask=None,
139
+ output_attentions=False,
140
+ ):
141
+ mixed_query_layer = self.query(hidden_states)
142
+
143
+ # If this is instantiated as a cross-attention module, the keys
144
+ # and values come from an encoder; the attention mask needs to be
145
+ # such that the encoder's padding tokens are not attended to.
146
+ if encoder_hidden_states is not None:
147
+ mixed_key_layer = self.key(encoder_hidden_states)
148
+ mixed_value_layer = self.value(encoder_hidden_states)
149
+ attention_mask = encoder_attention_mask
150
+ else:
151
+ mixed_key_layer = self.key(hidden_states)
152
+ mixed_value_layer = self.value(hidden_states)
153
+
154
+ query_layer = self.transpose_for_scores(mixed_query_layer)
155
+ key_layer = self.transpose_for_scores(mixed_key_layer)
156
+ value_layer = self.transpose_for_scores(mixed_value_layer)
157
+
158
+ # Take the dot product between "query" and "key" to get the raw attention scores.
159
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
160
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
161
+ if attention_mask is not None:
162
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
163
+ attention_scores = attention_scores + attention_mask
164
+
165
+ # Normalize the attention scores to probabilities.
166
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
167
+
168
+ # This is actually dropping out entire tokens to attend to, which might
169
+ # seem a bit unusual, but is taken from the original Transformer paper.
170
+ attention_probs = self.dropout(attention_probs)
171
+
172
+ # Mask heads if we want to
173
+ if head_mask is not None:
174
+ attention_probs = attention_probs * head_mask
175
+
176
+ context_layer = torch.matmul(attention_probs, value_layer)
177
+
178
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
179
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
180
+ context_layer = context_layer.view(*new_context_layer_shape)
181
+
182
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
183
+ return outputs
184
+
185
+
186
+ class BertSelfOutput(nn.Module):
187
+ def __init__(self, config):
188
+ super().__init__()
189
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
190
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
191
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
192
+
193
+ def forward(self, hidden_states, input_tensor):
194
+ hidden_states = self.dense(hidden_states)
195
+ hidden_states = self.dropout(hidden_states)
196
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
197
+ return hidden_states
198
+
199
+
200
+ class BertAttention(nn.Module):
201
+ def __init__(self, config):
202
+ super().__init__()
203
+ self.self = BertSelfAttention(config)
204
+ self.output = BertSelfOutput(config)
205
+ self.pruned_heads = set()
206
+
207
+ def prune_heads(self, heads):
208
+ if len(heads) == 0:
209
+ return
210
+ heads, index = find_pruneable_heads_and_indices(
211
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
212
+ )
213
+
214
+ # Prune linear layers
215
+ self.self.query = prune_linear_layer(self.self.query, index)
216
+ self.self.key = prune_linear_layer(self.self.key, index)
217
+ self.self.value = prune_linear_layer(self.self.value, index)
218
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
219
+
220
+ # Update hyper params and store pruned heads
221
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
222
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
223
+ self.pruned_heads = self.pruned_heads.union(heads)
224
+
225
+ def forward(
226
+ self,
227
+ hidden_states,
228
+ attention_mask=None,
229
+ head_mask=None,
230
+ encoder_hidden_states=None,
231
+ encoder_attention_mask=None,
232
+ output_attentions=False,
233
+ ):
234
+ self_outputs = self.self(
235
+ hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
236
+ )
237
+ attention_output = self.output(self_outputs[0], hidden_states)
238
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
239
+ return outputs
240
+
241
+
242
+ class BertIntermediate(nn.Module):
243
+ def __init__(self, config):
244
+ super().__init__()
245
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
246
+ if isinstance(config.hidden_act, str):
247
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
248
+ else:
249
+ self.intermediate_act_fn = config.hidden_act
250
+
251
+ def forward(self, hidden_states):
252
+ hidden_states = self.dense(hidden_states)
253
+ hidden_states = self.intermediate_act_fn(hidden_states)
254
+ return hidden_states
255
+
256
+
257
+ class BertOutput(nn.Module):
258
+ def __init__(self, config):
259
+ super().__init__()
260
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
261
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
262
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
263
+
264
+ def forward(self, hidden_states, input_tensor):
265
+ hidden_states = self.dense(hidden_states)
266
+ hidden_states = self.dropout(hidden_states)
267
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
268
+ return hidden_states
269
+
270
+
271
+ class BertLayer(nn.Module):
272
+ def __init__(self, config):
273
+ super().__init__()
274
+ self.attention = BertAttention(config)
275
+ self.is_decoder = config.is_decoder
276
+ if self.is_decoder:
277
+ self.crossattention = BertAttention(config)
278
+ self.intermediate = BertIntermediate(config)
279
+ self.output = BertOutput(config)
280
+
281
+ def forward(
282
+ self,
283
+ hidden_states,
284
+ attention_mask=None,
285
+ head_mask=None,
286
+ encoder_hidden_states=None,
287
+ encoder_attention_mask=None,
288
+ output_attentions=False,
289
+ ):
290
+ self_attention_outputs = self.attention(
291
+ hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
292
+ )
293
+ attention_output = self_attention_outputs[0]
294
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
295
+
296
+ if self.is_decoder and encoder_hidden_states is not None:
297
+ cross_attention_outputs = self.crossattention(
298
+ attention_output,
299
+ attention_mask,
300
+ head_mask,
301
+ encoder_hidden_states,
302
+ encoder_attention_mask,
303
+ output_attentions,
304
+ )
305
+ attention_output = cross_attention_outputs[0]
306
+ outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
307
+
308
+ intermediate_output = self.intermediate(attention_output)
309
+ layer_output = self.output(intermediate_output, attention_output)
310
+ outputs = (layer_output,) + outputs
311
+ return outputs
312
+
313
+
314
+ class BertEncoder(nn.Module):
315
+ def __init__(self, config):
316
+ super().__init__()
317
+ self.config = config
318
+ self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
319
+
320
+ def forward(
321
+ self,
322
+ hidden_states,
323
+ attention_mask=None,
324
+ head_mask=None,
325
+ encoder_hidden_states=None,
326
+ encoder_attention_mask=None,
327
+ output_attentions=False,
328
+ output_hidden_states=False,
329
+ ):
330
+ all_hidden_states = ()
331
+ all_attentions = ()
332
+ for i, layer_module in enumerate(self.layer):
333
+ if output_hidden_states:
334
+ all_hidden_states = all_hidden_states + (hidden_states,)
335
+
336
+ if getattr(self.config, "gradient_checkpointing", False):
337
+
338
+ def create_custom_forward(module):
339
+ def custom_forward(*inputs):
340
+ return module(*inputs, output_attentions)
341
+
342
+ return custom_forward
343
+
344
+ layer_outputs = torch.utils.checkpoint.checkpoint(
345
+ create_custom_forward(layer_module),
346
+ hidden_states,
347
+ attention_mask,
348
+ head_mask[i],
349
+ encoder_hidden_states,
350
+ encoder_attention_mask,
351
+ )
352
+ else:
353
+ layer_outputs = layer_module(
354
+ hidden_states,
355
+ attention_mask,
356
+ head_mask[i],
357
+ encoder_hidden_states,
358
+ encoder_attention_mask,
359
+ output_attentions,
360
+ )
361
+ hidden_states = layer_outputs[0]
362
+
363
+ if output_attentions:
364
+ all_attentions = all_attentions + (layer_outputs[1],)
365
+
366
+ # Add last layer
367
+ if output_hidden_states:
368
+ all_hidden_states = all_hidden_states + (hidden_states,)
369
+
370
+ outputs = (hidden_states,)
371
+ if output_hidden_states:
372
+ outputs = outputs + (all_hidden_states,)
373
+ if output_attentions:
374
+ outputs = outputs + (all_attentions,)
375
+ return outputs # last-layer hidden state, (all hidden states), (all attentions)
376
+
377
+
378
+ class BertPooler(nn.Module):
379
+ def __init__(self, config):
380
+ super().__init__()
381
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
382
+ self.activation = nn.Tanh()
383
+
384
+ def forward(self, hidden_states):
385
+ # We "pool" the model by simply taking the hidden state corresponding
386
+ # to the first token.
387
+ first_token_tensor = hidden_states[:, 0]
388
+ pooled_output = self.dense(first_token_tensor)
389
+ pooled_output = self.activation(pooled_output)
390
+ return pooled_output
391
+
392
+
393
+ class BertPreTrainedModel(PreTrainedModel):
394
+ config_class = BertConfig
395
+ base_model_prefix = "bert"
396
+
397
+ def _init_weights(self, module):
398
+ """ Initialize the weights """
399
+ if isinstance(module, (nn.Linear, nn.Embedding)):
400
+ # Slightly different from the TF version which uses truncated_normal for initialization
401
+ # cf https://github.com/pytorch/pytorch/pull/5617
402
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
403
+ elif isinstance(module, BertLayerNorm):
404
+ module.bias.data.zero_()
405
+ module.weight.data.fill_(1.0)
406
+ if isinstance(module, nn.Linear) and module.bias is not None:
407
+ module.bias.data.zero_()
408
+
409
+
410
+ class BertModel(BertPreTrainedModel):
411
+
412
+ def __init__(self, config):
413
+ super().__init__(config)
414
+ self.config = config
415
+
416
+ self.embeddings = BertEmbeddings(config)
417
+ self.encoder = BertEncoder(config)
418
+ self.pooler = BertPooler(config)
419
+
420
+ self.init_weights()
421
+
422
+ def get_input_embeddings(self):
423
+ return self.embeddings.word_embeddings
424
+
425
+ def set_input_embeddings(self, value):
426
+ self.embeddings.word_embeddings = value
427
+
428
+ def _prune_heads(self, heads_to_prune):
429
+ for layer, heads in heads_to_prune.items():
430
+ self.encoder.layer[layer].attention.prune_heads(heads)
431
+
432
+ def forward(
433
+ self,
434
+ input_ids=None,
435
+ attention_mask=None,
436
+ token_type_ids=None,
437
+ position_ids=None,
438
+ head_mask=None,
439
+ inputs_embeds=None,
440
+ encoder_hidden_states=None,
441
+ encoder_attention_mask=None,
442
+ output_attentions=None,
443
+ output_hidden_states=None,
444
+ toxic_ids=None,
445
+ ):
446
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
447
+ output_hidden_states = (
448
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
449
+ )
450
+
451
+ if input_ids is not None and inputs_embeds is not None:
452
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
453
+ elif input_ids is not None:
454
+ input_shape = input_ids.size()
455
+ elif inputs_embeds is not None:
456
+ input_shape = inputs_embeds.size()[:-1]
457
+ else:
458
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
459
+
460
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
461
+
462
+ if attention_mask is None:
463
+ attention_mask = torch.ones(input_shape, device=device)
464
+ if token_type_ids is None:
465
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
466
+
467
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
468
+ # ourselves in which case we just need to make it broadcastable to all heads.
469
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
470
+
471
+ # If a 2D ou 3D attention mask is provided for the cross-attention
472
+ # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
473
+ if self.config.is_decoder and encoder_hidden_states is not None:
474
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
475
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
476
+ if encoder_attention_mask is None:
477
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
478
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
479
+ else:
480
+ encoder_extended_attention_mask = None
481
+
482
+ # Prepare head mask if needed
483
+ # 1.0 in head_mask indicate we keep the head
484
+ # attention_probs has shape bsz x n_heads x N x N
485
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
486
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
487
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
488
+
489
+ embedding_output = self.embeddings(
490
+ input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
491
+ )
492
+ encoder_outputs = self.encoder(
493
+ embedding_output,
494
+ attention_mask=extended_attention_mask,
495
+ head_mask=head_mask,
496
+ encoder_hidden_states=encoder_hidden_states,
497
+ encoder_attention_mask=encoder_extended_attention_mask,
498
+ output_attentions=output_attentions,
499
+ output_hidden_states=output_hidden_states,
500
+ )
501
+ sequence_output = encoder_outputs[0]
502
+ pooled_output = self.pooler(sequence_output)
503
+
504
+ outputs = (sequence_output, pooled_output,) + encoder_outputs[
505
+ 1:
506
+ ] # add hidden_states and attentions if they are here
507
+ return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
ToxiCN_ex/src/Models.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BertModel
2
+ # from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig
3
+ from src.BERT import BertModel
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch.autograd import Variable
7
+ import numpy as np
8
+
9
+ # 2022.4.28 Glove + LSTM
10
+ class BiLSTM(nn.Module):
11
+ def __init__(self, config, embedding_weight):
12
+ super(BiLSTM, self).__init__()
13
+ self.device = config.device
14
+ self.vocab_size = embedding_weight.shape[0]
15
+ self.embed_dim = embedding_weight.shape[1]
16
+ # Embedding Layer
17
+ embedding_weight = torch.from_numpy(embedding_weight).float()
18
+ embedding_weight = Variable(embedding_weight, requires_grad=config.if_grad)
19
+ self.embedding = nn.Embedding(self.vocab_size, self.embed_dim, _weight=embedding_weight)
20
+ # Encoder layer
21
+ self.bi_lstm = nn.LSTM(self.embed_dim, config.lstm_hidden_dim, bidirectional=True, batch_first=True)
22
+
23
+ def forward(self, **kwargs):
24
+ emb = self.embedding(kwargs["title_text_token_ids"].to(self.device)) # [batch, len] --> [batch, len, embed_dim]
25
+ lstm_out, _ = self.bi_lstm(emb) # [batch, len, embed_dim] --> [batch, len, lstm_hidden_dim*2]
26
+ lstm_out_pool = torch.mean(lstm_out, dim=1) # [batch, lstm_hidden_dim*2]
27
+ return lstm_out, lstm_out_pool
28
+
29
+
30
+ class Bert_Layer(torch.nn.Module):
31
+ def __init__(self, config):
32
+ super(Bert_Layer, self).__init__()
33
+ # self.use_cuda = kwargs['use_cuda']
34
+ self.device = config.device
35
+ # BERT/Roberta
36
+ self.bert_layer = BertModel.from_pretrained(config.model_name)
37
+ # ChineseBERT
38
+ # self.config = ChineseBertConfig.from_pretrained(config.model_name)
39
+ # self.bert_layer = ChineseBertForMaskedLM.from_pretrained("ShannonAI/ChineseBERT-base", config=self.config)
40
+ self.dim = config.vocab_dim
41
+
42
+ def forward(self, **kwargs):
43
+ bert_output = self.bert_layer(input_ids=kwargs['text_idx'].to(self.device),
44
+ token_type_ids=kwargs['text_ids'].to(self.device),
45
+ attention_mask=kwargs['text_mask'].to(self.device),
46
+ toxic_ids=kwargs["toxic_ids"].to(self.device))
47
+ return bert_output[0], bert_output[1]
48
+
49
+
50
+ class TwoLayerFFNNLayer(torch.nn.Module):
51
+ '''
52
+ 2-layer FFNN with specified nonlinear function
53
+ must be followed with some kind of prediction layer for actual prediction
54
+ '''
55
+ def __init__(self, config):
56
+ super(TwoLayerFFNNLayer, self).__init__()
57
+ self.output = config.dropout
58
+ self.input_dim = config.vocab_dim
59
+ self.hidden_dim = config.fc_hidden_dim
60
+ self.out_dim = config.num_classes
61
+ self.dropout = nn.Dropout(config.dropout)
62
+ self.model = nn.Sequential(nn.Linear(self.input_dim, self.hidden_dim),
63
+ nn.Tanh(),
64
+ nn.Linear(self.hidden_dim, self.out_dim))
65
+
66
+ def forward(self, att_input, pooled_emb):
67
+ att_input = self.dropout(att_input)
68
+ pooled_emb = self.dropout(pooled_emb)
69
+ return self.model(pooled_emb)
ToxiCN_ex/src/datasets.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import json, time, random, torch
3
+ from torch.utils.data import Dataset, DataLoader
4
+ from transformers import BertTokenizer, AutoTokenizer
5
+ # from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig
6
+ from tqdm import tqdm
7
+
8
+ import jieba
9
+ # from nltk.corpus import stopwords
10
+ # from src.helper import *
11
+ from importlib import import_module
12
+ import pickle as pkl
13
+ import time
14
+ from datetime import timedelta
15
+
16
+
17
+ MAX_VOCAB_SIZE = 10000
18
+ UNK, PAD = '<UNK>', '<PAD>'
19
+
20
+ def token_to_index(token, config):
21
+ vocab = pkl.load(open(config.vocab_path, 'rb'))
22
+ # print(f"Vocab size: {len(vocab)}")
23
+
24
+ words_line = []
25
+ if len(token) < config.pad_size:
26
+ token.extend([PAD] * (config.pad_size - len(token)))
27
+ else:
28
+ token = token[:config.pad_size]
29
+
30
+ # word to id
31
+ for word in token:
32
+ words_line.append(vocab.get(word, vocab.get(UNK)))
33
+ return words_line
34
+
35
+ # 获取dirty_word的索引
36
+ def get_dirty_words(path):
37
+ with open(path, 'r') as f:
38
+ data = json.load(f)
39
+ dirty_words = list(data.values())
40
+ return dirty_words
41
+
42
+ def get_all_dirty_words(base_path):
43
+ all_dirty_words = []
44
+ paths = ["general.json", "LGBT.json", "region.json", "sexism.json", "racism.json"]
45
+ for i in paths:
46
+ all_dirty_words.append(get_dirty_words(base_path + i))
47
+ return all_dirty_words
48
+
49
+ def get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index):
50
+ for dirty_word in dirty_words:
51
+ for index, token in enumerate(text_idx):
52
+ if token == 0:
53
+ break
54
+ if token != dirty_word[0]: # 第一个字符不是dirty_word的词首
55
+ continue
56
+ else:
57
+ flag = 1
58
+ start_index = index
59
+ end_index = index+1
60
+ for i in range(len(dirty_word[1:])):
61
+ if end_index >= len(text_idx): # 越界
62
+ flag = 0
63
+ break
64
+ if text_idx[end_index] != dirty_word[1+i]: # 后续单词非dirty词
65
+ flag = 0
66
+ break
67
+ end_index += 1
68
+ if flag:
69
+ for dirty_index in range(start_index, end_index): # 对含脏词的span打上类别label
70
+ toxic_ids[dirty_index] = toxic_index
71
+ # print(toxic_ids)
72
+ return toxic_ids
73
+
74
+ def get_all_toxic_id(pad_size, text_idx, all_dirty_words):
75
+ toxic_ids = [0 for i in range(pad_size)]
76
+ for toxic_index, dirty_words in enumerate(all_dirty_words):
77
+ toxic_ids = get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index+1)
78
+ return toxic_ids
79
+
80
+ class Datasets(Dataset):
81
+ '''
82
+ The dataset based on Bert.
83
+ '''
84
+ def __init__(self, kwargs, data_name, add_special_tokens=True, not_test=True):
85
+ self.kwargs = kwargs
86
+ self.not_test = not_test
87
+ self.data_name = data_name
88
+ self.lexicon_base_path = kwargs.lexicon_path
89
+ self.max_tok_len = kwargs.pad_size
90
+ self.add_special_tokens = add_special_tokens
91
+ # self.tokenizer = BertTokenizer.from_pretrained('resources/scibert_scivocab_cased')
92
+ # self.tokenizer = BertTokenizer.from_pretrained(kwargs.model_name)
93
+ # BERT/Roberta
94
+ self.tokenizer = AutoTokenizer.from_pretrained(kwargs.model_name)
95
+ # ChineseBERT
96
+ # self.tokenizer = ChineseBertTokenizerFast.from_pretrained(kwargs.model_name)
97
+ # self.word2vec_path = kwargs.word2vec_path
98
+ with open(data_name, 'r') as f:
99
+ self.data_file = json.load(f)
100
+ self.preprocess_data()
101
+
102
+ def preprocess_data(self):
103
+ print('Preprocessing Data {} ...'.format(self.data_name))
104
+ # word2idx, embedding_matrix = load_word2vec_matrix(self.word2vec_path)
105
+ data_time_start=time.time()
106
+ all_dirty_words = get_all_dirty_words(self.lexicon_base_path)
107
+
108
+ for row in tqdm(self.data_file):
109
+ ori_text = row['content']
110
+ text = self.tokenizer(ori_text, add_special_tokens=self.add_special_tokens,
111
+ max_length=int(self.max_tok_len), padding='max_length', truncation=True)
112
+ # For BERT
113
+ row['text_idx'] = text['input_ids']
114
+ row['text_ids'] = text['token_type_ids']
115
+ row['text_mask'] = text['attention_mask']
116
+ row['toxic_ids'] = get_all_toxic_id(self.max_tok_len, row['text_idx'], all_dirty_words)
117
+
118
+ # for glove
119
+ # sub_text = re.sub(u"([^\u0030-\u0039\u0041-\u005a\u0061-\u007a])"," ",ori_text)
120
+ # text_token = [w for w in ori_text]
121
+ # row["text_token_ids"] = token_to_index(text_token, self.kwargs)
122
+ # row["text_token_len"] = len(row["text_token_ids"])
123
+ # row["text_token_ids"] = pad_token_seq(row["text_token_ids"], self.max_tok_len)
124
+
125
+ data_time_end = time.time()
126
+ print("... finished preprocessing cost {} ".format(data_time_end-data_time_start))
127
+
128
+ # def get_key(self, index):
129
+ # path = "data/label/level_" + str(index) + '.json'
130
+ # with open(path, 'r+') as file:
131
+ # content=file.read()
132
+ # key = json.loads(content)
133
+ # return key
134
+
135
+ # def convert_one_hot(self, data, one_hot, length):
136
+ # data_ = [0 for i in range(length)]
137
+ # for i in data:
138
+ # data_[one_hot[i]] = 1
139
+ # return data_
140
+
141
+ def __len__(self):
142
+ return len(self.data_file)
143
+
144
+ def __getitem__(self, idx, corpus=None):
145
+ row = self.data_file[idx]
146
+ sample = {
147
+ # For BERT
148
+ 'text_idx': row['text_idx'], 'text_ids': row['text_ids'], 'text_mask': row['text_mask'], 'toxic_ids': row['toxic_ids'],
149
+ # For GloVe
150
+ # 'text_token_ids': row["text_token_ids"]
151
+ 'toxic': row["toxic_one_hot"], 'toxic_type': row["toxic_type_one_hot"], 'expression': row["expression_one_hot"], 'target': row["target"]
152
+ }
153
+ # For label
154
+ # sample['label'] = row['label']
155
+ return sample
156
+
157
+
158
+ class Dataloader(DataLoader):
159
+ '''
160
+ A batch sampler of a dataset.
161
+ '''
162
+ def __init__(self, data, batch_size, shuffle=True, SEED=0):
163
+ self.data = data
164
+ self.batch_size = batch_size
165
+ self.shuffle = shuffle
166
+ self.SEED = SEED
167
+ random.seed(self.SEED)
168
+
169
+ self.indices = list(range(len(data)))
170
+ if shuffle:
171
+ random.shuffle(self.indices)
172
+ self.batch_num = 0
173
+
174
+ def __len__(self):
175
+ return int(len(self.data) / float(self.batch_size))
176
+
177
+ def num_batches(self):
178
+ return len(self.data) / float(self.batch_size)
179
+
180
+ def __iter__(self):
181
+ self.indices = list(range(len(self.data)))
182
+ if self.shuffle:
183
+ random.shuffle(self.indices)
184
+ return self
185
+
186
+ def __next__(self):
187
+ if self.indices != []:
188
+ idxs = self.indices[:self.batch_size]
189
+ batch = [self.data.__getitem__(i) for i in idxs]
190
+ self.indices = self.indices[self.batch_size:]
191
+ return batch
192
+ else:
193
+ raise StopIteration
194
+
195
+ def get(self):
196
+ self.reset()
197
+ return self.__next__()
198
+
199
+ def reset(self):
200
+ self.indices = list(range(len(self.data)))
201
+ if self.shuffle: random.shuffle(self.indices)
202
+
203
+ def to_tensor(batch):
204
+ '''
205
+ Convert a batch data into tensor
206
+ '''
207
+ args = {}
208
+ # For label
209
+ # args["label"] = torch.tensor([b['label'] for b in batch])
210
+
211
+ # For BERT
212
+ args['text_idx'] = torch.tensor([b['text_idx'] for b in batch])
213
+ args['text_ids'] = torch.tensor([b['text_ids'] for b in batch])
214
+ args['text_mask'] = torch.tensor([b['text_mask'] for b in batch])
215
+ args['toxic_ids'] = torch.tensor([b['toxic_ids'] for b in batch])
216
+
217
+ # For GloVe
218
+ # args['text_token_len'] = torch.tensor([b['text_token_len'] for b in batch])
219
+ # args['text_token_ids'] = torch.tensor([b['text_token_ids'] for b in batch])
220
+ args['toxic'] = torch.tensor([b['toxic'] for b in batch])
221
+ args['toxic_type'] = torch.tensor([b['toxic_type'] for b in batch])
222
+ args['expression'] = torch.tensor([b['expression'] for b in batch])
223
+ args['target'] = torch.tensor([b['target'] for b in batch])
224
+
225
+ return args
226
+
227
+ def get_time_dif(start_time):
228
+ """获取已使用时间"""
229
+ end_time = time.time()
230
+ time_dif = end_time - start_time
231
+ return timedelta(seconds=int(round(time_dif)))
232
+
233
+ def convert_onehot(config, label):
234
+ onehot_label = [0 for i in range(config.num_classes)]
235
+ onehot_label[int(label)] = 1
236
+ return onehot_label
237
+
238
+
ToxiCN_ex/train_eval.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from sklearn import metrics
3
+ from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import torch.optim as optim
9
+ from tqdm import tqdm
10
+
11
+ import time
12
+ import json
13
+ import copy
14
+ from src.datasets import get_time_dif, to_tensor, convert_onehot
15
+ from src.Models import *
16
+ # from src.losses import *
17
+
18
+ # from tensorboardX import SummaryWriter
19
+ from ray import tune
20
+
21
+
22
+ def train(config, train_iter, dev_iter, test_iter, task=1):
23
+ embed_model = Bert_Layer(config).to(config.device)
24
+ model = TwoLayerFFNNLayer(config).to(config.device)
25
+ model_name = '{}-NN_ML-{}_D-{}_B-{}_E-{}_Lr-{}_aplha-{}'.format(config.model_name, config.pad_size, config.dropout,
26
+ config.batch_size, config.num_epochs, config.learning_rate, config.alpha1)
27
+ embed_optimizer = optim.AdamW(embed_model.parameters(), lr=config.learning_rate)
28
+ model_optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate)
29
+ # fgm = FGM(embed_model, epsilon=1, emb_name='word_embeddings.')
30
+ loss_fn = nn.BCEWithLogitsLoss()
31
+ # loss_fn = get_loss_func("FL", [0.4, 0.6], config.num_classes, config.alpha1)
32
+ max_score = 0
33
+
34
+ for epoch in range(config.num_epochs):
35
+ embed_model.train()
36
+ model.train()
37
+ start_time = time.time()
38
+ print("Model is training in epoch {}".format(epoch))
39
+ loss_all = 0.
40
+ preds = []
41
+ labels = []
42
+
43
+ for batch in tqdm(train_iter, desc='Training', colour = 'MAGENTA'):
44
+ embed_model.zero_grad()
45
+ model.zero_grad()
46
+ args = to_tensor(batch)
47
+ att_input, pooled_emb = embed_model(**args)
48
+
49
+ logit = model(att_input, pooled_emb).cpu()
50
+
51
+ label = args['toxic']
52
+ # label = args['toxic_type']
53
+ # label = args['expression']
54
+ # label = args['target']
55
+ loss = loss_fn(logit, label.float())
56
+ pred = get_preds(config, logit)
57
+ # pred = get_preds_task2_4(config, logit)
58
+ # pred = get_preds_task3(config, logit)
59
+ preds.extend(pred)
60
+ labels.extend(label.detach().numpy())
61
+
62
+ loss_all += loss.item()
63
+ embed_optimizer.zero_grad()
64
+ model_optimizer.zero_grad()
65
+ loss.backward()
66
+
67
+ embed_optimizer.step()
68
+ model_optimizer.step()
69
+
70
+ end_time = time.time()
71
+ print(" took: {:.1f} min".format((end_time - start_time)/60.))
72
+ print("TRAINED for {} epochs".format(epoch))
73
+
74
+ # 验证
75
+ if epoch >= config.num_warm:
76
+ # print("training loss: loss={}".format(loss_all/len(data)))
77
+ trn_scores = get_scores(preds, labels, loss_all, len(train_iter), data_name="TRAIN")
78
+ dev_scores, _ = eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV')
79
+ f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
80
+ f.write(' ================================================== Epoch: {} ==================================================\n'.format(epoch))
81
+ f.write('TrainScore: \n{}\nEvalScore: \n{}\n'.format(json.dumps(trn_scores), json.dumps(dev_scores)))
82
+ max_score = save_best(config, epoch, model_name, embed_model, model, dev_scores, max_score)
83
+ print("ALLTRAINED for {} epochs".format(epoch))
84
+
85
+ path = '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST')
86
+ checkpoint = torch.load(path)
87
+ embed_model.load_state_dict(checkpoint['embed_model_state_dict'])
88
+ model.load_state_dict(checkpoint['model_state_dict'])
89
+ test_scores, _ = eval(config, embed_model, model, loss_fn, test_iter, data_name='DEV')
90
+ f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
91
+ f.write('Test: \n{}\n'.format(json.dumps(test_scores)))
92
+
93
+
94
+ def eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV'):
95
+ loss_all = 0.
96
+ preds = []
97
+ labels = []
98
+ for batch in tqdm(dev_iter, desc='Evaling', colour = 'CYAN'):
99
+ with torch.no_grad():
100
+ args = to_tensor(batch)
101
+ att_input, pooled_emb = embed_model(**args)
102
+ logit = model(att_input, pooled_emb)
103
+
104
+ logit = logit.cpu()
105
+ label = args['toxic']
106
+ # label = args['toxic_type']
107
+ # label = args['expression']
108
+ # label = args['target']
109
+ loss = loss_fn(logit, label.float())
110
+ pred = get_preds(config, logit)
111
+ # pred = get_preds_task2_4(config, logit)
112
+ # pred = get_preds_task3(config, logit)
113
+ preds.extend(pred)
114
+ labels.extend(label.detach().numpy())
115
+ loss_all += loss.item()
116
+
117
+ dev_scores = get_scores(preds, labels, loss_all, len(dev_iter), data_name=data_name)
118
+ # if data_name != "TEST": # 2022.9.20 命令行输入为test模式时,不调用tune
119
+ # tune.report(metric=dev_scores)
120
+
121
+ return dev_scores, preds
122
+
123
+
124
+ # For Multi Classfication
125
+ def get_preds(config, logit):
126
+ results = torch.max(logit.data, 1)[1].cpu().numpy()
127
+ new_results = []
128
+ for result in results:
129
+ result = convert_onehot(config, result)
130
+ new_results.append(result)
131
+ return new_results
132
+
133
+ # Task 2 and 4: 多分类 Toxic Type Discrimination and d Expression Type Detection
134
+ def get_preds_task2_4(config, logit):
135
+ all_results = []
136
+ logit_ = torch.sigmoid(logit)
137
+ results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
138
+ results = torch.max(logit_.data, 1)[1].cpu().numpy() # index for maximum probability
139
+ for i in range(len(results)):
140
+ if results_pred[i] < 0.5:
141
+ result = [0 for i in range(config.num_classes)]
142
+ else:
143
+ result = convert_onehot(config, results[i])
144
+ all_results.append(result)
145
+ return all_results
146
+
147
+ # Task 3: 多标签分类 Targeted Group Detection
148
+ def get_preds_task3(config, logit):
149
+ all_results = []
150
+ logit_ = torch.sigmoid(logit)
151
+ results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
152
+ results = torch.max(logit_.data, 1)[1].cpu().numpy()
153
+ logit_ = logit_.detach().cpu().numpy()
154
+ for i in range(len(results)):
155
+ if results_pred[i] < 0.5:
156
+ result = [0 for i in range(config.num_classes)]
157
+ else:
158
+ result = get_pred_task3(logit_[i])
159
+ all_results.append(result)
160
+ return all_results
161
+
162
+ def get_pred_task3(logit):
163
+ result = [0 for i in range(len(logit))]
164
+ for i in range(len(logit)):
165
+ if logit[i] >= 0.5:
166
+ result[i] = 1
167
+ return result
168
+
169
+ def get_scores(all_preds, all_lebels, loss_all, len, data_name):
170
+ score_dict = dict()
171
+ f1 = f1_score(all_preds, all_lebels, average='weighted')
172
+ # acc = accuracy_score(all_preds, all_lebels)
173
+ all_f1 = f1_score(all_preds, all_lebels, average=None)
174
+ pre = precision_score(all_preds, all_lebels, average='weighted')
175
+ recall = recall_score(all_preds, all_lebels, average='weighted')
176
+
177
+ score_dict['F1'] = f1
178
+ # score_dict['accuracy'] = acc
179
+ score_dict['all_f1'] = all_f1.tolist()
180
+ score_dict['precision'] = pre
181
+ score_dict['recall'] = recall
182
+
183
+ score_dict['all_loss'] = loss_all/len
184
+ print("Evaling on \"{}\" data".format(data_name))
185
+ for s_name, s_val in score_dict.items():
186
+ print("{}: {}".format(s_name, s_val))
187
+ return score_dict
188
+
189
+ def save_best(config, epoch, model_name, embed_model, model, score, max_score):
190
+ score_key = config.score_key
191
+ curr_score = score[score_key]
192
+ print('The epoch_{} {}: {}\nCurrent max {}: {}'.format(epoch, score_key, curr_score, score_key, max_score))
193
+
194
+ if curr_score > max_score or epoch == 0:
195
+ torch.save({
196
+ 'epoch': config.num_epochs,
197
+ 'embed_model_state_dict': embed_model.state_dict(),
198
+ 'model_state_dict': model.state_dict(),
199
+ }, '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST'))
200
+ return curr_score
201
+ else:
202
+ return max_score
modeling_bert.py ADDED
@@ -0,0 +1,1635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch BERT model. """
17
+
18
+
19
+ import math
20
+ import os
21
+ import warnings
22
+ from dataclasses import dataclass
23
+ from typing import Optional, Tuple
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import CrossEntropyLoss, MSELoss
29
+
30
+ from .activations import gelu, gelu_new, swish
31
+ from .configuration_bert import BertConfig
32
+ from .file_utils import (
33
+ ModelOutput,
34
+ add_code_sample_docstrings,
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_callable,
37
+ replace_return_docstrings,
38
+ )
39
+ from .modeling_outputs import (
40
+ BaseModelOutput,
41
+ BaseModelOutputWithPooling,
42
+ CausalLMOutput,
43
+ MaskedLMOutput,
44
+ MultipleChoiceModelOutput,
45
+ NextSentencePredictorOutput,
46
+ QuestionAnsweringModelOutput,
47
+ SequenceClassifierOutput,
48
+ TokenClassifierOutput,
49
+ )
50
+ from .modeling_utils import (
51
+ PreTrainedModel,
52
+ apply_chunking_to_forward,
53
+ find_pruneable_heads_and_indices,
54
+ prune_linear_layer,
55
+ )
56
+ from .utils import logging
57
+
58
+
59
+ logger = logging.get_logger(__name__)
60
+
61
+ _CONFIG_FOR_DOC = "BertConfig"
62
+ _TOKENIZER_FOR_DOC = "BertTokenizer"
63
+
64
+ BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
65
+ "bert-base-uncased",
66
+ "bert-large-uncased",
67
+ "bert-base-cased",
68
+ "bert-large-cased",
69
+ "bert-base-multilingual-uncased",
70
+ "bert-base-multilingual-cased",
71
+ "bert-base-chinese",
72
+ "bert-base-german-cased",
73
+ "bert-large-uncased-whole-word-masking",
74
+ "bert-large-cased-whole-word-masking",
75
+ "bert-large-uncased-whole-word-masking-finetuned-squad",
76
+ "bert-large-cased-whole-word-masking-finetuned-squad",
77
+ "bert-base-cased-finetuned-mrpc",
78
+ "bert-base-german-dbmdz-cased",
79
+ "bert-base-german-dbmdz-uncased",
80
+ "cl-tohoku/bert-base-japanese",
81
+ "cl-tohoku/bert-base-japanese-whole-word-masking",
82
+ "cl-tohoku/bert-base-japanese-char",
83
+ "cl-tohoku/bert-base-japanese-char-whole-word-masking",
84
+ "TurkuNLP/bert-base-finnish-cased-v1",
85
+ "TurkuNLP/bert-base-finnish-uncased-v1",
86
+ "wietsedv/bert-base-dutch-cased",
87
+ # See all BERT models at https://huggingface.co/models?filter=bert
88
+ ]
89
+
90
+
91
+ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
92
+ """Load tf checkpoints in a pytorch model."""
93
+ try:
94
+ import re
95
+
96
+ import numpy as np
97
+ import tensorflow as tf
98
+ except ImportError:
99
+ logger.error(
100
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
101
+ "https://www.tensorflow.org/install/ for installation instructions."
102
+ )
103
+ raise
104
+ tf_path = os.path.abspath(tf_checkpoint_path)
105
+ logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
106
+ # Load weights from TF model
107
+ init_vars = tf.train.list_variables(tf_path)
108
+ names = []
109
+ arrays = []
110
+ for name, shape in init_vars:
111
+ logger.info("Loading TF weight {} with shape {}".format(name, shape))
112
+ array = tf.train.load_variable(tf_path, name)
113
+ names.append(name)
114
+ arrays.append(array)
115
+
116
+ for name, array in zip(names, arrays):
117
+ name = name.split("/")
118
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
119
+ # which are not required for using pretrained model
120
+ if any(
121
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
122
+ for n in name
123
+ ):
124
+ logger.info("Skipping {}".format("/".join(name)))
125
+ continue
126
+ pointer = model
127
+ for m_name in name:
128
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
129
+ scope_names = re.split(r"_(\d+)", m_name)
130
+ else:
131
+ scope_names = [m_name]
132
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
133
+ pointer = getattr(pointer, "weight")
134
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
135
+ pointer = getattr(pointer, "bias")
136
+ elif scope_names[0] == "output_weights":
137
+ pointer = getattr(pointer, "weight")
138
+ elif scope_names[0] == "squad":
139
+ pointer = getattr(pointer, "classifier")
140
+ else:
141
+ try:
142
+ pointer = getattr(pointer, scope_names[0])
143
+ except AttributeError:
144
+ logger.info("Skipping {}".format("/".join(name)))
145
+ continue
146
+ if len(scope_names) >= 2:
147
+ num = int(scope_names[1])
148
+ pointer = pointer[num]
149
+ if m_name[-11:] == "_embeddings":
150
+ pointer = getattr(pointer, "weight")
151
+ elif m_name == "kernel":
152
+ array = np.transpose(array)
153
+ try:
154
+ assert (
155
+ pointer.shape == array.shape
156
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
157
+ except AssertionError as e:
158
+ e.args += (pointer.shape, array.shape)
159
+ raise
160
+ logger.info("Initialize PyTorch weight {}".format(name))
161
+ pointer.data = torch.from_numpy(array)
162
+ return model
163
+
164
+
165
+ def mish(x):
166
+ return x * torch.tanh(nn.functional.softplus(x))
167
+
168
+
169
+ ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
170
+
171
+
172
+ BertLayerNorm = torch.nn.LayerNorm
173
+
174
+
175
+ class BertEmbeddings(nn.Module):
176
+ """Construct the embeddings from word, position and token_type embeddings."""
177
+
178
+ def __init__(self, config):
179
+ super().__init__()
180
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
181
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
182
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
183
+
184
+ # 2022.10.8 toxic_embeddings: non-toxic + 5 kinds of toxic
185
+ self.toxic_embeddings = nn.Embedding(6, config.hidden_size)
186
+
187
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
188
+ # any TensorFlow checkpoint file
189
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
190
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
191
+
192
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
193
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
194
+
195
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, toxic_ids=None, inputs_embeds=None):
196
+ if input_ids is not None:
197
+ input_shape = input_ids.size()
198
+ else:
199
+ input_shape = inputs_embeds.size()[:-1]
200
+
201
+ seq_length = input_shape[1]
202
+
203
+ if position_ids is None:
204
+ position_ids = self.position_ids[:, :seq_length]
205
+
206
+ if token_type_ids is None:
207
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
208
+
209
+ if inputs_embeds is None:
210
+ inputs_embeds = self.word_embeddings(input_ids)
211
+ position_embeddings = self.position_embeddings(position_ids)
212
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
213
+
214
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
215
+
216
+ # 2022.10.8 toxic_embeddings
217
+ if toxic_ids is not None:
218
+ toxic_embeddings = self.toxic_embeddings(toxic_ids)
219
+ embeddings += toxic_embeddings
220
+
221
+ embeddings = self.LayerNorm(embeddings)
222
+ embeddings = self.dropout(embeddings)
223
+ return embeddings
224
+
225
+
226
+ class BertSelfAttention(nn.Module):
227
+ def __init__(self, config):
228
+ super().__init__()
229
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
230
+ raise ValueError(
231
+ "The hidden size (%d) is not a multiple of the number of attention "
232
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
233
+ )
234
+
235
+ self.num_attention_heads = config.num_attention_heads
236
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
237
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
238
+
239
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
240
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
241
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
242
+
243
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
244
+
245
+ def transpose_for_scores(self, x):
246
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
247
+ x = x.view(*new_x_shape)
248
+ return x.permute(0, 2, 1, 3)
249
+
250
+ def forward(
251
+ self,
252
+ hidden_states,
253
+ attention_mask=None,
254
+ head_mask=None,
255
+ encoder_hidden_states=None,
256
+ encoder_attention_mask=None,
257
+ output_attentions=False,
258
+ ):
259
+ mixed_query_layer = self.query(hidden_states)
260
+
261
+ # If this is instantiated as a cross-attention module, the keys
262
+ # and values come from an encoder; the attention mask needs to be
263
+ # such that the encoder's padding tokens are not attended to.
264
+ if encoder_hidden_states is not None:
265
+ mixed_key_layer = self.key(encoder_hidden_states)
266
+ mixed_value_layer = self.value(encoder_hidden_states)
267
+ attention_mask = encoder_attention_mask
268
+ else:
269
+ mixed_key_layer = self.key(hidden_states)
270
+ mixed_value_layer = self.value(hidden_states)
271
+
272
+ query_layer = self.transpose_for_scores(mixed_query_layer)
273
+ key_layer = self.transpose_for_scores(mixed_key_layer)
274
+ value_layer = self.transpose_for_scores(mixed_value_layer)
275
+
276
+ # Take the dot product between "query" and "key" to get the raw attention scores.
277
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
278
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
279
+ if attention_mask is not None:
280
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
281
+ attention_scores = attention_scores + attention_mask
282
+
283
+ # Normalize the attention scores to probabilities.
284
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
285
+
286
+ # This is actually dropping out entire tokens to attend to, which might
287
+ # seem a bit unusual, but is taken from the original Transformer paper.
288
+ attention_probs = self.dropout(attention_probs)
289
+
290
+ # Mask heads if we want to
291
+ if head_mask is not None:
292
+ attention_probs = attention_probs * head_mask
293
+
294
+ context_layer = torch.matmul(attention_probs, value_layer)
295
+
296
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
297
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
298
+ context_layer = context_layer.view(*new_context_layer_shape)
299
+
300
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
301
+ return outputs
302
+
303
+
304
+ class BertSelfOutput(nn.Module):
305
+ def __init__(self, config):
306
+ super().__init__()
307
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
308
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
309
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
310
+
311
+ def forward(self, hidden_states, input_tensor):
312
+ hidden_states = self.dense(hidden_states)
313
+ hidden_states = self.dropout(hidden_states)
314
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
315
+ return hidden_states
316
+
317
+
318
+ class BertAttention(nn.Module):
319
+ def __init__(self, config):
320
+ super().__init__()
321
+ self.self = BertSelfAttention(config)
322
+ self.output = BertSelfOutput(config)
323
+ self.pruned_heads = set()
324
+
325
+ def prune_heads(self, heads):
326
+ if len(heads) == 0:
327
+ return
328
+ heads, index = find_pruneable_heads_and_indices(
329
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
330
+ )
331
+
332
+ # Prune linear layers
333
+ self.self.query = prune_linear_layer(self.self.query, index)
334
+ self.self.key = prune_linear_layer(self.self.key, index)
335
+ self.self.value = prune_linear_layer(self.self.value, index)
336
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
337
+
338
+ # Update hyper params and store pruned heads
339
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
340
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
341
+ self.pruned_heads = self.pruned_heads.union(heads)
342
+
343
+ def forward(
344
+ self,
345
+ hidden_states,
346
+ attention_mask=None,
347
+ head_mask=None,
348
+ encoder_hidden_states=None,
349
+ encoder_attention_mask=None,
350
+ output_attentions=False,
351
+ ):
352
+ self_outputs = self.self(
353
+ hidden_states,
354
+ attention_mask,
355
+ head_mask,
356
+ encoder_hidden_states,
357
+ encoder_attention_mask,
358
+ output_attentions,
359
+ )
360
+ attention_output = self.output(self_outputs[0], hidden_states)
361
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
362
+ return outputs
363
+
364
+
365
+ class BertIntermediate(nn.Module):
366
+ def __init__(self, config):
367
+ super().__init__()
368
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
369
+ if isinstance(config.hidden_act, str):
370
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
371
+ else:
372
+ self.intermediate_act_fn = config.hidden_act
373
+
374
+ def forward(self, hidden_states):
375
+ hidden_states = self.dense(hidden_states)
376
+ hidden_states = self.intermediate_act_fn(hidden_states)
377
+ return hidden_states
378
+
379
+
380
+ class BertOutput(nn.Module):
381
+ def __init__(self, config):
382
+ super().__init__()
383
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
384
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
385
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
386
+
387
+ def forward(self, hidden_states, input_tensor):
388
+ hidden_states = self.dense(hidden_states)
389
+ hidden_states = self.dropout(hidden_states)
390
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
391
+ return hidden_states
392
+
393
+
394
+ class BertLayer(nn.Module):
395
+ def __init__(self, config):
396
+ super().__init__()
397
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
398
+ self.seq_len_dim = 1
399
+ self.attention = BertAttention(config)
400
+ self.is_decoder = config.is_decoder
401
+ self.add_cross_attention = config.add_cross_attention
402
+ if self.add_cross_attention:
403
+ assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
404
+ self.crossattention = BertAttention(config)
405
+ self.intermediate = BertIntermediate(config)
406
+ self.output = BertOutput(config)
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states,
411
+ attention_mask=None,
412
+ head_mask=None,
413
+ encoder_hidden_states=None,
414
+ encoder_attention_mask=None,
415
+ output_attentions=False,
416
+ ):
417
+ self_attention_outputs = self.attention(
418
+ hidden_states,
419
+ attention_mask,
420
+ head_mask,
421
+ output_attentions=output_attentions,
422
+ )
423
+ attention_output = self_attention_outputs[0]
424
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
425
+
426
+ if self.is_decoder and encoder_hidden_states is not None:
427
+ assert hasattr(
428
+ self, "crossattention"
429
+ ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
430
+ cross_attention_outputs = self.crossattention(
431
+ attention_output,
432
+ attention_mask,
433
+ head_mask,
434
+ encoder_hidden_states,
435
+ encoder_attention_mask,
436
+ output_attentions,
437
+ )
438
+ attention_output = cross_attention_outputs[0]
439
+ outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
440
+
441
+ layer_output = apply_chunking_to_forward(
442
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
443
+ )
444
+ outputs = (layer_output,) + outputs
445
+ return outputs
446
+
447
+ def feed_forward_chunk(self, attention_output):
448
+ intermediate_output = self.intermediate(attention_output)
449
+ layer_output = self.output(intermediate_output, attention_output)
450
+ return layer_output
451
+
452
+
453
+ class BertEncoder(nn.Module):
454
+ def __init__(self, config):
455
+ super().__init__()
456
+ self.config = config
457
+ self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
458
+
459
+ def forward(
460
+ self,
461
+ hidden_states,
462
+ attention_mask=None,
463
+ head_mask=None,
464
+ encoder_hidden_states=None,
465
+ encoder_attention_mask=None,
466
+ output_attentions=False,
467
+ output_hidden_states=False,
468
+ return_dict=False,
469
+ ):
470
+ all_hidden_states = () if output_hidden_states else None
471
+ all_attentions = () if output_attentions else None
472
+ for i, layer_module in enumerate(self.layer):
473
+ if output_hidden_states:
474
+ all_hidden_states = all_hidden_states + (hidden_states,)
475
+
476
+ if getattr(self.config, "gradient_checkpointing", False):
477
+
478
+ def create_custom_forward(module):
479
+ def custom_forward(*inputs):
480
+ return module(*inputs, output_attentions)
481
+
482
+ return custom_forward
483
+
484
+ layer_outputs = torch.utils.checkpoint.checkpoint(
485
+ create_custom_forward(layer_module),
486
+ hidden_states,
487
+ attention_mask,
488
+ head_mask[i],
489
+ encoder_hidden_states,
490
+ encoder_attention_mask,
491
+ )
492
+ else:
493
+ layer_outputs = layer_module(
494
+ hidden_states,
495
+ attention_mask,
496
+ head_mask[i],
497
+ encoder_hidden_states,
498
+ encoder_attention_mask,
499
+ output_attentions,
500
+ )
501
+ hidden_states = layer_outputs[0]
502
+ if output_attentions:
503
+ all_attentions = all_attentions + (layer_outputs[1],)
504
+
505
+ if output_hidden_states:
506
+ all_hidden_states = all_hidden_states + (hidden_states,)
507
+
508
+ if not return_dict:
509
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
510
+ return BaseModelOutput(
511
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
512
+ )
513
+
514
+
515
+ class BertPooler(nn.Module):
516
+ def __init__(self, config):
517
+ super().__init__()
518
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
519
+ self.activation = nn.Tanh()
520
+
521
+ def forward(self, hidden_states):
522
+ # We "pool" the model by simply taking the hidden state corresponding
523
+ # to the first token.
524
+ first_token_tensor = hidden_states[:, 0]
525
+ pooled_output = self.dense(first_token_tensor)
526
+ pooled_output = self.activation(pooled_output)
527
+ return pooled_output
528
+
529
+
530
+ class BertPredictionHeadTransform(nn.Module):
531
+ def __init__(self, config):
532
+ super().__init__()
533
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
534
+ if isinstance(config.hidden_act, str):
535
+ self.transform_act_fn = ACT2FN[config.hidden_act]
536
+ else:
537
+ self.transform_act_fn = config.hidden_act
538
+ self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
539
+
540
+ def forward(self, hidden_states):
541
+ hidden_states = self.dense(hidden_states)
542
+ hidden_states = self.transform_act_fn(hidden_states)
543
+ hidden_states = self.LayerNorm(hidden_states)
544
+ return hidden_states
545
+
546
+
547
+ class BertLMPredictionHead(nn.Module):
548
+ def __init__(self, config):
549
+ super().__init__()
550
+ self.transform = BertPredictionHeadTransform(config)
551
+
552
+ # The output weights are the same as the input embeddings, but there is
553
+ # an output-only bias for each token.
554
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
555
+
556
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
557
+
558
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
559
+ self.decoder.bias = self.bias
560
+
561
+ def forward(self, hidden_states):
562
+ hidden_states = self.transform(hidden_states)
563
+ hidden_states = self.decoder(hidden_states)
564
+ return hidden_states
565
+
566
+
567
+ class BertOnlyMLMHead(nn.Module):
568
+ def __init__(self, config):
569
+ super().__init__()
570
+ self.predictions = BertLMPredictionHead(config)
571
+
572
+ def forward(self, sequence_output):
573
+ prediction_scores = self.predictions(sequence_output)
574
+ return prediction_scores
575
+
576
+
577
+ class BertOnlyNSPHead(nn.Module):
578
+ def __init__(self, config):
579
+ super().__init__()
580
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
581
+
582
+ def forward(self, pooled_output):
583
+ seq_relationship_score = self.seq_relationship(pooled_output)
584
+ return seq_relationship_score
585
+
586
+
587
+ class BertPreTrainingHeads(nn.Module):
588
+ def __init__(self, config):
589
+ super().__init__()
590
+ self.predictions = BertLMPredictionHead(config)
591
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
592
+
593
+ def forward(self, sequence_output, pooled_output):
594
+ prediction_scores = self.predictions(sequence_output)
595
+ seq_relationship_score = self.seq_relationship(pooled_output)
596
+ return prediction_scores, seq_relationship_score
597
+
598
+
599
+ class BertPreTrainedModel(PreTrainedModel):
600
+ """An abstract class to handle weights initialization and
601
+ a simple interface for downloading and loading pretrained models.
602
+ """
603
+
604
+ config_class = BertConfig
605
+ load_tf_weights = load_tf_weights_in_bert
606
+ base_model_prefix = "bert"
607
+ authorized_missing_keys = [r"position_ids"]
608
+
609
+ def _init_weights(self, module):
610
+ """ Initialize the weights """
611
+ if isinstance(module, (nn.Linear, nn.Embedding)):
612
+ # Slightly different from the TF version which uses truncated_normal for initialization
613
+ # cf https://github.com/pytorch/pytorch/pull/5617
614
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
615
+ elif isinstance(module, BertLayerNorm):
616
+ module.bias.data.zero_()
617
+ module.weight.data.fill_(1.0)
618
+ if isinstance(module, nn.Linear) and module.bias is not None:
619
+ module.bias.data.zero_()
620
+
621
+
622
+ @dataclass
623
+ class BertForPreTrainingOutput(ModelOutput):
624
+ """
625
+ Output type of :class:`~transformers.BertForPreTrainingModel`.
626
+
627
+ Args:
628
+ loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
629
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
630
+ prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
631
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
632
+ seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
633
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False
634
+ continuation before SoftMax).
635
+ hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
636
+ Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
637
+ of shape :obj:`(batch_size, sequence_length, hidden_size)`.
638
+
639
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
640
+ attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
641
+ Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
642
+ :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
643
+
644
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
645
+ heads.
646
+ """
647
+
648
+ loss: Optional[torch.FloatTensor] = None
649
+ prediction_logits: torch.FloatTensor = None
650
+ seq_relationship_logits: torch.FloatTensor = None
651
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
652
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
653
+
654
+
655
+ BERT_START_DOCSTRING = r"""
656
+ This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
657
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
658
+ usage and behavior.
659
+
660
+ Parameters:
661
+ config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
662
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
663
+ Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
664
+ """
665
+
666
+ BERT_INPUTS_DOCSTRING = r"""
667
+ Args:
668
+ input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
669
+ Indices of input sequence tokens in the vocabulary.
670
+
671
+ Indices can be obtained using :class:`transformers.BertTokenizer`.
672
+ See :func:`transformers.PreTrainedTokenizer.encode` and
673
+ :func:`transformers.PreTrainedTokenizer.__call__` for details.
674
+
675
+ `What are input IDs? <../glossary.html#input-ids>`__
676
+ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
677
+ Mask to avoid performing attention on padding token indices.
678
+ Mask values selected in ``[0, 1]``:
679
+ ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
680
+
681
+ `What are attention masks? <../glossary.html#attention-mask>`__
682
+ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
683
+ Segment token indices to indicate first and second portions of the inputs.
684
+ Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
685
+ corresponds to a `sentence B` token
686
+
687
+ `What are token type IDs? <../glossary.html#token-type-ids>`_
688
+ position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
689
+ Indices of positions of each input sequence tokens in the position embeddings.
690
+ Selected in the range ``[0, config.max_position_embeddings - 1]``.
691
+
692
+ `What are position IDs? <../glossary.html#position-ids>`_
693
+ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
694
+ Mask to nullify selected heads of the self-attention modules.
695
+ Mask values selected in ``[0, 1]``:
696
+ :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
697
+ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
698
+ Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
699
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
700
+ than the model's internal embedding lookup matrix.
701
+ output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
702
+ If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
703
+ output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`None`):
704
+ If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
705
+ return_dict (:obj:`bool`, `optional`, defaults to :obj:`None`):
706
+ If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
707
+ plain tuple.
708
+ """
709
+
710
+
711
+ @add_start_docstrings(
712
+ "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
713
+ BERT_START_DOCSTRING,
714
+ )
715
+ class BertModel(BertPreTrainedModel):
716
+ """
717
+
718
+ The model can behave as an encoder (with only self-attention) as well
719
+ as a decoder, in which case a layer of cross-attention is added between
720
+ the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
721
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
722
+
723
+ To behave as an decoder the model needs to be initialized with the
724
+ :obj:`is_decoder` argument of the configuration set to :obj:`True`.
725
+ To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
726
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an
727
+ :obj:`encoder_hidden_states` is then expected as an input to the forward pass.
728
+
729
+ .. _`Attention is all you need`:
730
+ https://arxiv.org/abs/1706.03762
731
+
732
+ """
733
+
734
+ def __init__(self, config):
735
+ super().__init__(config)
736
+ self.config = config
737
+
738
+ self.embeddings = BertEmbeddings(config)
739
+ self.encoder = BertEncoder(config)
740
+ self.pooler = BertPooler(config)
741
+
742
+ self.init_weights()
743
+
744
+ def get_input_embeddings(self):
745
+ return self.embeddings.word_embeddings
746
+
747
+ def set_input_embeddings(self, value):
748
+ self.embeddings.word_embeddings = value
749
+
750
+ def _prune_heads(self, heads_to_prune):
751
+ """Prunes heads of the model.
752
+ heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
753
+ See base class PreTrainedModel
754
+ """
755
+ for layer, heads in heads_to_prune.items():
756
+ self.encoder.layer[layer].attention.prune_heads(heads)
757
+
758
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
759
+ @add_code_sample_docstrings(
760
+ tokenizer_class=_TOKENIZER_FOR_DOC,
761
+ checkpoint="bert-base-uncased",
762
+ output_type=BaseModelOutputWithPooling,
763
+ config_class=_CONFIG_FOR_DOC,
764
+ )
765
+ def forward(
766
+ self,
767
+ input_ids=None,
768
+ attention_mask=None,
769
+ token_type_ids=None,
770
+ position_ids=None,
771
+ head_mask=None,
772
+ inputs_embeds=None,
773
+ encoder_hidden_states=None,
774
+ encoder_attention_mask=None,
775
+ output_attentions=None,
776
+ output_hidden_states=None,
777
+ return_dict=None,
778
+ toxic_ids=None
779
+ ):
780
+ r"""
781
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
782
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
783
+ if the model is configured as a decoder.
784
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
785
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask
786
+ is used in the cross-attention if the model is configured as a decoder.
787
+ Mask values selected in ``[0, 1]``:
788
+ ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
789
+ """
790
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
791
+ output_hidden_states = (
792
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
793
+ )
794
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
795
+
796
+ if input_ids is not None and inputs_embeds is not None:
797
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
798
+ elif input_ids is not None:
799
+ input_shape = input_ids.size()
800
+ elif inputs_embeds is not None:
801
+ input_shape = inputs_embeds.size()[:-1]
802
+ else:
803
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
804
+
805
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
806
+
807
+ if attention_mask is None:
808
+ attention_mask = torch.ones(input_shape, device=device)
809
+ if token_type_ids is None:
810
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
811
+
812
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
813
+ # ourselves in which case we just need to make it broadcastable to all heads.
814
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
815
+
816
+ # If a 2D ou 3D attention mask is provided for the cross-attention
817
+ # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
818
+ if self.config.is_decoder and encoder_hidden_states is not None:
819
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
820
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
821
+ if encoder_attention_mask is None:
822
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
823
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
824
+ else:
825
+ encoder_extended_attention_mask = None
826
+
827
+ # Prepare head mask if needed
828
+ # 1.0 in head_mask indicate we keep the head
829
+ # attention_probs has shape bsz x n_heads x N x N
830
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
831
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
832
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
833
+
834
+ embedding_output = self.embeddings(
835
+ input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, toxic_ids=toxic_ids, inputs_embeds=inputs_embeds
836
+ )
837
+ encoder_outputs = self.encoder(
838
+ embedding_output,
839
+ attention_mask=extended_attention_mask,
840
+ head_mask=head_mask,
841
+ encoder_hidden_states=encoder_hidden_states,
842
+ encoder_attention_mask=encoder_extended_attention_mask,
843
+ output_attentions=output_attentions,
844
+ output_hidden_states=output_hidden_states,
845
+ return_dict=return_dict,
846
+ )
847
+ sequence_output = encoder_outputs[0]
848
+ pooled_output = self.pooler(sequence_output)
849
+
850
+ if not return_dict:
851
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
852
+
853
+ return BaseModelOutputWithPooling(
854
+ last_hidden_state=sequence_output,
855
+ pooler_output=pooled_output,
856
+ hidden_states=encoder_outputs.hidden_states,
857
+ attentions=encoder_outputs.attentions,
858
+ )
859
+
860
+
861
+ @add_start_docstrings(
862
+ """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
863
+ a `next sentence prediction (classification)` head. """,
864
+ BERT_START_DOCSTRING,
865
+ )
866
+ class BertForPreTraining(BertPreTrainedModel):
867
+ def __init__(self, config):
868
+ super().__init__(config)
869
+
870
+ self.bert = BertModel(config)
871
+ self.cls = BertPreTrainingHeads(config)
872
+
873
+ self.init_weights()
874
+
875
+ def get_output_embeddings(self):
876
+ return self.cls.predictions.decoder
877
+
878
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
879
+ @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
880
+ def forward(
881
+ self,
882
+ input_ids=None,
883
+ attention_mask=None,
884
+ token_type_ids=None,
885
+ position_ids=None,
886
+ head_mask=None,
887
+ inputs_embeds=None,
888
+ labels=None,
889
+ next_sentence_label=None,
890
+ output_attentions=None,
891
+ output_hidden_states=None,
892
+ return_dict=None,
893
+ **kwargs
894
+ ):
895
+ r"""
896
+ labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
897
+ Labels for computing the masked language modeling loss.
898
+ Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
899
+ Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
900
+ in ``[0, ..., config.vocab_size]``
901
+ next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
902
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
903
+ Indices should be in ``[0, 1]``.
904
+ ``0`` indicates sequence B is a continuation of sequence A,
905
+ ``1`` indicates sequence B is a random sequence.
906
+ kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
907
+ Used to hide legacy arguments that have been deprecated.
908
+
909
+ Returns:
910
+
911
+ Examples::
912
+
913
+ >>> from transformers import BertTokenizer, BertForPreTraining
914
+ >>> import torch
915
+
916
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
917
+ >>> model = BertForPreTraining.from_pretrained('bert-base-uncased', return_dict=True)
918
+
919
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
920
+ >>> outputs = model(**inputs)
921
+
922
+ >>> prediction_logits = outptus.prediction_logits
923
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
924
+ """
925
+ if "masked_lm_labels" in kwargs:
926
+ warnings.warn(
927
+ "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
928
+ FutureWarning,
929
+ )
930
+ labels = kwargs.pop("masked_lm_labels")
931
+ assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
932
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
933
+
934
+ outputs = self.bert(
935
+ input_ids,
936
+ attention_mask=attention_mask,
937
+ token_type_ids=token_type_ids,
938
+ position_ids=position_ids,
939
+ head_mask=head_mask,
940
+ inputs_embeds=inputs_embeds,
941
+ output_attentions=output_attentions,
942
+ output_hidden_states=output_hidden_states,
943
+ return_dict=return_dict,
944
+ )
945
+
946
+ sequence_output, pooled_output = outputs[:2]
947
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
948
+
949
+ total_loss = None
950
+ if labels is not None and next_sentence_label is not None:
951
+ loss_fct = CrossEntropyLoss()
952
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
953
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
954
+ total_loss = masked_lm_loss + next_sentence_loss
955
+
956
+ if not return_dict:
957
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
958
+ return ((total_loss,) + output) if total_loss is not None else output
959
+
960
+ return BertForPreTrainingOutput(
961
+ loss=total_loss,
962
+ prediction_logits=prediction_scores,
963
+ seq_relationship_logits=seq_relationship_score,
964
+ hidden_states=outputs.hidden_states,
965
+ attentions=outputs.attentions,
966
+ )
967
+
968
+
969
+ @add_start_docstrings(
970
+ """Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
971
+ )
972
+ class BertLMHeadModel(BertPreTrainedModel):
973
+ def __init__(self, config):
974
+ super().__init__(config)
975
+
976
+ if not config.is_decoder:
977
+ logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
978
+
979
+ self.bert = BertModel(config)
980
+ self.cls = BertOnlyMLMHead(config)
981
+
982
+ self.init_weights()
983
+
984
+ def get_output_embeddings(self):
985
+ return self.cls.predictions.decoder
986
+
987
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
988
+ @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
989
+ def forward(
990
+ self,
991
+ input_ids=None,
992
+ attention_mask=None,
993
+ token_type_ids=None,
994
+ position_ids=None,
995
+ head_mask=None,
996
+ inputs_embeds=None,
997
+ encoder_hidden_states=None,
998
+ encoder_attention_mask=None,
999
+ labels=None,
1000
+ output_attentions=None,
1001
+ output_hidden_states=None,
1002
+ return_dict=None,
1003
+ ):
1004
+ r"""
1005
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
1006
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
1007
+ if the model is configured as a decoder.
1008
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
1009
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask
1010
+ is used in the cross-attention if the model is configured as a decoder.
1011
+ Mask values selected in ``[0, 1]``:
1012
+ ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
1013
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
1014
+ Labels for computing the left-to-right language modeling loss (next word prediction).
1015
+ Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
1016
+ Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
1017
+ in ``[0, ..., config.vocab_size]``
1018
+
1019
+ Returns:
1020
+
1021
+ Example::
1022
+
1023
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
1024
+ >>> import torch
1025
+
1026
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
1027
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
1028
+ >>> config.is_decoder = True
1029
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config, return_dict=True)
1030
+
1031
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1032
+ >>> outputs = model(**inputs)
1033
+
1034
+ >>> prediction_logits = outputs.logits
1035
+ """
1036
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1037
+
1038
+ outputs = self.bert(
1039
+ input_ids,
1040
+ attention_mask=attention_mask,
1041
+ token_type_ids=token_type_ids,
1042
+ position_ids=position_ids,
1043
+ head_mask=head_mask,
1044
+ inputs_embeds=inputs_embeds,
1045
+ encoder_hidden_states=encoder_hidden_states,
1046
+ encoder_attention_mask=encoder_attention_mask,
1047
+ output_attentions=output_attentions,
1048
+ output_hidden_states=output_hidden_states,
1049
+ return_dict=return_dict,
1050
+ )
1051
+
1052
+ sequence_output = outputs[0]
1053
+ prediction_scores = self.cls(sequence_output)
1054
+
1055
+ lm_loss = None
1056
+ if labels is not None:
1057
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1058
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1059
+ labels = labels[:, 1:].contiguous()
1060
+ loss_fct = CrossEntropyLoss()
1061
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1062
+
1063
+ if not return_dict:
1064
+ output = (prediction_scores,) + outputs[2:]
1065
+ return ((lm_loss,) + output) if lm_loss is not None else output
1066
+
1067
+ return CausalLMOutput(
1068
+ loss=lm_loss,
1069
+ logits=prediction_scores,
1070
+ hidden_states=outputs.hidden_states,
1071
+ attentions=outputs.attentions,
1072
+ )
1073
+
1074
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
1075
+ input_shape = input_ids.shape
1076
+
1077
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1078
+ if attention_mask is None:
1079
+ attention_mask = input_ids.new_ones(input_shape)
1080
+
1081
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1082
+
1083
+
1084
+ @add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
1085
+ class BertForMaskedLM(BertPreTrainedModel):
1086
+ def __init__(self, config):
1087
+ super().__init__(config)
1088
+
1089
+ if config.is_decoder:
1090
+ logger.warning(
1091
+ "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
1092
+ "bi-directional self-attention."
1093
+ )
1094
+
1095
+ self.bert = BertModel(config)
1096
+ self.cls = BertOnlyMLMHead(config)
1097
+
1098
+ self.init_weights()
1099
+
1100
+ def get_output_embeddings(self):
1101
+ return self.cls.predictions.decoder
1102
+
1103
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1104
+ @add_code_sample_docstrings(
1105
+ tokenizer_class=_TOKENIZER_FOR_DOC,
1106
+ checkpoint="bert-base-uncased",
1107
+ output_type=MaskedLMOutput,
1108
+ config_class=_CONFIG_FOR_DOC,
1109
+ )
1110
+ def forward(
1111
+ self,
1112
+ input_ids=None,
1113
+ attention_mask=None,
1114
+ token_type_ids=None,
1115
+ position_ids=None,
1116
+ head_mask=None,
1117
+ inputs_embeds=None,
1118
+ encoder_hidden_states=None,
1119
+ encoder_attention_mask=None,
1120
+ labels=None,
1121
+ output_attentions=None,
1122
+ output_hidden_states=None,
1123
+ return_dict=None,
1124
+ **kwargs
1125
+ ):
1126
+ r"""
1127
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
1128
+ Labels for computing the masked language modeling loss.
1129
+ Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
1130
+ Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
1131
+ in ``[0, ..., config.vocab_size]``
1132
+ kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
1133
+ Used to hide legacy arguments that have been deprecated.
1134
+ """
1135
+ if "masked_lm_labels" in kwargs:
1136
+ warnings.warn(
1137
+ "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
1138
+ FutureWarning,
1139
+ )
1140
+ labels = kwargs.pop("masked_lm_labels")
1141
+ assert "lm_labels" not in kwargs, "Use `BertWithLMHead` for autoregressive language modeling task."
1142
+ assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
1143
+
1144
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1145
+
1146
+ outputs = self.bert(
1147
+ input_ids,
1148
+ attention_mask=attention_mask,
1149
+ token_type_ids=token_type_ids,
1150
+ position_ids=position_ids,
1151
+ head_mask=head_mask,
1152
+ inputs_embeds=inputs_embeds,
1153
+ encoder_hidden_states=encoder_hidden_states,
1154
+ encoder_attention_mask=encoder_attention_mask,
1155
+ output_attentions=output_attentions,
1156
+ output_hidden_states=output_hidden_states,
1157
+ return_dict=return_dict,
1158
+ )
1159
+
1160
+ sequence_output = outputs[0]
1161
+ prediction_scores = self.cls(sequence_output)
1162
+
1163
+ masked_lm_loss = None
1164
+ if labels is not None:
1165
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1166
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1167
+
1168
+ if not return_dict:
1169
+ output = (prediction_scores,) + outputs[2:]
1170
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1171
+
1172
+ return MaskedLMOutput(
1173
+ loss=masked_lm_loss,
1174
+ logits=prediction_scores,
1175
+ hidden_states=outputs.hidden_states,
1176
+ attentions=outputs.attentions,
1177
+ )
1178
+
1179
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
1180
+ input_shape = input_ids.shape
1181
+ effective_batch_size = input_shape[0]
1182
+
1183
+ # add a dummy token
1184
+ assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
1185
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
1186
+ dummy_token = torch.full(
1187
+ (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
1188
+ )
1189
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1190
+
1191
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1192
+
1193
+
1194
+ @add_start_docstrings(
1195
+ """Bert Model with a `next sentence prediction (classification)` head on top. """,
1196
+ BERT_START_DOCSTRING,
1197
+ )
1198
+ class BertForNextSentencePrediction(BertPreTrainedModel):
1199
+ def __init__(self, config):
1200
+ super().__init__(config)
1201
+
1202
+ self.bert = BertModel(config)
1203
+ self.cls = BertOnlyNSPHead(config)
1204
+
1205
+ self.init_weights()
1206
+
1207
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1208
+ @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
1209
+ def forward(
1210
+ self,
1211
+ input_ids=None,
1212
+ attention_mask=None,
1213
+ token_type_ids=None,
1214
+ position_ids=None,
1215
+ head_mask=None,
1216
+ inputs_embeds=None,
1217
+ next_sentence_label=None,
1218
+ output_attentions=None,
1219
+ output_hidden_states=None,
1220
+ return_dict=None,
1221
+ ):
1222
+ r"""
1223
+ next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
1224
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
1225
+ Indices should be in ``[0, 1]``.
1226
+ ``0`` indicates sequence B is a continuation of sequence A,
1227
+ ``1`` indicates sequence B is a random sequence.
1228
+
1229
+ Returns:
1230
+
1231
+ Example::
1232
+
1233
+ >>> from transformers import BertTokenizer, BertForNextSentencePrediction
1234
+ >>> import torch
1235
+
1236
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
1237
+ >>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased', return_dict=True)
1238
+
1239
+ >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
1240
+ >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
1241
+ >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
1242
+
1243
+ >>> outputs = model(**encoding, next_sentence_label=torch.LongTensor([1]))
1244
+ >>> logits = outputs.logits
1245
+ >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
1246
+ """
1247
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1248
+
1249
+ outputs = self.bert(
1250
+ input_ids,
1251
+ attention_mask=attention_mask,
1252
+ token_type_ids=token_type_ids,
1253
+ position_ids=position_ids,
1254
+ head_mask=head_mask,
1255
+ inputs_embeds=inputs_embeds,
1256
+ output_attentions=output_attentions,
1257
+ output_hidden_states=output_hidden_states,
1258
+ return_dict=return_dict,
1259
+ )
1260
+
1261
+ pooled_output = outputs[1]
1262
+
1263
+ seq_relationship_scores = self.cls(pooled_output)
1264
+
1265
+ next_sentence_loss = None
1266
+ if next_sentence_label is not None:
1267
+ loss_fct = CrossEntropyLoss()
1268
+ next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), next_sentence_label.view(-1))
1269
+
1270
+ if not return_dict:
1271
+ output = (seq_relationship_scores,) + outputs[2:]
1272
+ return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
1273
+
1274
+ return NextSentencePredictorOutput(
1275
+ loss=next_sentence_loss,
1276
+ logits=seq_relationship_scores,
1277
+ hidden_states=outputs.hidden_states,
1278
+ attentions=outputs.attentions,
1279
+ )
1280
+
1281
+
1282
+ @add_start_docstrings(
1283
+ """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
1284
+ the pooled output) e.g. for GLUE tasks. """,
1285
+ BERT_START_DOCSTRING,
1286
+ )
1287
+ class BertForSequenceClassification(BertPreTrainedModel):
1288
+ def __init__(self, config):
1289
+ super().__init__(config)
1290
+ self.num_labels = config.num_labels
1291
+
1292
+ self.bert = BertModel(config)
1293
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1294
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1295
+
1296
+ self.init_weights()
1297
+
1298
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1299
+ @add_code_sample_docstrings(
1300
+ tokenizer_class=_TOKENIZER_FOR_DOC,
1301
+ checkpoint="bert-base-uncased",
1302
+ output_type=SequenceClassifierOutput,
1303
+ config_class=_CONFIG_FOR_DOC,
1304
+ )
1305
+ def forward(
1306
+ self,
1307
+ input_ids=None,
1308
+ attention_mask=None,
1309
+ token_type_ids=None,
1310
+ position_ids=None,
1311
+ head_mask=None,
1312
+ inputs_embeds=None,
1313
+ labels=None,
1314
+ output_attentions=None,
1315
+ output_hidden_states=None,
1316
+ return_dict=None,
1317
+ ):
1318
+ r"""
1319
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
1320
+ Labels for computing the sequence classification/regression loss.
1321
+ Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
1322
+ If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
1323
+ If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1324
+ """
1325
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1326
+
1327
+ outputs = self.bert(
1328
+ input_ids,
1329
+ attention_mask=attention_mask,
1330
+ token_type_ids=token_type_ids,
1331
+ position_ids=position_ids,
1332
+ head_mask=head_mask,
1333
+ inputs_embeds=inputs_embeds,
1334
+ output_attentions=output_attentions,
1335
+ output_hidden_states=output_hidden_states,
1336
+ return_dict=return_dict,
1337
+ )
1338
+
1339
+ pooled_output = outputs[1]
1340
+
1341
+ pooled_output = self.dropout(pooled_output)
1342
+ logits = self.classifier(pooled_output)
1343
+
1344
+ loss = None
1345
+ if labels is not None:
1346
+ if self.num_labels == 1:
1347
+ # We are doing regression
1348
+ loss_fct = MSELoss()
1349
+ loss = loss_fct(logits.view(-1), labels.view(-1))
1350
+ else:
1351
+ loss_fct = CrossEntropyLoss()
1352
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1353
+
1354
+ if not return_dict:
1355
+ output = (logits,) + outputs[2:]
1356
+ return ((loss,) + output) if loss is not None else output
1357
+
1358
+ return SequenceClassifierOutput(
1359
+ loss=loss,
1360
+ logits=logits,
1361
+ hidden_states=outputs.hidden_states,
1362
+ attentions=outputs.attentions,
1363
+ )
1364
+
1365
+
1366
+ @add_start_docstrings(
1367
+ """Bert Model with a multiple choice classification head on top (a linear layer on top of
1368
+ the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
1369
+ BERT_START_DOCSTRING,
1370
+ )
1371
+ class BertForMultipleChoice(BertPreTrainedModel):
1372
+ def __init__(self, config):
1373
+ super().__init__(config)
1374
+
1375
+ self.bert = BertModel(config)
1376
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1377
+ self.classifier = nn.Linear(config.hidden_size, 1)
1378
+
1379
+ self.init_weights()
1380
+
1381
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
1382
+ @add_code_sample_docstrings(
1383
+ tokenizer_class=_TOKENIZER_FOR_DOC,
1384
+ checkpoint="bert-base-uncased",
1385
+ output_type=MultipleChoiceModelOutput,
1386
+ config_class=_CONFIG_FOR_DOC,
1387
+ )
1388
+ def forward(
1389
+ self,
1390
+ input_ids=None,
1391
+ attention_mask=None,
1392
+ token_type_ids=None,
1393
+ position_ids=None,
1394
+ head_mask=None,
1395
+ inputs_embeds=None,
1396
+ labels=None,
1397
+ output_attentions=None,
1398
+ output_hidden_states=None,
1399
+ return_dict=None,
1400
+ ):
1401
+ r"""
1402
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
1403
+ Labels for computing the multiple choice classification loss.
1404
+ Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
1405
+ of the input tensors. (see `input_ids` above)
1406
+ """
1407
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1408
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1409
+
1410
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1411
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1412
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1413
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1414
+ inputs_embeds = (
1415
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1416
+ if inputs_embeds is not None
1417
+ else None
1418
+ )
1419
+
1420
+ outputs = self.bert(
1421
+ input_ids,
1422
+ attention_mask=attention_mask,
1423
+ token_type_ids=token_type_ids,
1424
+ position_ids=position_ids,
1425
+ head_mask=head_mask,
1426
+ inputs_embeds=inputs_embeds,
1427
+ output_attentions=output_attentions,
1428
+ output_hidden_states=output_hidden_states,
1429
+ return_dict=return_dict,
1430
+ )
1431
+
1432
+ pooled_output = outputs[1]
1433
+
1434
+ pooled_output = self.dropout(pooled_output)
1435
+ logits = self.classifier(pooled_output)
1436
+ reshaped_logits = logits.view(-1, num_choices)
1437
+
1438
+ loss = None
1439
+ if labels is not None:
1440
+ loss_fct = CrossEntropyLoss()
1441
+ loss = loss_fct(reshaped_logits, labels)
1442
+
1443
+ if not return_dict:
1444
+ output = (reshaped_logits,) + outputs[2:]
1445
+ return ((loss,) + output) if loss is not None else output
1446
+
1447
+ return MultipleChoiceModelOutput(
1448
+ loss=loss,
1449
+ logits=reshaped_logits,
1450
+ hidden_states=outputs.hidden_states,
1451
+ attentions=outputs.attentions,
1452
+ )
1453
+
1454
+
1455
+ @add_start_docstrings(
1456
+ """Bert Model with a token classification head on top (a linear layer on top of
1457
+ the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
1458
+ BERT_START_DOCSTRING,
1459
+ )
1460
+ class BertForTokenClassification(BertPreTrainedModel):
1461
+ def __init__(self, config):
1462
+ super().__init__(config)
1463
+ self.num_labels = config.num_labels
1464
+
1465
+ self.bert = BertModel(config)
1466
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1467
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1468
+
1469
+ self.init_weights()
1470
+
1471
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1472
+ @add_code_sample_docstrings(
1473
+ tokenizer_class=_TOKENIZER_FOR_DOC,
1474
+ checkpoint="bert-base-uncased",
1475
+ output_type=TokenClassifierOutput,
1476
+ config_class=_CONFIG_FOR_DOC,
1477
+ )
1478
+ def forward(
1479
+ self,
1480
+ input_ids=None,
1481
+ attention_mask=None,
1482
+ token_type_ids=None,
1483
+ position_ids=None,
1484
+ head_mask=None,
1485
+ inputs_embeds=None,
1486
+ labels=None,
1487
+ output_attentions=None,
1488
+ output_hidden_states=None,
1489
+ return_dict=None,
1490
+ ):
1491
+ r"""
1492
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
1493
+ Labels for computing the token classification loss.
1494
+ Indices should be in ``[0, ..., config.num_labels - 1]``.
1495
+ """
1496
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1497
+
1498
+ outputs = self.bert(
1499
+ input_ids,
1500
+ attention_mask=attention_mask,
1501
+ token_type_ids=token_type_ids,
1502
+ position_ids=position_ids,
1503
+ head_mask=head_mask,
1504
+ inputs_embeds=inputs_embeds,
1505
+ output_attentions=output_attentions,
1506
+ output_hidden_states=output_hidden_states,
1507
+ return_dict=return_dict,
1508
+ )
1509
+
1510
+ sequence_output = outputs[0]
1511
+
1512
+ sequence_output = self.dropout(sequence_output)
1513
+ logits = self.classifier(sequence_output)
1514
+
1515
+ loss = None
1516
+ if labels is not None:
1517
+ loss_fct = CrossEntropyLoss()
1518
+ # Only keep active parts of the loss
1519
+ if attention_mask is not None:
1520
+ active_loss = attention_mask.view(-1) == 1
1521
+ active_logits = logits.view(-1, self.num_labels)
1522
+ active_labels = torch.where(
1523
+ active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
1524
+ )
1525
+ loss = loss_fct(active_logits, active_labels)
1526
+ else:
1527
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1528
+
1529
+ if not return_dict:
1530
+ output = (logits,) + outputs[2:]
1531
+ return ((loss,) + output) if loss is not None else output
1532
+
1533
+ return TokenClassifierOutput(
1534
+ loss=loss,
1535
+ logits=logits,
1536
+ hidden_states=outputs.hidden_states,
1537
+ attentions=outputs.attentions,
1538
+ )
1539
+
1540
+
1541
+ @add_start_docstrings(
1542
+ """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1543
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
1544
+ BERT_START_DOCSTRING,
1545
+ )
1546
+ class BertForQuestionAnswering(BertPreTrainedModel):
1547
+ def __init__(self, config):
1548
+ super().__init__(config)
1549
+ self.num_labels = config.num_labels
1550
+
1551
+ self.bert = BertModel(config)
1552
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1553
+
1554
+ self.init_weights()
1555
+
1556
+ @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1557
+ @add_code_sample_docstrings(
1558
+ tokenizer_class=_TOKENIZER_FOR_DOC,
1559
+ checkpoint="bert-base-uncased",
1560
+ output_type=QuestionAnsweringModelOutput,
1561
+ config_class=_CONFIG_FOR_DOC,
1562
+ )
1563
+ def forward(
1564
+ self,
1565
+ input_ids=None,
1566
+ attention_mask=None,
1567
+ token_type_ids=None,
1568
+ position_ids=None,
1569
+ head_mask=None,
1570
+ inputs_embeds=None,
1571
+ start_positions=None,
1572
+ end_positions=None,
1573
+ output_attentions=None,
1574
+ output_hidden_states=None,
1575
+ return_dict=None,
1576
+ ):
1577
+ r"""
1578
+ start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
1579
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1580
+ Positions are clamped to the length of the sequence (`sequence_length`).
1581
+ Position outside of the sequence are not taken into account for computing the loss.
1582
+ end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
1583
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1584
+ Positions are clamped to the length of the sequence (`sequence_length`).
1585
+ Position outside of the sequence are not taken into account for computing the loss.
1586
+ """
1587
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1588
+
1589
+ outputs = self.bert(
1590
+ input_ids,
1591
+ attention_mask=attention_mask,
1592
+ token_type_ids=token_type_ids,
1593
+ position_ids=position_ids,
1594
+ head_mask=head_mask,
1595
+ inputs_embeds=inputs_embeds,
1596
+ output_attentions=output_attentions,
1597
+ output_hidden_states=output_hidden_states,
1598
+ return_dict=return_dict,
1599
+ )
1600
+
1601
+ sequence_output = outputs[0]
1602
+
1603
+ logits = self.qa_outputs(sequence_output)
1604
+ start_logits, end_logits = logits.split(1, dim=-1)
1605
+ start_logits = start_logits.squeeze(-1)
1606
+ end_logits = end_logits.squeeze(-1)
1607
+
1608
+ total_loss = None
1609
+ if start_positions is not None and end_positions is not None:
1610
+ # If we are on multi-GPU, split add a dimension
1611
+ if len(start_positions.size()) > 1:
1612
+ start_positions = start_positions.squeeze(-1)
1613
+ if len(end_positions.size()) > 1:
1614
+ end_positions = end_positions.squeeze(-1)
1615
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1616
+ ignored_index = start_logits.size(1)
1617
+ start_positions.clamp_(0, ignored_index)
1618
+ end_positions.clamp_(0, ignored_index)
1619
+
1620
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1621
+ start_loss = loss_fct(start_logits, start_positions)
1622
+ end_loss = loss_fct(end_logits, end_positions)
1623
+ total_loss = (start_loss + end_loss) / 2
1624
+
1625
+ if not return_dict:
1626
+ output = (start_logits, end_logits) + outputs[2:]
1627
+ return ((total_loss,) + output) if total_loss is not None else output
1628
+
1629
+ return QuestionAnsweringModelOutput(
1630
+ loss=total_loss,
1631
+ start_logits=start_logits,
1632
+ end_logits=end_logits,
1633
+ hidden_states=outputs.hidden_states,
1634
+ attentions=outputs.attentions,
1635
+ )