text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"] _import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_chinese_clip"] = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/chinese_clip/__init__.py/0
{ "file_path": "transformers/src/transformers/models/chinese_clip/__init__.py", "repo_id": "transformers", "token_count": 1106 }
335
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for CLVP """ from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging logger = logging.get_logger(__name__) class ClvpFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a CLVP feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short Time Fourier Transform` which should match pytorch's `torch.stft` equivalent. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 22050): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). default_audio_length (`int`, *optional*, defaults to 6): The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will automatically be set to default_audio_length * `self.sampling_rate`. hop_length (`int`, *optional*, defaults to 256): Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. chunk_length (`int`, *optional*, defaults to 30): The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio sequences. n_fft (`int`, *optional*, defaults to 1024): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. mel_norms (`list` of length `feature_size`, *optional*): If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each mel-filter. return_attention_mask (`bool`, *optional*, defaults to `False`): Whether to return the attention mask. If left to the default, it will return the attention mask. [What are attention masks?](../glossary#attention-mask) """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=22050, default_audio_length=6, hop_length=256, chunk_length=30, n_fft=1024, padding_value=0.0, mel_norms=None, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.n_fft = n_fft self.hop_length = hop_length self.chunk_length = chunk_length self.n_samples = chunk_length * sampling_rate self.nb_max_frames = self.n_samples // hop_length self.sampling_rate = sampling_rate self.default_audio_length = default_audio_length self.mel_norms = mel_norms self.mel_filters = mel_filter_bank( num_frequency_bins=1 + (n_fft // 2), num_mel_filters=feature_size, min_frequency=0.0, max_frequency=8000.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="htk", ) def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: """ This method first computes the log-mel spectrogram of the provided audio then applies normalization along the each mel-filterbank, if `mel_norms` is provided. """ log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel=None, ) log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None)) if self.mel_norms is not None: log_spec = log_spec / np.array(self.mel_norms)[:, None] return log_spec def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], sampling_rate: Optional[int] = None, truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = True, padding: Optional[str] = "max_length", max_length: Optional[int] = None, **kwargs, ) -> BatchFeature: """ `ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`. First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length` seconds long and then the log-mel spectrogram is extracted from it. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. truncation (`bool`, *optional*, default to `True`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*, defaults to `True`): Whether to return the attention mask. If left to the default, it will return the attention mask. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. padding_value (`float`, defaults to 0.0): The value that is used to fill the padding values / vectors. max_length (`int`, *optional*): The maximum input length of the inputs. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] batched_speech = BatchFeature({"input_features": raw_speech}) max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length padded_inputs = self.pad( batched_speech, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) # make sure list is in array format input_features = padded_inputs.get("input_features").transpose(2, 0, 1) input_features = [ self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0] ] if isinstance(input_features[0], List): padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features] else: padded_inputs["input_features"] = input_features return padded_inputs.convert_to_tensors(return_tensors)
transformers/src/transformers/models/clvp/feature_extraction_clvp.py/0
{ "file_path": "transformers/src/transformers/models/clvp/feature_extraction_clvp.py", "repo_id": "transformers", "token_count": 4454 }
336
# coding=utf-8 # Copyright 2024 Cohere team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is based on the tokenization_llama_fast.py file in transformers import pickle from typing import Dict, List, Literal, Union from tokenizers import processors from ...pipelines.conversational import Conversation from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from ...utils.versions import require_version require_version("tokenizers>=0.13.3") logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "tokenizer_file": { "Cohere/Command-nightly": "https://huggingface.co/Cohere/Command-nightly/blob/main/tokenizer.json", }, } # fmt: off DEFAULT_SYSTEM_PROMPT = "You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere." DEFAULT_RAG_PREAMBLE = """## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.""" # fmt: on class CohereTokenizerFast(PreTrainedTokenizerFast): """ Construct a Cohere tokenizer. Based on byte-level Byte-Pair-Encoding. This uses notably ByteFallback and NFC normalization. ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") >>> tokenizer.encode("Hello this is a test") [5, 28339, 2075, 1801, 1671, 3282] ``` If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the values of the first token and final token of an encoded sequence will not be correct). For more details, checkout [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<UNK>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<BOS_TOKEN>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|END_OF_TURN_TOKEN|>"`): The end of sequence token. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Cohere tokenizer should be used. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not the tokenizer should automatically add a prefix space """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP padding_side = "left" model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = None # No `max_model_input_sizes` def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, clean_up_tokenization_spaces=False, unk_token="<UNK>", bos_token="<BOS_TOKEN>", eos_token="<|END_OF_TURN_TOKEN|>", add_bos_token=True, add_eos_token=False, use_default_system_prompt=False, add_prefix_space=False, **kwargs, ): super().__init__( vocab_file=vocab_file, merges_file=merges_file, tokenizer_file=tokenizer_file, clean_up_tokenization_spaces=clean_up_tokenization_spaces, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, use_default_system_prompt=use_default_system_prompt, add_prefix_space=add_prefix_space, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.update_post_processor() self.use_default_system_prompt = use_default_system_prompt self.vocab_file = vocab_file self.grounded_generation_template = kwargs.pop("grounded_generation_template", None) self.tool_use_template = kwargs.pop("tool_use_template", None) # TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly # check this as they were green before. pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer) decoder_state = pickle.dumps(self.backend_tokenizer.decoder) if add_prefix_space: pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state) self.backend_tokenizer.decoder = pickle.loads(decoder_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def update_post_processor(self): """ Updates the underlying post processor with the current `bos_token` and `eos_token`. """ bos = self.bos_token bos_token_id = self.bos_token_id if bos is None and self.add_bos_token: raise ValueError("add_bos_token = True but bos_token = None") eos = self.eos_token eos_token_id = self.eos_token_id if eos is None and self.add_eos_token: raise ValueError("add_eos_token = True but eos_token = None") single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" special_tokens = [] if self.add_bos_token: special_tokens.append((bos, bos_token_id)) if self.add_eos_token: special_tokens.append((eos, eos_token_id)) self._tokenizer.post_processor = processors.TemplateProcessing( single=single, pair=pair, special_tokens=special_tokens ) @property def add_eos_token(self): return self._add_eos_token @property def add_bos_token(self): return self._add_bos_token @add_eos_token.setter def add_eos_token(self, value): self._add_eos_token = value self.update_post_processor() @add_bos_token.setter def add_bos_token(self, value): self._add_bos_token = value self.update_post_processor() @property def default_chat_template(self): """ Cohere Tokenizer uses <|START_OF_TURN_TOKEN|> and <|END_OF_TURN_TOKEN|> to indicate each turn in a chat. Additioanlly, to indicate the source of the message, <|USER_TOKEN|>, <|CHATBOT_TOKEN|> and <|SYSTEM_TOKEN|> for user, assitant and system messages respectively. The output should look something like: <|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ preamble }}<|END_OF_TURN_TOKEN|><BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ How are you? }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ I am doing well! }}<|END_OF_TURN_TOKEN|> Use add_generation_prompt to add a prompt for the model to generate a response: >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") >>> messages = [{"role": "user", "content": "Hello, how are you?"}] >>> tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) '<BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) default_template = ( "{{ bos_token }}" "{% if messages[0]['role'] == 'system' %}" "{% set loop_messages = messages[1:] %}" # Extract system message if it's present "{% set system_message = messages[0]['content'] %}" "{% elif USE_DEFAULT_PROMPT == true %}" "{% set loop_messages = messages %}" # Or use the default system message if the flag is set "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" "{% else %}" "{% set loop_messages = messages %}" "{% set system_message = false %}" "{% endif %}" "{% if system_message != false %}" # Start with system message "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}" "{% endif %}" "{% for message in loop_messages %}" # Loop over all non-system messages "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" "{% endif %}" "{% set content = message['content'] %}" "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% elif message['role'] == 'assistant' %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% endif %}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" "{% endif %}" ) default_template = default_template.replace( "USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false" ) default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") default_template = default_template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) tool_use_template = ( "{{ bos_token }}" "{% if messages[0]['role'] == 'system' %}" "{% set loop_messages = messages[1:] %}" # Extract system message if it's present "{% set system_message = messages[0]['content'] %}" "{% else %}" "{% set loop_messages = messages %}" "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" "{% endif %}" "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" "{{ '# Safety Preamble' }}" "{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}" "{{ '\n\n# System Preamble' }}" "{{ '\n## Basic Rules' }}" "{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}" "{{ '\n\n# User Preamble' }}" "{{ '\n' + system_message }}" "{{'\n\n## Available Tools\nHere is a list of tools that you have available to you:\n\n'}}" "{% for tool in tools %}" "{% if loop.index0 != 0 %}" "{{ '\n\n'}}" "{% endif %}" "{{'```python\ndef ' + tool.name + '('}}" "{% for param_name, param_fields in tool.parameter_definitions.items() %}" "{% if loop.index0 != 0 %}" "{{ ', '}}" "{% endif %}" "{{param_name}}: " "{% if not param_fields.required %}" "{{'Optional[' + param_fields.type + '] = None'}}" "{% else %}" "{{ param_fields.type }}" "{% endif %}" "{% endfor %}" '{{ \') -> List[Dict]:\n """\'}}' "{{ tool.description }}" "{% if tool.parameter_definitions|length != 0 %}" "{{ '\n\n Args:\n '}}" "{% for param_name, param_fields in tool.parameter_definitions.items() %}" "{% if loop.index0 != 0 %}" "{{ '\n ' }}" "{% endif %}" "{{ param_name + ' ('}}" "{% if not param_fields.required %}" "{{'Optional[' + param_fields.type + ']'}}" "{% else %}" "{{ param_fields.type }}" "{% endif %}" "{{ '): ' + param_fields.description }}" "{% endfor %}" "{% endif %}" '{{ \'\n """\n pass\n```\' }}' "{% endfor %}" "{{ '<|END_OF_TURN_TOKEN|>'}}" "{% for message in loop_messages %}" "{% set content = message['content'] %}" "{% if message['role'] == 'user' %}" "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% elif message['role'] == 'system' %}" "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% elif message['role'] == 'assistant' %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% endif %}" "{% endfor %}" "{{'<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write \\'Action:\\' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user\\'s last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:\n```json\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]```<|END_OF_TURN_TOKEN|>'}}" "{% if add_generation_prompt %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" "{% endif %}" ) default_tool_message = DEFAULT_RAG_PREAMBLE.replace("\n", "\\n").replace("'", "\\'") tool_use_template = tool_use_template.replace("DEFAULT_SYSTEM_MESSAGE", default_tool_message) rag_template = ( "{{ bos_token }}" "{% if messages[0]['role'] == 'system' %}" "{% set loop_messages = messages[1:] %}" # Extract system message if it's present "{% set system_message = messages[0]['content'] %}" "{% else %}" "{% set loop_messages = messages %}" "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" "{% endif %}" "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" "{{ '# Safety Preamble' }}" "{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}" "{{ '\n\n# System Preamble' }}" "{{ '\n## Basic Rules' }}" "{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}" "{{ '\n\n# User Preamble' }}" "{{ '\n' + system_message }}" "{{ '<|END_OF_TURN_TOKEN|>'}}" "{% for message in loop_messages %}" # Loop over all non-system messages "{% set content = message['content'] %}" "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% elif message['role'] == 'system' %}" "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% elif message['role'] == 'assistant' %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" "{% endif %}" "{% endfor %}" "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>'}}" "{{ '<results>' }}" "{% for document in documents %}" # Loop over all non-system messages "{{ '\nDocument: ' }}" "{{ loop.index0 }}\n" "{% for key, value in document.items() %}" "{{ key }}: {{value}}\n" "{% endfor %}" "{% endfor %}" "{{ '</results>'}}" "{{ '<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" "{{ 'Carefully perform the following instructions, in order, starting each with a new line.\n' }}" "{{ 'Firstly, Decide which of the retrieved documents are relevant to the user\\'s last input by writing \\'Relevant Documents:\\' followed by comma-separated list of document numbers. If none are relevant, you should instead write \\'None\\'.\n' }}" "{{ 'Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user\\'s last input by writing \\'Cited Documents:\\' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write \\'None\\'.\n' }}" "{% if citation_mode=='accurate' %}" "{{ 'Thirdly, Write \\'Answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.\n' }}" "{% endif %}" "{{ 'Finally, Write \\'Grounded answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.' }}" "{{ '<|END_OF_TURN_TOKEN|>' }}" "{% if add_generation_prompt %}" "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" "{% endif %}" ) default_rag_message = DEFAULT_RAG_PREAMBLE.replace("\n", "\\n").replace("'", "\\'") rag_template = rag_template.replace("DEFAULT_SYSTEM_MESSAGE", default_rag_message) return {"default": default_template, "tool_use": tool_use_template, "rag": rag_template} def apply_tool_use_template( self, conversation: Union[List[Dict[str, str]], "Conversation"], tools: List[Dict], **kwargs, ) -> Union[str, List[int]]: """Create a Command-R tool-use prompt. Once rendered, the prompt instructs the model to generate a list of actions to perform on a set of user supplied tools to help carry out the user's requests. Conceptually, this works in the same way as `apply_chat_format`, but takes an additional `tools` parameter. Converts a Conversation object or a list of dictionaries with `"role"` and `"content"` keys and a list of available tools for the model to use into a prompt string, or a list of token ids. This method will use the tokenizer's `default_tool_use_template` template specified at the class level. You can override the default template using the `tool_use_template` kwarg but the quality of your results may decrease. Args: conversation (Union[List[Dict[str, str]], "Conversation"]): A Conversation object or list of dicts with "role" and "content" keys, representing the chat history so far. tools (List[Dict]): a list of tools to render into the prompt for the model to choose from. See an example at the bottom of the docstring. The format should be: * name (str): The name of the tool to be called. Valid names contain only the characters a-z, A-Z, 0-9, _ and must not begin with a digit. * description (str): The description of what the tool does, the model uses the description to choose when and how to call the function. * parameter_definitions (List[Dict]): The input parameters of the tool. Accepts a dictionary where the key is the name of the parameter and the value is the parameter spec. Valid parameter names contain only the characters a-z, A-Z, 0-9, _ and must not begin with a digit. Parameter specs are as follows: * description (str): The description of the parameter. * type (str): the type of the parameter - most effective for python builtin data types, such as 'str', 'bool' * required: boolean: Denotes whether the parameter is always present (required) or not. Defaults to not required. add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate the start of an assistant message. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. tokenize (`bool`, defaults to `True`): Whether to tokenize the output. If `False`, the output will be a string. padding (`bool`, defaults to `False`): Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. truncation (`bool`, defaults to `False`): Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. max_length (`int`, *optional*): Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If not specified, the tokenizer's `max_length` attribute will be used as a default. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable values are: - `'tf'`: Return TensorFlow `tf.Tensor` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. return_dict (`bool`, *optional*, defaults to `False`): Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. **tokenizer_kwargs: Additional kwargs to pass to the tokenizer. Returns: `str`: A rendered prompt string. or if tokenize=True: `List[int]`: A list of token ids representing the tokenized chat so far, including control tokens. This output is ready to pass to the model, either directly or via methods like `generate()`. Examples: ```python >> tokenizer = CohereTokenizerFast.from_pretrained("CohereForAI/c4ai-command-r-v01") >> tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": "str", "required": True } } }, { "name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", "parameter_definitions": {} } ] >> conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] >> # render the prompt, ready for user to inspect, or for input into the model: >> prompt = tokenizer.apply_tool_use_template(conversation, tools=tools, tokenize=False, add_generation_prompt=True) >> print(prompt) <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: \\`\\`\\`python def internet_search(query: str) -> List[Dict]: \"\"\"Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with \"\"\" pass \\`\\`\\` \\`\\`\\`python def directly_answer() -> List[Dict]: \"\"\"Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history \"\"\" pass \\`\\`\\`<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: \\`\\`\\`json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]\\`\\`\\`<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ``` >> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') >> outputs = model.generate(inputs, max_new_tokens=128) >> print(tokenizer.decode(outputs[0])) Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` """ return self.apply_chat_template( conversation, chat_template="tool_use", tools=tools, **kwargs, ) def apply_grounded_generation_template( self, conversation: Union[List[Dict[str, str]], "Conversation"], documents: List[Dict], citation_mode: Literal["fast", "accurate"] = "accurate", **kwargs, ) -> Union[str, List[int]]: """Create a Command-R grounded generation (aka RAG) prompt. Once rendered, the prompt instructs the model to generate a response with citations in, based on supplied documents. Conceptually, this works in the same way as `apply_chat_format`, but takes additional `documents` and parameter `citation_mode` parameters. Converts a Conversation object or a list of dictionaries with `"role"` and `"content"` keys and a list of documents for the model to ground its response on into a prompt string, or a list of token ids. This method will use the tokenizer's `grounded_generation_template` template specified at the class level. You can override the default template using the `grounded_generation_template` kwarg but the quality of your results may decrease. Args: conversation (Union[List[Dict[str, str]], "Conversation"]): A Conversation object or list of dicts with "role" and "content" keys, representing the chat history so far. documents (List[Dict[str, str]): A list of dicts, representing documents or tool outputs to ground your generation on. A document is a semistructured dict, wiht a string to string mapping. Common fields are `url`, `title`, `snippet` etc but should be descriptive of the key. They will get rendered into the prompt. citation_mode: either "accurate" (prompt the model to generate an answer first, then rewrite it with citation spans in) or "fast", where the prompt instructs the model to generate an answer with citations in directly. The former has higher quality citations, the latter requires fewer tokens to be generated. add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate the start of an assistant message. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. tokenize (`bool`, defaults to `True`): Whether to tokenize the output. If `False`, the output will be a string. padding (`bool`, defaults to `False`): Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. truncation (`bool`, defaults to `False`): Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. max_length (`int`, *optional*): Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If not specified, the tokenizer's `max_length` attribute will be used as a default. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable values are: - `'tf'`: Return TensorFlow `tf.Tensor` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. return_dict (`bool`, *optional*, defaults to `False`): Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. **tokenizer_kwargs: Additional kwargs to pass to the tokenizer. Returns: `str`: A rendered prompt string. or if tokenize=True: `List[int]`: A list of token ids representing the tokenized chat so far, including control tokens. This output is ready to pass to the model, either directly or via methods like `generate()`. Examples: ```python >> tokenizer = CohereTokenizerFast.from_pretrained('CohereForAI/c4ai-command-r-v01') >> # define documents: >> documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] >> # define a conversation: >> conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] >> # render the prompt, ready for user to inspect, or for input into the model: >> grounded_generation_prompt = tokenizer.apply_grounded_generation_template(conversation, documents=documents, tokenize=False, add_generation_prompt=True) >> print(grounded_generation_prompt) <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>''' ``` >> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') >> outputs = model.generate(inputs, max_new_tokens=128) >> print(tokenizer.decode(outputs[0])) Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> """ return self.apply_chat_template( conversation, chat_template="rag", documents=documents, citation_mode=citation_mode, **kwargs, ) # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output
transformers/src/transformers/models/cohere/tokenization_cohere_fast.py/0
{ "file_path": "transformers/src/transformers/models/cohere/tokenization_cohere_fast.py", "repo_id": "transformers", "token_count": 16814 }
337
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ConvNext checkpoints from the original repository. URL: https://github.com/facebookresearch/ConvNeXt""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_convnext_config(checkpoint_url): config = ConvNextConfig() if "tiny" in checkpoint_url: depths = [3, 3, 9, 3] hidden_sizes = [96, 192, 384, 768] if "small" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [96, 192, 384, 768] if "base" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [128, 256, 512, 1024] if "large" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [192, 384, 768, 1536] if "xlarge" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [256, 512, 1024, 2048] if "1k" in checkpoint_url: num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) else: num_labels = 21841 filename = "imagenet-22k-id2label.json" expected_shape = (1, 21841) repo_id = "huggingface/label-files" config.num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} if "1k" not in checkpoint_url: # this dataset contains 21843 labels but the model only has 21841 # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 del id2label[9205] del id2label[15027] config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.hidden_sizes = hidden_sizes config.depths = depths return config, expected_shape def rename_key(name): if "downsample_layers.0.0" in name: name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") if "downsample_layers.0.1" in name: name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on if "downsample_layers.1.0" in name: name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") if "downsample_layers.1.1" in name: name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") if "downsample_layers.2.0" in name: name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") if "downsample_layers.2.1" in name: name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") if "downsample_layers.3.0" in name: name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") if "downsample_layers.3.1" in name: name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") if "stages" in name and "downsampling_layer" not in name: # stages.0.0. for instance should be renamed to stages.0.layers.0. name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] if "stages" in name: name = name.replace("stages", "encoder.stages") if "norm" in name: name = name.replace("norm", "layernorm") if "gamma" in name: name = name.replace("gamma", "layer_scale_parameter") if "head" in name: name = name.replace("head", "classifier") return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ConvNext structure. """ # define ConvNext configuration based on URL config, expected_shape = get_convnext_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # add prefix to all keys expect classifier head for key in state_dict.copy().keys(): val = state_dict.pop(key) if not key.startswith("classifier"): key = "convnext." + key state_dict[key] = val # load HuggingFace model model = ConvNextForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image, prepared by ConvNextImageProcessor size = 224 if "224" in checkpoint_url else 384 image_processor = ConvNextImageProcessor(size=size) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values logits = model(pixel_values).logits # note: the logits below were obtained without center cropping if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth": expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth": expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth": expected_logits = torch.tensor([0.4525, 0.7539, 0.0308]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth": expected_logits = torch.tensor([0.3561, 0.6350, -0.0384]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth": expected_logits = torch.tensor([0.4174, -0.0989, 0.1489]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth": expected_logits = torch.tensor([0.2513, -0.1349, -0.1613]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth": expected_logits = torch.tensor([1.2980, 0.3631, -0.1198]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth": expected_logits = torch.tensor([1.2963, 0.1227, 0.1723]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth": expected_logits = torch.tensor([1.7956, 0.8390, 0.2820]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth": expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth": expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth": expected_logits = torch.tensor([0.2681, 0.2365, 0.6246]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth": expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth": expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth": expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444]) else: raise ValueError(f"Unknown URL: {checkpoint_url}") assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3) assert logits.shape == expected_shape Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) print("Pushing model to the hub...") model_name = "convnext" if "tiny" in checkpoint_url: model_name += "-tiny" elif "small" in checkpoint_url: model_name += "-small" elif "base" in checkpoint_url: model_name += "-base" elif "xlarge" in checkpoint_url: model_name += "-xlarge" elif "large" in checkpoint_url: model_name += "-large" if "224" in checkpoint_url: model_name += "-224" elif "384" in checkpoint_url: model_name += "-384" if "22k" in checkpoint_url and "1k" not in checkpoint_url: model_name += "-22k" if "22k" in checkpoint_url and "1k" in checkpoint_url: model_name += "-22k-1k" model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add model", ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", type=str, help="URL of the original ConvNeXT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) args = parser.parse_args() convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py", "repo_id": "transformers", "token_count": 4224 }
338
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CPMAnt.""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openbmb/cpm-ant-10b": 1024, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class WordpieceTokenizer(object): def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, token): chars = list(token) if len(chars) > self.max_input_chars_per_word: return [self.unk_token] start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(cur_substr) start = end return sub_tokens class CpmAntTokenizer(PreTrainedTokenizer): """ Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. bod_token (`str`, *optional*, defaults to `"<d>"`): The beginning of document token. eod_token (`str`, *optional*, defaults to `"</d>"`): The end of document token. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. line_token (`str`, *optional*, defaults to `"</n>"`): The line token. space_token (`str`, *optional*, defaults to `"</_>"`): The space token. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] add_prefix_space = False def __init__( self, vocab_file, bod_token="<d>", eod_token="</d>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", unk_token="<unk>", line_token="</n>", space_token="</_>", padding_side="left", **kwargs, ): requires_backends(self, ["jieba"]) self.bod_token = bod_token self.eod_token = eod_token self.encoder = load_vocab(vocab_file) self.encoder[" "] = self.encoder[space_token] self.encoder["\n"] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) self.decoder = {v: k for k, v in self.encoder.items()} self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token) super().__init__( bod_token=bod_token, eod_token=eod_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, line_token=line_token, space_token=space_token, padding_side=padding_side, **kwargs, ) @property def bod_token_id(self): return self.encoder[self.bod_token] @property def eod_token_id(self): return self.encoder[self.eod_token] @property def newline_id(self): return self.encoder["\n"] @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def _tokenize(self, text): """Tokenize a string.""" output_tokens = [] for x in jieba.cut(text, cut_all=False): output_tokens.extend(self.wordpiece_tokenizer.tokenize(x)) return output_tokens def _decode(self, token_ids, **kwargs): """Decode ids into a string.""" token_ids = [i for i in token_ids if i >= 0] token_ids = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(token_ids, **kwargs) def check(self, token): return token in self.encoder def convert_tokens_to_string(self, tokens: List[str]) -> str: return "".join(tokens) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory index = 0 if " " in self.encoder: self.encoder["</_>"] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: self.encoder["</n>"] = self.encoder["\n"] del self.encoder["\n"] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CPMAnt sequence has the following format: - single sequence: `[BOS] Sequence`. Args: token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added. token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: return [self.bos_token_id] + token_ids_0 return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0))
transformers/src/transformers/models/cpmant/tokenization_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/tokenization_cpmant.py", "repo_id": "transformers", "token_count": 4580 }
339
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert data2vec checkpoint.""" import argparse import os import pathlib import fairseq import torch from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import ( Data2VecTextConfig, Data2VecTextForMaskedLM, Data2VecTextForSequenceClassification, Data2VecTextModel, ) from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) # IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz # File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" def convert_data2vec_checkpoint_to_pytorch( data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool ): """ Copy/paste/tweak data2vec's weights to our BERT structure. """ data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path) data2vec = Data2VecTextModel.from_pretrained( data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name ) data2vec.eval() # disable dropout data2vec_model = data2vec.models[0] data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder config = Data2VecTextConfig( vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings, hidden_size=data2vec_model.args.encoder_embed_dim, num_hidden_layers=data2vec_model.args.encoder_layers, num_attention_heads=data2vec_model.args.encoder_attention_heads, intermediate_size=data2vec_model.args.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) if classification_head: config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our BERT config:", config) model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config) model.eval() # Now let's copy all the weights. # Embeddings model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like( model.data2vec_text.embeddings.token_type_embeddings.weight ) # just zero them out b/c data2vec doesn't use them. model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: BertLayer = model.data2vec_text.encoder.layer[i] data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i] # self attention self_attn: BertSelfAttention = layer.attention.self assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.k_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.q_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.v_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias # self-attention output self_output: BertSelfOutput = layer.attention.output assert ( self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape ), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}" self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias # intermediate intermediate: BertIntermediate = layer.intermediate assert ( intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape ), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}" intermediate.dense.weight = data2vec_layer.fc1.weight intermediate.dense.bias = data2vec_layer.fc1.bias # output bert_output: BertOutput = layer.output assert ( bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape ), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}" bert_output.dense.weight = data2vec_layer.fc2.weight bert_output.dense.bias = data2vec_layer.fc2.bias bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias # end of layer if classification_head: model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias else: # LM Head model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias # Let's check that we get the same results. input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1 our_output = model(input_ids)[0] if classification_head: their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids)) else: their_output = data2vec_model(input_ids)[0] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) args = parser.parse_args() convert_data2vec_checkpoint_to_pytorch( args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3894 }
340
# coding=utf-8 # Copyright 2020 Microsoft and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model DeBERTa.""" import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as sp from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/spm.model", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/spm.model", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/spm.model" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/spm.model" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/deberta-v2-xlarge": 512, "microsoft/deberta-v2-xxlarge": 512, "microsoft/deberta-v2-xlarge-mnli": 512, "microsoft/deberta-v2-xxlarge-mnli": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/deberta-v2-xlarge": {"do_lower_case": False}, "microsoft/deberta-v2-xxlarge": {"do_lower_case": False}, "microsoft/deberta-v2-xlarge-mnli": {"do_lower_case": False}, "microsoft/deberta-v2-xxlarge-mnli": {"do_lower_case": False}, } VOCAB_FILES_NAMES = {"vocab_file": "spm.model"} class DebertaV2Tokenizer(PreTrainedTokenizer): r""" Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. bos_token (`string`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. eos_token (`string`, *optional*, defaults to `"[SEP]"`): The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=False, split_by_punct=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_lower_case = do_lower_case self.split_by_punct = split_by_punct self.vocab_file = vocab_file self._tokenizer = SPMTokenizer( vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs ) unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token super().__init__( do_lower_case=do_lower_case, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._tokenizer.special_tokens = self.all_special_tokens @property def vocab_size(self): return len(self.vocab) @property def vocab(self): return self._tokenizer.vocab def get_vocab(self): vocab = self.vocab.copy() vocab.update(self.get_added_vocab()) return vocab def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" if self.do_lower_case: text = text.lower() return self._tokenizer.tokenize(text) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self._tokenizer.spm.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" return self._tokenizer.decode(tokens) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", False) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix) class SPMTokenizer: r""" Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ def __init__( self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None ): self.split_by_punct = split_by_punct self.vocab_file = vocab_file self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) if not os.path.exists(vocab_file): raise FileNotFoundError(f"{vocab_file} does not exist!") spm.load(vocab_file) bpe_vocab_size = spm.GetPieceSize() # Token map # <unk> 0+1 # <s> 1+1 # </s> 2+1 self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)} self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)] # self.vocab['[PAD]'] = 0 # self.vocab['[CLS]'] = 1 # self.vocab['[SEP]'] = 2 # self.vocab['[UNK]'] = 3 self.spm = spm self.special_tokens = special_tokens def __getstate__(self): state = self.__dict__.copy() state["spm"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) self.spm.Load(self.vocab_file) def tokenize(self, text): return self._encode_as_pieces(text) def convert_ids_to_tokens(self, ids): tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens def decode(self, tokens, start=-1, end=-1, raw_text=None): if raw_text is None: current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.special_tokens: if not prev_is_special: out_string += " " out_string += self.spm.decode_pieces(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.spm.decode_pieces(current_sub_tokens) return out_string.strip() else: words = self.split_to_words(raw_text) word_tokens = [self.tokenize(w) for w in words] token2words = [0] * len(tokens) tid = 0 for i, w in enumerate(word_tokens): for k, t in enumerate(w): token2words[tid] = i tid += 1 word_start = token2words[start] word_end = token2words[end] if end < len(tokens) else len(words) text = "".join(words[word_start:word_end]) return text # TODO add a deprecation cycle as this can have different behaviour from our API def add_special_token(self, token): if token not in self.special_tokens: self.special_tokens.append(token) if token not in self.vocab: self.vocab[token] = len(self.vocab) - 1 self.ids_to_tokens.append(token) return self.id(token) def part_of_whole_word(self, token, is_bos=False): logger.warning_once( "The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`" ) if is_bos: return True if ( len(token) == 1 and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0])) ) or token in self.special_tokens: return False word_start = b"\xe2\x96\x81".decode("utf-8") return not token.startswith(word_start) def pad(self): return "[PAD]" def bos(self): return "[CLS]" def eos(self): return "[SEP]" def unk(self): return "[UNK]" def mask(self): return "[MASK]" def sym(self, id): return self.ids_to_tokens[id] def id(self, sym): logger.warning_once( "The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`" ) return self.vocab[sym] if sym in self.vocab else 1 def _encode_as_pieces(self, text): text = convert_to_unicode(text) if self.split_by_punct: words = self._run_split_on_punc(text) pieces = [self.spm.encode(w, out_type=str) for w in words] return [p for w in pieces for p in w] else: return self.spm.encode(text, out_type=str) def split_to_words(self, text): pieces = self._encode_as_pieces(text) word_start = b"\xe2\x96\x81".decode("utf-8") words = [] offset = 0 prev_end = 0 for i, p in enumerate(pieces): if p.startswith(word_start): if offset > prev_end: words.append(text[prev_end:offset]) prev_end = offset w = p.replace(word_start, "") else: w = p try: s = text.index(w, offset) pn = "" k = i + 1 while k < len(pieces): pn = pieces[k].replace(word_start, "") if len(pn) > 0: break k += 1 if len(pn) > 0 and pn in text[offset:s]: offset = offset + 1 else: offset = s + len(w) except Exception: offset = offset + 1 if prev_end < offset: words.append(text[prev_end:offset]) return words def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def save_pretrained(self, path: str, filename_prefix: str = None): filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]] if filename_prefix is not None: filename = filename_prefix + "-" + filename full_path = os.path.join(path, filename) with open(full_path, "wb") as fs: fs.write(self.spm.serialized_model_proto()) return (full_path,) def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError(f"Unsupported string type: {type(text)}")
transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py/0
{ "file_path": "transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py", "repo_id": "transformers", "token_count": 9944 }
341
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for DeiT.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class DeiTImageProcessor(BaseImageProcessor): r""" Constructs a DeiT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): Size of the image after `resize`. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling` filter, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PIL.Image.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 256, "width": 256} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/deit/image_processing_deit.py/0
{ "file_path": "transformers/src/transformers/models/deit/image_processing_deit.py", "repo_id": "transformers", "token_count": 6769 }
342
# coding=utf-8 # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Open-Llama model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....activations import ACT2FN from ....modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ....modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ....modeling_utils import PreTrainedModel from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_open_llama import OpenLlamaConfig logger = logging.get_logger(__name__) try: from xformers import ops as xops except ImportError: xops = None _CONFIG_FOR_DOC = "OpenLlamaConfig" # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->OpenLlama class OpenLlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ OpenLlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->OpenLlama class OpenLlamaRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->OpenLlama class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): """OpenLlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->OpenLlama class OpenLlamaDynamicNTKScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): """OpenLlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class OpenLlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, dropout_prob: float, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] self.dropout = nn.Dropout(dropout_prob) def forward(self, x): out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return self.dropout(out) class OpenLlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: OpenLlamaConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings self.dropout_prob = config.attention_dropout_prob if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self._init_rope() # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->OpenLlama def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = OpenLlamaRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = OpenLlamaLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = OpenLlamaDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None if self.config.use_memory_efficient_attention and xops is not None and self.training: attn_weights = None query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = xops.memory_efficient_attention( query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask(), p=self.dropout_prob ) else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class OpenLlamaDecoderLayer(nn.Module): def __init__(self, config: OpenLlamaConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = OpenLlamaAttention(config=config) self.mlp = OpenLlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, dropout_prob=config.hidden_dropout_prob, ) self.input_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs OPEN_LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OpenLlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaPreTrainedModel(PreTrainedModel): config_class = OpenLlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["OpenLlamaDecoderLayer"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if self.config.use_stable_embedding: torch.nn.init.xavier_normal_(module.weight.data) else: module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() OPEN_LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaModel(OpenLlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`] Args: config: OpenLlamaConfig """ def __init__(self, config: OpenLlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) if config.use_stable_embedding: self.embed_layer_norm = nn.LayerNorm(config.hidden_size) else: self.embed_layer_norm = None self.layers = nn.ModuleList([OpenLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if self.embed_layer_norm: inputs_embeds = self.embed_layer_norm(inputs_embeds) # embed positions if self.config.use_memory_efficient_attention and self.training: attention_mask = None elif attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) input_shape = (batch_size, seq_length) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, None, output_attentions, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class OpenLlamaForCausalLM(OpenLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = OpenLlamaModel(config) if config.shared_input_output_embedding: self.lm_head = None else: self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, OpenLlamaForCausalLM >>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b") >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.shared_input_output_embedding: logits = torch.einsum( "blh,vh->blv", hidden_states.to(self.model.embed_tokens.weight.device), self.model.embed_tokens.weight ) else: logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The LLaMa Model transformer with a sequence classification head on top (linear layer). [`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaForSequenceClassification(OpenLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = OpenLlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/deprecated/open_llama/modeling_open_llama.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/open_llama/modeling_open_llama.py", "repo_id": "transformers", "token_count": 19114 }
343
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A TF 2.0 Adaptive Softmax for Transformer XL model. """ import tensorflow as tf from ....modeling_tf_utils import keras from ....tf_utils import shape_list class TFAdaptiveSoftmaxMask(keras.layers.Layer): def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [vocab_size] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters self.keep_order = keep_order self.out_layers = [] self.out_projs = [] def build(self, input_shape): if self.n_clusters > 0: self.cluster_weight = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" ) self.cluster_bias = self.add_weight( shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: weight = self.add_weight( shape=(self.d_embed, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}", ) self.out_projs.append(weight) else: self.out_projs.append(None) weight = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(self.vocab_size,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = self.d_embed // (self.div_val**i) weight = self.add_weight( shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" ) self.out_projs.append(weight) weight = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(r_idx - l_idx,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) super().build(input_shape) @staticmethod def _logit(x, W, b, proj=None): y = x if proj is not None: y = tf.einsum("ibd,ed->ibe", y, proj) return tf.einsum("ibd,nd->ibn", y, W) + b @staticmethod def _gather_logprob(logprob, target): lp_size = shape_list(logprob) r = tf.range(lp_size[0], dtype=target.dtype) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) def call(self, hidden, target, return_mean=True, training=False): head_logprob = 0 if self.n_clusters == 0: output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) if target is not None: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) out = tf.nn.log_softmax(output, axis=-1) else: hidden_sizes = shape_list(hidden) out = [] loss = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx if self.div_val == 1: cur_W = self.out_layers[0][0][l_idx:r_idx] cur_b = self.out_layers[0][1][l_idx:r_idx] else: cur_W = self.out_layers[i][0] cur_b = self.out_layers[i][1] if i == 0: cur_W = tf.concat([cur_W, self.cluster_weight], 0) cur_b = tf.concat([cur_b, self.cluster_bias], 0) head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) head_logprob = tf.nn.log_softmax(head_logit) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) else: tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) tail_logprob = tf.nn.log_softmax(tail_logit) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(logprob_i) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) out = tf.concat(out, axis=-1) if target is not None: if return_mean: loss = tf.reduce_mean(loss) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(loss) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") return out
transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py", "repo_id": "transformers", "token_count": 4106 }
344
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Deformable DETR.""" import pathlib from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_processing_utils import BaseImageProcessor, get_size_dict from ...image_transforms import ( PaddingMode, center_to_corners_format, corners_to_center_format, pad, rescale, resize, rgb_to_id, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, AnnotationFormat, AnnotationType, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_batched, is_scaled_image, to_numpy_array, valid_images, validate_annotations, validate_preprocess_arguments, ) from ...utils import ( is_flax_available, is_jax_tensor, is_tf_available, is_tf_tensor, is_torch_available, is_torch_tensor, is_torchvision_available, is_vision_available, logging, ) from ...utils.generic import TensorType if is_torch_available(): import torch if is_torchvision_available(): from torchvision.ops.boxes import batched_nms if is_vision_available(): import PIL logger = logging.get_logger(__name__) # pylint: disable=invalid-name SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) # Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ height, width = image_size if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (height <= width and height == size) or (width <= height and width == size): return height, width if width < height: ow = size oh = int(size * height / width) else: oh = size ow = int(size * width / height) return (oh, ow) # Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. If the desired output size is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output image size is computed by keeping the aspect ratio of the input image size. Args: input_image (`np.ndarray`): The image to resize. size (`int` or `Tuple[int, int]` or `List[int]`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ image_size = get_image_size(input_image, input_data_format) if isinstance(size, (list, tuple)): return size return get_size_with_aspect_ratio(image_size, size, max_size) # Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn def get_numpy_to_framework_fn(arr) -> Callable: """ Returns a function that converts a numpy array to the framework of the input array. Args: arr (`np.ndarray`): The array to convert. """ if isinstance(arr, np.ndarray): return np.array if is_tf_available() and is_tf_tensor(arr): import tensorflow as tf return tf.convert_to_tensor if is_torch_available() and is_torch_tensor(arr): import torch return torch.tensor if is_flax_available() and is_jax_tensor(arr): import jax.numpy as jnp return jnp.array raise ValueError(f"Cannot convert arrays of type {type(arr)}") # Copied from transformers.models.detr.image_processing_detr.safe_squeeze def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: """ Squeezes an array, but only if the axis specified has dim 1. """ if axis is None: return arr.squeeze() try: return arr.squeeze(axis=axis) except ValueError: return arr # Copied from transformers.models.detr.image_processing_detr.normalize_annotation def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: """ Convert a COCO polygon annotation to a mask. Args: segmentations (`List[List[float]]`): List of polygons, each polygon represented by a list of x-y coordinates. height (`int`): Height of the mask. width (`int`): Width of the mask. """ try: from pycocotools import mask as coco_mask except ImportError: raise ImportError("Pycocotools is not installed in your environment.") masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = np.asarray(mask, dtype=np.uint8) mask = np.any(mask, axis=2) masks.append(mask) if masks: masks = np.stack(masks, axis=0) else: masks = np.zeros((0, height, width), dtype=np.uint8) return masks # Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DETA def prepare_coco_detection_annotation( image, target, return_segmentation_masks: bool = False, input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """ Convert the target in COCO format into the format expected by DETA. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) image_id = target["image_id"] image_id = np.asarray([image_id], dtype=np.int64) # Get all COCO annotations for the given image. annotations = target["annotations"] annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] classes = [obj["category_id"] for obj in annotations] classes = np.asarray(classes, dtype=np.int64) # for conversion to coco api area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) boxes = [obj["bbox"] for obj in annotations] # guard against no boxes via resizing boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) new_target = {} new_target["image_id"] = image_id new_target["class_labels"] = classes[keep] new_target["boxes"] = boxes[keep] new_target["area"] = area[keep] new_target["iscrowd"] = iscrowd[keep] new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) if annotations and "keypoints" in annotations[0]: keypoints = [obj["keypoints"] for obj in annotations] # Converting the filtered keypoints list to a numpy array keypoints = np.asarray(keypoints, dtype=np.float32) # Apply the keep mask here to filter the relevant annotations keypoints = keypoints[keep] num_keypoints = keypoints.shape[0] keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints new_target["keypoints"] = keypoints if return_segmentation_masks: segmentation_masks = [obj["segmentation"] for obj in annotations] masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) new_target["masks"] = masks[keep] return new_target # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes def masks_to_boxes(masks: np.ndarray) -> np.ndarray: """ Compute the bounding boxes around the provided panoptic segmentation masks. Args: masks: masks in format `[number_masks, height, width]` where N is the number of masks Returns: boxes: bounding boxes in format `[number_masks, 4]` in xyxy format """ if masks.size == 0: return np.zeros((0, 4)) h, w = masks.shape[-2:] y = np.arange(0, h, dtype=np.float32) x = np.arange(0, w, dtype=np.float32) # see https://github.com/pytorch/pytorch/issues/50276 y, x = np.meshgrid(y, x, indexing="ij") x_mask = masks * np.expand_dims(x, axis=0) x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) x_min = x.filled(fill_value=1e8) x_min = x_min.reshape(x_min.shape[0], -1).min(-1) y_mask = masks * np.expand_dims(y, axis=0) y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) y_min = y.filled(fill_value=1e8) y_min = y_min.reshape(y_min.shape[0], -1).min(-1) return np.stack([x_min, y_min, x_max, y_max], 1) # Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DETA def prepare_coco_panoptic_annotation( image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True, input_data_format: Union[ChannelDimension, str] = None, ) -> Dict: """ Prepare a coco panoptic annotation for DETA. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) annotation_path = pathlib.Path(masks_path) / target["file_name"] new_target = {} new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) if "segments_info" in target: masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) masks = rgb_to_id(masks) ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) masks = masks == ids[:, None, None] masks = masks.astype(np.uint8) if return_masks: new_target["masks"] = masks new_target["boxes"] = masks_to_boxes(masks) new_target["class_labels"] = np.array( [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["iscrowd"] = np.asarray( [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["area"] = np.asarray( [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 ) return new_target # Copied from transformers.models.detr.image_processing_detr.resize_annotation def resize_annotation( annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, resample: PILImageResampling = PILImageResampling.NEAREST, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): The resampling filter to use when resizing the masks. """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) ratio_height, ratio_width = ratios new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) masks = masks.astype(np.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation class DetaImageProcessor(BaseImageProcessor): r""" Constructs a Deformable DETR image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True` will pad the images in the batch to the largest height and width in the batch. Padding will be applied to the bottom and right of the image with zeros. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: bool = True, do_pad: bool = True, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, default_to_square=False) if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DETA def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETA model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): logger.warning_once( "The `prepare` method is deprecated and will be removed in a v4.33. " "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " "does not return the image anymore.", ) target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) return image, target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask def convert_coco_poly_to_mask(self, *args, **kwargs): logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") return convert_coco_poly_to_mask(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection def prepare_coco_detection(self, *args, **kwargs): logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") return prepare_coco_detection_annotation(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic def prepare_coco_panoptic(self, *args, **kwargs): logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") return prepare_coco_panoptic_annotation(*args, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The desired output size. Can contain keys `shortest_edge` and `longest_edge` or `height` and `width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: images (List[`np.ndarray`]): Images to pad. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): Annotations to transform according to the padding that is applied to the images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, pad_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs def preprocess( self, images: ImageInput, annotations: Optional[Union[List[Dict], List[List[Dict]]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_annotations: Optional[bool] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`List[Dict]` or `List[List[Dict]]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image after resizing. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead.", ) do_pad = kwargs.pop("pad_and_return_pixel_mask") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad format = self.format if format is None else format # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if not is_batched(images): images = [images] annotations = [annotations] if annotations is not None else None if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format, return_tensors=return_tensors, update_bboxes=do_convert_annotations, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, nms_threshold: float = 0.7, ): """ Converts the output of [`DetaForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. nms_threshold (`float`, *optional*, defaults to 0.7): NMS threshold. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes batch_size, num_queries, num_labels = out_logits.shape if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = out_logits.sigmoid() all_scores = prob.view(batch_size, num_queries * num_labels).to(out_logits.device) all_indexes = torch.arange(num_queries * num_labels)[None].repeat(batch_size, 1).to(out_logits.device) all_boxes = torch.div(all_indexes, out_logits.shape[2], rounding_mode="floor") all_labels = all_indexes % out_logits.shape[2] boxes = center_to_corners_format(out_bbox) boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for b in range(batch_size): box = boxes[b] score = all_scores[b] lbls = all_labels[b] pre_topk = score.topk(min(10000, num_queries * num_labels)).indices box = box[pre_topk] score = score[pre_topk] lbls = lbls[pre_topk] # apply NMS keep_inds = batched_nms(box, score, lbls, nms_threshold)[:100] score = score[keep_inds] lbls = lbls[keep_inds] box = box[keep_inds] results.append( { "scores": score[score > threshold], "labels": lbls[score > threshold], "boxes": box[score > threshold], } ) return results
transformers/src/transformers/models/deta/image_processing_deta.py/0
{ "file_path": "transformers/src/transformers/models/deta/image_processing_deta.py", "repo_id": "transformers", "token_count": 22512 }
345
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DINOv2 checkpoints from the original repository. URL: https://github.com/facebookresearch/dinov2/tree/main """ import argparse import json from pathlib import Path import requests import torch import torch.nn as nn from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dinov2_config(model_name, image_classifier=False): config = Dinov2Config(image_size=518, patch_size=14) # size of the architecture if "vits" in model_name: config.hidden_size = 384 config.num_attention_heads = 6 elif "vitb" in model_name: pass elif "vitl" in model_name: config.hidden_size = 1024 config.num_hidden_layers = 24 config.num_attention_heads = 16 elif "vitg" in model_name: config.use_swiglu_ffn = True config.hidden_size = 1536 config.num_hidden_layers = 40 config.num_attention_heads = 24 else: raise ValueError("Model not supported") if image_classifier: repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" config.num_labels = 1000 config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) config.id2label = {int(k): v for k, v in config.id2label.items()} return config def create_rename_keys(config): rename_keys = [] # fmt: off # patch embedding layer rename_keys.append(("cls_token", "embeddings.cls_token")) rename_keys.append(("mask_token", "embeddings.mask_token")) rename_keys.append(("pos_embed", "embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias")) for i in range(config.num_hidden_layers): # layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias")) # MLP if config.use_swiglu_ffn: rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight")) rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias")) rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight")) rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias")) else: rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias")) # layerscale rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1")) rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1")) # attention projection layer rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias")) # final layernorm rename_keys.append(("norm.weight", "layernorm.weight")) rename_keys.append(("norm.bias", "layernorm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our DINOv2 structure. """ # define default Dinov2 configuration image_classifier = "1layer" in model_name config = get_dinov2_config(model_name, image_classifier=image_classifier) # load original model from torch hub original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", "")) original_model.eval() # load state_dict of original model, remove and rename some keys state_dict = original_model.state_dict() rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config) for key, val in state_dict.copy().items(): val = state_dict.pop(key) if "w12" in key: key = key.replace("w12", "weights_in") if "w3" in key: key = key.replace("w3", "weights_out") state_dict[key] = val # load HuggingFace model if image_classifier: model = Dinov2ForImageClassification(config).eval() model.dinov2.load_state_dict(state_dict) model_name_to_classifier_dict_url = { "dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth", "dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth", "dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth", "dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth", } url = model_name_to_classifier_dict_url[model_name] classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") model.classifier.weight = nn.Parameter(classifier_state_dict["weight"]) model.classifier.bias = nn.Parameter(classifier_state_dict["bias"]) else: model = Dinov2Model(config).eval() model.load_state_dict(state_dict) # load image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") # preprocess image transformations = transforms.Compose( [ transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values std=IMAGENET_DEFAULT_STD, # across a large photo dataset. ), ] ) original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension processor = BitImageProcessor( size={"shortest_edge": 256}, resample=PILImageResampling.BICUBIC, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, ) pixel_values = processor(image, return_tensors="pt").pixel_values assert torch.allclose(original_pixel_values, pixel_values) with torch.no_grad(): outputs = model(pixel_values, output_hidden_states=True) original_outputs = original_model(pixel_values) # assert values if image_classifier: print("Predicted class:") class_idx = outputs.logits.argmax(-1).item() print(model.config.id2label[class_idx]) else: assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model_name_to_hf_name = { "dinov2_vits14": "dinov2-small", "dinov2_vitb14": "dinov2-base", "dinov2_vitl14": "dinov2-large", "dinov2_vitg14": "dinov2-giant", "dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer", "dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer", "dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer", "dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer", } name = model_name_to_hf_name[model_name] model.push_to_hub(f"facebook/{name}") processor.push_to_hub(f"facebook/{name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dinov2_vitb14", type=str, choices=[ "dinov2_vits14", "dinov2_vitb14", "dinov2_vitl14", "dinov2_vitg14", "dinov2_vits14_1layer", "dinov2_vitb14_1layer", "dinov2_vitl14_1layer", "dinov2_vitg14_1layer", ], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py", "repo_id": "transformers", "token_count": 5255 }
346
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Donut Swin Transformer model. This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden states.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_donut_swin import DonutSwinConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DonutSwinConfig" # Base docstring _CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base" _EXPECTED_OUTPUT_SHAPE = [1, 49, 768] DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "naver-clova-ix/donut-base", # See all Donut Swin models at https://huggingface.co/models?filter=donut ] @dataclass # Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin class DonutSwinEncoderOutput(ModelOutput): """ DonutSwin encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass # Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin class DonutSwinModelOutput(ModelOutput): """ DonutSwin model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin class DonutSwinEmbeddings(nn.Module): """ Construct the patch and position embeddings. Optionally, also the mask token. """ def __init__(self, config, use_mask_token=False): super().__init__() self.patch_embeddings = DonutSwinPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None ) -> Tuple[torch.Tensor]: embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings class DonutSwinPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging class DonutSwinPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.swin.modeling_swin.SwinDropPath class DonutSwinDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin class DonutSwinSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput class DonutSwinSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin class DonutSwinAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size) self.output = DonutSwinSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate class DonutSwinIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput class DonutSwinOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin class DonutSwinLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = DonutSwinAttention(config, dim, num_heads, window_size=self.window_size) self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = DonutSwinIntermediate(config, dim) self.output = DonutSwinOutput(config, dim) def set_shift_and_window_size(self, input_resolution): if min(input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(input_resolution) def get_attn_mask(self, height, width, dtype): if self.shift_size > 0: # calculate attention mask for SW-MSA img_mask = torch.zeros((1, height, width, 1), dtype=dtype) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if not always_partition: self.set_shift_and_window_size(input_dimensions) else: pass height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs # Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin class DonutSwinStage(nn.Module): def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ DonutSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs # Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin class DonutSwinEncoder(nn.Module): def __init__(self, config, grid_size): super().__init__() self.num_layers = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ DonutSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, always_partition: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, DonutSwinEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition, ) else: layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] output_dimensions = layer_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange b (h w) c -> b c h w # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[3:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return DonutSwinEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin class DonutSwinPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DonutSwinConfig base_model_prefix = "swin" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SWIN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DonutSwinConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWIN_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DonutImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Donut Swin Model transformer outputting raw hidden-states without any specific head on top.", SWIN_START_DOCSTRING, ) class DonutSwinModel(DonutSwinPreTrainedModel): def __init__(self, config, add_pooling_layer=True, use_mask_token=False): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token) self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=DonutSwinModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, DonutSwinModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: output = (sequence_output, pooled_output) + encoder_outputs[1:] return output return DonutSwinModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, )
transformers/src/transformers/models/donut/modeling_donut_swin.py/0
{ "file_path": "transformers/src/transformers/models/donut/modeling_donut_swin.py", "repo_id": "transformers", "token_count": 18061 }
347
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ELECTRA checkpoint.""" import argparse import torch from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator): # Initialise PyTorch model config = ElectraConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") if discriminator_or_generator == "discriminator": model = ElectraForPreTraining(config) elif discriminator_or_generator == "generator": model = ElectraForMaskedLM(config) else: raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'") # Load weights from tf checkpoint load_tf_weights_in_electra( model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--discriminator_or_generator", default=None, type=str, required=True, help=( "Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or " "'generator'." ), ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator )
transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1018 }
348
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _import_structure = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_ernie"] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/ernie/__init__.py/0
{ "file_path": "transformers/src/transformers/models/ernie/__init__.py", "repo_id": "transformers", "token_count": 927 }
349
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple, overload import torch import torch.types from torch import nn from . import residue_constants as rc from .rigid_utils import Rigid, Rotation from .tensor_utils import batched_gather @overload def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor: ... @overload def pseudo_beta_fn( aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: ... def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks): is_gly = aatype == rc.restype_order["G"] ca_idx = rc.atom_order["CA"] cb_idx = rc.atom_order["CB"] pseudo_beta = torch.where( is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3), all_atom_positions[..., ca_idx, :], all_atom_positions[..., cb_idx, :], ) if all_atom_masks is not None: pseudo_beta_mask = torch.where( is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx], ) return pseudo_beta, pseudo_beta_mask else: return pseudo_beta def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor: atom37_data = batched_gather( atom14, batch["residx_atom37_to_atom14"], dim=-2, no_batch_dims=len(atom14.shape[:-2]), ) atom37_data = atom37_data * batch["atom37_atom_exists"][..., None] return atom37_data def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor: template_aatype = template_feats["template_aatype"] torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"] alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"] torsion_angles_mask = template_feats["template_torsion_angles_mask"] template_angle_feat = torch.cat( [ nn.functional.one_hot(template_aatype, 22), torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14), alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14), torsion_angles_mask, ], dim=-1, ) return template_angle_feat def build_template_pair_feat( batch: Dict[str, torch.Tensor], min_bin: torch.types.Number, max_bin: torch.types.Number, no_bins: int, use_unit_vector: bool = False, eps: float = 1e-20, inf: float = 1e8, ) -> torch.Tensor: template_mask = batch["template_pseudo_beta_mask"] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] # Compute distogram (this seems to differ slightly from Alg. 5) tpb = batch["template_pseudo_beta"] dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True) lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2 upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1) dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype) to_concat = [dgram, template_mask_2d[..., None]] aatype_one_hot: torch.LongTensor = nn.functional.one_hot( batch["template_aatype"], rc.restype_num + 2, ) n_res = batch["template_aatype"].shape[-1] to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1)) to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)) n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]] rigids = Rigid.make_transform_from_reference( n_xyz=batch["template_all_atom_positions"][..., n, :], ca_xyz=batch["template_all_atom_positions"][..., ca, :], c_xyz=batch["template_all_atom_positions"][..., c, :], eps=eps, ) points = rigids.get_trans()[..., None, :, :] rigid_vec = rigids[..., None].invert_apply(points) inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1)) t_aa_masks = batch["template_all_atom_mask"] template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] inv_distance_scalar = inv_distance_scalar * template_mask_2d unit_vector = rigid_vec * inv_distance_scalar[..., None] if not use_unit_vector: unit_vector = unit_vector * 0.0 to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1)) to_concat.append(template_mask_2d[..., None]) act = torch.cat(to_concat, dim=-1) act = act * template_mask_2d[..., None] return act def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor: msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23) msa_feat = [ msa_1hot, batch["extra_has_deletion"].unsqueeze(-1), batch["extra_deletion_value"].unsqueeze(-1), ] return torch.cat(msa_feat, dim=-1) def torsion_angles_to_frames( r: Rigid, alpha: torch.Tensor, aatype: torch.Tensor, rrgdf: torch.Tensor, ) -> Rigid: # [*, N, 8, 4, 4] default_4x4 = rrgdf[aatype, ...] # [*, N, 8] transformations, i.e. # One [*, N, 8, 3, 3] rotation matrix and # One [*, N, 8, 3] translation matrix default_r = r.from_tensor_4x4(default_4x4) bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2)) bb_rot[..., 1] = 1 # [*, N, 8, 2] alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2) # [*, N, 8, 3, 3] # Produces rotation matrices of the form: # [ # [1, 0 , 0 ], # [0, a_2,-a_1], # [0, a_1, a_2] # ] # This follows the original code rather than the supplement, which uses # different indices. all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape) all_rots[..., 0, 0] = 1 all_rots[..., 1, 1] = alpha[..., 1] all_rots[..., 1, 2] = -alpha[..., 0] all_rots[..., 2, 1:] = alpha all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None)) chi2_frame_to_frame = all_frames[..., 5] chi3_frame_to_frame = all_frames[..., 6] chi4_frame_to_frame = all_frames[..., 7] chi1_frame_to_bb = all_frames[..., 4] chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame) chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame) chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame) all_frames_to_bb = Rigid.cat( [ all_frames[..., :5], chi2_frame_to_bb.unsqueeze(-1), chi3_frame_to_bb.unsqueeze(-1), chi4_frame_to_bb.unsqueeze(-1), ], dim=-1, ) all_frames_to_global = r[..., None].compose(all_frames_to_bb) return all_frames_to_global def frames_and_literature_positions_to_atom14_pos( r: Rigid, aatype: torch.Tensor, default_frames: torch.Tensor, group_idx: torch.Tensor, atom_mask: torch.Tensor, lit_positions: torch.Tensor, ) -> torch.Tensor: # [*, N, 14] group_mask = group_idx[aatype, ...] # [*, N, 14, 8] group_mask_one_hot: torch.LongTensor = nn.functional.one_hot( group_mask, num_classes=default_frames.shape[-3], ) # [*, N, 14, 8] t_atoms_to_global = r[..., None, :] * group_mask_one_hot # [*, N, 14] t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) # [*, N, 14, 1] atom_mask = atom_mask[aatype, ...].unsqueeze(-1) # [*, N, 14, 3] lit_positions = lit_positions[aatype, ...] pred_positions = t_atoms_to_global.apply(lit_positions) pred_positions = pred_positions * atom_mask return pred_positions
transformers/src/transformers/models/esm/openfold_utils/feats.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/feats.py", "repo_id": "transformers", "token_count": 3763 }
350
# coding=utf-8 # Copyright 2023 The Espnet authors, IMS Toucan authors, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FastSpeech2Conformer model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, add_start_docstrings, logging, replace_return_docstrings from .configuration_fastspeech2_conformer import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerWithHifiGanConfig, ) logger = logging.get_logger(__name__) FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "espnet/fastspeech2_conformer", # See all FastSpeech2Conformer models at https://huggingface.co/models?filter=fastspeech2_conformer ] @dataclass class FastSpeech2ConformerModelOutput(ModelOutput): """ Output type of [`FastSpeech2ConformerModel`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ loss: Optional[torch.FloatTensor] = None spectrogram: torch.FloatTensor = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None duration_outputs: torch.LongTensor = None pitch_outputs: torch.FloatTensor = None energy_outputs: torch.FloatTensor = None @dataclass class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput): """ Output type of [`FastSpeech2ConformerWithHifiGan`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`): Speech output as a result of passing the predicted mel spectrogram through the vocoder. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Spectrogram generation loss. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The predicted spectrogram. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*): Outputs of the duration predictor. pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the pitch predictor. energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*): Outputs of the energy predictor. """ waveform: torch.FloatTensor = None _CONFIG_FOR_DOC = "FastSpeech2ConformerConfig" FASTSPEECH2_CONFORMER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FastSpeech2ConformerWithHifiGanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def length_regulator(encoded_embeddings, duration_labels, speaking_speed=1.0): """ Length regulator for feed-forward Transformer. This is the length regulator module described in `FastSpeech: Fast, Robust and Controllable Text to Speech` https://arxiv.org/pdf/1905.09263.pdf. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations. Args: encoded_embeddings (`torch.Tensor` of shape `(batch_size, max_text_length, embedding_dim)`): Batch of sequences of char or phoneme embeddings. duration_labels (`torch.LongTensor` of shape `(batch_size, time)`): Batch of durations of each frame. speaking_speed (`float`, *optional*, defaults to 1.0): Value to control speed of speech. Returns: `torch.Tensor`: Replicated input tensor based on durations (batch_size, time*, embedding_dim). """ if speaking_speed <= 0: raise ValueError("`speaking_speed` must be greater than 0.") elif speaking_speed != 1.0: duration_labels = torch.round(duration_labels.float() * speaking_speed).long() if duration_labels.sum() == 0: duration_labels[duration_labels.sum(dim=1).eq(0)] = 1 # Calculate the maximum length needed max_len = torch.sum(duration_labels, dim=1).max() # Create a padded tensor to hold the results hidden_states = torch.zeros( (encoded_embeddings.size(0), max_len, encoded_embeddings.size(2)), dtype=torch.float, device=encoded_embeddings.device, ) # Loop through the batch and fill in the data for i, (encoded_embedding, target_duration) in enumerate(zip(encoded_embeddings, duration_labels)): repeated = torch.repeat_interleave(encoded_embedding, target_duration, dim=0) hidden_states[i, : repeated.size(0)] = repeated return hidden_states class FastSpeech2ConformerDurationPredictor(nn.Module): """ Duration predictor module. This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() self.conv_layers = nn.ModuleList() self.log_domain_offset = 1.0 for layer_idx in range(config.duration_predictor_layers): num_chans = config.duration_predictor_channels input_channels = config.hidden_size if layer_idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer( input_channels, num_chans, config.duration_predictor_kernel_size, config.duration_predictor_dropout_rate, ) self.conv_layers.append(layer) self.linear = nn.Linear(config.duration_predictor_channels, 1) def forward(self, encoder_hidden_states): """ Args: hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: `torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) # NOTE: calculate in log domain, (batch_size, max_text_length) hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1) if not self.training: # NOTE: calculate in linear domain hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long() return hidden_states # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5BatchNormConvLayer class FastSpeech2ConformerBatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.layers = nn.ModuleList( [FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) layer_output = outputs_before_postnet.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2) return outputs_before_postnet, outputs_after_postnet class FastSpeech2ConformerPredictorLayer(nn.Module): def __init__(self, input_channels, num_chans, kernel_size, dropout_rate): super().__init__() self.conv = nn.Conv1d( input_channels, num_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.activation = nn.ReLU() self.layer_norm = nn.LayerNorm(num_chans) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) # Perform layer norm on dimension 1 hidden_states = hidden_states.transpose(1, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, -1) hidden_states = self.dropout(hidden_states) return hidden_states class FastSpeech2ConformerVariancePredictor(nn.Module): def __init__( self, config: FastSpeech2ConformerConfig, num_layers=2, num_chans=384, kernel_size=3, dropout_rate=0.5, ): """ Initilize variance predictor module. Args: input_dim (`int`): Input dimension. num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers. num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers. kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers. dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate. """ super().__init__() self.conv_layers = nn.ModuleList() for idx in range(num_layers): input_channels = config.hidden_size if idx == 0 else num_chans layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate) self.conv_layers.append(layer) self.linear = nn.Linear(num_chans, 1) def forward(self, encoder_hidden_states, padding_masks=None): """ Calculate forward propagation. Args: encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`): Batch of input sequences. padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*): Batch of masks indicating padded part. Returns: Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`. """ # (batch_size, input_dim, max_text_length) hidden_states = encoder_hidden_states.transpose(1, -1) for layer in self.conv_layers: hidden_states = layer(hidden_states) hidden_states = self.linear(hidden_states.transpose(1, 2)) if padding_masks is not None: hidden_states = hidden_states.masked_fill(padding_masks, 0.0) return hidden_states class FastSpeech2ConformerVarianceEmbedding(nn.Module): def __init__( self, in_channels=1, out_channels=384, kernel_size=1, padding=0, dropout_rate=0.0, ): super().__init__() self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, ) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class FastSpeech2ConformerAttention(nn.Module): """ Multi-Head attention layer with relative position encoding. Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """Construct an FastSpeech2ConformerAttention object.""" super().__init__() # We assume d_v always equals dim_key self.num_heads = module_config["num_attention_heads"] self.hidden_size = config.hidden_size self.dim_key = self.hidden_size // self.num_heads self.head_dim = self.hidden_size // self.num_heads self.linear_q = nn.Linear(self.hidden_size, self.hidden_size) self.linear_k = nn.Linear(self.hidden_size, self.hidden_size) self.linear_v = nn.Linear(self.hidden_size, self.hidden_size) self.linear_out = nn.Linear(self.hidden_size, self.hidden_size) self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"]) # linear transformation for positional encoding self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim)) def shift_relative_position_tensor(self, pos_tensor): """ Args: pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor. """ zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype) pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1) pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2)) # only keep the positions from 0 to time2 pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1] return pos_tensor def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, pos_emb: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor. pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`. """ bsz, q_len, _ = hidden_states.size() query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim) bsz_pos = pos_emb.size(0) pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim) # (batch_size, head, time1, dim_key) query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2) # (batch_size, head, time1, dim_key) query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch_size, head, time1, time2) matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1)) # compute matrix b and matrix d # (batch_size, head, time1, 2*time1-1) matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1)) matrix_bd = self.shift_relative_position_tensor(matrix_bd) # (batch_size, head, time1, time2) scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key) # Forward attention if attention_mask is not None: expected_size = (bsz, 1, q_len) if attention_mask.size() != expected_size: raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}") attention_mask = attention_mask.unsqueeze(1).eq(0) min_value = float(torch.finfo(scores.dtype).min) scores = scores.masked_fill(attention_mask, min_value) attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0) else: attn_weights = torch.softmax(scores, dim=-1) attn_weights = self.dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2)) attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class FastSpeech2ConformerConvolutionModule(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # kernel_size should be an odd number for 'SAME' padding channels = config.hidden_size kernel_size = module_config["kernel_size"] self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True ) self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, hidden_states): """ Compute convolution module. Args: hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, channels)`. """ # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism, (batch_size, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # (batch_size, channel, dim) hidden_states = nn.functional.glu(hidden_states, dim=1) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = hidden_states * torch.sigmoid(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) return hidden_states.transpose(1, 2) class FastSpeech2ConformerEncoderLayer(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig, module_config): super().__init__() # self-attention module definition self.self_attn = FastSpeech2ConformerAttention(config, module_config) # feed-forward module definition self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.macaron_style = config.use_macaron_style_in_conformer if self.macaron_style: self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config) self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 # convolution module definition self.use_cnn_module = config.use_cnn_in_conformer if self.use_cnn_module: self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config) self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.ff_layer_norm = nn.LayerNorm(config.hidden_size) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size) self.dropout = nn.Dropout(module_config["dropout_rate"]) self.size = config.hidden_size self.normalize_before = module_config["normalize_before"] self.concat_after = module_config["concat_after"] if self.concat_after: self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size) def forward( self, hidden_states: torch.Tensor, pos_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[torch.Tensor] = False, ): """ Compute encoded features. Args: hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor. pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor. attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, size)`. """ # whether to use macaron style if self.macaron_style: residual = hidden_states if self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states)) if not self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) # multi-headed self-attention module residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) attention_output, attention_scores = self.self_attn( hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions ) if self.concat_after: x_concat = torch.cat((hidden_states, attention_output), dim=-1) hidden_states = self.concat_linear(x_concat) hidden_states = residual + hidden_states else: hidden_states = self.dropout(attention_output) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) # convolution module if self.use_cnn_module: residual = hidden_states if self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) hidden_states = self.conv_module(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) # feed forward module residual = hidden_states if self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + self.ff_scale * hidden_states if not self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) if self.conv_module is not None: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attention_scores,) return outputs class FastSpeech2ConformerMultiLayeredConv1d(nn.Module): """ Multi-layered conv1d for Transformer block. This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech' https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Initialize FastSpeech2ConformerMultiLayeredConv1d module. Args: input_channels (`int`): Number of input channels. hidden_channels (`int`): Number of hidden channels. kernel_size (`int`): Kernel size of conv1d. dropout_rate (`float`): Dropout rate. """ super().__init__() input_channels = config.hidden_size hidden_channels = module_config["linear_units"] kernel_size = config.positionwise_conv_kernel_size self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.dropout = nn.Dropout(module_config["dropout_rate"]) def forward(self, hidden_states): """ Calculate forward propagation. Args: hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels). Returns: torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels). """ hidden_states = hidden_states.transpose(-1, 1) hidden_states = self.conv1(hidden_states) hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = hidden_states.transpose(-1, 1) return hidden_states class FastSpeech2ConformerRelPositionalEncoding(nn.Module): """ Args: Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860 config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. """ def __init__(self, config: FastSpeech2ConformerConfig, module_config): """ Construct an PositionalEncoding object. """ super().__init__() self.embed_dim = config.hidden_size self.input_scale = math.sqrt(self.embed_dim) self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"]) self.pos_enc = None self.max_len = 5000 self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len)) def extend_pos_enc(self, x): """Reset the positional encodings.""" if self.pos_enc is not None: # self.pos_enc contains both positive and negative parts # the length of self.pos_enc is 2 * input_len - 1 if self.pos_enc.size(1) >= x.size(1) * 2 - 1: if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device: self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pos_enc_positive = torch.zeros(x.size(1), self.embed_dim) pos_enc_negative = torch.zeros(x.size(1), self.embed_dim) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim) ) pos_enc_positive[:, 0::2] = torch.sin(position * div_term) pos_enc_positive[:, 1::2] = torch.cos(position * div_term) pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term) pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0) pos_enc_negative = pos_enc_negative[1:].unsqueeze(0) pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1) self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype) def forward(self, feature_representation): """ Args: feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)): Input tensor. Returns: `torch.Tensor`: Encoded tensor (batch_size, time, `*`). """ self.extend_pos_enc(feature_representation) hidden_states = feature_representation * self.input_scale center_idx = self.pos_enc.size(1) // 2 pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)] return self.dropout(hidden_states), self.dropout(pos_emb) class FastSpeech2ConformerEncoder(nn.Module): """ FastSpeech2ConformerEncoder encoder module. Args: config (`FastSpeech2ConformerConfig`): FastSpeech2ConformerConfig instance. module_config (`dict`): Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`. use_encoder_input_layer (`bool`, *optional*, defaults to `False`): Input layer type. """ def __init__( self, config: FastSpeech2ConformerConfig, module_config, use_encoder_input_layer=False, ): super().__init__() self.embed = None if use_encoder_input_layer: self.embed = nn.Embedding( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0 ) self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config) self.conformer_layers = nn.ModuleList( [FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])] ) def forward( self, input_tensor: torch.LongTensor, attention_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = False, return_dict: Optional[bool] = None, ): """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, attention_dim)`. """ feature_representation = input_tensor if self.embed is not None: feature_representation = self.embed(feature_representation) hidden_states, pos_emb = self.pos_enc(feature_representation) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for conformer_layer in self.conformer_layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class FastSpeech2ConformerLoss(nn.Module): def __init__(self, config: FastSpeech2ConformerConfig): super().__init__() use_masking = config.use_masking use_weighted_masking = config.use_weighted_masking if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = nn.MSELoss(reduction=reduction) self.log_domain_offset = 1.0 def forward( self, outputs_after_postnet, outputs_before_postnet, duration_outputs, pitch_outputs, energy_outputs, spectrogram_labels, duration_labels, pitch_labels, energy_labels, duration_mask, spectrogram_mask, ): """ Args: outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs after postnet. outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of outputs before postnet. duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of outputs of duration predictor. pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of pitch predictor. energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of outputs of energy predictor. spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`): Batch of target features. duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations. pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged pitch. energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`): Batch of target token-averaged energy. duration_mask (`torch.LongTensor`): Mask used to discern which values the duration loss should be calculated for. spectrogram_mask (`torch.LongTensor`): Mask used to discern which values the spectrogam loss should be calculated for. Returns: `tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor loss value, pitch predictor loss value, and energy predictor loss value. """ pitch_and_energy_masks = duration_mask.unsqueeze(-1) # apply mask to remove padded part if self.use_masking: outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask) if outputs_after_postnet is not None: outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask) spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask) duration_outputs = duration_outputs.masked_select(duration_mask) duration_labels = duration_labels.masked_select(duration_mask) pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks) energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks) pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks) energy_labels = energy_labels.masked_select(pitch_and_energy_masks) # calculate loss l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels) if outputs_after_postnet is not None: l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels) duration_labels = torch.log(duration_labels.float() + self.log_domain_offset) duration_loss = self.duration_criterion(duration_outputs, duration_labels) pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels) energy_loss = self.mse_criterion(energy_outputs, energy_labels) # make weighted mask and apply it if self.use_weighted_masking: spectrogram_mask = nn.functional.pad( spectrogram_mask.transpose(1, 2), [0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0], value=False, ).transpose(1, 2) out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float() out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2) duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float() duration_weights /= duration_labels.size(0) # apply weight l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum() duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum() pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum() return l1_loss + duration_loss + pitch_loss + energy_loss class FastSpeech2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastSpeech2ConformerConfig base_model_prefix = "fastspeech2_conformer" main_input_name = "input_ids" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.LayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-key, b=key) elif isinstance(module, nn.Embedding): module.weight.data.normal_() if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, FastSpeech2ConformerAttention): nn.init.xavier_uniform_(module.pos_bias_u) nn.init.xavier_uniform_(module.pos_bias_v) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, FastSpeech2ConformerEncoder): module.gradient_checkpointing = value @add_start_docstrings( """FastSpeech2Conformer Model.""", FASTSPEECH2_CONFORMER_START_DOCSTRING, ) class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel): """ FastSpeech 2 module. This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech' https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular Transformers. """ def __init__(self, config: FastSpeech2ConformerConfig): super().__init__(config) self.config = config # store hyperparameters self.vocab_size = config.vocab_size self.num_mel_bins = config.num_mel_bins self.hidden_size = config.hidden_size self.reduction_factor = config.reduction_factor self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor self.multilingual_model = config.num_languages is not None and config.num_languages > 1 if self.multilingual_model: self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size) self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1 if self.multispeaker_model: self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size) self.speaker_embed_dim = config.speaker_embed_dim if self.speaker_embed_dim: self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size) self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True) self.duration_predictor = FastSpeech2ConformerDurationPredictor(config) self.pitch_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.pitch_predictor_layers, num_chans=config.pitch_predictor_channels, kernel_size=config.pitch_predictor_kernel_size, dropout_rate=config.pitch_predictor_dropout, ) # continuous pitch + FastPitch style avg self.pitch_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.pitch_embed_kernel_size, padding=(config.pitch_embed_kernel_size - 1) // 2, dropout_rate=config.pitch_embed_dropout, ) self.energy_predictor = FastSpeech2ConformerVariancePredictor( config, num_layers=config.energy_predictor_layers, num_chans=config.energy_predictor_channels, kernel_size=config.energy_predictor_kernel_size, dropout_rate=config.energy_predictor_dropout, ) # continuous energy + FastPitch style avg self.energy_embed = FastSpeech2ConformerVarianceEmbedding( out_channels=self.hidden_size, kernel_size=config.energy_embed_kernel_size, padding=(config.energy_embed_kernel_size - 1) // 2, dropout_rate=config.energy_embed_dropout, ) # The decoder is an encoder self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False) self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config) self.criterion = FastSpeech2ConformerLoss(config) self.post_init() @replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerModel, ... FastSpeech2ConformerHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") >>> output_dict = model(input_ids, return_dict=True) >>> spectrogram = output_dict["spectrogram"] >>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan") >>> waveform = vocoder(spectrogram) >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if attention_mask is None: attention_mask = torch.ones(input_ids.shape, device=input_ids.device) has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if self.training and has_missing_labels: raise ValueError("All labels must be provided to run in training mode.") # forward encoder text_masks = attention_mask.unsqueeze(-2) encoder_outputs = self.encoder( input_ids, text_masks, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) hidden_states = encoder_outputs[0] # Integrate with language id, speaker id, and speaker embedding if self.multispeaker_model and speaker_ids is not None: speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1)) hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1) if self.multilingual_model and lang_ids is not None: language_id_embbedings = self.language_id_embedding(lang_ids.view(-1)) hidden_states = hidden_states + language_id_embbedings.unsqueeze(1) if self.speaker_embed_dim is not None and speaker_embedding is not None: embeddings_expanded = ( nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1) ) hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1)) # forward duration predictor and variance predictors duration_mask = ~attention_mask.bool() if self.stop_gradient_from_pitch_predictor: pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1)) if self.stop_gradient_from_energy_predictor: energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1)) else: energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1)) duration_predictions = self.duration_predictor(hidden_states) duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0) if not self.training: # use prediction in inference embedded_pitch_curve = self.pitch_embed(pitch_predictions) embedded_energy_curve = self.energy_embed(energy_predictions) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed) else: # use groundtruth in training embedded_pitch_curve = self.pitch_embed(pitch_labels) embedded_energy_curve = self.energy_embed(energy_labels) hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve hidden_states = length_regulator(hidden_states, duration_labels) # forward decoder if not self.training: hidden_mask = None else: spectrogram_mask = (spectrogram_labels != -100).any(dim=-1) spectrogram_mask = spectrogram_mask.int() if self.reduction_factor > 1: length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor spectrogram_mask = spectrogram_mask[:, :, :length_dim] hidden_mask = spectrogram_mask.unsqueeze(-2) decoder_outputs = self.decoder( hidden_states, hidden_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0]) loss = None if self.training: # calculate loss loss_duration_mask = ~duration_mask loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool() loss = self.criterion( outputs_after_postnet=outputs_after_postnet, outputs_before_postnet=outputs_before_postnet, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, duration_mask=loss_duration_mask, spectrogram_mask=loss_spectrogram_mask, ) if not return_dict: postnet_outputs = (outputs_after_postnet,) audio_feature_predictions = ( duration_predictions, pitch_predictions, energy_predictions, ) outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions return ((loss,) + outputs) if loss is not None else outputs return FastSpeech2ConformerModelOutput( loss=loss, spectrogram=outputs_after_postnet, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, duration_outputs=duration_predictions, pitch_outputs=pitch_predictions, energy_outputs=energy_predictions, ) # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): for layer in self.convs1: nn.utils.weight_norm(layer) for layer in self.convs2: nn.utils.weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states @add_start_docstrings( """HiFi-GAN vocoder.""", HIFIGAN_START_DOCSTRING, ) # Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5HifiGan with SpeechT5->FastSpeech2Conformer class FastSpeech2ConformerHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerHifiGanConfig main_input_name = "spectrogram" def __init__(self, config: FastSpeech2ConformerHifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): nn.utils.weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() nn.utils.weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( "The FastSpeech2ConformerModel with a FastSpeech2ConformerHifiGan vocoder head that performs text-to-speech (waveform).", FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING, ) class FastSpeech2ConformerWithHifiGan(PreTrainedModel): config_class = FastSpeech2ConformerWithHifiGanConfig def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig): super().__init__(config) self.model = FastSpeech2ConformerModel(config.model_config) self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config) self.config = config @replace_return_docstrings( output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig ) def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, spectrogram_labels: Optional[torch.FloatTensor] = None, duration_labels: Optional[torch.LongTensor] = None, pitch_labels: Optional[torch.FloatTensor] = None, energy_labels: Optional[torch.FloatTensor] = None, speaker_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, speaker_embedding: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, FastSpeech2ConformerModelOutput]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input sequence of text vectors. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**. spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`): Batch of padded target features. duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`): Batch of padded durations. pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged pitch. energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`): Batch of padded token-averaged energy. speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Speaker ids used to condition features of speech output by the model. lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`): Language ids used to condition features of speech output by the model. speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`): Embedding containing conditioning signals for the features of the speech. return_dict (`bool`, *optional*, defaults to `None`): Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple. output_attentions (`bool`, *optional*, defaults to `None`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*, defaults to `None`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... FastSpeech2ConformerTokenizer, ... FastSpeech2ConformerWithHifiGan, ... ) >>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") >>> inputs = tokenizer("some text to convert to speech", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan") >>> output_dict = model(input_ids, return_dict=True) >>> waveform = output_dict["waveform"] >>> print(waveform.shape) torch.Size([1, 49664]) ``` """ return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict output_attentions = ( output_attentions if output_attentions is not None else self.config.model_config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states ) model_outputs = self.model( input_ids, attention_mask, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, speaker_ids=speaker_ids, lang_ids=lang_ids, speaker_embedding=speaker_embedding, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: has_missing_labels = ( spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None ) if has_missing_labels: spectrogram = model_outputs[0] else: spectrogram = model_outputs[1] else: spectrogram = model_outputs["spectrogram"] waveform = self.vocoder(spectrogram) if not return_dict: return model_outputs + (waveform,) return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py", "repo_id": "transformers", "token_count": 33081 }
351
# coding=utf-8 # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json", # See all FNet models at https://huggingface.co/models?filter=fnet } class FNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FNet [google/fnet-base](https://huggingface.co/google/fnet-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 4): The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`): Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms. Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used. tpu_short_seq_length (`int`, *optional*, defaults to 512): The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or equal to 4096 tokens. Example: ```python >>> from transformers import FNetConfig, FNetModel >>> # Initializing a FNet fnet-base style configuration >>> configuration = FNetConfig() >>> # Initializing a model (with random weights) from the fnet-base style configuration >>> model = FNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fnet" def __init__( self, vocab_size=32000, hidden_size=768, num_hidden_layers=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=4, initializer_range=0.02, layer_norm_eps=1e-12, use_tpu_fourier_optimizations=False, tpu_short_seq_length=512, pad_token_id=3, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations self.tpu_short_seq_length = tpu_short_seq_length
transformers/src/transformers/models/fnet/configuration_fnet.py/0
{ "file_path": "transformers/src/transformers/models/fnet/configuration_fnet.py", "repo_id": "transformers", "token_count": 2166 }
352
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Funnel checkpoint.""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model): # Initialise PyTorch model config = FunnelConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = FunnelBaseModel(config) if base_model else FunnelModel(config) # Load weights from tf checkpoint load_tf_weights_in_funnel(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 797 }
353
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Gemma.""" import os from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: pass logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} SPIECE_UNDERLINE = "▁" class GemmaTokenizer(PreTrainedTokenizer): """ Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Gemma should be used. spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to add spaces between special tokens. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<bos>", eos_token="<eos>", pad_token="<pad>", sp_model_kwargs: Optional[Dict[str, Any]] = None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, use_default_system_prompt=False, spaces_between_special_tokens=False, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.use_default_system_prompt = use_default_system_prompt self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs, clean_up_tokenization_spaces=clean_up_tokenization_spaces, use_default_system_prompt=use_default_system_prompt, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.vocab_size def vocab_size(self): """Returns vocab size""" return self.sp_model.get_piece_size() # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_vocab def get_vocab(self): """Returns vocab as a dict""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, **kwargs): """ Returns a tokenized string. The Gemma tokenizer never adds a prefix space. """ return self.sp_model.encode(text, out_type=str) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: sub_texts = [] current_sub_text = [] for ids in token_ids: if skip_special_tokens and ids in self.all_special_ids: continue if ids in self._added_tokens_decoder: if current_sub_text: sub_texts.append(self.sp_model.decode(current_sub_text)) sub_texts.append(self._added_tokens_decoder[ids].content) current_sub_text = [] else: current_sub_text.append(ids) if current_sub_text: sub_texts.append(self.sp_model.decode(current_sub_text)) if spaces_between_special_tokens: sub_texts = " ".join(sub_texts) else: sub_texts = "".join(sub_texts) return sub_texts def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self._added_tokens_encoder: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.save_vocabulary def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return ( bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id ) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) if token_ids_1 is not None: output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) return output
transformers/src/transformers/models/gemma/tokenization_gemma.py/0
{ "file_path": "transformers/src/transformers/models/gemma/tokenization_gemma.py", "repo_id": "transformers", "token_count": 6049 }
354
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import torch from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2 from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path): # Construct model if gpt2_config_file == "": config = GPT2Config() else: config = GPT2Config.from_json_file(gpt2_config_file) model = GPT2Model(config) # Load weights from numpy load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path) # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) args = parser.parse_args() convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 937 }
355
# coding=utf-8 # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTNeoX model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class GPTNeoXConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeoX [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50432): Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoXModel`]. hidden_size (`int`, *optional*, defaults to 6144): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 44): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. rotary_pct (`float`, *optional*, defaults to 0.25): percentage of hidden dimensions to allocate to rotary embeddings rotary_emb_base (`int`, *optional*, defaults to 10000) base for computing rotary embeddings frequency attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio probability of the attention score. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp hidden states. classifier_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`]. The dropout ratio for the hidden layer. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 1e-5): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. use_parallel_residual (`bool`, *optional*, defaults to `True`): Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training speedup at large scales (e.g. 20B). rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, *optional*, defaults to `True`): Whether to use a bias in the query, key, value and output projection layers during self-attention. Example: ```python >>> from transformers import GPTNeoXConfig, GPTNeoXModel >>> # Initializing a GPTNeoX gpt-neox-20b style configuration >>> configuration = GPTNeoXConfig() >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration >>> model = GPTNeoXModel(configuration) # doctest: +SKIP >>> # Accessing the model configuration >>> configuration = model.config # doctest: +SKIP ```""" model_type = "gpt_neox" def __init__( self, vocab_size=50432, hidden_size=6144, num_hidden_layers=44, num_attention_heads=64, intermediate_size=24576, hidden_act="gelu", rotary_pct=0.25, rotary_emb_base=10000, attention_dropout=0.0, hidden_dropout=0.0, classifier_dropout=0.1, max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, bos_token_id=0, eos_token_id=2, tie_word_embeddings=False, use_parallel_residual=True, rope_scaling=None, attention_bias=True, **kwargs, ): super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.rotary_pct = rotary_pct self.rotary_emb_base = rotary_emb_base self.attention_dropout = attention_dropout self.hidden_dropout = hidden_dropout self.classifier_dropout = classifier_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.tie_word_embeddings = tie_word_embeddings self.use_parallel_residual = use_parallel_residual self.rope_scaling = rope_scaling self.attention_bias = attention_bias self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py", "repo_id": "transformers", "token_count": 3539 }
356
# coding=utf-8 # Copyright 2023, HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPTSAN-japanese model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class GPTSanJapaneseConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese [Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 36000): Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`]. max_position_embeddings (`int`, *optional*, defaults to 1280): The maximum sequence length that this model might ever be used with. Defaults set this to 1280. d_model (`int`, *optional*, defaults to 1024): Size of the encoder layers and the pooler layer. d_ff (`int`, *optional*, defaults to 8192): Size of the intermediate feed forward layer in each `SwitchTransformersBlock`. d_ext (`int`, *optional*, defaults to 4096): Size of the intermediate feed forward layer in each Extra-layers. d_spout (`int`, *optional*, defaults to 128): Size of the `spout` vector. num_switch_layers (`int`, *optional*, defaults to 10): Number of layers in the Switch Transformer layer. num_ext_layers (`int`, *optional*, defaults to 0): Number of layers in the Extra-layers. num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_experts (`int`, *optional*, defaults to 16): Number of experts for each SwitchTransformer layer. expert_capacity (`int`, *optional*, defaults to 128): Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular Transformer. dropout_rate (`float`, *optional*, defaults to 0.0): The ratio for all dropout layers. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. router_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the router. router_jitter_noise (`float`, *optional*, defaults to 0.0): Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2) during training. router_dtype (`str`, *optional*, default to `"float32"`): The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): Whether to ignore padding tokens when routing. output_hidden_states (`bool`, *optional*, default to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. initializer_factor (`float`, *optional*, defaults to 0.002): A factor for initializing all weight matrices. output_router_logits (`bool`, *optional*, default to `False`): Whether or not to return the router logits of all experts. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) """ model_type = "gptsan-japanese" keys_to_ignore_at_inference = [ "past_key_values", ] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=36000, max_position_embeddings=1280, d_model=1024, d_ff=8192, d_ext=4096, d_spout=128, num_switch_layers=10, num_ext_layers=0, num_heads=16, num_experts=16, expert_capacity=128, dropout_rate=0.0, layer_norm_epsilon=1e-5, router_bias=False, router_jitter_noise=0.0, router_dtype="float32", router_ignore_padding_tokens=False, output_hidden_states=False, output_attentions=False, initializer_factor=0.002, output_router_logits=False, use_cache=True, separator_token_id=35998, pad_token_id=35995, eos_token_id=35999, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.d_ff = d_ff self.d_ext = d_ext self.d_spout = d_spout self.num_switch_layers = num_switch_layers self.num_ext_layers = num_ext_layers self.num_layers = num_switch_layers + num_ext_layers self.num_heads = num_heads self.num_experts = num_experts self.expert_capacity = expert_capacity self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.router_bias = router_bias self.router_jitter_noise = router_jitter_noise self.router_dtype = router_dtype self.router_ignore_padding_tokens = router_ignore_padding_tokens self.output_hidden_states = output_hidden_states self.output_attentions = output_attentions self.initializer_factor = initializer_factor self.output_router_logits = output_router_logits self.use_cache = use_cache super().__init__( separator_token_id=separator_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, **kwargs, )
transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py/0
{ "file_path": "transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py", "repo_id": "transformers", "token_count": 2956 }
357
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"allegro/herbert-base-cased": 514} PRETRAINED_INIT_CONFIGURATION = {} class HerbertTokenizerFast(PreTrainedTokenizerFast): """ Construct a "Fast" BPE tokenizer for HerBERT (backed by HuggingFace's *tokenizers* library). Peculiarities: - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a punctuation character will be treated separately. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = HerbertTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sep_token="</s>", **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, sep_token=sep_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An HerBERT, like BERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ cls = [self.cls_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. HerBERT, like BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/herbert/tokenization_herbert_fast.py/0
{ "file_path": "transformers/src/transformers/models/herbert/tokenization_herbert_fast.py", "repo_id": "transformers", "token_count": 2812 }
358
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License. # # MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore. References: - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch """ from typing import Optional, Tuple import torch import torch.nn as nn from .configuration_idefics import IdeficsConfig class IdeficsPerceiverResampler(nn.Module): def __init__( self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__() self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver # Create Latents for Perceiver self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True) self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = nn.ModuleList( [ nn.ModuleList( [ IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms), IdeficsMLP(self.intermediate_dim, config), ] ) for _ in range(depth) ] ) self.layer_norm = nn.LayerNorm(self.embed_dim) def forward(self, context: torch.Tensor) -> torch.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = self.latents.repeat(context.shape[0], 1, 1) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents) class IdeficsPerceiverAttention(nn.Module): def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__() self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = nn.LayerNorm(self.embed_dim) self.latents_layer_norm = nn.LayerNorm(self.embed_dim) if self.qk_layer_norms: self.q_layer_norm = nn.LayerNorm(self.head_dim) self.k_layer_norm = nn.LayerNorm(self.head_dim) self.qk_scale = self.head_dim**-0.5 # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False) def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`torch.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`torch.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = context.shape[:3] # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(torch.cat([context, latents], dim=-2)) v = self.v_proj(torch.cat([context, latents], dim=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] # einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) attn = stabilized_scores.softmax(dim=-1) # Attend & project back to output... resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) # einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) return self.output_proj(resampled.transpose(1, 2).flatten(-2)) class IdeficsMLP(nn.Module): def __init__(self, intermediate_size, config: IdeficsConfig): """Simple MLP block with intermediate_size and embedding size""" super().__init__() self.embed_dim = config.vision_config.embed_dim self.ln = nn.LayerNorm(self.embed_dim) self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False) self.act = nn.ReLU() self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states
transformers/src/transformers/models/idefics/perceiver.py/0
{ "file_path": "transformers/src/transformers/models/idefics/perceiver.py", "repo_id": "transformers", "token_count": 3755 }
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former. """ import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class InstructBlipProcessor(ProcessorMixin): r""" Constructs an InstructBLIP processor which wraps a BLIP image processor and a LLaMa/T5 tokenizer into a single processor. [`InstructBlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. Args: image_processor (`BlipImageProcessor`): An instance of [`BlipImageProcessor`]. The image processor is a required input. tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. qformer_tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BlipImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer, qformer_tokenizer): super().__init__(image_processor, tokenizer) # add QFormer tokenizer self.qformer_tokenizer = qformer_tokenizer def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_token_type_ids: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if images is None and text is None: raise ValueError("You have to specify at least images or text.") encoding = BatchFeature() if text is not None: text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding.update(text_encoding) qformer_text_encoding = self.qformer_tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids") encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask") if images is not None: image_encoding = self.image_processor(images, return_tensors=return_tensors) encoding.update(image_encoding) return encoding # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) # overwrite to save the Q-Former tokenizer in a separate folder def save_pretrained(self, save_directory, **kwargs): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer") self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path) return super().save_pretrained(save_directory, **kwargs) # overwrite to load the Q-Former tokenizer from a separate folder @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer") args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) args.append(qformer_tokenizer) return cls(*args)
transformers/src/transformers/models/instructblip/processing_instructblip.py/0
{ "file_path": "transformers/src/transformers/models/instructblip/processing_instructblip.py", "repo_id": "transformers", "token_count": 3196 }
360
# coding=utf-8 # Copyright The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for LayoutLMv3. Same as LayoutLMv2, but RoBERTa-like BPE tokenization instead of WordPiece.""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/vocab.json", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/vocab.json", }, "merges_file": { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/raw/main/merges.txt", "microsoft/layoutlmv3-large": "https://huggingface.co/microsoft/layoutlmv3-large/raw/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv3-base": 512, "microsoft/layoutlmv3-large": 512, } LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.roberta.tokenization_roberta.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class LayoutLMv3Tokenizer(PreTrainedTokenizer): r""" Construct a LayoutLMv3 tokenizer. Based on [`RoBERTatokenizer`] (Byte Pair Encoding or BPE). [`LayoutLMv3Tokenizer`] can be used to turn words, word-level bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and optional `labels` (for token classification). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. [`LayoutLMv3Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the word-level bounding boxes into token-level bounding boxes. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `True`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "bbox"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=True, cls_token_box=[0, 0, 0, 0], sep_token_box=[0, 0, 0, 0], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab def get_vocab(self): vocab = dict(self.encoder).copy() vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) # If the text starts with a token that should not be split, no space is added before the text in any case. # It's necessary to match the fast tokenization if ( (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()) and sum([text.startswith(no_split_token) for no_split_token in self.added_tokens_encoder]) == 0 ): text = " " + text return (text, kwargs) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.__call__ def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.batch_encode_plus def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_encode_plus def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_prepare_for_model def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: bool = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): batch_text_or_text_pair, boxes_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, boxes_example, word_labels=word_labels[idx] if word_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode def encode( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> List[int]: encoded_inputs = self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode_plus def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, boxes=boxes, text_pair=text_pair, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._encode_plus def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into token-level `labels`. The word label is used for the first token of the word, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] token_boxes = [] pair_token_boxes = [] labels = [] if text_pair is None: if word_labels is None: # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) for word, box in zip(text, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) else: # CASE 2: token classification (training) for word, box, label in zip(text, boxes, word_labels): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: document visual question answering (inference) # text = question # text_pair = words tokens = self.tokenize(text) token_boxes = [self.pad_token_box for _ in range(len(tokens))] for word, box in zip(text_pair, boxes): if len(word) < 1: # skip empty words continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) pair_token_boxes.extend([box] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) = self.truncate_sequences( ids, token_boxes, pair_ids=pair_ids, pair_token_boxes=pair_token_boxes, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] if pair_token_boxes: pair_token_boxes = [self.sep_token_box] + pair_token_boxes + [self.sep_token_box] token_boxes = token_boxes + pair_token_boxes if pair else token_boxes if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) token_boxes = token_boxes + pair_token_boxes if pair else token_boxes # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["bbox"] = token_boxes if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.truncate_sequences def truncate_sequences( self, ids: List[int], token_boxes: List[List[int]], pair_ids: Optional[List[int]] = None, pair_token_boxes: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. token_boxes (`List[List[int]]`): Bounding boxes of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_token_boxes (`List[List[int]]`, *optional*): Bounding boxes of the second sequence. labels (`List[int]`, *optional*): Labels of the first sequence (for token classification tasks). num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_token_boxes = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_token_boxes = token_boxes[-window_len:] overflowing_labels = labels[-window_len:] ids = ids[:-num_tokens_to_remove] token_boxes = token_boxes[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): ids = ids[:-1] token_boxes = token_boxes[:-1] labels = labels[:-1] else: pair_ids = pair_ids[:-1] pair_token_boxes = pair_token_boxes[:-1] elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_token_boxes = pair_token_boxes[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, token_boxes, pair_ids, pair_token_boxes, labels, overflowing_tokens, overflowing_token_boxes, overflowing_labels, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs
transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3.py", "repo_id": "transformers", "token_count": 32867 }
361
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LeViT.""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, logging logger = logging.get_logger(__name__) class LevitImageProcessor(BaseImageProcessor): r""" Constructs a LeViT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size_dict = get_size_dict(size, default_to_square=False) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: shortest_edge = int((256 / 224) * size["shortest_edge"]) output_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format ) size_dict = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( image, size=(size_dict["height"], size_dict["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, Iterable[float]]] = None, image_std: Optional[Union[float, Iterable[float]]] = None, return_tensors: Optional[TensorType] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images to be used as input to a LeViT model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the output image after center cropping. Crops images to (crop_size["height"], crop_size["width"]). do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Factor to rescale the image pixel values by. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image pixel values by `image_mean` and `image_std`. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to normalize the image pixel values by. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to normalize the image pixel values by. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image, size, resample, input_data_format=input_data_format) for image in images] if do_center_crop: images = [self.center_crop(image, crop_size, input_data_format=input_data_format) for image in images] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/levit/image_processing_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/image_processing_levit.py", "repo_id": "transformers", "token_count": 7148 }
362
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Llava. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LlavaProcessor(ProcessorMixin): r""" Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is not None: pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] else: pixel_values = None text_inputs = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/llava/processing_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/processing_llava.py", "repo_id": "transformers", "token_count": 2756 }
363
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5/LongT5X checkpoints from the original repository to JAX/FLAX model. This script is an extension of 'src/transformers/models/t5/convert_t5x_checkpoint_to_flax. """ import argparse from t5x import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeq2SeqLM def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path): config = AutoConfig.from_pretrained(config_name) flax_model = FlaxAutoModelForSeq2SeqLM.from_config(config=config) t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": encoder_attn_name = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": encoder_attn_name = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": encoder_attn_name = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_global_layer_norm = t5x_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_encoder_layer_block = flax_model.params["encoder"]["block"][str(layer_index)]["layer"] flax_model_encoder_layer_block["0"][encoder_attn_name]["k"]["kernel"] = t5x_attention_key flax_model_encoder_layer_block["0"][encoder_attn_name]["o"]["kernel"] = t5x_attention_out flax_model_encoder_layer_block["0"][encoder_attn_name]["q"]["kernel"] = t5x_attention_query flax_model_encoder_layer_block["0"][encoder_attn_name]["v"]["kernel"] = t5x_attention_value flax_model_encoder_layer_block["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": flax_model_encoder_layer_block["0"][encoder_attn_name]["global_input_layer_norm"][ "weight" ] = t5x_global_layer_norm if split_mlp_wi: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_encoder_layer_block["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_encoder_layer_block["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm flax_model.params["encoder"]["block"][str(layer_index)]["layer"] = flax_model_encoder_layer_block # Only for layer 0: t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["relative_attention_bias"][ "embedding" ] = t5x_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_encoder_global_rel_embedding = t5x_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["global_relative_attention_bias"][ "embedding" ] = t5x_encoder_global_rel_embedding # Assigning t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"] flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm # Decoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention t5x_enc_dec_attention_module = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] t5x_enc_dec_attention_key = t5x_enc_dec_attention_module["key"]["kernel"] t5x_enc_dec_attention_out = t5x_enc_dec_attention_module["out"]["kernel"] t5x_enc_dec_attention_query = t5x_enc_dec_attention_module["query"]["kernel"] t5x_enc_dec_attention_value = t5x_enc_dec_attention_module["value"]["kernel"] # Layer Normalization t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_decoder_layer_block = flax_model.params["decoder"]["block"][str(layer_index)]["layer"] flax_model_decoder_layer_block["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key flax_model_decoder_layer_block["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out flax_model_decoder_layer_block["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query flax_model_decoder_layer_block["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value flax_model_decoder_layer_block["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm flax_model_decoder_layer_block["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key flax_model_decoder_layer_block["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out flax_model_decoder_layer_block["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query flax_model_decoder_layer_block["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value flax_model_decoder_layer_block["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm if split_mlp_wi: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_decoder_layer_block["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_decoder_layer_block["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm flax_model.params["decoder"]["block"][str(layer_index)]["layer"] = flax_model_decoder_layer_block # Decoder Normalization tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"] flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm # Only for layer 0: t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ "embedding" ] = t5x_decoder_rel_embedding # Token Embeddings tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"] flax_model.params["shared"]["embedding"] = tx5_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in t5x_model["target"]["decoder"]: flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(flax_dump_folder_path) print("T5X Model was sucessfully converted!") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) args = parser.parse_args() convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
transformers/src/transformers/models/longt5/convert_longt5x_checkpoint_to_flax.py/0
{ "file_path": "transformers/src/transformers/models/longt5/convert_longt5x_checkpoint_to_flax.py", "repo_id": "transformers", "token_count": 4985 }
364
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ M2M100 model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/config.json", # See all M2M100 models at https://huggingface.co/models?filter=m2m_100 } class M2M100Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`M2M100Model`]. It is used to instantiate an M2M100 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the M2M100 [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the M2M100 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`M2M100Model`] or d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import M2M100Config, M2M100Model >>> # Initializing a M2M100 facebook/m2m100_418M style configuration >>> configuration = M2M100Config() >>> # Initializing a model (with random weights) from the facebook/m2m100_418M style configuration >>> model = M2M100Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "m2m_100" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=128112, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.05, decoder_layerdrop=0.05, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=1024, dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, ) class M2M100OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs # Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering # A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question # answering are not supported for M2M100, but this name is preserved to be able to check that the copy matches what # was done for BART so that it can be updated if need be. def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
transformers/src/transformers/models/m2m_100/configuration_m2m_100.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/configuration_m2m_100.py", "repo_id": "transformers", "token_count": 5664 }
365
# coding=utf-8 # Copyright 2021, The Microsoft Research Asia MarkupLM Team authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MarkupLM model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class MarkupLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MarkupLM [microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture. Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the documentation from [`BertConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`MarkupLMModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the tree id unit embedding might ever use. Typically set this to something large just in case (e.g., 1024). max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256): The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large just in case (e.g., 256). max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something large just in case (e.g., 1024). tag_pad_id (`int`, *optional*, defaults to 216): The id of the padding token in the xpath tags. subs_pad_id (`int`, *optional*, defaults to 1001): The id of the padding token in the xpath subscripts. xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32): The hidden size of each tree id unit. One complete tree index will have (50*xpath_tag_unit_hidden_size)-dim. max_depth (`int`, *optional*, defaults to 50): The maximum depth in xpath. Examples: ```python >>> from transformers import MarkupLMModel, MarkupLMConfig >>> # Initializing a MarkupLM microsoft/markuplm-base style configuration >>> configuration = MarkupLMConfig() >>> # Initializing a model from the microsoft/markuplm-base style configuration >>> model = MarkupLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "markuplm" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=0, eos_token_id=2, max_xpath_tag_unit_embeddings=256, max_xpath_subs_unit_embeddings=1024, tag_pad_id=216, subs_pad_id=1001, xpath_unit_hidden_size=32, max_depth=50, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # additional properties self.max_depth = max_depth self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings self.tag_pad_id = tag_pad_id self.subs_pad_id = subs_pad_id self.xpath_unit_hidden_size = xpath_unit_hidden_size
transformers/src/transformers/models/markuplm/configuration_markuplm.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/configuration_markuplm.py", "repo_id": "transformers", "token_count": 2942 }
366
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with Swin backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): backbone_config = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight")) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight")) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias")) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_swin_q_k_v(state_dict, backbone_config): num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): dim = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ dim : dim * 2, : ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ dim : dim * 2 ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ -dim :, : ] state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] # fmt: on # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_swin_q_k_v(state_dict, config.backbone_config) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() for name, param in model.named_parameters(): print(name, param.shape) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(unexpected_keys) == 0, f"Unexpected keys: {unexpected_keys}" # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) print("Logits:", outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": expected_logits = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") image_processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py", "repo_id": "transformers", "token_count": 8473 }
367
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _import_structure = { "configuration_mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mistral"] = [ "MistralForCausalLM", "MistralModel", "MistralPreTrainedModel", "MistralForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_mistral"] = [ "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxMistralPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mistral import ( MistralForCausalLM, MistralForSequenceClassification, MistralModel, MistralPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, FlaxMistralPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/mistral/__init__.py/0
{ "file_path": "transformers/src/transformers/models/mistral/__init__.py", "repo_id": "transformers", "token_count": 935 }
368
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 MobileBERT model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/mobilebert-uncased", # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss class TFMobileBertPreTrainingLoss: """ Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. """ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) # make sure only labels that are not equal to -100 # are taken into account for the loss computation lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) masked_lm_losses = unmasked_lm_losses * lm_loss_mask reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) masked_ns_loss = unmasked_ns_loss * ns_loss_mask reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) class TFMobileBertIntermediate(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) class TFLayerNorm(keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): self.feat_size = feat_size super().__init__(*args, **kwargs) def build(self, input_shape=None): super().build([None, None, self.feat_size]) class TFNoNorm(keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") super().build(input_shape) def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} class TFMobileBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "embedding_transformation", None) is not None: with tf.name_scope(self.embedding_transformation.name): self.embedding_transformation.build([None, None, self.embedded_input_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMobileBertSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.true_hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.true_hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build( [ None, None, self.config.true_hidden_size if self.config.use_bottleneck_attention else self.config.hidden_size, ] ) class TFMobileBertSelfOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFOutputBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") self.config = config def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) class TFBottleneckLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bottleneck_input", None) is not None: with tf.name_scope(self.bottleneck_input.name): self.bottleneck_input.build(None) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) class TFFFNOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFFFNLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFMobileBertLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "ffn", None) is not None: for layer in self.ffn: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertPooler(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFMobileBertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertLMPredictionHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.config = config def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.config.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states class TFMobileBertMLMHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFMobileBertMainLayer(keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert" @dataclass class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFMobileBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.mobilebert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFMobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) class TFMobileBertOnlyNSPHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = keras.layers.Dense(2, name="seq_relationship") self.config = config def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size]) @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFNextSentencePredictorOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py/0
{ "file_path": "transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py", "repo_id": "transformers", "token_count": 35828 }
369
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MobileViT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "apple/mobilevit-small": "https://huggingface.co/apple/mobilevit-small/resolve/main/config.json", "apple/mobilevit-x-small": "https://huggingface.co/apple/mobilevit-x-small/resolve/main/config.json", "apple/mobilevit-xx-small": "https://huggingface.co/apple/mobilevit-xx-small/resolve/main/config.json", "apple/deeplabv3-mobilevit-small": ( "https://huggingface.co/apple/deeplabv3-mobilevit-small/resolve/main/config.json" ), "apple/deeplabv3-mobilevit-x-small": ( "https://huggingface.co/apple/deeplabv3-mobilevit-x-small/resolve/main/config.json" ), "apple/deeplabv3-mobilevit-xx-small": ( "https://huggingface.co/apple/deeplabv3-mobilevit-xx-small/resolve/main/config.json" ), # See all MobileViT models at https://huggingface.co/models?filter=mobilevit } class MobileViTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a MobileViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileViT [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 256): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 2): The size (resolution) of each patch. hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`): Dimensionality (hidden size) of the Transformer encoders at each stage. neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`): The number of channels for the feature maps of the backbone. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 2.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. expand_ratio (`float`, *optional*, defaults to 4.0): Expansion factor for the MobileNetv2 layers. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolutional kernel in the MobileViT layer. output_stride (`int`, *optional*, defaults to 32): The ratio of the spatial resolution of the output to the resolution of the input image. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the Transformer encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. aspp_out_channels (`int`, *optional*, defaults to 256): Number of output channels used in the ASPP layer for semantic segmentation. atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): Dilation (atrous) factors used in the ASPP layer for semantic segmentation. aspp_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the ASPP layer for semantic segmentation. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import MobileViTConfig, MobileViTModel >>> # Initializing a mobilevit-small style configuration >>> configuration = MobileViTConfig() >>> # Initializing a model from the mobilevit-small style configuration >>> model = MobileViTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilevit" def __init__( self, num_channels=3, image_size=256, patch_size=2, hidden_sizes=[144, 192, 240], neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640], num_attention_heads=4, mlp_ratio=2.0, expand_ratio=4.0, hidden_act="silu", conv_kernel_size=3, output_stride=32, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-5, qkv_bias=True, aspp_out_channels=256, atrous_rates=[6, 12, 18], aspp_dropout_prob=0.1, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_sizes = hidden_sizes self.neck_hidden_sizes = neck_hidden_sizes self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.expand_ratio = expand_ratio self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias # decode head attributes for semantic segmentation self.aspp_out_channels = aspp_out_channels self.atrous_rates = atrous_rates self.aspp_dropout_prob = aspp_dropout_prob self.semantic_loss_ignore_index = semantic_loss_ignore_index class MobileViTOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/mobilevit/configuration_mobilevit.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/configuration_mobilevit.py", "repo_id": "transformers", "token_count": 3268 }
370
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Text/audio processor class for MusicGen """ from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class MusicgenProcessor(ProcessorMixin): r""" Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor class. [`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See [`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information. Args: feature_extractor (`EncodecFeatureExtractor`): An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input. tokenizer (`T5Tokenizer`): An instance of [`T5Tokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "EncodecFeatureExtractor" tokenizer_class = ("T5Tokenizer", "T5TokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def __call__(self, *args, **kwargs): """ Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text` argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: inputs = self.tokenizer(text, **kwargs) if audio is not None: audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if audio is None: return inputs elif text is None: return audio_inputs else: inputs["input_values"] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: inputs["padding_mask"] = audio_inputs["padding_mask"] return inputs def batch_decode(self, *args, **kwargs): """ This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ audio_values = kwargs.pop("audio", None) padding_mask = kwargs.pop("padding_mask", None) if len(args) > 0: audio_values = args[0] args = args[1:] if audio_values is not None: return self._decode_audio(audio_values, padding_mask=padding_mask) else: return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]: """ This method strips any padding from the audio values to return a list of numpy audio arrays. """ audio_values = to_numpy(audio_values) bsz, channels, seq_len = audio_values.shape if padding_mask is None: return list(audio_values) padding_mask = to_numpy(padding_mask) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) difference = seq_len - padding_mask.shape[-1] padding_value = 1 - self.feature_extractor.padding_value padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value) audio_values = audio_values.tolist() for i in range(bsz): sliced_audio = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] audio_values[i] = sliced_audio.reshape(channels, -1) return audio_values
transformers/src/transformers/models/musicgen/processing_musicgen.py/0
{ "file_path": "transformers/src/transformers/models/musicgen/processing_musicgen.py", "repo_id": "transformers", "token_count": 2176 }
371
from ... import PretrainedConfig NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class NezhaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nezha [sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, optional, defaults to 21128): Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`NezhaModel`]. hidden_size (`int`, optional, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, optional, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, optional, defaults to 3072): The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, optional, defaults to "gelu"): The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob (`float`, optional, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, optional, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`NezhaModel`]. initializer_range (`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, optional, defaults to 1e-12): The epsilon used by the layer normalization layers. classifier_dropout (`float`, optional, defaults to 0.1): The dropout ratio for attached classifiers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. Example: ```python >>> from transformers import NezhaConfig, NezhaModel >>> # Initializing an Nezha configuration >>> configuration = NezhaConfig() >>> # Initializing a model (with random weights) from the Nezha-base style configuration model >>> model = NezhaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" pretrained_config_archive_map = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "nezha" def __init__( self, vocab_size=21128, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, max_relative_position=64, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, classifier_dropout=0.1, pad_token_id=0, bos_token_id=2, eos_token_id=3, use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_relative_position = max_relative_position self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.classifier_dropout = classifier_dropout self.use_cache = use_cache
transformers/src/transformers/models/nezha/configuration_nezha.py/0
{ "file_path": "transformers/src/transformers/models/nezha/configuration_nezha.py", "repo_id": "transformers", "token_count": 1967 }
372
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Nystromformer checkpoints from the original repository.""" import argparse import torch from transformers import NystromformerConfig, NystromformerForMaskedLM def rename_key(orig_key): if "model" in orig_key: orig_key = orig_key.replace("model.", "") if "norm1" in orig_key: orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") if "norm2" in orig_key: orig_key = orig_key.replace("norm2", "output.LayerNorm") if "norm" in orig_key: orig_key = orig_key.replace("norm", "LayerNorm") if "transformer" in orig_key: layer_num = orig_key.split(".")[0].split("_")[-1] orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") if "mha.attn" in orig_key: orig_key = orig_key.replace("mha.attn", "attention.self") if "mha" in orig_key: orig_key = orig_key.replace("mha", "attention") if "W_q" in orig_key: orig_key = orig_key.replace("W_q", "self.query") if "W_k" in orig_key: orig_key = orig_key.replace("W_k", "self.key") if "W_v" in orig_key: orig_key = orig_key.replace("W_v", "self.value") if "ff1" in orig_key: orig_key = orig_key.replace("ff1", "intermediate.dense") if "ff2" in orig_key: orig_key = orig_key.replace("ff2", "output.dense") if "ff" in orig_key: orig_key = orig_key.replace("ff", "output.dense") if "mlm_class" in orig_key: orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") if "mlm" in orig_key: orig_key = orig_key.replace("mlm", "cls.predictions.transform") if "cls" not in orig_key: orig_key = "nystromformer." + orig_key return orig_key def convert_checkpoint_helper(config, orig_state_dict): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if ("pooler" in key) or ("sen_class" in key) or ("conv.bias" in key): continue else: orig_state_dict[rename_key(key)] = val orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] orig_state_dict["nystromformer.embeddings.position_ids"] = ( torch.arange(config.max_position_embeddings).expand((1, -1)) + 2 ) return orig_state_dict def convert_nystromformer_checkpoint(checkpoint_path, nystromformer_config_file, pytorch_dump_path): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"] config = NystromformerConfig.from_json_file(nystromformer_config_file) model = NystromformerForMaskedLM(config) new_state_dict = convert_checkpoint_helper(config, orig_state_dict) model.load_state_dict(new_state_dict) model.eval() model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to Nystromformer pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for Nystromformer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_nystromformer_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1668 }
373
# coding=utf-8 # Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OPT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) OPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/opt-125m": "https://huggingface.co/facebook/opt-125m/blob/main/config.json", "facebook/opt-350m": "https://huggingface.co/facebook/opt-350m/blob/main/config.json", "facebook/opt-1.3b": "https://huggingface.co/facebook/opt-1.3b/blob/main/config.json", "facebook/opt-2.7b": "https://huggingface.co/facebook/opt-2.7b/blob/main/config.json", "facebook/opt-6.7b": "https://huggingface.co/facebook/opt-6.7b/blob/main/config.json", "facebook/opt-13b": "https://huggingface.co/facebook/opt-13b/blob/main/config.json", } class OPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OPT [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50272): Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OPTModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of decoder layers. ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). do_layer_norm_before (`bool`, *optional*, defaults to `True`): Whether to perform layer normalization before the attention block. word_embed_proj_dim (`int`, *optional*): `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to `hidden_size`. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). enable_bias (`bool`, *optional*, defaults to `True`): Whether or not if the linear layers in the attention blocks should use the bias term. layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not if the layer norms should have learnable parameters. Example: ```python >>> from transformers import OPTConfig, OPTModel >>> # Initializing a OPT facebook/opt-large style configuration >>> configuration = OPTConfig() >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration >>> model = OPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "opt" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50272, hidden_size=768, num_hidden_layers=12, ffn_dim=3072, max_position_embeddings=2048, do_layer_norm_before=True, _remove_final_layer_norm=False, word_embed_proj_dim=None, dropout=0.1, attention_dropout=0.0, num_attention_heads=12, activation_function="relu", layerdrop=0.0, init_std=0.02, use_cache=True, pad_token_id=1, bos_token_id=2, eos_token_id=2, enable_bias=True, layer_norm_elementwise_affine=True, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size self.ffn_dim = ffn_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_function = activation_function self.init_std = init_std self.layerdrop = layerdrop self.use_cache = use_cache self.do_layer_norm_before = do_layer_norm_before # We keep these variables at `True` for backward compatibility. self.enable_bias = enable_bias self.layer_norm_elementwise_affine = layer_norm_elementwise_affine # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 self._remove_final_layer_norm = _remove_final_layer_norm
transformers/src/transformers/models/opt/configuration_opt.py/0
{ "file_path": "transformers/src/transformers/models/opt/configuration_opt.py", "repo_id": "transformers", "token_count": 2762 }
374
# coding=utf-8 # Copyright 2022 Google AI and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch OWL-ViT model.""" import warnings from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_vision_available, logging, replace_return_docstrings, ) from .configuration_owlvit import OwlViTConfig, OwlViTTextConfig, OwlViTVisionConfig if is_vision_available(): from transformers.image_transforms import center_to_corners_format logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/owlvit-base-patch32" # See all OwlViT models at https://huggingface.co/models?filter=owlvit OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/owlvit-base-patch32", "google/owlvit-base-patch16", "google/owlvit-large-patch14", ] # Copied from transformers.models.clip.modeling_clip.contrastive_loss with clip->owlvit def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->owlvit def owlvit_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class OwlViTOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size * num_max_text_queries, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`OwlViTVisionModel`]. text_model_output (Tuple[`BaseModelOutputWithPooling`]): The output of the [`OwlViTTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`OwlViTVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.detr.modeling_detr._upcast def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.detr.modeling_detr.box_area def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.detr.modeling_detr.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union # Copied from transformers.models.detr.modeling_detr.generalized_box_iou def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area @dataclass class OwlViTObjectDetectionOutput(ModelOutput): """ Output type of [`OwlViTForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. text_embeds (`torch.FloatTensor` of shape `(batch_size, num_max_text_queries, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`): Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes image embeddings for each patch. class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`): Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total number of patches is (image_size / patch_size)**2. text_model_output (Tuple[`BaseModelOutputWithPooling`]): The output of the [`OwlViTTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`OwlViTVisionModel`]. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None class_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class OwlViTImageGuidedObjectDetectionOutput(ModelOutput): """ Output type of [`OwlViTForObjectDetection.image_guided_detection`]. Args: logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`): Classification logits (including no-object) for all queries. target_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual target image in the batch (disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. query_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual query image in the batch (disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`): Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes image embeddings for each patch. query_image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`): Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes image embeddings for each patch. class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`): Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total number of patches is (image_size / patch_size)**2. text_model_output (Tuple[`BaseModelOutputWithPooling`]): The output of the [`OwlViTTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`OwlViTVisionModel`]. """ logits: torch.FloatTensor = None image_embeds: torch.FloatTensor = None query_image_embeds: torch.FloatTensor = None target_pred_boxes: torch.FloatTensor = None query_pred_boxes: torch.FloatTensor = None class_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class OwlViTVisionEmbeddings(nn.Module): def __init__(self, config: OwlViTVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.class_embedding = nn.Parameter(torch.randn(config.hidden_size)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=config.patch_size, stride=config.patch_size, bias=False, ) self.num_patches = (config.image_size // config.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] patch_embeds = self.patch_embedding(pixel_values) # shape = [batch_size, num_channels, height, width] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class OwlViTTextEmbeddings(nn.Module): def __init__(self, config: OwlViTTextConfig): super().__init__() self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class OwlViTAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # For int8 compatibility, sometimes the `attn_probs` are in `fp32` attn_probs = attn_probs.to(value_states.dtype) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->OwlViT class OwlViTMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->OwlViT class OwlViTEncoderLayer(nn.Module): def __init__(self, config: OwlViTConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = OwlViTAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = OwlViTMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class OwlViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OwlViTConfig base_model_prefix = "owlvit" supports_gradient_checkpointing = True _no_split_modules = ["OwlViTEncoderLayer"] def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, OwlViTTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, OwlViTVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, OwlViTAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, OwlViTMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, OwlViTModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() OWLVIT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OwlViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ OWLVIT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ OWLVIT_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ OWLVIT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids). attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the last hidden state. See `text_model_last_hidden_state` and `vision_model_last_hidden_state` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. query_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values of query image(s) to be detected. Pass in one query image per target image. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class OwlViTEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`OwlViTEncoderLayer`]. Args: config: OwlViTConfig """ def __init__(self, config: OwlViTConfig): super().__init__() self.layers = nn.ModuleList([OwlViTEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class OwlViTTextTransformer(nn.Module): def __init__(self, config: OwlViTTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = OwlViTTextEmbeddings(config) self.encoder = OwlViTEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # num_samples, seq_len = input_shape where num_samples = batch_size * num_max_text_queries # OWLVIT's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [num_samples, seq_len] -> [num_samples, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # take features from the end of tokens embedding (end of token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(torch.int).argmax(dim=-1).to(last_hidden_state.device), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class OwlViTTextModel(OwlViTPreTrainedModel): config_class = OwlViTTextConfig def __init__(self, config: OwlViTTextConfig): super().__init__(config) self.text_model = OwlViTTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, OwlViTTextModel >>> model = OwlViTTextModel.from_pretrained("google/owlvit-base-patch32") >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> inputs = processor( ... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt" ... ) >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" # Get embeddings for all text queries in all batch samples return self.text_model( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class OwlViTVisionTransformer(nn.Module): def __init__(self, config: OwlViTVisionConfig): super().__init__() self.config = config self.embeddings = OwlViTVisionEmbeddings(config) self.pre_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = OwlViTEncoder(config) self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Cast the input to the expected `dtype` expected_input_dtype = self.embeddings.patch_embedding.weight.dtype pixel_values = pixel_values.to(expected_input_dtype) hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class OwlViTVisionModel(OwlViTPreTrainedModel): config_class = OwlViTVisionConfig main_input_name = "pixel_values" def __init__(self, config: OwlViTVisionConfig): super().__init__(config) self.vision_model = OwlViTVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, OwlViTVisionModel >>> model = OwlViTVisionModel.from_pretrained("google/owlvit-base-patch32") >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(OWLVIT_START_DOCSTRING) class OwlViTModel(OwlViTPreTrainedModel): config_class = OwlViTConfig def __init__(self, config: OwlViTConfig): super().__init__(config) if not isinstance(config.text_config, OwlViTTextConfig): raise ValueError( "config.text_config is expected to be of type OwlViTTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, OwlViTVisionConfig): raise ValueError( "config.vision_config is expected to be of type OwlViTVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = OwlViTTextTransformer(text_config) self.vision_model = OwlViTVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, OwlViTModel >>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32") >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> inputs = processor( ... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt" ... ) >>> text_features = model.get_text_features(**inputs) ```""" # Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components. return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get embeddings for all text queries in all batch samples text_output = self.text_model(input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict) pooled_output = text_output[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`OwlViTVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, OwlViTModel >>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32") >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(OWLVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OwlViTOutput, config_class=OwlViTConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_base_image_embeds: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, OwlViTOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, OwlViTModel >>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32") >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=[["a photo of a cat", "a photo of a dog"]], images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Get embeddings for all text queries in all batch samples text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) # normalized features image_embeds = image_embeds / torch.linalg.norm(image_embeds, ord=2, dim=-1, keepdim=True) text_embeds_norm = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True) # cosine similarity as logits and set it on the correct device logit_scale = self.logit_scale.exp().to(image_embeds.device) logits_per_text = torch.matmul(text_embeds_norm, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = owlvit_loss(logits_per_text) if return_base_image_embeds: warnings.warn( "`return_base_image_embeds` is deprecated and will be removed in v4.27 of Transformers, one can" " obtain the base (unprojected) image embeddings from outputs.vision_model_output.", FutureWarning, ) last_hidden_state = vision_outputs[0] image_embeds = self.vision_model.post_layernorm(last_hidden_state) else: text_embeds = text_embeds_norm if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return OwlViTOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class OwlViTBoxPredictionHead(nn.Module): def __init__(self, config: OwlViTConfig, out_dim: int = 4): super().__init__() width = config.vision_config.hidden_size self.dense0 = nn.Linear(width, width) self.dense1 = nn.Linear(width, width) self.gelu = nn.GELU() self.dense2 = nn.Linear(width, out_dim) def forward(self, image_features: torch.Tensor) -> torch.FloatTensor: output = self.dense0(image_features) output = self.gelu(output) output = self.dense1(output) output = self.gelu(output) output = self.dense2(output) return output class OwlViTClassPredictionHead(nn.Module): def __init__(self, config: OwlViTConfig): super().__init__() out_dim = config.text_config.hidden_size self.query_dim = config.vision_config.hidden_size self.dense0 = nn.Linear(self.query_dim, out_dim) self.logit_shift = nn.Linear(self.query_dim, 1) self.logit_scale = nn.Linear(self.query_dim, 1) self.elu = nn.ELU() def forward( self, image_embeds: torch.FloatTensor, query_embeds: Optional[torch.FloatTensor], query_mask: Optional[torch.Tensor], ) -> Tuple[torch.FloatTensor]: image_class_embeds = self.dense0(image_embeds) if query_embeds is None: device = image_class_embeds.device batch_size, num_patches = image_class_embeds.shape[:2] pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device) return (pred_logits, image_class_embeds) # Normalize image and text features image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6) query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6) # Get class predictions pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds) # Apply a learnable shift and scale to logits logit_shift = self.logit_shift(image_embeds) logit_scale = self.logit_scale(image_embeds) logit_scale = self.elu(logit_scale) + 1 pred_logits = (pred_logits + logit_shift) * logit_scale if query_mask is not None: if query_mask.ndim > 1: query_mask = torch.unsqueeze(query_mask, dim=-2) pred_logits = pred_logits.to(torch.float64) pred_logits = torch.where(query_mask == 0, -1e6, pred_logits) pred_logits = pred_logits.to(torch.float32) return (pred_logits, image_class_embeds) class OwlViTForObjectDetection(OwlViTPreTrainedModel): config_class = OwlViTConfig def __init__(self, config: OwlViTConfig): super().__init__(config) self.owlvit = OwlViTModel(config) self.class_head = OwlViTClassPredictionHead(config) self.box_head = OwlViTBoxPredictionHead(config) self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps) self.sigmoid = nn.Sigmoid() self.sqrt_num_patches = config.vision_config.image_size // config.vision_config.patch_size def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor): # Computes normalized xy corner coordinates from feature_map. if not feature_map.ndim == 4: raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]") device = feature_map.device num_patches = feature_map.shape[1] # TODO: Remove numpy usage. box_coordinates = np.stack( np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1 ).astype(np.float32) box_coordinates /= np.array([num_patches, num_patches], np.float32) # Flatten (h, w, 2) -> (h*w, 2) box_coordinates = box_coordinates.reshape( box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2] ) box_coordinates = torch.from_numpy(box_coordinates).to(device) return box_coordinates def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor: # The box center is biased to its position on the feature grid box_coordinates = self.normalize_grid_corner_coordinates(feature_map) box_coordinates = torch.clip(box_coordinates, 0.0, 1.0) # Unnormalize xy box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4) # The box size is biased to the patch size box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2]) box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4) # Compute box bias box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1) return box_bias def box_predictor( self, image_feats: torch.FloatTensor, feature_map: torch.FloatTensor, ) -> torch.FloatTensor: """ Args: image_feats: Features extracted from the image, returned by the `image_text_embedder` method. feature_map: A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method. Returns: pred_boxes: List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary. """ # Bounding box detection head [batch_size, num_boxes, 4]. pred_boxes = self.box_head(image_feats) # Compute the location of each token on the grid and use it to compute a bias for the bbox prediction pred_boxes += self.compute_box_bias(feature_map) pred_boxes = self.sigmoid(pred_boxes) return pred_boxes def class_predictor( self, image_feats: torch.FloatTensor, query_embeds: Optional[torch.FloatTensor] = None, query_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.FloatTensor]: """ Args: image_feats: Features extracted from the `image_text_embedder`. query_embeds: Text query embeddings. query_mask: Must be provided with query_embeddings. A mask indicating which query embeddings are valid. """ (pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask) return (pred_logits, image_class_embeds) def image_text_embedder( self, input_ids: torch.Tensor, pixel_values: torch.FloatTensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Tuple[torch.FloatTensor]: # Encode text and image outputs = self.owlvit( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) # Get image embeddings last_hidden_state = outputs.vision_model_output[0] image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state) # Resize class token class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape) # Merge image embedding with class tokens image_embeds = image_embeds[:, 1:, :] * class_token_out image_embeds = self.layer_norm(image_embeds) # Resize to [batch_size, num_patches, num_patches, hidden_size] new_size = ( image_embeds.shape[0], self.sqrt_num_patches, self.sqrt_num_patches, image_embeds.shape[-1], ) image_embeds = image_embeds.reshape(new_size) text_embeds = outputs[-4] return (text_embeds, image_embeds, outputs) def image_embedder( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Tuple[torch.FloatTensor]: # Get OwlViTModel vision embeddings (same as CLIP) vision_outputs = self.owlvit.vision_model(pixel_values=pixel_values, return_dict=True) # Apply post_layernorm to last_hidden_state, return non-projected output last_hidden_state = vision_outputs[0] image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state) # Resize class token class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape) # Merge image embedding with class tokens image_embeds = image_embeds[:, 1:, :] * class_token_out image_embeds = self.layer_norm(image_embeds) # Resize to [batch_size, num_patches, num_patches, hidden_size] new_size = ( image_embeds.shape[0], self.sqrt_num_patches, self.sqrt_num_patches, image_embeds.shape[-1], ) image_embeds = image_embeds.reshape(new_size) return (image_embeds, vision_outputs) def embed_image_query( self, query_image_features: torch.FloatTensor, query_feature_map: torch.FloatTensor ) -> torch.FloatTensor: _, class_embeds = self.class_predictor(query_image_features) pred_boxes = self.box_predictor(query_image_features, query_feature_map) pred_boxes_as_corners = center_to_corners_format(pred_boxes) # Loop over query images best_class_embeds = [] best_box_indices = [] pred_boxes_device = pred_boxes_as_corners.device for i in range(query_image_features.shape[0]): each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device) each_query_pred_boxes = pred_boxes_as_corners[i] ious, _ = box_iou(each_query_box, each_query_pred_boxes) # If there are no overlapping boxes, fall back to generalized IoU if torch.all(ious[0] == 0.0): ious = generalized_box_iou(each_query_box, each_query_pred_boxes) # Use an adaptive threshold to include all boxes within 80% of the best IoU iou_threshold = torch.max(ious) * 0.8 selected_inds = (ious[0] >= iou_threshold).nonzero() if selected_inds.numel(): selected_embeddings = class_embeds[i][selected_inds.squeeze(1)] mean_embeds = torch.mean(class_embeds[i], axis=0) mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings) best_box_ind = selected_inds[torch.argmin(mean_sim)] best_class_embeds.append(class_embeds[i][best_box_ind]) best_box_indices.append(best_box_ind) if best_class_embeds: query_embeds = torch.stack(best_class_embeds) box_indices = torch.stack(best_box_indices) else: query_embeds, box_indices = None, None return query_embeds, box_indices, pred_boxes @add_start_docstrings_to_model_forward(OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OwlViTImageGuidedObjectDetectionOutput, config_class=OwlViTConfig) def image_guided_detection( self, pixel_values: torch.FloatTensor, query_pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> OwlViTImageGuidedObjectDetectionOutput: r""" Returns: Examples: ```python >>> import requests >>> from PIL import Image >>> import torch >>> from transformers import AutoProcessor, OwlViTForObjectDetection >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch16") >>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch16") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> query_url = "http://images.cocodataset.org/val2017/000000001675.jpg" >>> query_image = Image.open(requests.get(query_url, stream=True).raw) >>> inputs = processor(images=image, query_images=query_image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model.image_guided_detection(**inputs) >>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2] >>> target_sizes = torch.Tensor([image.size[::-1]]) >>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> results = processor.post_process_image_guided_detection( ... outputs=outputs, threshold=0.6, nms_threshold=0.3, target_sizes=target_sizes ... ) >>> i = 0 # Retrieve predictions for the first image >>> boxes, scores = results[i]["boxes"], results[i]["scores"] >>> for box, score in zip(boxes, scores): ... box = [round(i, 2) for i in box.tolist()] ... print(f"Detected similar object with confidence {round(score.item(), 3)} at location {box}") Detected similar object with confidence 0.856 at location [10.94, 50.4, 315.8, 471.39] Detected similar object with confidence 1.0 at location [334.84, 25.33, 636.16, 374.71] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Compute feature maps for the input and query images query_feature_map = self.image_embedder(pixel_values=query_pixel_values)[0] feature_map, vision_outputs = self.image_embedder( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) batch_size, num_patches, num_patches, hidden_dim = feature_map.shape image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim)) batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim)) # Get top class embedding and best box index for each query image in batch query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map) # Predict object classes [batch_size, num_patches, num_queries+1] (pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_embeds=query_embeds) # Predict object boxes target_pred_boxes = self.box_predictor(image_feats, feature_map) if not return_dict: output = ( feature_map, query_feature_map, target_pred_boxes, query_pred_boxes, pred_logits, class_embeds, vision_outputs.to_tuple(), ) output = tuple(x for x in output if x is not None) return output return OwlViTImageGuidedObjectDetectionOutput( image_embeds=feature_map, query_image_embeds=query_feature_map, target_pred_boxes=target_pred_boxes, query_pred_boxes=query_pred_boxes, logits=pred_logits, class_embeds=class_embeds, text_model_output=None, vision_model_output=vision_outputs, ) @add_start_docstrings_to_model_forward(OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OwlViTObjectDetectionOutput, config_class=OwlViTConfig) def forward( self, input_ids: torch.Tensor, pixel_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> OwlViTObjectDetectionOutput: r""" Returns: Examples: ```python >>> import requests >>> from PIL import Image >>> import torch >>> from transformers import AutoProcessor, OwlViTForObjectDetection >>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32") >>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = [["a photo of a cat", "a photo of a dog"]] >>> inputs = processor(text=texts, images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2] >>> target_sizes = torch.Tensor([image.size[::-1]]) >>> # Convert outputs (bounding boxes and class logits) to final bounding boxes and scores >>> results = processor.post_process_object_detection( ... outputs=outputs, threshold=0.1, target_sizes=target_sizes ... ) >>> i = 0 # Retrieve predictions for the first image for the corresponding text queries >>> text = texts[i] >>> boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"] >>> for box, score, label in zip(boxes, scores, labels): ... box = [round(i, 2) for i in box.tolist()] ... print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}") Detected a photo of a cat with confidence 0.707 at location [324.97, 20.44, 640.58, 373.29] Detected a photo of a cat with confidence 0.717 at location [1.46, 55.26, 315.55, 472.17] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Embed images and text queries query_embeds, feature_map, outputs = self.image_text_embedder( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) # Text and vision model outputs text_outputs = outputs.text_model_output vision_outputs = outputs.vision_model_output batch_size, num_patches, num_patches, hidden_dim = feature_map.shape image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim)) # Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim] max_text_queries = input_ids.shape[0] // batch_size query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1]) # If first token is 0, then this is a padded query [batch_size, num_queries]. input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1]) query_mask = input_ids[..., 0] > 0 # Predict object classes [batch_size, num_patches, num_queries+1] (pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask) # Predict object boxes pred_boxes = self.box_predictor(image_feats, feature_map) if not return_dict: output = ( pred_logits, pred_boxes, query_embeds, feature_map, class_embeds, text_outputs.to_tuple(), vision_outputs.to_tuple(), ) output = tuple(x for x in output if x is not None) return output return OwlViTObjectDetectionOutput( image_embeds=feature_map, text_embeds=query_embeds, pred_boxes=pred_boxes, logits=pred_logits, class_embeds=class_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, )
transformers/src/transformers/models/owlvit/modeling_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/modeling_owlvit.py", "repo_id": "transformers", "token_count": 32524 }
375
# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Weights conversion script for Phi This script downloads both Phi-1 and Phi-1.5 checkpoints to "checkpoint_path" and then converts the weights to HugfgingFace model's format and saves them in "pytorch_dump_folder_path". Example : $python ./convert_phi_weights_to_hf.py --model_name "microsoft/phi-2" --pytorch_dump_folder ./dump_folder/ --checkpoint_path ./ckpt_path/ """ import argparse import gc import os import safetensors import torch from huggingface_hub import hf_hub_download from transformers import PhiConfig, PhiForCausalLM _MODELS = { "microsoft/phi-1": ["https://huggingface.co/microsoft/phi-1/blob/main/pytorch_model.bin"], "microsoft/phi-1_5": ["https://huggingface.co/microsoft/phi-1_5/blob/main/pytorch_model.bin"], "microsoft/phi-2": [ "https://huggingface.co/microsoft/phi-2/blob/main/model-00001-of-00002.safetensors", "https://huggingface.co/microsoft/phi-2/blob/main/model-00002-of-00002.safetensors", ], } PHI_MAPPING = { "transformer.embd.wte.weight": "model.embed_tokens.weight", "lm_head.linear": "lm_head", "lm_head.ln": "model.final_layernorm", "layers": "model.layers", "transformer": "model", ".h.": ".layers.", "ln": "input_layernorm", "mixer": "self_attn", "Wqkv": "query_key_value", "out_proj": "dense", } def convert_weights(original_weights, mapping, config): converted_weights = {} original_weights_keys = sorted(original_weights.keys()) for original_weights_key in original_weights_keys: new_key = original_weights_key if "rotary_emb" in new_key: continue if "Wqkv" in new_key: if "weight" in new_key: weight = original_weights[new_key] weights_shape = weight.shape weight = ( weight.view(3, config.num_attention_heads, -1, config.hidden_size) .transpose(0, 1) .reshape(*weights_shape) ) original_weights[new_key] = weight elif "bias" in new_key: bias = original_weights[new_key] bias_shape = bias.shape bias = bias.view(3, config.num_attention_heads, -1).transpose(0, 1).reshape(*bias_shape) original_weights[new_key] = bias for k, v in mapping.items(): if k in new_key: new_key = new_key.replace(k, v) converted_weights[new_key] = original_weights.pop(original_weights_key) return converted_weights def _download(url: str, root: str): repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}" filename = f"{url.split('/')[-1]}" hf_hub_download( repo_id=repo_id, filename=filename, force_filename=root, local_dir_use_symlinks=False, ) def convert_phi_weights( model_name, checkpoint_path, pytorch_dump_folder_path, use_cuda, save_weights_directly, _MODELS ): _MODELS = _MODELS if model_name not in _MODELS.keys() else {model_name: _MODELS.get(model_name)} device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" for model_name, model_url in _MODELS.items(): converted_checkpoint = {} model_checkpoint = {} # for phi-2 the weights are stored in 2 different safetensors file so we need to iterate over that list and download one at a time for model_each_url in model_url: model_path = os.path.join(checkpoint_path, model_name + "_" + model_each_url.split("/")[-1]) if not os.path.exists(model_path): print(f"\n{model_name} was not found! Downloading it to {model_path}") _download(url=model_each_url, root=model_path) if model_path.endswith("safetensors"): loaded_weights = safetensors.torch.load_file(model_path, device=device) else: loaded_weights = torch.load(model_path, map_location=device) model_checkpoint.update(**loaded_weights) model_type = model_name.split("/")[1] # phi-1 or phi-1_5 or phi-2 # init the config for phi-1 and phi-1.5 config = PhiConfig() # if we are dealing with phi-2 then update the config if model_type == "phi-2": config.hidden_size = 2560 config.intermediate_size = 10240 config.num_hidden_layers = 32 config.resid_pdrop = 0.1 config.partial_rotary_factor = 0.4 config.num_hidden_layers = 32 config.torch_dtype = "float16" # Converting the weights converted_checkpoint.update(**convert_weights(model_checkpoint, PHI_MAPPING, config)) # Save either the whole model or the converted weights if save_weights_directly: save_weights_path = os.path.join(pytorch_dump_folder_path, model_type + "_pytorch_model.bin") torch.save(converted_checkpoint, save_weights_path) print(f"Model weights saved at {save_weights_path}!") else: model = PhiForCausalLM(config).to(device) model.load_state_dict(converted_checkpoint, strict=True) save_model_path = os.path.join(pytorch_dump_folder_path, model_type) model.save_pretrained(save_model_path) print(f"Model saved at {save_model_path}!") # release GPU memory for the 2nd model if cuda was used. del config, model # release GPU memory for the 2nd model if cuda was used. del model_checkpoint, converted_checkpoint if use_cuda: torch.cuda.empty_cache() gc.collect() if __name__ == "__main__": parser = argparse.ArgumentParser() # # Required parameters parser.add_argument( "--model_name", type=str, help="Name of the model to convert. (Please enter one of the following: phi-1, phi-1_5, phi-2). If nothing is provided, all models will be converted.", default=None, ) parser.add_argument( "--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)" ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model. (Please enter full path)", ) parser.add_argument( "--use_cuda", default=False, type=bool, help="Whether to load the weights on GPU during conversion or not, False by default", ) parser.add_argument( "--save_weights_directly", default=True, type=bool, help="Whether to save the weights directly after conversion or load the weight to the Phi model and then save " "the Phi model along with weights. True by default", ) args = parser.parse_args() convert_phi_weights( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.use_cuda, args.save_weights_directly, _MODELS, )
transformers/src/transformers/models/phi/convert_phi_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/phi/convert_phi_weights_to_hf.py", "repo_id": "transformers", "token_count": 3301 }
376
# coding=utf-8 # Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PoolFormer model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class PoolFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PoolFormer [sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of channels in the input image. patch_size (`int`, *optional*, defaults to 16): The size of the input patch. stride (`int`, *optional*, defaults to 16): The stride of the input patch. pool_size (`int`, *optional*, defaults to 3): The size of the pooling window. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): The depth of each encoder block. hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`): The hidden sizes of each encoder block. patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`): The size of the input patch for each encoder block. strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`): The stride of the input patch for each encoder block. padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`): The padding of the input patch for each encoder block. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout rate for the dropout layers. hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function for the hidden layers. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to use layer scale. layer_scale_init_value (`float`, *optional*, defaults to 1e-05): The initial value for the layer scale. initializer_range (`float`, *optional*, defaults to 0.02): The initializer range for the weights. Example: ```python >>> from transformers import PoolFormerConfig, PoolFormerModel >>> # Initializing a PoolFormer sail/poolformer_s12 style configuration >>> configuration = PoolFormerConfig() >>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration >>> model = PoolFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "poolformer" def __init__( self, num_channels=3, patch_size=16, stride=16, pool_size=3, mlp_ratio=4.0, depths=[2, 2, 6, 2], hidden_sizes=[64, 128, 320, 512], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], padding=[2, 1, 1, 1], num_encoder_blocks=4, drop_path_rate=0.0, hidden_act="gelu", use_layer_scale=True, layer_scale_init_value=1e-5, initializer_range=0.02, **kwargs, ): self.num_channels = num_channels self.patch_size = patch_size self.stride = stride self.padding = padding self.pool_size = pool_size self.hidden_sizes = hidden_sizes self.mlp_ratio = mlp_ratio self.depths = depths self.patch_sizes = patch_sizes self.strides = strides self.num_encoder_blocks = num_encoder_blocks self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.initializer_range = initializer_range super().__init__(**kwargs) class PoolFormerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 2e-3
transformers/src/transformers/models/poolformer/configuration_poolformer.py/0
{ "file_path": "transformers/src/transformers/models/poolformer/configuration_poolformer.py", "repo_id": "transformers", "token_count": 2243 }
377
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import os import unicodedata from typing import Iterable, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/prophetnet-large-uncased": ( "https://huggingface.co/microsoft/prophetnet-large-uncased/resolve/main/prophetnet.tokenizer" ), } } PRETRAINED_INIT_CONFIGURATION = { "microsoft/prophetnet-large-uncased": {"do_lower_case": True}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/prophetnet-large-uncased": 512, } # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class ProphetNetTokenizer(PreTrainedTokenizer): r""" Construct a ProphetNetTokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`): Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is used to separate bullet-point like sentences in summarization, *e.g.*. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES # first name has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly # `ProphetNet` doesn't have `token_type_ids` as argument. model_input_names: List[str] = ["input_ids", "attention_mask"] def __init__( self, vocab_file: str, do_lower_case: Optional[bool] = True, do_basic_tokenize: Optional[bool] = True, never_split: Optional[Iterable] = None, unk_token: Optional[str] = "[UNK]", sep_token: Optional[str] = "[SEP]", x_sep_token: Optional[str] = "[X_SEP]", pad_token: Optional[str] = "[PAD]", mask_token: Optional[str] = "[MASK]", tokenize_chinese_chars: Optional[bool] = True, strip_accents: Optional[bool] = None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, x_sep_token=x_sep_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token: str): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index: int): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: str): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: Optional[bool] = False, ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.sep_token_id] sep = [self.sep_token_id] return token_ids_0 + sep + token_ids_1 + sep
transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py/0
{ "file_path": "transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py", "repo_id": "transformers", "token_count": 9509 }
378
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" import json import os import unicodedata from functools import lru_cache from typing import Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" @lru_cache() # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Qwen2Tokenizer(PreTrainedTokenizer): """ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2Tokenizer >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. You should not use GPT2Tokenizer instead, because of the different pretokenization rules. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", clean_up_tokenization_spaces=False, split_special_tokens=False, **kwargs, ): # Qwen vocab does not contain control tokens; added tokens need to be special bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} bpe_merges = [] with open(merges_file, encoding="utf-8") as merges_handle: for line in merges_handle: line = line.strip() if not line or line.startswith("#"): continue bpe_merges.append(tuple(line.split())) self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) # NOTE: the cache can grow without bound and will get really large for long running processes # (esp. for texts of language that do not use space between word, e.g. Chinese); technically # not a memory leak but appears as one. # GPT2Tokenizer has the same problem, so let's be consistent. self.cache = {} self.pat = re.compile(PRETOKENIZE_REGEX) if kwargs.get("add_prefix_space", False): logger.warning_once( f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." ) super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, split_special_tokens=split_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: Optional[bool] = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer return super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, **kwargs): text = unicodedata.normalize("NFC", text) return (text, kwargs)
transformers/src/transformers/models/qwen2/tokenization_qwen2.py/0
{ "file_path": "transformers/src/transformers/models/qwen2/tokenization_qwen2.py", "repo_id": "transformers", "token_count": 6208 }
379
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Reformer checkpoint.""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def set_param(torch_layer, weight, bias=None): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" torch_layer.weight = nn.Parameter(weight) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" torch_layer.bias = nn.Parameter(bias) def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query_key = np.asarray(weights[0]) np_value = np.asarray(weights[1]) np_dense = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key, torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query = np.asarray(weights[0]) np_key = np.asarray(weights[1]) np_value = np.asarray(weights[2]) np_dense = np.asarray(weights[3]) set_param( torch_layer.self_attention.query, torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.key, torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_block_weights_in_torch(weights, torch_block, hidden_size): # layernorm 1 layer_norm_1 = weights[0][0][0] layer_norm_1_weight = np.asarray(layer_norm_1[0]) layer_norm_1_bias = np.asarray(layer_norm_1[1]) set_param( torch_block.attention.layer_norm, torch.tensor(layer_norm_1_weight), torch.tensor(layer_norm_1_bias), ) # lsh weights + output attn_weights = weights[0][1] if len(attn_weights) < 4: set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size) else: set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size) # intermediate weighs intermediate_weights = weights[2][0][1][2] # Chunked Feed Forward if len(intermediate_weights) == 4: intermediate_weights = intermediate_weights[2] # layernorm 2 layer_norm_2_weight = np.asarray(intermediate_weights[0][0]) layer_norm_2_bias = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm, torch.tensor(layer_norm_2_weight), torch.tensor(layer_norm_2_bias), ) # intermediate dense inter_dense_weight = np.asarray(intermediate_weights[1][0]) inter_dense_bias = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense, torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(), torch.tensor(inter_dense_bias), ) # intermediate out out_dense_weight = np.asarray(intermediate_weights[4][0]) out_dense_bias = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense, torch.tensor(out_dense_weight).transpose(0, 1).contiguous(), torch.tensor(out_dense_bias), ) def set_model_weights_in_torch(weights, torch_model, hidden_size): # reformer model torch_model_reformer = torch_model.reformer # word embeds word_embeddings = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(word_embeddings), ) if isinstance(weights[3], tuple): position_embeddings = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): emb_weights = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights)) trax_layer_weights = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( trax_layer_weights ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(block_weights, layer, hidden_size) # output layer norm layer_norm_out_weight = np.asarray(weights[7][0]) layer_norm_out_bias = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(layer_norm_out_weight), torch.tensor(layer_norm_out_bias), ) # output embeddings output_embed_weights = np.asarray(weights[9][0]) output_embed_bias = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder, torch.tensor(output_embed_weights).transpose(0, 1).contiguous(), torch.tensor(output_embed_bias), ) def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = ReformerConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = ReformerModelWithLMHead(config) with open(trax_model_pkl_path, "rb") as f: model_weights = pickle.load(f)["weights"] set_model_weights_in_torch(model_weights, model, config.hidden_size) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3213 }
380
# coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RemBERT.""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/rembert": 256, } class RemBertTokenizer(PreTrainedTokenizer): """ Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=True, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _tokenize(self, text, sample=False): """Tokenize a string.""" pieces = self.sp_model.EncodeAsPieces(text) return pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): out_string = self.sp_model.decode_pieces(tokens) return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REMBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/rembert/tokenization_rembert.py/0
{ "file_path": "transformers/src/transformers/models/rembert/tokenization_rembert.py", "repo_id": "transformers", "token_count": 4632 }
381
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_roberta_prelayernorm"] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_roberta_prelayernorm"] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_roberta_prelayernorm"] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/roberta_prelayernorm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/roberta_prelayernorm/__init__.py", "repo_id": "transformers", "token_count": 2258 }
382
# coding=utf-8 # Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SegFormer model.""" from __future__ import annotations import math from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer class TFSegformerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFSegformerOverlapPatchEmbeddings(keras.layers.Layer): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size, **kwargs): super().__init__(**kwargs) self.padding = keras.layers.ZeroPadding2D(padding=patch_size // 2) self.proj = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") self.num_channels = num_channels self.hidden_size = hidden_size def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]: embeddings = self.proj(self.padding(pixel_values)) height = shape_list(embeddings)[1] width = shape_list(embeddings)[2] hidden_dim = shape_list(embeddings)[3] # (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim)) embeddings = self.layer_norm(embeddings) return embeddings, height, width def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, None, self.num_channels]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerEfficientSelfAttention(keras.layers.Layer): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = self.hidden_size // self.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense(self.all_head_size, name="query") self.key = keras.layers.Dense(self.all_head_size, name="key") self.value = keras.layers.Dense(self.all_head_size, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = keras.layers.Conv2D( filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] # to [batch_size, seq_length, num_attention_heads, attention_head_size] batch_size = shape_list(tensor)[0] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] # to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[2] query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: # Reshape to (batch_size, height, width, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels)) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, scale) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size]) if getattr(self, "sr", None) is not None: with tf.name_scope(self.sr.name): self.sr.build([None, None, None, self.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerSelfOutput(keras.layers.Layer): def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFSegformerAttention(keras.layers.Layer): def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.self = TFSegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="self", ) self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.dense_output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFSegformerDWConv(keras.layers.Layer): def __init__(self, dim: int = 768, **kwargs): super().__init__(**kwargs) self.depthwise_convolution = keras.layers.Conv2D( filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv" ) self.dim = dim def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) hidden_states = self.depthwise_convolution(hidden_states) new_height = shape_list(hidden_states)[1] new_width = shape_list(hidden_states)[2] num_channels = shape_list(hidden_states)[3] hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels)) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build([None, None, None, self.dim]) class TFSegformerMixFFN(keras.layers.Layer): def __init__( self, config: SegformerConfig, in_features: int, hidden_features: int = None, out_features: int = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features self.dense1 = keras.layers.Dense(hidden_features, name="dense1") self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.dense2 = keras.layers.Dense(out_features, name="dense2") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_features = hidden_features self.in_features = in_features def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.depthwise_convolution(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense1", None) is not None: with tf.name_scope(self.dense1.name): self.dense1.build([None, None, self.in_features]) if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build(None) if getattr(self, "dense2", None) is not None: with tf.name_scope(self.dense2.name): self.dense2.build([None, None, self.hidden_features]) class TFSegformerLayer(keras.layers.Layer): """This corresponds to the Block class in the original implementation.""" def __init__( self, config, hidden_size: int, num_attention_heads: int, drop_path: float, sequence_reduction_ratio: int, mlp_ratio: int, **kwargs, ): super().__init__(**kwargs) self.layer_norm_1 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1") self.attention = TFSegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="attention", ) self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else keras.layers.Activation("linear") self.layer_norm_2 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2") mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp") self.hidden_size = hidden_size def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Tuple: self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output, training=training) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output, training=training) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm_1", None) is not None: with tf.name_scope(self.layer_norm_1.name): self.layer_norm_1.build([None, None, self.hidden_size]) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm_2", None) is not None: with tf.name_scope(self.layer_norm_2.name): self.layer_norm_2.build([None, None, self.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) class TFSegformerEncoder(keras.layers.Layer): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # stochastic depth decay rule drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( TFSegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], name=f"patch_embeddings.{i}", ) ) self.embeddings = embeddings # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( TFSegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], name=f"block.{i}.{j}", ) ) blocks.append(layers) self.block = blocks # Layer norms self.layer_norms = [ keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}") for i in range(config.num_encoder_blocks) ] def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = shape_list(pixel_values)[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks # (each block consists of multiple layers i.e., list of layers) for i, blk in enumerate(block_layer): layer_outputs = blk( hidden_states, height, width, output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, height, width, num_channels) if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage): num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norms", None) is not None: for layer, shape in zip(self.layer_norms, self.config.hidden_sizes): with tf.name_scope(layer.name): layer.build([None, None, shape]) if getattr(self, "block", None) is not None: for block in self.block: for layer in block: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "embeddings", None) is not None: for layer in self.embeddings: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSegformerMainLayer(keras.layers.Layer): config_class = SegformerConfig def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # hierarchical Transformer encoder self.encoder = TFSegformerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: if tf.greater(len(encoder_outputs[1:]), 0): transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0]) return (sequence_output,) + (transposed_encoder_outputs,) else: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) class TFSegformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)} SEGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class TFSegformerModel(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config # hierarchical Transformer encoder self.segformer = TFSegformerMainLayer(config, name="segformer") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.segformer = TFSegformerMainLayer(config, name="segformer") # Classifier head self.classifier = keras.layers.Dense(config.num_labels, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = shape_list(sequence_output)[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1])) # global average pooling sequence_output = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) class TFSegformerMLP(keras.layers.Layer): """ Linear Embedding. """ def __init__(self, input_dim: int, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.proj = keras.layers.Dense(config.decoder_hidden_size, name="proj") self.input_dim = input_dim def call(self, hidden_states: tf.Tensor) -> tf.Tensor: height = shape_list(hidden_states)[1] width = shape_list(hidden_states)[2] hidden_dim = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim)) hidden_states = self.proj(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.input_dim]) class TFSegformerDecodeHead(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = TFSegformerMLP(config=config, input_dim=config.hidden_sizes[i], name=f"linear_c.{i}") mlps.append(mlp) self.mlps = mlps # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = keras.layers.Conv2D( filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse" ) self.batch_norm = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm") self.activation = keras.layers.Activation("relu") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier") self.config = config def call(self, encoder_hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps): if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3: height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32)) height = width = tf.cast(height, tf.int32) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # unify channel dimension encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1]) height, width = shape_list(encoder_hidden_state)[1:3] encoder_hidden_state = mlp(encoder_hidden_state) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # upsample temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1]) upsample_resolution = shape_list(temp_state)[1:-1] encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear") all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1)) hidden_states = self.batch_norm(hidden_states, training=training) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # logits of shape (batch_size, height/4, width/4, num_labels) logits = self.classifier(hidden_states) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_fuse", None) is not None: with tf.name_scope(self.linear_fuse.name): self.linear_fuse.build( [None, None, None, self.config.decoder_hidden_size * self.config.num_encoder_blocks] ) if getattr(self, "batch_norm", None) is not None: with tf.name_scope(self.batch_norm.name): self.batch_norm.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "mlps", None) is not None: for layer in self.mlps: with tf.name_scope(layer.name): layer.build(None) @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) self.segformer = TFSegformerMainLayer(config, name="segformer") self.decode_head = TFSegformerDecodeHead(config, name="decode_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs, training=False) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: if not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") else: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None)
transformers/src/transformers/models/segformer/modeling_tf_segformer.py/0
{ "file_path": "transformers/src/transformers/models/segformer/modeling_tf_segformer.py", "repo_id": "transformers", "token_count": 19147 }
383
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert SigLIP checkpoints from the original repository. URL: https://github.com/google-research/big_vision/tree/main """ import argparse import collections from pathlib import Path import numpy as np import requests import torch from huggingface_hub import hf_hub_download from numpy import load from PIL import Image from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) model_name_to_checkpoint = { # base checkpoints "siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz", "siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz", "siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz", "siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz", # large checkpoints "siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz", "siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz", # multilingual checkpoint "siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz", # so400m checkpoints "siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz", } model_name_to_image_size = { "siglip-base-patch16-224": 224, "siglip-base-patch16-256": 256, "siglip-base-patch16-384": 384, "siglip-base-patch16-512": 512, "siglip-large-patch16-256": 256, "siglip-large-patch16-384": 384, "siglip-base-patch16-256-i18n": 256, "siglip-so400m-patch14-384": 384, } def get_siglip_config(model_name): config = SiglipConfig() vocab_size = 250000 if "i18n" in model_name else 32000 image_size = model_name_to_image_size[model_name] patch_size = 16 if "patch16" in model_name else 14 # size of the architecture config.vision_config.image_size = image_size config.vision_config.patch_size = patch_size config.text_config.vocab_size = vocab_size if "base" in model_name: pass elif "large" in model_name: config.text_config.hidden_size = 1024 config.text_config.intermediate_size = 4096 config.text_config.num_hidden_layers = 24 config.text_config.num_attention_heads = 16 config.vision_config.hidden_size = 1024 config.vision_config.intermediate_size = 4096 config.vision_config.num_hidden_layers = 24 config.vision_config.num_attention_heads = 16 elif "so400m" in model_name: config.text_config.hidden_size = 1152 config.text_config.intermediate_size = 4304 config.text_config.num_hidden_layers = 27 config.text_config.num_attention_heads = 16 config.vision_config.hidden_size = 1152 config.vision_config.intermediate_size = 4304 config.vision_config.num_hidden_layers = 27 config.vision_config.num_attention_heads = 16 else: raise ValueError("Model not supported") return config def create_rename_keys(config): rename_keys = [] # fmt: off # vision encoder rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight")) rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias")) rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight")) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight")) rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias")) rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe")) rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight")) rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias")) rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight")) rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias")) rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight")) rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias")) rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight")) rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias")) # text encoder rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight")) rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight")) for i in range(config.text_config.num_hidden_layers): rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight")) rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias")) rename_keys.append(("params/txt/head/kernel", "text_model.head.weight")) rename_keys.append(("params/txt/head/bias", "text_model.head.bias")) # learned temperature and bias rename_keys.append(("params/t", "logit_scale")) rename_keys.append(("params/b", "logit_bias")) # fmt: on return rename_keys def rename_key(dct, old, new, config): val = dct.pop(old) if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new: val = val.reshape(-1, config.vision_config.hidden_size) if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new: val = val.reshape(-1, config.text_config.hidden_size) if "patch_embedding.weight" in new: val = val.transpose(3, 2, 0, 1) elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new: val = val.T if "position_embedding" in new and "vision" in new: val = val.reshape(-1, config.vision_config.hidden_size) if "position_embedding" in new and "text" in new: val = val.reshape(-1, config.text_config.hidden_size) if new.endswith("bias"): val = val.reshape(-1) dct[new] = torch.from_numpy(val) def read_in_q_k_v_head(state_dict, config): # read in individual input projection layers key_proj_weight = ( state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel") .reshape(-1, config.vision_config.hidden_size) .T ) key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1) value_proj_weight = ( state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel") .reshape(-1, config.vision_config.hidden_size) .T ) value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1) query_proj_weight = ( state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel") .reshape(-1, config.vision_config.hidden_size) .T ) query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1) # next, add them to the state dict as a single matrix + vector state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy( np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0) ) state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy( np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0) ) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image def flatten_nested_dict(params, parent_key="", sep="/"): items = [] for k, v in params.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.abc.MutableMapping): items.extend(flatten_nested_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) @torch.no_grad() def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False): """ Copy/paste/tweak model's weights to our SigLIP structure. """ # define default SigLIP configuration config = get_siglip_config(model_name) # get checkpoint checkpoint = model_name_to_checkpoint[model_name] # get vocab file if "i18n" in model_name: vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model" else: vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model" # load original state dict data = load(checkpoint) state_dict = flatten_nested_dict(data) # remove and rename some keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest, config) # qkv matrices of attention pooling head need special treatment read_in_q_k_v_head(state_dict, config) # load HuggingFace model model = SiglipModel(config).eval() model.load_state_dict(state_dict) # create processor # important: make tokenizer not return attention_mask since original one doesn't require it image_size = config.vision_config.image_size size = {"height": image_size, "width": image_size} image_processor = SiglipImageProcessor(size=size) tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"]) processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer) # verify on dummy images and texts url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg" image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB") url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg" image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB") texts = ["an apple", "a picture of an apple"] inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length") # verify input_ids against original ones if image_size == 224: filename = "siglip_pixel_values.pt" elif image_size == 256: filename = "siglip_pixel_values_256.pt" elif image_size == 384: filename = "siglip_pixel_values_384.pt" elif image_size == 512: filename = "siglip_pixel_values_512.pt" else: raise ValueError("Image size not supported") filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset") original_pixel_values = torch.load(filepath) filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset") original_input_ids = torch.load(filepath) if "i18n" not in model_name: assert inputs.input_ids.tolist() == original_input_ids.tolist() print("Mean of original pixel values:", original_pixel_values.mean()) print("Mean of new pixel values:", inputs.pixel_values.mean()) # note: we're testing with original pixel values here since we don't have exact pixel values with torch.no_grad(): outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values) # with torch.no_grad(): # outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values) print(outputs.logits_per_image[:3, :3]) probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'") if verify_logits: if model_name == "siglip-base-patch16-224": expected_slice = torch.tensor( [[-2.9621, -2.1672], [-0.2713, 0.2910]], ) elif model_name == "siglip-base-patch16-256": expected_slice = torch.tensor( [[-3.1146, -1.9894], [-0.7312, 0.6387]], ) elif model_name == "siglip-base-patch16-384": expected_slice = torch.tensor( [[-2.8098, -2.1891], [-0.4242, 0.4102]], ) elif model_name == "siglip-base-patch16-512": expected_slice = torch.tensor( [[-2.7899, -2.2668], [-0.4295, -0.0735]], ) elif model_name == "siglip-large-patch16-256": expected_slice = torch.tensor( [[-1.5827, -0.5801], [-0.9153, 0.1363]], ) elif model_name == "siglip-large-patch16-384": expected_slice = torch.tensor( [[-2.1523, -0.2899], [-0.2959, 0.7884]], ) elif model_name == "siglip-so400m-patch14-384": expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]]) elif model_name == "siglip-base-patch16-256-i18n": expected_slice = torch.tensor( [[-0.9064, 0.1073], [-0.0299, 0.5304]], ) assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub(f"nielsr/{model_name}") processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="siglip-base-patch16-224", type=str, choices=model_name_to_checkpoint.keys(), help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--verify_logits", action="store_false", help="Whether to verify logits against the original implementation.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
transformers/src/transformers/models/siglip/convert_siglip_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/siglip/convert_siglip_to_hf.py", "repo_id": "transformers", "token_count": 8771 }
384
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow Speech2Text model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation, glu from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_speech_to_text import Speech2TextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Speech2TextConfig" _CHECKPOINT_FOR_DOC = "facebook/s2t-small-librispeech-asr" TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/s2t-small-librispeech-asr", # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFConv1dSubsampler(keras.layers.Layer): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = [ keras.layers.Conv1D( filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, strides=2, name=f"conv_layers.{i}", ) for i, k in enumerate(self.kernel_sizes) ] def call(self, input_features: tf.Tensor) -> tf.Tensor: # TF Conv1D assumes Batch x Time x Channels, same as the input hidden_states = tf.cast(input_features, tf.float32) for i, conv in enumerate(self.conv_layers): # equivalent to `padding=k // 2` on PT's `nn.Conv1d` pad_len = self.kernel_sizes[i] // 2 hidden_shapes = shape_list(hidden_states) hidden_states = tf.concat( ( tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), hidden_states, tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), ), axis=1, ) hidden_states = conv(hidden_states) hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_layers", None) is not None: for i, layer in enumerate(self.conv_layers): with tf.name_scope(layer.name): layer.build([None, None, self.in_channels] if i == 0 else [None, None, self.mid_channels // 2]) class TFSpeech2TextSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx) @staticmethod def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor: """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = tf.math.log(10000.0) / (half_dim - 1) emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1]) if embedding_dim % 2 == 1: # zero pad emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1) if padding_idx is not None: emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, tf.shape(emb)[1])), emb[padding_idx + 1 :, :]], axis=0) return emb def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor: bsz, seq_len = shape_list(input_ids) # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) # Matt: The PyTorch code does a lot of work to cache the embeddings, setting the cached values as a # model attribute in the forward pass. This is extremely forbidden in TF, which wants forward calls to be # idempotent. TF doesn't need that caching anyway, since it can just store constants during compilation, # so we just remove all of that code. embeddings = self._get_embedding( self.padding_idx + 1 + seq_len + self.offset + past_key_values_length, self.embedding_dim, self.padding_idx ) return tf.reshape(tf.gather(embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1)) @staticmethod def create_position_ids_from_input_ids( input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: tf.Tensor x: Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Speech2Text class TFSpeech2TextAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFSpeech2TextEncoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFSpeech2TextDecoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFSpeech2TextAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFSpeech2TextPreTrainedModel(TFPreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" _keys_to_ignore_on_load_unexpected = [r"encoder.embed_positions.weights"] def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths @property def input_signature(self): return { "input_features": tf.TensorSpec( (None, None, self.config.input_feat_per_channel * self.config.input_channels), tf.float32, name="input_features", ), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } SPEECH_TO_TEXT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`Speech2TextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" Args: input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`tf.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFSpeech2TextEncoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFSpeech2TextEncoderLayer`]. Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0 self.conv = TFConv1dSubsampler(config, name="conv") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_source_positions, embedding_dim=embed_dim, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1)) bsz = shape_list(attention_mask)[0] indices = tf.concat( ( tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1), tf.expand_dims(subsampled_lengths - 1, -1), ), axis=-1, ) attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length]) attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64) return attention_mask @unpack_inputs def call( self, input_features=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_features is None: raise ValueError("You have to specify input_features") inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(tf.shape(inputs_embeds)[1], attention_mask) padding_mask = tf.cast(tf.math.not_equal(attention_mask, 1), tf.int64) else: padding_mask = tf.zeros(tf.shape(inputs_embeds)[:-1], dtype=tf.int64) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, training=training, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSpeech2TextDecoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`] Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_target_positions, embedding_dim=config.d_model, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale else: inputs_embeds = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, ) if use_cache: next_decoder_cache += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSpeech2TextMainLayer(keras.layers.Layer): config_class = Speech2TextConfig def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFSpeech2TextEncoder(config, name="encoder") self.decoder = TFSpeech2TextDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.embed_tokens = new_embeddings @unpack_inputs def call( self, input_features=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features=input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( tf.shape(encoder_outputs[0])[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", SPEECH_TO_TEXT_START_DOCSTRING, ) class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFSpeech2TextMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqModelOutput]: outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( "The Speech2Text Model with a language modeling head. Can be used for summarization.", SPEECH_TO_TEXT_START_DOCSTRING, ) class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = TFSpeech2TextMainLayer(config, name="model") self.lm_head = keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head") # TODO (Joao): investigate why Speech2Text has numerical issues in XLA generate self.supports_xla_generation = False self.config = config def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration >>> from datasets import load_dataset >>> import soundfile as sf >>> model = TFSpeech2TextForConditionalGeneration.from_pretrained( ... "facebook/s2t-small-librispeech-asr", from_pt=True ... ) >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> ds.set_format(type="tf") >>> input_features = processor( ... ds["speech"][0], sampling_rate=16000, return_tensors="tf" ... ).input_features # Batch size 1 >>> generated_ids = model.generate(input_features) >>> transcription = processor.batch_decode(generated_ids) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_features": None, # needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.d_model]) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "lm_head.weight": return tf_weight, "model.decoder.embed_tokens.weight" else: return (tf_weight,)
transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py", "repo_id": "transformers", "token_count": 32975 }
385
# coding=utf-8 # Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for SpeechT5.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from .number_normalizer import EnglishNumberNormalizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/speecht5_asr": 1024, "microsoft/speecht5_tts": 1024, "microsoft/speecht5_vc": 1024, } class SpeechT5Tokenizer(PreTrainedTokenizer): """ Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The begin of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. normalize (`bool`, *optional*, defaults to `False`): Whether to convert numeric quantities in the text to their spelt-out english counterparts. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", normalize=False, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.normalize = normalize self._normalizer = None self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, normalize=normalize, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): normalize = kwargs.pop("normalize", self.normalize) if is_split_into_words: text = " " + text if normalize: text = self.normalizer(text) return (text, kwargs) @property def vocab_size(self): return self.sp_model.get_piece_size() @property def normalizer(self): if self._normalizer is None: self._normalizer = EnglishNumberNormalizer() return self._normalizer @normalizer.setter def normalizer(self, value): self._normalizer = value def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) suffix_ones = [1] if token_ids_1 is None: return ([0] * len(token_ids_0)) + suffix_ones return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/speecht5/tokenization_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/tokenization_speecht5.py", "repo_id": "transformers", "token_count": 4079 }
386
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_swin2sr": ["SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swin2SRConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_swin2sr"] = [ "SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST", "Swin2SRForImageSuperResolution", "Swin2SRModel", "Swin2SRPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_swin2sr"] = ["Swin2SRImageProcessor"] if TYPE_CHECKING: from .configuration_swin2sr import SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP, Swin2SRConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin2sr import ( SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST, Swin2SRForImageSuperResolution, Swin2SRModel, Swin2SRPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_swin2sr import Swin2SRImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/swin2sr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/__init__.py", "repo_id": "transformers", "token_count": 863 }
387
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TAPAS checkpoint.""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch( task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file config = TapasConfig.from_json_file(tapas_config_file) # set absolute/relative position embeddings parameter config.reset_position_index_per_cell = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": model = TapasForQuestionAnswering(config=config) elif task == "WTQ": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = True # hparam_utils.py hparams config.answer_loss_cutoff = 0.664694 config.cell_selection_preference = 0.207951 config.huber_loss_delta = 0.121194 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = False config.temperature = 0.0352513 model = TapasForQuestionAnswering(config=config) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = False # hparam_utils.py hparams config.answer_loss_cutoff = 36.4519 config.cell_selection_preference = 0.903421 config.huber_loss_delta = 222.088 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = True config.temperature = 0.763141 model = TapasForQuestionAnswering(config=config) elif task == "TABFACT": model = TapasForSequenceClassification(config=config) elif task == "MLM": model = TapasForMaskedLM(config=config) elif task == "INTERMEDIATE_PRETRAINING": model = TapasModel(config=config) else: raise ValueError(f"Task {task} not supported.") print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_tapas(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) tokenizer.save_pretrained(pytorch_dump_path) print("Used relative position embeddings:", model.config.reset_position_index_per_cell) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1935 }
388
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TrOCR checkpoints from the unilm repository.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(encoder_config, decoder_config): rename_keys = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, encoder_config): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) in_proj_weight = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight") state_dict[f"encoder.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : encoder_config.hidden_size, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -encoder_config.hidden_size :, : ] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of the IAM Handwriting Database def prepare_img(checkpoint_url): if "handwritten" in checkpoint_url: url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: url = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" im = Image.open(requests.get(url, stream=True).raw).convert("RGB") return im @torch.no_grad() def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure. """ # define encoder and decoder configs based on checkpoint_url encoder_config = ViTConfig(image_size=384, qkv_bias=False) decoder_config = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: decoder_config.encoder_hidden_size = 768 elif "large" in checkpoint_url: # use ViT-large encoder encoder_config.hidden_size = 1024 encoder_config.intermediate_size = 4096 encoder_config.num_hidden_layers = 24 encoder_config.num_attention_heads = 16 decoder_config.encoder_hidden_size = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: decoder_config.tie_word_embeddings = False decoder_config.activation_function = "relu" decoder_config.max_position_embeddings = 1024 decoder_config.scale_embedding = True decoder_config.use_learned_position_embeddings = False decoder_config.layernorm_embedding = False # load HuggingFace model encoder = ViTModel(encoder_config, add_pooling_layer=False) decoder = TrOCRForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() # load state_dict of original model, rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"] rename_keys = create_rename_keys(encoder_config, decoder_config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, encoder_config) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("decoder") and "output_projection" not in key: state_dict["decoder.model." + key] = val else: state_dict[key] = val # load state dict model.load_state_dict(state_dict) # Check outputs on an image image_processor = ViTImageProcessor(size=encoder_config.image_size) tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-large") processor = TrOCRProcessor(image_processor, tokenizer) pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values # verify logits decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) logits = outputs.logits expected_shape = torch.Size([1, 1, 50265]) if "trocr-base-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: expected_slice = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: expected_slice = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected" Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py", "repo_id": "transformers", "token_count": 4298 }
389
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeechSat checkpoint.""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_sat_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechSatConfig.from_pretrained(config_path) else: config = UniSpeechSatConfig() dict_path = "" if is_finetuned: hf_wav2vec = UniSpeechSatForCTC(config) else: hf_wav2vec = UniSpeechSatForPreTraining(config) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) model = model[0].eval() recursively_load_weights(model, hf_wav2vec) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4200 }
390
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for VideoMAE.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, is_valid_image, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) def make_batched(videos) -> List[List[ImageInput]]: if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(videos): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class VideoMAEImageProcessor(BaseImageProcessor): r""" Constructs a VideoMAE image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. The shortest edge of the image will be resized to `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self._valid_processor_keys = [ "videos", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its shortest edge of length `s` while keeping the aspect ratio of the original image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size: output_size = get_resize_output_image_size( image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format ) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. image = to_numpy_array(image) if is_scaled_image(image) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def preprocess( self, videos: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): Whether to centre crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying the centre crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the inferred channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(videos): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) videos = make_batched(videos) videos = [ [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in video ] for video in videos ] data = {"pixel_values": videos} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/videomae/image_processing_videomae.py/0
{ "file_path": "transformers/src/transformers/models/videomae/image_processing_videomae.py", "repo_id": "transformers", "token_count": 7395 }
391
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Vision-Encoder-Text-Decoder architectures""" from __future__ import annotations import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base vision model classes of the library as encoder and another one of the base model classes as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" load_weight_prefix = "tf_vision_encoder_decoder_model" main_input_name = "pixel_values" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) @property def input_signature(self): vision_config = self.config.encoder if hasattr(vision_config, "vision_config"): vision_config = vision_config.vision_config if hasattr(vision_config, "image_size"): image_size = vision_config.image_size else: image_size = vision_config.input_size return { "pixel_values": tf.TensorSpec( shape=( None, vision_config.num_channels, image_size, image_size, ), dtype=tf.float32, ), "decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"), } def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def tf_to_pt_weight_rename(self, tf_weight): # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! # This override is only needed in the case where we're crossloading weights from PT. However, since weights are # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it # or not. encoder_model_type = self.config.encoder.model_type if "encoder" in tf_weight and "decoder" not in tf_weight: return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) else: return (tf_weight,) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An example is `google/vit-base-patch16-224-in21k`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFVisionEncoderDecoderModel >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-bert") >>> # load fine-tuned model >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward( VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> img = Image.open(requests.get(url, stream=True).raw) >>> # forward >>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1 >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) >>> # training >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("vit-gpt2") >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2") >>> # generation >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": pixel_values, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) if "input_ids" in encoder_inputs: encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") if encoder_inputs["pixel_values"] is None: raise ValueError("You have to specify pixel_values") # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None dec_hs = ( tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None ) dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None enc_hs = ( tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None ) enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None cross_attns = ( tf.convert_to_tensor(output.cross_attentions) if self.config.decoder.output_attentions and output.cross_attentions is not None else None ) return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, cross_attentions=cross_attns, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") input_dict = { "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. " "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))" ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "enc_to_dec_proj", None) is not None: with tf.name_scope(self.enc_to_dec_proj.name): self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 14880 }
392
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ViT MSN model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class ViTMSNConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTMSNModel`]. It is used to instantiate an ViT MSN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT [facebook/vit_msn_base](https://huggingface.co/facebook/vit_msn_base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import ViTMSNModel, ViTMSNConfig >>> # Initializing a ViT MSN vit-msn-base style configuration >>> configuration = ViTConfig() >>> # Initializing a model from the vit-msn-base style configuration >>> model = ViTMSNModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit_msn" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-06, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias
transformers/src/transformers/models/vit_msn/configuration_vit_msn.py/0
{ "file_path": "transformers/src/transformers/models/vit_msn/configuration_vit_msn.py", "repo_id": "transformers", "token_count": 1896 }
393
# coding=utf-8 # Copyright 2024 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wav2Vec2Bert model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/w2v-bert-2.0": "https://huggingface.co/facebook/w2v-bert-2.0/resolve/main/config.json", } class Wav2Vec2BertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Wav2Vec2BertModel`]. It is used to instantiate an Wav2Vec2Bert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Bert [facebook/wav2vec2-bert-rel-pos-large](https://huggingface.co/facebook/wav2vec2-bert-rel-pos-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the Wav2Vec2Bert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Wav2Vec2BertModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Wav2Vec2BertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. feature_projection_input_dim (`int`, *optional*, defaults to 160): Input dimension of this model, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`] or [`Wav2Vec2BertProcessor`]. hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the feature projection. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Wav2Vec2BertForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates `mask_time_prob*len(time_axis)/mask_time_length ``independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2): The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks`. mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0): The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Wav2Vec2BertForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Wav2Vec2BertForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2BertForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 768): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. pad_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ token. bos_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ token. eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ token. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional attention network should be stacked on top of the Wav2Vec2Bert Encoder. Can be very useful for warm-starting Wav2Vec2Bert for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 1): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. adapter_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the adapter layers. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. use_intermediate_ffn_before_adapter (`bool`, *optional*, defaults to `False`): Whether an intermediate feed-forward block should be stacked on top of the Wav2Vec2Bert Encoder and before the adapter network. Only relevant if `add_adapter is True`. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`): Can be specified to : - `rotary`, for rotary position embeddings. - `relative`, for relative position embeddings. - `relative_key`, for relative position embeddings as defined by Shaw in [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). If left to `None`, no relative position embeddings is applied. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. left_max_position_embeddings (`int`, *optional*, defaults to 64): If `"relative_key"` (aka Shaw) position embeddings are used, defines the left clipping value for relative positions. right_max_position_embeddings (`int`, *optional*, defaults to 8): If `"relative_key"` (aka Shaw) position embeddings are used, defines the right clipping value for relative positions. conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. conformer_conv_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all convolutional layers in Conformer blocks. Example: ```python >>> from transformers import Wav2Vec2BertConfig, Wav2Vec2BertModel >>> # Initializing a Wav2Vec2Bert facebook/wav2vec2-bert-rel-pos-large style configuration >>> configuration = Wav2Vec2BertConfig() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-bert-rel-pos-large style configuration >>> model = Wav2Vec2BertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "wav2vec2-bert" def __init__( self, vocab_size=None, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, feature_projection_input_dim=160, hidden_act="swish", hidden_dropout=0.0, activation_dropout=0.0, attention_dropout=0.0, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=768, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=1, adapter_act="relu", use_intermediate_ffn_before_adapter=False, output_hidden_size=None, position_embeddings_type="relative_key", rotary_embedding_base=10000, max_source_positions=5000, left_max_position_embeddings=64, right_max_position_embeddings=8, conv_depthwise_kernel_size=31, conformer_conv_dropout=0.1, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.feature_projection_input_dim = feature_projection_input_dim self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.use_weighted_layer_sum = use_weighted_layer_sum self.max_source_positions = max_source_positions if position_embeddings_type is not None and position_embeddings_type not in [ "rotary", "relative", "relative_key", ]: raise ValueError( """ `position_embeddings_type` is not valid. It must be one of the following values: `["rotary", "relative", "relative_key"]` or left as `None`. """ ) self.position_embeddings_type = position_embeddings_type self.rotary_embedding_base = rotary_embedding_base self.left_max_position_embeddings = left_max_position_embeddings self.right_max_position_embeddings = right_max_position_embeddings # Conformer-block related self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.conformer_conv_dropout = conformer_conv_dropout # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.adapter_act = adapter_act self.output_hidden_size = output_hidden_size if output_hidden_size is not None else hidden_size if use_intermediate_ffn_before_adapter and not add_adapter: raise ValueError("`use_intermediate_ffn_before_adapter` is `True` but `add_adapter` is `False`.") self.use_intermediate_ffn_before_adapter = use_intermediate_ffn_before_adapter # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): ratio = self.feature_projection_input_dim * 2 if self.add_adapter: ratio = ratio * (self.adapter_stride**self.num_adapter_layers) return ratio
transformers/src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py", "repo_id": "transformers", "token_count": 7140 }
394
# coding=utf-8 # Copyright 2021 The Fairseq Authors, Microsoft Research, and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch WavLM model.""" import math import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_peft_available, logging, ) from .configuration_wavlm import WavLMConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "WavLMConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/wavlm-libri-clean-100h-base-plus" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the aposle of the middle classes and we are glad to welcome his gospel'" _CTC_EXPECTED_LOSS = 12.51 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "microsoft/wavlm-base-plus-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "microsoft/wavlm-base-plus-sv" _XVECTOR_EXPECTED_OUTPUT = 0.97 WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/wavlm-base", "microsoft/wavlm-base-plus", "microsoft/wavlm-large", # See all WavLM models at https://huggingface.co/models?filter=wavlm ] # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->WavLM class WavLMNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->WavLM class WavLMLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->WavLM class WavLMGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->WavLM class WavLMPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = WavLMSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->WavLM class WavLMSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->WavLM class WavLMFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [WavLMGroupNormConvLayer(config, layer_id=0)] + [ WavLMNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [WavLMLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class WavLMFeatureExtractor(WavLMFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->WavLM class WavLMFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states class WavLMAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, num_buckets: int = 320, max_distance: int = 800, has_relative_position_bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) self.num_buckets = num_buckets self.max_distance = max_distance self.gru_rel_pos_const = nn.Parameter(torch.ones(1, self.num_heads, 1, 1)) self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8) if has_relative_position_bias: self.rel_attn_embed = nn.Embedding(self.num_buckets, self.num_heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, index=0, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Attention layer with relative attention""" bsz, tgt_len, _ = hidden_states.size() # first pass of attention layer creates position bias if position_bias is None: position_bias = self.compute_bias(tgt_len, tgt_len) position_bias = ( position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, tgt_len) ) # Compute relative position bias: # 1) get reshape hidden_states gated_hidden_states = hidden_states.view(hidden_states.shape[:-1] + (self.num_heads, -1)) gated_hidden_states = gated_hidden_states.permute(0, 2, 1, 3) # 2) project hidden states relative_position_proj = self.gru_rel_pos_linear(gated_hidden_states) relative_position_proj = relative_position_proj.view(gated_hidden_states.shape[:-1] + (2, 4)).sum(-1) # 3) compute gate for position bias from projected hidden states gate_a, gate_b = torch.sigmoid(relative_position_proj).chunk(2, dim=-1) gate_output = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 # 4) apply gate to position bias to compute gated position_bias gated_position_bias = gate_output.view(bsz * self.num_heads, -1, 1) * position_bias gated_position_bias = gated_position_bias.view((-1, tgt_len, tgt_len)) attn_output, attn_weights = self.torch_multi_head_self_attention( hidden_states, attention_mask, gated_position_bias, output_attentions ) return attn_output, attn_weights, position_bias def torch_multi_head_self_attention( self, hidden_states: torch.FloatTensor, attention_mask: Union[torch.LongTensor, torch.BoolTensor], gated_position_bias: torch.FloatTensor, output_attentions: bool, ) -> (torch.FloatTensor, torch.FloatTensor): """simple wrapper around torch's multi_head_attention_forward function""" # self-attention assumes q = k = v query = key = value = hidden_states.transpose(0, 1) key_padding_mask = attention_mask.ne(1) if attention_mask is not None else None # disable bias and add_zero_attn bias_k = bias_v = None add_zero_attn = False # PyTorch 1.3.0 has F.multi_head_attention_forward defined # so no problem with backwards compatibility attn_output, attn_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), bias_k, bias_v, add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, output_attentions, gated_position_bias, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) # [Seq_Len, Batch Size, ...] -> [Batch Size, Seq_Len, ...] attn_output = attn_output.transpose(0, 1) if attn_weights is not None: # IMPORTANT: Attention weights are averaged weights # here which should not be the case. This is an open issue # on PyTorch: https://github.com/pytorch/pytorch/issues/32590 attn_weights = attn_weights[:, None].broadcast_to( attn_weights.shape[:1] + (self.num_heads,) + attn_weights.shape[1:] ) return attn_output, attn_weights def compute_bias(self, query_length: int, key_length: int) -> torch.FloatTensor: context_position = torch.arange(query_length, dtype=torch.long)[:, None] memory_position = torch.arange(key_length, dtype=torch.long)[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_positions_bucket(relative_position) relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device) values = self.rel_attn_embed(relative_position_bucket) values = values.permute([2, 0, 1]) return values def _relative_positions_bucket(self, relative_positions: torch.FloatTensor) -> torch.FloatTensor: num_buckets = self.num_buckets // 2 relative_buckets = (relative_positions > 0).to(torch.long) * num_buckets relative_positions = torch.abs(relative_positions) max_exact = num_buckets // 2 is_small = relative_positions < max_exact relative_positions_if_large = torch.log(relative_positions.float() / max_exact) relative_positions_if_large = relative_positions_if_large / math.log(self.max_distance / max_exact) relative_positions_if_large = relative_positions_if_large * (num_buckets - max_exact) relative_position_if_large = (max_exact + relative_positions_if_large).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_positions, relative_position_if_large) return relative_buckets # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->WavLM class WavLMFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class WavLMEncoderLayer(nn.Module): def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): super().__init__() self.attention = WavLMAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, num_buckets=config.num_buckets, max_distance=config.max_bucket_distance, has_relative_position_bias=has_relative_position_bias, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = WavLMFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0): attn_residual = hidden_states hidden_states, attn_weights, position_bias = self.attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, index=index, ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states, position_bias) if output_attentions: outputs += (attn_weights,) return outputs class WavLMEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): super().__init__() self.attention = WavLMAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, num_buckets=config.num_buckets, max_distance=config.max_bucket_distance, has_relative_position_bias=has_relative_position_bias, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = WavLMFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, position_bias = self.attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states, position_bias) if output_attentions: outputs += (attn_weights,) return outputs class WavLMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = WavLMPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [WavLMEncoderLayer(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() position_bias = None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, position_bias, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, index=i, ) hidden_states, position_bias = layer_outputs[:2] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class WavLMEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = WavLMPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [ WavLMEncoderLayerStableLayerNorm(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to hidden_states[~attention_mask] = 0 position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() position_bias = None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, position_bias, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, position_bias=position_bias, ) hidden_states, position_bias = layer_outputs[:2] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class WavLMGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible" f" by `config.num_codevector_groups` {self.num_groups} " "for concatenation." ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax(hidden_states.float(), tau=self.temperature, hard=True) codevector_probs = codevector_probs.type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->WavLM class WavLMAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(WavLMAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->WavLM class WavLMAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class WavLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = WavLMConfig base_model_prefix = "wavlm" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, WavLMGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, WavLMPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, WavLMFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask WAVLM_START_DOCSTRING = r""" WavLM was proposed in [WavLM: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Xiangzhan Yu, Furu Wei. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`WavLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAVLM_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare WavLM Model transformer outputting raw hidden-states without any specific head on top.", WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM, WavLMBaseModelOutput->Wav2Vec2BaseModelOutput class WavLMModel(WavLMPreTrainedModel): def __init__(self, config: WavLMConfig): super().__init__(config) self.config = config self.feature_extractor = WavLMFeatureEncoder(config) self.feature_projection = WavLMFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = WavLMEncoderStableLayerNorm(config) else: self.encoder = WavLMEncoder(config) self.adapter = WavLMAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """WavLM Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForCTC(WavLMPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wavlm = WavLMModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `WavLMForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for WavLM so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, WavLM never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ WavLM Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAVLM_START_DOCSTRING, ) class WavLMForSequenceClassification(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of WavLM adapters (config.add_adapter=True)" ) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wavlm def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->wavlm def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->WavLM, wav2vec2->wavlm def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ WavLM Model with a frame classification head on top for tasks like Speaker Diarization. """, WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForAudioFrameClassification(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of WavLM adapters (config.add_adapter=True)" ) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ WavLM Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAVLM_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM class WavLMForXVector(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.wavlm = WavLMModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wavlm.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wavlm.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAVLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wavlm( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wavlm/modeling_wavlm.py/0
{ "file_path": "transformers/src/transformers/models/wavlm/modeling_wavlm.py", "repo_id": "transformers", "token_count": 33888 }
395
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch X-CLIP model.""" from copy import copy from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_x_clip import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/xclip-base-patch32" XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/xclip-base-patch32", # See all X-CLIP models at https://huggingface.co/models?filter=x-clip ] # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->x_clip def x_clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class XCLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for video-text similarity. logits_per_video (`torch.FloatTensor` of shape `(video_batch_size, text_batch_size)`): The scaled dot product scores between `video_embeds` and `text_embeds`. This represents the video-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, video_batch_size)`): The scaled dot product scores between `text_embeds` and `video_embeds`. This represents the text-video similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. video_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPVisionModel`]. mit_output (`BaseModelOutputWithPooling`): The output of `XCLIPMultiframeIntegrationTransformer` (MIT for short). """ loss: Optional[torch.FloatTensor] = None logits_per_video: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None video_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None mit_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output", "mit_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->XCLIP class XCLIPVisionEmbeddings(nn.Module): def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->XCLIP class XCLIPTextEmbeddings(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->XCLIP class XCLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->XCLIP class XCLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->XCLIP class XCLIPEncoderLayer(nn.Module): def __init__(self, config: XCLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->XCLIP class XCLIPDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class XCLIPVisionEncoderLayer(nn.Module): """ This corresponds to the `CrossFramelAttentionBlock` class in the original implementation. """ def __init__(self, config: XCLIPConfig): super().__init__() self.num_frames = config.num_frames self.embed_dim = config.hidden_size self.message_fc = nn.Linear(self.embed_dim, self.embed_dim) self.message_ln = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.message_attn = XCLIPAttention(config) self.drop_path = XCLIPDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ batch_time, seq_length, hidden_size = hidden_states.size() batch_size = batch_time // self.num_frames msg_token = self.message_fc(hidden_states[:, 0, :]) msg_token = msg_token.view(batch_size, self.num_frames, hidden_size) msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0]) # add dummy sequence dimension msg_token = msg_token.view(-1, 1, hidden_size) hidden_states = torch.cat([hidden_states, msg_token], dim=1) residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = hidden_states[:, :seq_length, :] residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class XCLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XCLIPConfig base_model_prefix = "x_clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, XCLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, XCLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, XCLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, XCLIPMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, XCLIPModel): factor = self.config.initializer_factor nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * factor, ) nn.init.normal_(module.prompts_visual_projection, mean=0.0, std=module.vision_embed_dim**-0.5 * factor) elif isinstance(module, XCLIPMultiframeIntegrationTransformer): nn.init.normal_(module.position_embedding, std=self.config.initializer_factor) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor) if module.bias is not None: module.bias.data.zero_() X_CLIP_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XCLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ X_CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->XCLIP class XCLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class XCLIPTextTransformer(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPTextEmbeddings(config) self.encoder = XCLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # X_CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPTextModel(XCLIPPreTrainedModel): config_class = XCLIPTextConfig def __init__(self, config: XCLIPTextConfig): super().__init__(config) self.text_model = XCLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, XCLIPTextModel >>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPVisionEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class XCLIPVisionTransformer(nn.Module): """ This corresponds to the `CrossFrameCommunicationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPVisionEmbeddings(config) self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = XCLIPVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPVisionModel(XCLIPPreTrainedModel): config_class = XCLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: XCLIPVisionConfig): super().__init__(config) self.vision_model = XCLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, XCLIPVisionModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32") >>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values >>> batch_size, num_frames, num_channels, height, width = pixel_values.shape >>> pixel_values = pixel_values.reshape(-1, num_channels, height, width) >>> outputs = model(pixel_values) >>> last_hidden_state = outputs.last_hidden_state ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPMultiframeIntegrationTransformer(nn.Module): """ This corresponds to the `MultiframeIntegrationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.position_embedding = nn.Parameter(torch.empty(1, config.num_frames, config.hidden_size)) self.encoder = XCLIPEncoder(config) def forward( self, hidden_states, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: residual = hidden_states # add position embeddings hidden_states = hidden_states + self.position_embedding encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = last_hidden_state.type(hidden_states.dtype) + residual pooled_output = last_hidden_state.mean(dim=1, keepdim=False) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPCrossAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.num_heads = config.prompt_num_attention_heads dim = config.projection_dim head_dim = dim // self.num_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, dim, bias=False) self.k_proj = nn.Linear(dim, dim, bias=False) self.v_proj = nn.Linear(dim, dim, bias=False) self.attn_drop = nn.Dropout(config.prompt_attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(config.prompt_projection_dropout) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward(self, queries, keys, values): """Input shape: Batch x Time x Channel""" batch_size, query_seq_len, hidden_size = queries.shape batch_size, key_seq_len, hidden_size = keys.shape queries = ( self.q_proj(queries) .reshape(batch_size, query_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) keys = ( self.k_proj(keys) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) values = ( self.v_proj(values) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) attn = (queries @ keys.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ values).transpose(1, 2).reshape(batch_size, query_seq_len, hidden_size) x = self.proj(x) x = self.proj_drop(x) return x class PromptGeneratorLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.cross_attn = XCLIPCrossAttention(config) self.norm1 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.norm3 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.mlp = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), ACT2FN[config.prompt_hidden_act], nn.Dropout(config.prompt_attention_dropout), nn.Linear(embed_dim * 4, embed_dim), ) def forward(self, x, visual): x = x + self.cross_attn(self.norm1(x), visual, visual) x = x + self.mlp(self.norm3(x)) return x class XCLIPPromptGenerator(nn.Module): """This corresponds to the `VideoSpecificPrompt` class in the original implementation.""" def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.layernorm = nn.LayerNorm(embed_dim, eps=config.vision_config.layer_norm_eps) self.decoder = nn.ModuleList([PromptGeneratorLayer(config) for _ in range(config.prompt_layers)]) self.alpha = nn.Parameter(torch.ones(embed_dim) * config.prompt_alpha) def forward(self, text, visual): visual = self.layernorm(visual) for layer in self.decoder: text = layer(text, visual) return self.alpha * text @add_start_docstrings(X_CLIP_START_DOCSTRING) class XCLIPModel(XCLIPPreTrainedModel): config_class = XCLIPConfig def __init__(self, config: XCLIPConfig): super().__init__(config) if not isinstance(config.text_config, XCLIPTextConfig): raise ValueError( "config.text_config is expected to be of type XCLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, XCLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type XCLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = XCLIPTextTransformer(text_config) self.vision_model = XCLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.prompts_visual_layernorm = nn.LayerNorm(self.vision_embed_dim, eps=config.vision_config.layer_norm_eps) self.prompts_visual_projection = nn.Parameter(torch.randn(self.vision_embed_dim, self.projection_dim)) mit_config = copy(vision_config) mit_config.hidden_size = vision_config.mit_hidden_size mit_config.intermediate_size = vision_config.mit_intermediate_size mit_config.num_hidden_layers = vision_config.mit_num_hidden_layers mit_config.num_attention_heads = vision_config.mit_num_attention_heads self.mit = XCLIPMultiframeIntegrationTransformer(mit_config) self.prompts_generator = XCLIPPromptGenerator(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) return text_embeds @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) def get_video_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`] and [`XCLIPMultiframeIntegrationTransformer`]. Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor(videos=list(video), return_tensors="pt") >>> video_features = model.get_video_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] return video_embeds @add_start_docstrings_to_model_forward(X_CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XCLIPOutput, config_class=XCLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XCLIPOutput]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor( ... text=["playing sports", "eating spaghetti", "go shopping"], ... videos=list(video), ... return_tensors="pt", ... padding=True, ... ) >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score >>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities >>> print(probs) tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]]) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] img_features = vision_outputs[0][:, 1:, :] img_features = self.prompts_visual_layernorm(img_features) img_features = img_features @ self.prompts_visual_projection img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1]) img_features = img_features.mean(dim=1, keepdim=False) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1) text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features) # normalized features video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds) logits_per_text = logits_per_video.T loss = None if return_loss: loss = x_clip_loss(logits_per_text) if not return_dict: output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return XCLIPOutput( loss=loss, logits_per_video=logits_per_video, logits_per_text=logits_per_text, text_embeds=text_embeds, video_embeds=video_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, mit_output=mit_outputs, )
transformers/src/transformers/models/x_clip/modeling_x_clip.py/0
{ "file_path": "transformers/src/transformers/models/x_clip/modeling_x_clip.py", "repo_id": "transformers", "token_count": 30325 }
396
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLNet configuration""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xlnet/xlnet-base-cased": "https://huggingface.co/xlnet/xlnet-base-cased/resolve/main/config.json", "xlnet/xlnet-large-cased": "https://huggingface.co/xlnet/xlnet-large-cased/resolve/main/config.json", } class XLNetConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_inner (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. untie_r (`bool`, *optional*, defaults to `True`): Whether or not to untie relative position biases attn_type (`str`, *optional*, defaults to `"bi"`): The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. mem_len (`int` or `None`, *optional*): The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous forward pass won't be re-computed. See the [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information. reuse_len (`int`, *optional*): The number of tokens in the current batch to be cached and reused in the future. bi_data (`bool`, *optional*, defaults to `False`): Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False` during finetuning. clamp_len (`int`, *optional*, defaults to -1): Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. same_length (`bool`, *optional*, defaults to `False`): Whether or not to use the same attention length for each token. summary_type (`str`, *optional*, defaults to "last"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`boo`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_last_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. use_mems_eval (`bool`, *optional*, defaults to `True`): Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. use_mems_train (`bool`, *optional*, defaults to `False`): Whether or not the model should make use of the recurrent memory mechanism in train mode. <Tip> For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to set `use_mems_train` to `False` as discussed [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of equal size. </Tip> Examples: ```python >>> from transformers import XLNetConfig, XLNetModel >>> # Initializing a XLNet configuration >>> configuration = XLNetConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = XLNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlnet" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=32000, d_model=1024, n_layer=24, n_head=16, d_inner=4096, ff_activation="gelu", untie_r=True, attn_type="bi", initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, mem_len=512, reuse_len=None, use_mems_eval=True, use_mems_train=False, bi_data=False, clamp_len=-1, same_length=False, summary_type="last", summary_use_proj=True, summary_activation="tanh", summary_last_dropout=0.1, start_n_top=5, end_n_top=5, pad_token_id=5, bos_token_id=1, eos_token_id=2, **kwargs, ): """Constructs XLNetConfig.""" self.vocab_size = vocab_size self.d_model = d_model self.n_layer = n_layer self.n_head = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) self.d_head = d_model // n_head self.ff_activation = ff_activation self.d_inner = d_inner self.untie_r = untie_r self.attn_type = attn_type self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.eos_token_id = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", FutureWarning, ) use_mems_eval = kwargs["use_cache"] self.use_mems_eval = use_mems_eval self.use_mems_train = use_mems_train super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
transformers/src/transformers/models/xlnet/configuration_xlnet.py/0
{ "file_path": "transformers/src/transformers/models/xlnet/configuration_xlnet.py", "repo_id": "transformers", "token_count": 4461 }
397
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import csv import importlib import json import os import pickle import sys import traceback import types import warnings from abc import ABC, abstractmethod from collections import UserDict from contextlib import contextmanager from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from ..dynamic_module_utils import custom_object_save from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..modelcard import ModelCard from ..models.auto.configuration_auto import AutoConfig from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( ModelOutput, add_end_docstrings, infer_framework, is_tf_available, is_torch_available, is_torch_cuda_available, is_torch_npu_available, is_torch_xpu_available, logging, ) GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"] if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TFAutoModel if is_torch_available(): import torch from torch.utils.data import DataLoader, Dataset from ..models.auto.modeling_auto import AutoModel # Re-export for backward compatibility from .pt_utils import KeyDataset else: Dataset = None KeyDataset = None if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def no_collate_fn(items): if len(items) != 1: raise ValueError("This collate_fn is meant to be used with batch_size=1") return items[0] def _pad(items, key, padding_value, padding_side): batch_size = len(items) if isinstance(items[0][key], torch.Tensor): # Others include `attention_mask` etc... shape = items[0][key].shape dim = len(shape) if key in ["pixel_values", "image"]: # This is probable image so padding shouldn't be necessary # B, C, H, W return torch.cat([item[key] for item in items], dim=0) elif dim == 4 and key == "input_features": # this is probably a mel spectrogram batched return torch.cat([item[key] for item in items], dim=0) max_length = max(item[key].shape[1] for item in items) min_length = min(item[key].shape[1] for item in items) dtype = items[0][key].dtype if dim == 2: if max_length == min_length: # Bypass for `ImageGPT` which doesn't provide a padding value, yet # we can consistently pad since the size should be matching return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value elif dim == 3: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value elif dim == 4: tensor = torch.zeros((batch_size, max_length, shape[-2], shape[-1]), dtype=dtype) + padding_value for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]) :] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() elif dim == 4: if padding_side == "left": tensor[i, -len(item[key][0]) :, :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :, :] = item[key][0].clone() return tensor else: return [item[key] for item in items] def pad_collate_fn(tokenizer, feature_extractor): # Tokenizer t_padding_side = None # Feature extractor f_padding_side = None if tokenizer is None and feature_extractor is None: raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching") if tokenizer is not None: if tokenizer.pad_token_id is None: raise ValueError( "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with " "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`." ) else: t_padding_value = tokenizer.pad_token_id t_padding_side = tokenizer.padding_side if feature_extractor is not None: # Feature extractor can be images, where no padding is expected f_padding_value = getattr(feature_extractor, "padding_value", None) f_padding_side = getattr(feature_extractor, "padding_side", None) if t_padding_side is not None and f_padding_side is not None and t_padding_side != f_padding_side: raise ValueError( f"The feature extractor, and tokenizer don't agree on padding side {t_padding_side} != {f_padding_side}" ) padding_side = "right" if t_padding_side is not None: padding_side = t_padding_side if f_padding_side is not None: padding_side = f_padding_side def inner(items): keys = set(items[0].keys()) for item in items: if set(item.keys()) != keys: raise ValueError( f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} !=" f" {keys})" ) # input_values, input_pixels, input_ids, ... padded = {} for key in keys: if key in {"input_ids"}: # ImageGPT uses a feature extractor if tokenizer is None and feature_extractor is not None: _padding_value = f_padding_value else: _padding_value = t_padding_value elif key in {"input_values", "pixel_values", "input_features"}: _padding_value = f_padding_value elif key in {"p_mask", "special_tokens_mask"}: _padding_value = 1 elif key in {"attention_mask", "token_type_ids"}: _padding_value = 0 else: # This is likely another random key maybe even user provided _padding_value = 0 padded[key] = _pad(items, key, _padding_value, padding_side) return padded return inner def infer_framework_load_model( model, config: AutoConfig, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. config ([`AutoConfig`]): The config associated with the model to help using the correct class model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): model_kwargs["_from_pipeline"] = task class_tuple = () look_pt = is_torch_available() and framework in {"pt", None} look_tf = is_tf_available() and framework in {"tf", None} if model_classes: if look_pt: class_tuple = class_tuple + model_classes.get("pt", (AutoModel,)) if look_tf: class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,)) if config.architectures: classes = [] for architecture in config.architectures: transformers_module = importlib.import_module("transformers") if look_pt: _class = getattr(transformers_module, architecture, None) if _class is not None: classes.append(_class) if look_tf: _class = getattr(transformers_module, f"TF{architecture}", None) if _class is not None: classes.append(_class) class_tuple = class_tuple + tuple(classes) if len(class_tuple) == 0: raise ValueError(f"Pipeline cannot infer suitable model classes from {model}") all_traceback = {} for model_class in class_tuple: kwargs = model_kwargs.copy() if framework == "pt" and model.endswith(".h5"): kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) try: model = model_class.from_pretrained(model, **kwargs) if hasattr(model, "eval"): model = model.eval() # Stop loading on the first successful load. break except (OSError, ValueError): all_traceback[model_class.__name__] = traceback.format_exc() continue if isinstance(model, str): error = "" for class_name, trace in all_traceback.items(): error += f"while loading with {class_name}, an error is thrown:\n{trace}\n" raise ValueError( f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n" ) if framework is None: framework = infer_framework(model.__class__) return framework, model def infer_framework_from_model( model, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs) else: config = model.config return infer_framework_load_model( model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs ) def get_framework(model, revision: Optional[str] = None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ warnings.warn( "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.", FutureWarning, ) if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model, revision=revision) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model, revision=revision) else: try: model = AutoModel.from_pretrained(model, revision=revision) except OSError: model = TFAutoModel.from_pretrained(model, revision=revision) framework = infer_framework(model.__class__) return framework def get_default_model_and_revision( targeted_task: Dict, framework: Optional[str], task_options: Optional[Any] ) -> Union[str, Tuple[str, str]]: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (`Dict` ): Dictionary representing the given task, that should contain default models framework (`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. task_options (`Any`, None) Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for translation task. Returns `str` The model string representing the default model for this pipeline """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" defaults = targeted_task["default"] if task_options: if task_options not in defaults: raise ValueError(f"The task does not provide any default models for options {task_options}") default_models = defaults[task_options]["model"] elif "model" in defaults: default_models = targeted_task["default"]["model"] else: # XXX This error message needs to be updated to be more generic if more tasks are going to become # parametrized raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"') if framework is None: framework = "pt" return default_models[framework] class PipelineException(Exception): """ Raised by a [`Pipeline`] when handling __call__. Args: task (`str`): The task of the pipeline. model (`str`): The model used by the pipeline. reason (`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each [`~pipelines.Pipeline`]. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError(f"{self.output_path} already exists on disk") if input_path is not None: if not exists(abspath(self.input_path)): raise OSError(f"{self.input_path} doesnt exist on disk") @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`dict` or list of `dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (`dict` or list of `dict`): The data to store. Returns: `str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`. Args: format (`str`): The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`. output_path (`str`, *optional*): Where to save the outgoing data. input_path (`str`, *optional*): Where to look for the input data. column (`str`, *optional*): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. Returns: [`~pipelines.PipelineDataFormat`]: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)") class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() def build_pipeline_init_args( has_tokenizer: bool = False, has_feature_extractor: bool = False, has_image_processor: bool = False, supports_binary_output: bool = True, ) -> str: docstring = r""" Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.""" if has_tokenizer: docstring += r""" tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`].""" if has_feature_extractor: docstring += r""" feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode data for the model. This object inherits from [`SequenceFeatureExtractor`].""" if has_image_processor: docstring += r""" image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`].""" docstring += r""" modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`)""" if supports_binary_output: docstring += r""" binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text.""" return docstring PIPELINE_INIT_ARGS = build_pipeline_init_args( has_tokenizer=True, has_feature_extractor=True, has_image_processor=True, supports_binary_output=True ) if is_torch_available(): from transformers.pipelines.pt_utils import ( PipelineChunkIterator, PipelineDataset, PipelineIterator, PipelinePackIterator, ) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_feature_extractor=True, has_image_processor=True)) class Pipeline(_ScikitCompat): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output` constructor argument. If set to `True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: Optional[PreTrainedTokenizer] = None, feature_extractor: Optional[PreTrainedFeatureExtractor] = None, image_processor: Optional[BaseImageProcessor] = None, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, binary_output: bool = False, **kwargs, ): if framework is None: framework, model = infer_framework_load_model(model, config=model.config) self.task = task self.model = model self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.image_processor = image_processor self.modelcard = modelcard self.framework = framework # `accelerate` device map hf_device_map = getattr(self.model, "hf_device_map", None) if hf_device_map is not None and device is not None: raise ValueError( "The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please " "discard the `device` argument when creating your pipeline object." ) if device is None: if hf_device_map is not None: # Take the first device used by `accelerate`. device = next(iter(hf_device_map.values())) else: device = -1 if is_torch_available() and self.framework == "pt": if isinstance(device, torch.device): if device.type == "xpu" and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = device elif isinstance(device, str): if "xpu" in device and not is_torch_xpu_available(check_device=True): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = torch.device(device) elif device < 0: self.device = torch.device("cpu") elif is_torch_cuda_available(): self.device = torch.device(f"cuda:{device}") elif is_torch_npu_available(): self.device = torch.device(f"npu:{device}") elif is_torch_xpu_available(check_device=True): self.device = torch.device(f"xpu:{device}") else: raise ValueError(f"{device} unrecognized or not available.") else: self.device = device if device is not None else -1 self.torch_dtype = torch_dtype self.binary_output = binary_output # We shouldn't call `model.to()` for models loaded with accelerate if ( self.framework == "pt" and self.device is not None and not (isinstance(self.device, int) and self.device < 0) and hf_device_map is None ): self.model.to(self.device) # Update config and generation_config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task)) if self.model.can_generate(): self.model.generation_config.update(**task_specific_params.get(task)) self.call_count = 0 self._batch_size = kwargs.pop("batch_size", None) self._num_workers = kwargs.pop("num_workers", None) self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs) # Pipelines calling `generate`: if the tokenizer has a pad token but the model doesn't, set it in the # forward params so that `generate` is aware of the pad token. if ( self.tokenizer is not None and self.model.can_generate() and self.tokenizer.pad_token_id is not None and self.model.generation_config.pad_token_id is None ): self._forward_params["pad_token_id"] = self.tokenizer.pad_token_id if self.image_processor is None and self.feature_extractor is not None: if isinstance(self.feature_extractor, BaseImageProcessor): # Backward compatible change, if users called # ImageSegmentationPipeline(.., feature_extractor=MyFeatureExtractor()) # then we should keep working self.image_processor = self.feature_extractor def save_pretrained(self, save_directory: str, safe_serialization: bool = True): """ Save the pipeline's model and tokenizer. Args: save_directory (`str`): A path to the directory where to saved. It will be created if it doesn't exist. safe_serialization (`str`): Whether to save the model using `safetensors` or the traditional way for PyTorch or Tensorflow. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if hasattr(self, "_registered_impl"): # Add info to the config pipeline_info = self._registered_impl.copy() custom_pipelines = {} for task, info in pipeline_info.items(): if info["impl"] != self.__class__: continue info = info.copy() module_name = info["impl"].__module__ last_module = module_name.split(".")[-1] # Change classes into their names/full names info["impl"] = f"{last_module}.{info['impl'].__name__}" info["pt"] = tuple(c.__name__ for c in info["pt"]) info["tf"] = tuple(c.__name__ for c in info["tf"]) custom_pipelines[task] = info self.model.config.custom_pipelines = custom_pipelines # Save the pipeline custom code custom_object_save(self, save_directory) self.model.save_pretrained(save_directory, safe_serialization=safe_serialization) if self.tokenizer is not None: self.tokenizer.save_pretrained(save_directory) if self.feature_extractor is not None: self.feature_extractor.save_pretrained(save_directory) if self.image_processor is not None: self.image_processor.save_pretrained(save_directory) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples: ```python # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) ```""" if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"): yield else: if self.device.type == "cuda": with torch.cuda.device(self.device): yield else: yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored): The tensors to place on `self.device`. Recursive on lists **only**. Return: `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device. """ return self._ensure_tensor_on_device(inputs, self.device) def _ensure_tensor_on_device(self, inputs, device): if isinstance(inputs, ModelOutput): return ModelOutput( {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} ) elif isinstance(inputs, dict): return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} elif isinstance(inputs, UserDict): return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}) elif isinstance(inputs, list): return [self._ensure_tensor_on_device(item, device) for item in inputs] elif isinstance(inputs, tuple): return tuple([self._ensure_tensor_on_device(item, device) for item in inputs]) elif isinstance(inputs, torch.Tensor): if device == torch.device("cpu") and inputs.dtype in {torch.float16, torch.bfloat16}: inputs = inputs.float() return inputs.to(device) else: return inputs def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (`List[str]` or `dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models_names = [] for _, model_name in supported_models.items(): # Mapping can now contain tuples of models for the same configuration. if isinstance(model_name, tuple): supported_models_names.extend(list(model_name)) else: supported_models_names.append(model_name) if hasattr(supported_models, "_model_mapping"): for _, model in supported_models._model_mapping._extra_content.items(): if isinstance(model_name, tuple): supported_models_names.extend([m.__name__ for m in model]) else: supported_models_names.append(model.__name__) supported_models = supported_models_names if self.model.__class__.__name__ not in supported_models: logger.error( f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are" f" {supported_models}." ) @abstractmethod def _sanitize_parameters(self, **pipeline_parameters): """ _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__` methods. It should return 3 dictionaries of the resolved parameters used by the various `preprocess`, `forward` and `postprocess` methods. Do not fill dictionaries if the caller didn't specify a kwargs. This lets you keep defaults in function signatures, which is more "natural". It is not meant to be called directly, it will be automatically called and the final parameters resolved by `__init__` and `__call__` """ raise NotImplementedError("_sanitize_parameters not implemented") @abstractmethod def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]: """ Preprocess will take the `input_` of a specific pipeline and return a dictionary of everything necessary for `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items. """ raise NotImplementedError("preprocess not implemented") @abstractmethod def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput: """ _forward will receive the prepared dictionary from `preprocess` and run it on the model. This method might involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess` and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible. It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part of the code (leading to faster inference). """ raise NotImplementedError("_forward not implemented") @abstractmethod def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any: """ Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into something more friendly. Generally it will output a list or a dict or results (containing just strings and numbers). """ raise NotImplementedError("postprocess not implemented") def get_inference_context(self): return torch.no_grad def forward(self, model_inputs, **forward_params): with self.device_placement(): if self.framework == "tf": model_inputs["training"] = False model_outputs = self._forward(model_inputs, **forward_params) elif self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) model_outputs = self._forward(model_inputs, **forward_params) model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu")) else: raise ValueError(f"Framework {self.framework} is not supported") return model_outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if isinstance(inputs, collections.abc.Sized): dataset = PipelineDataset(inputs, self.preprocess, preprocess_params) else: if num_workers > 1: logger.warning( "For iterable dataset using num_workers>1 is likely to result" " in errors since everything is iterable, setting `num_workers=1`" " to guarantee correctness." ) num_workers = 1 dataset = PipelineIterator(inputs, self.preprocess, preprocess_params) if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs): if args: logger.warning(f"Ignoring args : {args}") if num_workers is None: if self._num_workers is None: num_workers = 0 else: num_workers = self._num_workers if batch_size is None: if self._batch_size is None: batch_size = 1 else: batch_size = self._batch_size preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs) # Fuse __init__ params and __call__ params without modifying the __init__ ones. preprocess_params = {**self._preprocess_params, **preprocess_params} forward_params = {**self._forward_params, **forward_params} postprocess_params = {**self._postprocess_params, **postprocess_params} self.call_count += 1 if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda": logger.warning_once( "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a" " dataset", UserWarning, ) is_dataset = Dataset is not None and isinstance(inputs, Dataset) is_generator = isinstance(inputs, types.GeneratorType) is_list = isinstance(inputs, list) is_iterable = is_dataset or is_generator or is_list # TODO make the get_iterator work also for `tf` (and `flax`). can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list) if is_list: if can_use_iterator: final_iterator = self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) outputs = list(final_iterator) return outputs else: return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params) elif can_use_iterator: return self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) elif is_iterable: return self.iterate(inputs, preprocess_params, forward_params, postprocess_params) elif self.framework == "pt" and isinstance(self, ChunkPipeline): return next( iter( self.get_iterator( [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) ) ) else: return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params): return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs] def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): model_inputs = self.preprocess(inputs, **preprocess_params) model_outputs = self.forward(model_inputs, **forward_params) outputs = self.postprocess(model_outputs, **postprocess_params) return outputs def iterate(self, inputs, preprocess_params, forward_params, postprocess_params): # This function should become `get_iterator` again, this is a temporary # easy solution. for input_ in inputs: yield self.run_single(input_, preprocess_params, forward_params, postprocess_params) class ChunkPipeline(Pipeline): def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): all_outputs = [] for model_inputs in self.preprocess(inputs, **preprocess_params): model_outputs = self.forward(model_inputs, **forward_params) all_outputs.append(model_outputs) outputs = self.postprocess(all_outputs, **postprocess_params) return outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" if num_workers > 1: logger.warning( "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable," " setting `num_workers=1` to guarantee correctness." ) num_workers = 1 dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params) # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator class PipelineRegistry: def __init__(self, supported_tasks: Dict[str, Any], task_aliases: Dict[str, str]) -> None: self.supported_tasks = supported_tasks self.task_aliases = task_aliases def get_supported_tasks(self) -> List[str]: supported_task = list(self.supported_tasks.keys()) + list(self.task_aliases.keys()) supported_task.sort() return supported_task def check_task(self, task: str) -> Tuple[str, Dict, Any]: if task in self.task_aliases: task = self.task_aliases[task] if task in self.supported_tasks: targeted_task = self.supported_tasks[task] return task, targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = self.supported_tasks["translation"] task = "translation" return task, targeted_task, (tokens[1], tokens[3]) raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format") raise KeyError( f"Unknown task {task}, available tasks are {self.get_supported_tasks() + ['translation_XX_to_YY']}" ) def register_pipeline( self, task: str, pipeline_class: type, pt_model: Optional[Union[type, Tuple[type]]] = None, tf_model: Optional[Union[type, Tuple[type]]] = None, default: Optional[Dict] = None, type: Optional[str] = None, ) -> None: if task in self.supported_tasks: logger.warning(f"{task} is already registered. Overwriting pipeline for task {task}...") if pt_model is None: pt_model = () elif not isinstance(pt_model, tuple): pt_model = (pt_model,) if tf_model is None: tf_model = () elif not isinstance(tf_model, tuple): tf_model = (tf_model,) task_impl = {"impl": pipeline_class, "pt": pt_model, "tf": tf_model} if default is not None: if "model" not in default and ("pt" in default or "tf" in default): default = {"model": default} task_impl["default"] = default if type is not None: task_impl["type"] = type self.supported_tasks[task] = task_impl pipeline_class._registered_impl = {task: task_impl} def to_dict(self): return self.supported_tasks
transformers/src/transformers/pipelines/base.py/0
{ "file_path": "transformers/src/transformers/pipelines/base.py", "repo_id": "transformers", "token_count": 23011 }
398
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import Pipeline, build_pipeline_init_args if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES logger = logging.get_logger(__name__) class ReturnType(enum.Enum): TENSORS = 0 TEXT = 1 @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. Example: ```python >>> from transformers import pipeline >>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap") >>> generator( ... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google" ... ) [{'generated_text': 'question: Who created the RuPERTa-base?'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about text generation parameters in [Text generation strategies](../generation_strategies) and [Text generation](text_generation). This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text2text-generation). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") ```""" # Used in the return key of the pipeline. return_name = "generated" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) def _sanitize_parameters( self, return_tensors=None, return_text=None, return_type=None, clean_up_tokenization_spaces=None, truncation=None, stop_sequence=None, **generate_kwargs, ): preprocess_params = {} if truncation is not None: preprocess_params["truncation"] = truncation forward_params = generate_kwargs postprocess_params = {} if return_tensors is not None and return_type is None: return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: postprocess_params["return_type"] = return_type if clean_up_tokenization_spaces is not None: postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces if stop_sequence is not None: stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) if len(stop_sequence_ids) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) generate_kwargs["eos_token_id"] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def check_inputs(self, input_length: int, min_length: int, max_length: int): """ Checks whether there might be something wrong with given input with regard to the model. """ return True def _parse_and_tokenize(self, *args, truncation): prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0], list): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input") args = ([prefix + arg for arg in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self, *args, **kwargs): r""" Generate the output text(s) using text(s) given as inputs. Args: args (`str` or `List[str]`): Input text for the encoder. return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`): The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE` (default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's max_length instead of throwing an error down the line. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./model#generative-models)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **generated_text** (`str`, present when `return_text=True`) -- The generated text. - **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the generated text. """ result = super().__call__(*args, **kwargs) if ( isinstance(args[0], list) and all(isinstance(el, str) for el in args[0]) and all(len(res) == 1 for res in result) ): return [res[0] for res in result] return result def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs) return inputs def _forward(self, model_inputs, **generate_kwargs): if self.framework == "pt": in_b, input_length = model_inputs["input_ids"].shape elif self.framework == "tf": in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() self.check_inputs( input_length, generate_kwargs.get("min_length", self.model.config.min_length), generate_kwargs.get("max_length", self.model.config.max_length), ) output_ids = self.model.generate(**model_inputs, **generate_kwargs) out_b = output_ids.shape[0] if self.framework == "pt": output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) elif self.framework == "tf": output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False): records = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: record = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: record = { f"{self.return_name}_text": self.tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) } records.append(record) return records @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class SummarizationPipeline(Text2TextGenerationPipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"summarization"`. The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is currently, '*bart-large-cnn*', '*google-t5/t5-small*', '*google-t5/t5-base*', '*google-t5/t5-large*', '*google-t5/t5-3b*', '*google-t5/t5-11b*'. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=summarization). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python # use bart in pytorch summarizer = pipeline("summarization") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("summarization", model="google-t5/t5-base", tokenizer="google-t5/t5-base", framework="tf") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) ```""" # Used in the return key of the pipeline. return_name = "summary" def __call__(self, *args, **kwargs): r""" Summarize the text(s) given as inputs. Args: documents (*str* or `List[str]`): One or several articles (or one list of articles) to summarize. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./model#generative-models)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input. - **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the summary. """ return super().__call__(*args, **kwargs) def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool: """ Checks whether there might be something wrong with given input with regard to the model. """ if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.") if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " "a summarization task, where outputs shorter than the input are typically wanted, you might " f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TranslationPipeline(Text2TextGenerationPipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=translation). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") ```""" # Used in the return key of the pipeline. return_name = "translation" def check_inputs(self, input_length: int, min_length: int, max_length: int): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None): if getattr(self.tokenizer, "_build_translation_inputs", None): return self.tokenizer._build_translation_inputs( *args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang ) else: return super()._parse_and_tokenize(*args, truncation=truncation) def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs): preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs) if src_lang is not None: preprocess_params["src_lang"] = src_lang if tgt_lang is not None: preprocess_params["tgt_lang"] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. task = kwargs.get("task", self.task) items = task.split("_") if task and len(items) == 4: # translation, XX, to YY preprocess_params["src_lang"] = items[1] preprocess_params["tgt_lang"] = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self, *args, **kwargs): r""" Translate the text(s) given as inputs. Args: args (`str` or `List[str]`): Texts to be translated. return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. src_lang (`str`, *optional*): The language of the input. Might be required for multilingual models. Will not have any effect for single pair translation models tgt_lang (`str`, *optional*): The language of the desired output. Might be required for multilingual models. Will not have any effect for single pair translation models generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./model#generative-models)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **translation_text** (`str`, present when `return_text=True`) -- The translation. - **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the translation. """ return super().__call__(*args, **kwargs)
transformers/src/transformers/pipelines/text2text_generation.py/0
{ "file_path": "transformers/src/transformers/pipelines/text2text_generation.py", "repo_id": "transformers", "token_count": 6952 }
399
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..integrations import replace_with_aqlm_linear from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class AqlmHfQuantizer(HfQuantizer): """ Quantizer of the AQLM method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["aqlm"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`") if not is_aqlm_available(): raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: torch_dtype = torch.float32 logger.info( "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually." ) return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): replace_with_aqlm_linear( model, quantization_config=self.quantization_config, linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2") if aqlm_supports_training: return True else: logger.warn( f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`" ) return False @property def is_serializable(self): return True
transformers/src/transformers/quantizers/quantizer_aqlm.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizer_aqlm.py", "repo_id": "transformers", "token_count": 1419 }
400
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for fast tokenizers (provided by HuggingFace's tokenizers library). For slow (python) tokenizers see tokenization_utils.py """ import copy import json import os from collections import defaultdict from typing import Any, Dict, List, Optional, Tuple, Union import tokenizers.pre_tokenizers as pre_tokenizers_fast from tokenizers import Encoding as EncodingFast from tokenizers import Tokenizer as TokenizerFast from tokenizers.decoders import Decoder as DecoderFast from tokenizers.trainers import BpeTrainer, UnigramTrainer, WordLevelTrainer, WordPieceTrainer from .convert_slow_tokenizer import convert_slow_tokenizer from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import ( INIT_TOKENIZER_DOCSTRING, AddedToken, BatchEncoding, PreTokenizedInput, PreTokenizedInputPair, PreTrainedTokenizerBase, SpecialTokensMixin, TextInput, TextInputPair, TruncationStrategy, ) from .utils import PaddingStrategy, add_end_docstrings, logging logger = logging.get_logger(__name__) # Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file TOKENIZER_FILE = "tokenizer.json" SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" # Slow tokenizers have an additional added tokens files ADDED_TOKENS_FILE = "added_tokens.json" INIT_TOKENIZER_DOCSTRING += """ tokenizer_object ([`tokenizers.Tokenizer`]): A [`tokenizers.Tokenizer`] object from 🤗 tokenizers to instantiate from. See [Using tokenizers from 🤗 tokenizers](../fast_tokenizers) for more information. tokenizer_file ([`str`]): A path to a local JSON file representing a previously serialized [`tokenizers.Tokenizer`] object from 🤗 tokenizers. """ MODEL_TO_TRAINER_MAPPING = { "BPE": BpeTrainer, "Unigram": UnigramTrainer, "WordLevel": WordLevelTrainer, "WordPiece": WordPieceTrainer, } VOCAB_FILES_NAMES = {"tokenizer_file": TOKENIZER_FILE} @add_end_docstrings(INIT_TOKENIZER_DOCSTRING) class PreTrainedTokenizerFast(PreTrainedTokenizerBase): """ Base class for all fast tokenizers (wrapping HuggingFace tokenizers library). Inherits from [`~tokenization_utils_base.PreTrainedTokenizerBase`]. Handles all the shared methods for tokenization and special tokens, as well as methods for downloading/caching/loading pretrained tokenizers, as well as adding tokens to the vocabulary. This class also contains the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...). """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class: PreTrainedTokenizer = None def __init__(self, *args, **kwargs): tokenizer_object = kwargs.pop("tokenizer_object", None) slow_tokenizer = kwargs.pop("__slow_tokenizer", None) fast_tokenizer_file = kwargs.pop("tokenizer_file", None) from_slow = kwargs.pop("from_slow", False) added_tokens_decoder = kwargs.pop("added_tokens_decoder", {}) if from_slow and slow_tokenizer is None and self.slow_tokenizer_class is None: raise ValueError( "Cannot instantiate this tokenizer from a slow version. If it's based on sentencepiece, make sure you " "have sentencepiece installed." ) if tokenizer_object is not None: fast_tokenizer = copy.deepcopy(tokenizer_object) elif fast_tokenizer_file is not None and not from_slow: # We have a serialization from tokenizers which let us directly build the backend fast_tokenizer = TokenizerFast.from_file(fast_tokenizer_file) elif slow_tokenizer is not None: # We need to convert a slow tokenizer to build the backend fast_tokenizer = convert_slow_tokenizer(slow_tokenizer) elif self.slow_tokenizer_class is not None: # We need to create and convert a slow tokenizer to build the backend slow_tokenizer = self.slow_tokenizer_class(*args, **kwargs) fast_tokenizer = convert_slow_tokenizer(slow_tokenizer) else: raise ValueError( "Couldn't instantiate the backend tokenizer from one of: \n" "(1) a `tokenizers` library serialization file, \n" "(2) a slow tokenizer instance to convert or \n" "(3) an equivalent slow tokenizer class to instantiate and convert. \n" "You need to have sentencepiece installed to convert a slow tokenizer to a fast one." ) self._tokenizer = fast_tokenizer if slow_tokenizer is not None: kwargs.update(slow_tokenizer.init_kwargs) self._decode_use_source_tokenizer = False _truncation = self._tokenizer.truncation if _truncation is not None: self._tokenizer.enable_truncation(**_truncation) kwargs.setdefault("max_length", _truncation["max_length"]) kwargs.setdefault("truncation_side", _truncation["direction"]) kwargs.setdefault("stride", _truncation["stride"]) kwargs.setdefault("truncation_strategy", _truncation["strategy"]) else: self._tokenizer.no_truncation() _padding = self._tokenizer.padding if _padding is not None: self._tokenizer.enable_padding(**_padding) kwargs.setdefault("pad_token", _padding["pad_token"]) kwargs.setdefault("pad_token_type_id", _padding["pad_type_id"]) kwargs.setdefault("padding_side", _padding["direction"]) kwargs.setdefault("max_length", _padding["length"]) kwargs.setdefault("pad_to_multiple_of", _padding["pad_to_multiple_of"]) # We call this after having initialized the backend tokenizer because we update it. super().__init__(**kwargs) # The following logic will be replace with a single add_tokens once a fix is pushed to tokenizers # allows converting a slow -> fast, non-legacy: if the `tokenizer.json` does not have all the added tokens # uses the information stored in `added_tokens_decoder`. # this is costly for fast tokenizers as we re-compute the regex again. But not all tokens are added tokens tokens_to_add = [ token for index, token in sorted(added_tokens_decoder.items(), key=lambda x: x[0]) if token not in self.added_tokens_decoder ] encoder = list(self.added_tokens_encoder.keys()) + [str(token) for token in tokens_to_add] # if some of the special tokens are strings, we check if we don't already have a token tokens_to_add += [ token for token in self.all_special_tokens_extended if token not in encoder and token not in tokens_to_add ] if len(tokens_to_add) > 0: # super hack: if a token.special is set, tokenizer ignores it for now so FIXME @ArthurZ # Accumulate added tokens into batches of special/non-special tokens, because calling add_tokens() for # individual tokens would repeatedly rebuild a trie, which can be slow. is_last_special = None tokens = [] special_tokens = self.all_special_tokens for token in tokens_to_add: is_special = ( (token.special or str(token) in special_tokens) if isinstance(token, AddedToken) else str(token) in special_tokens ) if is_last_special is None or is_last_special == is_special: tokens.append(token) else: self._add_tokens(tokens, special_tokens=is_last_special) tokens = [token] is_last_special = is_special if tokens: self._add_tokens(tokens, special_tokens=is_last_special) @property def is_fast(self) -> bool: return True @property def can_save_slow_tokenizer(self) -> bool: """ `bool`: Whether or not the slow tokenizer can be saved. Usually for sentencepiece based slow tokenizer, this can only be `True` if the original `"sentencepiece.model"` was not deleted. """ return True @property def vocab_size(self) -> int: """ `int`: Size of the base vocabulary (without the added tokens). """ return self._tokenizer.get_vocab_size(with_added_tokens=False) def get_vocab(self) -> Dict[str, int]: return self._tokenizer.get_vocab(with_added_tokens=True) @property def vocab(self) -> Dict[str, int]: return self.get_vocab() @property def added_tokens_encoder(self) -> Dict[str, int]: """ Returns the sorted mapping from string to index. The added tokens encoder is cached for performance optimisation in `self._added_tokens_encoder` for the slow tokenizers. """ return {k.content: v for v, k in sorted(self.added_tokens_decoder.items(), key=lambda item: item[0])} @property def added_tokens_decoder(self) -> Dict[int, AddedToken]: """ Returns the added tokens in the vocabulary as a dictionary of index to AddedToken. Returns: `Dict[str, int]`: The added tokens. """ return self._tokenizer.get_added_tokens_decoder() def get_added_vocab(self) -> Dict[str, int]: """ Returns the added tokens in the vocabulary as a dictionary of token to index. Returns: `Dict[str, int]`: The added tokens. """ return {k.content: v for v, k in sorted(self.added_tokens_decoder.items(), key=lambda item: item[0])} def __len__(self) -> int: """ Size of the full vocabulary with the added tokens. """ return self._tokenizer.get_vocab_size(with_added_tokens=True) @property def backend_tokenizer(self) -> TokenizerFast: """ `tokenizers.implementations.BaseTokenizer`: The Rust tokenizer used as a backend. """ return self._tokenizer @property def decoder(self) -> DecoderFast: """ `tokenizers.decoders.Decoder`: The Rust decoder for this tokenizer. """ return self._tokenizer.decoder def _convert_encoding( self, encoding: EncodingFast, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> Tuple[Dict[str, Any], List[EncodingFast]]: """ Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list of encodings, take care of building a batch from overflowing tokens. Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are lists (overflows) of lists (tokens). Output shape: (overflows, sequence length) """ if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_overflowing_tokens and encoding.overflowing is not None: encodings = [encoding] + encoding.overflowing else: encodings = [encoding] encoding_dict = defaultdict(list) for e in encodings: encoding_dict["input_ids"].append(e.ids) if return_token_type_ids: encoding_dict["token_type_ids"].append(e.type_ids) if return_attention_mask: encoding_dict["attention_mask"].append(e.attention_mask) if return_special_tokens_mask: encoding_dict["special_tokens_mask"].append(e.special_tokens_mask) if return_offsets_mapping: encoding_dict["offset_mapping"].append(e.offsets) if return_length: encoding_dict["length"].append(len(e.ids)) return encoding_dict, encodings def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: """ Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the vocabulary. Args: tokens (`str` or `List[str]`): One or several token(s) to convert to token id(s). Returns: `int` or `List[int]`: The token id or list of token ids. """ if tokens is None: return None if isinstance(tokens, str): return self._convert_token_to_id_with_added_voc(tokens) return [self._convert_token_to_id_with_added_voc(token) for token in tokens] def _convert_token_to_id_with_added_voc(self, token: str) -> int: index = self._tokenizer.token_to_id(token) if index is None: return self.unk_token_id return index def _convert_id_to_token(self, index: int) -> Optional[str]: return self._tokenizer.id_to_token(int(index)) def _add_tokens(self, new_tokens: List[Union[str, AddedToken]], special_tokens=False) -> int: if special_tokens: return self._tokenizer.add_special_tokens(new_tokens) return self._tokenizer.add_tokens(new_tokens) def num_special_tokens_to_add(self, pair: bool = False) -> int: """ Returns the number of added tokens when encoding a sequence with special tokens. <Tip> This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop. </Tip> Args: pair (`bool`, *optional*, defaults to `False`): Whether the number of added tokens should be computed in the case of a sequence pair or a single sequence. Returns: `int`: Number of special tokens added to sequences. """ return self._tokenizer.num_special_tokens_to_add(pair) def convert_ids_to_tokens( self, ids: Union[int, List[int]], skip_special_tokens: bool = False ) -> Union[str, List[str]]: """ Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and added tokens. Args: ids (`int` or `List[int]`): The token id (or token ids) to convert to tokens. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. Returns: `str` or `List[str]`: The decoded token(s). """ if isinstance(ids, int): return self._tokenizer.id_to_token(ids) tokens = [] for index in ids: index = int(index) if skip_special_tokens and index in self.all_special_ids: continue tokens.append(self._tokenizer.id_to_token(index)) return tokens def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: return self.encode_plus(text=text, text_pair=pair, add_special_tokens=add_special_tokens, **kwargs).tokens() def set_truncation_and_padding( self, padding_strategy: PaddingStrategy, truncation_strategy: TruncationStrategy, max_length: int, stride: int, pad_to_multiple_of: Optional[int], ): """ Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers library) and restore the tokenizer settings afterwards. The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the managed section. Args: padding_strategy ([`~utils.PaddingStrategy`]): The kind of padding that will be applied to the input truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`]): The kind of truncation that will be applied to the input max_length (`int`): The maximum size of a sequence. stride (`int`): The stride to use when handling overflow. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). """ _truncation = self._tokenizer.truncation _padding = self._tokenizer.padding # Set truncation and padding on the backend tokenizer if truncation_strategy == TruncationStrategy.DO_NOT_TRUNCATE: if _truncation is not None: self._tokenizer.no_truncation() else: target = { "max_length": max_length, "stride": stride, "strategy": truncation_strategy.value, "direction": self.truncation_side, } # _truncation might contain more keys that the target `transformers` # supports. Use only the target keys to trigger `enable_truncation`. # This should enable this code to works on various `tokenizers` # targets. if _truncation is None: current = None else: current = {k: _truncation.get(k, None) for k in target} if current != target: self._tokenizer.enable_truncation(**target) if padding_strategy == PaddingStrategy.DO_NOT_PAD: if _padding is not None: self._tokenizer.no_padding() else: length = max_length if padding_strategy == PaddingStrategy.MAX_LENGTH else None target = { "length": length, "direction": self.padding_side, "pad_id": self.pad_token_id, "pad_token": self.pad_token, "pad_type_id": self.pad_token_type_id, "pad_to_multiple_of": pad_to_multiple_of, } if _padding != target: self._tokenizer.enable_padding(**target) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair] ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, (tuple, list)): raise TypeError( f"batch_text_or_text_pairs has to be a list or a tuple (got {type(batch_text_or_text_pairs)})" ) # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, ) encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=is_split_into_words, ) # Convert encoding to dict # `Tokens` has type: Tuple[ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast] # ] # with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: batched_input = [(text, text_pair)] if text_pair else [text] batched_output = self._batch_encode_plus( batched_input, is_split_into_words=is_split_into_words, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output def convert_tokens_to_string(self, tokens: List[str]) -> str: return self.backend_tokenizer.decoder.decode(tokens) def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) if isinstance(token_ids, int): token_ids = [token_ids] text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def _save_pretrained( self, save_directory: Union[str, os.PathLike], file_names: Tuple[str], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, ) -> Tuple[str]: """ Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens as well as in a unique JSON file containing {config + vocab + added-tokens}. """ save_directory = str(save_directory) if self.slow_tokenizer_class is None and legacy_format is True: raise ValueError( "Your tokenizer does not have a legacy version defined and therefore cannot register this version. You" " might consider leaving the legacy_format at `None` or setting it to `False`." ) save_slow = ( (legacy_format is None or legacy_format is True) and self.slow_tokenizer_class is not None and self.can_save_slow_tokenizer ) save_fast = legacy_format is None or legacy_format is False if save_slow: added_tokens_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE ) # make sure to be foward compatible added_vocab = {tok: index for tok, index in self.added_tokens_encoder.items() if index >= self.vocab_size} if added_vocab: with open(added_tokens_file, "w", encoding="utf-8") as f: out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix) file_names = file_names + vocab_files + (added_tokens_file,) if save_fast: tokenizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_FILE ) self.backend_tokenizer.save(tokenizer_file) file_names = file_names + (tokenizer_file,) return file_names def train_new_from_iterator( self, text_iterator, vocab_size, length=None, new_special_tokens=None, special_tokens_map=None, **kwargs, ): """ Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization pipeline) as the current one. Args: text_iterator (generator of `List[str]`): The training corpus. Should be a generator of batches of texts, for instance a list of lists of texts if you have everything in memory. vocab_size (`int`): The size of the vocabulary you want for your tokenizer. length (`int`, *optional*): The total number of sequences in the iterator. This is used to provide meaningful progress tracking new_special_tokens (list of `str` or `AddedToken`, *optional*): A list of new special tokens to add to the tokenizer you are training. special_tokens_map (`Dict[str, str]`, *optional*): If you want to rename some of the special tokens this tokenizer uses, pass along a mapping old special token name to new special token name in this argument. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the trainer from the 🤗 Tokenizers library. Returns: [`PreTrainedTokenizerFast`]: A new tokenizer of the same type as the original one, trained on `text_iterator`. """ tokenizer_json = json.loads(self._tokenizer.to_str()) # Remove added tokens for now (uses IDs of tokens) added_tokens = tokenizer_json.pop("added_tokens") # Remove post processor for now (uses IDs of tokens) post_processor = tokenizer_json.pop("post_processor") unk_token = None # Remove vocab if tokenizer_json["model"]["type"] == "BPE": tokenizer_json["model"]["vocab"] = {} tokenizer_json["model"]["merges"] = [] elif tokenizer_json["model"]["type"] == "Unigram": if tokenizer_json["model"]["unk_id"] is not None: unk_id = tokenizer_json["model"]["unk_id"] unk_token = tokenizer_json["model"]["vocab"][unk_id][0] if special_tokens_map is not None and unk_token in special_tokens_map: unk_token = special_tokens_map[unk_token] tokenizer_json["model"]["unk_id"] = 0 tokenizer_json["model"]["vocab"] = [[unk_token, 0.0]] elif tokenizer_json["model"]["type"] in ["WordLevel", "WordPiece"]: tokenizer_json["model"]["vocab"] = {} else: raise ValueError( f"This method does not support this type of tokenizer (found {tokenizer_json['model']['type']}) " "only BPE, Unigram, WordLevel and WordPiece." ) if ( special_tokens_map is not None and "unk_token" in tokenizer_json["model"] and tokenizer_json["model"]["unk_token"] in special_tokens_map ): tokenizer_json["model"]["unk_token"] = special_tokens_map[tokenizer_json["model"]["unk_token"]] tokenizer = TokenizerFast.from_str(json.dumps(tokenizer_json)) # Get the special tokens from the current tokenizer if none are specified. special_tokens = [] for added_token in added_tokens: special = added_token.pop("special", None) _ = added_token.pop("id", None) if tokenizer_json["model"]["type"] != "Unigram" and not special: continue if special_tokens_map is not None and added_token["content"] in special_tokens_map: added_token["content"] = special_tokens_map[added_token["content"]] special_tokens.append(AddedToken(**added_token)) if new_special_tokens is not None: special_tokens.extend(new_special_tokens) # Trainer needs to know the end of word / continuing subword thingies in BPE if ( tokenizer_json["model"]["type"] == "BPE" and "continuing_subword_prefix" not in kwargs and tokenizer_json["model"]["continuing_subword_prefix"] is not None ): kwargs["continuing_subword_prefix"] = tokenizer_json["model"]["continuing_subword_prefix"] if ( tokenizer_json["model"]["type"] == "BPE" and "end_of_word_suffix" not in kwargs and tokenizer_json["model"]["end_of_word_suffix"] is not None ): kwargs["end_of_word_suffix"] = tokenizer_json["model"]["end_of_word_suffix"] if tokenizer_json["model"]["type"] == "Unigram" and unk_token is not None: kwargs["unk_token"] = unk_token if tokenizer_json["pre_tokenizer"] is not None and tokenizer_json["pre_tokenizer"]["type"] == "ByteLevel": kwargs["initial_alphabet"] = pre_tokenizers_fast.ByteLevel.alphabet() trainer_class = MODEL_TO_TRAINER_MAPPING[tokenizer_json["model"]["type"]] trainer = trainer_class(vocab_size=vocab_size, special_tokens=special_tokens, **kwargs) tokenizer.train_from_iterator(text_iterator, length=length, trainer=trainer) if post_processor is not None: trained_tokenizer_json = json.loads(tokenizer.to_str()) # Almost done, we just have to adjust the token IDs in the post processor if "special_tokens" in post_processor: for key in post_processor["special_tokens"]: tokens = post_processor["special_tokens"][key]["tokens"] if special_tokens_map is not None: tokens = [special_tokens_map.get(token, token) for token in tokens] post_processor["special_tokens"][key]["tokens"] = tokens post_processor["special_tokens"][key]["ids"] = [tokenizer.token_to_id(token) for token in tokens] for special_token in ["cls", "sep"]: if special_token in post_processor: token, _ = post_processor[special_token] if special_tokens_map is not None and token in special_tokens_map: token = special_tokens_map[token] token_id = tokenizer.token_to_id(token) post_processor[special_token] = [token, token_id] trained_tokenizer_json["post_processor"] = post_processor tokenizer = TokenizerFast.from_str(json.dumps(trained_tokenizer_json)) kwargs = self.init_kwargs.copy() # Map pad/cls/mask token at the Transformers level special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() special_tokens_list.remove("additional_special_tokens") for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(self, f"_{token}") is not None: special_token = getattr(self, token) if special_tokens_map is not None and special_token in special_tokens_map: special_token = special_tokens_map[special_token] special_token_full = getattr(self, f"_{token}") if isinstance(special_token_full, AddedToken): # Create an added token with the same parameters except the content kwargs[token] = AddedToken( special_token, single_word=special_token_full.single_word, lstrip=special_token_full.lstrip, rstrip=special_token_full.rstrip, normalized=special_token_full.normalized, special=True, ) else: kwargs[token] = special_token additional_special_tokens = self.additional_special_tokens if new_special_tokens is not None: additional_special_tokens.extend(new_special_tokens) if len(additional_special_tokens) > 0: kwargs["additional_special_tokens"] = additional_special_tokens return self.__class__(tokenizer_object=tokenizer, **kwargs)
transformers/src/transformers/tokenization_utils_fast.py/0
{ "file_path": "transformers/src/transformers/tokenization_utils_fast.py", "repo_id": "transformers", "token_count": 16473 }
401
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class TextToSpeechTool(PipelineTool): default_checkpoint = "microsoft/speecht5_tts" description = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) name = "text_reader" pre_processor_class = SpeechT5Processor model_class = SpeechT5ForTextToSpeech post_processor_class = SpeechT5HifiGan inputs = ["text"] outputs = ["audio"] def setup(self): if self.post_processor is None: self.post_processor = "microsoft/speecht5_hifigan" super().setup() def encode(self, text, speaker_embeddings=None): inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def forward(self, inputs): with torch.no_grad(): return self.model.generate_speech(**inputs) def decode(self, outputs): with torch.no_grad(): return self.post_processor(outputs).cpu().detach()
transformers/src/transformers/tools/text_to_speech.py/0
{ "file_path": "transformers/src/transformers/tools/text_to_speech.py", "repo_id": "transformers", "token_count": 859 }
402
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class Pop2PianoFeatureExtractor(metaclass=DummyObject): _backends = ["essentia", "librosa", "pretty_midi", "scipy", "torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["essentia", "librosa", "pretty_midi", "scipy", "torch"]) class Pop2PianoTokenizer(metaclass=DummyObject): _backends = ["essentia", "librosa", "pretty_midi", "scipy", "torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["essentia", "librosa", "pretty_midi", "scipy", "torch"]) class Pop2PianoProcessor(metaclass=DummyObject): _backends = ["essentia", "librosa", "pretty_midi", "scipy", "torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["essentia", "librosa", "pretty_midi", "scipy", "torch"])
transformers/src/transformers/utils/dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects.py", "repo_id": "transformers", "token_count": 367 }
403
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hub utilities: utilities related to download and cache models """ import json import os import re import shutil import sys import tempfile import traceback import warnings from concurrent import futures from pathlib import Path from typing import Dict, List, Optional, Tuple, Union from urllib.parse import urlparse from uuid import uuid4 import huggingface_hub import requests from huggingface_hub import ( _CACHED_NO_EXIST, CommitOperationAdd, ModelCard, ModelCardData, constants, create_branch, create_commit, create_repo, get_hf_file_metadata, hf_hub_download, hf_hub_url, try_to_load_from_cache, ) from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get from huggingface_hub.utils import ( EntryNotFoundError, GatedRepoError, HFValidationError, LocalEntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, build_hf_headers, hf_raise_for_status, send_telemetry, ) from huggingface_hub.utils._deprecation import _deprecate_method from requests.exceptions import HTTPError from . import __version__, logging from .generic import working_or_temp_dir from .import_utils import ( ENV_VARS_TRUE_VALUES, _tf_version, _torch_version, is_tf_available, is_torch_available, is_training_run_on_sagemaker, ) from .logging import tqdm logger = logging.get_logger(__name__) # pylint: disable=invalid-name _is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False def is_offline_mode(): return _is_offline_mode torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) default_cache_path = constants.default_cache_path old_default_cache_path = os.path.join(torch_cache_home, "transformers") # Determine default cache directory. Lots of legacy environment variables to ensure backward compatibility. # The best way to set the cache path is with the environment variable HF_HOME. For more details, checkout this # documentation page: https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables. # # In code, use `HF_HUB_CACHE` as the default cache path. This variable is set by the library and is guaranteed # to be set to the right value. # # TODO: clean this for v5? PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", constants.HF_HUB_CACHE) PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) # Onetime move from the old location to the new one if no ENV variable has been set. if ( os.path.isdir(old_default_cache_path) and not os.path.isdir(constants.HF_HUB_CACHE) and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ and "TRANSFORMERS_CACHE" not in os.environ ): logger.warning( "In Transformers v4.22.0, the default path to cache downloaded models changed from" " '~/.cache/torch/transformers' to '~/.cache/huggingface/hub'. Since you don't seem to have" " overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to" " '~/.cache/huggingface/hub' to avoid redownloading models you have already in the cache. You should" " only see this message once." ) shutil.move(old_default_cache_path, constants.HF_HUB_CACHE) HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(constants.HF_HOME, "modules")) TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" SESSION_ID = uuid4().hex # Add deprecation warning for old environment variables. for key in ("PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "TRANSFORMERS_CACHE"): if os.getenv(key) is not None: warnings.warn( f"Using `{key}` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.", FutureWarning, ) S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" _staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES _default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co" HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None: warnings.warn( "Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in " "Transformers v5. Use `HF_ENDPOINT` instead.", FutureWarning, ) HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT) HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}" HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples" def _get_cache_file_to_return( path_or_repo_id: str, full_filename: str, cache_dir: Union[str, Path, None] = None, revision: Optional[str] = None ): # We try to see if we have a cached version (not up to date): resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: return resolved_file return None def is_remote_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") # TODO: remove this once fully deprecated # TODO? remove from './examples/research_projects/lxmert/utils.py' as well # TODO? remove from './examples/research_projects/visual_bert/utils.py' as well @_deprecate_method(version="4.39.0", message="This method is outdated and does not support the new cache system.") def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]: """ Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url, etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin* are added. Args: cache_dir (`Union[str, Path]`, *optional*): The cache directory to search for models within. Will default to the transformers cache if unset. Returns: List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)` """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE elif isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.isdir(cache_dir): return [] cached_models = [] for file in os.listdir(cache_dir): if file.endswith(".json"): meta_path = os.path.join(cache_dir, file) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] if url.endswith(".bin"): size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6 cached_models.append((url, etag, size_MB)) return cached_models def define_sagemaker_information(): try: instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json() dlc_container_used = instance_data["Image"] dlc_tag = instance_data["Image"].split(":")[1] except Exception: dlc_container_used = None dlc_tag = None sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}")) runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None sagemaker_object = { "sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None), "sm_region": os.getenv("AWS_REGION", None), "sm_number_gpu": os.getenv("SM_NUM_GPUS", 0), "sm_number_cpu": os.getenv("SM_NUM_CPUS", 0), "sm_distributed_training": runs_distributed_training, "sm_deep_learning_container": dlc_container_used, "sm_deep_learning_container_tag": dlc_tag, "sm_account_id": account_id, } return sagemaker_object def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: """ Formats a user-agent string with basic info about a request. """ ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_tf_available(): ua += f"; tensorflow/{_tf_version}" if constants.HF_HUB_DISABLE_TELEMETRY: return ua + "; telemetry/off" if is_training_run_on_sagemaker(): ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items()) # CI will set this value to True if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(user_agent, dict): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent return ua def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]) -> Optional[str]: """ Extracts the commit hash from a resolved filename toward a cache file. """ if resolved_file is None or commit_hash is not None: return commit_hash resolved_file = str(Path(resolved_file).as_posix()) search = re.search(r"snapshots/([^/]+)/", resolved_file) if search is None: return None commit_hash = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None def cached_file( path_or_repo_id: Union[str, os.PathLike], filename: str, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", repo_type: Optional[str] = None, user_agent: Optional[Union[str, Dict[str, str]]] = None, _raise_exceptions_for_gated_repo: bool = True, _raise_exceptions_for_missing_entries: bool = True, _raise_exceptions_for_connection_errors: bool = True, _commit_hash: Optional[str] = None, **deprecated_kwargs, ) -> Optional[str]: """ Tries to locate a file in a local folder and repo, downloads and cache it if necessary. Args: path_or_repo_id (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a model repo on huggingface.co. - a path to a *directory* potentially containing the file. filename (`str`): The name of the file to locate in `path_or_repo`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. repo_type (`str`, *optional*): Specify the repo type (useful when downloading from a space for instance). <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo). Examples: ```python # Download a model weight from the Hub and cache it. model_weights_file = cached_file("google-bert/bert-base-uncased", "pytorch_model.bin") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token # Private arguments # _raise_exceptions_for_gated_repo: if False, do not raise an exception for gated repo error but return # None. # _raise_exceptions_for_missing_entries: if False, do not raise an exception for missing entries but return # None. # _raise_exceptions_for_connection_errors: if False, do not raise an exception for connection errors but return # None. # _commit_hash: passed when we are chaining several calls to various files (e.g. when loading a tokenizer or # a pipeline). If files are cached for this commit hash, avoid calls to head and get from the cache. if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True if subfolder is None: subfolder = "" path_or_repo_id = str(path_or_repo_id) full_filename = os.path.join(subfolder, filename) if os.path.isdir(path_or_repo_id): resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename) if not os.path.isfile(resolved_file): if _raise_exceptions_for_missing_entries: raise EnvironmentError( f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " f"'https://huggingface.co/{path_or_repo_id}/tree/{revision}' for available files." ) else: return None return resolved_file if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if _commit_hash is not None and not force_download: # If the file is cached under that commit hash, we return it directly. resolved_file = try_to_load_from_cache( path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type ) if resolved_file is not None: if resolved_file is not _CACHED_NO_EXIST: return resolved_file elif not _raise_exceptions_for_missing_entries: return None else: raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.") user_agent = http_user_agent(user_agent) try: # Load from URL or cache if already cached resolved_file = hf_hub_download( path_or_repo_id, filename, subfolder=None if len(subfolder) == 0 else subfolder, repo_type=repo_type, revision=revision, cache_dir=cache_dir, user_agent=user_agent, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) except GatedRepoError as e: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if resolved_file is not None or not _raise_exceptions_for_gated_repo: return resolved_file raise EnvironmentError( "You are trying to access a gated repo.\nMake sure to have access to it at " f"https://huggingface.co/{path_or_repo_id}.\n{str(e)}" ) from e except RepositoryNotFoundError as e: raise EnvironmentError( f"{path_or_repo_id} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token " "having permission to this repo either by logging in with `huggingface-cli login` or by passing " "`token=<your_token>`" ) from e except RevisionNotFoundError as e: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists " "for this model name. Check the model page at " f"'https://huggingface.co/{path_or_repo_id}' for available revisions." ) from e except LocalEntryNotFoundError as e: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if ( resolved_file is not None or not _raise_exceptions_for_missing_entries or not _raise_exceptions_for_connection_errors ): return resolved_file raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the" f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named" f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at" " 'https://huggingface.co/docs/transformers/installation#offline-mode'." ) from e except EntryNotFoundError as e: if not _raise_exceptions_for_missing_entries: return None if revision is None: revision = "main" raise EnvironmentError( f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." ) from e except HTTPError as err: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if resolved_file is not None or not _raise_exceptions_for_connection_errors: return resolved_file raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}") except HFValidationError as e: raise EnvironmentError( f"Incorrect path_or_model_id: '{path_or_repo_id}'. Please provide either the path to a local folder or the repo_id of a model on the Hub." ) from e return resolved_file # TODO: deprecate `get_file_from_repo` or document it differently? # Docstring is exactly the same as `cached_repo` but behavior is slightly different. If file is missing or if # there is a connection error, `cached_repo` will return None while `get_file_from_repo` will raise an error. # IMO we should keep only 1 method and have a single `raise_error` argument (to be discussed). def get_file_from_repo( path_or_repo: Union[str, os.PathLike], filename: str, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", **deprecated_kwargs, ): """ Tries to locate a file in a local folder and repo, downloads and cache it if necessary. Args: path_or_repo (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a model repo on huggingface.co. - a path to a *directory* potentially containing the file. filename (`str`): The name of the file to locate in `path_or_repo`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the file does not exist. Examples: ```python # Download a tokenizer configuration from huggingface.co and cache. tokenizer_config = get_file_from_repo("google-bert/bert-base-uncased", "tokenizer_config.json") # This model does not have a tokenizer config so the result will be None. tokenizer_config = get_file_from_repo("FacebookAI/xlm-roberta-base", "tokenizer_config.json") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token return cached_file( path_or_repo_id=path_or_repo, filename=filename, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, ) def download_url(url, proxies=None): """ Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is for deprecated behavior allowing to download config/models with a single url instead of using the Hub. Args: url (`str`): The url of the file to download. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. Returns: `str`: The location of the temporary file where the url was downloaded. """ warnings.warn( f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in" " v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note" " that this is not compatible with the caching system (your file will be downloaded at each execution) or" " multiple processes (each process will download the file in a different temporary file).", FutureWarning, ) tmp_fd, tmp_file = tempfile.mkstemp() with os.fdopen(tmp_fd, "wb") as f: http_get(url, f, proxies=proxies) return tmp_file def has_file( path_or_repo: Union[str, os.PathLike], filename: str, revision: Optional[str] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, **deprecated_kwargs, ): """ Checks if a repo contains a given file without downloading it. Works for remote repos and local folders. <Tip warning={false}> This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for this repo, but will return False for regular connection errors. </Tip> """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if os.path.isdir(path_or_repo): return os.path.isfile(os.path.join(path_or_repo, filename)) url = hf_hub_url(path_or_repo, filename=filename, revision=revision) headers = build_hf_headers(token=token, user_agent=http_user_agent()) r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10) try: hf_raise_for_status(r) return True except GatedRepoError as e: logger.error(e) raise EnvironmentError( f"{path_or_repo} is a gated repository. Make sure to request access at " f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by " "logging in with `huggingface-cli login` or by passing `token=<your_token>`." ) from e except RepositoryNotFoundError as e: logger.error(e) raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.") except RevisionNotFoundError as e: logger.error(e) raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this " f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions." ) except requests.HTTPError: # We return false for EntryNotFoundError (logical) as well as any connection error. return False class PushToHubMixin: """ A Mixin containing the functionality to push a model or tokenizer to the hub. """ def _create_repo( self, repo_id: str, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, repo_url: Optional[str] = None, organization: Optional[str] = None, ) -> str: """ Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves the token. """ if repo_url is not None: warnings.warn( "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " "instead." ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." ) repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") if organization is not None: warnings.warn( "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." ) if not repo_id.startswith(organization): if "/" in repo_id: repo_id = repo_id.split("/")[-1] repo_id = f"{organization}/{repo_id}" url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) return url.repo_id def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): """ Returns the list of files with their last modification timestamp. """ return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} def _upload_modified_files( self, working_dir: Union[str, os.PathLike], repo_id: str, files_timestamps: Dict[str, float], commit_message: Optional[str] = None, token: Optional[Union[bool, str]] = None, create_pr: bool = False, revision: str = None, commit_description: str = None, ): """ Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. """ if commit_message is None: if "Model" in self.__class__.__name__: commit_message = "Upload model" elif "Config" in self.__class__.__name__: commit_message = "Upload config" elif "Tokenizer" in self.__class__.__name__: commit_message = "Upload tokenizer" elif "FeatureExtractor" in self.__class__.__name__: commit_message = "Upload feature extractor" elif "Processor" in self.__class__.__name__: commit_message = "Upload processor" else: commit_message = f"Upload {self.__class__.__name__}" modified_files = [ f for f in os.listdir(working_dir) if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] ] # filter for actual files + folders at the root level modified_files = [ f for f in modified_files if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) ] operations = [] # upload standalone files for file in modified_files: if os.path.isdir(os.path.join(working_dir, file)): # go over individual files of folder for f in os.listdir(os.path.join(working_dir, file)): operations.append( CommitOperationAdd( path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) ) ) else: operations.append( CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) ) if revision is not None: create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") return create_commit( repo_id=repo_id, operations=operations, commit_message=commit_message, commit_description=commit_description, token=token, create_pr=create_pr, revision=revision, ) def push_to_hub( self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, max_shard_size: Optional[Union[int, str]] = "5GB", create_pr: bool = False, safe_serialization: bool = True, revision: str = None, commit_description: str = None, tags: Optional[List[str]] = None, **deprecated_kwargs, ) -> str: """ Upload the {object_files} to the 🤗 Model Hub. Parameters: repo_id (`str`): The name of the repository you want to push your {object} to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload {object}"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights in safetensors format for safer serialization. revision (`str`, *optional*): Branch to push the uploaded files to. commit_description (`str`, *optional*): The description of the commit that will be created tags (`List[str]`, *optional*): List of tags to push on the Hub. Examples: ```python from transformers import {object_class} {object} = {object_class}.from_pretrained("google-bert/bert-base-cased") # Push the {object} to your namespace with the name "my-finetuned-bert". {object}.push_to_hub("my-finetuned-bert") # Push the {object} to an organization with the name "my-finetuned-bert". {object}.push_to_hub("huggingface/my-finetuned-bert") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) if repo_path_or_name is not None: # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer # repo_id from the folder path, if it exists. warnings.warn( "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " "`repo_id` instead.", FutureWarning, ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." ) if os.path.isdir(repo_path_or_name): # repo_path: infer repo_id from the path repo_id = repo_id.split(os.path.sep)[-1] working_dir = repo_id else: # repo_name: use it as repo_id repo_id = repo_path_or_name working_dir = repo_id.split("/")[-1] else: # Repo_id is passed correctly: infer working_dir from it working_dir = repo_id.split("/")[-1] # Deprecation warning will be sent after for repo_url and organization repo_url = deprecated_kwargs.pop("repo_url", None) organization = deprecated_kwargs.pop("organization", None) repo_id = self._create_repo( repo_id, private=private, token=token, repo_url=repo_url, organization=organization ) # Create a new empty model card and eventually tag it model_card = create_and_tag_model_card( repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors ) if use_temp_dir is None: use_temp_dir = not os.path.isdir(working_dir) with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: files_timestamps = self._get_files_timestamps(work_dir) # Save all files. self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) # Update model card if needed: model_card.save(os.path.join(work_dir, "README.md")) return self._upload_modified_files( work_dir, repo_id, files_timestamps, commit_message=commit_message, token=token, create_pr=create_pr, revision=revision, commit_description=commit_description, ) def send_example_telemetry(example_name, *example_args, framework="pytorch"): """ Sends telemetry that helps tracking the examples use. Args: example_name (`str`): The name of the example. *example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only try to extract the model and dataset name from those. Nothing else is tracked. framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example. """ if is_offline_mode(): return data = {"example": example_name, "framework": framework} for args in example_args: args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None} if "model_name_or_path" in args_as_dict: model_name = args_as_dict["model_name_or_path"] # Filter out local paths if not os.path.isdir(model_name): data["model_name"] = args_as_dict["model_name_or_path"] if "dataset_name" in args_as_dict: data["dataset_name"] = args_as_dict["dataset_name"] elif "task_name" in args_as_dict: # Extract script name from the example_name script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "") script_name = script_name.replace("_no_trainer", "") data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}" # Send telemetry in the background send_telemetry( topic="examples", library_name="transformers", library_version=__version__, user_agent=http_user_agent(data) ) def convert_file_size_to_int(size: Union[int, str]): """ Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ if isinstance(size, int): return size if size.upper().endswith("GIB"): return int(size[:-3]) * (2**30) if size.upper().endswith("MIB"): return int(size[:-3]) * (2**20) if size.upper().endswith("KIB"): return int(size[:-3]) * (2**10) if size.upper().endswith("GB"): int_size = int(size[:-2]) * (10**9) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("MB"): int_size = int(size[:-2]) * (10**6) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("KB"): int_size = int(size[:-2]) * (10**3) return int_size // 8 if size.endswith("b") else int_size raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") def get_checkpoint_shard_files( pretrained_model_name_or_path, index_filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, token=None, user_agent=None, revision=None, subfolder="", _commit_hash=None, **deprecated_kwargs, ): """ For a given model: - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the Hub - returns the list of paths to all the shards, as well as some metadata. For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). """ import json use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if not os.path.isfile(index_filename): raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") with open(index_filename, "r") as f: index = json.loads(f.read()) shard_filenames = sorted(set(index["weight_map"].values())) sharded_metadata = index["metadata"] sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) sharded_metadata["weight_map"] = index["weight_map"].copy() # First, let's deal with local folder. if os.path.isdir(pretrained_model_name_or_path): shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames] return shard_filenames, sharded_metadata # At this stage pretrained_model_name_or_path is a model identifier on the Hub cached_filenames = [] # Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of # downloaded (if interrupted). last_shard = try_to_load_from_cache( pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash ) show_progress_bar = last_shard is None or force_download for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar): try: # Load from URL cached_filename = cached_file( pretrained_model_name_or_path, shard_filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _commit_hash=_commit_hash, ) # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so # we don't have to catch them here. except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is " "required according to the checkpoint index." ) except HTTPError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try" " again after checking your internet connection." ) cached_filenames.append(cached_filename) return cached_filenames, sharded_metadata # All what is below is for conversion between old cache format and new cache format. def get_all_cached_files(cache_dir=None): """ Returns a list for all files cached with appropriate metadata. """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE else: cache_dir = str(cache_dir) if not os.path.isdir(cache_dir): return [] cached_files = [] for file in os.listdir(cache_dir): meta_path = os.path.join(cache_dir, f"{file}.json") if not os.path.isfile(meta_path): continue with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"].replace('"', "") cached_files.append({"file": file, "url": url, "etag": etag}) return cached_files def extract_info_from_url(url): """ Extract repo_name, revision and filename from an url. """ search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url) if search is None: return None repo, revision, filename = search.groups() cache_repo = "--".join(["models"] + repo.split("/")) return {"repo": cache_repo, "revision": revision, "filename": filename} def create_and_tag_model_card( repo_id: str, tags: Optional[List[str]] = None, token: Optional[str] = None, ignore_metadata_errors: bool = False, ): """ Creates or loads an existing model card and tags it. Args: repo_id (`str`): The repo_id where to look for the model card. tags (`List[str]`, *optional*): The list of tags to add in the model card token (`str`, *optional*): Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token. ignore_metadata_errors (`str`): If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. """ try: # Check if the model card is present on the remote repo model_card = ModelCard.load(repo_id, token=token, ignore_metadata_errors=ignore_metadata_errors) except EntryNotFoundError: # Otherwise create a simple model card from template model_description = "This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated." card_data = ModelCardData(tags=[] if tags is None else tags, library_name="transformers") model_card = ModelCard.from_template(card_data, model_description=model_description) if tags is not None: for model_tag in tags: if model_tag not in model_card.data.tags: model_card.data.tags.append(model_tag) return model_card def clean_files_for(file): """ Remove, if they exist, file, file.json and file.lock """ for f in [file, f"{file}.json", f"{file}.lock"]: if os.path.isfile(f): os.remove(f) def move_to_new_cache(file, repo, filename, revision, etag, commit_hash): """ Move file to repo following the new huggingface hub cache organization. """ os.makedirs(repo, exist_ok=True) # refs os.makedirs(os.path.join(repo, "refs"), exist_ok=True) if revision != commit_hash: ref_path = os.path.join(repo, "refs", revision) with open(ref_path, "w") as f: f.write(commit_hash) # blobs os.makedirs(os.path.join(repo, "blobs"), exist_ok=True) blob_path = os.path.join(repo, "blobs", etag) shutil.move(file, blob_path) # snapshots os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True) os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True) pointer_path = os.path.join(repo, "snapshots", commit_hash, filename) huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) clean_files_for(file) def move_cache(cache_dir=None, new_cache_dir=None, token=None): if new_cache_dir is None: new_cache_dir = TRANSFORMERS_CACHE if cache_dir is None: # Migrate from old cache in .cache/huggingface/transformers old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers" if os.path.isdir(str(old_cache)): cache_dir = str(old_cache) else: cache_dir = new_cache_dir cached_files = get_all_cached_files(cache_dir=cache_dir) logger.info(f"Moving {len(cached_files)} files to the new cache system") hub_metadata = {} for file_info in tqdm(cached_files): url = file_info.pop("url") if url not in hub_metadata: try: hub_metadata[url] = get_hf_file_metadata(url, token=token) except requests.HTTPError: continue etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash if etag is None or commit_hash is None: continue if file_info["etag"] != etag: # Cached file is not up to date, we just throw it as a new version will be downloaded anyway. clean_files_for(os.path.join(cache_dir, file_info["file"])) continue url_info = extract_info_from_url(url) if url_info is None: # Not a file from huggingface.co continue repo = os.path.join(new_cache_dir, url_info["repo"]) move_to_new_cache( file=os.path.join(cache_dir, file_info["file"]), repo=repo, filename=url_info["filename"], revision=url_info["revision"], etag=etag, commit_hash=commit_hash, ) class PushInProgress: """ Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). """ def __init__(self, jobs: Optional[futures.Future] = None) -> None: self.jobs = [] if jobs is None else jobs def is_done(self): return all(job.done() for job in self.jobs) def wait_until_done(self): futures.wait(self.jobs) def cancel(self) -> None: self.jobs = [ job for job in self.jobs # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list if not (job.cancel() or job.done()) ] cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt") if not os.path.isfile(cache_version_file): cache_version = 0 else: with open(cache_version_file) as f: try: cache_version = int(f.read()) except ValueError: cache_version = 0 cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0 if cache_version < 1 and cache_is_not_empty: if is_offline_mode(): logger.warning( "You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local " "cache seems to be the one of a previous version. It is very likely that all your calls to any " "`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have " "your cache be updated automatically, then you can go back to offline mode." ) else: logger.warning( "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a " "one-time only operation. You can interrupt this and resume the migration later on by calling " "`transformers.utils.move_cache()`." ) try: if TRANSFORMERS_CACHE != constants.HF_HUB_CACHE: # Users set some env variable to customize cache storage move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE) else: move_cache() except Exception as e: trace = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " "file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(TRANSFORMERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set " "the environment variable TRANSFORMERS_CACHE to a writable directory." )
transformers/src/transformers/utils/hub.py/0
{ "file_path": "transformers/src/transformers/utils/hub.py", "repo_id": "transformers", "token_count": 23236 }
404
**TEMPLATE** ===================================== *search & replace the following keywords, e.g.:* `:%s/\[name of model\]/brand_new_bert/g` -[lowercase name of model] # e.g. brand_new_bert -[camelcase name of model] # e.g. BrandNewBert -[name of mentor] # e.g. [Peter](https://github.com/peter) -[link to original repo] -[start date] -[end date] How to add [camelcase name of model] to 🤗 Transformers? ===================================== Mentor: [name of mentor] Begin: [start date] Estimated End: [end date] Adding a new model is often difficult and requires an in-depth knowledge of the 🤗 Transformers library and ideally also of the model's original repository. At Hugging Face, we are trying to empower the community more and more to add models independently. The following sections explain in detail how to add [camelcase name of model] to Transformers. You will work closely with [name of mentor] to integrate [camelcase name of model] into Transformers. By doing so, you will both gain a theoretical and deep practical understanding of [camelcase name of model]. But more importantly, you will have made a major open-source contribution to Transformers. Along the way, you will: - get insights into open-source best practices - understand the design principles of one of the most popular NLP libraries - learn how to do efficiently test large NLP models - learn how to integrate Python utilities like `black`, `ruff`, `make fix-copies` into a library to always ensure clean and readable code To start, let's try to get a general overview of the Transformers library. General overview of 🤗 Transformers ---------------------------------- First, you should get a general overview of 🤗 Transformers. Transformers is a very opinionated library, so there is a chance that you don't agree with some of the library's philosophies or design choices. From our experience, however, we found that the fundamental design choices and philosophies of the library are crucial to efficiently scale Transformers while keeping maintenance costs at a reasonable level. A good first starting point to better understand the library is to read the [documentation of our philosophy](https://huggingface.co/transformers/philosophy.html). As a result of our way of working, there are some choices that we try to apply to all models: - Composition is generally favored over abstraction - Duplicating code is not always bad if it strongly improves the readability or accessibility of a model - Model files are as self-contained as possible so that when you read the code of a specific model, you ideally only have to look into the respective `modeling_....py` file. In our opinion, the library's code is not just a means to provide a product, *e.g.*, the ability to use BERT for inference, but also as the very product that we want to improve. Hence, when adding a model, the user is not only the person that will use your model, but also everybody that will read, try to understand, and possibly tweak your code. With this in mind, let's go a bit deeper into the general library design. ### Overview of models To successfully add a model, it is important to understand the interaction between your model and its config, `PreTrainedModel`, and `PretrainedConfig`. For exemplary purposes, we will call the PyTorch model to be added to 🤗 Transformers `BrandNewBert`. Let's take a look: ![image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png) As you can see, we do make use of inheritance in 🤗 Transformers, but we keep the level of abstraction to an absolute minimum. There are never more than two levels of abstraction for any model in the library. `BrandNewBertModel` inherits from `BrandNewBertPreTrainedModel` which in turn inherits from `PreTrainedModel` and that's it. As a general rule, we want to make sure that a new model only depends on `PreTrainedModel`. The important functionalities that are automatically provided to every new model are `PreTrainedModel.from_pretrained` and `PreTrainedModel.save_pretrained`, which are used for serialization and deserialization. All of the other important functionalities, such as `BrandNewBertModel.forward` should be completely defined in the new `modeling_brand_new_bert.py` module. Next, we want to make sure that a model with a specific head layer, such as `BrandNewBertForMaskedLM` does not inherit from `BrandNewBertModel`, but rather uses `BrandNewBertModel` as a component that can be called in its forward pass to keep the level of abstraction low. Every new model requires a configuration class, called `BrandNewBertConfig`. This configuration is always stored as an attribute in `PreTrainedModel`, and thus can be accessed via the `config` attribute for all classes inheriting from `BrandNewBertPreTrainedModel` ```python # assuming that `brand_new_bert` belongs to the organization `brandy` model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert") model.config # model has access to its config ``` Similar to the model, the configuration inherits basic serialization and deserialization functionalities from `PretrainedConfig`. Note that the configuration and the model are always serialized into two different formats - the model to a `pytorch_model.bin` file and the configuration to a `config.json` file. Calling `PreTrainedModel.save_pretrained` will automatically call `PretrainedConfig.save_pretrained`, so that both model and configuration are saved. ### Overview of tokenizers Not quite ready yet :-( This section will be added soon! Step-by-step recipe to add a model to 🤗 Transformers ---------------------------------------------------- Everyone has different preferences of how to port a model so it can be very helpful for you to take a look at summaries of how other contributors ported models to Hugging Face. Here is a list of community blog posts on how to port a model: 1. [Porting GPT2 Model](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) by [Thomas](https://huggingface.co/thomwolf) 2. [Porting WMT19 MT Model](https://huggingface.co/blog/porting-fsmt) by [Stas](https://huggingface.co/stas) From experience, we can tell you that the most important things to keep in mind when adding a model are: - Don't reinvent the wheel! Most parts of the code you will add for the new 🤗 Transformers model already exist somewhere in 🤗 Transformers. Take some time to find similar, already existing models and tokenizers you can copy from. [grep](https://www.gnu.org/software/grep/) and [rg](https://github.com/BurntSushi/ripgrep) are your friends. Note that it might very well happen that your model's tokenizer is based on one model implementation, and your model's modeling code on another one. *E.g.*, FSMT's modeling code is based on BART, while FSMT's tokenizer code is based on XLM. - It's more of an engineering challenge than a scientific challenge. You should spend more time on creating an efficient debugging environment than trying to understand all theoretical aspects of the model in the paper. - Ask for help when you're stuck! Models are the core component of 🤗 Transformers so we, at Hugging Face, are more than happy to help you at every step to add your model. Don't hesitate to ask if you notice you are not making progress. In the following, we try to give you a general recipe that we found most useful when porting a model to 🤗 Transformers. The following list is a summary of everything that has to be done to add a model and can be used by you as a To-Do List: 1. [ ] (Optional) Understood theoretical aspects 2. [ ] Prepared transformers dev environment 3. [ ] Set up debugging environment of the original repository 4. [ ] Created script that successfully runs forward pass using original repository and checkpoint 5. [ ] Successfully opened a PR and added the model skeleton to Transformers 6. [ ] Successfully converted original checkpoint to Transformers checkpoint 7. [ ] Successfully ran forward pass in Transformers that gives identical output to original checkpoint 8. [ ] Finished model tests in Transformers 9. [ ] Successfully added Tokenizer in Transformers 10. [ ] Run end-to-end integration tests 11. [ ] Finished docs 12. [ ] Uploaded model weights to the hub 13. [ ] Submitted the pull request for review 14. [ ] (Optional) Added a demo notebook To begin with, we usually recommend to start by getting a good theoretical understanding of `[camelcase name of model]`. However, if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive into the `[camelcase name of model]`'s code-base. This option might suit you better, if your engineering skills are better than your theoretical skill, if you have trouble understanding `[camelcase name of model]`'s paper, or if you just enjoy programming much more than reading scientific papers. ### 1. (Optional) Theoretical aspects of [camelcase name of model] You should take some time to read *[camelcase name of model]'s* paper, if such descriptive work exists. There might be large sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is not to get a deep theoretical understanding of the paper, but to extract the necessary information required to effectively re-implement the model in 🤗 Transformers. That being said, you don't have to spend too much time on the theoretical aspects, but rather focus on the practical ones, namely: - What type of model is *[camelcase name of model]*? BERT-like encoder-only model? GPT2-like decoder-only model? BART-like encoder-decoder model? Look at the `model_summary` if you're not familiar with the differences between those. - What are the applications of *[camelcase name of model]*? Text classification? Text generation? Seq2Seq tasks, *e.g.,* summarization? - What is the novel feature of the model making it different from BERT/GPT-2/BART? - Which of the already existing [🤗 Transformers models](https://huggingface.co/transformers/#contents) is most similar to *[camelcase name of model]*? - What type of tokenizer is used? A sentencepiece tokenizer? Word piece tokenizer? Is it the same tokenizer as used for BERT or BART? After you feel like you have gotten a good overview of the architecture of the model, you might want to write to [name of mentor] with any questions you might have. This might include questions regarding the model's architecture, its attention layer, etc. We will be more than happy to help you. #### Additional resources Before diving into the code, here are some additional resources that might be worth taking a look at: - [link 1] - [link 2] - [link 3] - ... #### Make sure you've understood the fundamental aspects of [camelcase name of model] Alright, now you should be ready to take a closer look into the actual code of [camelcase name of model]. You should have understood the following aspects of [camelcase name of model] by now: - [characteristic 1 of [camelcase name of model]] - [characteristic 2 of [camelcase name of model]] - ... If any of the mentioned aspects above are **not** clear to you, now is a great time to talk to [name of mentor]. ### 2. Next prepare your environment 1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the repository's page. This creates a copy of the code under your GitHub user account. 2. Clone your `transformers` fork to your local disk, and add the base repository as a remote: ```bash git clone https://github.com/[your Github handle]/transformers.git cd transformers git remote add upstream https://github.com/huggingface/transformers.git ``` 3. Set up a development environment, for instance by running the following command: ```bash python -m venv .env source .env/bin/activate pip install -e ".[dev]" ``` and return to the parent directory ```bash cd .. ``` 4. We recommend adding the PyTorch version of *[camelcase name of model]* to Transformers. To install PyTorch, please follow the instructions [here](https://pytorch.org/get-started/locally/). **Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient. 5. To port *[camelcase name of model]*, you will also need access to its original repository: ```bash git clone [link to original repo].git cd [lowercase name of model] pip install -e . ``` Now you have set up a development environment to port *[camelcase name of model]* to 🤗 Transformers. ### Run a pretrained checkpoint using the original repository **3. Set up debugging environment** At first, you will work on the original *[camelcase name of model]* repository. Often, the original implementation is very "researchy". Meaning that documentation might be lacking and the code can be difficult to understand. But this should be exactly your motivation to reimplement *[camelcase name of model]*. At Hugging Face, one of our main goals is to *make people stand on the shoulders of giants* which translates here very well into taking a working model and rewriting it to make it as **accessible, user-friendly, and beautiful** as possible. This is the number-one motivation to re-implement models into 🤗 Transformers - trying to make complex new NLP technology accessible to **everybody**. You should start thereby by diving into the [original repository]([link to original repo]). Successfully running the official pretrained model in the original repository is often **the most difficult** step. From our experience, it is very important to spend some time getting familiar with the original code-base. You need to figure out the following: - Where to find the pretrained weights? - How to load the pretrained weights into the corresponding model? - How to run the tokenizer independently from the model? - Trace one forward pass so that you know which classes and functions are required for a simple forward pass. Usually, you only have to reimplement those functions. - Be able to locate the important components of the model: Where is the model's class? Are there model sub-classes, *e.g.*, EncoderModel, DecoderModel? Where is the self-attention layer? Are there multiple different attention layers, *e.g.*, *self-attention*, *cross-attention*...? - How can you debug the model in the original environment of the repo? Do you have to add `print` statements, can you work with an interactive debugger like [ipdb](https://pypi.org/project/ipdb/), or should you use an efficient IDE to debug the model, like PyCharm? It is very important that before you start the porting process, that you can **efficiently** debug code in the original repository! Also, remember that you are working with an open-source library, so do not hesitate to open an issue, or even a pull request in the original repository. The maintainers of this repository are most likely very happy about someone looking into their code! At this point, it is really up to you which debugging environment and strategy you prefer to use to debug the original model. We strongly advise against setting up a costly GPU environment, but simply work on a CPU both when starting to dive into the original repository and also when starting to write the 🤗 Transformers implementation of the model. Only at the very end, when the model has already been successfully ported to 🤗 Transformers, one should verify that the model also works as expected on GPU. In general, there are two possible debugging environments for running the original model - [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb) - Local python scripts. Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also, notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you to work with them. The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend some time adjusting to the new programming environment and that you might not be able to use your known debugging tools anymore, like `ipdb`. **4. Successfully run forward pass** For each code-base, a good first step is always to load a **small** pretrained checkpoint and to be able to reproduce a single forward pass using a dummy integer vector of input IDs as an input. Such a script could look like this (in pseudocode): ```python model = [camelcase name of model]Model.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids original_output = model.predict(input_ids) ``` Next, regarding the debugging strategy, there are generally a few from which to choose from: - Decompose the original model into many small testable components and run a forward pass on each of those for verification - Decompose the original model only into the original *tokenizer* and the original *model*, run a forward pass on those, and use intermediate print statements or breakpoints for verification Again, it is up to you which strategy to choose. Often, one or the other is advantageous depending on the original code base. If the original code-base allows you to decompose the model into smaller sub-components, *e.g.*, if the original code-base can easily be run in eager mode, it is usually worth the effort to do so. There are some important advantages to taking the more difficult road in the beginning: - at a later stage when comparing the original model to the Hugging Face implementation, you can verify automatically for each component individually that the corresponding component of the 🤗 Transformers implementation matches instead of relying on visual comparison via print statements - it can give you some rope to decompose the big problem of porting a model into smaller problems of just porting individual components and thus structure your work better - separating the model into logical meaningful components will help you to get a better overview of the model's design and thus to better understand the model - at a later stage those component-by-component tests help you to ensure that no regression occurs as you continue changing your code [Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) integration checks for ELECTRA gives a nice example of how this can be done. However, if the original code-base is very complex or only allows intermediate components to be run in a compiled mode, it might be too time-consuming or even impossible to separate the model into smaller testable sub-components. A good example is [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) library which is very complex and does not offer a simple way to decompose the model into its sub-components. For such libraries, one often relies on verifying print statements. No matter which strategy you choose, the recommended procedure is often the same in that you should start to debug the starting layers first and the ending layers last. It is recommended that you retrieve the output, either by print statements or sub-component functions, of the following layers in the following order: 1. Retrieve the input IDs passed to the model 2. Retrieve the word embeddings 3. Retrieve the input of the first Transformer layer 4. Retrieve the output of the first Transformer layer 5. Retrieve the output of the following n - 1 Transformer layers 6. Retrieve the output of the whole [camelcase name of model] Model Input IDs should thereby consists of an array of integers, *e.g.*, `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]` The outputs of the following layers often consist of multi-dimensional float arrays and can look like this: ```bash [[ [-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024], [-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132], [-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648], ..., [-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288], [-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191], [-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]], ``` We expect that every model added to 🤗 Transformers passes a couple of integration tests, meaning that the original model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001! Since it is normal that the exact same model written in different libraries can give a slightly different output depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of *[camelcase name of model]* in which case an **efficient** debugging environment of the original repository is absolutely important. Here is some advice to make your debugging environment as efficient as possible. - Find the best way of debugging intermediate results. Is the original repository written in PyTorch? Then you should probably take the time to write a longer script that decomposes the original model into smaller sub-components to retrieve intermediate values. Is the original repository written in Tensorflow 1? Then you might have to rely on TensorFlow print operations like [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) to output intermediate values. Is the original repository written in Jax? Then make sure that the model is **not jitted** when running the forward pass, *e.g.*, check-out [this link](https://github.com/google/jax/issues/196). - Use the smallest pretrained checkpoint you can find. The smaller the checkpoint, the faster your debug cycle becomes. It is not efficient if your pretrained model is so big that your forward pass takes more than 10 seconds. In case only very large checkpoints are available, it might make more sense to create a dummy model in the new environment with randomly initialized weights and save those weights for comparison with the 🤗 Transformers version of your model - Make sure you are using the easiest way of calling a forward pass in the original repository. Ideally, you want to find the function in the original repository that **only** calls a single forward pass, *i.e.* that is often called `predict`, `evaluate`, `forward` or `__call__`. You don't want to debug a function that calls `forward` multiple times, *e.g.*, to generate text, like `autoregressive_sample`, `generate`. - Try to separate the tokenization from the model's forward pass. If the original repository shows examples where you have to input a string, then try to find out where in the forward call the string input is changed to input ids and start from this point. This might mean that you have to possibly write a small script yourself or change the original code so that you can directly input the ids instead of an input string. - Make sure that the model in your debugging setup is **not** in training mode, which often causes the model to yield random outputs due to multiple dropout layers in the model. Make sure that the forward pass in your debugging environment is **deterministic** so that the dropout layers are not used. Or use `transformers.utils.set_seed` if the old and new implementations are in the same framework. #### More details on how to create a debugging environment for [camelcase name of model] [TODO FILL: Here the mentor should add very specific information on what the student should do] [to set up an efficient environment for the special requirements of this model] ### Port [camelcase name of model] to 🤗 Transformers Next, you can finally start adding new code to 🤗 Transformers. Go into the clone of your 🤗 Transformers' fork: cd transformers In the special case that you are adding a model whose architecture exactly matches the model architecture of an existing model you only have to add a conversion script as described in [this section](#write-a-conversion-script). In this case, you can just re-use the whole model architecture of the already existing model. Otherwise, let's start generating a new model with the amazing Cookiecutter! **Use the Cookiecutter to automatically generate the model's code** To begin with head over to the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model) to make use of our `cookiecutter` implementation to automatically generate all the relevant files for your model. Again, we recommend only adding the PyTorch version of the model at first. Make sure you follow the instructions of the `README.md` on the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model) carefully. **Open a Pull Request on the main huggingface/transformers repo** Before starting to adapt the automatically generated code, now is the time to open a "Work in progress (WIP)" pull request, *e.g.*, "\[WIP\] Add *[camelcase name of model]*", in 🤗 Transformers so that you and the Hugging Face team can work side-by-side on integrating the model into 🤗 Transformers. You should do the following: 1. Create a branch with a descriptive name from your main branch ```bash git checkout -b add_[lowercase name of model] ``` 2. Commit the automatically generated code: ```bash git add . git commit ``` 3. Fetch and rebase to current main ```bash git fetch upstream git rebase upstream/main ``` 4. Push the changes to your account using: ```bash git push -u origin a-descriptive-name-for-my-changes ``` 5. Once you are satisfied, go to the webpage of your fork on GitHub. Click on "Pull request". Make sure to add the GitHub handle of [name of mentor] as a reviewer, so that the Hugging Face team gets notified for future changes. 6. Change the PR into a draft by clicking on "Convert to draft" on the right of the GitHub pull request web page. In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so that it shows in the pull request. Additionally, you should make sure to update your work with the current main from time to time by doing: git fetch upstream git merge upstream/main In general, all questions you might have regarding the model or your implementation should be asked in your PR and discussed/solved in the PR. This way, [name of mentor] will always be notified when you are committing new code or if you have a question. It is often very helpful to point [name of mentor] to your added code so that the Hugging Face team can efficiently understand your problem or question. To do so, you can go to the "Files changed" tab where you see all of your changes, go to a line regarding which you want to ask a question, and click on the "+" symbol to add a comment. Whenever a question or problem has been solved, you can click on the "Resolve" button of the created comment. In the same way, [name of mentor] will open comments when reviewing your code. We recommend asking most questions on GitHub on your PR. For some very general questions that are not very useful for the public, feel free to ping [name of mentor] by Slack or email. **5. Adapt the generated models code for [camelcase name of model]** At first, we will focus only on the model itself and not care about the tokenizer. All the relevant code should be found in the generated files `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` and `src/transformers/models/[lowercase name of model]/configuration_[lowercase name of model].py`. Now you can finally start coding :). The generated code in `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` will either have the same architecture as BERT if it's an encoder-only model or BART if it's an encoder-decoder model. At this point, you should remind yourself what you've learned in the beginning about the theoretical aspects of the model: *How is the model different from BERT or BART?*\". Implement those changes which often means to change the *self-attention* layer, the order of the normalization layer, etc... Again, it is often useful to look at the similar architecture of already existing models in Transformers to get a better feeling of how your model should be implemented. **Note** that at this point, you don't have to be very sure that your code is fully correct or clean. Rather, it is advised to add a first *unclean*, copy-pasted version of the original code to `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` until you feel like all the necessary code is added. From our experience, it is much more efficient to quickly add a first version of the required code and improve/correct the code iteratively with the conversion script as described in the next section. The only thing that has to work at this point is that you can instantiate the 🤗 Transformers implementation of *[camelcase name of model]*, *i.e.* the following command should work: ```python from transformers import [camelcase name of model]Model, [camelcase name of model]Config model = [camelcase name of model]Model([camelcase name of model]Config()) ``` The above command will create a model according to the default parameters as defined in `[camelcase name of model]Config()` with random weights, thus making sure that the `init()` methods of all components works. [TODO FILL: Here the mentor should add very specific information on what exactly has to be changed for this model] [...] [...] **6. Write a conversion script** Next, you should write a conversion script that lets you convert the checkpoint you used to debug *[camelcase name of model]* in the original repository to a checkpoint compatible with your just created 🤗 Transformers implementation of *[camelcase name of model]*. It is not advised to write the conversion script from scratch, but rather to look through already existing conversion scripts in 🤗 Transformers for one that has been used to convert a similar model that was written in the same framework as *[camelcase name of model]*. Usually, it is enough to copy an already existing conversion script and slightly adapt it for your use case. Don't hesitate to ask [name of mentor] to point you to a similar already existing conversion script for your model. - If you are porting a model from TensorFlow to PyTorch, a good starting point might be BERT's conversion script [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91) - If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py) In the following, we'll quickly explain how PyTorch models store layer weights and define layer names. In PyTorch, the name of a layer is defined by the name of the class attribute you give the layer. Let's define a dummy model in PyTorch, called `SimpleModel` as follows: ```python from torch import nn class SimpleModel(nn.Module): def __init__(self): super().__init__() self.dense = nn.Linear(10, 10) self.intermediate = nn.Linear(10, 10) self.layer_norm = nn.LayerNorm(10) ``` Now we can create an instance of this model definition which will fill all weights: `dense`, `intermediate`, `layer_norm` with random weights. We can print the model to see its architecture ```python model = SimpleModel() print(model) ``` This will print out the following: ```bash SimpleModel( (dense): Linear(in_features=10, out_features=10, bias=True) (intermediate): Linear(in_features=10, out_features=10, bias=True) (layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True) ) ``` We can see that the layer names are defined by the name of the class attribute in PyTorch. You can print out the weight values of a specific layer: ```python print(model.dense.weight.data) ``` to see that the weights were randomly initialized ```bash tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212, -0.2077, 0.2157], [ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190, 0.2166, -0.0212], [-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950, -0.1023, -0.0447], [-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415, -0.1876, -0.2467], [ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465, 0.2577, 0.0402], [ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604, 0.2132, 0.1680], [ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090, 0.2707, -0.2509], [-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407, 0.1829, -0.1568], [-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923, 0.0333, -0.0536], [-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739, 0.2220, 0.2358]]). ``` In the conversion script, you should fill those randomly initialized weights with the exact weights of the corresponding layer in the checkpoint. *E.g.*, ```python # retrieve matching layer weights, e.g. by # recursive algorithm layer_name = "dense" pretrained_weight = array_of_dense_layer model_pointer = getattr(model, "dense") model_pointer.weight.data = torch.from_numpy(pretrained_weight) ``` While doing so, you must verify that each randomly initialized weight of your PyTorch model and its corresponding pretrained checkpoint weight exactly match in both **shape and name**. To do so, it is **necessary** to add assert statements for the shape and print out the names of the checkpoints weights. *E.g.*, you should add statements like: ```python assert ( model_pointer.weight.shape == pretrained_weight.shape ), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched" ``` Besides, you should also print out the names of both weights to make sure they match, *e.g.*, ```python logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}") ``` If either the shape or the name doesn't match, you probably assigned the wrong checkpoint weight to a randomly initialized layer of the 🤗 Transformers implementation. An incorrect shape is most likely due to an incorrect setting of the config parameters in `[camelcase name of model]Config()` that do not exactly match those that were used for the checkpoint you want to convert. However, it could also be that PyTorch's implementation of a layer requires the weight to be transposed beforehand. Finally, you should also check that **all** required weights are initialized and print out all checkpoint weights that were not used for initialization to make sure the model is correctly converted. It is completely normal, that the conversion trials fail with either a wrong shape statement or wrong name assignment. This is most likely because either you used incorrect parameters in `[camelcase name of model]Config()`, have a wrong architecture in the 🤗 Transformers implementation, you have a bug in the `init()` functions of one of the components of the 🤗 Transformers implementation or you need to transpose one of the checkpoint weights. This step should be iterated with the previous step until all weights of the checkpoint are correctly loaded in the Transformers model. Having correctly loaded the checkpoint into the 🤗 Transformers implementation, you can then save the model under a folder of your choice `/path/to/converted/checkpoint/folder` that should then contain both a `pytorch_model.bin` file and a `config.json` file: ```python model.save_pretrained("/path/to/converted/checkpoint/folder") ``` [TODO FILL: Here the mentor should add very specific information on what exactly has to be done for the conversion of this model] [...] [...] **7. Implement the forward pass** Having managed to correctly load the pretrained weights into the 🤗 Transformers implementation, you should now make sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#34-run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward pass of the model using the original repository. Now you should write an analogous script using the 🤗 Transformers implementation instead of the original one. It should look as follows: [TODO FILL: Here the model name might have to be adapted, *e.g.*, maybe [camelcase name of model]ForConditionalGeneration instead of [camelcase name of model]Model] ```python model = [camelcase name of model]Model.from_pretrained("/path/to/converted/checkpoint/folder") input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19] output = model(input_ids).last_hidden_states ``` It is very likely that the 🤗 Transformers implementation and the original model implementation don't give the exact same output the very first time or that the forward pass throws an error. Don't be disappointed - it's expected! First, you should make sure that the forward pass doesn't throw any errors. It often happens that the wrong dimensions are used leading to a `"Dimensionality mismatch"` error or that the wrong data type object is used, *e.g.*, `torch.long` instead of `torch.float32`. Don't hesitate to ask [name of mentor] for help, if you don't manage to solve certain errors. The final part to make sure the 🤗 Transformers implementation works correctly is to ensure that the outputs are equivalent to a precision of `1e-3`. First, you should ensure that the output shapes are identical, *i.e.* `outputs.shape` should yield the same value for the script of the 🤗 Transformers implementation and the original implementation. Next, you should make sure that the output values are identical as well. This one of the most difficult parts of adding a new model. Common mistakes why the outputs are not identical are: - Some layers were not added, *i.e.* an activation layer was not added, or the residual connection was forgotten - The word embedding matrix was not tied - The wrong positional embeddings are used because the original implementation uses on offset - Dropout is applied during the forward pass. To fix this make sure `model.training is False` and that no dropout layer is falsely activated during the forward pass, *i.e.* pass `self.training` to [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout) The best way to fix the problem is usually to look at the forward pass of the original implementation and the 🤗 Transformers implementation side-by-side and check if there are any differences. Ideally, you should debug/print out intermediate outputs of both implementations of the forward pass to find the exact position in the network where the 🤗 Transformers implementation shows a different output than the original implementation. First, make sure that the hard-coded `input_ids` in both scripts are identical. Next, verify that the outputs of the first transformation of the `input_ids` (usually the word embeddings) are identical. And then work your way up to the very last layer of the network. At some point, you will notice a difference between the two implementations, which should point you to the bug in the 🤗 Transformers implementation. From our experience, a simple and efficient way is to add many print statements in both the original implementation and 🤗 Transformers implementation, at the same positions in the network respectively, and to successively remove print statements showing the same values for intermediate presentions. When you're confident that both implementations yield the same output, verifying the outputs with `torch.allclose(original_output, output, atol=1e-3)`, you're done with the most difficult part! Congratulations - the work left to be done should be a cakewalk 😊. **8. Adding all necessary model tests** At this point, you have successfully added a new model. However, it is very much possible that the model does not yet fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under the same `tests/test_modeling_[lowercase name of model].py`. Run this test file to verify that all common tests pass: ```python pytest tests/test_modeling_[lowercase name of model].py ``` [TODO FILL: Here the mentor should add very specific information on what tests are likely to fail after having implemented the model , e.g. given the model, it might be very likely that `test_attention_output` fails] [...] [...] Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that - a) The community can easily understand your work by looking at specific tests of *[camelcase name of model]* - b) Future changes to your model will not break any important feature of the model. At first, integration tests should be added. Those integration tests essentially do the same as the debugging scripts you used earlier to implement the model to 🤗 Transformers. A template of those model tests is already added by the Cookiecutter, called `[camelcase name of model]ModelIntegrationTests` and only has to be filled out by you. To ensure that those tests are passing, run ```python RUN_SLOW=1 pytest -sv tests/test_modeling_[lowercase name of model].py::[camelcase name of model]ModelIntegrationTests ``` **Note:** In case you are using Windows, you should replace `RUN_SLOW=1` with `SET RUN_SLOW=1` Second, all features that are special to *[camelcase name of model]* should be tested additionally in a separate test under `[camelcase name of model]ModelTester`/`[camelcase name of model]ModelTest`. This part is often forgotten but is extremely useful in two ways: - It helps to transfer the knowledge you have acquired during the model addition to the community by showing how the special features of *[camelcase name of model]* should work. - Future contributors can quickly test changes to the model by running those special tests. [TODO FILL: Here the mentor should add very specific information on what special features of the model should be tested additionally] [...] [...] **9. Implement the tokenizer** Next, we should add the tokenizer of *[camelcase name of model]*. Usually, the tokenizer is equivalent or very similar to an already existing tokenizer of 🤗 Transformers. [TODO FILL: Here the mentor should add a comment whether a new tokenizer is required or if this is not the case which existing tokenizer closest resembles [camelcase name of model]'s tokenizer and how the tokenizer should be implemented] [...] [...] It is very important to find/extract the original tokenizer file and to manage to load this file into the 🤗 Transformers' implementation of the tokenizer. For [camelcase name of model], the tokenizer files can be found here: - [To be filled out by mentor] and having implemented the 🤗 Transformers' version of the tokenizer can be loaded as follows: [To be filled out by mentor] To ensure that the tokenizer works correctly, it is recommended to first create a script in the original repository that inputs a string and returns the `input_ids`. It could look similar to this (in pseudo-code): ```bash input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." model = [camelcase name of model]Model.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = model.tokenize(input_str) ``` You might have to take a deeper look again into the original repository to find the correct tokenizer function or you might even have to do changes to your clone of the original repository to only output the `input_ids`. Having written a functional tokenization script that uses the original repository, an analogous script for 🤗 Transformers should be created. It should look similar to this: ```python from transformers import [camelcase name of model]Tokenizer input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." tokenizer = [camelcase name of model]Tokenizer.from_pretrained("/path/to/tokenizer/folder/") input_ids = tokenizer(input_str).input_ids ``` When both `input_ids` yield the same values, as a final step a tokenizer test file should also be added. [TODO FILL: Here mentor should point the student to test files of similar tokenizers] Analogous to the modeling test files of *[camelcase name of model]*, the tokenization test files of *[camelcase name of model]* should contain a couple of hard-coded integration tests. [TODO FILL: Here mentor should again point to an existing similar test of another model that the student can copy & adapt] **10. Run End-to-end integration tests** Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the tokenizer to `tests/test_modeling_[lowercase name of model].py` in 🤗 Transformers. Such a test should show on a meaningful text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc... If none of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a final step to ensure that the model is fully functional, it is advised that you also run all tests on GPU. It can happen that you forgot to add some `.to(self.device)` statements to internal tensors of the model, which in such a test would show in an error. In case you have no access to a GPU, the Hugging Face team can take care of running those tests for you. **11. Add Docstring** Now, all the necessary functionality for *[camelcase name of model]* is added - you're almost done! The only thing left to add is a nice docstring and a doc page. The Cookiecutter should have added a template file called `docs/source/model_doc/[lowercase name of model].rst` that you should fill out. Users of your model will usually first look at this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for the community to add some *Tips* to show how the model should be used. Don't hesitate to ping [name of mentor] regarding the docstrings. Next, make sure that the docstring added to `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` is correct and included all necessary inputs and outputs. It is always to good to remind oneself that documentation should be treated at least as carefully as the code in 🤗 Transformers since the documentation is usually the first contact point of the community with the model. **Code refactor** Great, now you have added all the necessary code for *[camelcase name of model]*. At this point, you should correct some potential incorrect code style by running: ```bash make style ``` and verify that your coding style passes the quality check: ```bash make quality ``` There are a couple of other very strict design tests in 🤗 Transformers that might still be failing, which shows up in the tests of your pull request. This is often because of some missing information in the docstring or some incorrect naming. [name of mentor] will surely help you if you're stuck here. Lastly, it is always a good idea to refactor one's code after having ensured that the code works correctly. With all tests passing, now it's a good time to go over the added code again and do some refactoring. You have now finished the coding part, congratulation! 🎉 You are Awesome! 😎 **12. Upload the models to the model hub** In this final part, you should convert and upload all checkpoints to the model hub and add a model card for each uploaded model checkpoint. You should work alongside [name of mentor] here to decide on a fitting name for each checkpoint and to get the required access rights to be able to upload the model under the author's organization of *[camelcase name of model]*. It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the specific characteristics of this particular checkpoint, *e.g.*, On which dataset was the checkpoint pretrained/fine-tuned on? On what down-stream task should the model be used? And also include some code on how to correctly use the model. **13. (Optional) Add notebook** It is very helpful to add a notebook that showcases in-detail how *[camelcase name of model]* can be used for inference and/or fine-tuned on a downstream task. This is not mandatory to merge your PR, but very useful for the community. **14. Submit your finished PR** You're done programming now and can move to the last step, which is getting your PR merged into main. Usually, [name of mentor] should have helped you already at this point, but it is worth taking some time to give your finished PR a nice description and eventually add comments to your code, if you want to point out certain design choices to your reviewer. ### Share your work!! Now, it's time to get some credit from the community for your work! Having completed a model addition is a major contribution to Transformers and the whole NLP community. Your code and the ported pre-trained models will certainly be used by hundreds and possibly even thousands of developers and researchers. You should be proud of your work and share your achievement with the community. **You have made another model that is super easy to access for everyone in the community! 🤯**
transformers/templates/adding_a_new_model/ADD_NEW_MODEL_PROPOSAL_TEMPLATE.md/0
{ "file_path": "transformers/templates/adding_a_new_model/ADD_NEW_MODEL_PROPOSAL_TEMPLATE.md", "repo_id": "transformers", "token_count": 14136 }
405
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "allgather_partitions": true, "allgather_bucket_size": 2e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "contiguous_gradients": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
transformers/tests/deepspeed/ds_config_zero2.json/0
{ "file_path": "transformers/tests/deepspeed/ds_config_zero2.json", "repo_id": "transformers", "token_count": 678 }
406
{"[MASK]": 0, "[UNK]": 1, "[PAD]": 2, "DUMMY": 3, "DUMMY2": 4, "[MASK2]": 5}
transformers/tests/fixtures/test_entity_vocab.json/0
{ "file_path": "transformers/tests/fixtures/test_entity_vocab.json", "repo_id": "transformers", "token_count": 45 }
407
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import unittest from copy import deepcopy from functools import partial from parameterized import parameterized import tests.trainer.test_trainer from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa from transformers import is_torch_available from transformers.testing_utils import ( TestCasePlus, backend_device_count, execute_subprocess_async, mockenv_context, require_accelerate, require_fsdp, require_torch_accelerator, require_torch_multi_accelerator, slow, torch_device, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import FSDPOption, set_seed from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device if is_torch_available(): from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1 from transformers.trainer import FSDP_MODEL_NAME else: is_torch_greater_or_equal_than_2_1 = False # default torch.distributed port DEFAULT_MASTER_PORT = "10999" dtypes = ["fp16"] if is_torch_bf16_available_on_device(torch_device): dtypes += ["bf16"] sharding_strategies = ["full_shard", "shard_grad_op"] state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"] set_seed(42) params = list(itertools.product(sharding_strategies, dtypes)) def get_master_port(real_launcher=False): """ When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed) the issue is that once the port is tied it can't be used anywhere else outside of this process, since torch.dist doesn't free the port until the process exits. Therefore for the sake of being able to run both emulated launcher and normal launcher tests we need 2 distinct ports. This function will give the right port in the right context. For real launcher it'll give the base port, for emulated launcher it'll give the base port + 1. In both cases a string is returned. Args: `real_launcher`: whether a real launcher is going to be used, or the emulated one """ master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT) if not real_launcher: master_port_base = str(int(master_port_base) + 1) return master_port_base if is_torch_available(): from tests.trainer.test_trainer import ( # noqa RegressionModelConfig, RegressionPreTrainedModel, ) # hack to restore original logging level pre #21700 get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info") require_fsdp_version = require_fsdp if is_accelerate_available(): from accelerate.utils.constants import ( FSDP_PYTORCH_VERSION, FSDP_SHARDING_STRATEGY, ) require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION) def get_launcher(distributed=False, use_accelerate=False): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1 master_port = get_master_port(real_launcher=True) if use_accelerate: return f"""accelerate launch --num_processes {num_gpus} --main_process_port {master_port} --use_fsdp --fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP --fsdp_state_dict_type SHARDED_STATE_DICT --fsdp_transformer_layer_cls_to_wrap BertLayer""".split() return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split() def _parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) return f"{func.__name__}_{param_based_name}" @require_accelerate @require_torch_accelerator @require_fsdp_version class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon): def setUp(self): super().setUp() master_port = get_master_port(real_launcher=False) self.dist_env_1_gpu = { "MASTER_ADDR": "localhost", "MASTER_PORT": master_port, "RANK": "0", "LOCAL_RANK": "0", "WORLD_SIZE": "1", } self.fsdp_config = { "backward_prefetch": "backward_pre", "forward_prefetch": "False", "limit_all_gathers": "False", "use_orig_params": "True", "sync_module_states": "True", "activation_checkpointing": "False", "min_num_params": 1, } def tearDown(self): super().tearDown() @parameterized.expand(params, name_func=_parameterized_custom_name_func) def test_fsdp_config(self, sharding_strategy, dtype): output_dir = self.get_auto_remove_tmp_dir() kwargs = { "output_dir": output_dir, "train_len": 128, "save_steps": 5, "learning_rate": 0.1, "fsdp": f"{sharding_strategy} offload auto_wrap", "fsdp_config": self.fsdp_config, } kwargs[dtype] = True with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer(**kwargs) self.assertEqual(trainer.args.fsdp[0], sharding_strategy) self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD) self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP) for k, v in trainer.args.fsdp_config.items(): self.assertEqual(v, self.fsdp_config[k]) self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true") @parameterized.expand(params, name_func=_parameterized_custom_name_func) def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype): output_dir = self.get_auto_remove_tmp_dir() fsdp_config = deepcopy(self.fsdp_config) del fsdp_config["min_num_params"] fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer" kwargs = { "output_dir": output_dir, "train_len": 128, "save_steps": 5, "learning_rate": 0.1, "fsdp": f"{sharding_strategy} offload auto_wrap", "fsdp_config": fsdp_config, } kwargs[dtype] = True prefix = "FSDP_" with mockenv_context(**self.dist_env_1_gpu): trainer = get_regression_trainer(**kwargs) self.assertEqual(trainer.args.fsdp[0], sharding_strategy) self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD) self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP) fsdp_sharding_strategy = ( str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1) if is_accelerate_available("0.26.0") else sharding_strategy.upper() ) self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy) self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true") self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP") self.assertEqual( os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"]) ) self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper()) self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"]) self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"]) self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"]) self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true") @parameterized.expand(params, name_func=_parameterized_custom_name_func) @require_torch_multi_accelerator @slow def test_basic_run(self, sharding_strategy, dtype): launcher = get_launcher(distributed=True, use_accelerate=False) output_dir = self.get_auto_remove_tmp_dir() args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"] fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"] script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] cmd = launcher + script + args + fsdp_args execute_subprocess_async(cmd, env=self.get_env()) @parameterized.expand(dtypes) @require_torch_multi_accelerator @slow @unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.") def test_basic_run_with_cpu_offload(self, dtype): launcher = get_launcher(distributed=True, use_accelerate=False) output_dir = self.get_auto_remove_tmp_dir() args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"] fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"] script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] cmd = launcher + script + args + fsdp_args execute_subprocess_async(cmd, env=self.get_env()) @parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func) @require_torch_multi_accelerator @slow def test_training_and_can_resume_normally(self, state_dict_type): output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) sharding_strategy = "full_shard" use_accelerate = state_dict_type == "SHARDED_STATE_DICT" launcher = get_launcher(True, use_accelerate=use_accelerate) args = self.get_base_args(output_dir, 2, 25).split() script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"] logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir) # resume from ckpt checkpoint = os.path.join(output_dir, "checkpoint-115") resume_args = args + f"--resume_from_checkpoint {checkpoint}".split() is_fsdp_ckpt = os.path.isdir(checkpoint) and ( # this checks the FSDP state dict when `SHARDED_STATE_DICT` is used any( FSDP_MODEL_NAME in folder_name for folder_name in os.listdir(checkpoint) if os.path.isdir(os.path.join(checkpoint, folder_name)) ) # this checks the FSDP state dict when `FULL_STATE_DICT` is used or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin")) ) self.assertTrue(is_fsdp_ckpt) logs_resume = self.run_cmd_and_get_logs( use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir ) for log, log1 in zip(logs, logs_resume): if "learning_rate" in log: self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5) def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir): if not use_accelerate: fsdp_args = [ "--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer", ] cmd = launcher + script + args + fsdp_args else: fsdp_config = f""" --fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1} """.split() cmd = launcher + fsdp_config + script + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history return logs def get_base_args(self, output_dir, num_epochs, logging_steps): return f""" --model_name_or_path google-bert/bert-base-cased --task_name mrpc --output_dir {output_dir} --overwrite_output_dir --do_train --max_seq_length 128 --per_device_train_batch_size 16 --learning_rate 5e-5 --num_train_epochs {num_epochs} --lr_scheduler_type cosine --logging_steps {logging_steps} --save_strategy epoch --do_eval --evaluation_strategy epoch --report_to none """
transformers/tests/fsdp/test_fsdp.py/0
{ "file_path": "transformers/tests/fsdp/test_fsdp.py", "repo_id": "transformers", "token_count": 5958 }
408
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class AlbertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=16, hidden_size=36, num_hidden_layers=2, # this needs to be the same as `num_hidden_layers`! num_hidden_groups=2, num_attention_heads=6, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_hidden_groups = num_hidden_groups self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, sentence_order_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = AlbertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = AlbertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = AlbertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class AlbertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["sentence_order_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = AlbertModelTester(self) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = AlbertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class AlbertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = AlbertModel.from_pretrained("albert/albert-base-v2") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/albert/test_modeling_albert.py/0
{ "file_path": "transformers/tests/models/albert/test_modeling_albert.py", "repo_id": "transformers", "token_count": 6345 }
409
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import sys import tempfile import unittest from collections import OrderedDict from pathlib import Path import pytest import transformers from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available from transformers.models.auto.configuration_auto import CONFIG_MAPPING from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_torch, slow, ) from ..bert.test_modeling_bert import BertModelTester sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 if is_torch_available(): import torch from test_module.custom_modeling import CustomModel from transformers import ( AutoBackbone, AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTableQuestionAnswering, AutoModelForTokenClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertModel, FunnelBaseModel, FunnelModel, GPT2Config, GPT2LMHeadModel, ResNetBackbone, RobertaForMaskedLM, T5Config, T5ForConditionalGeneration, TapasConfig, TapasForQuestionAnswering, TimmBackbone, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_MAPPING, ) from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST @require_torch class AutoModelTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 @slow def test_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModel.from_pretrained(model_name) model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) self.assertEqual(len(loading_info["missing_keys"]), 0) # When using PyTorch checkpoint, the expected value is `8`. With `safetensors` checkpoint (if it is # installed), the expected value becomes `7`. EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8 self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS) self.assertEqual(len(loading_info["mismatched_keys"]), 0) self.assertEqual(len(loading_info["error_msgs"]), 0) @slow def test_model_for_pretraining_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForPreTraining.from_pretrained(model_name) model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) # Only one value should not be initialized and in the missing keys. for key, value in loading_info.items(): self.assertEqual(len(value), 0) @slow def test_lmhead_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelWithLMHead.from_pretrained(model_name) model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_causal_lm(self): for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = AutoModelForCausalLM.from_pretrained(model_name) model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, GPT2LMHeadModel) @slow def test_model_for_masked_lm(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForMaskedLM.from_pretrained(model_name) model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, T5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForSequenceClassification.from_pretrained(model_name) model, loading_info = AutoModelForSequenceClassification.from_pretrained( model_name, output_loading_info=True ) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForQuestionAnswering.from_pretrained(model_name) model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) @slow def test_table_question_answering_model_from_pretrained(self): for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, TapasConfig) model = AutoModelForTableQuestionAnswering.from_pretrained(model_name) model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained( model_name, output_loading_info=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TapasForQuestionAnswering) @slow def test_token_classification_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForTokenClassification.from_pretrained(model_name) model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForTokenClassification) @slow def test_auto_backbone_timm_model_from_pretrained(self): # Configs can't be loaded for timm models model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True) with pytest.raises(ValueError): # We can't pass output_loading_info=True as we're loading from timm AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TimmBackbone) # Check kwargs are correctly passed to the backbone model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_indices=(-2, -1)) self.assertEqual(model.out_indices, (-2, -1)) # Check out_features cannot be passed to Timm backbones with self.assertRaises(ValueError): _ = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_features=["stage1"]) @slow def test_auto_backbone_from_pretrained(self): model = AutoBackbone.from_pretrained("microsoft/resnet-18") model, loading_info = AutoBackbone.from_pretrained("microsoft/resnet-18", output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, ResNetBackbone) # Check kwargs are correctly passed to the backbone model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_indices=[-2, -1]) self.assertEqual(model.out_indices, [-2, -1]) self.assertEqual(model.out_features, ["stage3", "stage4"]) model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_features=["stage2", "stage4"]) self.assertEqual(model.out_indices, [2, 4]) self.assertEqual(model.out_features, ["stage2", "stage4"]) def test_from_pretrained_identifier(self): model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_pretrained_with_tuple_values(self): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel model = AutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(model, FunnelModel) config = copy.deepcopy(model.config) config.architectures = ["FunnelBaseModel"] model = AutoModel.from_config(config) self.assertIsInstance(model, FunnelBaseModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model = AutoModel.from_pretrained(tmp_dir) self.assertIsInstance(model, FunnelBaseModel) def test_from_pretrained_dynamic_model_local(self): try: AutoConfig.register("custom", CustomConfig) AutoModel.register(CustomConfig, CustomModel) config = CustomConfig(hidden_size=32) model = CustomModel(config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) for p1, p2 in zip(model.parameters(), new_model.parameters()): self.assertTrue(torch.equal(p1, p2)) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in MODEL_MAPPING._extra_content: del MODEL_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_model_distant(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) # This one uses a relative import to a util file, this checks it is downloaded and used properly. model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_from_pretrained_dynamic_model_distant_with_ref(self): model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) # This one uses a relative import to a util file, this checks it is downloaded and used properly. model = AutoModel.from_pretrained( "hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True ) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_from_pretrained_dynamic_model_with_period(self): # We used to have issues where repos with "." in the name would cause issues because the Python # import machinery would treat that as a directory separator, so we test that case # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=False) model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test that it works with a custom cache dir too with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModel.from_pretrained( "hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True, cache_dir=tmp_dir ) self.assertEqual(model.__class__.__name__, "NewModel") def test_new_model_registration(self): AutoConfig.register("custom", CustomConfig) auto_classes = [ AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoModelForTokenClassification, ] try: for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, CustomModel) auto_class.register(CustomConfig, CustomModel) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, BertModel) # Now that the config is registered, it can be used as any other config with the auto-API tiny_config = BertModelTester(self).get_config() config = CustomConfig(**tiny_config.to_dict()) model = auto_class.from_config(config) self.assertIsInstance(model, CustomModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) new_model = auto_class.from_pretrained(tmp_dir) # The model is a CustomModel but from the new dynamically imported class. self.assertIsInstance(new_model, CustomModel) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] for mapping in ( MODEL_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, ): if CustomConfig in mapping._extra_content: del mapping._extra_content[CustomConfig] def test_from_pretrained_dynamic_model_conflict(self): class NewModelConfigLocal(BertConfig): model_type = "new-model" class NewModel(BertModel): config_class = NewModelConfigLocal try: AutoConfig.register("new-model", NewModelConfigLocal) AutoModel.register(NewModelConfigLocal, NewModel) # If remote code is not set, the default is to use local model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model") self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal") # If remote code is disabled, we load the local one. model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal") # If remote is enabled, we load from the Hub model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(model.config.__class__.__name__, "NewModelConfig") finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] if NewModelConfigLocal in MODEL_MAPPING._extra_content: del MODEL_MAPPING._extra_content[NewModelConfigLocal] def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoModel.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_model_file_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model") def test_model_from_tf_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"): _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") def test_model_from_flax_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"): _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") def test_cached_model_has_minimum_calls_to_head(self): # Make sure we have cached the model. _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) # With a sharded checkpoint _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") with RequestCounter() as counter: _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) def test_attr_not_existing(self): from transformers.models.auto.auto_factory import _LazyAutoMapping _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")]) _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"): _MODEL_MAPPING[BertConfig] _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel) _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)
transformers/tests/models/auto/test_modeling_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_modeling_auto.py", "repo_id": "transformers", "token_count": 10655 }
410
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class BlipProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = BlipImageProcessor() tokenizer = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") processor = BlipProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = BlipProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, BlipImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
transformers/tests/models/blip/test_processor_blip.py/0
{ "file_path": "transformers/tests/models/blip/test_processor_blip.py", "repo_id": "transformers", "token_count": 2140 }
411
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): import torch from transformers import CamembertModel @require_torch @require_sentencepiece @require_tokenizers class CamembertModelIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = CamembertModel.from_pretrained("almanach/camembert-base") model.to(torch_device) input_ids = torch.tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]], device=torch_device, dtype=torch.long, ) # J'aime le camembert ! with torch.no_grad(): output = model(input_ids)["last_hidden_state"] expected_shape = torch.Size((1, 10, 768)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]], device=torch_device, dtype=torch.float, ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/camembert/test_modeling_camembert.py/0
{ "file_path": "transformers/tests/models/camembert/test_modeling_camembert.py", "repo_id": "transformers", "token_count": 818 }
412
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CLIP model. """ import inspect import os import tempfile import unittest import numpy as np import requests import transformers from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig from transformers.testing_utils import ( is_flax_available, is_pt_flax_cross_test, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( CLIPForImageClassification, CLIPModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) from transformers.models.clip.modeling_clip import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import CLIPProcessor if is_flax_available(): import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) class CLIPVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return CLIPVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = CLIPVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_projection(self, config, pixel_values): model = CLIPVisionModelWithProjection(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = CLIPVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="CLIP does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_projection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_projection(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow def test_model_with_projection_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPVisionModelWithProjection.from_pretrained(model_name) self.assertIsNotNone(model) self.assertTrue(hasattr(model, "visual_projection")) class CLIPTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return CLIPTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask): model = CLIPTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_projection(self, config, input_ids, input_mask): model = CLIPTextModelWithProjection(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class CLIPTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else () fx_compatible = True test_pruning = False test_head_masking = False model_split_percents = [0.5, 0.8, 0.9] def setUp(self): self.model_tester = CLIPTextModelTester(self) self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_projection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_projection(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="CLIP does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPTextModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow def test_model_with_projection_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPTextModelWithProjection.from_pretrained(model_name) self.assertIsNotNone(model) self.assertTrue(hasattr(model, "text_projection")) class CLIPModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs) self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs) self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return CLIPConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = CLIPModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class CLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CLIPModel,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": CLIPModel, "image-feature-extraction": CLIPVisionModel} if is_torch_available() else {} ) fx_compatible = True test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = CLIPModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="CLIPModel does not have input/output embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for CLIP def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save CLIPConfig and check if we can load CLIPVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save CLIPConfig and check if we can load CLIPTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = CLIPTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # load PyTorch class pt_model = model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): return fx_model_class = getattr(transformers, fx_model_class_name) # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() # convert inputs to Flax fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} fx_outputs = fx_model(**fx_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # load corresponding PyTorch class pt_model = model_class(config).eval() # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False fx_model_class_name = "Flax" + model_class.__name__ if not hasattr(transformers, fx_model_class_name): # no flax model exists for this class return fx_model_class = getattr(transformers, fx_model_class_name) # load Flax class fx_model = fx_model_class(config, dtype=jnp.float32) # make sure only flax inputs are forward that actually exist in function args fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) # make sure weights are tied in PyTorch pt_model.tie_weights() # prepare inputs pt_inputs = self._prepare_for_class(inputs_dict, model_class) # remove function args that don't exist in Flax pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} fx_outputs = fx_model(**fx_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPModel.from_pretrained(model_name) self.assertIsNotNone(model) class CLIPForImageClassificationModelTester(CLIPModelTester): def __init__(self, parent): super().__init__(parent) self.batch_size = self.vision_model_tester.batch_size self.num_hidden_layers = self.vision_model_tester.num_hidden_layers self.hidden_size = self.vision_model_tester.hidden_size self.seq_length = self.vision_model_tester.seq_length def prepare_config_and_inputs(self): _, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CLIPForImageClassificationModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CLIPForImageClassification,) if is_torch_available() else () pipeline_model_mapping = {"image-classification": CLIPForImageClassification} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = CLIPForImageClassificationModelTester(self) @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds") def test_model_common_attributes(self): pass @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet") def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet") def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet") def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="CLIP uses the same initialization scheme as the Flax original implementation") def test_initialization(self): pass # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class CLIPModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "openai/clip-vit-base-patch32" model = CLIPModel.from_pretrained(model_name).to(torch_device) processor = CLIPProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt" ).to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device) self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
transformers/tests/models/clip/test_modeling_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_modeling_clip.py", "repo_id": "transformers", "token_count": 14916 }
413
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import unittest from transformers import CodeGenConfig, is_torch_available from transformers.file_utils import cached_property from transformers.testing_utils import backend_manual_seed, is_flaky, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, AutoTokenizer, CodeGenForCausalLM, CodeGenModel class CodeGenModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=256, hidden_size=32, rotary_dim=4, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.rotary_dim = rotary_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def get_large_model_config(self): return CodeGenConfig.from_pretrained("Salesforce/codegen-2B-mono") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config(self): return CodeGenConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_codegen_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_codegen_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_codegen_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_codegen_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = CodeGenForCausalLM(config) if gradient_checkpointing: model.gradient_checkpointing_enable() model.to(torch_device) result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict @require_torch class CodeGenModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CodeGenModel, CodeGenForCausalLM) if is_torch_available() else () all_generative_model_classes = (CodeGenForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": CodeGenModel, "text-generation": CodeGenForCausalLM} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_missing_keys = False test_model_parallel = False test_head_masking = False # special case for DoubleHeads model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) return inputs_dict def setUp(self): self.model_tester = CodeGenModelTester(self) self.config_tester = ConfigTester(self, config_class=CodeGenConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_codegen_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model(*config_and_inputs) def test_codegen_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_past(*config_and_inputs) def test_codegen_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_attention_mask_past(*config_and_inputs) def test_codegen_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_past_large_inputs(*config_and_inputs) def test_codegen_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_codegen_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) @slow def test_batch_generation(self): tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") model.to(torch_device) tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = ["def hellow_world():", "def greet(name):"] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) token_type_ids = torch.cat( [ input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0), input_ids.new_full((input_ids.shape[0], 1), 500), ], dim=-1, ) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) outputs_tt = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), token_type_ids=token_type_ids, ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ 'def hellow_world():\n print("Hello World")\n\nhellow_world()', 'def greet(name):\n print(f"Hello {name}")\n\ng', ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): for model_name in CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CodeGenModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class CodeGenModelLanguageGenerationTest(unittest.TestCase): @cached_property def cached_tokenizer(self): return AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") @cached_property def cached_model(self): return CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") @slow def test_lm_generate_codegen(self): tokenizer = self.cached_tokenizer for checkpointing in [True, False]: model = self.cached_model if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(torch_device) inputs = tokenizer("def hello_world():", return_tensors="pt").to(torch_device) expected_output = 'def hello_world():\n print("Hello World")\n\nhello_world()\n\n' output_ids = model.generate(**inputs, do_sample=False) output_str = tokenizer.batch_decode(output_ids)[0] self.assertEqual(output_str, expected_output) @slow def test_codegen_sample(self): tokenizer = self.cached_tokenizer model = self.cached_model model.to(torch_device) torch.manual_seed(0) backend_manual_seed(torch_device, 0) tokenized = tokenizer("def hello_world():", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) output_ids = model.generate(input_ids, do_sample=True) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) token_type_ids = tokenized.token_type_ids.to(torch_device) output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5) output_seq_tt = model.generate( input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5 ) output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True) output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True) if torch_device == "cuda": EXPECTED_OUTPUT_STR = 'def hello_world():\n print("Hello World")\n return True\n\nresult =' else: EXPECTED_OUTPUT_STR = "def hello_world():\r\n print('Hello, World.')\r\n\r\n\r" self.assertEqual(output_str, EXPECTED_OUTPUT_STR) self.assertTrue( all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs))) ) # token_type_ids should change output @is_flaky(max_attempts=3, description="measure of timing is somehow flaky.") @slow def test_codegen_sample_max_time(self): tokenizer = self.cached_tokenizer model = self.cached_model model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) MAX_TIME = 0.05 start = datetime.datetime.now() model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=None, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=2 * MAX_TIME))
transformers/tests/models/codegen/test_modeling_codegen.py/0
{ "file_path": "transformers/tests/models/codegen/test_modeling_codegen.py", "repo_id": "transformers", "token_count": 10622 }
414
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ConvNextV2 model. """ import unittest from transformers import ConvNextV2Config from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model from transformers.models.convnextv2.modeling_convnextv2 import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class ConvNextV2ModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_labels = num_labels self.initializer_range = initializer_range self.out_features = out_features self.out_indices = out_indices self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextV2Config( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = ConvNextV2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = ConvNextV2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = ConvNextV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = ConvNextV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_with_labels(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class ConvNextV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNextV2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ConvNextV2Model, ConvNextV2ForImageClassification, ConvNextV2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": ConvNextV2Model, "image-classification": ConvNextV2ForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = ConvNextV2ModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvNextV2Config, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() config.return_dict = True if model_class.__name__ in [ *get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() config.use_cache = False config.return_dict = True if ( model_class.__name__ in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ConvNextV2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ConvNextV2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(torch_device) preprocessor = self.default_image_processor image = prepare_img() inputs = preprocessor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.9996, 0.1966, -0.4386]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/convnextv2/test_modeling_convnextv2.py/0
{ "file_path": "transformers/tests/models/convnextv2/test_modeling_convnextv2.py", "repo_id": "transformers", "token_count": 5523 }
415
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecAudio model. """ import unittest from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from transformers import Data2VecTextConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, ) from transformers.models.data2vec.modeling_data2vec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecTextForTextEmbeddings, create_position_ids_from_input_ids, ) class Data2VecTextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return Data2VecTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = Data2VecTextModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = Data2VecTextForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = Data2VecTextForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = Data2VecTextForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = Data2VecTextForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class Data2VecTextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextModel, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (Data2VecTextForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": Data2VecTextModel, "fill-mask": Data2VecTextForMaskedLM, "question-answering": Data2VecTextForQuestionAnswering, "text-classification": Data2VecTextForSequenceClassification, "text-generation": Data2VecTextForCausalLM, "token-classification": Data2VecTextForTokenClassification, "zero-shot": Data2VecTextForSequenceClassification, } if is_torch_available() else {} ) model_split_percents = [0.5, 0.9] def setUp(self): self.model_tester = Data2VecTextModelTester(self) self.config_tester = ConfigTester(self, config_class=Data2VecTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Data2VecTextModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is Data2VecTextForTextEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = Data2VecTextForTextEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is Data2VecTextForTextEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = Data2VecTextForTextEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class Data2VecTextModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = Data2VecTextForMaskedLM.from_pretrained("facebook/data2vec-text-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor([[[0.2328, 0.0000, 1.1710], [2.2525, 0.0000, 1.9937], [2.1280, 0.0000, 1.8691]]]) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = Data2VecTextModel.from_pretrained("facebook/data2vec-text-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[0.1998, -0.0379, 0.0024], [-0.0971, -0.2214, -0.1798], [-0.0789, -0.2400, -0.1898]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/data2vec/test_modeling_data2vec_text.py/0
{ "file_path": "transformers/tests/models/data2vec/test_modeling_data2vec_text.py", "repo_id": "transformers", "token_count": 10072 }
416
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.file_utils import is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import DPTImageProcessor class DPTImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class DPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = DPTImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = DPTImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "size_divisor")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_padding(self): image_processing = self.image_processing_class(**self.image_processor_dict) image = np.random.randn(3, 249, 491) # test individual method image = image_processing.pad_image(image, size_divisor=4) self.assertTrue(image.shape[1] % 4 == 0) self.assertTrue(image.shape[2] % 4 == 0) # test by calling pixel_values = image_processing.preprocess( image, do_rescale=False, do_resize=False, do_pad=True, size_divisor=4, return_tensors="pt" ).pixel_values self.assertTrue(pixel_values.shape[2] % 4 == 0) self.assertTrue(pixel_values.shape[3] % 4 == 0) def test_keep_aspect_ratio(self): size = {"height": 512, "width": 512} image_processor = DPTImageProcessor(size=size, keep_aspect_ratio=True, ensure_multiple_of=32) image = np.zeros((489, 640, 3)) pixel_values = image_processor(image, return_tensors="pt").pixel_values self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
transformers/tests/models/dpt/test_image_processing_dpt.py/0
{ "file_path": "transformers/tests/models/dpt/test_image_processing_dpt.py", "repo_id": "transformers", "token_count": 2095 }
417
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from typing import List from transformers.models.esm.tokenization_esm import VOCAB_FILES_NAMES, EsmTokenizer from transformers.testing_utils import require_tokenizers from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase @require_tokenizers class ESMTokenizationTest(unittest.TestCase): tokenizer_class = EsmTokenizer def setUp(self): super().setUp() self.tmpdirname = tempfile.mkdtemp() vocab_tokens: List[str] = ["<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>"] # fmt: skip self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]: return [self.get_tokenizer(**kwargs)] def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def test_tokenizer_single_example(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("LAGVS") self.assertListEqual(tokens, ["L", "A", "G", "V", "S"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [4, 5, 6, 7, 8]) def test_tokenizer_encode_single(self): tokenizer = self.tokenizer_class(self.vocab_file) seq = "LAGVS" self.assertListEqual(tokenizer.encode(seq), [0, 4, 5, 6, 7, 8, 2]) def test_tokenizer_call_no_pad(self): tokenizer = self.tokenizer_class(self.vocab_file) seq_batch = ["LAGVS", "WCB"] tokens_batch = tokenizer(seq_batch, padding=False)["input_ids"] self.assertListEqual(tokens_batch, [[0, 4, 5, 6, 7, 8, 2], [0, 22, 23, 25, 2]]) def test_tokenizer_call_pad(self): tokenizer = self.tokenizer_class(self.vocab_file) seq_batch = ["LAGVS", "WCB"] tokens_batch = tokenizer(seq_batch, padding=True)["input_ids"] self.assertListEqual(tokens_batch, [[0, 4, 5, 6, 7, 8, 2], [0, 22, 23, 25, 2, 1, 1]]) def test_tokenize_special_tokens(self): """Test `tokenize` with special tokens.""" tokenizers = self.get_tokenizers(fast=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = "<unk>" SPECIAL_TOKEN_2 = "<mask>" token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) def test_add_tokens(self): tokenizer = self.tokenizer_class(self.vocab_file) vocab_size = len(tokenizer) self.assertEqual(tokenizer.add_tokens(""), 0) self.assertEqual(tokenizer.add_tokens("testoken"), 1) self.assertEqual(tokenizer.add_tokens(["testoken1", "testtoken2"]), 2) self.assertEqual(len(tokenizer), vocab_size + 3) self.assertEqual(tokenizer.add_special_tokens({}), 0) self.assertEqual(tokenizer.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) self.assertRaises(AssertionError, tokenizer.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}) self.assertEqual(tokenizer.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1) self.assertEqual( tokenizer.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2 ) self.assertIn("<testtoken3>", tokenizer.special_tokens_map["additional_special_tokens"]) self.assertIsInstance(tokenizer.special_tokens_map["additional_special_tokens"], list) self.assertGreaterEqual(len(tokenizer.special_tokens_map["additional_special_tokens"]), 2) self.assertEqual(len(tokenizer), vocab_size + 8)
transformers/tests/models/esm/test_tokenization_esm.py/0
{ "file_path": "transformers/tests/models/esm/test_tokenization_esm.py", "repo_id": "transformers", "token_count": 2117 }
418
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class TFLayoutLMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t bbox = tf.convert_to_tensor(bbox) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMModel(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForMaskedLM(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForSequenceClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForTokenClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForQuestionAnswering(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFLayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFLayoutLMModel.from_pretrained(model_name) self.assertIsNotNone(model) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231 attention_mask = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231 bbox = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231 token_type_ids = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]]) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class TFLayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = (2,) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = (2, 2) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the shape of the logits logits = outputs.logits expected_shape = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_question_answering(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the shape of the logits expected_shape = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, expected_shape) self.assertEqual(outputs.end_logits.shape, expected_shape)
transformers/tests/models/layoutlm/test_modeling_tf_layoutlm.py/0
{ "file_path": "transformers/tests/models/layoutlm/test_modeling_tf_layoutlm.py", "repo_id": "transformers", "token_count": 7442 }
419
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD from transformers.models.llava_next.image_processing_llava_next import select_best_resolution from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LlavaNextImageProcessor class LlavaNextImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD, do_convert_rgb=True, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.expected_output_image_shape def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class LlavaNextImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = LlavaNextImageProcessor if is_vision_available() else None # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->LlavaNext def setUp(self): self.image_processor_tester = LlavaNextImageProcessingTester(self) @property # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) self.assertTrue(hasattr(image_processing, "image_grid_pinpoints")) # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.test_image_processor_from_dict_with_kwargs def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) def test_select_best_resolution(self): possible_resolutions = [[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]] # Test with a square aspect ratio best_resolution = select_best_resolution((336, 336), possible_resolutions) self.assertEqual(best_resolution, (672, 336)) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 1445, 3, 18, 18) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) @unittest.skip("LlavaNextImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass
transformers/tests/models/llava_next/test_image_processor_llava_next.py/0
{ "file_path": "transformers/tests/models/llava_next/test_image_processor_llava_next.py", "repo_id": "transformers", "token_count": 3488 }
420
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import Mask2FormerImageProcessor from transformers.models.mask2former.image_processing_mask2former import binary_mask_to_rle from transformers.models.mask2former.modeling_mask2former import Mask2FormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image class Mask2FormerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, size=None, do_resize=True, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], num_labels=10, do_reduce_labels=True, ignore_index=255, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.size_divisor = 0 # for the post_process_functions self.batch_size = 2 self.num_queries = 3 self.num_classes = 2 self.height = 3 self.width = 4 self.num_labels = num_labels self.do_reduce_labels = do_reduce_labels self.ignore_index = ignore_index def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "size_divisor": self.size_divisor, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to Mask2FormerImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def get_fake_mask2former_outputs(self): return Mask2FormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)), ) def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class Mask2FormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Mask2FormerImageProcessor if (is_vision_available() and is_torch_available()) else None def setUp(self): self.image_processor_tester = Mask2FormerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "ignore_index")) self.assertTrue(hasattr(image_processing, "num_labels")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 32, "longest_edge": 1333}) self.assertEqual(image_processor.size_divisor, 0) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, size_divisibility=8 ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.size_divisor, 8) def comm_get_image_processing_inputs( self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np" ): image_processing = self.image_processing_class(**self.image_processor_dict) # prepare image and target num_labels = self.image_processor_tester.num_labels annotations = None instance_id_to_semantic_id = None image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) if with_segmentation_maps: high = num_labels if is_instance_map: labels_expanded = list(range(num_labels)) * 2 instance_id_to_semantic_id = dict(enumerate(labels_expanded)) annotations = [ np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs ] if segmentation_type == "pil": annotations = [Image.fromarray(annotation) for annotation in annotations] inputs = image_processing( image_inputs, annotations, return_tensors="pt", instance_id_to_semantic_id=instance_id_to_semantic_id, pad_and_return_pixel_mask=True, ) return inputs def test_with_size_divisor(self): size_divisors = [8, 16, 32] weird_input_sizes = [(407, 802), (582, 1094)] for size_divisor in size_divisors: image_processor_dict = {**self.image_processor_dict, **{"size_divisor": size_divisor}} image_processing = self.image_processing_class(**image_processor_dict) for weird_input_size in weird_input_sizes: inputs = image_processing([np.ones((3, *weird_input_size))], return_tensors="pt") pixel_values = inputs["pixel_values"] # check if divisible self.assertTrue((pixel_values.shape[-1] % size_divisor) == 0) self.assertTrue((pixel_values.shape[-2] % size_divisor) == 0) def test_call_with_segmentation_maps(self): def common(is_instance_map=False, segmentation_type=None): inputs = self.comm_get_image_processing_inputs( with_segmentation_maps=True, is_instance_map=is_instance_map, segmentation_type=segmentation_type ) mask_labels = inputs["mask_labels"] class_labels = inputs["class_labels"] pixel_values = inputs["pixel_values"] # check the batch_size for mask_label, class_label in zip(mask_labels, class_labels): self.assertEqual(mask_label.shape[0], class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:]) common() common(is_instance_map=True) common(is_instance_map=False, segmentation_type="pil") common(is_instance_map=True, segmentation_type="pil") def test_integration_instance_segmentation(self): # load 2 images and corresponding annotations from the hub repo_id = "nielsr/image-segmentation-toy-data" image1 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_image_1.png", repo_type="dataset") ) image2 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_image_2.png", repo_type="dataset") ) annotation1 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_annotation_1.png", repo_type="dataset") ) annotation2 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_annotation_2.png", repo_type="dataset") ) # get instance segmentations and instance-to-segmentation mappings def get_instance_segmentation_and_mapping(annotation): instance_seg = np.array(annotation)[:, :, 1] class_id_map = np.array(annotation)[:, :, 0] class_labels = np.unique(class_id_map) # create mapping between instance IDs and semantic category IDs inst2class = {} for label in class_labels: instance_ids = np.unique(instance_seg[class_id_map == label]) inst2class.update({i: label for i in instance_ids}) return instance_seg, inst2class instance_seg1, inst2class1 = get_instance_segmentation_and_mapping(annotation1) instance_seg2, inst2class2 = get_instance_segmentation_and_mapping(annotation2) # create a image processor image_processing = Mask2FormerImageProcessor(reduce_labels=True, ignore_index=255, size=(512, 512)) # prepare the images and annotations inputs = image_processing( [image1, image2], [instance_seg1, instance_seg2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 512)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 512)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor([30, 55]))) self.assertTrue(torch.allclose(inputs["class_labels"][1], torch.tensor([4, 4, 23, 55]))) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (2, 512, 512)) self.assertEqual(inputs["mask_labels"][1].shape, (4, 512, 512)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 41527.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 26259.0) def test_integration_semantic_segmentation(self): # load 2 images and corresponding semantic annotations from the hub repo_id = "nielsr/image-segmentation-toy-data" image1 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_image_1.png", repo_type="dataset") ) image2 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_image_2.png", repo_type="dataset") ) annotation1 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_annotation_1.png", repo_type="dataset") ) annotation2 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_annotation_2.png", repo_type="dataset") ) # create a image processor image_processing = Mask2FormerImageProcessor(reduce_labels=True, ignore_index=255, size=(512, 512)) # prepare the images and annotations inputs = image_processing( [image1, image2], [annotation1, annotation2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 512)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 512)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor([2, 4, 60]))) self.assertTrue(torch.allclose(inputs["class_labels"][1], torch.tensor([0, 3, 7, 8, 15, 28, 30, 143]))) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (3, 512, 512)) self.assertEqual(inputs["mask_labels"][1].shape, (8, 512, 512)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 170200.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 257036.0) def test_integration_panoptic_segmentation(self): # load 2 images and corresponding panoptic annotations from the hub dataset = load_dataset("nielsr/ade20k-panoptic-demo") image1 = dataset["train"][0]["image"] image2 = dataset["train"][1]["image"] segments_info1 = dataset["train"][0]["segments_info"] segments_info2 = dataset["train"][1]["segments_info"] annotation1 = dataset["train"][0]["label"] annotation2 = dataset["train"][1]["label"] def rgb_to_id(color): if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def create_panoptic_map(annotation, segments_info): annotation = np.array(annotation) # convert RGB to segment IDs per pixel # 0 is the "ignore" label, for which we don't need to make binary masks panoptic_map = rgb_to_id(annotation) # create mapping between segment IDs and semantic classes inst2class = {segment["id"]: segment["category_id"] for segment in segments_info} return panoptic_map, inst2class panoptic_map1, inst2class1 = create_panoptic_map(annotation1, segments_info1) panoptic_map2, inst2class2 = create_panoptic_map(annotation2, segments_info2) # create a image processor image_processing = Mask2FormerImageProcessor(ignore_index=0, do_resize=False) # prepare the images and annotations pixel_values_list = [np.moveaxis(np.array(image1), -1, 0), np.moveaxis(np.array(image2), -1, 0)] inputs = image_processing.encode_inputs( pixel_values_list, [panoptic_map1, panoptic_map2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 711)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 711)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) expected_class_labels = torch.tensor([4, 17, 32, 42, 42, 42, 42, 42, 42, 42, 32, 12, 12, 12, 12, 12, 42, 42, 12, 12, 12, 42, 12, 12, 12, 12, 12, 3, 12, 12, 12, 12, 42, 42, 42, 12, 42, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 5, 12, 12, 12, 12, 12, 12, 12, 0, 43, 43, 43, 96, 43, 104, 43, 31, 125, 31, 125, 138, 87, 125, 149, 138, 125, 87, 87]) # fmt: skip self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor(expected_class_labels))) expected_class_labels = torch.tensor([19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 67, 82, 19, 19, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 12, 12, 42, 12, 12, 12, 12, 3, 14, 12, 12, 12, 12, 12, 12, 12, 12, 14, 5, 12, 12, 0, 115, 43, 43, 115, 43, 43, 43, 8, 8, 8, 138, 138, 125, 143]) # fmt: skip self.assertTrue(torch.allclose(inputs["class_labels"][1], expected_class_labels)) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (79, 512, 711)) self.assertEqual(inputs["mask_labels"][1].shape, (61, 512, 711)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 315193.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 350747.0) def test_binary_mask_to_rle(self): fake_binary_mask = np.zeros((20, 50)) fake_binary_mask[0, 20:] = 1 fake_binary_mask[1, :15] = 1 fake_binary_mask[5, :10] = 1 rle = binary_mask_to_rle(fake_binary_mask) self.assertEqual(len(rle), 4) self.assertEqual(rle[0], 21) self.assertEqual(rle[1], 45) def test_post_process_semantic_segmentation(self): fature_extractor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_mask2former_outputs() segmentation = fature_extractor.post_process_semantic_segmentation(outputs) self.assertEqual(len(segmentation), self.image_processor_tester.batch_size) self.assertEqual(segmentation[0].shape, (384, 384)) target_sizes = [(1, 4) for i in range(self.image_processor_tester.batch_size)] segmentation = fature_extractor.post_process_semantic_segmentation(outputs, target_sizes=target_sizes) self.assertEqual(segmentation[0].shape, target_sizes[0]) def test_post_process_instance_segmentation(self): image_processor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_mask2former_outputs() segmentation = image_processor.post_process_instance_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(el["segmentation"].shape, (384, 384)) segmentation = image_processor.post_process_instance_segmentation( outputs, threshold=0, return_binary_maps=True ) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(len(el["segmentation"].shape), 3) self.assertEqual(el["segmentation"].shape[1:], (384, 384)) def test_post_process_panoptic_segmentation(self): image_processing = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_mask2former_outputs() segmentation = image_processing.post_process_panoptic_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(el["segmentation"].shape, (384, 384)) def test_post_process_label_fusing(self): image_processor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_mask2former_outputs() segmentation = image_processor.post_process_panoptic_segmentation( outputs, threshold=0, mask_threshold=0, overlap_mask_area_threshold=0 ) unfused_segments = [el["segments_info"] for el in segmentation] fused_segmentation = image_processor.post_process_panoptic_segmentation( outputs, threshold=0, mask_threshold=0, overlap_mask_area_threshold=0, label_ids_to_fuse={1} ) fused_segments = [el["segments_info"] for el in fused_segmentation] for el_unfused, el_fused in zip(unfused_segments, fused_segments): if len(el_unfused) == 0: self.assertEqual(len(el_unfused), len(el_fused)) continue # Get number of segments to be fused fuse_targets = [1 for el in el_unfused if el["label_id"] in {1}] num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 # Expected number of segments after fusing expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse num_segments_fused = max([el["id"] for el in el_fused]) self.assertEqual(num_segments_fused, expected_num_segments)
transformers/tests/models/mask2former/test_image_processing_mask2former.py/0
{ "file_path": "transformers/tests/models/mask2former/test_image_processing_mask2former.py", "repo_id": "transformers", "token_count": 10079 }
421
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MegatronBERT model. """ import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class MegatronBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, embedding_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MegatronBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_megatron_bert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_megatron_bert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_megatron_bert_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_megatron_bert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_megatron_bert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MegatronBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_megatron_bert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MegatronBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_megatron_bert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MegatronBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_megatron_bert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MegatronBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MegatronBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # test_resize_embeddings = False test_head_masking = False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = MegatronBertModelTester(self) self.config_tester = ConfigTester(self, config_class=MegatronBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_megatron_bert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*config_and_inputs) def _long_tensor(tok_lst): return torch.tensor( tok_lst, dtype=torch.long, device=torch_device, ) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class MegatronBertModelIntegrationTests(unittest.TestCase): @slow @unittest.skip("Model is not available.") def test_inference_no_head(self): directory = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: directory = os.path.join(os.environ["MYDIR"], directory) model = MegatronBertModel.from_pretrained(directory) model.to(torch_device) model.half() input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 9, 1024)) self.assertEqual(output.shape, expected_shape) expected = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3): for jj in range(3): a = output[0, ii, jj] b = expected[3 * ii + jj] msg = "ii={} jj={} a={} b={}".format(ii, jj, a, b) self.assertTrue(math.isclose(a, b, rel_tol=TOLERANCE, abs_tol=TOLERANCE), msg=msg)
transformers/tests/models/megatron_bert/test_modeling_megatron_bert.py/0
{ "file_path": "transformers/tests/models/megatron_bert/test_modeling_megatron_bert.py", "repo_id": "transformers", "token_count": 7272 }
422
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class TFMobileBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # special case for ForPreTraining model, same as BERT tests def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) return inputs_dict class TFMobileBertModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, embedding_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.embedding_size = embedding_size def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_mobilebert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMobileBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mobilebert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMobileBertForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_mobilebert_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMobileBertForNextSentencePrediction(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMobileBertForPreTraining(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFMobileBertForSequenceClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mobilebert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFMobileBertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_mobilebert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFMobileBertForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_mobilebert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMobileBertForQuestionAnswering(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def setUp(self): self.model_tester = TFMobileBertModelTest.TFMobileBertModelTester(self) self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mobilebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: model = TFMobileBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFMobileBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 30522] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/mobilebert/test_modeling_tf_mobilebert.py/0
{ "file_path": "transformers/tests/models/mobilebert/test_modeling_tf_mobilebert.py", "repo_id": "transformers", "token_count": 7017 }
423
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import MPNetConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.mpnet.modeling_tf_mpnet import ( TFMPNetForMaskedLM, TFMPNetForMultipleChoice, TFMPNetForQuestionAnswering, TFMPNetForSequenceClassification, TFMPNetForTokenClassification, TFMPNetModel, ) class TFMPNetModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_mpnet_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMPNetModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_mpnet_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMPNetForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_mpnet_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFMPNetForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mpnet_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFMPNetForSequenceClassification(config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mpnet_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFMPNetForMultipleChoice(config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_mpnet_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFMPNetForTokenClassification(config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFMPNetModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFMPNetForMaskedLM, TFMPNetForMultipleChoice, TFMPNetForQuestionAnswering, TFMPNetForSequenceClassification, TFMPNetForTokenClassification, TFMPNetModel, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFMPNetModel, "fill-mask": TFMPNetForMaskedLM, "question-answering": TFMPNetForQuestionAnswering, "text-classification": TFMPNetForSequenceClassification, "token-classification": TFMPNetForTokenClassification, "zero-shot": TFMPNetForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFMPNetModelTester(self) self.config_tester = ConfigTester(self, config_class=MPNetConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mpnet_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ["microsoft/mpnet-base"]: model = TFMPNetModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFMPNetModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFMPNetModel.from_pretrained("microsoft/mpnet-base") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 768] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [-0.1067172, 0.08216473, 0.0024543], [-0.03465879, 0.8354118, -0.03252288], [-0.06569476, -0.12424111, -0.0494436], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/mpnet/test_modeling_tf_mpnet.py/0
{ "file_path": "transformers/tests/models/mpnet/test_modeling_tf_mpnet.py", "repo_id": "transformers", "token_count": 4844 }
424
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the MusicGen processor.""" import random import shutil import tempfile import unittest import numpy as np from transformers import T5Tokenizer, T5TokenizerFast from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio from transformers.utils.import_utils import is_torchaudio_available if is_torchaudio_available(): from transformers import MusicgenMelodyFeatureExtractor, MusicgenMelodyProcessor global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_sentencepiece @require_torchaudio # Copied from tests.models.musicgen.test_processing_musicgen.MusicgenProcessorTest with Musicgen->MusicgenMelody, Encodec->MusicgenMelody, padding_mask->attention_mask, input_values->input_features class MusicgenMelodyProcessorTest(unittest.TestCase): def setUp(self): # Ignore copy self.checkpoint = "facebook/musicgen-melody" self.tmpdirname = tempfile.mkdtemp() def get_tokenizer(self, **kwargs): return T5Tokenizer.from_pretrained(self.checkpoint, **kwargs) def get_feature_extractor(self, **kwargs): return MusicgenMelodyFeatureExtractor.from_pretrained(self.checkpoint, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = MusicgenMelodyProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, MusicgenMelodyFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = MusicgenMelodyProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = MusicgenMelodyProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, MusicgenMelodyFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(sequences=predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", ) # Ignore copy def test_decode_audio(self): feature_extractor = self.get_feature_extractor(padding_side="left") tokenizer = self.get_tokenizer() processor = MusicgenMelodyProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) attention_mask = np.zeros((3, 20)) attention_mask[0, -5:] = 1 attention_mask[1, -20:] = 1 attention_mask[2, -10:] = 1 generated_speech = np.asarray(floats_list((3, 20)))[:, None, :] decoded_audios = processor.batch_decode(generated_speech, attention_mask=attention_mask) self.assertIsInstance(decoded_audios, list) for audio in decoded_audios: self.assertIsInstance(audio, np.ndarray) self.assertTrue(decoded_audios[0].shape == (1, 5)) self.assertTrue(decoded_audios[1].shape == (1, 20)) self.assertTrue(decoded_audios[2].shape == (1, 10))
transformers/tests/models/musicgen_melody/test_processor_musicgen_melody.py/0
{ "file_path": "transformers/tests/models/musicgen_melody/test_processor_musicgen_melody.py", "repo_id": "transformers", "token_count": 2636 }
425
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Nystromformer model. """ import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class NystromformerModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return NystromformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NystromformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NystromformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NystromformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NystromformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NystromformerForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = NystromformerForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class NystromformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = NystromformerModelTester(self) self.config_tester = ConfigTester(self, config_class=NystromformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = NystromformerModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class NystromformerModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_masked_lm_end_to_end(self): sentence = "the [MASK] of Belgium is Brussels" tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512") encoding = tokenizer(sentence, return_tensors="pt") with torch.no_grad(): token_logits = model(encoding.input_ids).logits prediction = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(prediction), "capital")
transformers/tests/models/nystromformer/test_modeling_nystromformer.py/0
{ "file_path": "transformers/tests/models/nystromformer/test_modeling_nystromformer.py", "repo_id": "transformers", "token_count": 5750 }
426
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Perceiver model. """ import copy import inspect import math import tempfile import unittest import warnings from typing import Dict, List, Tuple import numpy as np from datasets import load_dataset from transformers import PerceiverConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverModel, PerceiverTokenizer, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) from transformers.models.perceiver.modeling_perceiver import PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import PerceiverImageProcessor class PerceiverModelTester: def __init__( self, parent, batch_size=13, seq_length=7, num_channels=3, image_size=32, train_size=[20, 20], num_frames=5, audio_samples_per_frame=200, samples_per_patch=20, nchunks=20, num_latents=10, d_latents=20, d_model=64, num_blocks=1, num_self_attends_per_block=2, num_self_attention_heads=1, num_cross_attention_heads=1, self_attention_widening_factor=4, cross_attention_widening_factor=4, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_act="gelu", attention_probs_dropout_prob=0.1, initializer_range=0.02, max_position_embeddings=7, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.num_channels = num_channels self.image_size = image_size self.train_size = train_size self.num_frames = num_frames self.audio_samples_per_frame = audio_samples_per_frame self.samples_per_patch = samples_per_patch self.nchunks = nchunks self.num_latents = num_latents self.d_latents = d_latents self.d_model = d_model self.num_blocks = num_blocks self.num_self_attends_per_block = num_self_attends_per_block self.num_self_attention_heads = num_self_attention_heads self.num_cross_attention_heads = num_cross_attention_heads self.self_attention_widening_factor = self_attention_widening_factor self.cross_attention_widening_factor = cross_attention_widening_factor self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_act = hidden_act self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # set subsampling for multimodal model (take first chunk) image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks self.subsampling = { "image": torch.arange(0, image_chunk_size), "audio": torch.arange(0, audio_chunk_size), "label": None, } def prepare_config_and_inputs(self, model_class=None): config = self.get_config() input_mask = None sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.num_labels) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) if model_class is None or model_class.__name__ == "PerceiverModel": inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0) return config, inputs, input_mask, sequence_labels, token_labels elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]: inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # input mask is only relevant for text inputs if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) elif model_class.__name__ == "PerceiverForImageClassificationLearned": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationFourier": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForOpticalFlow": inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]]) elif model_class.__name__ == "PerceiverForMultimodalAutoencoding": images = torch.randn( (self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size), device=torch_device, ) audio = torch.randn( (self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device ) inputs = { "image": images, "audio": audio, "label": torch.zeros((self.batch_size, self.num_labels), device=torch_device), } else: raise ValueError(f"Model class {model_class} not supported") return config, inputs, input_mask, sequence_labels, token_labels def get_config(self): return PerceiverConfig( num_latents=self.num_latents, d_latents=self.d_latents, d_model=self.d_model, qk_channels=self.d_latents, v_channels=self.d_latents, num_blocks=self.num_blocks, num_self_attends_per_block=self.num_self_attends_per_block, num_self_attention_heads=self.num_self_attention_heads, num_cross_attention_heads=self.num_cross_attention_heads, self_attention_widening_factor=self.self_attention_widening_factor, cross_attention_widening_factor=self.cross_attention_widening_factor, vocab_size=self.vocab_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, max_position_embeddings=self.max_position_embeddings, image_size=self.image_size, train_size=self.train_size, num_frames=self.num_frames, audio_samples_per_frame=self.audio_samples_per_frame, samples_per_patch=self.samples_per_patch, num_labels=self.num_labels, output_num_channels=32, _label_trainable_num_channels=16, ) def get_pipeline_config(self): config = self.get_config() # Byte level vocab config.vocab_size = 261 config.max_position_embeddings = 40 return config def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForSequenceClassification(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_learned( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationLearned(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_fourier( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationFourier(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_conv( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationConvProcessing(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict def prepare_config_and_inputs_for_model_class(self, model_class): config_and_inputs = self.prepare_config_and_inputs(model_class) config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict @require_torch class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( PerceiverModel, PerceiverForMaskedLM, PerceiverForImageClassificationLearned, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForOpticalFlow, PerceiverForMultimodalAutoencoding, PerceiverForSequenceClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PerceiverModel, "fill-mask": PerceiverForMaskedLM, "image-classification": ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, ), "text-classification": PerceiverForSequenceClassification, "zero-shot": PerceiverForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_head_masking = False test_torchscript = False maxDiff = None def setUp(self): self.model_tester = PerceiverModelTester(self) self.config_tester = ConfigTester(self, config_class=PerceiverConfig, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": inputs_dict["subsampled_output_points"] = self.model_tester.subsampling if return_labels: if model_class.__name__ in [ *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES.values(), *MODEL_FOR_MASKED_LM_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): # we don't test common_properties and arguments_init as these don't apply for Perceiver self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification) self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_image_classification_learned(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationLearned ) self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs) def test_for_image_classification_fourier(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationFourier ) self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs) def test_for_image_classification_conv(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationConvProcessing ) self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs) def test_model_common_attributes(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) # we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter # and Perceiver doesn't support get_output_embeddings self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter)) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: if model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", ]: continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_forward_signature(self): for model_class in self.all_model_classes: config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["inputs"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_determinism(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): inputs_dict = self._prepare_for_class(inputs_dict, model_class) first = model(**inputs_dict)[0] second = model(**inputs_dict)[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits per modality, let's verify each modality for modality in first.keys(): out_1 = first[modality].cpu().numpy() out_2 = second[modality].cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_attention_outputs(self): seq_len = getattr(self.model_tester, "num_latents", None) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions # check expected number of attentions depending on model class expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block if model.__class__.__name__ == "PerceiverModel": # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 1 else: # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 2 self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.num_latents self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.d_latents], ) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model_outputs_equivalence(self): def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_retain_grad_hidden_states_attentions(self): # no need to test all models as different heads yield the same functionality model_class = PerceiverForMaskedLM config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.output_hidden_states = True config.output_attentions = True model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-only model hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_feed_forward_chunking(self): for model_class in self.all_model_classes: original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits for each modality for modality in hidden_states_no_chunk.keys(): self.assertTrue( torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3) ) else: self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) def test_save_load(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": for modality in outputs[0].keys(): out_2 = outputs[0][modality].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0][modality].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_correct_missing_keys(self): if not self.test_missing_keys: return config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # most Perceiver models don't have a typical head like is the case with BERT if model_class.__name__ in [ "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: continue model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"): self.assertGreater(len(loading_info["missing_keys"]), 0) def test_problem_types(self): problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if model_class.__name__ not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(): continue config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class) inputs_dict = {"inputs": inputs, "attention_mask": input_mask} for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @require_torch_multi_gpu @unittest.skip( reason=( "Perceiver does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_embeddings_untied(self): pass @unittest.skip(reason="Perceiver doesn't support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Perceiver doesn't support the AutoModel API") def test_load_with_mismatched_shapes(self): pass @slow def test_model_from_pretrained(self): for model_name in PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = PerceiverModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image # Helper functions for optical flow integration test def prepare_optical_flow_images(): dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test") image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[0]["file"]).convert("RGB") return image1, image2 def normalize(img): return img / 255.0 * 2 - 1 def extract_image_patches(x, kernel, stride=1, dilation=1): # Do TF 'SAME' Padding b, c, h, w = x.shape h2 = math.ceil(h / stride) w2 = math.ceil(w / stride) pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2)) # Extract patches patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride) patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous() return patches.view(b, -1, patches.shape[-2], patches.shape[-1]) @require_torch @require_vision class PerceiverModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver") model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") model.to(torch_device) # prepare inputs text = "This is an incomplete sentence where some words are missing." encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". encoding.input_ids[0, 52:61] = tokenizer.mask_token_id inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, tokenizer.model_max_length, len(tokenizer))) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4)) expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52] masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions) @slow def test_inference_image_classification(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_image_classification_fourier(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_image_classification_conv(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_optical_flow(self): model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") model.to(torch_device) # prepare inputs image1, image2 = prepare_optical_flow_images() img1 = normalize(np.array(image1)) img2 = normalize(np.array(image1)) # stack images img1 = torch.tensor(np.moveaxis(img1, -1, 0)) img2 = torch.tensor(np.moveaxis(img2, -1, 0)) images = torch.stack([img1, img2], dim=0) # extract 3x3 patches patch_size = model.config.train_size inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0) batch_size, _, C, H, W = inputs.shape patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3) _, C, H, W = patches.shape patches = patches.view(batch_size, -1, C, H, W).float() # forward pass with torch.no_grad(): outputs = model(inputs=patches.to(torch_device)) logits = outputs.logits # verify logits expected_shape = torch.Size((1, 368, 496, 2)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [ [[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]], ], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/perceiver/test_modeling_perceiver.py/0
{ "file_path": "transformers/tests/models/perceiver/test_modeling_perceiver.py", "repo_id": "transformers", "token_count": 20935 }
427
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import PoolFormerImageProcessor class PoolFormerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize_and_center_crop=True, size=None, crop_pct=0.9, crop_size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 30} crop_size = crop_size if crop_size is not None else {"height": 30, "width": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize_and_center_crop = do_resize_and_center_crop self.size = size self.crop_pct = crop_pct self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class PoolFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = PoolFormerImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = PoolFormerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize_and_center_crop")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "crop_pct")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size, {"height": 30, "width": 30}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers/tests/models/poolformer/test_image_processing_poolformer.py/0
{ "file_path": "transformers/tests/models/poolformer/test_image_processing_poolformer.py", "repo_id": "transformers", "token_count": 1773 }
428
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch QDQBERT model. """ import unittest from transformers import QDQBertConfig, is_torch_available from transformers.testing_utils import require_pytorch_quantization, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLMHeadModel, QDQBertModel, ) from transformers.models.qdqbert.modeling_qdqbert import QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST class QDQBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): # Set default quantizers before creating the model. import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor # The default tensor quantizer is set to use Max calibration method input_desc = QuantDescriptor(num_bits=8, calib_method="max") # The default tensor quantizer is set to be per-channel quantization for weights weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) # For the test cases, since QDQBert model is tested in one run without calibration, the quantized tensors are set as fake quantized tensors which give float type tensors in the end. quant_nn.TensorQuantizer.use_fb_fake_quant = True input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return QDQBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = QDQBertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_model_for_causal_lm_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = QDQBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = QDQBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = QDQBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch @require_pytorch_quantization class QDQBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( QDQBertModel, QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLMHeadModel, ) if is_torch_available() else () ) all_generative_model_classes = (QDQBertLMHeadModel,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": QDQBertModel, "fill-mask": QDQBertForMaskedLM, "question-answering": QDQBertForQuestionAnswering, "text-classification": QDQBertForSequenceClassification, "text-generation": QDQBertLMHeadModel, "token-classification": QDQBertForTokenClassification, "zero-shot": QDQBertForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = QDQBertModelTester(self) self.config_tester = ConfigTester(self, config_class=QDQBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = QDQBertModel.from_pretrained(model_name) self.assertIsNotNone(model) # Override def test_feed_forward_chunking(self): # feed forward chunking is not supported in QDQBert pass @require_torch @require_pytorch_quantization class QDQBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): # Set default quantizers before creating the model. import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor # The default tensor quantizer is set to use Max calibration method input_desc = QuantDescriptor(num_bits=8, calib_method="max") # The default tensor quantizer is set to be per-channel quantization for weights weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) model = QDQBertModel.from_pretrained("google-bert/bert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.4571, -0.0735, 0.8594], [0.2774, -0.0278, 0.8794], [0.3548, -0.0473, 0.7593]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/qdqbert/test_modeling_qdqbert.py/0
{ "file_path": "transformers/tests/models/qdqbert/test_modeling_qdqbert.py", "repo_id": "transformers", "token_count": 10441 }
429
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "FacebookAI/roberta-base" tokenizer_class = RobertaTokenizer rust_tokenizer_class = RobertaTokenizerFast test_rust_tokenizer = True from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def roberta_dict_integration_testing(self): tokenizer = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2]) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False), [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("FacebookAI/roberta-base") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_change_add_prefix_space_and_trim_offsets_args(self): for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2): tokenizer_r = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets ) pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space) self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space) self.assertEqual(post_processor_state["trim_offsets"], trim_offsets) def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name` text = f"{text_of_1_token} {text_of_1_token}" tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)), ) text = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), ) tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False ) encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token))) self.assertEqual( encoding.offset_mapping[1], (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), )
transformers/tests/models/roberta/test_tokenization_roberta.py/0
{ "file_path": "transformers/tests/models/roberta/test_tokenization_roberta.py", "repo_id": "transformers", "token_count": 7034 }
430
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SAM model. """ import gc import unittest import requests from transformers import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig, pipeline from transformers.testing_utils import backend_empty_cache, require_torch, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SamModel, SamProcessor from transformers.models.sam.modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SamPromptEncoderTester: def __init__( self, hidden_size=32, input_image_size=24, patch_size=2, mask_input_channels=4, num_point_embeddings=4, hidden_act="gelu", ): self.hidden_size = hidden_size self.input_image_size = input_image_size self.patch_size = patch_size self.mask_input_channels = mask_input_channels self.num_point_embeddings = num_point_embeddings self.hidden_act = hidden_act def get_config(self): return SamPromptEncoderConfig( image_size=self.input_image_size, patch_size=self.patch_size, mask_input_channels=self.mask_input_channels, hidden_size=self.hidden_size, num_point_embeddings=self.num_point_embeddings, hidden_act=self.hidden_act, ) def prepare_config_and_inputs(self): dummy_points = floats_tensor([self.batch_size, 3, 2]) config = self.get_config() return config, dummy_points class SamMaskDecoderTester: def __init__( self, hidden_size=32, hidden_act="relu", mlp_dim=64, num_hidden_layers=2, num_attention_heads=4, attention_downsample_rate=2, num_multimask_outputs=3, iou_head_depth=3, iou_head_hidden_dim=32, layer_norm_eps=1e-6, ): self.hidden_size = hidden_size self.hidden_act = hidden_act self.mlp_dim = mlp_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.attention_downsample_rate = attention_downsample_rate self.num_multimask_outputs = num_multimask_outputs self.iou_head_depth = iou_head_depth self.iou_head_hidden_dim = iou_head_hidden_dim self.layer_norm_eps = layer_norm_eps def get_config(self): return SamMaskDecoderConfig( hidden_size=self.hidden_size, hidden_act=self.hidden_act, mlp_dim=self.mlp_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, attention_downsample_rate=self.attention_downsample_rate, num_multimask_outputs=self.num_multimask_outputs, iou_head_depth=self.iou_head_depth, iou_head_hidden_dim=self.iou_head_hidden_dim, layer_norm_eps=self.layer_norm_eps, ) def prepare_config_and_inputs(self): config = self.get_config() dummy_inputs = { "image_embedding": floats_tensor([self.batch_size, self.hidden_size]), } return config, dummy_inputs class SamModelTester: def __init__( self, parent, hidden_size=36, intermediate_size=72, projection_dim=62, output_channels=32, num_hidden_layers=2, num_attention_heads=4, num_channels=3, image_size=24, patch_size=2, hidden_act="gelu", layer_norm_eps=1e-06, dropout=0.0, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, qkv_bias=True, mlp_ratio=4.0, use_abs_pos=True, use_rel_pos=True, rel_pos_zero_init=False, window_size=14, global_attn_indexes=[2, 5, 8, 11], num_pos_feats=16, mlp_dim=None, batch_size=2, ): self.parent = parent self.image_size = image_size self.patch_size = patch_size self.output_channels = output_channels self.num_channels = num_channels self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.mlp_ratio = mlp_ratio self.use_abs_pos = use_abs_pos self.use_rel_pos = use_rel_pos self.rel_pos_zero_init = rel_pos_zero_init self.window_size = window_size self.global_attn_indexes = global_attn_indexes self.num_pos_feats = num_pos_feats self.mlp_dim = mlp_dim self.batch_size = batch_size # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 self.prompt_encoder_tester = SamPromptEncoderTester() self.mask_decoder_tester = SamMaskDecoderTester() def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): vision_config = SamVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, initializer_factor=self.initializer_factor, output_channels=self.output_channels, qkv_bias=self.qkv_bias, mlp_ratio=self.mlp_ratio, use_abs_pos=self.use_abs_pos, use_rel_pos=self.use_rel_pos, rel_pos_zero_init=self.rel_pos_zero_init, window_size=self.window_size, global_attn_indexes=self.global_attn_indexes, num_pos_feats=self.num_pos_feats, mlp_dim=self.mlp_dim, ) prompt_encoder_config = self.prompt_encoder_tester.get_config() mask_decoder_config = self.mask_decoder_tester.get_config() return SamConfig( vision_config=vision_config, prompt_encoder_config=prompt_encoder_config, mask_decoder_config=mask_decoder_config, ) def create_and_check_model(self, config, pixel_values): model = SamModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) self.parent.assertEqual(result.iou_scores.shape, (self.batch_size, 1, 3)) self.parent.assertEqual(result.pred_masks.shape[:3], (self.batch_size, 1, 3)) def create_and_check_get_image_features(self, config, pixel_values): model = SamModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model.get_image_embeddings(pixel_values) self.parent.assertEqual(result[0].shape, (self.output_channels, 12, 12)) def create_and_check_get_image_hidden_states(self, config, pixel_values): model = SamModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model.vision_encoder( pixel_values, output_hidden_states=True, return_dict=True, ) # after computing the convolutional features expected_hidden_states_shape = (self.batch_size, 12, 12, 36) self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1) self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape) with torch.no_grad(): result = model.vision_encoder( pixel_values, output_hidden_states=True, return_dict=False, ) # after computing the convolutional features expected_hidden_states_shape = (self.batch_size, 12, 12, 36) self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1) self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SamModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (SamModel,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": SamModel, "mask-generation": SamModel} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False # TODO: Fix me @Arthur: `run_batch_test` in `tests/test_pipeline_mixin.py` not working def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = SamModelTester(self) self.vision_config_tester = ConfigTester(self, config_class=SamVisionConfig, has_text_modality=False) self.prompt_encoder_config_tester = ConfigTester( self, config_class=SamPromptEncoderConfig, has_text_modality=False, num_attention_heads=12, num_hidden_layers=2, ) self.mask_decoder_config_tester = ConfigTester( self, config_class=SamMaskDecoderConfig, has_text_modality=False ) def test_config(self): self.vision_config_tester.run_common_tests() self.prompt_encoder_config_tester.run_common_tests() self.mask_decoder_config_tester.run_common_tests() @unittest.skip(reason="SAM's vision encoder does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_get_image_features(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_get_image_features(*config_and_inputs) def test_image_hidden_states(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_get_image_hidden_states(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True expected_vision_attention_shape = ( self.model_tester.batch_size * self.model_tester.num_attention_heads, 196, 196, ) expected_mask_decoder_attention_shape = (self.model_tester.batch_size, 1, 144, 32) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) vision_attentions = outputs.vision_attentions self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers) mask_decoder_attentions = outputs.mask_decoder_attentions self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) vision_attentions = outputs.vision_attentions self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers) mask_decoder_attentions = outputs.mask_decoder_attentions self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers) self.assertListEqual( list(vision_attentions[0].shape[-4:]), list(expected_vision_attention_shape), ) self.assertListEqual( list(mask_decoder_attentions[0].shape[-4:]), list(expected_mask_decoder_attention_shape), ) @unittest.skip(reason="SamModel does not support training") def test_training(self): pass @unittest.skip(reason="SamModel does not support training") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="SamModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="SamModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SamModel does not support training") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Hidden_states is tested in create_and_check_model tests") def test_hidden_states_output(self): pass def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=5e-5, name="outputs", attributes=None): # Use a slightly higher default tol to make the tests non-flaky super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol=tol, name=name, attributes=attributes) @slow def test_model_from_pretrained(self): for model_name in SAM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SamModel.from_pretrained(model_name) self.assertIsNotNone(model) def prepare_image(): img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") return raw_image def prepare_dog_img(): img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dog-sam.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") return raw_image @slow class SamModelIntegrationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() backend_empty_cache(torch_device) def test_inference_mask_generation_no_point(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() inputs = processor(images=raw_image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() masks = outputs.pred_masks[0, 0, 0, 0, :3] self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.4515), atol=2e-4)) self.assertTrue(torch.allclose(masks, torch.tensor([-4.1800, -3.4948, -3.4481]).to(torch_device), atol=2e-4)) def test_inference_mask_generation_one_point_one_bb(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_boxes = [[[650, 900, 1000, 1250]]] input_points = [[[820, 1080]]] inputs = processor( images=raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt" ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() masks = outputs.pred_masks[0, 0, 0, 0, :3] self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9566), atol=2e-4)) self.assertTrue( torch.allclose(masks, torch.tensor([-12.7729, -12.3665, -12.6061]).to(torch_device), atol=2e-4) ) def test_inference_mask_generation_batched_points_batched_images(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_points = [ [[[820, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]], [[[510, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]], ] inputs = processor(images=[raw_image, raw_image], input_points=input_points, return_tensors="pt").to( torch_device ) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze().cpu() masks = outputs.pred_masks[0, 0, 0, 0, :3].cpu() EXPECTED_SCORES = torch.tensor( [ [ [0.6765, 0.9379, 0.8803], [0.6765, 0.9379, 0.8803], [0.6765, 0.9379, 0.8803], [0.6765, 0.9379, 0.8803], ], [ [0.3317, 0.7264, 0.7646], [0.6765, 0.9379, 0.8803], [0.6765, 0.9379, 0.8803], [0.6765, 0.9379, 0.8803], ], ] ) EXPECTED_MASKS = torch.tensor([-2.8550, -2.7988, -2.9625]) self.assertTrue(torch.allclose(scores, EXPECTED_SCORES, atol=1e-3)) self.assertTrue(torch.allclose(masks, EXPECTED_MASKS, atol=1e-3)) def test_inference_mask_generation_one_point_one_bb_zero(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_boxes = [[[620, 900, 1000, 1255]]] input_points = [[[820, 1080]]] labels = [[0]] inputs = processor( images=raw_image, input_boxes=input_boxes, input_points=input_points, input_labels=labels, return_tensors="pt", ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7894), atol=1e-4)) def test_inference_mask_generation_one_point(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_points = [[[400, 650]]] input_labels = [[1]] inputs = processor( images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9675), atol=1e-4)) # With no label input_points = [[[400, 650]]] inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9675), atol=1e-4)) def test_inference_mask_generation_two_points(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_points = [[[400, 650], [800, 650]]] input_labels = [[1, 1]] inputs = processor( images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9762), atol=1e-4)) # no labels inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9762), atol=1e-4)) def test_inference_mask_generation_two_points_batched(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_points = [[[400, 650], [800, 650]], [[400, 650]]] input_labels = [[1, 1], [1]] inputs = processor( images=[raw_image, raw_image], input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[0][-1], torch.tensor(0.9762), atol=1e-4)) self.assertTrue(torch.allclose(scores[1][-1], torch.tensor(0.9637), atol=1e-4)) def test_inference_mask_generation_one_box(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_boxes = [[[75, 275, 1725, 850]]] inputs = processor(images=raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7937), atol=1e-4)) def test_inference_mask_generation_batched_image_one_point(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() raw_dog_image = prepare_dog_img() input_points = [[[820, 1080]], [[220, 470]]] inputs = processor(images=[raw_image, raw_dog_image], input_points=input_points, return_tensors="pt").to( torch_device ) with torch.no_grad(): outputs = model(**inputs) scores_batched = outputs.iou_scores.squeeze() input_points = [[[220, 470]]] inputs = processor(images=raw_dog_image, input_points=input_points, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) scores_single = outputs.iou_scores.squeeze() self.assertTrue(torch.allclose(scores_batched[1, :], scores_single, atol=1e-4)) def test_inference_mask_generation_two_points_point_batch(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() input_points = torch.Tensor([[[400, 650]], [[220, 470]]]).cpu() # fmt: skip input_points = input_points.unsqueeze(0) inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) iou_scores = outputs.iou_scores.cpu() self.assertTrue(iou_scores.shape == (1, 2, 3)) torch.testing.assert_allclose( iou_scores, torch.tensor([[[0.9105, 0.9825, 0.9675], [0.7646, 0.7943, 0.7774]]]), atol=1e-4, rtol=1e-4 ) def test_inference_mask_generation_three_boxes_point_batch(self): model = SamModel.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") model.to(torch_device) model.eval() raw_image = prepare_image() # fmt: off input_boxes = torch.Tensor([[[620, 900, 1000, 1255]], [[75, 275, 1725, 850]], [[75, 275, 1725, 850]]]).cpu() EXPECTED_IOU = torch.tensor([[[0.9773, 0.9881, 0.9522], [0.5996, 0.7661, 0.7937], [0.5996, 0.7661, 0.7937]]]) # fmt: on input_boxes = input_boxes.unsqueeze(0) inputs = processor(raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) iou_scores = outputs.iou_scores.cpu() self.assertTrue(iou_scores.shape == (1, 3, 3)) torch.testing.assert_allclose(iou_scores, EXPECTED_IOU, atol=1e-4, rtol=1e-4) def test_dummy_pipeline_generation(self): generator = pipeline("mask-generation", model="facebook/sam-vit-base", device=torch_device) raw_image = prepare_image() _ = generator(raw_image, points_per_batch=64)
transformers/tests/models/sam/test_modeling_sam.py/0
{ "file_path": "transformers/tests/models/sam/test_modeling_sam.py", "repo_id": "transformers", "token_count": 13033 }
431
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SegGpt model. """ import inspect import unittest from datasets import load_dataset from transformers import SegGptConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SegGptForImageSegmentation, SegGptModel from transformers.models.seggpt.modeling_seggpt import SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import SegGptImageProcessor class SegGptModelTester: def __init__( self, parent, batch_size=2, image_size=30, patch_size=2, num_channels=3, is_training=False, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, mlp_ratio=2.0, merge_index=0, intermediate_hidden_state_indices=[1], pretrain_image_size=10, decoder_hidden_size=10, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.mlp_ratio = mlp_ratio self.merge_index = merge_index self.intermediate_hidden_state_indices = intermediate_hidden_state_indices self.pretrain_image_size = pretrain_image_size self.decoder_hidden_size = decoder_hidden_size # in SegGpt, the seq length equals the number of patches (we don't use the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size // 2, self.image_size]) prompt_pixel_values = floats_tensor( [self.batch_size, self.num_channels, self.image_size // 2, self.image_size] ) prompt_masks = floats_tensor([self.batch_size, self.num_channels, self.image_size // 2, self.image_size]) labels = None if self.use_labels: labels = floats_tensor([self.batch_size, self.num_channels, self.image_size // 2, self.image_size]) config = self.get_config() return config, pixel_values, prompt_pixel_values, prompt_masks, labels def get_config(self): return SegGptConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, initializer_range=self.initializer_range, mlp_ratio=self.mlp_ratio, merge_index=self.merge_index, intermediate_hidden_state_indices=self.intermediate_hidden_state_indices, pretrain_image_size=self.pretrain_image_size, decoder_hidden_size=self.decoder_hidden_size, ) def create_and_check_model(self, config, pixel_values, prompt_pixel_values, prompt_masks, labels): model = SegGptModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values, prompt_pixel_values, prompt_masks) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.image_size // self.patch_size, self.image_size // self.patch_size, self.hidden_size, ), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, prompt_pixel_values, prompt_masks, labels, ) = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "prompt_pixel_values": prompt_pixel_values, "prompt_masks": prompt_masks, } return config, inputs_dict @require_torch class SegGptModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as SegGpt does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (SegGptModel, SegGptForImageSegmentation) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False pipeline_model_mapping = ( {"feature-extraction": SegGptModel, "mask-generation": SegGptModel} if is_torch_available() else {} ) def setUp(self): self.model_tester = SegGptModelTester(self) self.config_tester = ConfigTester(self, config_class=SegGptConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="SegGpt does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values", "prompt_pixel_values", "prompt_masks"] self.assertListEqual(arg_names[:3], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) patch_height = patch_width = config.image_size // config.patch_size self.assertListEqual( list(hidden_states[0].shape[-3:]), [patch_height, patch_width, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_batching_equivalence(self): def recursive_check(batched_object, single_row_object, model_name, key): if isinstance(batched_object, (list, tuple)): for batched_object_value, single_row_object_value in zip(batched_object, single_row_object): recursive_check(batched_object_value, single_row_object_value, model_name, key) else: batched_row = batched_object[:1] self.assertFalse( torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}" ) self.assertFalse( torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}" ) self.assertFalse( torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}" ) self.assertFalse( torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}" ) self.assertTrue( torch.max(torch.abs(batched_row - single_row_object)) <= 1e-03, msg=( f"Batched and Single row outputs are not equal in {model_name} for key={key}. " f"Difference={torch.max(torch.abs(batched_row - single_row_object))}." ), ) config, batched_input = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config.output_hidden_states = True model_name = model_class.__name__ batched_input_prepared = self._prepare_for_class(batched_input, model_class) model = model_class(config).to(torch_device).eval() batch_size = self.model_tester.batch_size single_row_input = {} for key, value in batched_input_prepared.items(): if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0: single_batch_shape = value.shape[0] // batch_size single_row_input[key] = value[:single_batch_shape] with torch.no_grad(): model_batched_output = model(**batched_input_prepared) model_row_output = model(**single_row_input) for key in model_batched_output: # the first hidden state in SegGPT has weird hack of adding first half of batch with second half if key == "hidden_states": model_batched_output[key] = model_batched_output[key][1:] model_row_output[key] = model_row_output[key][1:] recursive_check(model_batched_output[key], model_row_output[key], model_name, key) @slow def test_model_from_pretrained(self): for model_name in SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SegGptModel.from_pretrained(model_name) self.assertIsNotNone(model) def prepare_img(): ds = load_dataset("EduardoPacheco/seggpt-example-data")["train"] images = [image.convert("RGB") for image in ds["image"]] masks = [image.convert("RGB") for image in ds["mask"]] return images, masks @require_torch @require_vision class SegGptModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return SegGptImageProcessor.from_pretrained("BAAI/seggpt-vit-large") if is_vision_available() else None @slow def test_one_shot_inference(self): model = SegGptForImageSegmentation.from_pretrained("BAAI/seggpt-vit-large").to(torch_device) image_processor = self.default_image_processor images, masks = prepare_img() input_image = images[1] prompt_image = images[0] prompt_mask = masks[0] inputs = image_processor( images=input_image, prompt_images=prompt_image, prompt_masks=prompt_mask, return_tensors="pt" ) inputs = inputs.to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 3, 896, 448)) self.assertEqual(outputs.pred_masks.shape, expected_shape) expected_slice = torch.tensor( [ [[-2.1208, -2.1190, -2.1198], [-2.1237, -2.1228, -2.1227], [-2.1232, -2.1226, -2.1228]], [[-2.0405, -2.0396, -2.0403], [-2.0434, -2.0434, -2.0433], [-2.0428, -2.0432, -2.0434]], [[-1.8102, -1.8088, -1.8099], [-1.8131, -1.8126, -1.8129], [-1.8130, -1.8128, -1.8131]], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.pred_masks[0, :, :3, :3], expected_slice, atol=1e-4)) result = image_processor.post_process_semantic_segmentation(outputs, [input_image.size[::-1]])[0] result_expected_shape = torch.Size((170, 297)) expected_area = 1082 area = (result > 0).sum().item() self.assertEqual(result.shape, result_expected_shape) self.assertEqual(area, expected_area) @slow def test_few_shot_inference(self): model = SegGptForImageSegmentation.from_pretrained("BAAI/seggpt-vit-large").to(torch_device) image_processor = self.default_image_processor images, masks = prepare_img() input_images = [images[1]] * 2 prompt_images = [images[0], images[2]] prompt_masks = [masks[0], masks[2]] inputs = image_processor( images=input_images, prompt_images=prompt_images, prompt_masks=prompt_masks, return_tensors="pt" ) inputs = {k: v.to(torch_device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs, feature_ensemble=True) expected_shape = torch.Size((2, 3, 896, 448)) expected_slice = torch.tensor( [ [[-2.1201, -2.1192, -2.1189], [-2.1217, -2.1210, -2.1204], [-2.1216, -2.1202, -2.1194]], [[-2.0393, -2.0390, -2.0387], [-2.0402, -2.0402, -2.0397], [-2.0400, -2.0394, -2.0388]], [[-1.8083, -1.8076, -1.8077], [-1.8105, -1.8102, -1.8099], [-1.8105, -1.8095, -1.8090]], ] ).to(torch_device) self.assertEqual(outputs.pred_masks.shape, expected_shape) self.assertTrue(torch.allclose(outputs.pred_masks[0, :, 448:451, :3], expected_slice, atol=4e-4))
transformers/tests/models/seggpt/test_modeling_seggpt.py/0
{ "file_path": "transformers/tests/models/seggpt/test_modeling_seggpt.py", "repo_id": "transformers", "token_count": 7165 }
432
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, require_torchaudio from transformers.utils import FEATURE_EXTRACTOR_NAME from .test_feature_extraction_speech_to_text import floats_list SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") @require_torch @require_torchaudio @require_sentencepiece class Speech2TextProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 24, "num_mel_bins": 24, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME) def get_tokenizer(self, **kwargs): return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = Speech2TextProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = Speech2TextProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = Speech2TextProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers/tests/models/speech_to_text/test_processor_speech_to_text.py/0
{ "file_path": "transformers/tests/models/speech_to_text/test_processor_speech_to_text.py", "repo_id": "transformers", "token_count": 2448 }
433
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch StableLm model. """ import unittest from parameterized import parameterized from transformers import StableLmConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_bitsandbytes, require_flash_attn, require_torch, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, StableLmForCausalLM, StableLmForSequenceClassification, StableLmModel, ) # Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm class StableLmModelTester: # Ignore copy def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return StableLmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = StableLmModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = StableLmModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = StableLmForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = StableLmForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch # Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": StableLmModel, "text-classification": StableLmForSequenceClassification, # TODO (ydshieh): check why these two fail. Fix them or skip them in a better way. # "text-generation": StableLmForCausalLM, # "zero-shot": StableLmForSequenceClassification, } if is_torch_available() else {} ) all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else () test_headmasking = False test_pruning = False def setUp(self): self.model_tester = StableLmModelTester(self) self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_stablelm_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_stablelm_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_stablelm_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = StableLmForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = StableLmModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = StableLmModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class StableLmModelIntegrationTest(unittest.TestCase): @slow def test_model_stablelm_3b_4e1t_logits(self): input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)} model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device) model.eval() output = model(**input_ids).logits # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device) self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4)) # Expected logits sliced from [0, 0, 0:30] EXPECTED_SLICE = torch.tensor([7.1030, -1.4195, 9.9206, 7.7008, 4.9891, 4.2169, 5.5426, 3.7878, 6.7593, 5.7360, 8.4691, 5.5448, 5.0544, 10.4129, 8.5573, 13.0405, 7.3265, 3.5868, 6.1106, 5.9406, 5.6376, 5.7490, 5.4850, 4.8124, 5.1991, 4.6419, 4.5719, 9.9588, 6.7222, 4.5070]).to(torch_device) # fmt: skip self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4)) @slow def test_model_stablelm_3b_4e1t_generation(self): tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") input_ids = tokenizer.encode( "My favorite food has always been pizza, but lately", return_tensors="pt", ) outputs = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(outputs[0], skip_special_tokens=True) EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I’ve been craving something different. I’ve been trying to eat healthier and I’ve""" self.assertEqual(text, EXPECTED_TEXT_COMPLETION) @require_bitsandbytes @slow @require_flash_attn def test_model_3b_long_prompt(self): EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3] input_ids = [306, 338] * 2047 model = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", device_map="auto", torch_dtype="auto", load_in_4bit=True, attn_implementation="flash_attention_2", ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist()) # Copied from transformers.tests.models.llama.test_modeling_llama.LlamaModelTest.test_eager_matches_sdpa_generate with Llama->StableLm,saibo/llama-1B->stabilityai/stablelm-3b-4e1t @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): """ Overwritting the common test as the test is flaky on tiny models """ max_new_tokens = 30 tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") model_sdpa = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = StableLmForCausalLM.from_pretrained( "stabilityai/stablelm-3b-4e1t", torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): if "SdpaAttention" in submodule.__class__.__name__: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") texts = [ "hi here's a longer context, getting longer and", "Hello this is a very long sentence my friend, very long for real", "Today I am in Paris and", ] for padding_side in ["left", "right"]: tokenizer.padding_side = padding_side tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device) res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) with self.subTest(f"{padding_side}"): torch.testing.assert_close( res_eager, res_sdpa, msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}", )
transformers/tests/models/stablelm/test_modeling_stablelm.py/0
{ "file_path": "transformers/tests/models/stablelm/test_modeling_stablelm.py", "repo_id": "transformers", "token_count": 9254 }
434