|
|
|
""" Official evaluation script for v1.0 of the TriviaQA dataset. |
|
Extended from the evaluation script for v1.1 of the SQuAD dataset. """ |
|
from __future__ import print_function |
|
import os |
|
import sys |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
relative_path = os.path.join(current_dir, '..') |
|
|
|
sys.path.append(relative_path) |
|
|
|
from collections import Counter |
|
import string |
|
import re |
|
import sys |
|
import argparse |
|
import utils.dataset_utils |
|
import utils.utils |
|
import json |
|
import csv |
|
f1 = exact_match = common = Wrong = 0 |
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
s = json.dumps(s) |
|
|
|
def remove_articles(text): |
|
return re.sub(r'\b(a|an|the)\b', ' ', text) |
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def handle_punc(text): |
|
exclude = set(string.punctuation + "".join([u"‘", u"’", u"´", u"`"])) |
|
return ''.join(ch if ch not in exclude else ' ' for ch in text) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
def replace_underscore(text): |
|
return text.replace('_', ' ') |
|
|
|
|
|
return white_space_fix(remove_articles(handle_punc(lower(replace_underscore(s))))).strip() |
|
|
|
|
|
def f1_score(prediction, ground_truth): |
|
global Wrong |
|
prediction_tokens = normalize_answer(prediction).split() |
|
print(f"规范化预测:{normalize_answer(prediction)}") |
|
|
|
|
|
ground_truth_tokens = normalize_answer(ground_truth).split() |
|
print(f"规范化答案:{normalize_answer(ground_truth)}") |
|
|
|
common = Counter(prediction_tokens) & Counter(ground_truth_tokens) |
|
print(common) |
|
num_same = sum(common.values()) |
|
print(num_same) |
|
if num_same == 0: |
|
Wrong+=1 |
|
return 0 |
|
precision = 1.0 * num_same / len(prediction_tokens) |
|
|
|
recall = 1.0 * num_same / len(ground_truth_tokens) |
|
|
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return f1 |
|
|
|
|
|
def exact_match_score(prediction, ground_truth): |
|
return normalize_answer(prediction) == normalize_answer(ground_truth) |
|
|
|
|
|
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): |
|
scores_for_ground_truths = [] |
|
score = metric_fn(prediction, ground_truths) |
|
scores_for_ground_truths.append(score) |
|
return max(scores_for_ground_truths) |
|
|
|
|
|
def is_exact_match(answer_object, prediction): |
|
ground_truths = get_ground_truths(answer_object) |
|
for ground_truth in ground_truths: |
|
if exact_match_score(prediction, ground_truth): |
|
return True |
|
return False |
|
|
|
|
|
def has_exact_match(ground_truths, candidates): |
|
for ground_truth in ground_truths: |
|
if ground_truth in candidates: |
|
return True |
|
return False |
|
|
|
|
|
def get_ground_truths(answer): |
|
return answer['NormalizedAliases'] + [normalize_answer(ans) for ans in answer.get('HumanAnswers', [])] |
|
|
|
|
|
def get_oracle_score(ground_truth, predicted_answers, i=None, mute=False,maxline=1000): |
|
exact_match = common = 0 |
|
|
|
common += 1 |
|
prediction = normalize_answer(predicted_answers[i]) |
|
ground_truths = ground_truth[i] |
|
print(f"预测:{prediction}") |
|
print(f"事实{ground_truths}") |
|
em_for_this_question = has_exact_match(ground_truths, prediction) |
|
exact_match += int(em_for_this_question) |
|
|
|
exact_match = 100.0 * exact_match / maxline |
|
|
|
return {'oracle_exact_match': exact_match, 'common': common, 'denominator': maxline,"Wrong":Wrong, |
|
'pred_len': len(predicted_answers), 'gold_len': len(ground_truth)} |
|
|
|
|
|
def evaluate_triviaqa(ground_truth, predicted_answers, i=None, mute=False,maxline=None): |
|
global f1,exact_match,common |
|
common += i |
|
prediction = predicted_answers[i] |
|
ground_truths = ground_truth[i]["Data"]["Answer"] |
|
|
|
|
|
em_for_this_question = metric_max_over_ground_truths( |
|
exact_match_score, prediction, ground_truths) |
|
if em_for_this_question == 0 and not mute: |
|
print("em=0:", prediction, ground_truths) |
|
exact_match += em_for_this_question |
|
f1_for_this_question = metric_max_over_ground_truths( |
|
f1_score, prediction, ground_truths) |
|
f1 += f1_for_this_question |
|
print(f"当前轮次:{i+1}") |
|
print(f"本轮F1率:{f1_for_this_question}") |
|
print(f"累加F1率:{f1}") |
|
print(f"本轮exact:{em_for_this_question}") |
|
print(f"累加exact:{exact_match}") |
|
|
|
|
|
|
|
exact_match_mean = exact_match / (i+1) |
|
f1_mean = f1 / (i+1) |
|
|
|
print(f"平均F1率:{f1_mean}") |
|
print(f"平均exact率:{exact_match_mean}") |
|
|
|
return {'exact_match': exact_match_mean, 'f1': f1_mean, 'common': common, 'denominator': i+1,"Wrong":Wrong, |
|
'pred_len': len(predicted_answers), 'gold_len': len(ground_truth)} |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Evaluation for TriviaQA {}'.format(expected_version)) |
|
parser.add_argument('--dataset_file',default="C:/Users/94427/kashiwa/DISC-Assignment/Experiment/TriviaQA/TriviaQA_test_format1k.jsonl", help='Dataset file') |
|
parser.add_argument('--prediction_file',default="C:/Users/94427/kashiwa/DISC-Assignment/Experiment/TriviaQA/result/TriviaQA_GPT3.5_answers1k.csv", help='Prediction File') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
expected_version = 1.0 |
|
args = get_args() |
|
|
|
|
|
dataset_json = args.dataset_file |
|
prediction_json = args.prediction_file |
|
|
|
dataset_dict = [] |
|
|
|
prediction_dict = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
with open(args.dataset_file, 'r',encoding="utf-8") as file: |
|
for line in file: |
|
json_data = json.loads(line) |
|
dataset_dict.append(json_data) |
|
|
|
|
|
|
|
|
|
|
|
with open(args.prediction_file, newline='',encoding="utf-8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
|
|
|
|
for row in reader: |
|
prediction_dict.append(row) |
|
|
|
|
|
|
|
|
|
for i in range(0,1000): |
|
|
|
|
|
|
|
print(f"当前行数:{i}") |
|
key_to_ground_truth = dataset_dict |
|
predictions = prediction_dict |
|
eval_dict = evaluate_triviaqa(key_to_ground_truth, predictions,i=i,maxline=1000) |
|
print(eval_dict) |
|
|