text
stringlengths 17
3.65k
| code
stringlengths 70
5.84k
|
---|---|
Chen Prime Number | Python3 program to check Chen Prime number ; Utility function to Check Semi - prime number ; Increment count of prime number ; If count is greater than 2 , break loop ; If number is greater than 1 , add it to the count variable as it indicates the number remain is prime number ; Return '1' if count is equal to '2' else return '0 ; Utility function to check if a number is prime or not ; Corner cases ; This is checked so that we can skip middle five numbers in below loop ; Function to check if the Given number is Chen prime number or not ; Driver code | import math NEW_LINE def isSemiPrime ( num ) : NEW_LINE INDENT cnt = 0 NEW_LINE for i in range ( 2 , int ( math . sqrt ( num ) ) + 1 ) : NEW_LINE INDENT while num % i == 0 : NEW_LINE INDENT num /= i NEW_LINE DEDENT cnt += 1 NEW_LINE if cnt >= 2 : NEW_LINE INDENT break NEW_LINE DEDENT DEDENT if ( num > 1 ) : NEW_LINE INDENT cnt += 1 NEW_LINE DEDENT DEDENT ' NEW_LINE INDENT return cnt == 2 NEW_LINE DEDENT def isPrime ( n ) : NEW_LINE INDENT if ( n <= 1 ) : NEW_LINE INDENT return False NEW_LINE DEDENT if ( n <= 3 ) : NEW_LINE INDENT return True NEW_LINE DEDENT if ( n % 2 == 0 or n % 3 == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT i = 5 NEW_LINE while ( i * i <= n ) : NEW_LINE INDENT if ( n % i == 0 or n % ( i + 2 ) == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT i = i + 6 NEW_LINE DEDENT return True NEW_LINE DEDENT def isChenPrime ( n ) : NEW_LINE INDENT if ( isPrime ( n ) and ( isSemiPrime ( n + 2 ) or isPrime ( n + 2 ) ) ) : NEW_LINE INDENT return True NEW_LINE DEDENT else : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT n = 7 NEW_LINE if ( isChenPrime ( n ) ) : NEW_LINE INDENT print ( " YES " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " NO " ) ; NEW_LINE DEDENT |
Thabit number | Utility function to Check power of two ; function to check if the given number is Thabit Number ; Add 1 to the number ; Divide the number by 3 ; Check if the given number is power of 2 ; Driver Program ; Check if number is thabit number | def isPowerOfTwo ( n ) : NEW_LINE INDENT return ( n and ( not ( n & ( n - 1 ) ) ) ) NEW_LINE DEDENT def isThabitNumber ( n ) : NEW_LINE INDENT n = n + 1 ; NEW_LINE if ( n % 3 == 0 ) : NEW_LINE INDENT n = n // 3 ; NEW_LINE DEDENT else : NEW_LINE return False NEW_LINE if ( isPowerOfTwo ( n ) ) : NEW_LINE INDENT return True NEW_LINE DEDENT else : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT n = 47 NEW_LINE if ( isThabitNumber ( n ) ) : NEW_LINE INDENT print ( " YES " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " NO " ) NEW_LINE DEDENT |
Sum of all the prime numbers in a given range | Suppose the constraint is N <= 1000 ; Declare an array for dynamic approach ; Method to compute the array ; Declare an extra array as array ; Iterate the loop till sqrt ( N ) Time Complexity is O ( log ( n ) X sqrt ( N ) ) ; if ith element of arr is 0 i . e . marked as prime ; mark all of it 's multiples till N as non-prime by setting the locations to 1 ; Update the array ' dp ' with the running sum of prime numbers within the range [ 1 , N ] Time Complexity is O ( n ) ; Here , dp [ i ] is the sum of all the prime numbers within the range [ 1 , i ] ; Driver Code ; Compute dp | N = 1000 NEW_LINE dp = [ 0 ] * ( N + 1 ) NEW_LINE def sieve ( ) : NEW_LINE INDENT array = [ 0 ] * ( N + 1 ) NEW_LINE array [ 0 ] = 1 NEW_LINE array [ 1 ] = 1 NEW_LINE for i in range ( 2 , math . ceil ( math . sqrt ( N ) + 1 ) ) : NEW_LINE INDENT if array [ i ] == 0 : NEW_LINE INDENT for j in range ( i * i , N + 1 , i ) : NEW_LINE INDENT array [ j ] = 1 NEW_LINE DEDENT DEDENT DEDENT runningPrimeSum = 0 NEW_LINE for i in range ( 1 , N + 1 ) : NEW_LINE INDENT if array [ i ] == 0 : NEW_LINE INDENT runningPrimeSum += i NEW_LINE DEDENT dp [ i ] = runningPrimeSum NEW_LINE DEDENT DEDENT l = 4 NEW_LINE r = 13 NEW_LINE sieve ( ) NEW_LINE print ( dp [ r ] - dp [ l - 1 ] ) NEW_LINE |
Smallest Integer to be inserted to have equal sums | Python3 program to find the smallest number to be added to make the sum of left and right subarrays equal ; Function to find the minimum value to be added ; Variable to store entire array sum ; Variables to store sum of subarray1 and subarray 2 ; minimum value to be added ; Traverse through the array ; Sum of both halves ; Calculate minimum number to be added ; Driver code ; Length of array | import sys NEW_LINE def findMinEqualSums ( a , N ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 0 , N ) : NEW_LINE INDENT sum = sum + a [ i ] NEW_LINE DEDENT sum1 = 0 NEW_LINE sum2 = 0 NEW_LINE min = sys . maxsize NEW_LINE for i in range ( 0 , N - 1 ) : NEW_LINE INDENT sum1 += a [ i ] NEW_LINE sum2 = sum - sum1 NEW_LINE if ( abs ( sum1 - sum2 ) < min ) : NEW_LINE INDENT min = abs ( sum1 - sum2 ) NEW_LINE DEDENT if ( min == 0 ) : NEW_LINE INDENT break NEW_LINE DEDENT DEDENT return min NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT a = [ 3 , 2 , 1 , 5 , 7 , 8 ] NEW_LINE N = len ( a ) NEW_LINE print ( findMinEqualSums ( a , N ) ) NEW_LINE DEDENT |
Sum of the first N Prime numbers | Python3 implementation of above solution ; Create a boolean array " prime [ 0 . . n ] " and initialize all entries it as true . A value in prime [ i ] will finally be false if i is Not a prime , else true . ; If prime [ p ] is not changed , then it is a prime ; Set all multiples of p to non - prime ; find the sum of 1 st N prime numbers ; count of prime numbers ; sum of prime numbers ; if the number is prime add it ; increase the count ; get to next number ; create the sieve ; find the value of 1 st n prime numbers | MAX = 10000 NEW_LINE prime = [ True for i in range ( MAX + 1 ) ] NEW_LINE def SieveOfEratosthenes ( ) : NEW_LINE INDENT prime [ 1 ] = False NEW_LINE for p in range ( 2 , MAX + 1 ) : NEW_LINE INDENT if ( prime [ p ] == True ) : NEW_LINE INDENT i = p * 2 NEW_LINE while ( i <= MAX ) : NEW_LINE INDENT prime [ i ] = False NEW_LINE i = i + p NEW_LINE DEDENT DEDENT DEDENT DEDENT def solve ( n ) : NEW_LINE INDENT count = 0 NEW_LINE num = 1 NEW_LINE total = 0 NEW_LINE while ( count < n ) : NEW_LINE INDENT if ( prime [ num ] ) : NEW_LINE INDENT total = total + num NEW_LINE count = count + 1 NEW_LINE DEDENT num = num + 1 NEW_LINE DEDENT return total NEW_LINE DEDENT SieveOfEratosthenes ( ) NEW_LINE n = 4 NEW_LINE print ( " Sum β of β 1st β N β prime β " + " numbers β are β : " , solve ( n ) ) NEW_LINE |
Implementation of Wilson Primality test | Function to calculate the factorial ; Function to check if the number is prime or not ; Driver code | def fact ( p ) : NEW_LINE INDENT if ( p <= 1 ) : NEW_LINE INDENT return 1 NEW_LINE DEDENT return p * fact ( p - 1 ) NEW_LINE DEDENT def isPrime ( p ) : NEW_LINE INDENT if ( p == 4 ) : NEW_LINE INDENT return 0 NEW_LINE DEDENT return ( fact ( p >> 1 ) % p ) NEW_LINE DEDENT if ( isPrime ( 127 ) == 0 ) : NEW_LINE INDENT print ( 0 ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( 1 ) NEW_LINE DEDENT |
Find the total Number of Digits in ( N ! ) N | Python program to find the total Number of Digits in ( N ! ) ^ N ; Function to find the total Number of Digits in ( N ! ) ^ N ; Finding X ; Calculating N * X ; Floor ( N * X ) + 1 equivalent to floor ( sum ) + 1 ; Driver code | import math as ma NEW_LINE def CountDigits ( n ) : NEW_LINE INDENT if ( n == 1 ) : NEW_LINE INDENT return 1 NEW_LINE DEDENT sum = 0 NEW_LINE for i in range ( 2 , n + 1 ) : NEW_LINE INDENT sum += ma . log ( i , 10 ) NEW_LINE DEDENT sum *= n NEW_LINE return ma . ceil ( sum ) NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT N = 5 NEW_LINE print ( CountDigits ( N ) ) NEW_LINE DEDENT |
Find the value of max ( f ( x ) ) | Python 3 implementation of above approach ; Function to calculate the value ; forming the prefix sum arrays ; Taking the query ; finding the sum in the range l to r in array a ; finding the sum in the range l to r in array b ; Finding the max value of the function ; Finding the min value of the function ; Driver code | MAX = 200006 NEW_LINE CONS = 32766 NEW_LINE def calc ( a , b , lr , q , n ) : NEW_LINE INDENT cc = 0 NEW_LINE for i in range ( n - 1 ) : NEW_LINE INDENT a [ i + 1 ] += a [ i ] NEW_LINE b [ i + 1 ] += b [ i ] NEW_LINE DEDENT while ( q > 0 ) : NEW_LINE INDENT l = lr [ cc ] NEW_LINE cc += 1 NEW_LINE r = lr [ cc ] NEW_LINE cc += 1 NEW_LINE l -= 2 NEW_LINE r -= 1 NEW_LINE suma = a [ r ] NEW_LINE sumb = b [ r ] NEW_LINE if ( l >= 0 ) : NEW_LINE INDENT suma -= a [ l ] NEW_LINE sumb -= b [ l ] NEW_LINE DEDENT M = max ( CONS * suma + CONS * sumb , - CONS * suma - CONS * sumb ) NEW_LINE M = max ( M , max ( CONS * suma - CONS * sumb , - CONS * suma + CONS * sumb ) ) NEW_LINE m = min ( CONS * suma + CONS * sumb , - CONS * suma - CONS * sumb ) NEW_LINE m = min ( m , min ( CONS * suma - CONS * sumb , - CONS * suma + CONS * sumb ) ) NEW_LINE print ( M - m ) NEW_LINE q -= 1 NEW_LINE DEDENT DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n = 5 NEW_LINE q = 2 NEW_LINE a = [ 0 , 7 , 3 , 4 , 5 ] NEW_LINE b = [ 0 , 3 , 1 , 2 , 3 ] NEW_LINE lr = [ 0 ] * ( q * 2 ) NEW_LINE lr [ 0 ] = 1 NEW_LINE lr [ 1 ] = 1 NEW_LINE lr [ 2 ] = 1 NEW_LINE lr [ 3 ] = 3 NEW_LINE calc ( a , b , lr , q , n ) NEW_LINE DEDENT |
Program to find the Nth number of the series 2 , 10 , 24 , 44 , 70. ... . | Function for calculating Nth term of series ; return nth term ; Driver code ; Function Calling | def NthTerm ( N ) : NEW_LINE INDENT x = ( 3 * N * N ) % 1000000009 NEW_LINE return ( ( x - N + 1000000009 ) % 1000000009 ) NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT N = 4 NEW_LINE print ( NthTerm ( N ) ) NEW_LINE DEDENT |
Sum of first N natural numbers by taking powers of 2 as negative number | to store power of 2 ; to store presum of the power of 2 's ; function to find power of 2 ; to store power of 2 ; to store pre sum ; Function to find the sum ; first store sum of first n natural numbers . ; find the first greater number than given number then minus double of this from answer ; Driver code ; function call ; function call | power = [ 0 ] * 31 NEW_LINE pre = [ 0 ] * 31 NEW_LINE def PowerOfTwo ( ) : NEW_LINE INDENT x = 1 NEW_LINE for i in range ( 31 ) : NEW_LINE INDENT power [ i ] = x NEW_LINE x *= 2 NEW_LINE DEDENT pre [ 0 ] = 1 NEW_LINE for i in range ( 1 , 31 ) : NEW_LINE INDENT pre [ i ] = pre [ i - 1 ] + power [ i ] NEW_LINE DEDENT DEDENT def Sum ( n ) : NEW_LINE INDENT ans = n * ( n + 1 ) // 2 NEW_LINE for i in range ( 31 ) : NEW_LINE INDENT if ( power [ i ] > n ) : NEW_LINE INDENT ans -= 2 * pre [ i - 1 ] NEW_LINE break NEW_LINE DEDENT DEDENT return ans NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT PowerOfTwo ( ) NEW_LINE n = 4 NEW_LINE print ( Sum ( n ) ) NEW_LINE DEDENT |
Check if a number is Quartan Prime or not | Utility function to check if a number is prime or not ; Corner cases ; This is checked so that we can skip middle five numbers in below loop ; Driver Code ; Check if number is prime and of the form 16 * n + 1 | def isPrime ( n ) : NEW_LINE INDENT if ( n <= 1 ) : NEW_LINE INDENT return False NEW_LINE DEDENT if ( n <= 3 ) : NEW_LINE INDENT return True NEW_LINE DEDENT if ( n % 2 == 0 or n % 3 == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT i = 5 NEW_LINE while ( i * i <= n ) : NEW_LINE INDENT if ( n % i == 0 or n % ( i + 2 ) == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT i = i + 6 NEW_LINE DEDENT return True NEW_LINE DEDENT n = 17 NEW_LINE if ( isPrime ( n ) and ( n % 16 == 1 ) ) : NEW_LINE INDENT print ( " YES " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " NO " ) NEW_LINE DEDENT |
Print a number strictly less than a given number such that all its digits are distinct . | Function to find a number less than n such that all its digits are distinct ; looping through numbers less than n ; initializing a hash array ; creating a copy of i ; initializing variables to compare lengths of digits ; counting frequency of the digits ; checking if each digit is present once ; Driver code | def findNumber ( n ) : NEW_LINE INDENT i = n - 1 NEW_LINE while ( i >= 0 ) : NEW_LINE INDENT count = [ 0 for i in range ( 10 ) ] NEW_LINE x = i NEW_LINE count1 = 0 NEW_LINE count2 = 0 NEW_LINE while ( x ) : NEW_LINE INDENT count [ x % 10 ] += 1 NEW_LINE x = int ( x / 10 ) NEW_LINE count1 += 1 NEW_LINE DEDENT for j in range ( 0 , 10 , 1 ) : NEW_LINE INDENT if ( count [ j ] == 1 ) : NEW_LINE INDENT count2 += 1 NEW_LINE DEDENT DEDENT if ( count1 == count2 ) : NEW_LINE INDENT return i NEW_LINE DEDENT i -= 1 NEW_LINE DEDENT DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 8490 NEW_LINE print ( findNumber ( n ) ) NEW_LINE DEDENT |
Check if two Linked Lists are permutations of each other | A linked list node ; Function to check if two linked lists are permutations of each other first : reference to head of first linked list second : reference to head of second linked list ; Variables to keep track of sum and multiplication ; Traversing through linked list and calculating sum and multiply ; Traversing through linked list and calculating sum and multiply ; Function to add a node at the beginning of Linked List ; Allocate node ; Put in the data ; Link the old list off the new node ; Move the head to point to the new node ; Driver Code ; First constructed linked list is : 12 . 35 . 1 . 10 . 34 . 1 ; Second constructed linked list is : 35 . 1 . 12 . 1 . 10 . 34 | class Node : NEW_LINE INDENT def __init__ ( self ) : NEW_LINE INDENT self . data = 0 NEW_LINE self . next = None NEW_LINE DEDENT DEDENT def isPermutation ( first , second ) : NEW_LINE INDENT sum1 = 0 NEW_LINE sum2 = 0 NEW_LINE mul1 = 1 NEW_LINE mul2 = 1 NEW_LINE temp1 = first NEW_LINE while ( temp1 != None ) : NEW_LINE INDENT sum1 += temp1 . data NEW_LINE mul1 *= temp1 . data NEW_LINE temp1 = temp1 . next NEW_LINE DEDENT temp2 = second NEW_LINE while ( temp2 != None ) : NEW_LINE INDENT sum2 += temp2 . data NEW_LINE mul2 *= temp2 . data NEW_LINE temp2 = temp2 . next NEW_LINE DEDENT return ( ( sum1 == sum2 ) and ( mul1 == mul2 ) ) NEW_LINE DEDENT def push ( head_ref , new_data ) : NEW_LINE INDENT new_node = Node ( ) NEW_LINE new_node . data = new_data NEW_LINE new_node . next = head_ref NEW_LINE head_ref = new_node NEW_LINE return head_ref NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT first = None NEW_LINE first = push ( first , 1 ) NEW_LINE first = push ( first , 34 ) NEW_LINE first = push ( first , 10 ) NEW_LINE first = push ( first , 1 ) NEW_LINE first = push ( first , 35 ) NEW_LINE first = push ( first , 12 ) NEW_LINE second = None NEW_LINE second = push ( second , 35 ) NEW_LINE second = push ( second , 1 ) NEW_LINE second = push ( second , 12 ) NEW_LINE second = push ( second , 1 ) NEW_LINE second = push ( second , 10 ) NEW_LINE second = push ( second , 34 ) NEW_LINE if ( isPermutation ( first , second ) ) : NEW_LINE INDENT print ( " Yes " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) NEW_LINE DEDENT DEDENT |
Find two distinct prime numbers with given product | from math lib . import everything ; Function to generate all prime numbers less than n ; Initialize all entries of boolean array as true . A value in isPrime [ i ] will finally be false if i is Not a prime , else true bool isPrime [ n + 1 ] ; ; If isPrime [ p ] is not changed , then it is a prime ; Function to print a prime pair with given product ; Generating primes using Sieve ; Traversing all numbers to find first pair ; Driver code | from math import * NEW_LINE def SieveOfEratosthenes ( n , isPrime ) : NEW_LINE INDENT isPrime [ 0 ] , isPrime [ 1 ] = False , False NEW_LINE for i in range ( 2 , n + 1 ) : NEW_LINE INDENT isPrime [ i ] = True NEW_LINE DEDENT for p in range ( 2 , int ( sqrt ( n ) ) + 1 ) : NEW_LINE INDENT if isPrime [ p ] == True : NEW_LINE INDENT for i in range ( p * 2 , n + 1 , p ) : NEW_LINE INDENT isPrime [ i ] = False NEW_LINE DEDENT DEDENT DEDENT DEDENT def findPrimePair ( n ) : NEW_LINE INDENT flag = 0 NEW_LINE isPrime = [ False ] * ( n + 1 ) NEW_LINE SieveOfEratosthenes ( n , isPrime ) NEW_LINE for i in range ( 2 , n ) : NEW_LINE INDENT x = int ( n / i ) NEW_LINE if ( isPrime [ i ] & isPrime [ x ] and x != i and x * i == n ) : NEW_LINE INDENT print ( i , x ) NEW_LINE flag = 1 NEW_LINE break NEW_LINE DEDENT DEDENT if not flag : NEW_LINE INDENT print ( " No β such β pair β found " ) NEW_LINE DEDENT DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n = 39 ; NEW_LINE findPrimePair ( n ) NEW_LINE DEDENT |
Program to find the common ratio of three numbers | Python 3 implementation of above approach ; Function to print a : b : c ; To print the given proportion in simplest form . ; Driver code ; Get ratio a : b1 ; Get ratio b2 : c ; Find the ratio a : b : c | import math NEW_LINE def solveProportion ( a , b1 , b2 , c ) : NEW_LINE INDENT A = a * b2 NEW_LINE B = b1 * b2 NEW_LINE C = b1 * c NEW_LINE gcd1 = math . gcd ( math . gcd ( A , B ) , C ) NEW_LINE print ( str ( A // gcd1 ) + " : " + str ( B // gcd1 ) + " : " + str ( C // gcd1 ) ) NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT a = 3 NEW_LINE b1 = 4 NEW_LINE b2 = 8 NEW_LINE c = 9 NEW_LINE solveProportion ( a , b1 , b2 , c ) NEW_LINE DEDENT |
Number of divisors of a given number N which are divisible by K | Function to count number of divisors of N which are divisible by K ; Variable to store count of divisors ; Traverse from 1 to n ; increase the count if both the conditions are satisfied ; Driver code | def countDivisors ( n , k ) : NEW_LINE INDENT count = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT if ( n % i == 0 and i % k == 0 ) : NEW_LINE INDENT count += 1 NEW_LINE DEDENT DEDENT return count NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n , k = 12 , 3 NEW_LINE print ( countDivisors ( n , k ) ) NEW_LINE DEDENT |
Calculate volume and surface area of a cone | Python3 program to calculate Volume and Surface area of Cone ; Function to calculate Volume of Cone ; Function To Calculate Surface Area of Cone ; Driver Code ; Printing value of volume and surface area | import math NEW_LINE pi = math . pi NEW_LINE def volume ( r , h ) : NEW_LINE INDENT return ( 1 / 3 ) * pi * r * r * h NEW_LINE DEDENT def surfacearea ( r , s ) : NEW_LINE INDENT return pi * r * s + pi * r * r NEW_LINE DEDENT radius = float ( 5 ) NEW_LINE height = float ( 12 ) NEW_LINE slat_height = float ( 13 ) NEW_LINE print ( " Volume β Of β Cone β : β " , volume ( radius , height ) ) NEW_LINE print ( " Surface β Area β Of β Cone β : β " , surfacearea ( radius , slat_height ) ) NEW_LINE |
Program to find the Nth term of the series 0 , 14 , 40 , 78 , 124 , ... | calculate sum upto Nth term of series ; return the final sum ; Driver code | def nthTerm ( n ) : NEW_LINE INDENT return int ( 6 * pow ( n , 2 ) - 4 * n - 2 ) NEW_LINE DEDENT N = 4 NEW_LINE print ( nthTerm ( N ) ) NEW_LINE |
Program to find the Nth term of series 5 , 10 , 17 , 26 , 37 , 50 , 65 , 82 , ... | Python3 program to find the N - th term of the series : 5 , 10 , 17 , 26 , 37 , 50 , 65 , 82 , ... ; calculate Nth term of series ; return the final sum ; Driver code | from math import * NEW_LINE def nthTerm ( n ) : NEW_LINE INDENT return pow ( n , 2 ) + 2 * n + 2 NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT N = 4 NEW_LINE print ( nthTerm ( N ) ) NEW_LINE DEDENT |
Find nth term of a given recurrence relation | function to return required value ; Get the answer ; Return the answer ; Get the value of n ; function call to prresult | def sum ( n ) : NEW_LINE INDENT ans = ( n * ( n - 1 ) ) / 2 ; NEW_LINE return ans NEW_LINE DEDENT n = 5 NEW_LINE print ( int ( sum ( n ) ) ) NEW_LINE |
Program to find Nth term of the series 3 , 12 , 29 , 54 , 87 , ... | calculate Nth term of series ; Return Nth term ; driver code ; declaration of number of terms ; Get the Nth term | def getNthTerm ( N ) : NEW_LINE INDENT return 4 * pow ( N , 2 ) - 3 * N + 2 NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT N = 10 NEW_LINE print ( getNthTerm ( N ) ) NEW_LINE DEDENT |
Find sum of product of number in given series | Python 3 program to find sum of product of number in given series ; function to calculate ( a ^ b ) % p ; Initialize result ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now y = y >> 1 y = y / 2 ; function to return required answer ; modulo inverse of denominator ; calculating commentator part ; calculating t ! ; accumulating the final answer ; Driver Code ; function call to print required sum | MOD = 1000000007 NEW_LINE def power ( x , y , p ) : NEW_LINE INDENT res = 1 NEW_LINE x = x % p NEW_LINE while y > 0 : NEW_LINE INDENT if y & 1 : NEW_LINE INDENT res = ( res * x ) % p NEW_LINE DEDENT x = ( x * x ) % p NEW_LINE DEDENT return res NEW_LINE DEDENT def sumProd ( n , t ) : NEW_LINE INDENT dino = power ( t + 1 , MOD - 2 , MOD ) NEW_LINE ans = 1 NEW_LINE for i in range ( n + t + 1 , n , - 1 ) : NEW_LINE INDENT ans = ( ans % MOD * i % MOD ) % MOD NEW_LINE DEDENT tfact = 1 NEW_LINE for i in range ( 1 , t + 1 ) : NEW_LINE INDENT tfact = ( tfact * i ) % MOD NEW_LINE DEDENT ans = ans * dino - tfact + MOD NEW_LINE return ans % MOD NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n , t = 3 , 2 NEW_LINE print ( sumProd ( n , t ) ) NEW_LINE DEDENT |
Find the sum of series 3 , 7 , 13 , 21 , 31. ... | Function to calculate sum ; Return sum ; driver code | def findSum ( n ) : NEW_LINE INDENT return ( n * ( pow ( n , 2 ) + 3 * n + 5 ) ) / 3 NEW_LINE DEDENT n = 25 NEW_LINE print ( int ( findSum ( n ) ) ) NEW_LINE |
Minimum Players required to win the game | Python 3 Program to find minimum players required to win the game anyhow ; function to calculate ( a ^ b ) % ( 10 ^ 9 + 7 ) . ; function to find the minimum required player ; computing the nenomenator ; computing modulo inverse of denominator ; final result ; Driver Code | mod = 1000000007 NEW_LINE def power ( a , b ) : NEW_LINE INDENT res = 1 NEW_LINE while ( b ) : NEW_LINE INDENT if ( b & 1 ) : NEW_LINE INDENT res *= a NEW_LINE res %= mod NEW_LINE DEDENT b //= 2 NEW_LINE a *= a NEW_LINE a %= mod NEW_LINE DEDENT return res NEW_LINE DEDENT def minPlayer ( n , k ) : NEW_LINE INDENT num = ( ( power ( k , n ) - 1 ) + mod ) % mod NEW_LINE den = ( power ( k - 1 , mod - 2 ) + mod ) % mod NEW_LINE ans = ( ( ( num * den ) % mod ) * k ) % mod NEW_LINE return ans NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n , k = 3 , 3 NEW_LINE print ( minPlayer ( n , k ) ) NEW_LINE DEDENT |
Sum of Factors of a Number using Prime Factorization | Using SieveOfEratosthenes to find smallest prime factor of all the numbers . For example , if N is 10 , s [ 2 ] = s [ 4 ] = s [ 6 ] = s [ 10 ] = 2 s [ 3 ] = s [ 9 ] = 3 s [ 5 ] = 5 s [ 7 ] = 7 ; Create a boolean list " prime [ 0 . . n ] " and initialize all entries in it as false . ; Initializing smallest factor equal to 2 for all the even numbers ; For odd numbers less then equal to n ; s [ i ] for a prime is the number itself ; For all multiples of current prime number ; i is the smallest prime factor for number " i * j " . ; Function to find sum of all prime factors ; Declaring list to store smallest prime factor of i at i - th index ; Filling values in s [ ] using sieve function calling ; Current prime factor of N ; Power of current prime factor ; N is now Ns [ N ] . If new N also has smallest prime factor as currFactor , increment power ; Update current prime factor as s [ N ] and initializing power of factor as 1. ; Driver Code | def sieveOfEratosthenes ( N , s ) : NEW_LINE INDENT prime = [ False ] * ( N + 1 ) NEW_LINE for i in range ( 2 , N + 1 , 2 ) : NEW_LINE INDENT s [ i ] = 2 NEW_LINE DEDENT for i in range ( 3 , N + 1 , 2 ) : NEW_LINE INDENT if prime [ i ] == False : NEW_LINE INDENT s [ i ] = i NEW_LINE for j in range ( i , ( N + 1 ) // i , 2 ) : NEW_LINE INDENT if prime [ i * j ] == False : NEW_LINE INDENT prime [ i * j ] = True NEW_LINE s [ i * j ] = i NEW_LINE DEDENT DEDENT DEDENT DEDENT DEDENT def findSum ( N ) : NEW_LINE INDENT s = [ 0 ] * ( N + 1 ) NEW_LINE ans = 1 NEW_LINE sieveOfEratosthenes ( N , s ) NEW_LINE currFactor = s [ N ] NEW_LINE power = 1 NEW_LINE while N > 1 : NEW_LINE INDENT N //= s [ N ] NEW_LINE if currFactor == s [ N ] : NEW_LINE INDENT power += 1 NEW_LINE continue NEW_LINE DEDENT sum = 0 NEW_LINE for i in range ( power + 1 ) : NEW_LINE INDENT sum += pow ( currFactor , i ) NEW_LINE DEDENT ans *= sum NEW_LINE currFactor = s [ N ] NEW_LINE power = 1 NEW_LINE DEDENT return ans NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n = 12 NEW_LINE print ( " Sum β of β the β factors β is β : " , end = " β " ) NEW_LINE print ( findSum ( n ) ) NEW_LINE DEDENT |
Find Multiples of 2 or 3 or 5 less than or equal to N | Function to count number of multiples of 2 or 3 or 5 less than or equal to N ; As we have to check divisibility by three numbers , So we can implement bit masking ; we check whether jth bit is set or not , if jth bit is set , simply multiply to prod ; check for set bit ; check multiple of product ; Driver code | def countMultiples ( n ) : NEW_LINE INDENT multiple = [ 2 , 3 , 5 ] NEW_LINE count = 0 NEW_LINE mask = int ( pow ( 2 , 3 ) ) NEW_LINE for i in range ( 1 , mask ) : NEW_LINE INDENT prod = 1 NEW_LINE for j in range ( 3 ) : NEW_LINE INDENT if ( i & ( 1 << j ) ) : NEW_LINE INDENT prod = prod * multiple [ j ] NEW_LINE DEDENT DEDENT if ( bin ( i ) . count ( '1' ) % 2 == 1 ) : NEW_LINE INDENT count = count + n // prod NEW_LINE DEDENT else : NEW_LINE INDENT count = count - n // prod NEW_LINE DEDENT DEDENT return count NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 10 NEW_LINE print ( countMultiples ( n ) ) NEW_LINE DEDENT |
Minimum value of N such that xor from 1 to N is equal to K | Function to find the value of N ; handling case for '0 ; handling case for '1 ; when number is completely divided by 4 then minimum ' x ' will be 'k ; when number divided by 4 gives 3 as remainder then minimum ' x ' will be 'k-1 ; else it is not possible to get k for any value of x ; let the given number be 7 | def findN ( k ) : NEW_LINE ' NEW_LINE INDENT if ( k == 0 ) : NEW_LINE INDENT ans = 3 NEW_LINE DEDENT DEDENT ' NEW_LINE INDENT if ( k == 1 ) : NEW_LINE INDENT ans = 1 NEW_LINE DEDENT DEDENT ' NEW_LINE INDENT elif ( k % 4 == 0 ) : NEW_LINE INDENT ans = k NEW_LINE DEDENT DEDENT ' NEW_LINE INDENT elif ( k % 4 == 3 ) : NEW_LINE INDENT ans = k - 1 NEW_LINE DEDENT else : NEW_LINE INDENT ans = - 1 NEW_LINE DEDENT return ans NEW_LINE DEDENT k = 7 NEW_LINE res = findN ( k ) NEW_LINE if ( res == - 1 ) : NEW_LINE INDENT print ( " Not β possible " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( res ) NEW_LINE DEDENT |
Permutations to arrange N persons around a circular table | Function to find no . of permutations ; Driver Code | def Circular ( n ) : NEW_LINE INDENT Result = 1 NEW_LINE while n > 0 : NEW_LINE INDENT Result = Result * n NEW_LINE n -= 1 NEW_LINE DEDENT return Result NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT n = 4 NEW_LINE print ( Circular ( n - 1 ) ) NEW_LINE DEDENT |
Minimum time required to complete a work by N persons together | Function to calculate the time ; Driver Code | def calTime ( arr , n ) : NEW_LINE INDENT work = 0 NEW_LINE for i in range ( n ) : NEW_LINE INDENT work += 1 / arr [ i ] NEW_LINE DEDENT return 1 / work NEW_LINE DEDENT arr = [ 6.0 , 3.0 , 4.0 ] NEW_LINE n = len ( arr ) NEW_LINE print ( calTime ( arr , n ) , " Hours " ) NEW_LINE |
Find the largest twins in given range | Function to find twins ; Create a boolean array " prime [ 0 . . high ] " and initialize all entries it as true . A value in prime [ i ] will finally be false if i is Not a prime , else true . ; Look for the smallest twin ; If p is not marked , then it is a prime ; Update all multiples of p ; Now print the largest twin in range ; Driver Code | from math import sqrt , floor NEW_LINE def printTwins ( low , high ) : NEW_LINE INDENT prime = [ True for i in range ( high + 1 ) ] NEW_LINE twin = False NEW_LINE prime [ 0 ] = False NEW_LINE prime [ 1 ] = False NEW_LINE k = floor ( sqrt ( high ) ) + 2 NEW_LINE for p in range ( 2 , k , 1 ) : NEW_LINE INDENT if ( prime [ p ] ) : NEW_LINE INDENT for i in range ( p * 2 , high + 1 , p ) : NEW_LINE INDENT prime [ i ] = False NEW_LINE DEDENT DEDENT DEDENT i = high NEW_LINE while ( i >= low ) : NEW_LINE INDENT if ( prime [ i ] and ( i - 2 >= low and prime [ i - 2 ] == True ) ) : NEW_LINE INDENT print ( " Largest β twins β in β given β range : ( " , ( i - 2 ) , " , " , ( i ) , " ) " ) NEW_LINE twin = True NEW_LINE break NEW_LINE DEDENT i -= 1 NEW_LINE DEDENT if ( twin == False ) : NEW_LINE INDENT print ( " No β such β pair β exists " ) NEW_LINE DEDENT DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT printTwins ( 10 , 100 ) NEW_LINE DEDENT |
Complement of a number with any base b | Function to find ( b - 1 ) 's complement ; Calculate number of digits in the given number ; Largest digit in the number system with base b ; Largest number in the number system with base b ; return Complement ; Function to find b 's complement ; b ' s β complement β = β ( b - 1 ) ' s complement + 1 ; Driver code | def prevComplement ( n , b ) : NEW_LINE INDENT maxNum , digits , num = 0 , 0 , n NEW_LINE while n > 1 : NEW_LINE INDENT digits += 1 NEW_LINE n = n // 10 NEW_LINE DEDENT maxDigit = b - 1 NEW_LINE while digits : NEW_LINE INDENT maxNum = maxNum * 10 + maxDigit NEW_LINE digits -= 1 NEW_LINE DEDENT return maxNum - num NEW_LINE DEDENT def complement ( n , b ) : NEW_LINE INDENT return prevComplement ( n , b ) + 1 NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE |
Minimum positive integer value possible of X for given A and B in X = P * A + Q * B | Function to return gcd of a and b ; | def gcd ( a , b ) : NEW_LINE INDENT if a == 0 : NEW_LINE INDENT return b NEW_LINE DEDENT return gcd ( b % a , a ) NEW_LINE DEDENT / * Driver code * / NEW_LINE a = 2 NEW_LINE b = 4 NEW_LINE print ( gcd ( a , b ) ) NEW_LINE |
Count elements in the given range which have maximum number of divisors | Function to count the elements with maximum number of divisors ; to store number of divisors initialise with zero ; to store the maximum number of divisors ; to store required answer ; Find the first divisible number ; Count number of divisors ; Find number of elements with maximum number of divisors ; Driver code | def MaximumDivisors ( X , Y ) : NEW_LINE INDENT arr = [ 0 ] * ( Y - X + 1 ) NEW_LINE mx = 0 NEW_LINE cnt = 0 NEW_LINE i = 1 NEW_LINE while i * i <= Y : NEW_LINE INDENT sq = i * i NEW_LINE if ( ( X // i ) * i >= X ) : NEW_LINE INDENT first_divisible = ( X // i ) * i NEW_LINE DEDENT else : NEW_LINE INDENT first_divisible = ( X // i + 1 ) * i NEW_LINE DEDENT for j in range ( first_divisible , Y + 1 , i ) : NEW_LINE INDENT if j < sq : NEW_LINE INDENT continue NEW_LINE DEDENT elif j == sq : NEW_LINE INDENT arr [ j - X ] += 1 NEW_LINE DEDENT else : NEW_LINE INDENT arr [ j - X ] += 2 NEW_LINE DEDENT DEDENT i += 1 NEW_LINE DEDENT for i in range ( X , Y + 1 ) : NEW_LINE INDENT if arr [ i - X ] > mx : NEW_LINE INDENT cnt = 1 NEW_LINE mx = arr [ i - X ] NEW_LINE DEDENT elif arr [ i - X ] == mx : NEW_LINE INDENT cnt += 1 NEW_LINE DEDENT DEDENT return cnt NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT X = 1 NEW_LINE Y = 10 NEW_LINE print ( MaximumDivisors ( X , Y ) ) NEW_LINE DEDENT |
Find First element in AP which is multiple of given prime | Iterative Function to calculate ( x ^ y ) % p in O ( log y ) ; Initialize result ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now y = y / 2 ; function to find nearest element in common ; base conditions ; Driver Code ; module both A and D ; function call | def power ( x , y , p ) : NEW_LINE INDENT res = 1 NEW_LINE x = x % p NEW_LINE while y > 0 : NEW_LINE INDENT if y & 1 : NEW_LINE INDENT res = ( res * x ) % p NEW_LINE DEDENT y = y >> 1 NEW_LINE x = ( x * x ) % p NEW_LINE DEDENT return res NEW_LINE DEDENT def NearestElement ( A , D , P ) : NEW_LINE INDENT if A == 0 : NEW_LINE INDENT return 0 NEW_LINE DEDENT elif D == 0 : NEW_LINE INDENT return - 1 NEW_LINE DEDENT else : NEW_LINE INDENT X = power ( D , P - 2 , P ) NEW_LINE return ( X * ( P - A ) ) % P NEW_LINE DEDENT DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT A , D , P = 4 , 9 , 11 NEW_LINE A %= P NEW_LINE D %= P NEW_LINE print ( NearestElement ( A , D , P ) ) NEW_LINE DEDENT |
Cunningham chain | Function to print Cunningham chain of the first kind ; Iterate till all elements are printed ; check prime or not ; Driver Code | def print_C ( p0 ) : NEW_LINE INDENT i = 0 ; NEW_LINE while ( True ) : NEW_LINE INDENT flag = 1 ; NEW_LINE x = pow ( 2 , i ) ; NEW_LINE p1 = x * p0 + ( x - 1 ) ; NEW_LINE for k in range ( 2 , p1 ) : NEW_LINE INDENT if ( p1 % k == 0 ) : NEW_LINE INDENT flag = 0 ; NEW_LINE break ; NEW_LINE DEDENT DEDENT if ( flag == 0 ) : NEW_LINE INDENT break ; NEW_LINE DEDENT print ( p1 , end = " β " ) ; NEW_LINE i += 1 ; NEW_LINE DEDENT DEDENT p0 = 2 ; NEW_LINE print_C ( p0 ) ; NEW_LINE |
Count pairs with Bitwise AND as ODD number | Function to count number of odd pairs ; variable for counting odd pairs ; find all pairs ; find AND operation check odd or even ; return number of odd pair ; Driver Code ; calling function findOddPair and print number of odd pair | def findOddPair ( A , N ) : NEW_LINE INDENT oddPair = 0 NEW_LINE for i in range ( 0 , N - 1 ) : NEW_LINE INDENT for j in range ( i + 1 , N - 1 ) : NEW_LINE INDENT if ( ( A [ i ] & A [ j ] ) % 2 != 0 ) : NEW_LINE INDENT oddPair = oddPair + 1 NEW_LINE DEDENT DEDENT DEDENT return oddPair NEW_LINE DEDENT a = [ 5 , 1 , 3 , 2 ] NEW_LINE n = len ( a ) NEW_LINE print ( findOddPair ( a , n ) ) NEW_LINE |
Sudo Placement [ 1.7 ] | Greatest Digital Root | Function to return dig - sum ; Function to print the Digital Roots ; store the largest digital roots ; Iterate till sqrt ( n ) ; if i is a factor ; get the digit sum of both factors i and n / i ; if digit sum is greater then previous maximum ; if digit sum is greater then previous maximum ; if digit sum is same as then previous maximum , then check for larger divisor ; if digit sum is same as then previous maximum , then check for larger divisor ; Print the digital roots ; Driver Code ; Function call to prdigital roots | def summ ( n ) : NEW_LINE INDENT if ( n == 0 ) : NEW_LINE INDENT return 0 ; NEW_LINE DEDENT if ( n % 9 == 0 ) : NEW_LINE INDENT return 9 ; NEW_LINE DEDENT else : NEW_LINE INDENT return ( n % 9 ) ; NEW_LINE DEDENT DEDENT def printDigitalRoot ( n ) : NEW_LINE INDENT maxi = 1 ; NEW_LINE dig = 1 ; NEW_LINE for i in range ( 1 , int ( pow ( n , 1 / 2 ) + 1 ) ) : NEW_LINE INDENT if ( n % i == 0 ) : NEW_LINE INDENT d1 = summ ( n / i ) ; NEW_LINE d2 = summ ( i ) ; NEW_LINE if ( d1 > maxi ) : NEW_LINE INDENT dig = n / i ; NEW_LINE maxi = d1 ; NEW_LINE DEDENT if ( d2 > maxi ) : NEW_LINE INDENT dig = i ; NEW_LINE maxi = d2 ; NEW_LINE DEDENT if ( d1 == maxi ) : NEW_LINE INDENT if ( dig < ( n / i ) ) : NEW_LINE INDENT dig = n / i ; NEW_LINE maxi = d1 ; NEW_LINE DEDENT DEDENT if ( d2 == maxi ) : NEW_LINE INDENT if ( dig < i ) : NEW_LINE INDENT dig = i ; NEW_LINE maxi = d2 ; NEW_LINE DEDENT DEDENT DEDENT DEDENT print ( int ( dig ) , " β " , int ( maxi ) ) ; NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 10 ; NEW_LINE printDigitalRoot ( n ) ; NEW_LINE DEDENT |
Sum of all elements up to Nth row in a Pascal triangle | Function to find sum of all elements upto nth row . ; Initialize sum with 0 ; Calculate 2 ^ n ; Driver unicode | def calculateSum ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE sum = 1 << n ; NEW_LINE return ( sum - 1 ) NEW_LINE DEDENT n = 10 NEW_LINE print ( " Sum β of β all β elements : " , calculateSum ( n ) ) NEW_LINE |
Divide two integers without using multiplication , division and mod operator | Set2 | Python3 program for above approach ; Returns the quotient of dividend / divisor . ; Calculate sign of divisor i . e . , sign will be negative only if either one of them is negative otherwise it will be positive ; Remove signs of dividend and divisor ; Zero division Exception . ; Using Formula derived above . ; Driver code | import math NEW_LINE def Divide ( a , b ) : NEW_LINE INDENT dividend = a ; NEW_LINE divisor = b ; NEW_LINE sign = - 1 if ( ( dividend < 0 ) ^ ( divisor < 0 ) ) else 1 ; NEW_LINE dividend = abs ( dividend ) ; NEW_LINE divisor = abs ( divisor ) ; NEW_LINE if ( divisor == 0 ) : NEW_LINE INDENT print ( " Cannot β Divide β by β 0" ) ; NEW_LINE DEDENT if ( dividend == 0 ) : NEW_LINE INDENT print ( a , " / " , b , " is β equal β to β : " , 0 ) ; NEW_LINE DEDENT if ( divisor == 1 ) : NEW_LINE INDENT print ( a , " / " , b , " is β equal β to β : " , ( sign * dividend ) ) ; NEW_LINE DEDENT print ( a , " / " , b , " is β equal β to β : " , math . floor ( sign * math . exp ( math . log ( dividend ) - math . log ( divisor ) ) ) ) ; NEW_LINE DEDENT a = 10 ; NEW_LINE b = 5 ; NEW_LINE Divide ( a , b ) ; NEW_LINE a = 49 ; NEW_LINE b = - 7 ; NEW_LINE Divide ( a , b ) ; NEW_LINE |
Represent the fraction of two numbers in the string format | Function to return the required fraction in string format ; If the numerator is zero , answer is 0 ; If any one ( out of numerator and denominator ) is - ve , sign of resultant answer - ve . ; Calculate the absolute part ( before decimal point ) . ; Output string to store the answer ; Append sign ; Append the initial part ; If completely divisible , return answer . ; Initialize Remainder ; Position at which fraction starts repeating if it exists ; If this remainder is already seen , then there exists a repeating fraction . ; Index to insert parentheses ; Calculate quotient , append it to result and calculate next remainder ; If repeating fraction exists , insert parentheses . ; Return result . ; Driver code | def calculateFraction ( num , den ) : NEW_LINE INDENT if ( num == 0 ) : NEW_LINE INDENT return "0" NEW_LINE DEDENT sign = - 1 if ( num < 0 ) ^ ( den < 0 ) else 1 NEW_LINE num = abs ( num ) NEW_LINE den = abs ( den ) NEW_LINE initial = num // den NEW_LINE res = " " NEW_LINE if ( sign == - 1 ) : NEW_LINE INDENT res += " - " NEW_LINE DEDENT res += str ( initial ) NEW_LINE if ( num % den == 0 ) : NEW_LINE INDENT return res NEW_LINE DEDENT res += " . " NEW_LINE rem = num % den NEW_LINE mp = { } NEW_LINE index = 0 NEW_LINE repeating = False NEW_LINE while ( rem > 0 and not repeating ) : NEW_LINE INDENT if ( rem in mp ) : NEW_LINE INDENT index = mp [ rem ] NEW_LINE repeating = True NEW_LINE break NEW_LINE DEDENT else : NEW_LINE INDENT mp [ rem ] = len ( res ) NEW_LINE DEDENT rem = rem * 10 NEW_LINE temp = rem // den NEW_LINE res += str ( temp ) NEW_LINE rem = rem % den NEW_LINE DEDENT if ( repeating ) : res += " ) " NEW_LINE INDENT x = res [ : index ] NEW_LINE x += " ( " NEW_LINE x += res [ index : ] NEW_LINE res = x NEW_LINE DEDENT return res NEW_LINE DEDENT if __name__ == " _ _ main _ _ " : NEW_LINE INDENT num = 50 NEW_LINE den = 22 NEW_LINE print ( calculateFraction ( num , den ) ) NEW_LINE num = - 1 NEW_LINE den = 2 NEW_LINE print ( calculateFraction ( num , den ) ) NEW_LINE DEDENT |
Check if the n | Return if the nth term is even or odd . ; If a is even ; If b is even ; If b is odd ; If a is odd ; If b is odd ; If b is eve ; Driver Code | def findNature ( a , b , n ) : NEW_LINE INDENT if ( n == 0 ) : NEW_LINE INDENT return ( a & 1 ) ; NEW_LINE DEDENT if ( n == 1 ) : NEW_LINE INDENT return ( b & 1 ) ; NEW_LINE DEDENT if ( ( a & 1 ) == 0 ) : NEW_LINE INDENT if ( ( b & 1 ) == 0 ) : NEW_LINE INDENT return False ; NEW_LINE DEDENT else : NEW_LINE INDENT return True if ( n % 3 != 0 ) else False ; NEW_LINE DEDENT DEDENT else : NEW_LINE INDENT if ( ( b & 1 ) == 0 ) : NEW_LINE INDENT return True if ( ( n - 1 ) % 3 != 0 ) else False ; NEW_LINE DEDENT else : NEW_LINE INDENT return True if ( ( n + 1 ) % 3 != 0 ) else False ; NEW_LINE DEDENT DEDENT DEDENT a = 2 ; NEW_LINE b = 4 ; NEW_LINE n = 3 ; NEW_LINE if ( findNature ( a , b , n ) == True ) : NEW_LINE INDENT print ( " Odd " , end = " β " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " Even " , end = " β " ) ; NEW_LINE DEDENT |
Check if mirror image of a number is same if displayed in seven segment display | Return " Yes " , if the mirror image of number is same as the given number Else return " No " ; Checking if the number contain only 0 , 1 , 8. ; Checking if the number is palindrome or not . ; If corresponding index is not equal . ; Driver Code | def checkEqual ( S ) : NEW_LINE INDENT for i in range ( len ( S ) ) : NEW_LINE INDENT if ( S [ i ] != '1' and S [ i ] != '0' and S [ i ] != '8' ) : NEW_LINE INDENT return " No " ; NEW_LINE DEDENT DEDENT start = 0 ; NEW_LINE end = len ( S ) - 1 ; NEW_LINE while ( start < end ) : NEW_LINE INDENT if ( S [ start ] != S [ end ] ) : NEW_LINE INDENT return " No " ; NEW_LINE DEDENT start += 1 ; NEW_LINE end -= 1 ; NEW_LINE DEDENT return " Yes " ; NEW_LINE DEDENT S = "101" ; NEW_LINE print ( checkEqual ( S ) ) ; NEW_LINE |
Check whether a given number is Polydivisible or Not | function to check polydivisible number ; digit extraction of input number ; store the digits in an array ; n contains first i digits ; n should be divisible by i ; Driver Code | def check_polydivisible ( n ) : NEW_LINE INDENT N = n NEW_LINE digit = [ ] NEW_LINE while ( n > 0 ) : NEW_LINE INDENT digit . append ( n % 10 ) NEW_LINE n /= 10 NEW_LINE DEDENT digit . reverse ( ) NEW_LINE flag = True NEW_LINE n = digit [ 0 ] NEW_LINE for i in range ( 1 , len ( digit ) , 1 ) : NEW_LINE INDENT n = n * 10 + digit [ i ] NEW_LINE if ( n % ( i + 1 ) != 0 ) : NEW_LINE INDENT flag = False NEW_LINE break NEW_LINE DEDENT DEDENT if ( flag ) : NEW_LINE INDENT print ( N , " is β Polydivisible β number . " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( N , " is β Not β Polydivisible β number . " ) NEW_LINE DEDENT DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 345654 NEW_LINE check_polydivisible ( n ) NEW_LINE DEDENT |
Check if given number is a power of d where d is a power of 2 | Python3 program to find if a number is power of d where d is power of 2. ; Function to count the number of ways to paint N * 3 grid based on given conditions ; Check if there is only one bit set in n ; count 0 bits before set bit ; If count is a multiple of log2 ( d ) then return true else false ; If there are more than 1 bit set then n is not a power of 4 ; Driver Code | def Log2n ( n ) : NEW_LINE INDENT return ( 1 + Log2n ( n / 2 ) ) if ( n > 1 ) else 0 ; NEW_LINE DEDENT def isPowerOfd ( n , d ) : NEW_LINE INDENT count = 0 ; NEW_LINE if ( n and ( n & ( n - 1 ) ) == 0 ) : NEW_LINE INDENT while ( n > 1 ) : NEW_LINE INDENT n >>= 1 ; NEW_LINE count += 1 ; NEW_LINE DEDENT return ( count % ( Log2n ( d ) ) == 0 ) ; NEW_LINE DEDENT return False ; NEW_LINE DEDENT n = 64 ; NEW_LINE d = 8 ; NEW_LINE if ( isPowerOfd ( n , d ) ) : NEW_LINE INDENT print ( n , " is β a β power β of " , d ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( n , " is β not β a β power β of " , d ) ; NEW_LINE DEDENT |
Octahedral Number | Function to find octahedral number ; Formula to calculate nth octahedral number ; Driver Code ; print result | def octahedral_num ( n ) : NEW_LINE INDENT return n * ( 2 * n * n + 1 ) // 3 NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 5 NEW_LINE print ( n , " th β Octahedral β number : β " , octahedral_num ( n ) ) NEW_LINE DEDENT |
Centered tetrahedral number | Function to calculate Centered tetrahedral number ; Formula to calculate nth Centered tetrahedral number and return it into main function ; Driver Code | def centeredTetrahedralNumber ( n ) : NEW_LINE INDENT return ( 2 * n + 1 ) * ( n * n + n + 3 ) // 3 NEW_LINE DEDENT n = 6 NEW_LINE print ( centeredTetrahedralNumber ( n ) ) NEW_LINE |
Swapping four variables without temporary variable | Python 3 program to swap 4 variables without using temporary variable . ; swapping a and b variables ; swapping b and c variables ; swapping c and d variables ; initialising variables ; Function call | def swap ( a , b , c , d ) : NEW_LINE INDENT a = a + b NEW_LINE b = a - b NEW_LINE a = a - b NEW_LINE b = b + c NEW_LINE c = b - c NEW_LINE b = b - c NEW_LINE c = c + d NEW_LINE d = c - d NEW_LINE c = c - d NEW_LINE print ( " values β after β swapping β are β : β " ) NEW_LINE print ( " a β = β " , a ) NEW_LINE print ( " b β = β " , b ) NEW_LINE print ( " c β = β " , c ) NEW_LINE print ( " d β = β " , d ) NEW_LINE DEDENT a = 1 NEW_LINE b = 2 NEW_LINE c = 3 NEW_LINE d = 4 NEW_LINE print ( " values β before β swapping β are β : β " ) NEW_LINE print ( " a β = β " , a ) NEW_LINE print ( " b β = β " , b ) NEW_LINE print ( " c β = β " , c ) NEW_LINE print ( " d β = β " , d ) NEW_LINE print ( " " ) NEW_LINE swap ( a , b , c , d ) NEW_LINE |
Sum of first n natural numbers | Function to find the sum of series ; Driver code | def seriessum ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT sum += i * ( i + 1 ) / 2 NEW_LINE DEDENT return sum NEW_LINE DEDENT n = 4 NEW_LINE print ( seriessum ( n ) ) NEW_LINE |
Centrosymmetric Matrix | Python3 Program to check whether given matrix is centrosymmetric or not . ; Finding the middle row of the matrix ; for each row upto middle row . ; If each element and its corresponding element is not equal then return false . ; Driver Code | def checkCentrosymmetricted ( n , m ) : NEW_LINE INDENT mid_row = 0 ; NEW_LINE if ( ( n & 1 ) > 0 ) : NEW_LINE INDENT mid_row = n / 2 + 1 ; NEW_LINE DEDENT else : NEW_LINE INDENT mid_row = n / 2 ; NEW_LINE DEDENT for i in range ( int ( mid_row ) ) : NEW_LINE INDENT for j in range ( n ) : NEW_LINE INDENT if ( m [ i ] [ j ] != m [ n - i - 1 ] [ n - j - 1 ] ) : NEW_LINE INDENT return False ; NEW_LINE DEDENT DEDENT DEDENT return True ; NEW_LINE DEDENT n = 3 ; NEW_LINE m = [ [ 1 , 3 , 5 ] , [ 6 , 8 , 6 ] , [ 5 , 3 , 1 ] ] ; NEW_LINE if ( checkCentrosymmetricted ( n , m ) ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Centered triangular number | function for Centered Triangular number ; Formula to calculate nth Centered Triangular number ; Driver Code ; For 3 rd Centered Triangular number ; For 12 th Centered Triangular number | def Centered_Triangular_num ( n ) : NEW_LINE INDENT return ( 3 * n * n + 3 * n + 2 ) // 2 NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 3 NEW_LINE print ( Centered_Triangular_num ( n ) ) NEW_LINE n = 12 NEW_LINE print ( Centered_Triangular_num ( n ) ) NEW_LINE DEDENT |
Array with GCD of any of its subset belongs to the given array | Python 3 implementation to generate the required array ; Function to find gcd of array of numbers ; Function to generate the array with required constraints . ; computing GCD of the given set ; Solution exists if GCD of array is equal to the minimum element of the array ; Printing the built array ; Driver function ; Taking in the input and initializing the set STL set in cpp has a property that it maintains the elements in sorted order , thus we do not need to sort them externally ; Calling the computing function . | from math import gcd NEW_LINE def findGCD ( arr , n ) : NEW_LINE INDENT result = arr [ 0 ] NEW_LINE for i in range ( 1 , n ) : NEW_LINE INDENT result = gcd ( arr [ i ] , result ) NEW_LINE DEDENT return result NEW_LINE DEDENT def compute ( arr , n ) : NEW_LINE INDENT answer = [ ] NEW_LINE GCD_of_array = findGCD ( arr , n ) NEW_LINE if ( GCD_of_array == arr [ 0 ] ) : NEW_LINE INDENT answer . append ( arr [ 0 ] ) NEW_LINE for i in range ( 1 , n ) : NEW_LINE INDENT answer . append ( arr [ 0 ] ) NEW_LINE answer . append ( arr [ i ] ) NEW_LINE DEDENT for i in range ( len ( answer ) ) : NEW_LINE INDENT print ( answer [ i ] , end = " β " ) NEW_LINE DEDENT DEDENT else : NEW_LINE INDENT print ( " No β array β can β be β build " ) NEW_LINE DEDENT DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT n = 3 NEW_LINE input = [ 2 , 5 , 6 , 7 , 11 ] NEW_LINE GCD = set ( ) NEW_LINE for i in range ( len ( input ) ) : NEW_LINE INDENT GCD . add ( input [ i ] ) NEW_LINE DEDENT arr = [ ] NEW_LINE for i in GCD : NEW_LINE INDENT arr . append ( i ) NEW_LINE DEDENT compute ( arr , n ) NEW_LINE DEDENT |
Combinatorics on ordered trees | Function returns value of Binomial Coefficient C ( n , k ) ; Calculate value of Binomial Coefficient in bottom up manner ; Base Cases ; Calculate value using previously stored values ; Function to calculate the number of trees with exactly k leaves . ; Function to calculate total number of Nodes of degree d in these trees . ; Function to calculate the number of trees in which the root has degree r . ; Driver code ; Number of trees having 3 edges and exactly 2 leaves ; Number of Nodes of degree 3 in a tree having 4 edges ; Number of trees having 3 edges where root has degree 2 | def binomialCoeff ( n , k ) : NEW_LINE INDENT C = [ [ 0 for i in range ( k + 1 ) ] for j in range ( n + 1 ) ] NEW_LINE for i in range ( n + 1 ) : NEW_LINE INDENT for j in range ( min ( i , k ) + 1 ) : NEW_LINE INDENT if ( j == 0 or j == i ) : NEW_LINE INDENT C [ i ] [ j ] = 1 NEW_LINE DEDENT else : NEW_LINE INDENT C [ i ] [ j ] = ( C [ i - 1 ] [ j - 1 ] + C [ i - 1 ] [ j ] ) NEW_LINE DEDENT DEDENT DEDENT return C [ n ] [ k ] NEW_LINE DEDENT def k_Leaves ( n , k ) : NEW_LINE INDENT ans = ( ( binomialCoeff ( n , k ) * binomialCoeff ( n , k - 1 ) ) // n ) NEW_LINE print ( " Number β of β trees β " , " having β 4 β edges β and β exactly β 2 β " , " leaves β : β " , ans ) NEW_LINE DEDENT def numberOfNodes ( n , d ) : NEW_LINE INDENT ans = binomialCoeff ( 2 * n - 1 - d , n - 1 ) NEW_LINE print ( " Number β of β Nodes β " , " of β degree β 1 β in β a β tree β having β 4 β " , " edges β : β " , ans ) NEW_LINE DEDENT def rootDegreeR ( n , r ) : NEW_LINE INDENT ans = r * binomialCoeff ( 2 * n - 1 - r , n - 1 ) NEW_LINE ans = ans // n NEW_LINE print ( " Number β of β trees β " , " having β 4 β edges β where β root β has β " , " degree β 2 β : β " , ans ) NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT k_Leaves ( 3 , 2 ) NEW_LINE numberOfNodes ( 3 , 1 ) NEW_LINE rootDegreeR ( 3 , 2 ) NEW_LINE DEDENT |
Repeated Unit Divisibility | To find least value of k ; To check n is coprime or not ; to store R ( k ) mod n and 10 ^ k mod n value ; Driver code | def repUnitValue ( n ) : NEW_LINE INDENT if ( n % 2 == 0 or n % 5 == 0 ) : NEW_LINE INDENT return 0 NEW_LINE DEDENT rem = 1 NEW_LINE power = 1 NEW_LINE k = 1 NEW_LINE while ( rem % n != 0 ) : NEW_LINE INDENT k += 1 NEW_LINE power = power * 10 % n NEW_LINE rem = ( rem + power ) % n NEW_LINE DEDENT return k NEW_LINE DEDENT n = 13 NEW_LINE print ( repUnitValue ( n ) ) NEW_LINE |
First N natural can be divided into two sets with given difference and co | Python3 code to determine whether numbers 1 to N can be divided into two sets such that absolute difference between sum of these two sets is M and these two sum are co - prime ; function that returns boolean value on the basis of whether it is possible to divide 1 to N numbers into two sets that satisfy given conditions . ; initializing total sum of 1 to n numbers ; since ( 1 ) total_sum = sum_s1 + sum_s2 and ( 2 ) m = sum_s1 - sum_s2 assuming sum_s1 > sum_s2 . solving these 2 equations to get sum_s1 and sum_s2 ; total_sum = sum_s1 + sum_s2 and therefore ; if total sum is less than the absolute difference then there is no way we can split n numbers into two sets so return false ; check if these two sums are integers and they add up to total sum and also if their absolute difference is m . ; Now if two sum are co - prime then return true , else return false . ; if two sums don 't add up to total sum or if their absolute difference is not m, then there is no way to split n numbers, hence return false ; Driver code ; function call to determine answer | def __gcd ( a , b ) : NEW_LINE INDENT return a if ( b == 0 ) else __gcd ( b , a % b ) ; NEW_LINE DEDENT def isSplittable ( n , m ) : NEW_LINE INDENT total_sum = ( int ) ( ( n * ( n + 1 ) ) / 2 ) ; NEW_LINE sum_s1 = int ( ( total_sum + m ) / 2 ) ; NEW_LINE sum_s2 = total_sum - sum_s1 ; NEW_LINE if ( total_sum < m ) : NEW_LINE INDENT return False ; NEW_LINE DEDENT if ( sum_s1 + sum_s2 == total_sum and sum_s1 - sum_s2 == m ) : NEW_LINE INDENT return ( __gcd ( sum_s1 , sum_s2 ) == 1 ) ; NEW_LINE DEDENT return False ; NEW_LINE DEDENT n = 5 ; NEW_LINE m = 7 ; NEW_LINE if ( isSplittable ( n , m ) ) : NEW_LINE INDENT print ( " Yes " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) ; NEW_LINE DEDENT |
Making zero array by decrementing pairs of adjacent | Python3 implementation of the above approach ; converting array element into number ; Check if divisible by 11 ; Driver Code | def isPossibleToZero ( a , n ) : NEW_LINE INDENT num = 0 ; NEW_LINE for i in range ( n ) : NEW_LINE INDENT num = num * 10 + a [ i ] ; NEW_LINE DEDENT return ( num % 11 == 0 ) ; NEW_LINE DEDENT arr = [ 0 , 1 , 1 , 0 ] ; NEW_LINE n = len ( arr ) ; NEW_LINE if ( isPossibleToZero ( arr , n ) ) : NEW_LINE INDENT print ( " YES " ) ; NEW_LINE DEDENT else : NEW_LINE INDENT print ( " NO " ) ; NEW_LINE DEDENT |
Blum Integer | Function to cheek if number is Blum Integer ; to store prime numbers from 2 to n ; If prime [ i ] is not changed , then it is a prime ; Update all multiples of p ; to check if the given odd integer is Blum Integer or not ; checking the factors are of 4 t + 3 form or not ; give odd integer greater than 20 | def isBlumInteger ( n ) : NEW_LINE INDENT prime = [ True ] * ( n + 1 ) NEW_LINE i = 2 NEW_LINE while ( i * i <= n ) : NEW_LINE INDENT if ( prime [ i ] == True ) : NEW_LINE INDENT for j in range ( i * 2 , n + 1 , i ) : NEW_LINE INDENT prime [ j ] = False NEW_LINE DEDENT DEDENT i = i + 1 NEW_LINE DEDENT for i in range ( 2 , n + 1 ) : NEW_LINE INDENT if ( prime [ i ] ) : NEW_LINE INDENT if ( ( n % i == 0 ) and ( ( i - 3 ) % 4 ) == 0 ) : NEW_LINE INDENT q = int ( n / i ) NEW_LINE return ( q != i and prime [ q ] and ( q - 3 ) % 4 == 0 ) NEW_LINE DEDENT DEDENT DEDENT return False NEW_LINE DEDENT n = 249 NEW_LINE if ( isBlumInteger ( n ) ) : NEW_LINE INDENT print ( " Yes " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) NEW_LINE DEDENT |
Program to calculate value of nCr | Python 3 program To calculate The Value Of nCr ; Returns factorial of n ; Driver code | def nCr ( n , r ) : NEW_LINE INDENT return ( fact ( n ) / ( fact ( r ) * fact ( n - r ) ) ) NEW_LINE DEDENT def fact ( n ) : NEW_LINE INDENT res = 1 NEW_LINE for i in range ( 2 , n + 1 ) : NEW_LINE INDENT res = res * i NEW_LINE DEDENT return res NEW_LINE DEDENT n = 5 NEW_LINE r = 3 NEW_LINE print ( int ( nCr ( n , r ) ) ) NEW_LINE |
Program to print the sum of the given nth term | Python3 program to illustrate ... Summation of series ; function to calculate sum of series ; Sum of n terms is n ^ 2 ; Driver Code | import math NEW_LINE def summingSeries ( n ) : NEW_LINE INDENT return math . pow ( n , 2 ) NEW_LINE DEDENT n = 100 NEW_LINE print ( " The β sum β of β n β term β is : β " , summingSeries ( n ) ) NEW_LINE |
Brahmagupta Fibonacci Identity | Python 3 code to verify Brahmagupta Fibonacci identity ; represent the product as sum of 2 squares ; check identity criteria ; 1 ^ 2 + 2 ^ 2 ; 3 ^ 2 + 4 ^ 2 ; express product of sum of 2 squares as sum of ( sum of 2 squares ) | def find_sum_of_two_squares ( a , b ) : NEW_LINE INDENT ab = a * b NEW_LINE i = 0 ; NEW_LINE while ( i * i <= ab ) : NEW_LINE INDENT j = i NEW_LINE while ( i * i + j * j <= ab ) : NEW_LINE INDENT if ( i * i + j * j == ab ) : NEW_LINE INDENT print ( i , " ^ 2 β + β " , j , " ^ 2 β = β " , ab ) NEW_LINE DEDENT j += 1 NEW_LINE DEDENT i += 1 NEW_LINE DEDENT DEDENT a = 1 * 1 + 2 * 2 NEW_LINE b = 3 * 3 + 4 * 4 NEW_LINE print ( " Representation β of β a β * β b β as β sum " " β of β 2 β squares : " ) NEW_LINE find_sum_of_two_squares ( a , b ) NEW_LINE |
Tetrahedral Numbers | Python3 Program to find the nth tetrahedral number ; Function to find Tetrahedral Number ; Driver Code | def tetrahedralNumber ( n ) : NEW_LINE INDENT return ( n * ( n + 1 ) * ( n + 2 ) ) / 6 NEW_LINE DEDENT def tetrahedralNumber ( n ) : NEW_LINE INDENT return ( n * ( n + 1 ) * ( n + 2 ) ) / 6 NEW_LINE DEDENT n = 5 NEW_LINE print ( tetrahedralNumber ( n ) ) NEW_LINE |
Euler 's Four Square Identity | function to check euler four square identity ; loops checking the sum of squares ; sum of 2 squares ; sum of 3 squares ; sum of 4 squares ; product of 2 numbers represented as sum of four squares i , j , k , l ; product of 2 numbers a and b represented as sum of four squares i , j , k , l ; given numbers can be represented as sum of 4 squares By euler 's four square identity product also can be represented as sum of 4 squares | def check_euler_four_square_identity ( a , b , ab ) : NEW_LINE INDENT s = 0 ; NEW_LINE i = 0 ; NEW_LINE while ( i * i <= ab ) : NEW_LINE INDENT s = i * i ; NEW_LINE j = i ; NEW_LINE while ( j * j <= ab ) : NEW_LINE INDENT s = j * j + i * i ; NEW_LINE k = j ; NEW_LINE while ( k * k <= ab ) : NEW_LINE INDENT s = k * k + j * j + i * i ; NEW_LINE l = k ; NEW_LINE while ( l * l <= ab ) : NEW_LINE INDENT s = l * l + k * k + j * j + i * i ; NEW_LINE if ( s == ab ) : NEW_LINE INDENT print ( " i β = " , i ) ; NEW_LINE print ( " j β = " , j ) ; NEW_LINE print ( " k β = " , k ) ; NEW_LINE print ( " l β = " , l ) ; NEW_LINE print ( " Product β of β " , a , " and " , b , end = " " ) ; NEW_LINE print ( " β can β be β written β as β sum β of " , " squares β of β i , β j , β k , β l " ) ; NEW_LINE print ( ab , " = β " , end = " " ) ; NEW_LINE print ( i , " * " , i , " + β " , end = " " ) ; NEW_LINE print ( j , " * " , j , " + β " , end = " " ) ; NEW_LINE print ( k , " * " , k , " + β " , end = " " ) ; NEW_LINE print ( l , " * " , l ) ; NEW_LINE print ( " " ) ; NEW_LINE DEDENT l += 1 ; NEW_LINE DEDENT k += 1 ; NEW_LINE DEDENT j += 1 ; NEW_LINE DEDENT i += 1 ; NEW_LINE DEDENT DEDENT ab = a * b ; NEW_LINE check_euler_four_square_identity ( a , b , ab ) ; NEW_LINE |
Number of solutions to Modular Equations | Python Program to find number of possible values of X to satisfy A mod X = B ; Returns the number of divisors of ( A - B ) greater than B ; if N is divisible by i ; count only the divisors greater than B ; checking if a divisor isnt counted twice ; Utility function to calculate number of all possible values of X for which the modular equation holds true ; if A = B there are infinitely many solutions to equation or we say X can take infinitely many values > A . We return - 1 in this case ; if A < B , there are no possible values of X satisfying the equation ; the last case is when A > B , here we calculate the number of divisors of ( A - B ) , which are greater than B ; Wrapper function for numberOfPossibleWaysUtil ( ) ; if infinitely many solutions available ; Driver code | import math NEW_LINE def calculateDivisors ( A , B ) : NEW_LINE INDENT N = A - B NEW_LINE noOfDivisors = 0 NEW_LINE a = math . sqrt ( N ) NEW_LINE for i in range ( 1 , int ( a + 1 ) ) : NEW_LINE INDENT if ( ( N % i == 0 ) ) : NEW_LINE INDENT if ( i > B ) : NEW_LINE INDENT noOfDivisors += 1 NEW_LINE DEDENT if ( ( N / i ) != i and ( N / i ) > B ) : NEW_LINE INDENT noOfDivisors += 1 ; NEW_LINE DEDENT DEDENT DEDENT return noOfDivisors NEW_LINE DEDENT def numberOfPossibleWaysUtil ( A , B ) : NEW_LINE INDENT if ( A == B ) : NEW_LINE INDENT return - 1 NEW_LINE DEDENT if ( A < B ) : NEW_LINE INDENT return 0 NEW_LINE DEDENT noOfDivisors = 0 NEW_LINE noOfDivisors = calculateDivisors ; NEW_LINE return noOfDivisors NEW_LINE DEDENT def numberOfPossibleWays ( A , B ) : NEW_LINE INDENT noOfSolutions = numberOfPossibleWaysUtil ( A , B ) NEW_LINE if ( noOfSolutions == - 1 ) : NEW_LINE INDENT print ( " For β A β = β " , A , " β and β B β = β " , B , " , β X β can β take β Infinitely β many β values " , " β greater β than β " , A ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " For β A β = β " , A , " β and β B β = β " , B , " , β X β can β take β " , noOfSolutions , " β values " ) NEW_LINE DEDENT DEDENT A = 26 NEW_LINE B = 2 NEW_LINE numberOfPossibleWays ( A , B ) NEW_LINE A = 21 NEW_LINE B = 5 NEW_LINE numberOfPossibleWays ( A , B ) NEW_LINE |
Perfect power ( 1 , 4 , 8 , 9 , 16 , 25 , 27 , ... ) | Python3 program to count number of numbers from 1 to n are of type x ^ y where x > 0 and y > 1 ; Function that keeps all the odd power numbers upto n ; We need exclude perfect squares . ; sort the vector ; Return sum of odd and even powers . ; Driver Code | import math NEW_LINE def powerNumbers ( n ) : NEW_LINE INDENT v = [ ] NEW_LINE for i in range ( 2 , int ( math . pow ( n , 1.0 / 3.0 ) ) + 1 ) : NEW_LINE INDENT j = i * i NEW_LINE while ( j * i <= n ) : NEW_LINE INDENT j = j * i NEW_LINE s = int ( math . sqrt ( j ) ) NEW_LINE if ( s * s != j ) : NEW_LINE INDENT v . append ( j ) NEW_LINE DEDENT DEDENT DEDENT v . sort ( ) NEW_LINE v = list ( dict . fromkeys ( v ) ) NEW_LINE return len ( v ) + int ( math . sqrt ( n ) ) NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT print ( powerNumbers ( 50 ) ) NEW_LINE DEDENT |
Variance and standard | Python3 program to find mean and variance of a matrix . ; variance function declaration Function for calculating mean ; Calculating sum ; Returning mean ; Function for calculating variance ; subtracting mean from elements ; a [ i ] [ j ] = fabs ( a [ i ] [ j ] ) ; squaring each terms ; taking sum ; declaring and initializing matrix ; for mean ; for variance ; for standard deviation ; displaying variance and deviation | import math ; NEW_LINE def mean ( a , n ) : NEW_LINE INDENT sum = 0 ; NEW_LINE for i in range ( n ) : NEW_LINE INDENT for j in range ( n ) : NEW_LINE INDENT sum += a [ i ] [ j ] ; NEW_LINE DEDENT DEDENT return math . floor ( int ( sum / ( n * n ) ) ) ; NEW_LINE DEDENT def variance ( a , n , m ) : NEW_LINE INDENT sum = 0 ; NEW_LINE for i in range ( n ) : NEW_LINE INDENT for j in range ( n ) : NEW_LINE INDENT a [ i ] [ j ] -= m ; NEW_LINE a [ i ] [ j ] *= a [ i ] [ j ] ; NEW_LINE DEDENT DEDENT for i in range ( n ) : NEW_LINE INDENT for j in range ( n ) : NEW_LINE INDENT sum += a [ i ] [ j ] ; NEW_LINE DEDENT DEDENT return math . floor ( int ( sum / ( n * n ) ) ) ; NEW_LINE DEDENT mat = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] ; NEW_LINE m = mean ( mat , 3 ) ; NEW_LINE var = variance ( mat , 3 , m ) ; NEW_LINE dev = math . sqrt ( var ) ; NEW_LINE print ( " Mean : " , m ) ; NEW_LINE print ( " Variance : " , var ) ; NEW_LINE print ( " Deviation : " , math . floor ( dev ) ) ; NEW_LINE |
Find N Arithmetic Means between A and B | Prints N arithmetic means between A and B . ; Calculate common difference ( d ) ; For finding N the arithmetic mean between A and B ; Driver code | def printAMeans ( A , B , N ) : NEW_LINE INDENT d = ( B - A ) / ( N + 1 ) NEW_LINE for i in range ( 1 , N + 1 ) : NEW_LINE INDENT print ( int ( A + i * d ) , end = " β " ) NEW_LINE DEDENT DEDENT A = 20 ; B = 32 ; N = 5 NEW_LINE printAMeans ( A , B , N ) NEW_LINE |
Sum of the series 1.2 . 3 + 2.3 . 4 + ... + n ( n + 1 ) ( n + 2 ) | function to calculate sum of series ; Driver program | def sumofseries ( n ) : NEW_LINE INDENT return int ( n * ( n + 1 ) * ( n + 2 ) * ( n + 3 ) / 4 ) NEW_LINE DEDENT print ( sumofseries ( 3 ) ) NEW_LINE |
Largest number in [ 2 , 3 , . . n ] which is co | Python3 code to find Largest number in [ 2 , 3 , . . n ] which is co - prime with numbers in [ 2 , 3 , . . m ] ; Returns true if i is co - prime with numbers in set [ 2 , 3 , ... m ] ; Running the loop till square root of n to reduce the time complexity from n ; Find the minimum of square root of n and m to run the loop until the smaller one ; Check from 2 to min ( m , sqrt ( n ) ) ; def to find the largest number less than n which is Co - prime with all numbers from 2 to m ; Iterating from n to m + 1 to find the number ; checking every number for the given conditions ; The first number which satisfy the conditions is the answer ; If there is no number which satisfy the conditions , then print number does not exist . ; Driver Code | import math NEW_LINE def isValid ( i , m ) : NEW_LINE INDENT sq_i = math . sqrt ( i ) NEW_LINE sq = min ( m , sq_i ) NEW_LINE for j in range ( 2 , sq + 1 ) : NEW_LINE INDENT if ( i % j == 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT return True NEW_LINE DEDENT def findLargestNum ( n , m ) : NEW_LINE INDENT for i in range ( n , m , - 1 ) : NEW_LINE INDENT if ( isValid ( i , m ) ) : NEW_LINE INDENT print ( " { } " . format ( i ) ) ; NEW_LINE return NEW_LINE DEDENT DEDENT print ( " Number Doesn ' t Exists " ) NEW_LINE DEDENT n = 16 NEW_LINE m = 3 NEW_LINE findLargestNum ( n , m ) NEW_LINE |
Check whether a given matrix is orthogonal or not | ; Find transpose ; Find product of a [ ] [ ] and its transpose ; Since we are multiplying with transpose of itself . We use ; Check if product is identity matrix ; Driver Code | / * Function to check orthogonalilty * / NEW_LINE def isOrthogonal ( a , m , n ) : NEW_LINE INDENT if ( m != n ) : NEW_LINE INDENT return False NEW_LINE DEDENT trans = [ [ 0 for x in range ( n ) ] for y in range ( n ) ] NEW_LINE for i in range ( 0 , n ) : NEW_LINE INDENT for j in range ( 0 , n ) : NEW_LINE INDENT trans [ i ] [ j ] = a [ j ] [ i ] NEW_LINE DEDENT DEDENT prod = [ [ 0 for x in range ( n ) ] for y in range ( n ) ] NEW_LINE for i in range ( 0 , n ) : NEW_LINE INDENT for j in range ( 0 , n ) : NEW_LINE INDENT sum = 0 NEW_LINE for k in range ( 0 , n ) : NEW_LINE INDENT sum = sum + ( a [ i ] [ k ] * a [ j ] [ k ] ) NEW_LINE DEDENT prod [ i ] [ j ] = sum NEW_LINE DEDENT DEDENT for i in range ( 0 , n ) : NEW_LINE INDENT for j in range ( 0 , n ) : NEW_LINE INDENT if ( i != j and prod [ i ] [ j ] != 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT if ( i == j and prod [ i ] [ j ] != 1 ) : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT DEDENT return True NEW_LINE DEDENT a = [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] NEW_LINE if ( isOrthogonal ( a , 3 , 3 ) ) : NEW_LINE INDENT print ( " Yes " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) NEW_LINE DEDENT |
Check if given number is perfect square | Python program to find if x is a perfect square . ; Find floating point value of square root of x . ; sqrt function returns floating value so we have to convert it into integer return boolean T / F ; Driver code | import math NEW_LINE def isPerfectSquare ( x ) : NEW_LINE INDENT if ( x >= 0 ) : NEW_LINE INDENT sr = math . sqrt ( x ) NEW_LINE return ( ( sr * sr ) == float ( x ) ) NEW_LINE DEDENT return false NEW_LINE DEDENT x = 2502 NEW_LINE if ( isPerfectSquare ( x ) ) : NEW_LINE INDENT print ( " Yes " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " No " ) NEW_LINE DEDENT |
Program to print GP ( Geometric Progression ) | function to print GP ; starting number ; Common ratio ; N th term to be find | def printGP ( a , r , n ) : NEW_LINE INDENT for i in range ( 0 , n ) : NEW_LINE INDENT curr_term = a * pow ( r , i ) NEW_LINE print ( curr_term , end = " β " ) NEW_LINE DEDENT DEDENT a = 2 NEW_LINE r = 3 NEW_LINE n = 5 NEW_LINE printGP ( a , r , n ) NEW_LINE |
HCF of array of fractions ( or rational numbers ) | Python 3 program to find HCF of array of ; find hcf of numerator series ; return hcf of numerator ; find lcm of denominator series ; ans contains LCM of arr [ 0 ] [ 1 ] , . . arr [ i ] [ 1 ] ; return lcm of denominator ; Core Function ; found hcf of numerator ; found lcm of denominator ; return result ; Driver Code ; Initialize the every row with size 2 ( 1 for numerator and 2 for denominator ) ; function for calculate the result ; print the result | from math import gcd NEW_LINE def findHcf ( arr , size ) : NEW_LINE INDENT ans = arr [ 0 ] [ 0 ] NEW_LINE for i in range ( 1 , size , 1 ) : NEW_LINE INDENT ans = gcd ( ans , arr [ i ] [ 0 ] ) NEW_LINE DEDENT return ( ans ) NEW_LINE DEDENT def findLcm ( arr , size ) : NEW_LINE INDENT ans = arr [ 0 ] [ 1 ] NEW_LINE for i in range ( 1 , size , 1 ) : NEW_LINE INDENT ans = int ( ( ( ( arr [ i ] [ 1 ] * ans ) ) / ( gcd ( arr [ i ] [ 1 ] , ans ) ) ) ) NEW_LINE DEDENT return ( ans ) NEW_LINE DEDENT def hcfOfFraction ( arr , size ) : NEW_LINE INDENT hcf_of_num = findHcf ( arr , size ) NEW_LINE lcm_of_deno = findLcm ( arr , size ) NEW_LINE result = [ 0 for i in range ( 2 ) ] NEW_LINE result [ 0 ] = hcf_of_num NEW_LINE result [ 1 ] = lcm_of_deno NEW_LINE i = int ( result [ 0 ] / 2 ) NEW_LINE while ( i > 1 ) : NEW_LINE INDENT if ( ( result [ 1 ] % i == 0 ) and ( result [ 0 ] % i == 0 ) ) : NEW_LINE INDENT result [ 1 ] = int ( result [ 1 ] / i ) NEW_LINE result [ 0 ] = ( result [ 0 ] / i ) NEW_LINE DEDENT DEDENT return ( result ) NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT size = 4 NEW_LINE arr = [ 0 for i in range ( size ) ] NEW_LINE for i in range ( size ) : NEW_LINE INDENT arr [ i ] = [ 0 for i in range ( 2 ) ] NEW_LINE DEDENT arr [ 0 ] [ 0 ] = 9 NEW_LINE arr [ 0 ] [ 1 ] = 10 NEW_LINE arr [ 1 ] [ 0 ] = 12 NEW_LINE arr [ 1 ] [ 1 ] = 25 NEW_LINE arr [ 2 ] [ 0 ] = 18 NEW_LINE arr [ 2 ] [ 1 ] = 35 NEW_LINE arr [ 3 ] [ 0 ] = 21 NEW_LINE arr [ 3 ] [ 1 ] = 40 NEW_LINE result = hcfOfFraction ( arr , size ) NEW_LINE print ( result [ 0 ] , " , " , result [ 1 ] ) NEW_LINE DEDENT |
Space efficient iterative method to Fibonacci number | get second MSB ; consectutively set all the bits ; returns the second MSB ; Multiply function ; Function to calculate F [ ] [ ] raise to the power n ; Base case ; take 2D array to store number 's ; run loop till MSB > 0 ; To return fibonacci number ; Given n | def getMSB ( n ) : NEW_LINE INDENT n |= n >> 1 NEW_LINE n |= n >> 2 NEW_LINE n |= n >> 4 NEW_LINE n |= n >> 8 NEW_LINE n |= n >> 16 NEW_LINE return ( ( n + 1 ) >> 2 ) NEW_LINE DEDENT def multiply ( F , M ) : NEW_LINE INDENT x = F [ 0 ] [ 0 ] * M [ 0 ] [ 0 ] + F [ 0 ] [ 1 ] * M [ 1 ] [ 0 ] NEW_LINE y = F [ 0 ] [ 0 ] * M [ 0 ] [ 1 ] + F [ 0 ] [ 1 ] * M [ 1 ] [ 1 ] NEW_LINE z = F [ 1 ] [ 0 ] * M [ 0 ] [ 0 ] + F [ 1 ] [ 1 ] * M [ 1 ] [ 0 ] NEW_LINE w = F [ 1 ] [ 0 ] * M [ 0 ] [ 1 ] + F [ 1 ] [ 1 ] * M [ 1 ] [ 1 ] NEW_LINE F [ 0 ] [ 0 ] = x NEW_LINE F [ 0 ] [ 1 ] = y NEW_LINE F [ 1 ] [ 0 ] = z NEW_LINE F [ 1 ] [ 1 ] = w NEW_LINE DEDENT def power ( F , n ) : NEW_LINE INDENT if ( n == 0 or n == 1 ) : NEW_LINE INDENT return NEW_LINE DEDENT M = [ [ 1 , 1 ] , [ 1 , 0 ] ] NEW_LINE m = getMSB ( n ) NEW_LINE while m : NEW_LINE INDENT multiply ( F , F ) NEW_LINE if ( n & m ) : NEW_LINE INDENT multiply ( F , M ) NEW_LINE DEDENT m = m >> 1 NEW_LINE DEDENT DEDENT def fib ( n ) : NEW_LINE INDENT F = [ [ 1 , 1 ] , [ 1 , 0 ] ] NEW_LINE if ( n == 0 ) : NEW_LINE INDENT return 0 NEW_LINE DEDENT power ( F , n - 1 ) NEW_LINE return F [ 0 ] [ 0 ] NEW_LINE DEDENT n = 6 NEW_LINE print ( fib ( n ) ) NEW_LINE |
Stern | Python program to print Brocot Sequence ; loop to create sequence ; adding sum of considered element and it 's precedent ; adding next considered element ; printing sequence . . ; Driver code ; adding first two element in the sequence | import math NEW_LINE def SternSequenceFunc ( BrocotSequence , n ) : NEW_LINE INDENT for i in range ( 1 , n ) : NEW_LINE INDENT considered_element = BrocotSequence [ i ] NEW_LINE precedent = BrocotSequence [ i - 1 ] NEW_LINE BrocotSequence . append ( considered_element + precedent ) NEW_LINE BrocotSequence . append ( considered_element ) NEW_LINE DEDENT for i in range ( 0 , 15 ) : NEW_LINE INDENT print ( BrocotSequence [ i ] , end = " β " ) NEW_LINE DEDENT DEDENT n = 15 NEW_LINE BrocotSequence = [ ] NEW_LINE BrocotSequence . append ( 1 ) NEW_LINE BrocotSequence . append ( 1 ) NEW_LINE SternSequenceFunc ( BrocotSequence , n ) NEW_LINE |
Counting numbers whose difference from reverse is a product of k | Python 3 program to Count the numbers within a given range in which when you subtract a number from its reverse , the difference is a product of k ; function to check if the number and its reverse have their absolute difference divisible by k ; Reverse the number ; Driver code | def isRevDiffDivisible ( x , k ) : NEW_LINE INDENT n = x ; m = 0 NEW_LINE while ( x > 0 ) : NEW_LINE INDENT m = m * 10 + x % 10 NEW_LINE x = x // 10 NEW_LINE DEDENT return ( abs ( n - m ) % k == 0 ) NEW_LINE DEDENT def countNumbers ( l , r , k ) : NEW_LINE INDENT count = 0 NEW_LINE for i in range ( l , r + 1 ) : NEW_LINE INDENT if ( isRevDiffDivisible ( i , k ) ) : NEW_LINE INDENT count = count + 1 NEW_LINE DEDENT DEDENT return count NEW_LINE DEDENT l = 20 ; r = 23 ; k = 6 NEW_LINE print ( countNumbers ( l , r , k ) ) NEW_LINE |
Program to print non square numbers | Python 3 program to print first n non - square numbers . ; Function to check perfect square ; function to print all non square number ; variable which stores the count ; Not perfect square ; Driver code | import math NEW_LINE def isPerfectSquare ( n ) : NEW_LINE INDENT if ( n < 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT root = round ( math . sqrt ( n ) ) NEW_LINE return ( n == root * root ) NEW_LINE DEDENT def printnonsquare ( n ) : NEW_LINE INDENT count = 0 NEW_LINE i = 1 NEW_LINE while ( count < n ) : NEW_LINE INDENT if ( isPerfectSquare ( i ) == False ) : NEW_LINE INDENT print ( i , end = " β " ) NEW_LINE count = count + 1 NEW_LINE DEDENT i = i + 1 NEW_LINE DEDENT DEDENT n = 10 NEW_LINE printnonsquare ( n ) NEW_LINE |
Program to print non square numbers | Python 3 program to print first n non - square numbers . ; Returns n - th non - square number . ; loop to print non squares below n ; Driver code | import math NEW_LINE def nonsquare ( n ) : NEW_LINE INDENT return n + ( int ) ( 0.5 + math . sqrt ( n ) ) NEW_LINE DEDENT def printNonSquare ( n ) : NEW_LINE INDENT for i in range ( 1 , n + 1 ) : NEW_LINE INDENT print ( nonsquare ( i ) , end = " β " ) NEW_LINE DEDENT DEDENT n = 10 NEW_LINE printNonSquare ( n ) NEW_LINE |
Ludic Numbers | Returns a list containing all Ludic numbers smaller than or equal to n . ; ludics list contain all the ludic numbers ; Here we have to start with index 1 and will remove nothing from the list ; Here first item should be included in the list and the deletion is referred by this first item in the loop . ; Remove_index variable is used to store the next index which we want to delete ; Removing the next item ; Remove_index is updated so that we get the next index for deletion ; Driver code | def getLudic ( n ) : NEW_LINE INDENT ludics = [ ] NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT ludics . append ( i ) NEW_LINE DEDENT index = 1 NEW_LINE while ( index != len ( ludics ) ) : NEW_LINE INDENT first_ludic = ludics [ index ] NEW_LINE remove_index = index + first_ludic NEW_LINE while ( remove_index < len ( ludics ) ) : NEW_LINE INDENT ludics . remove ( ludics [ remove_index ] ) NEW_LINE remove_index = remove_index + first_ludic - 1 NEW_LINE DEDENT index += 1 NEW_LINE DEDENT return ludics NEW_LINE DEDENT n = 25 NEW_LINE print ( getLudic ( n ) ) NEW_LINE |
Prime Triplet | function to detect prime number using sieve method https : www . geeksforgeeks . org / sieve - of - eratosthenes / to detect prime number ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of p ; function to print prime triplets ; Finding all primes from 1 to n ; triplets of form ( p , p + 2 , p + 6 ) ; triplets of form ( p , p + 4 , p + 6 ) ; Driver code | def sieve ( n , prime ) : NEW_LINE INDENT p = 2 NEW_LINE while ( p * p <= n ) : NEW_LINE INDENT if ( prime [ p ] == True ) : NEW_LINE INDENT i = p * 2 NEW_LINE while ( i <= n ) : NEW_LINE INDENT prime [ i ] = False NEW_LINE i = i + p NEW_LINE DEDENT DEDENT p = p + 1 NEW_LINE DEDENT DEDENT def printPrimeTriplets ( n ) : NEW_LINE INDENT prime = [ True ] * ( n + 1 ) NEW_LINE sieve ( n , prime ) NEW_LINE print ( " The β prime β triplets β from β 1 β to β " , n , " are β : " ) NEW_LINE for i in range ( 2 , n - 6 + 1 ) : NEW_LINE INDENT if ( prime [ i ] and prime [ i + 2 ] and prime [ i + 6 ] ) : NEW_LINE INDENT print ( i , ( i + 2 ) , ( i + 6 ) ) NEW_LINE DEDENT elif ( prime [ i ] and prime [ i + 4 ] and prime [ i + 6 ] ) : NEW_LINE INDENT print ( i , ( i + 4 ) , ( i + 6 ) ) NEW_LINE DEDENT DEDENT DEDENT n = 25 NEW_LINE printPrimeTriplets ( n ) NEW_LINE |
Program to compare two fractions | Get max of the two fractions ; Declare nume1 and nume2 for get the value of first numerator and second numerator ; Compute ad - bc ; Driver Code | def maxFraction ( first , sec ) : NEW_LINE INDENT a = first [ 0 ] ; b = first [ 1 ] NEW_LINE c = sec [ 0 ] ; d = sec [ 1 ] NEW_LINE Y = a * d - b * c NEW_LINE return first if Y else sec NEW_LINE DEDENT first = ( 3 , 2 ) NEW_LINE sec = ( 3 , 4 ) NEW_LINE res = maxFraction ( first , sec ) NEW_LINE print ( str ( res [ 0 ] ) + " / " + str ( res [ 1 ] ) ) NEW_LINE |
Find the nearest odd and even perfect squares of odd and even array elements respectively | Python3 program for the above approach ; Function to find the nearest even and odd perfect squares for even and odd array elements ; Traverse the array ; Calculate square root of current array element ; If both are of same parity ; Otherwise ; Driver Code | import math NEW_LINE def nearestPerfectSquare ( arr , N ) : NEW_LINE INDENT for i in range ( N ) : NEW_LINE INDENT sr = int ( math . sqrt ( arr [ i ] ) ) NEW_LINE if ( ( sr & 1 ) == ( arr [ i ] & 1 ) ) : NEW_LINE INDENT print ( sr * sr , end = " β " ) NEW_LINE DEDENT else : NEW_LINE INDENT sr += 1 NEW_LINE print ( sr * sr , end = " β " ) NEW_LINE DEDENT DEDENT DEDENT arr = [ 6 , 3 , 2 , 15 ] NEW_LINE N = len ( arr ) NEW_LINE nearestPerfectSquare ( arr , N ) NEW_LINE |
Program to check if N is a Pentagonal Number | python3 program to check pentagonal numbers . ; Function to determine if N is pentagonal or not . ; Substitute values of i in the formula . ; Driver method | import math NEW_LINE def isPentagonal ( N ) : NEW_LINE INDENT i = 1 NEW_LINE while True : NEW_LINE INDENT M = ( 3 * i * i - i ) / 2 NEW_LINE i += 1 NEW_LINE if ( M >= N ) : NEW_LINE INDENT break NEW_LINE DEDENT DEDENT return ( M == N ) NEW_LINE DEDENT N = 12 NEW_LINE if ( isPentagonal ( N ) ) : NEW_LINE INDENT print ( N , end = ' β ' ) NEW_LINE print ( " is β pentagonal β " ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( N , end = ' β ' ) NEW_LINE print ( " is β not β pentagonal " ) NEW_LINE DEDENT |
Sum of fourth powers of the first n natural numbers | Python3 Program to find the sum of forth powers of first n natural numbers ; Return the sum of forth power of first n natural numbers ; Driver method | import math NEW_LINE def fourthPowerSum ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT sum = sum + ( i * i * i * i ) NEW_LINE DEDENT return sum NEW_LINE DEDENT n = 6 NEW_LINE print ( fourthPowerSum ( n ) ) NEW_LINE |
Sum of fourth powers of the first n natural numbers | Python3 Program to find the sum of forth powers of first n natural numbers ; Return the sum of forth power of first n natural numbers ; Driver method | import math NEW_LINE def fourthPowerSum ( n ) : NEW_LINE INDENT return ( ( 6 * n * n * n * n * n ) + ( 15 * n * n * n * n ) + ( 10 * n * n * n ) - n ) / 30 NEW_LINE DEDENT n = 6 NEW_LINE print ( fourthPowerSum ( n ) ) NEW_LINE |
Find unit digit of x raised to power y | Python3 code to find the unit digit of x raised to power y . ; Find unit digit ; Get last digit of x ; Last cyclic modular value ; Here we simply return the unit digit or the power of a number ; Driver code ; Get unit digit number here we pass the unit digit of x and the last cyclicity number that is y % 4 | import math NEW_LINE def unitnumber ( x , y ) : NEW_LINE INDENT x = x % 10 NEW_LINE if y != 0 : NEW_LINE INDENT y = y % 4 + 4 NEW_LINE DEDENT return ( ( ( int ) ( math . pow ( x , y ) ) ) % 10 ) NEW_LINE DEDENT x = 133 ; y = 5 NEW_LINE print ( unitnumber ( x , y ) ) NEW_LINE |
Aliquot sum | Function to calculate sum of all proper divisors ; Driver Code | def aliquotSum ( n ) : NEW_LINE INDENT sm = 0 NEW_LINE for i in range ( 1 , n ) : NEW_LINE INDENT if ( n % i == 0 ) : NEW_LINE INDENT sm = sm + i NEW_LINE DEDENT DEDENT return sm NEW_LINE DEDENT n = 12 NEW_LINE print ( aliquotSum ( n ) ) NEW_LINE |
Average of Squares of Natural Numbers | Function to get the average ; Driver Code | def AvgofSquareN ( n ) : NEW_LINE INDENT return ( ( n + 1 ) * ( 2 * n + 1 ) ) / 6 ; NEW_LINE DEDENT n = 2 ; NEW_LINE print ( AvgofSquareN ( n ) ) ; NEW_LINE |
Program to implement Simpson 's 3/8 rule | Given function to be integrated ; Function to perform calculations ; Calculates value till integral limit ; driver function | def func ( x ) : NEW_LINE INDENT return ( float ( 1 ) / ( 1 + x * x ) ) NEW_LINE DEDENT def calculate ( lower_limit , upper_limit , interval_limit ) : NEW_LINE INDENT interval_size = ( float ( upper_limit - lower_limit ) / interval_limit ) NEW_LINE sum = func ( lower_limit ) + func ( upper_limit ) ; NEW_LINE for i in range ( 1 , interval_limit ) : NEW_LINE INDENT if ( i % 3 == 0 ) : NEW_LINE INDENT sum = sum + 2 * func ( lower_limit + i * interval_size ) NEW_LINE DEDENT else : NEW_LINE INDENT sum = sum + 3 * func ( lower_limit + i * interval_size ) NEW_LINE DEDENT DEDENT return ( ( float ( 3 * interval_size ) / 8 ) * sum ) NEW_LINE DEDENT interval_limit = 10 NEW_LINE lower_limit = 1 NEW_LINE upper_limit = 10 NEW_LINE integral_res = calculate ( lower_limit , upper_limit , interval_limit ) NEW_LINE print ( round ( integral_res , 6 ) ) NEW_LINE |
Container with Most Water | Python3 code for Max Water Container ; Calculating the max area ; Driver code | def maxArea ( A , Len ) : NEW_LINE INDENT area = 0 NEW_LINE for i in range ( Len ) : NEW_LINE INDENT for j in range ( i + 1 , Len ) : NEW_LINE INDENT area = max ( area , min ( A [ j ] , A [ i ] ) * ( j - i ) ) NEW_LINE DEDENT DEDENT return area NEW_LINE DEDENT a = [ 1 , 5 , 4 , 3 ] NEW_LINE b = [ 3 , 1 , 2 , 4 , 5 ] NEW_LINE len1 = len ( a ) NEW_LINE print ( maxArea ( a , len1 ) ) NEW_LINE len2 = len ( b ) NEW_LINE print ( maxArea ( b , len2 ) ) NEW_LINE |
Program for focal length of a lens | Function to determine the focal length of a lens ; Variable to store the distance between the lens and the image ; Variable to store the distance between the lens and the object | def focal_length ( image_distance , object_distance ) NEW_LINE INDENT : return 1 / ( ( 1 / image_distance ) + ( 1 / object_distance ) ) NEW_LINE DEDENT image_distance = 2 NEW_LINE object_distance = 50 NEW_LINE result = focal_length ( image_distance , object_distance ) NEW_LINE print ( " Focal β length β of β a β lens β is β " , result , " β units . " ) NEW_LINE |
Count numbers in range L | check if the number is divisible by the digits . ; function to calculate the number of numbers ; Driver function | def check ( n ) : NEW_LINE INDENT m = n NEW_LINE while ( n != 0 ) : NEW_LINE INDENT r = n % 10 NEW_LINE if ( r > 0 ) : NEW_LINE INDENT if ( ( m % r ) != 0 ) : NEW_LINE INDENT return False NEW_LINE DEDENT DEDENT n = n // 10 NEW_LINE DEDENT return True NEW_LINE DEDENT def count ( l , r ) : NEW_LINE INDENT ans = 0 NEW_LINE for i in range ( l , r + 1 ) : NEW_LINE INDENT if ( check ( i ) ) : NEW_LINE INDENT ans = ans + 1 NEW_LINE DEDENT DEDENT return ans NEW_LINE DEDENT l = 10 NEW_LINE r = 20 NEW_LINE print ( count ( l , r ) ) NEW_LINE |
Sum of the Series 1 / ( 1 * 2 ) + 1 / ( 2 * 3 ) + 1 / ( 3 * 4 ) + 1 / ( 4 * 5 ) + . . . . . | Function to find the sum of given series ; Computing sum term by term ; Driver function | def sumOfTheSeries ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT sum += 1.0 / ( i * ( i + 1 ) ) ; NEW_LINE DEDENT return sum NEW_LINE DEDENT if __name__ == ' _ _ main _ _ ' : NEW_LINE INDENT ans = sumOfTheSeries ( 10 ) NEW_LINE print ( round ( ans , 6 ) ) NEW_LINE DEDENT |
Sum of series ( n / 1 ) + ( n / 2 ) + ( n / 3 ) + ( n / 4 ) + ... ... . + ( n / n ) | Python 3 program to find sum of given series ; function to find sum of series ; driver code | import math NEW_LINE def sum ( n ) : NEW_LINE INDENT root = ( int ) ( math . sqrt ( n ) ) NEW_LINE ans = 0 NEW_LINE for i in range ( 1 , root + 1 ) : NEW_LINE INDENT ans = ans + n // i NEW_LINE DEDENT ans = 2 * ans - ( root * root ) NEW_LINE return ans NEW_LINE DEDENT n = 35 NEW_LINE print ( sum ( n ) ) NEW_LINE |
Sum of the series 2 + ( 2 + 4 ) + ( 2 + 4 + 6 ) + ( 2 + 4 + 6 + 8 ) + Γ’ β¬Β¦ Γ’ β¬Β¦ + ( 2 + 4 + 6 + 8 + Γ’ β¬Β¦ . + 2 n ) | function to find the sum of the given series ; sum of 1 st n natural numbers ; sum of squares of 1 st n natural numbers ; required sum ; Driver program to test above | def sumOfTheSeries ( n ) : NEW_LINE INDENT sum_n = int ( ( n * ( n + 1 ) / 2 ) ) ; NEW_LINE sum_sq_n = int ( ( n * ( n + 1 ) / 2 ) * ( 2 * n + 1 ) / 3 ) NEW_LINE return ( sum_n + sum_sq_n ) ; NEW_LINE DEDENT n = 5 NEW_LINE ans = sumOfTheSeries ( n ) NEW_LINE print ( ans ) NEW_LINE |
Sum of squares of binomial coefficients | Return the sum of square of binomial coefficient ; Calculate value of Binomial Coefficient in bottom up manner ; Base Cases ; Calculate value using previously stored values ; Finding the sum of square of binomial coefficient . ; Driver Code | def sumofsquare ( n ) : NEW_LINE INDENT C = [ [ 0 for i in range ( n + 1 ) ] for j in range ( n + 1 ) ] NEW_LINE for i in range ( 0 , n + 1 ) : NEW_LINE INDENT for j in range ( 0 , min ( i , n ) + 1 ) : NEW_LINE INDENT if ( j == 0 or j == i ) : NEW_LINE INDENT C [ i ] [ j ] = 1 NEW_LINE DEDENT else : NEW_LINE INDENT C [ i ] [ j ] = ( C [ i - 1 ] [ j - 1 ] + C [ i - 1 ] [ j ] ) NEW_LINE DEDENT DEDENT DEDENT sum = 0 NEW_LINE for i in range ( 0 , n + 1 ) : NEW_LINE INDENT sum = sum + ( C [ n ] [ i ] * C [ n ] [ i ] ) NEW_LINE DEDENT return sum NEW_LINE DEDENT n = 4 NEW_LINE print ( sumofsquare ( n ) , end = " " ) NEW_LINE |
Program to find sum of series 1 + 2 + 2 + 3 + 3 + 3 + . . . + n | Python3 Program to find sum of series 1 + 2 + 2 + 3 + . . . + n ; Function that find sum of series . ; Driver method ; Function call | import math NEW_LINE def sumOfSeries ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT sum = sum + i * i NEW_LINE DEDENT return sum NEW_LINE DEDENT n = 10 NEW_LINE print ( sumOfSeries ( n ) ) NEW_LINE |
Find sum of even index binomial coefficients | Python Program to find sum of even index term ; Return the sum of even index term ; Calculate value of Binomial Coefficient in bottom up manner ; Base Cases ; Calculate value using previously stored values ; Finding sum of even index term ; Driver method | import math NEW_LINE def evenSum ( n ) : NEW_LINE INDENT C = [ [ 0 for x in range ( n + 1 ) ] for y in range ( n + 1 ) ] NEW_LINE for i in range ( 0 , n + 1 ) : NEW_LINE INDENT for j in range ( 0 , min ( i , n + 1 ) ) : NEW_LINE INDENT if j == 0 or j == i : NEW_LINE INDENT C [ i ] [ j ] = 1 NEW_LINE DEDENT else : NEW_LINE INDENT C [ i ] [ j ] = C [ i - 1 ] [ j - 1 ] + C [ i - 1 ] [ j ] NEW_LINE DEDENT DEDENT DEDENT sum = 0 ; NEW_LINE for i in range ( 0 , n + 1 ) : NEW_LINE INDENT if n % 2 == 0 : NEW_LINE INDENT sum = sum + C [ n ] [ i ] NEW_LINE DEDENT DEDENT return sum NEW_LINE DEDENT n = 4 NEW_LINE print evenSum ( n ) NEW_LINE |
Program to print triangular number series till n | Function to find triangular number ; Driver code | def triangular_series ( n ) : NEW_LINE INDENT for i in range ( 1 , n + 1 ) : NEW_LINE INDENT print ( i * ( i + 1 ) // 2 , end = ' β ' ) NEW_LINE DEDENT DEDENT n = 5 NEW_LINE triangular_series ( n ) NEW_LINE |
Check if a number can be written as sum of three consecutive integers | function to check if a number can be written as sum of three consecutive integers . ; if n is multiple of 3 ; else print " - 1" . ; Driver Code | def checksum ( n ) : NEW_LINE INDENT n = int ( n ) NEW_LINE if n % 3 == 0 : NEW_LINE INDENT print ( int ( n / 3 - 1 ) , " β " , int ( n / 3 ) , " β " , int ( n / 3 + 1 ) ) NEW_LINE DEDENT else : NEW_LINE INDENT print ( " - 1" ) NEW_LINE DEDENT DEDENT n = 6 NEW_LINE checksum ( n ) NEW_LINE |
Sum of all divisors from 1 to n | Python3 code to find sum of all divisor of number up to 'n ; Utility function to find sum of all divisor of number up to 'n ; Driver code | ' NEW_LINE ' NEW_LINE def divisorSum ( n ) : NEW_LINE INDENT sum = 0 NEW_LINE for i in range ( 1 , n + 1 ) : NEW_LINE INDENT sum += int ( n / i ) * i NEW_LINE DEDENT return int ( sum ) NEW_LINE DEDENT n = 4 NEW_LINE print ( divisorSum ( n ) ) NEW_LINE n = 5 NEW_LINE print ( divisorSum ( n ) ) NEW_LINE |
Sum of all divisors from 1 to n | ; t1 = i * ( num / i - i + 1 ) adding i every time it appears with numbers greater than or equal to itself t2 = ( ( ( num / i ) * ( num / i + 1 ) ) / 2 ) - ( ( i * ( i + 1 ) ) / 2 ) adding numbers that appear with i and are greater than i ; Driver code | import math NEW_LINE def sum_all_divisors ( num ) : NEW_LINE INDENT sum = 0 ; NEW_LINE for i in range ( 1 , math . floor ( math . sqrt ( num ) ) + 1 ) : NEW_LINE INDENT sum += t1 + t2 ; NEW_LINE DEDENT return sum ; NEW_LINE DEDENT n = 1 NEW_LINE sum = sum_all_divisors ( n ) NEW_LINE print ( sum ) NEW_LINE |
Subsets and Splits