image
imagewidth (px)
65
845
latex_formula
stringlengths
6
152
\[\int_{x}^{y}c_{i}\]
\[c= \lim_{k \rightarrow+ \infty} \Delta(k)\]
\[f(u)= \cos(u)\]
\[z^{-n}e^{- \frac{m}{z}}+ \ldots\]
\[x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\]
\[x \neq a\]
\[\lim_{z \rightarrow \infty}zs(z)\]
\[\sin y_{0}\]
\[\frac{3.10}{10+2}= \frac{10.1}{1+3}\]
\[x_{2}= \sin \theta \sin \phi\]
\[x^{7}-x^{8}\]
\[\pm \frac{1}{ \sqrt{132}}\]
\[\int dx^{i}dx^{j}\]
\[F(x)=x(1+ \frac{x}{a})\]
\[( \frac{B}{A+1})^{ \frac{1}{n+1}}\]
\[\sqrt{ \beta}m\]
\[137=3+7+127=(2^{2}-1)+(2^{3}-1)+(2^{7}-1)\]
\[f(z, \cos z, \sin z)\]
\[\frac{n}{8}\]
\[b= \frac{1}{ \sqrt{1-4c}}\]
\[dyy\]
\[\tan o=q \div p\]
\[\beta= \sqrt{2ab}\]
\[\frac{-3}{ \sqrt{360}}\]
\[1+7+11\]
\[EF+EEE\]
\[y_{i}^{2}=x_{i}(x_{i}-1)(x_{i}-a_{i})\]
\[(+ \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2},- \frac{1}{2})\]
\[(f+1)-f-f+(f-1)=0\]
\[\lim \sqrt{x}\]
\[5!3!2!3!3!2!>10^{5}\]
\[\frac{2 \pi}{3}- \frac{4 \pi}{9}= \frac{2 \pi}{9}\]
\[(1+1+0+0)+(4 \times 0)+(4 \times 0)\]
\[b_{c}= \frac{1}{2} \log( \sqrt{2}+1)\]
\[bc+cb\]
\[8 \times 7\]
\[\frac{3}{5}\]
\[\frac{n_{1}}{ \sin \theta_{1}}= \frac{n_{2}}{ \sin \theta_{2}}\]
\[\log(1-x)\]
\[\sum_{a=1}^{4}C_{a}=2B+4F\]
\[(n-2)(n-4) \ldots(1) \times(n-2)(n-4) \ldots(1)\]
\[x \neq 0\]
\[H_{n}= \sum_{j}a_{j}^{n-1}b_{j}\]
\[x+iy\]
\[2f-e_{1}+2e_{4}-e_{5}+e_{7}+2e_{9}\]
\[\int F(x)dx\]
\[y= \pm \sqrt{-u}\]
\[V_{n-1}= \int d^{n-1}x \sqrt{h}\]
\[P_{max}= \frac{8 \sqrt{3}}{15}=0,924\]
\[\frac{8}{7}\]
\[A_{d}=A^{(1)}+A^{(2)}+A^{(3)}+ \ldots\]
\[\{ \{A,B \},C \}+ \{ \{C,A \},B \}+ \{ \{B,C \},A \}\]
\[\tan \theta=0\]
\[\sqrt{3 \alpha}\]
\[3 \times 2+8+r-4\]
\[b=- \frac{3}{8 \sqrt{7}}\]
\[\sqrt{ \frac{k}{n}}\]
\[n2^{n-1}+1-2^{n}\]
\[d^{M}(m)=8 \times \frac{1}{6}(m+1)(m+2)(m+3)\]
\[\frac{n}{2}+ \frac{3}{2}\]
\[-bj_{21}=-bj_{1}+ \frac{1}{2b}\]
\[( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}0000)\]
\[\frac{1}{64}(3n^{3}+23n^{2}+72n+80)\]
\[\frac{575}{24}\]
\[II\]
\[3n-3+1\]
\[32x^{5}-32x^{3}+6x\]
\[Tr\]
\[8 \cos \theta\]
\[p \neq 9\]
\[z= \frac{-b}{a}\]
\[(t-x)(t+x)<0\]
\[\lim_{l \rightarrow \infty}x(l)\]
\[\frac{325}{66}\]
\[Y= \frac{1}{4}Y_{(3)}- \frac{1}{3}Y_{(2)}\]
\[(xy)^{-1}=y^{-1}x^{-1}\]
\[|xy|\]
\[C= \frac{1}{2} \sqrt{ \frac{5}{3}}\]
\[(1)+(11)+(111)+(112)+(123)\]
\[(4n-4)-(2n-1)=2n-3\]
\[\beta^{n}+ \beta^{-n}-2\]
\[\int_{0}^{ \infty} \frac{dx}{x}\]
\[\frac{5}{12}- \frac{115}{8}u^{-2}\]
\[ydx= \frac{j^{2}-q^{2}}{1+q^{2}}dyx- \frac{jq}{1+q^{2}}dxy\]
\[a=a_{0}+a_{1}+a_{2}+a_{3}\]
\[z= \int dya^{-1}(y)\]
\[n \log n\]
\[(1.655,14.447,3.398)\]
\[\sin( \theta) \neq 0\]
\[-0.999\]
\[\tan( \theta)=1\]
\[+120SR_{ijji}+144SL_{aa}L_{bb}+48SL_{ab}L_{ab}+480S^{2}L_{aa}+480S^{3}\]
\[- \frac{9}{768}\]
\[[x,y]=xy-yx\]
\[k \times x\]
\[x \in Y\]
\[\exists f(z)\]
\[A= \int dxh(x) \sum_{j}B_{j}(x)b_{j}(x)\]
\[\int d^{4}x(1+a^{4})\]
\[-bj_{2}=b+ \frac{1}{2b}\]