image
imagewidth (px) 65
845
| latex_formula
stringlengths 6
152
|
---|---|
\[\int_{x}^{y}c_{i}\] |
|
\[c= \lim_{k \rightarrow+ \infty} \Delta(k)\] |
|
\[f(u)= \cos(u)\] |
|
\[z^{-n}e^{- \frac{m}{z}}+ \ldots\] |
|
\[x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\] |
|
\[x \neq a\] |
|
\[\lim_{z \rightarrow \infty}zs(z)\] |
|
\[\sin y_{0}\] |
|
\[\frac{3.10}{10+2}= \frac{10.1}{1+3}\] |
|
\[x_{2}= \sin \theta \sin \phi\] |
|
\[x^{7}-x^{8}\] |
|
\[\pm \frac{1}{ \sqrt{132}}\] |
|
\[\int dx^{i}dx^{j}\] |
|
\[F(x)=x(1+ \frac{x}{a})\] |
|
\[( \frac{B}{A+1})^{ \frac{1}{n+1}}\] |
|
\[\sqrt{ \beta}m\] |
|
\[137=3+7+127=(2^{2}-1)+(2^{3}-1)+(2^{7}-1)\] |
|
\[f(z, \cos z, \sin z)\] |
|
\[\frac{n}{8}\] |
|
\[b= \frac{1}{ \sqrt{1-4c}}\] |
|
\[dyy\] |
|
\[\tan o=q \div p\] |
|
\[\beta= \sqrt{2ab}\] |
|
\[\frac{-3}{ \sqrt{360}}\] |
|
\[1+7+11\] |
|
\[EF+EEE\] |
|
\[y_{i}^{2}=x_{i}(x_{i}-1)(x_{i}-a_{i})\] |
|
\[(+ \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2},+ \frac{1}{2},- \frac{1}{2})\] |
|
\[(f+1)-f-f+(f-1)=0\] |
|
\[\lim \sqrt{x}\] |
|
\[5!3!2!3!3!2!>10^{5}\] |
|
\[\frac{2 \pi}{3}- \frac{4 \pi}{9}= \frac{2 \pi}{9}\] |
|
\[(1+1+0+0)+(4 \times 0)+(4 \times 0)\] |
|
\[b_{c}= \frac{1}{2} \log( \sqrt{2}+1)\] |
|
\[bc+cb\] |
|
\[8 \times 7\] |
|
\[\frac{3}{5}\] |
|
\[\frac{n_{1}}{ \sin \theta_{1}}= \frac{n_{2}}{ \sin \theta_{2}}\] |
|
\[\log(1-x)\] |
|
\[\sum_{a=1}^{4}C_{a}=2B+4F\] |
|
\[(n-2)(n-4) \ldots(1) \times(n-2)(n-4) \ldots(1)\] |
|
\[x \neq 0\] |
|
\[H_{n}= \sum_{j}a_{j}^{n-1}b_{j}\] |
|
\[x+iy\] |
|
\[2f-e_{1}+2e_{4}-e_{5}+e_{7}+2e_{9}\] |
|
\[\int F(x)dx\] |
|
\[y= \pm \sqrt{-u}\] |
|
\[V_{n-1}= \int d^{n-1}x \sqrt{h}\] |
|
\[P_{max}= \frac{8 \sqrt{3}}{15}=0,924\] |
|
\[\frac{8}{7}\] |
|
\[A_{d}=A^{(1)}+A^{(2)}+A^{(3)}+ \ldots\] |
|
\[\{ \{A,B \},C \}+ \{ \{C,A \},B \}+ \{ \{B,C \},A \}\] |
|
\[\tan \theta=0\] |
|
\[\sqrt{3 \alpha}\] |
|
\[3 \times 2+8+r-4\] |
|
\[b=- \frac{3}{8 \sqrt{7}}\] |
|
\[\sqrt{ \frac{k}{n}}\] |
|
\[n2^{n-1}+1-2^{n}\] |
|
\[d^{M}(m)=8 \times \frac{1}{6}(m+1)(m+2)(m+3)\] |
|
\[\frac{n}{2}+ \frac{3}{2}\] |
|
\[-bj_{21}=-bj_{1}+ \frac{1}{2b}\] |
|
\[( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}0000)\] |
|
\[\frac{1}{64}(3n^{3}+23n^{2}+72n+80)\] |
|
\[\frac{575}{24}\] |
|
\[II\] |
|
\[3n-3+1\] |
|
\[32x^{5}-32x^{3}+6x\] |
|
\[Tr\] |
|
\[8 \cos \theta\] |
|
\[p \neq 9\] |
|
\[z= \frac{-b}{a}\] |
|
\[(t-x)(t+x)<0\] |
|
\[\lim_{l \rightarrow \infty}x(l)\] |
|
\[\frac{325}{66}\] |
|
\[Y= \frac{1}{4}Y_{(3)}- \frac{1}{3}Y_{(2)}\] |
|
\[(xy)^{-1}=y^{-1}x^{-1}\] |
|
\[|xy|\] |
|
\[C= \frac{1}{2} \sqrt{ \frac{5}{3}}\] |
|
\[(1)+(11)+(111)+(112)+(123)\] |
|
\[(4n-4)-(2n-1)=2n-3\] |
|
\[\beta^{n}+ \beta^{-n}-2\] |
|
\[\int_{0}^{ \infty} \frac{dx}{x}\] |
|
\[\frac{5}{12}- \frac{115}{8}u^{-2}\] |
|
\[ydx= \frac{j^{2}-q^{2}}{1+q^{2}}dyx- \frac{jq}{1+q^{2}}dxy\] |
|
\[a=a_{0}+a_{1}+a_{2}+a_{3}\] |
|
\[z= \int dya^{-1}(y)\] |
|
\[n \log n\] |
|
\[(1.655,14.447,3.398)\] |
|
\[\sin( \theta) \neq 0\] |
|
\[-0.999\] |
|
\[\tan( \theta)=1\] |
|
\[+120SR_{ijji}+144SL_{aa}L_{bb}+48SL_{ab}L_{ab}+480S^{2}L_{aa}+480S^{3}\] |
|
\[- \frac{9}{768}\] |
|
\[[x,y]=xy-yx\] |
|
\[k \times x\] |
|
\[x \in Y\] |
|
\[\exists f(z)\] |
|
\[A= \int dxh(x) \sum_{j}B_{j}(x)b_{j}(x)\] |
|
\[\int d^{4}x(1+a^{4})\] |
|
\[-bj_{2}=b+ \frac{1}{2b}\] |