text
stringlengths 2
104M
| meta
dict |
---|---|
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Binary search a boolean function over a floating point range
// Template Arguments:
// T: the type of the range to search over, must be a floating point type
// F: the type of the function that is being searched over
// Function Arguments:
// lo: the inclusive lower bound
// hi: the inclusive upper bound
// f: the function to search over
// iters: the number of iterations to run the ternary search
// Return Value: the value x in the range [lo, hi] such that f(x - EPS) is
// false, while f(x + EPS) is true for some small value EPS
// In practice, has a small constant
// Time Complexity: O(iters) * (cost to compute f(x))
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/globexcup19s2
template <class T, class F> T bsearchFloat(T lo, T hi, F f, int iters) {
static_assert(is_floating_point<T>::value,
"T must be a floating point type");
for (int it = 0; it < iters; it++) {
T mid = lo + (hi - lo) / 2;
if (f(mid)) hi = mid;
else lo = mid;
}
return lo + (hi - lo) / 2;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/trees/fenwicktrees/FenwickTree1D.h"
using namespace std;
// Computes a longest increasing subsequence in an array
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// Return Value: a vector of indices of the element in the longest increasing
// subsequence of the array, guaranteed that the values of those indices form
// the lexicographically least subsequence
// In practice, has a small constant, slower than
// LongestIncreasingSubsequence.h
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/lis
// https://open.kattis.com/problems/longincsubseq
template <class T>
vector<int> longestIncreasingSubsequenceFenwick(const vector<T> &A) {
vector<T> tmp = A; int N = A.size(), mx = 0; sort(tmp.begin(), tmp.end());
tmp.erase(unique(tmp.begin(), tmp.end()), tmp.end());
vector<int> ret(N), ind(N + 1, -1); for (int i = 0; i < N; i++)
ret[i] = lower_bound(tmp.begin(), tmp.end(), A[i]) - tmp.begin();
struct Max { int operator () (int a, int b) { return max(a, b); } };
FenwickTree1D<int, Max> FT(N, 0); for (int i = 0; i < N; i++) {
int len = FT.query(ret[i] - 1) + 1; if (ind[len] == -1) ind[mx = len] = i;
else if (!(A[ind[len]] < A[i])) ind[len] = i;
FT.update(ret[i], len); ret[i] = ind[len - 1];
}
for (int i = N, k = ind[mx], p; k != -1; k = p) { p = ret[k]; ret[--i] = k; }
ret.erase(ret.begin(), ret.end() - mx); return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sum over subsets (or supersets) (similar to FST)
// Transforms an array a into an array a' such that a'[i] is equal to the
// aggregate of all a[j] such that i | j == i if TYPE == SUBSET
// or i & j == i if TYPE == SUPERSET
// Template Arguments:
// TYPE: SUBSET or SUPERSET
// T: the type of each element
// Function Arguments:
// a: a reference to the vector of type T to transform
// op: the op being performed (this can also be an inverse operation)
// Time Complexity: O(N log N) where N = size(a)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/bitwise_and_convolution
// https://csacademy.com/contest/round-53/task/maxor/
const bool SUBSET = true, SUPERSET = false;
template <const bool TYPE, class T, class Op> void sos(vector<T> &a, Op op) {
int N = a.size(); assert(!(N & (N - 1)));
for (int m = 1; m < N; m <<= 1) for (int mask = 0; mask < N; mask++)
if (bool(mask & m) == TYPE) a[mask] = op(a[mask], a[mask ^ m]);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the 0-1 knapsack problem (each item can appear either 0 or 1 times)
// Template Arguments:
// V: the value type
// Function Arguments:
// A: a vetor of pairs, with the first element of each pair being the weight
// of type int, and the second being the value of type V
// M: type maximum weight the knapsack can hold
// NEG_INF: a value of type V for negative infinity
// Return Value: a vector dp of size M + 1 with dp[i] being the maximum value
// that a knapsack with weights summing to exactly i has (or NEG_INF if
// that sum is not possible)
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://atcoder.jp/contests/dp/tasks/dp_d
template <class V>
vector<V> zeroOneKnapsack(const vector<pair<int, V>> &A, int M,
V NEG_INF = numeric_limits<V>::lowest()) {
vector<V> dp(M + 1, NEG_INF); dp[0] = V(); for (auto &&a : A)
for (int j = M; j >= a.first; j--) if (dp[j - a.first] > NEG_INF)
dp[j] = max(dp[j], dp[j - a.first] + a.second);
return dp;
}
// Solves the dual of the 0-1 knapsack problem (each item can appear
// either 0 or 1 times)
// Template Arguments:
// W: the weight type
// Function Arguments:
// A: a vetor of pairs, with the first element of each pair being the weight
// of type W, and the second being the value of type int
// K: type maximum value the knapsack can hold
// INF: a value of type W for infinity
// Return Value: a vector dp of size K + 1 with dp[i] being the minimum weight
// that a knapsack with values summing to exactly i has (or INF if that sum
// is not possible)
// In practice, has a very small constant
// Time Complexity: O(NK)
// Memory Complexity: O(K)
// Tested:
// https://atcoder.jp/contests/dp/tasks/dp_e
template <class W> vector<W> zeroOneKnapsackDual(
const vector<pair<W, int>> &A, int K, W INF = numeric_limits<W>::max()) {
vector<W> dp(K + 1, INF); dp[0] = W(); for (auto &&a : A)
for (int j = K; j >= a.second; j--) if (dp[j - a.second] < INF)
dp[j] = min(dp[j], dp[j - a.second] + a.first);
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the multisubset sum problem with the occurrence of each sum (elements
// can be chosen multiple times)
// Template Arguments:
// U: the type of the count
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// M: the maximum sum to count the number of multisubsets
// Return Value: a vector dp of type U with length M + 1 with dp[i] equal to
// the number of multisubsets that have a sum of i
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://cses.fi/problemset/task/1636
template <class U, class T>
vector<U> multisubsetSumCount(const vector<T> &A, int M) {
vector<U> dp(M + 1, U()); dp[0] = U(1); for (auto &&a : A)
for (int j = a; j <= M; j++) dp[j] += dp[j - a];
return dp;
}
// Solves the multisubset sum problem (elements can be chosen multiple times)
// Template Arguments:
// U: the type representing the boolean
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// M: the maximum sum to determine if a subset exists
// Return Value: a boolean vector dp with length M + 1 with dp[i] equal to
// 1 if a multisubset has a sum of i, 0 otherwise
// In practice, has a very small constant, faster if U is int, but less memory
// is used if U is bool (as long as the compiler optimizes vector<booL>);
// char gives mixed results depending on whether vector<char> is compiled
// as a string (better if it is not a string)
// Time Complexity: O(NM)
// Memory Complexity: O(M / 64)
// Tested:
// Stress Tested
// https://mcpt.ca/problem/acoinproblem
template <class U = bool, class T>
vector<U> multisubsetSum(const vector<T> &A, int M) {
vector<U> dp(M + 1, U(0)); dp[0] = U(1); for (auto &&a : A)
for (int j = a; j <= M; j++) dp[j] = dp[j] || dp[j - a];
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the subset sum problem with the occurrence of each sum (elements
// can be chosen 0 or 1 times)
// Template Arguments:
// U: the type of the count
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// M: the maximum sum to count the number of subsets
// Return Value: a vector dp of type U with length M + 1 with dp[i] equal to
// the number of subsets that have a sum of i
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// Fuzz Tested
template <class U, class T>
vector<U> subsetSumCount(const vector<T> &A, int M) {
vector<U> dp(M + 1, U()); dp[0] = U(1); for (auto &&a : A)
for (int j = M; j >= a; j--) dp[j] += dp[j - a];
return dp;
}
// Solves the subset sum problem (elements can be chosen 0 or 1 times)
// Template Arguments:
// M: the maximum sum to determine if a subset exists
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// en: an iterator pointing to after the last element in the array
// Return Value: a bitset dp with length M + 1 with dp[i] equal to
// whether a subset has a sum of i
// In practice, has a very small constant
// Time Complexity: O(NM / 64)
// Memory Complexity: O(M / 64)
// Tested:
// Fuzz Tested
// https://cses.fi/problemset/task/1745/
template <const int M, class T> bitset<M + 1> subsetSum(const vector<T> &A) {
bitset<M + 1> dp; dp[0] = true; for (auto &&a : A) dp |= dp << a;
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum sum of a non empty, non consecutive subsequence
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// NEG_INF: a value for negative infinity
// Return Value: the maximum sum of a non empty, non consecutive subsequence
// In practice, has a small constant
// Time Complexity: O(N)
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/seq0
template <class T> T maxNonConsecutiveSum(
const vector<T> &A, T NEG_INF = numeric_limits<T>::lowest()) {
T incl = NEG_INF, excl = NEG_INF; for (auto &&a : A) {
T v = a; if (excl > NEG_INF) v = max(v, v + excl);
excl = max(incl, excl); incl = v;
}
return max(incl, excl);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the bounded knapsack problem (each item can appear up to a specified
// number of times)
// Template Arguments:
// V: the value type
// Function Arguments:
// A: a vector of tuples, with the first element of each tuple being the
// weight of type int, the second being the value of type V, and the third
// being the frequency of type int
// M: type maximum weight the knapsack can hold
// NEG_INF: a value of type V for negative infinity
// Return Value: a vector dp of size M + 1 with dp[i] being the maximum value
// that a knapsack with weights summing to exactly i has (or NEG_INF if
// that sum is not possible)
// In practice, has a small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://dmoj.ca/problem/knapsack
template <class V>
vector<V> boundedKnapsack(const vector<tuple<int, V, int>> &A, int M,
V NEG_INF = numeric_limits<V>::lowest()) {
vector<V> dp(M + 1, NEG_INF), q(M + 1, V()), dq(M + 1, V()); dp[0] = V();
for (auto &&a : A) {
int w = get<0>(a), f = get<2>(a); V v = get<1>(a);
if (w <= M) for (int s = 0; s < w; s++) {
V alpha = V(); int ql = 0, qr = 0, dql = 0, dqr = 0;
for (int j = s; j <= M; j += w) {
alpha += v; V a = dp[j] <= NEG_INF ? NEG_INF : dp[j] - alpha;
while (dql < dqr && dq[dqr - 1] < a) dqr--;
q[qr++] = dq[dqr++] = a;
while (qr - ql > f + 1) if (q[ql++] == dq[dql]) dql++;
dp[j] = dq[dql] <= NEG_INF ? NEG_INF : dq[dql] + alpha;
}
}
}
return dp;
}
// Solves the dual of the bounded knapsack problem (each item can appear up to
// a specified number of times)
// Template Arguments:
// W: the weight type
// Function Arguments:
// A: a vector of tuples, with the first element of each tuple being the
// weight of type W, the second being the value of type int, and the third
// being the frequency of type int
// K: type maximum value the knapsack can hold
// INF: a value of type W for infinity
// Return Value: a vector dp of size K + 1 with dp[i] being the minimum weight
// that a knapsack with values summing to exactly i has (or INF if that sum
// is not possible)
// In practice, has a small constant
// Time Complexity: O(NK)
// Memory Complexity: O(K)
// Tested:
// https://dmoj.ca/problem/knapsack (Subtask 1)
template <class W>
vector<W> boundedKnapsackDual(const vector<tuple<W, int, int>> &A, int K,
W INF = numeric_limits<W>::max()) {
vector<W> dp(K + 1, INF), q(K + 1, W()), dq(K + 1, W()); dp[0] = W();
for (auto &&a : A) {
int v = get<1>(a), f = get<2>(a); W w = get<0>(a);
if (v <= K) for (int s = 0; s < v; s++) {
W alpha = W(); int ql = 0, qr = 0, dql = 0, dqr = 0;
for (int j = s; j <= K; j += v) {
alpha += w; W a = dp[j] >= INF ? INF : dp[j] - alpha;
while (dql < dqr && dq[dqr - 1] > a) dqr--;
q[qr++] = dq[dqr++] = a;
while (qr - ql > f + 1) if (q[ql++] == dq[dql]) dql++;
dp[j] = dq[dql] >= INF ? INF : dq[dql] + alpha;
}
}
}
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the longest common subsequence between 2 arrays
// Template Arguments:
// T: the type of the elements in the arrays
// Function Arguments:
// A: the first array
// B: the second array
// Return Value: the length of the longest common subsequence between the
// 2 arrays
// In practice, has a small constant
// Time Complexity: O(NM) where N = en1 - st1 and M = en2 - st2
// Memory Complexity: O(M)
// Tested:
// https://dmoj.ca/problem/lcs
template <class T>
int longestCommonSubsequence(const vector<T> &A, const vector<T> &B) {
int N = A.size(), M = B.size();
vector<vector<int>> dp(2, vector<int>(M + 1, 0));
for (int i = 1; i <= N; i++) {
int cur = i % 2, prv = 1 - cur; for (int j = 1; j <= M; j++)
dp[cur][j] = A[i - 1] == B[j - 1] ? dp[prv][j - 1] + 1
: max(dp[cur][j - 1], dp[prv][j]);
}
return dp[N % 2][M];
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Knuth's Dynamic Programming Optimization
// Must satisfy dp[l][r] = max(dp[l][m] + dp[m][r] + cost(l, m, r))
// for l <= m <= r and
// max(l + 1, opt[l][r - 1]) <= opt[l][r] <= min(opt[l + 1][r], r - 1),
// where opt[l][r] is the optimal value of m for dp[l][r]
// Template Arguments:
// T: the type of the return value of the cost function
// F: the type of the function used to compute the cost function
// Cmp: the comparator to compare two T values,
// convention is same as std::priority_queue in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// N: the size of the array, must be positive
// f(l, m, r): computes the cost function for the range [l, r) with the
// midpoint m
// cmp: an instance of the Cmp struct
// Return Value: a dp array of size N x (N + 1) with dp[l][r] equal to the
// maximum dp value (based on the comparator) of the range [l, r)
// In practice, has a small constant
// Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
// Tested:
// https://atcoder.jp/contests/dp/tasks/dp_n
template <class T, class F, class Cmp = less<T>>
vector<vector<T>> knuth(int N, F f, Cmp cmp = Cmp()) {
assert(N > 0); vector<vector<T>> dp(N, vector<T>(N + 1, T()));
vector<vector<int>> opt(N, vector<int>(N + 1));
for (int l = N - 1; l >= 0; l--) for (int r = l; r <= N; r++) {
if (r - l <= 1) { opt[l][r] = l; continue; }
int st = max(l + 1, opt[l][r - 1]), en = min(opt[l + 1][r], r - 1);
for (int m = st; m <= en; m++) {
T cost = dp[l][m] + dp[m][r] + f(l, m, r);
if (m == st || cmp(dp[l][r], cost)) { dp[l][r] = cost; opt[l][r] = m; }
}
}
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the unbounded knapsack problem (each item can appear any number
// of times)
// Template Arguments:
// V: the value type
// Function Arguments:
// A: a vetor of pairs, with the first element of each pair being the weight
// of type int, and the second being the value of type V
// M: type maximum weight the knapsack can hold
// NEG_INF: a value of type V for negative infinity
// Return Value: a vector dp of size M + 1 with dp[i] being the maximum value
// that a knapsack with weights summing to exactly i has (or NEG_INF if
// that sum is not possible)
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://www.spoj.com/problems/DBALLZ/
template <class V>
vector<V> unboundedKnapsack(const vector<pair<int, V>> &A, int M,
V NEG_INF = numeric_limits<V>::lowest()) {
vector<V> dp(M + 1, NEG_INF); dp[0] = V(); for (auto &&a : A)
for (int j = a.first; j <= M; j++) if (dp[j - a.first] > NEG_INF)
dp[j] = max(dp[j], dp[j - a.first] + a.second);
return dp;
}
// Solves the dual of the unbounded knapsack problem (each item can appear
// any number of times)
// Template Arguments:
// W: the weight type
// Function Arguments:
// A: a vetor of pairs, with the first element of each pair being the weight
// of type W, and the second being the value of type int
// K: type maximum value the knapsack can hold
// INF: a value of type W for infinity
// Return Value: a vector dp of size K + 1 with dp[i] being the minimum weight
// that a knapsack with values summing to exactly i has (or INF if that sum
// is not possible)
// In practice, has a very small constant
// Time Complexity: O(NK)
// Memory Complexity: O(K)
// Tested:
// https://www.spoj.com/problems/PIGBANK/
template <class W> vector<W> unboundedKnapsackDual(
const vector<pair<W, int>> &A, int K, W INF = numeric_limits<W>::max()) {
vector<W> dp(K + 1, INF); dp[0] = W(); for (auto &&a : A)
for (int j = a.second; j <= K; j++) if (dp[j - a.second] < INF)
dp[j] = min(dp[j], dp[j - a.second] + a.first);
return dp;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes a longest increasing subsequence in an array
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// A: the array
// Return Value: a vector of indices of the element in a longest increasing
// subsequence of the array, the indices is guaranteed to be the
// lexicographically largest vector of indices
// In practice, has a very small constant, faster than the Fenwick Tree version
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/lis
// https://open.kattis.com/problems/longincsubseq
template <class T>
vector<int> longestIncreasingSubsequence(const vector<T> &A) {
int N = A.size(), k = -1; vector<int> ret(N);
vector<pair<T, int>> dp; dp.reserve(N); for (int i = 0; i < N; i++) {
int j = lower_bound(dp.begin(), dp.end(), make_pair(A[i], -1))
- dp.begin();
ret[i] = j == 0 ? -1 : dp[j - 1].second;
if (j >= int(dp.size())) dp.emplace_back(A[i], i);
else dp[j] = make_pair(A[i], i);
if (j == int(dp.size()) - 1) k = i;
}
for (int i = N, p; k != -1; k = p) { p = ret[k]; ret[--i] = k; }
ret.erase(ret.begin(), ret.end() - dp.size()); return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Divide and Conquer Dynamic Programming Optimization
// Must satisfy dp[k][i] = max(dp[k - 1][j] + cost(k, j, i))
// for 0 <= j <= i <= N and opt[k][i] <= opt[k][i + 1] where opt[k][i] is
// the optimal value of j for dp[k][i]
// Template Arguments:
// T: the type of the return value of the cost function
// F: the type of the function used to compute the cost function
// Cmp: the comparator to compare two T values,
// convention is same as std::priority_queue in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// K: the number of iterations, must be positive
// N: the size of the array, must be positive
// f(k, j, i): computes the cost function for the kth iteration (1-indexed)
// for the transition from j to i (0 <= j <= i <= N)
// cmp: an instance of the Cmp struct
// Return Value: a vector of length K + 1 with the value of dp[k][N]
// for 1 <= k <= N with dp[0][N] = 0
// In practice, has a small constant
// Time Complexity: O(KN log N)
// Memory Complexity: O(N)
// Tested:
// https://codeforces.com/contest/321/problem/E
// https://www.acmicpc.net/problem/7052
template <class T, class F, class Cmp = less<T>>
vector<T> divideAndConquer(int K, int N, F f, Cmp cmp = Cmp()) {
assert(N > 0 && K > 0); vector<vector<T>> dp(2, vector<T>(N + 1, T()));
for (int i = 0; i <= N; i++) dp[1][i] = f(1, 0, i);
vector<T> ret(K + 1, T()); ret[1] = dp[1][N]; vector<int> mid(N + 1);
vector<pair<int, int>> bnd(N + 1, make_pair(0, N)), opt = bnd;
for (int i = 0, b = 1; i <= N; i++) {
int l, r; tie(l, r) = bnd[i]; int m = mid[i] = l + (r - l) / 2;
if (l <= m - 1) bnd[b++] = make_pair(l, m - 1);
if (m + 1 <= r) bnd[b++] = make_pair(m + 1, r);
}
for (int k = 2; k <= K; k++) {
int cur = k % 2, prv = 1 - cur; for (int i = 0, b = 1; i <= N; i++) {
int l, r, m = mid[i], optl, optr;
tie(l, r) = bnd[i]; tie(optl, optr) = opt[i]; int optm = optl;
for (int j = optl, en = min(m, optr); j <= en; j++) {
T cost = dp[prv][j] + f(k, j, m);
if (j == optl || cmp(dp[cur][m], cost)) {
dp[cur][m] = cost; optm = j;
}
}
if (l <= m - 1) opt[b++] = make_pair(optl, optm);
if (m + 1 <= r) opt[b++] = make_pair(optm, optr);
}
ret[k] = dp[cur][N];
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum sum of a non empty subarray
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// A: a vector of type T
// NEG_INF: a value for negative infinity
// Return Value: a tuple with the maximum sum of a non empty subarray, and the
// inclusive left and right indices of the subarray
// In practice, has a small constant
// Time Complexity: O(N)
// Memory Complexity: O(1)
// Tested:
// https://mcpt.ca/problem/subarraymaximization
template <class T> tuple<T, int, int> maxSubarraySum(
const vector<T> &A, T NEG_INF = numeric_limits<T>::lowest()) {
tuple<T, int, int> ret = make_tuple(NEG_INF, 0, -1); T sm = T();
for (int i = 0, l = 0; i < int(A.size()); i++) {
sm += A[i]; if (get<0>(ret) < sm) ret = make_tuple(sm, l, i);
if (sm < T()) { sm = T(); l = i + 1; }
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the minimum edit distance between 2 arrays, allowing for custom
// penalties for copying, replacement, insertion, and deletion
// Template Arguments:
// T: the type of each element in the arrays
// U: the type of the penalties
// Function Arguments:
// A: the first array of type T
// B: the second array of type T
// Return Value: the minimum cost to edit the first array to become the
// second array
// In practice, has a small constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://www.spoj.com/problems/EDIST/
template <class T, class U = int>
U minEditDistance(const vector<T> &A, const vector<T> &B, U cpyPen = U(),
U repPen = U(1), U insPen = U(1), U delPen = U(1)) {
int N = A.size(), M = B.size();
vector<vector<U>> dp(2, vector<U>(M + 1, U()));
for (int i = 1; i <= M; i++) dp[0][i] = dp[0][i - 1] + insPen;
for (int i = 1; i <= N; i++) {
int cur = i % 2, prv = 1 - cur; dp[cur][0] = dp[prv][0] + delPen;
for (int j = 1; j <= M; j++) {
dp[cur][j] = min(min(dp[prv][j - 1] + repPen, dp[cur][j - 1] + insPen),
dp[prv][j] + delPen);
if (A[i - 1] == B[j - 1])
dp[cur][j] = min(dp[cur][j], dp[prv][j - 1] + cpyPen);
}
}
return dp[N % 2][M];
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/trees/fenwicktrees/FenwickTree1D.h"
using namespace std;
// Counts inversions and sorts an array using a Fenwick Tree with a comparator
// Template Arguments:
// It: the type of the iterator
// Cmp: the comparator to compare two values
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// st: an iterator pointing to the first element in the array
// en: an iterator pointing to after the last element in the array
// cmp: an instance of the Cmp struct
// Return Value: the number of inversions in the array
// In practice, has a moderate constant, slower than the merge sort version
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
// Tested:
// https://www.spoj.com/problems/INVCNT/
// https://codeforces.com/problemsets/acmsguru/problem/99999/180
template <class It, class Cmp = less<typename iterator_traits<It>::value_type>>
long long countInversionsFenwick(It st, It en, Cmp cmp = Cmp()) {
vector<typename iterator_traits<It>::value_type> tmp(st, en);
int N = en - st; long long ret = 0; sort(tmp.begin(), tmp.end(), cmp);
tmp.erase(unique(tmp.begin(), tmp.end()), tmp.end());
FenwickTree1D<int> FT(tmp.size()); for (int i = N - 1; i >= 0; i--) {
int c = lower_bound(tmp.begin(), tmp.end(), st[i], cmp) - tmp.begin();
ret += FT.query(c - 1); FT.update(c, 1);
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using shell sort with a comparator
// Shell sort is not stable
// Template Arguments:
// It: the type of the iterator
// Cmp: the comparator to compare two values
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// st: an iterator pointing to the first element in the array
// en: an iterator pointing to after the last element in the array
// cmp: an instance of the Cmp struct
// In practice, has a very small constant, slower than std::sort by
// a factor of 2 at N = 1e7
// Time Complexity: O(N^(4/3))
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/bf1hard
template <class It, class Cmp = less<typename iterator_traits<It>::value_type>>
void shellSort(It st, It en, Cmp cmp = Cmp()) {
int n = en - st, h = 1; while (h < n * 4 / 9) h = h * 9 / 4 + 1;
for (; h >= 1; h = h * 4 / 9) for (int i = h; i < n; i++)
for (int j = i; j >= h && cmp(st[j], st[j - h]); j -= h)
swap(st[j], st[j - h]);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Helper function for inversion counting
template <class InIt, class OutIt, class Cmp>
long long countInversions(InIt st1, OutIt st2, int N, Cmp cmp, int len) {
long long ret = 0; for (int lo = 0; lo < N; lo += len + len) {
int mid = min(lo + len, N), hi = min(mid + len, N);
for (int i = lo, j = mid, k = lo; k < hi; k++) {
if (i >= mid) st2[k] = st1[j++];
else if (j >= hi) { st2[k] = st1[i++]; ret += j - mid; }
else if (cmp(st1[j], st1[i])) { st2[k] = st1[j++]; ret += mid - i; }
else { st2[k] = st1[i++]; ret += j - mid; }
}
}
return ret;
}
// Counts inversions and sorts an array using merge sort with a comparator
// Template Arguments:
// It: the type of the iterator
// Cmp: the comparator to compare two values
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// st: an iterator pointing to the first element in the array
// en: an iterator pointing to after the last element in the array
// cmp: an instance of the Cmp struct
// Return Value: the number of inversions in the array
// In practice, has a small constant, faster than the Fenwick Tree version
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
// Tested:
// https://www.spoj.com/problems/INVCNT/
// https://codeforces.com/problemsets/acmsguru/problem/99999/180
template <class It, class Cmp = less<typename iterator_traits<It>::value_type>>
long long countInversions(It st, It en, Cmp cmp = Cmp()) {
vector<typename iterator_traits<It>::value_type> tmp(st, en);
int N = en - st; auto aux = tmp.begin(); long long ret = 0; bool flag = true;
for (int len = 1; len < N; len *= 2, flag = !flag)
ret += flag ? countInversions(aux, st, N, cmp, len)
: countInversions(st, aux, N, cmp, len);
if (flag) copy_n(aux, N, st);
return ret / 2;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Mo's algorithm to answer offline ranges queries over
// a static array A of length N where elements can be only added to a
// multiset-like object
// Template Arguments:
// S: struct to maintain a multiset of elements
// Required Fields:
// T: the type of each element
// R: the type of the return value for each query
// Q: the query object that contains information for each query
// Required Fields:
// l: the left endpoint of the query range
// r: the right endpoint of the query range
// Required Functions:
// constructor(...args): takes any number of arguments (arguments are
// passed from constructor of Mo)
// add(v): adds the value v to the multiset
// save(): saves the current state of the multiset
// rollback(): rollbacks the multiset to the saved state
// reset(): resets the multiset to its initial state
// query(q): returns the answer of type R for the query q of type Q to
// the multiset, which is guaranteed to contain all elements in the range
// [q.l, q.r] and only those elements
// Sample Struct: supporting queries for 0-1 knapsack problem with a size of
// q.w over a subarray of items with a weight and value
// struct S {
// using T = pair<int, int>; using R = int;
// struct Q { int l, r, w; };
// int MAXW; vector<int> dp, saved;
// S(int MAXW) : MAXW(MAXW), dp(MAXW + 1) {}
// void add(const T &v) {
// for (int j = MAXW; j >= v.first; j--)
// dp[j] = max(dp[j], dp[j - v.first] + v.second);
// }
// void save() { saved = dp; }
// void rollback() { dp = saved; }
// void reset() { fill(dp.begin(), dp.end(), 0); }
// R query(const Q &q) const { return dp[q.w]; }
// };
// Constructor Arguments:
// A: a vector of type S::T of the values in the array
// queries: a vector of type S::Q representing the queries
// SCALE: the value to scale sqrt by
// ...args: arguments to pass to the constructor of S
// Fields:
// ans: a vector of integers with the answer for each query
// In practice, has a very small constant
// Time Complexity:
// constructor: O(C + K ((log K + A sqrt N) + R + T) + D sqrt N)
// for K queries where C is the time complexity of S's constructor,
// A is the time complexity of S.add, T is the time complexity of S.query,
// R is the time complexity of S.save and S.rollback,
// and D is the time complexity of S.reset
// Memory Complexity: O(K + M) for K queries where M is the memory complexity
// of S
// Tested:
// https://www.spoj.com/problems/DQUERY/
// https://dmoj.ca/problem/vpex1p5
template <class S> struct MoRollback {
using T = typename S::T; using R = typename S::R; using Q = typename S::Q;
struct Query {
Q q; int i, b; Query(const Q &q, int i, int b) : q(q), i(i), b(b) {}
pair<int, int> getPair() const { return make_pair(b, q.r); }
bool operator < (const Query &o) const { return getPair() < o.getPair(); }
};
vector<R> ans;
template <class ...Args> MoRollback(
const vector<T> &A, const vector<Q> &queries, double SCALE = 1,
Args &&...args) {
int N = A.size(), K = queries.size(), bsz = max(1.0, sqrt(N) * SCALE);
vector<Query> q; q.reserve(K); S s(forward<Args>(args)...);
int l = 0, r = -1, last = -1; for (int i = 0; i < K; i++)
q.emplace_back(queries[i], i, queries[i].l / bsz);
sort(q.begin(), q.end()); for (auto &&qi : q) {
if (qi.b != last) {
l = min(N, ((last = qi.b) + 1) * bsz); r = l - 1; s.reset(); s.save();
}
if (qi.q.r < l) { for (int i = qi.q.l; i <= qi.q.r; i++) s.add(A[i]); }
else {
while (r < qi.q.r) s.add(A[++r]);
s.save(); for (int i = l - 1; i >= qi.q.l; i--) s.add(A[i]);
}
R res = s.query(qi.q); if (ans.empty()) ans.resize(K, res);
ans[qi.i] = res; s.rollback();
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/WaveletMatrix.h"
using namespace std;
// Supports online queries for the number of distinct elements in the
// range [l, r] for a static array A of length N
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Constructor Arguments:
// A: a vector of type T of the values in the array
// Functions:
// query(l, r): returns the number of distinct values in the range [l, r]
// In practice, has a moderate constant, faster than mo, but slower than the
// offline version
// Time Complexity:
// constructor: O(N log N)
// query: O(log N)
// Memory Complexity: O(N + (N log N) / 64)
// Tested:
// https://www.acmicpc.net/problem/14898
template <class T> struct CountDistinct {
WaveletMatrix<int> wm;
vector<int> init(const vector<T> &A) {
vector<T> temp = A; sort(temp.begin(), temp.end());
temp.erase(unique(temp.begin(), temp.end()), temp.end());
vector<int> last(temp.size(), -1), ret(A.size());
for (int i = 0; i < int(A.size()); i++) {
int c = lower_bound(temp.begin(), temp.end(), A[i]) - temp.begin();
ret[i] = last[c]; last[c] = i;
}
return ret;
}
CountDistinct(const vector<T> &A) : wm(init(A)) {}
int query(int l, int r) { return wm.rank(l, r, l); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Mo's algorithm to answer offline ranges queries over
// a static array A of length N where elements can be added to and removed
// from a multiset-like object
// Template Arguments:
// S: struct to maintain a multiset of the elements in the subarray [l, r]
// Required Fields:
// T: the type of each element
// R: the type of the return value for each query
// Q: the query object that contains information for each query
// Required Fields:
// l: the left endpoint of the query range
// r: the right endpoint of the query range
// Required Functions:
// constructor(...args): takes any number of arguments (arguments are
// passed from constructor of Mo)
// addLeft(v): adds the value v to the multiset by expanding the subarray
// [l, r] to [l - 1, r]
// addRight(v): adds the value v to the multiset by expanding the subarray
// [l, r] to [l, r + 1]
// removeLeft(v): removes the value v from the multiset assuming
// it exists by contracting the subarray [l, r] to [l + 1, r]
// removeRight(v): removes the value v from the multiset assuming
// it exists by contracting the subarray [l, r] to [l, r - 1]
// query(q): returns the answer of type R for the query q of type Q to
// the multiset, which is guaranteed to contain all elements in the range
// [q.l, q.r] and only those elements
// Sample Struct: supporting queries for the number of inversions
// in an integer array with a small maximum value
// struct S {
// using T = int; using R = long long;
// struct Q { int l, r; };
// int U; FenwickTree1D<int> ft; long long inversions;
// S(const vector<T> &A)
// : U(*max_element(A.begin(), A.end()) + 1), ft(U),
// inversions(0) {}
// void addLeft(const T &v) {
// inversions += ft.query(0, v - 1); ft.update(v, 1);
// }
// void addRight(const T &v) {
// inversions += ft.query(v + 1, U - 1); ft.update(v, 1);
// }
// void removeLeft(const T &v) {
// inversions -= ft.query(0, v - 1); ft.update(v, -1);
// }
// void removeRight(const T &v) {
// inversions -= ft.query(v + 1, U - 1); ft.update(v, -1);
// }
// R query(const Q &q) const { return inversions; }
// };
// Constructor Arguments:
// A: a vector of type S::T of the values in the array
// queries: a vector of type S::Q representing the queries
// SCALE: the value to scale sqrt by
// ...args: arguments to pass to the constructor of S
// Fields:
// ans: a vector of integers with the answer for each query
// In practice, has a very small constant
// Time Complexity:
// constructor: O(C + K ((log K + U sqrt N) + T))
// for K queries where C is the time complexity of S's constructor,
// U is the time complexity of S.addLeft, S.addRight,
// S.removeLeft, S.removeRight,
// and T is the time complexity of S.query
// Memory Complexity: O(K + M) for K queries where M is the memory complexity
// of S
// Tested:
// https://www.spoj.com/problems/DQUERY/
// https://atcoder.jp/contests/abc174/tasks/abc174_f
// https://judge.yosupo.jp/problem/static_range_inversions_query
template <class S> struct Mo {
using T = typename S::T; using R = typename S::R; using Q = typename S::Q;
struct Query {
Q q; int i, b; Query(const Q &q, int i, int b) : q(q), i(i), b(b) {}
pair<int, int> getPair() const { return make_pair(b, b % 2 ? -q.r : q.r); }
bool operator < (const Query &o) const { return getPair() < o.getPair(); }
};
vector<R> ans;
template <class ...Args> Mo(const vector<T> &A, const vector<Q> &queries,
double SCALE = 2, Args &&...args) {
int K = queries.size(), bsz = max(1.0, sqrt(A.size()) * SCALE);
vector<Query> q; q.reserve(K); S s(forward<Args>(args)...);
for (int i = 0; i < K; i++)
q.emplace_back(queries[i], i, queries[i].l / bsz);
sort(q.begin(), q.end()); int l = 0, r = l - 1; for (auto &&qi : q) {
while (l > qi.q.l) s.addLeft(A[--l]);
while (r < qi.q.r) s.addRight(A[++r]);
while (l < qi.q.l) s.removeLeft(A[l++]);
while (r > qi.q.r) s.removeRight(A[r--]);
R res = s.query(qi.q); if (ans.empty()) ans.resize(K, res);
ans[qi.i] = res;
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Uses divide and conquer to answer offline ranges queries over
// a multiset where elements can be added or removed at anytime, but the
// underlying data structure is only able to add and delete elements in LIFO
// order, as well as save and restore its state
// Template Arguments:
// S: struct to maintain a multiset of elements
// Required Fields:
// T: the type of each element
// R: the type of the return value for each query
// Q: the query object that contains information for each query
// Required Functions:
// constructor(...args): takes any number of arguments (arguments are
// passed from LIFOSetDivAndConq::solveQueries)
// push(v): adds the value v to the multiset
// pop(): pops the most recent element pushed to the multiset
// query(q): returns the answer of type R for the query q of type Q to
// the multiset
// Sample Struct: supports queries for the sum of element in the same
// connected component as a vertex in a graph, where edges are
// added and removed
// struct S {
// using T = pair<int, int>; using R = long long;
// struct Q { int v; };
// WeightedUnionFindUndo<R, plus<R>> uf;
// S(const vector<R> &W) : uf(W) {}
// void push(const T &e) { uf.join(e.first, e.second); }
// void pop() { uf.undo(); }
// R query(const Q &q) { return uf.getWeight(q.v); }
// };
// Fields:
// ans: a vector of integers with the answer for each query
// Functions:
// addElement(v): adds v to the multiset
// removeElement(v): removes v from the multiset
// addQuery(q): adds a query of type S::Q
// solveQueries(...args): solves all queries asked so far, with
// ...args being passed to the constructor of S
// In practice, has a small constant
// Time Complexity:
// addElement, removeElement: O(1) amortized
// solveQueries: O(C + P E log E + KT)
// for K queries and E total elements where C is the time complexity
// of S's constructor, P is the time complexity of S.push and S.pop,
// T is the time complexity of S.query, with S.push and S.pop being called
// at most O(log K) times in total for each element, over all operations
// Memory Complexity: O(K + E + M) for K queries and E total elements, where
// M is the memory complexity of S
// Tested:
// https://judge.yosupo.jp/problem/dynamic_graph_vertex_add_component_sum
template <class S> struct LIFOSetDivAndConq {
using T = typename S::T; using R = typename S::R; using Q = typename S::Q;
vector<T> add, rem; vector<Q> queries; vector<R> ans; vector<char> type;
void addElement(const T &v) { add.push_back(v); type.push_back(1); }
void removeElement(const T &v) { rem.push_back(v); type.push_back(-1); }
void addQuery(const Q &q) { queries.push_back(q); type.push_back(0); }
template <class ...Args> void solveQueries(Args &&...args) {
int E = type.size(); ans.clear(); ans.reserve(queries.size());
vector<T> A = add; sort(A.begin(), A.end());
vector<pair<int, int>> events; events.reserve(E);
vector<int> last(A.size(), INT_MAX); S s(forward<Args>(args)...);
for (int i = 0, addInd = 0, remInd = 0, queryInd = 0; i < E; i++) {
if (type[i] == 1) {
int j = lower_bound(A.begin(), A.end(), add[addInd++]) - A.begin();
events.emplace_back(j, last[j]); last[j] = i;
} else if (type[i] == -1) {
int j = lower_bound(A.begin(), A.end(), rem[remInd++]) - A.begin();
events.emplace_back(j, last[j]); int temp = events[last[j]].second;
events[last[j]].second = i; last[j] = temp;
} else events.emplace_back(queryInd++, i);
}
function<void(int, int)> dc = [&] (int l, int r) {
if (l == r) {
if (events[l].second == l)
ans.push_back(s.query(queries[events[l].first]));
return;
}
int m = l + (r - l) / 2; int cnt = 0; for (int i = m + 1; i <= r; i++)
if (events[i].second < l) { s.push(A[events[i].first]); cnt++; }
dc(l, m); for (int i = 0; i < cnt; i++) s.pop();
cnt = 0; for (int i = l; i <= m; i++)
if (events[i].second > r) { s.push(A[events[i].first]); cnt++; }
dc(m + 1, r); for (int i = 0; i < cnt; i++) s.pop();
};
if (E > 0) dc(0, E - 1);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/trees/fenwicktrees/BitFenwickTree.h"
#include "../datastructures/WaveletMatrixAggregationOfflineUpdates.h"
using namespace std;
// Supports online queries for the number of distinct elements in the
// range [l, r] for an array A of length N where the sequence of all update
// indices and values are known beforehand
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// C: a container representing a mapping from type T to a set of integers
// Constructor Arguments:
// A: a vector of type T of the initial values in the array
// updates: a vector of pairs of type int and T with the first element
// representing the index being updated, and the second element being the
// the value it is updated to
// ...args: arguments to pass to the constructor of an instance of type C
// Functions:
// processNextUpdate(): processes the next update (starting with the intial
// array and proceeding in the order given by the updates vector)
// query(l, r): returns the number of distinct values in the range [l, r] in
// the current array
// In practice, has a small constant, slgithly faster than the online version
// Time Complexity:
// constructor: O((N + U) log (N + U)) for U total updates
// query: O(log(N + U) log((N + U) / 64)) for U total updates
// Memory Complexity: O(N + ((N + U) log (N + U)) / 64) for U total updates
// Tested:
// https://dmoj.ca/problem/mnyc17p6
template <class T, class C = map<T, set<int>>>
struct CountDistinctOfflineUpdates {
struct R {
using Data = int; using Lazy = int;
static Data qdef() { return 0; }
static Data merge(const Data &l, const Data &r) { return l + r; }
static Data applyLazy(const Data &l, const Lazy &r) { return l + r; }
BitFenwickTree FT;
R(const vector<Data> &A) : FT(A.size()) {
for (int i = 0; i < int(A.size()); i++) FT.set(i, A[i]);
FT.build();
}
void update(int i, const Lazy &val) { FT.update(i, val); }
Data query(int l, int r) { return FT.query(l, r); }
};
C M; int N, cur, ucnt; vector<int> en; vector<pair<int, int>> wupds;
WaveletMatrixAggregationOfflineUpdates<int, R> wm;
void add(int i, const T &v, vector<pair<int, int>> &wus) {
set<int> &mv = M[v]; auto it = mv.upper_bound(i);
int j = it == mv.begin() ? -1 : *prev(it); wus.emplace_back(i, j);
if (it != mv.end()) wus.emplace_back(*it, i);
mv.insert(it, i);
}
void rem(int i, const T &v, vector<pair<int, int>> &wus) {
set<int> &mv = M[v]; auto it = mv.erase(mv.find(i));
int j = it == mv.begin() ? -1 : *prev(it); wus.emplace_back(i, N);
if (it != mv.end()) wus.emplace_back(*it, j);
}
vector<pair<int, int>> init1(vector<T> A,
const vector<pair<int, T>> &updates) {
vector<pair<int, int>> ret;
for (int i = 0; i < int(A.size()); i++) add(i, A[i], ret);
cur = ret.size(); for (int i = 0; i < int(updates.size()); i++) {
int j = updates[i].first; rem(j, A[j], ret);
add(j, A[j] = updates[i].second, ret); en[i] = ret.size();
}
return ret;
}
WaveletMatrixAggregationOfflineUpdates<int, R> init2(const vector<T> &A) {
int N = A.size(); vector<vector<int>> vals(N);
for (auto &&wu : wupds) vals[wu.first].push_back(wu.second);
return WaveletMatrixAggregationOfflineUpdates<int, R>(vector<int>(N, N),
vector<int>(N, 1),
vals);
}
template <class ...Args>
CountDistinctOfflineUpdates(const vector<T> &A,
const vector<pair<int, T>> &updates,
Args &&...args)
: M(forward<Args>(args)...), N(A.size()), cur(0), ucnt(0),
en(updates.size(), 0), wupds(init1(A, updates)), wm(init2(A)) {
for (int k = 0; k < cur; k++) wm.updateToNextKey(wupds[k].first);
}
void processNextUpdate() {
for (; cur < en[ucnt]; cur++) wm.updateToNextKey(wupds[cur].first);
ucnt++;
}
int query(int l, int r) { return wm.query(l, r, l - 1); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/trees/fenwicktrees/BitFenwickTree.h"
using namespace std;
// Supports offline queries for the number of distinct elements in the
// range [l, r] for a static array A of length N
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Constructor Arguments:
// A: a vector of type T of the values in the array
// queries: a vector of pairs containing the inclusive endpoints of
// the queries
// Fields:
// ans: a vector of integers with the answer for each query
// In practice, has a small constant, faster than Mo and the online version
// Time Complexity:
// constructor: O(N log N + Q (log Q + log N))
// Memory Complexity: O(N + Q)
// Tested:
// https://www.spoj.com/problems/DQUERY/
// https://atcoder.jp/contests/abc174/tasks/abc174_f
template <class T> struct CountDistinctOffline {
vector<int> ans;
CountDistinctOffline(const vector<T> &A,
const vector<pair<int, int>> &queries)
: ans(queries.size()) {
int N = A.size(); vector<T> temp = A; sort(temp.begin(), temp.end());
temp.erase(unique(temp.begin(), temp.end()), temp.end());
vector<int> last(temp.size(), -1);
vector<tuple<int, int, int>> q; int i = 0; BitFenwickTree ft(N);
for (auto &&qi : queries) q.emplace_back(qi.first, qi.second, i++);
sort(q.rbegin(), q.rend()); i = N - 1; for (auto &&qi : q) {
int l, r, ind; tie(l, r, ind) = qi; for (; i >= l; i--) {
int c = lower_bound(temp.begin(), temp.end(), A[i]) - temp.begin();
if (last[c] != -1) ft.update(last[c], 0);
ft.update(last[c] = i, 1);
}
ans[ind] = ft.query(r);
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/trees/fenwicktrees/SparseFenwickTrees2D.h"
using namespace std;
// Supports online queries for the number of distinct elements in the
// range [l, r] for an array A of length N with point updates
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// C: a container representing a mapping from type T to a set of integers
// Constructor Arguments:
// A: a vector of type T of the initial values in the array
// SCALE: the value to scale sqrt by
// ...args: arguments to pass to the constructor of an instance of type C
// Functions:
// update(i, v): updates index i with the value v
// query(l, r): returns the number of distinct values in the range [l, r]
// In practice, has a very small constant, slightly slower than the
// offline version
// Time Complexity:
// constructor: O(N log N)
// update: O(log N)
// query: O(log N sqrt(N + U)) for U updates
// Memory Complexity: O((N + U) log N) for U updates
// Tested:
// https://dmoj.ca/problem/mnyc17p6
template <class T, class C = map<T, set<int>>> struct CountDistinctUpdates {
vector<T> A; C M; SemiSparseFenwickTree2DSimple<int> ft;
void add(int i, const T &v) {
set<int> &mv = M[v]; auto it = mv.upper_bound(++i);
int j = it == mv.begin() ? 0 : *prev(it);
ft.add(j, i); if (it != mv.end()) { ft.rem(j, *it); ft.add(i, *it); }
mv.insert(it, i);
}
void rem(int i, const T &v) {
set<int> &mv = M[v]; auto it = mv.erase(mv.find(++i));
int j = it == mv.begin() ? 0 : *prev(it);
ft.rem(j, i); if (it != mv.end()) { ft.rem(i, *it); ft.add(j, *it); }
}
void update(int i, const T &v) { rem(i, A[i]); add(i, A[i] = v); }
int query(int l, int r) { return ft.query(l, l + 1, r + 1); }
template <class ...Args>
CountDistinctUpdates(const vector<T> &A, double SCALE = 1, Args &&...args)
: A(A), M(forward<Args>(args)...), ft(A.size() + 1, SCALE) {
for (int i = 0; i < int(A.size()); i++) add(i, A[i]);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Fast Subset Transform (similar to SumOverSubsets)
// Template Arguments:
// TYPE: the type of susbet transform (OR, AND, or XOR)
// T: the type of each element
// Function Arguments:
// a: a reference to the vector of type T to transform
// inv: a boolean indicating whether the inverse transform should be
// performed or not
// In practice, has a small constant
// Time Complexity: O(N log N) where N = size(a)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/subset_convolution
// https://judge.yosupo.jp/problem/bitwise_and_convolution
// https://judge.yosupo.jp/problem/bitwise_xor_convolution
// https://csacademy.com/contest/round-53/task/maxor/
const int OR = 0, AND = 1, XOR = 2;
template <const int TYPE, class T> void fst(vector<T> &a, bool inv) {
int N = a.size(); assert(!(N & (N - 1)));
for (int len = 1; len < N; len <<= 1) for (int i = 0; i < N; i += len << 1)
for (int j = 0; j < len; j++) {
T &u = a[i + j], &v = a[len + i + j];
if (TYPE == OR) tie(u, v) = inv ? make_pair(v, u - v)
: make_pair(u + v, u);
else if (TYPE == AND) tie(u, v) = inv ? make_pair(v - u, u)
: make_pair(v, u + v);
else if (TYPE == XOR) tie(u, v) = make_pair(u + v, u - v);
else assert(false);
}
if (TYPE == XOR && inv) for (auto &&ai : a) ai /= T(N);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "BinaryExponentiation.h"
#include "ModularArithmetic.h"
using namespace std;
// Computes n!
// Template Arguments:
// T: the type of n
// Function Arguments:
// n: the value to find the factorial of, must be non negative
// Return Value: n!
// In practice has a very small constant
// Time Complexity: O(n)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T factorial(T n) {
T ret = 1; for (T i = 2; i <= n; i++) ret *= i;
return ret;
}
// Computes n! modulo mod
// Template Arguments:
// T: the type of n and mod
// Function Arguments:
// n: the value to find the factorial of, must be non negative
// mod: the modulo, must be not less than 2
// Return Value: n! modulo mod
// In practice has a very small constant
// Time Complexity: O(n)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T factorialMod(T n, T mod) {
T ret = 1; for (T i = 2; i <= n; i++) ret = mulMod(ret, i, mod);
return ret;
}
// Computes n permute k (n! / (n - k)!)
// Template Arguments:
// T: the type of n and k
// Function Arguments:
// n: the total number of elements, must be non negative
// k: the number of elements to permute, must be in the range [0, n]
// Return Value: n permute k
// In practice has a very small constant
// Time Complexity: O(min(k, n - k))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T permute(T n, T k) {
T ret = 1; for (T i = 0; i < k; i++) ret = ret * (n - i);
return ret;
}
// Computes n permute k (n! / (n - k)!) modulo mod
// Template Arguments:
// T: the type of n, k, and mod
// Function Arguments:
// n: the total number of elements, must be non negative
// k: the number of elements to permute
// mod: the modulo, must be not less than 2
// Return Value: n permute k modulo mod
// In practice has a very small constant
// Time Complexity: O(min(k, n - k))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T permuteMod(T n, T k, T mod) {
T ret = 1; for (T i = 0; i < k; i++) ret = mulMod(ret, n - i, mod);
return ret;
}
// Computes n choose k (n! / (k! (n - k)!))
// Template Arguments:
// T: the type of n and k
// Function Arguments:
// n: the total number of elements, must be non negative
// k: the number of elements to choose, must be in the range [0, n]
// Return Value: n choose k
// In practice has a very small constant
// Time Complexity: O(min(k, n - k))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T choose(T n, T k) {
if (k > n - k) k = n - k;
T ret = 1; for (T i = 0; i < k; i++) ret = ret * (n - i) / (i + 1);
return ret;
}
// Computes n choose k (n! / (k! (n - k)!)) modulo a prime p
// Template Arguments:
// T: the type of n, k, and p
// Function Arguments:
// n: the total number of elements, must be non negative
// k: the number of elements to choose, must be in the range [0, n]
// p: the prime modulo, must be greater than n
// Return Value: n permute k modulo p
// In practice has a very small constant
// Time Complexity: O(min(k, n - k) + log(p))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T chooseModPrime(T n, T k, T p) {
if (k > n - k) k = n - k;
T num = 1, den = 1; for (T i = 0; i < k; i++) {
num = mulMod(num, n - i, p); den = mulMod(den, i + 1, p);
}
return divModPrime(num, den, p);
}
// Computes n multichoose k ((n + k - 1)! / (k! (n - 1)!))
// Template Arguments:
// T: the type of n and k
// Function Arguments:
// n: the total number of elements, must be positive
// k: the number of elements to choose with repetitions, must be non negative
// Return Value: n choose k
// In practice has a very small constant
// Time Complexity: O(min(k, n - 1))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T multiChoose(T n, T k) { return choose(n + k - 1, k); }
// Computes n multichoose k ((n + k - 1)! / (k! (n - 1)!)) modulo a prime p
// Template Arguments:
// T: the type of n, k, and p
// Function Arguments:
// n: the total number of elements, must be positive
// k: the number of elements to choose with repetitions, must be non negative
// p: the prime modulo
// Return Value: n permute k modulo p
// In practice has a very small constant
// Time Complexity: O(min(k, n - 1) + log(p))
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T multiChooseModPrime(T n, T k, T p) {
return chooseModPrime(n + k - 1, k, p);
}
// Combinatorics struct to compute factorials, permutations, and combinations
// Template Arguments:
// T: the type of the value of N!
// Constructor Arguments:
// N: the maximum value to compute factorials of
// Functions:
// factorial(n): returns n! for 0 <= n <= N
// permute(n, k): returns n permute k (n! / (n - k)!) for 0 <= k <= n <= N
// choose(n, k): returns n permute k (n! / (k! (n - k)!))
// for 0 <= k <= n <= N
// multiChoose(n, k): returns n permute k ((n + k - 1)! / (k! (n - 1)!))
// for n >= 1, k >= 0, n + k - 1 <= N
// In practice, has a very small constant
// Time Complexity:
// constructor: O(N)
// factorial, permute, choose, multiChoose: O(1)
// Memory Complexity: O(N)
// Tested:
// Fuzz Tested
template <class T> struct Combinatorics {
vector<T> fact; Combinatorics(int N) : fact(N + 1, 1) {
for (int i = 1; i <= N; i++) fact[i] = fact[i - 1] * i;
}
T factorial(int n) { return fact[n]; }
T permute(int n, int k) { return fact[n] / fact[n - k]; }
T choose(int n, int k) { return fact[n] / fact[k] / fact[n - k]; }
T multiChoose(int n, int k) { return choose(n + k - 1, k); }
};
// Combinatorics struct to compute factorials, permutations, and combinations
// modulo a prime P
// Template Arguments:
// T: the type of the value of N! and P
// Constructor Arguments:
// N: the maximum value to compute factorials of
// P: the prime modulo P, must be greater than N
// Functions:
// factorial(n): returns n! modulo P for 0 <= n <= N
// invFactorial(n): returns multiplicative inverse of n! modulo P
// for 0 <= n <= N
// permute(n, k): returns n permute k (n! / (n - k)!) modulo P
// for 0 <= k <= n <= N
// choose(n, k): returns n permute k (n! / (k! (n - k)!)) modulo P
// for 0 <= k <= n <= N
// multiChoose(n, k): returns n permute k ((n + k - 1)! / (k! (n - 1)!))
// modulo P for n >= 1, k >= 0, n + k - 1 <= N
// In practice, has a very small constant
// Time Complexity:
// constructor: O(N + log P)
// factorial, invFactorial, permute, choose, multiChoose: O(1)
// Memory Complexity: O(N)
// Tested:
// Fuzz Tested
template <class T> struct CombinatoricsModPrime {
vector<T> fact, invFact; T P;
CombinatoricsModPrime(int N, T P) : fact(N + 1, 1), invFact(N + 1), P(P) {
for (int i = 1; i <= N; i++) fact[i] = mulMod(fact[i - 1], T(i), P);
invFact[N] = mulInvModPrime(fact[N], P); for (int i = N - 1; i >= 0; i--)
invFact[i] = mulMod(invFact[i + 1], T(i + 1), P);
}
T factorial(int n) { return fact[n]; }
T invFactorial(int n) { return invFact[n]; }
T permute(int n, int k) { return mulMod(fact[n], invFact[n - k], P); }
T choose(int n, int k) {
return mulMod(mulMod(fact[n], invFact[k], P), invFact[n - k], P);
}
T multiChoose(int n, int k) { return choose(n + k - 1, k); }
};
// Computes a row of Pascal's triangle
// Template Arguments:
// T: the type of the values in the row of Pascal's triangle
// Function Arguments:
// N: the row of Pascal's triangle to compute
// Return Value: a vector of length N + 1 with the values in the Nth row of
// Pascal's triangle
// In practice, has a very small constant
// Time Complexity: O(N)
// Memory Complexity: O(N)
// Tested:
// Fuzz Tested
template <class T> vector<T> pascalsRow(int N) {
vector<T> C(N + 1, 1);
for (int j = 1; j <= N; j++) C[j] = C[j - 1] * (N - j + 1) / j;
return C;
}
// Computes a row of Pascal's triangle modulo a prime p
// Template Arguments:
// T: the type of the values in the row of Pascal's triangle
// Function Arguments:
// N: the row of Pascal's triangle to compute
// p: the prime modulo, must be greater than N
// Return Value: a vector of length N + 1 with the values in the Nth row of
// Pascal's triangle modulo a prime p
// In practice, has a small constant
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
template <class T> vector<T> pascalsRowModPrime(int N, T p) {
vector<T> C(N + 1, 1); for (int j = 1; j <= N; j++)
C[j] = divModPrime(mulMod(C[j - 1], T(N - j + 1), p), T(j), p);
return C;
}
// Computes Pascal's triangle
// Template Arguments:
// T: the type of the values in Pascal's triangle
// Function Arguments:
// N: the maximum row of Pascal's triangle to compute
// Return Value: a vector of vectors length N + 1 with the ith vector having
// length i + 1 with the values in the ith row of Pascal's triangle
// In practice, has a very small constant
// Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
// Tested:
// Fuzz Tested
template <class T> vector<vector<T>> pascalsTriangle(int N) {
vector<vector<T>> C(N + 1); for (int i = 0; i <= N; i++) {
C[i] = vector<T>(i + 1, 1); for (int j = 1; j < i; j++)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
return C;
}
// Computes Pascal's triangle modulo mod
// Template Arguments:
// T: the type of the values in Pascal's triangle and mod
// Function Arguments:
// N: the maximum row of Pascal's triangle to compute
// mod: the modulo, must be not less than 2
// Return Value: a vector of vectors length N + 1 with the ith vector having
// length i + 1 with the values in the ith row of Pascal's triangle
// modulo mod
// In practice, has a very small constant
// Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
// Tested:
// Fuzz Tested
template <class T> vector<vector<T>> pascalsTriangleMod(int N, T mod) {
vector<vector<T>> C(N + 1); for (int i = 0; i <= N; i++) {
C[i] = vector<T>(i + 1, 1); for (int j = 1; j < i; j++)
C[i][j] = addMod(C[i - 1][j - 1], C[i - 1][j], mod);
}
return C;
}
// Computes the sum from 1 to n inclusive
// Template Arguments:
// T: the type of n
// Function Arguments:
// n: the maximum bound, must be non negative
// Return Value: the sum from 1 to n inclusive
// In practice has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T sumTo(T n) { return n * (n + 1) / 2; }
// Computes the sum from a to b inclusive
// Template Arguments:
// T: the type of n
// Function Arguments:
// a: the lower bound, must be non negative
// b: the upper bound, must be non negative and not less than a
// Return Value: the sum from a to b inclusive
// In practice has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T sumBetween(T a, T b) { return sumTo(b) - sumTo(a - 1); }
// Computes the nth term of an arithmetic sequence with starting value a1 and
// common difference d
// Template Arguments:
// T: the type of a1 and d
// U: the type of n
// Function Arguments:
// a1: the starting value
// d: the common difference
// n: the index of the term to find, must be positive
// Return Value: the nth term of the arithmetic sequence
// In practice has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T, class U>
T arithSeq(T a1, T d, U n) { return a1 + d * (n - 1); }
// Computes the sum of an arithmetic sequence with starting value a1 and
// common difference d from term 1 to n
// Template Arguments:
// T: the type of a1 and d
// U: the type of n
// Function Arguments:
// a1: the starting value
// d: the common difference
// n: the maximum index of the term to sum, must be positive
// Return Value: the sum of the arithmetic sequence from term 1 to n
// In practice has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Fuzz Tested
template <class T, class U>
T arithSeries(T a1, T d, U n) { return n * (a1 + arithSeq(a1, d, n)) / 2; }
// Computes the nth term of an geometric sequence with starting value a1 and
// common ratio r
// Template Arguments:
// T: the type of a1 and r
// U: the type of n
// Function Arguments:
// a1: the starting value
// r: the common ratio
// n: the index of the term to find, must be positive
// Return Value: the nth term of the geometric sequence
// In practice has a small constant
// Time Complexity: O(log n)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T, class U>
T geoSeq(T a1, T r, U n) { return a1 * pow2(r, n - 1); }
// Computes the sum of a geometric sequence with starting value a1 and
// common ratio r from term 1 to n
// Template Arguments:
// T: the type of a1 and r
// U: the type of n
// Function Arguments:
// a1: the starting value
// r: the common ratio
// n: the maximum index of the term to sum, must be positive
// Return Value: the sum of the geometric sequence from term 1 to n
// In practice has a small constant
// Time Complexity: O(log n)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T, class U> T geoSeries(T a1, T r, U n) {
return r == 1 ? a1 * n : a1 * (T(1) - pow2(r, n)) / (T(1) - r);
}
// Computes the sum of a infinite geometric sequence with starting value a1 and
// common ratio r where -1 < r < 1
// Template Arguments:
// T: the type of a1 and r
// Function Arguments:
// a1: the starting value
// r: the common ratio
// Return Value: the sum of the infinite geometric sequence
// In practice has a small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
template <class T>
T infGeoSeries(T a1, T r) { assert(-1 < r && r < 1); return a1 / (T(1) - r); }
// Computes the sum of floor((a * i + b) / m) for 0 <= i < n
// Equivalent to the number of integer points (x, y) where 0 <= x < n and
// 0 <= y <= (a * i + b) / m
// Template Arguments:
// T: an integral type
// Function Arguments:
// n: the upper bound for x
// a: the linear factor's numerator
// b: the constant factor's numerator
// m: the common denominator
// Return Value: the sum of floor((a * i + b) / m) for 0 <= i < n
// In practice, has a small constant
// Time Complexity: O(log n)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/sum_of_floor_of_linear
template <class T> T sumFloorLinear(T n, T a, T b, T m) {
static_assert(is_integral<T>::value, "T must be integral");
if (a == 0) return (b / m) * n;
if (a >= m || b >= m) return ((a / m) * (n - 1) + 2 * (b / m)) * n / 2
+ sumFloorLinear(n, a % m, b % m, m);
return sumFloorLinear((a * n + b) / m, m, (a * n + b) % m, a);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "GCD.h"
using namespace std;
// Data structure representing a fraction
// Template Arguments:
// T: the type of the numerator and denominator, must be integral
// Constructor Arguments:
// num: the numerator
// den: the denominator, should be non negative
// Fields:
// num: the numerator
// den: the denominator
// Functions:
// reduce(): reduces the fraction to lowest terms with a positive denominator
// +, +=, -, -=, *, *=, /, /=: standard arithmetic operators on fractions
// <, <=, >, >=, ==, !=: comparison operators
// >>, <<: input and output operators
// Time Complexity:
// constructor, +, +=, -, -=, *, *=, /, /=, >>, <<: O(1)
// reduce, <, <=, >, >=, ==, !=: O(log(max(num, den)))
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/bfs19p4
template <class T> struct Fraction {
static_assert(is_integral<T>::value, "T must be an integral type");
using F = Fraction<T>; T num, den;
constexpr Fraction(T num = T(), T den = T(1)) : num(num), den(den) {}
F reduce() const {
T g = gcd(num, den);
return den >= 0 ? F(num / g, den / g) : F(-num / g, -den / g);
}
F operator + (const F &f) const { return F(*this) += f; }
F &operator += (const F &f) {
num = (num * f.den + f.num * den); den = den * f.den; return *this;
}
F operator - (const F &f) const { return F(*this) -= f; }
F &operator -= (const F &f) {
num = (num * f.den - f.num * den); den = den * f.den; return *this;
}
F operator + () const { return *this; }
F operator - () const { return F(-num, den); }
F operator * (const F &f) const { return F(*this) *= f; }
F &operator *= (const F &f) {
num = num * f.num; den = den * f.den; return *this;
}
F operator / (const F &f) const { return F(*this) /= f; }
F &operator /= (const F &f) {
T t_num = num * f.den, t_den = den * f.num; num = t_num; den = t_den;
return *this;
}
bool operator < (const F &f) const {
F a = den >= 0 ? *this : F(-num, -den);
F b = f.den >= 0 ? f : F(-f.num, -f.den);
return a.num * b.den < b.num * a.den;
}
bool operator <= (const F &f) const { return !(f < *this); }
bool operator > (const F &f) const { return f < *this; }
bool operator >= (const F &f) const { return !(*this < f); }
bool operator == (const F &f) const { return !(*this < f) && !(f < *this); }
bool operator != (const F &f) const { return *this < f || f < *this; }
friend istream &operator >> (istream &stream, F &f) {
return stream >> f.num >> f.den;
}
friend ostream &operator << (ostream &stream, const F &f) {
return stream << f.num << '/' << f.den;
}
};
#define ftype long double
template <class T> Fraction<T> abs(Fraction<T> a) { return a >= 0 ? a : -a; }
#define FUN(name) \
template <class T> ftype name(Fraction<T> a) { \
return name((ftype)(a.num) / (ftype)(a.den)); \
}
FUN(sqrt) FUN(sin) FUN(cos) FUN(tan) FUN(asin) FUN(acos) FUN(atan)
#undef FUN
template <class T> ftype atan2(Fraction<T> y, Fraction<T> x) {
return atan2((ftype)(y.num) / (ftype)(y.den),
(ftype)(x.num) / (ftype)(x.den));
}
#undef ftype
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Karatsuba Multiplication
// Template Arguments:
// T: the type of each element
// ItA: the type of the iterator pointing to the first multiplyPolynomial
// ItB: the type of the iterator pointing to the second polynomial
// ItRes: the type of the iterator pointing to the result polynomial
// Function Arguments:
// n: the length of the polynomial, must be a power of 2
// a: a pointer to the first polynomial of length n, a[i] stores
// the coefficient of x^i
// b: a pointer to the second polynomial of length n, b[i] stores
// the coefficient of x^i
// res: a pointer to the result polynomial of length 2n which stores the
// result of a multipled by b, res[i] stores the coefficient of x^i
// In practice, has a small constant, slower than FFT and NTT
// Time Complexity: O(n^log_2(3))
// Memory Complexity: O(n)
// Tested:
// https://open.kattis.com/problems/polymul2
// https://dmoj.ca/problem/atimesb
const int KARATSUBA_CUTOFF = 16;
template <class T, class ItA, class ItB, class ItRes>
void karatsuba(int n, ItA a, ItB b, ItRes res) {
if (n <= KARATSUBA_CUTOFF) {
fill(res, res + n * 2, 0); for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) res[i + j] += a[i] * b[j];
return;
}
assert(!(n & (n - 1))); int k = n / 2; vector<T> tmp(n, T()), c(n, T());
auto atmp = tmp.begin(), btmp = atmp + k; for (int i = 0; i < k; i++) {
atmp[i] = a[i] + a[i + k]; btmp[i] = b[i] + b[i + k];
}
karatsuba<T>(k, atmp, btmp, c.begin()); karatsuba<T>(k, a, b, res);
karatsuba<T>(k, a + k, b + k, res + n); for (int i = 0; i < k; i++) {
T t = res[i + k]; res[i + k] += c[i] - res[i] - res[i + k * 2];
res[i + k * 2] += c[i + k] - t - res[i + k * 3];
}
}
// Polynomial Multiplication
// Template Arguments:
// T: the type of each element
// Functions Arguments:
// a: a vector of type T representing the first polynomial, a[i] stores
// the coefficient of x^i
// b: a vector of type T representing the second polynomial, b[i] stores
// the coefficient of x^i
// Return Value: a vector of type T representing the polynomial a times b with
// no trailing zeros
// In practice, has a small constant
// Time Complexity: O(n^log_2(3)) where n = max(size(a), size(b))
// Memory Complexity: O(n)
// Tested:
// https://open.kattis.com/problems/polymul2
template <class T> vector<T> mulPolyKaratsuba(vector<T> a, vector<T> b) {
int n = max(a.size(), b.size()); while (n & (n - 1)) n++;
a.resize(n, T()); b.resize(n, T()); vector<T> res(n * 2, T());
karatsuba<T>(n, a.begin(), b.begin(), res.begin());
while (int(res.size()) > 1 && res.back() == T()) res.pop_back();
return res;
}
// Integer Multiplication
// Template Arguments:
// T: the type of each digit
// Functions Arguments:
// a: a vector of type T representing the first integer, a[i] stores
// the digit of BASE^i
// b: a vector of type T representing the second polynomial, b[i] stores
// the digit of BASE^i
// BASE: the base of the integer
// Return Value: a vector of type T representing the integer a times b with
// no trailing zeros
// In practice, has a small constant
// Time Complexity: O(n^log_2(3)) where n = max(size(a), size(b))
// Memory Complexity: O(n)
// Tested:
// https://dmoj.ca/problem/atimesb
template <class T>
vector<T> mulIntKaratsuba(vector<T> a, vector<T> b, T BASE = T(10)) {
vector<T> res = mulPolyKaratsuba(move(a), move(b)); T carry = T();
res.reserve(res.size() + 1); for (int i = 0; i < int(res.size()); i++) {
T cur = res[i] + carry; res[i] = T(cur % BASE); carry = T(cur / BASE);
}
if (carry > T()) res.push_back(carry);
return res;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the floor of the sqrt of an integer
// Template Arguments:
// T: the type of x, must be integral
// Function Arguments:
// x: the value to compute the sqrt of, must be non-negative
// Return Value: returns the floor of the sqrt of x
// In practice, has a moderate constant, slower than binary search, but this
// does not overflow
// Time Complexity: O(log x)
// Memory Complexity: O(1)
// Tested:
// https://codeforces.com/gym/100753/problem/F
template <class T> T isqrt(T x) {
static_assert(is_integral<T>::value, "T must be integral");
assert(x >= 0); if (x <= 1) return x;
T y = x, z = 0; while (y > z) z = x / (y = (y + z) / 2);
return y;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "ModularArithmetic.h"
#include "GCD.h"
#include "Primes.h"
using namespace std;
// Computes the nth tetration of a modulo mod
// Assumes 0^0 = 1
// Template Arguments:
// T: the type of base and mod
// U: the type of the number of iterations
// Function Arguments:
// a: the base
// n: the number of iterations
// mod: the modulo
// Return Value: the nth tetration of a modulo mod,
// a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(sqrt(mod) log(mod))
// Memory Complexity: O(log(mod))
// Tested:
// https://judge.yosupo.jp/problem/tetration_mod
template <class T, class U> T tetraMod(T a, U n, T mod) {
if (mod == T(1)) return T(0);
if (a == T(0)) return (T(1) - T(n % U(2))) % mod;
if (n == U(0)) return T(1) % mod;
if (n == U(1)) return a % mod;
if (n == U(2)) return powMod(a % mod, a, mod);
T p = phi(mod), ret = tetraMod(a, n - 1, p); if (ret == 0) ret += p;
return powMod(a % mod, ret, mod);
}
// Helper function returning a * b % mod + mod if a * b >= mod,
// a * b % mod otherwise
template <class T> T mulMod2(T a, T b, T mod) {
return (a *= b) >= mod ? a % mod + mod : a;
}
// Helper function returning base^pow % mod + mod if base^pow >= mod,
// base^pow % mod otherwise
template <class T, class U> T powMod2(T base, U pow, T mod) {
if (base >= mod) base = base % mod + mod;
T x = 1; while (true) {
if (pow % 2 == 1) x = mulMod2(x, base, mod);
if ((pow /= 2) == 0) break;
base = mulMod2(base, base, mod);
}
return x;
}
// Helper function
template <class T> T powSeqModRec(const vector<T> &A, int i, T mod) {
if (i == int(A.size()) - 1) return A[i];
T p = phi(mod), res = powSeqModRec(A, i + 1, p);
return res == T(0) ? T(1) : powMod2(A[i], res, mod);
}
// Computes A[0]^A[1]^...^A[N - 1] modulo mod
// Assumes 0^0 = 1
// Template Arguments:
// T: the type of each element in the sequence
// Function Arguments:
// A: the sequence
// mod: the modulo
// Return Value: A[0]^A[1]^...^A[N - 1] modulo mod,
// a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(N + sqrt(mod) log(mod))
// Memory Complexity: O(N + log(mod))
// Tested:
// https://dmoj.ca/problem/dmopc20c3p5
template <class T> T powSeqMod(const vector<T> &A, T mod) {
return powSeqModRec(A, 0, mod) % mod;
}
// Finds an integer x such that (x^2 = a) modulo a prime p
// If x is a solution, then (p - x) % p is the other solution
// Template Arguments:
// T: the type of a and p
// Function Arguments:
// a: the argument, must be in the range [0, p)
// p: the prime modulo
// Return Value: the square root of a modulo p in the range [0, p), or -1 if
// it does not exist,
// In practice, has a small constant
// Time Complexity: O(log(p)^2)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/sqrt_mod
template <class T> T sqrtMod(T a, T p) {
if (a == T(0)) return 0;
if (powMod(a, (p - 1) / 2, p) != T(1)) return -1;
if (p % 4 == 3) return powMod(a, (p + 1) / 4, p);
T s = p - 1, n = 2; int r = 0; for (; s % 2 == 0; s /= 2) r++;
while (powMod(n % p, (p - 1) / 2, p) != p - 1) n++;
T x = powMod(a, (s + 1) / 2, p), b = powMod(a, s, p);
T g = powMod(n % p, s, p); while (true) {
T t = b, m = T(0); for (; m < r && t != T(1); m++) t = mulMod(t, t, p);
if (m == T(0)) return x;
T gs = g; for (int i = 0; i < r - m - 1; i++) gs = mulMod(gs, gs, p);
g = mulMod(gs, gs, p); x = mulMod(x, gs, p); b = mulMod(b, g, p); r = m;
}
return -1;
}
// Finds the smallest non negative integer c such that
// (a^c = b) modulo mod
// Assumes 0^0 = 1
// Template Arguments:
// T: the type of a, b, and mod
// Function Arguments:
// a: the base, must be in the range [0, mod)
// b: the argument, must be in the range [0, mod)
// mod: the modulo
// Return Value: the discrete log of b in base a modulo mod, or -1 if
// it does not exist
// In practice, has a small constant
// Time Complexity: O(sqrt(mod) log(mod))
// Memory Complexity: O(sqrt(mod))
// Tested:
// https://judge.yosupo.jp/problem/discrete_logarithm_mod
template <class T> T discreteLogMod(T a, T b, T mod) {
if (b == T(1) % mod) return 0;
T n = max(T(0), T(sqrt(mod)) - 1), e = T(1), f = T(1), j = T(1);
vector<pair<T, T>> A; while (n * n <= mod) n++;
while (j <= n && (e = f = mulMod(e, a, mod)) != b)
A.emplace_back(mulMod(e, b, mod), j++);
if (e == b) return j;
sort(A.begin(), A.end()); if (gcd(mod, e) == gcd(mod, b)) {
for (T i = 2; i <= n + 1; i++) {
e = mulMod(e, f, mod);
auto it = lower_bound(A.begin(), A.end(), make_pair(e, T(0)));
if (it != A.end() && it->first == e) return n * i - it->second;
}
}
return -1;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Given a set of N points, P[i] = (X[i], Y[i]), compute a polynomial Q of
// degree N - 1, such that Q passes through them:
// Q(x) = A[0] * x^0 + ... + A[N - 1] * x^(N - 1).
// For real numbers, pick X[i] = C * cos(i / (N - 1) * PI) for a
// large constant C
// Template Arguments:
// T: the type of the x and y values, as well as the coefficients
// Function Arguments:
// P: a vector of pairs of type T representing the N points
// Return Value: a polynomial of degree N - 1 (with N coefficients) with
// the ith coefficient associated with the term x^i
// In practice, has a small constant
// Time Complexity: O(N^2)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/angieandfunctions
template <class T>
vector<T> lagrangePolynomialInterpolation(vector<pair<T, T>> P) {
int N = P.size(); vector<T> A(N, T()), temp(N, T()); temp[0] = T(1);
for (int k = 0; k < N; k++) for (int i = k + 1; i < N; i++)
P[i].second = (P[i].second - P[k].second) / (P[i].first - P[k].first);
T last = T(); for (int k = 0; k < N; k++) for (int i = 0; i < N; i++) {
A[i] += P[k].second * temp[i]; swap(last, temp[i]);
temp[i] -= P[k].first * last;
}
return A;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "GCD.h"
using namespace std;
// Computes the non negative remainder of a by mod
// Template Arguments:
// T: the type of a and mod
// Function Arguments:
// a: the value to find the non negative remainder
// mod: the modulo
// Return Value: the non negative remainder of a by mod
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/bts18p5
template <class T> T posMod(T a, T mod) {
T ret = -mod < a && a < mod ? a : a % mod; return 0 <= ret ? ret : ret + mod;
}
// Adds two integers a and b modulo mod
// Template Arguments:
// T: the type of a, b, and mod
// Function Arguments:
// a: the first value, must be in the range [0, mod)
// b: the second value, must be in the range [0, mod)
// mod: the modulo
// Return Value: a + b modulo mod, a value in the range [0, mod)
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
// https://dmoj.ca/problem/bts18p5
template <class T> T addMod(T a, T b, T mod) {
T ret = a + b; return ret < mod ? ret : ret - mod;
}
// Subtracts two integers a and b modulo mod
// Template Arguments:
// T: the type of a, b, and mod
// Function Arguments:
// a: the first value, must be in the range [0, mod)
// b: the second value, must be in the range [0, mod)
// mod: the modulo
// Return Value: a - b modulo mod, a value in the range [0, mod)
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
template <class T> T subMod(T a, T b, T mod) {
return a >= b ? a - b : a + mod - b;
}
// Multiplies two integers a and b modulo mod where a * b does not overflow
// Template Arguments:
// T: the type of a, b, and mod
// Function Arguments:
// a: the first value, must be in the range [0, mod)
// b: the second value, must be in the range [0, mod)
// mod: the modulo
// Return Value: a * b modulo mod, a value in the range [0, mod)
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
// https://dmoj.ca/problem/bts18p5
template <class T> T mulMod(T a, T b, T mod) { return a * b % mod; }
// Computes base to the power pow modulo mod where mod * mod does not overflow
// Assumes 0^0 = 1
// Template Arguments:
// T: the type of base and mod
// U: the type of pow
// Function Arguments:
// base: the base, must be in the range [0, mod)
// pow: the power, must be non negative and integral
// mod: the modulo
// Return Value: base to the power pow modulo mod,
// a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(log pow)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T, class U> T powMod(T base, U pow, T mod) {
T x = 1; while (true) {
if (pow % 2 == 1) x = mulMod(x, base, mod);
if ((pow /= 2) == 0) break;
base = mulMod(base, base, mod);
}
return x;
}
// Computes the multiplicative inverse of a for a prime mod p where p * p
// does not overflow
// Guaranteed to exist
// Template Arguments:
// T: the type of a and p
// Function Arguments:
// a: the value to find the inverse of, must be in the range [0, p)
// p: the prime modulo
// Return Value: the multiplicative inverse of a for a prime mod p
// In practice, has a small constant
// Time Complexity: O(log p)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T> T mulInvModPrime(T a, T p) { return powMod(a, p - 2, p); }
// Divides a by b modulo a prime p where p * p does not overflow
// Guaranteed to be valid
// Template Arguments:
// T: the type of a, b and p
// Function Arguments:
// a: the dividend, must be in the range [0, p)
// b: the divisor, must be in the range [1, p)
// p: the prime modulo
// Return Value: a / b modulo p
// In practice, has a small constant
// Time Complexity: O(log p)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T> T divModPrime(T a, T b, T p) {
return mulMod(a, mulInvModPrime(b, p), p);
}
// Divides a by b modulo mod
// Only valid if gcd(b, mod) == 1
// Template Arguments:
// T: the type of a, b and mod
// Function Arguments:
// a: the dividend, must be in the range [0, mod)
// b: the divisor, must be in the range [1, mod)
// mod: the modulo
// Return Value: a / b modulo mod, or -1 if invalid
// In practice, has a small constant
// Time Complexity: O(log p)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
template <class T> T divMod(T a, T b, T mod) {
T inv = mulInv(b, mod); return inv == -1 ? -1 : mulMod(a, inv, mod);
}
// The following functions are useful when mod * mod overflow
// Multiplies two integers a and b modulo mod where a * b does overflow, but
// mod + mod does not overflow
// Template Arguments:
// T: the type of a, b, and mod
// Function Arguments:
// a: the first value, must be in the range [0, mod)
// b: the second value, must be in the range [0, mod)
// mod: the modulo
// Return Value: a * b modulo mod, a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(log b)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T> T mulModOvf(T a, T b, T mod) {
T x = 0; while (true) {
if (b % 2 == 1) x = addMod(x, a, mod);
if ((b /= 2) == 0) break;
a = addMod(a, a, mod);
}
return x;
}
// Computes base to the power pow modulo mod where mod * mod overflows, but
// mod + mod does not overflow
// Template Arguments:
// T: the type of base and mod
// U: the type of pow
// Function Arguments:
// base: the base, must be in the range [0, mod)
// pow: the power, must be non negative and integral
// mod: the modulo
// Return Value: base to the power pow modulo mod,
// a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(log pow log mod)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T, class U> T powModOvf(T base, U pow, T mod) {
T x = 1; while (true) {
if (pow % 2 == 1) x = mulModOvf(x, base, mod);
if ((pow /= 2) == 0) break;
base = mulModOvf(base, base, mod);
}
return x;
}
// Computes the multiplicative inverse of a for a prime mod p where p * p
// overflows, but mod + mod does not overflow
// Guaranteed to exist
// Template Arguments:
// T: the type of a and p
// Function Arguments:
// a: the value to find the inverse of, must be in the range [0, p)
// p: the prime modulo
// Return Value: the multiplicative inverse of a for a prime mod p
// In practice, has a small constant
// Time Complexity: O(log p log mod)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T> T mulInvModPrimeOvf(T a, T p) {
return powModOvf(a, p - 2, p);
}
// Divides a by b modulo a prime p where p * p overflows, but mod + mod does
// not overflow
// Guaranteed to be valid
// Template Arguments:
// T: the type of a, b and p
// Function Arguments:
// a: the dividend, must be in the range [0, p)
// b: the divisor, must be in the range [1, p)
// p: the prime modulo
// Return Value: a / b modulo p
// In practice, has a small constant
// Time Complexity: O(log p log mod)
// Memory Complexity: O(1)
// Tested:
// https://atcoder.jp/contests/m-solutions2019/tasks/m_solutions2019_e
template <class T> T divModPrimeOvf(T a, T b, T p) {
return mulModOvf(a, mulInvModPrimeOvf(b, p), p);
}
// Struct supporting operations in Montgomery form
// Constructor Arguments:
// mod: the modulo of the space
// Functions:
// init(x): transforms a number into Montgomery form
// reduce(x): transforms a number from Montgomery form
// mul(a, b): multiplies the numbers a and b in Montgomery form and returns
// their product modulo mod in Montgomery form
// In practice, has a small constant
// Time Complexity:
// constructor, init, reduce, mul: O(1)
// Memory Complexity: O(1)
// Tested:
// https://loj.ac/p/6466
// https://www.spoj.com/problems/FACT2/
struct Montgomery {
using u64 = uint64_t; using u128 = __uint128_t; using s128 = __int128_t;
struct u256 {
static u128 HI(u128 x) { return x >> 64; }
static u128 LO(u128 x) { return u64(x); }
u128 hi, lo; u256(u128 lo = 0) : hi(0), lo(lo) {}
u256(u128 hi, u128 lo) : hi(hi), lo(lo) {}
static u256 mul(u128 x, u128 y) {
u128 t1 = LO(x) * LO(y), t2 = HI(x) * LO(y) + HI(y) * LO(x) + HI(t1);
return u256(HI(x) * HI(y) + HI(t2), (t2 << 64) + LO(t1));
}
};
u128 mod, inv, r2;
Montgomery(u128 mod = 1) : mod(mod), inv(1), r2(-mod % mod) {
for (int i = 0; i < 7; i++) inv *= 2 - mod * inv;
for (int i = 0; i < 4; i++) if ((r2 <<= 1) >= mod) r2 -= mod;
for (int i = 0; i < 5; i++) r2 = mul(r2, r2);
}
u128 init(u128 x) { return mul(x, r2); }
u128 reduce(u256 x) {
u128 q = x.lo * inv; s128 a = x.hi - u256::mul(q, mod).hi;
return a < 0 ? a + mod : a;
}
u128 mul(u128 a, u128 b) { return reduce(u256::mul(a, b)); }
};
// Multiplies two unsigned 128-bit integers a and b modulo mod even if a * b
// overflows, using Montgomery reduction
// Function Arguments:
// a: the first value, must be in the range [0, mod)
// b: the second value, must be in the range [0, mod)
// mod: the modulo
// Return Value: a * b modulo mod, a value in the range [0, mod)
// In practice, has a small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://loj.ac/p/6466
// https://www.spoj.com/problems/FACT2/
__uint128_t mulMod(__uint128_t a, __uint128_t b, __uint128_t mod) {
static Montgomery mont; if (mont.mod != mod) mont = Montgomery(mod);
return mont.reduce(mont.mul(mont.init(a), mont.init(b)));
}
// Barrett Reduction for fast modulo
// Constructor Arguments:
// mod: the modulo of the space
// Functions:
// reduce(a): returns a value congruent to a modulo mod in the range
// [0, 2 mod)
// In practice, has a very small constant
// Time Complexity:
// constructor, reduce: O(1)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
struct Barrett {
uint64_t mod, inv;
Barrett(uint64_t mod = 1) : mod(mod), inv(uint64_t(-1) / mod) {}
uint64_t reduce(uint64_t a) {
return a - uint64_t((__uint128_t(inv) * a) >> 64) * mod;
}
};
// Fast modulo using Barrett Reduction
// Function Arguments:
// a: the value to modulo
// mod: the modulo
// Return Value: a modulo mod
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
uint64_t bmod(uint64_t a, uint64_t mod) {
static Barrett b; if (b.mod != mod) b = Barrett(mod);
uint64_t ret = b.reduce(a); if (ret >= mod) ret -= mod;
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "FFT.h"
using namespace std;
// Big Integer
// Constructor Arguments:
// s: a string of digits
// v: a long long
// Functions:
// read(s): reads a BigInt from a string
// write(s): write a BigInt to a string
// >>, <<: input and output operators
// <, <=, >, >=, ==, !=: comparison operators
// isZero(): returns true if the big integer is 0
// abs(): returns the absolute value
// ++, --, +, +=, -, -=, *, *=, /, /=, %, %=: standard arithmetic operators
// divMod(a1, b1): returns a pair with the quotient and remainder of
// a1 divided by b1
// In practice, multiplication has a moderate constant, all other functions
// have a small constant
// Time Complexity:
// constructor: O(N)
// isZero: O(1)
// read, write, >>, <<, <, <=, >, >=, ==, !=, abs, ++, --, +, +=, -, -=: O(N)
// *, *= (long long variants): O(N)
// *, *= (BigInt variants): O(N log N)
// /, /=, % (long long variants): O(N)
// /, /=, %, %= (BigInt variants): O(N^2)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/aplusb2
// https://dmoj.ca/problem/atimesb
// https://dmoj.ca/problem/ccc96s2
// https://dmoj.ca/problem/ccc97s5
struct BigInt {
using T = long long; static constexpr const int DIG = 4;
static constexpr const T BASE = pow(10, DIG);
vector<T> a; int sign;
void trim() {
while (!a.empty() && a.back() == 0) a.pop_back();
if (a.empty()) sign = 1;
}
void read(const string &s) {
sign = 1; a.clear(); int pos = 0;
for (; pos < int(s.size()) && (s[pos] == '-' || s[pos] == '+'); ++pos)
if (s[pos] == '-') sign = -sign;
for (int i = int(s.size()) - 1; i >= pos; i -= DIG) {
T x = 0;
for (int j = max(pos, i - DIG + 1); j <= i; j++) x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator >> (istream &stream, BigInt &v) {
string s; stream >> s; v.read(s); return stream;
}
string write() const {
string ret = ""; if (sign == -1) ret.push_back('-');
for (char c : to_string(a.empty() ? 0 : a.back())) ret.push_back(c);
for (int i = int(a.size()) - 2; i >= 0; i--) {
string s = to_string(a[i]);
for (int j = int(s.size()); j < DIG; j++) ret.push_back('0');
for (char c : s) ret.push_back(c);
}
return ret;
}
friend ostream& operator << (ostream &stream, const BigInt &v) {
stream << v.write(); return stream;
}
bool operator < (const BigInt &v) const {
if (sign != v.sign) return sign < v.sign;
if (int(a.size()) != int(v.a.size()))
return int(a.size()) * sign < int(v.a.size()) * v.sign;
for (int i = int(a.size()) - 1; i >= 0; i--) if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator <= (const BigInt &v) const { return !(v < *this); }
bool operator > (const BigInt &v) const { return v < *this; }
bool operator >= (const BigInt &v) const { return !(*this < v); }
bool operator == (const BigInt &v) const {
return !(*this < v) && !(v < *this);
}
bool operator != (const BigInt &v) const { return *this < v || v < *this; }
BigInt() : sign(1) {}
BigInt(const string &s) { read(s); }
BigInt(T v) : BigInt(to_string(v)) {}
bool isZero() const { return a.empty() || (int(a.size()) == 1 && !a[0]); }
BigInt operator + () const { return *this; }
BigInt operator - () const {
BigInt res = *this; res.sign = -sign; return res;
}
BigInt abs() const { BigInt res = *this; res.sign *= res.sign; return res; }
T value() const {
T res = 0;
for (int i = int(a.size()) - 1; i >= 0; i--) res = res * BASE + a[i];
return res * sign;
}
BigInt operator ++ () { return *this += BigInt(1); }
BigInt operator ++ (int) {
BigInt ret = *this; *this += BigInt(1); return ret;
}
BigInt operator -- () { return *this -= BigInt(1); }
BigInt operator -- (int) {
BigInt ret = *this; *this -= BigInt(1); return ret;
}
BigInt operator + (const BigInt &v) const {
if (sign == v.sign) {
BigInt res = v; T carry = 0;
for (int i = 0; i < max(int(a.size()), int(v.a.size())) || carry; i++) {
if (i == int(res.a.size())) res.a.push_back(0);
res.a[i] += carry + (i < int(a.size()) ? a[i] : 0);
carry = res.a[i] >= BASE; if (carry) res.a[i] -= BASE;
}
return res;
}
return *this - (-v);
}
BigInt &operator += (const BigInt &v) { return *this = *this + v; }
BigInt operator - (const BigInt &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
BigInt res = *this; T carry = 0;
for (int i = 0; i < int(v.a.size()) || carry; i++) {
res.a[i] -= carry + (i < int(v.a.size()) ? v.a[i] : 0);
carry = res.a[i] < 0; if (carry) res.a[i] += BASE;
}
res.trim(); return res;
}
return -(v - *this);
}
return *this + (-v);
}
BigInt &operator -= (const BigInt &v) { return *this = *this - v; }
BigInt operator * (T v) const { BigInt res = *this; res *= v; return res; }
BigInt &operator *= (T v) {
if (v < 0) { sign = -sign; v = -v; }
T carry = 0; for (int i = 0; i < int(a.size()) || carry; i++) {
if (i == int(a.size())) a.push_back(0);
T cur = a[i] * v + carry; carry = cur / BASE; a[i] = cur % BASE;
}
trim(); return *this;
}
BigInt operator * (const BigInt &v) const {
BigInt res; res.a = mulIntFFT(a, v.a, BASE); res.sign = sign * v.sign;
res.trim(); return res;
}
BigInt &operator *= (const BigInt &v) { return *this = *this * v; }
friend pair<BigInt, BigInt> divmod(const BigInt &a1, const BigInt &b1) {
T norm = BASE / (b1.a.back() + 1);
BigInt a = a1.abs() * norm, b = b1.abs() * norm, q, r;
q.a.resize(int(a.a.size()));
for (int i = int(a.a.size()) - 1; i >= 0; i--) {
r *= BASE; r += a.a[i];
T s1 = int(r.a.size()) <= int(b.a.size()) ? 0 : r.a[int(b.a.size())];
T s2 = int(r.a.size()) <= int(b.a.size()) - 1 ? 0
: r.a[int(b.a.size()) - 1];
T d = (BASE * s1 + s2) / b.a.back(); r -= b * d;
for (; r < 0; r += b) --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign; r.sign = a1.sign; q.trim(); r.trim();
return make_pair(q, r / norm);
}
BigInt operator / (T v) const { BigInt res = *this; res /= v; return res; }
BigInt &operator /= (T v) {
if (v < 0) { sign = -sign; v = -v; }
for (int i = int(a.size()) - 1, rem = 0; i >= 0; i--) {
T cur = a[i] + rem * BASE; a[i] = cur / v; rem = cur % v;
}
trim(); return *this;
}
T operator % (T v) const {
if (v < 0) v = -v;
T m = 0;
for (int i = int(a.size()) - 1; i >= 0; i--) m = (a[i] + m * BASE) % v;
return m * sign;
}
BigInt operator / (const BigInt &v) const { return divmod(*this, v).first; }
BigInt operator % (const BigInt &v) const { return divmod(*this, v).second; }
BigInt &operator /= (const BigInt &v) { return *this = *this / v; }
BigInt &operator %= (const BigInt &v) { return *this = *this % v; }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Type templated greatest common divisor function
// Always returns a non negative integer
// Template Arguments:
// T: the type of a and b
// Function Arguments:
// a: the first value
// b: the second value
// Return Value: the greatest common divisor of a and b
// In practice, has a small constant
// Time Complexity: O(log(min(a, b)))
// Memory Complexity: O(1)
// Tested:
// https://hackerrank.com/contests/projecteuler/challenges/euler005/problem
template <class T> T gcd(T a, T b) {
return b == 0 ? (a >= 0 ? a : -a) : gcd(b, a % b);
}
// Type templated lowest common multiple function
// Always returns a non negative integer
// Template Arguments:
// T: the type of a and b
// Function Arguments:
// a: the first value
// b: the second value
// Return Value: the lowest common multiple of a and b
// In practice, has a small constant
// Time Complexity: O(log(min(a, b)))
// Memory Complexity: O(1)
// Tested:
// https://hackerrank.com/contests/projecteuler/challenges/euler005/problem
template <class T> T lcm(T a, T b) {
if (a == 0 || b == 0) return 0;
if (a < 0) a = -a;
if (b < 0) b = -b;
return a / gcd(a, b) * b;
}
// Extended Euclidean Algorithm to compute x and y, where ax + by = gcd(a, b)
// Template Arguments:
// T: the type of a and b
// Function Arguments:
// a: the first value
// b: the second value
// x: a reference to a variable to store x
// y: a reference to a variable to store y
// Return Value: the greatest common divisor of a and b
// In practice, has a small constant
// Time Complexity: O(log(min(a, b)))
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/modinv
// https://www.spoj.com/problems/CEQU/
// https://codeforces.com/problemsets/acmsguru/problem/99999/106
template <class T> T EEA(T a, T b, T &x, T &y) {
T xx = y = 0, yy = x = 1; while (b != 0) {
T q = a / b; a %= b; swap(a, b);
x -= q * xx; swap(x, xx); y -= q * yy; swap(y, yy);
}
if (a < 0) { a = -a; x = -x; y = -y; }
return a;
}
// Computes the multiplicative inverse of a in Zm
// Inverse only exists if gcd(a, m) == 1
// Template Arguments:
// T: the type of a and m
// Function Arguments:
// a: the value to find the inverse of, must be in the range [0, m)
// m: the mod, must be positive
// Return Value: the multiplicative inverse of a in Zm, -1 if no inverse
// In practice, has a small constant
// Time Complexity: O(log m)
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/modinv
template <class T> T mulInv(T a, T m) {
if (a == 0) return -1;
T x, y; if (EEA(a, m, x, y) != 1) return -1;
x %= m; return x < 0 ? x + m : x;
}
// Solves the linear congruence ax = c mod m
// Template Arguments:
// T: the type of a, c, and m
// Function Arguments:
// a: must be in the range [0, m)
// c: must be in the range [0, m)
// m: the mod, must be positive
// Return Value: a pair containing x, and the modulus of the answer (equal to
// m / gcd(a, m)), x is -1 if there is no solution
// In practice, has a small constant
// Time Complexity: O(log m)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> pair<T, T> solveCongruence(T a, T c, T m) {
T x, y, g = EEA(a, m, x, y);
if (c % g != 0) return make_pair(-1, m / g);
x = (x % m + m) % m; x = (x * c / g) % (m / g); return make_pair(x, m / g);
}
// Solves the Linear Diophantine Equation ax + by = c
// All pairs of integers (s, t) where s = x.first + k * x.second
// and t = y.first + k * y.second for all integers k are solutions
// Edge cases:
// 1. a == 0 && b == 0 is satisfied by all integer pairs (s, t) if c == 0,
// no solutions otherwise
// 2. a == 0 is satisfied by all integer pairs (s, t) with t = c / b if c is
// divisible by b, no solutions otherwise
// 3. b == 0 is satisfied by all integer pairs (s, t) with s = c / a if c is
// divisible by a, no solutions otherwise
// Template Arguments:
// T: the type of a, b, c
// Function Arguments:
// a: the first value
// b: the second value
// c: the value of ax + by
// x: a reference to a pair storing x and its mod (equal to b / gcd(a, b))
// y: a reference to a pair storing y and its mod (equal to -a / gcd(a, b))
// Return Value: true if there is a solution, false otherwise
// In practice, has a small constant
// Time Complexity: O(log(min(a, b)))
// Memory Complexity: O(1)
// Tested:
// https://www.spoj.com/problems/CEQU/
// https://codeforces.com/problemsets/acmsguru/problem/99999/106
template <class T> bool LDE(T a, T b, T c, pair<T, T> &x, pair<T, T> &y) {
assert(a != 0 && b != 0); T xg, yg, g = EEA(a, b, xg, yg);
if (c % g != 0) return false;
x = make_pair(xg * (c / g), b / g); y = make_pair(yg * (c / g), -a / g);
return true;
}
// Generalized Chinese Remainder Theorem to find the solution to
// x mod lcm(a.second, b.second) given x = a.first mod a.second
// and x = b.first mod b.second
// Template Arguments:
// T: the type of x
// Function Arguments:
// a: the first value and its associated mod (0 <= a.first < a.second)
// b: the second value and its associated mod (0 <= b.first < b.second)
// Return Value: the pair x and lcm(a.second, b.second) where
// 0 <= x < lcm(a.second, b.second), x is -1 if there is no solution
// In practice, has a small constant
// Time Complexity: O(log(min(a.second, b.second)))
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/generalchineseremainder
template <class T> pair<T, T> CRT(pair<T, T> a, pair<T, T> b) {
T g = gcd(a.second, b.second), l = a.second / g * b.second;
if ((b.first - a.first) % g != 0) return make_pair(-1, l);
T A = a.second / g, B = b.second / g;
T mul = (b.first - a.first) / g * mulInv(A % B, B) % B;
return make_pair(((mul * a.second + a.first) % l + l) % l, l);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "BinaryExponentiation.h"
using namespace std;
// Struct representing integers modulo MOD where MOD can change during runtime
// Template Arguments:
// T: the type of the integer, must be integral
// Constructor Arguments:
// x: the value to initialize the struct with
// Fields:
// static MOD: the value to mod by, must be non negative
// static PRIME_MOD: a boolean indicating whether MOD is prime
// static MUL_OVERFLOW: a boolean indicating whether MOD * MOD overflows
// v: the value
// Functions:
// statis setMod(mod, primeMod, mulOverflow): sets the mod to MOD, with
// primeMod indicating whether the mod is prime and mulOverflow indicating
// whether multiplication overflows
// <, <=, >, >=, ==, !=: comparison operators
// ++, --, +, +=, -, -=, *, *=: standard arithmetic operators modulo MOD
// pow(p): returns this value raises this to the power of p
// hasMulInv(): returns whether a multiplicative inverse of this value exists
// mulInv(): returns the multiplicative inverse of this value, only exists
// if gcd(v, MOD) is 1
// /, /=: division in modular arithmetic, only valid if a multiplicative
// inverse of the divisor exists
// >>, <<: input and output operators
// Time Complexity:
// constructor: O(1)
// setMod: O(1)
// <, <=, >, >=, ==, !=, ++, --, +, +=, -, -=, >>, <<: O(1)
// *, *=: O(1) if MUL_OVERFLOW is false, O(log MOD) otherwise
// pow: O(log MOD) if MUL_OVERFLOW is false, O((log MOD)^2) otherwise
// hasMulInv, mulInv, /, /=: O(log MOD)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/modulararithmetic
template <class T> struct DynamicIntMod {
static_assert(is_integral<T>::value, "T must be an integral type");
static_assert(is_signed<T>::value, "T must be a signed type");
using IM = DynamicIntMod<T>;
static T MOD; static bool PRIME_MOD, MUL_OVERFLOW;
static void setMod(T mod, bool primeMod = false, bool mulOverflow = false) {
MOD = mod; PRIME_MOD = primeMod; MUL_OVERFLOW = mulOverflow;
}
T v; DynamicIntMod() : v(0) {}
DynamicIntMod(const T &x) {
v = -MOD < x && x < MOD ? x : x % MOD; if (v < 0) v += MOD;
}
bool operator < (const IM &i) const { return v < i.v; }
bool operator <= (const IM &i) const { return v <= i.v; }
bool operator > (const IM &i) const { return v > i.v; }
bool operator >= (const IM &i) const { return v >= i.v; }
bool operator == (const IM &i) const { return v == i.v; }
bool operator != (const IM &i) const { return v != i.v; }
IM operator ++ () {
if (++v == MOD) v = 0;
return *this;
}
IM operator ++ (int) {
IM ret = *this; if (++v == MOD) v = 0;
return ret;
}
IM operator -- () {
if (v-- == 0) v = MOD - 1;
return *this;
}
IM operator -- (int) {
IM ret = *this; if (v-- == 0) v = MOD - 1; return ret;
}
IM operator + (const IM &i) const { return IM(*this) += i; }
IM &operator += (const IM &i) {
if ((v += i.v) >= MOD) v -= MOD;
return *this;
}
IM operator - (const IM &i) const { return IM(*this) -= i; }
IM &operator -= (const IM &i) {
if ((v -= i.v) < 0) v += MOD;
return *this;
}
IM operator + () const { return *this; }
IM operator - () const { return IM(-v); }
IM operator * (const IM &i) const { return IM(*this) *= i; }
IM &operator *= (const IM &i) {
if (MUL_OVERFLOW) {
IM x = 0, y = *this; T z = i.v;
for (; z > 0; z /= 2, y += y) if (z % 2 == 1) x += y;
*this = x;
} else v = v * i.v % MOD;
return *this;
}
bool hasMulInv() const {
if (v == 0) return false;
if (!PRIME_MOD || MUL_OVERFLOW) {
T g = MOD, r = v; while (r != 0) { g %= r; swap(g, r); }
return g == 1;
} else return true;
}
IM mulInv() const {
assert(v != 0);
if (!PRIME_MOD || MUL_OVERFLOW) {
T g = MOD, r = v, x = 0, y = 1; while (r != 0) {
T q = g / r; g %= r; swap(g, r); x -= q * y; swap(x, y);
}
assert(g == 1); return IM(x);
} else return pow2(*this, MOD - 2);
}
IM operator / (const IM &i) const { return IM(*this) /= i; }
IM &operator /= (const IM &i) { return *this *= i.mulInv(); }
friend istream &operator >> (istream &stream, IM &i) {
T v; stream >> v; i = IM(v); return stream;
}
friend ostream &operator << (ostream &stream, const IM &i) {
return stream << i.v;
}
};
template <class T> T DynamicIntMod<T>::MOD = T(1);
template <class T> bool DynamicIntMod<T>::PRIME_MOD = false;
template <class T> bool DynamicIntMod<T>::MUL_OVERFLOW = false;
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the Kth term of a linear recurrence of length N
// A[i] = sum (C[j] * A[i - 1 - j]) for 0 <= j < N
// Template Arguments:
// T: the type of the elements in the sequence
// U: the type of K
// Function Arguments:
// A: a vector of the first N terms of the sequence
// C: a vector of the the N recurrence coefficients of the sequence
// K: the term of the sequence to find
// Return Value: the Kth term (0-indexed) of the linear recurrence
// Time Complexity: O(N^2 log K)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/ddrp6
template <class T, class U>
T linearRecurrence(const vector<T> &A, const vector<T> &C, U K) {
assert(A.size() == C.size()); int N = A.size(); if (K < N) return A[K];
auto comb = [&] (const vector<T> &a, const vector<T> &b) {
vector<T> res(N * 2 + 1, T());
for (int i = 0; i <= N; i++) for (int j = 0; j <= N; j++)
res[i + j] += a[i] * b[j];
for (int i = N * 2; i > N; i--) for (int j = 0; j < N; j++)
res[i - 1 - j] += res[i] * C[j];
return res;
};
vector<T> P(N + 1, T()), E = P; P[0] = E[1] = T(1); K++; while (true) {
if (K % 2 == 1) P = comb(P, E);
if ((K /= 2) == 0) break;
E = comb(E, E);
}
T res = T(); for (int i = 0; i < N; i++) res += P[i + 1] * A[i];
return res;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Adds two nimbers a and b
// Template Arguments:
// T: the type of a, b, must be an unsigned integral type
// Function Arguments:
// a: the first value
// b: the second value
// Return Value: a + b with nimber addition
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/nim_product_64
template <class T> T addNim(T a, T b) {
static_assert(is_unsigned<T>::value, "T must be an unsigned integral type");
return a ^ b;
}
// Helper function to initialize the product cache array
template <class T, const int BITS> T initNim(T prod[BITS][BITS]) {
for (int i = 0; i < BITS; i++) fill(prod[i], prod[i] + BITS, T());
return T();
}
// Helper function to multiply 2^i and 2^j
template <class T, const int BITS>
T mulNimPow2(T prod[BITS][BITS], int i, int j) {
static_assert(is_unsigned<T>::value, "T must be an unsigned integral type");
T &res = prod[i][j]; if (res) return res;
if (!(i & j)) return res = T(1) << (i | j);
int a = (i & j) & -(i & j); return res = mulNimPow2(prod, i ^ a, j)
^ mulNimPow2(prod, (i ^ a) | (a - 1), (j ^ a) | (i & (a - 1)));
}
// Multiplies two nimbers a and b
// Template Arguments:
// T: the type of a, b, must be an unsigned integral type
// Function Arguments:
// a: the first value
// b: the second value
// Return Value: a * b with nimber multiplication
// In practice, has a very small constant
// Time Complexity: O(BITS^2)
// Memory Complexity: O(1)
// Tested:
// https://judge.yosupo.jp/problem/nim_product_64
template <class T> T mulNim(T a, T b) {
static_assert(is_unsigned<T>::value, "T must be an unsigned integral type");
static constexpr const int BITS = 8 * sizeof(T);
static T prod[BITS][BITS]; static T ZERO = initNim(prod);
T res = ZERO; for (int i = 0; i < BITS; i++) if ((a >> i) & 1)
for (int j = 0; j < BITS; j++) if ((b >> j) & 1)
res = addNim(res, mulNimPow2(prod, i, j));
return res;
}
// Computes base to the power pow in nimber arithmetic
// Template Arguments:
// T: the type of base, must be an unsigned integral type
// U: the type of pow
// Function Arguments:
// base: the base
// pow: the power, must be non negative and integral
// Return Value: base to the power pow in nimber arithmetic
// In practice, has a very small constant
// Time Complexity: O(BITS^2 log pow)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T, class U> T powNim(T base, U pow) {
static_assert(is_unsigned<T>::value, "T must be an unsigned integral type");
T x = 1; while (true) {
if (pow % 2 == 1) x = mulNim(x, base);
if ((pow /= 2) == 0) break;
base = mulNim(base, base);
}
return x;
}
// Computes the multiplicative inverse of a in nimber arithmetic
// Guaranteed to exist
// Template Arguments:
// T: the type of a, must be an unsigned integral type
// Function Arguments:
// a: the value to find the inverse of
// Return Value: the multiplicative inverse of a in nimber arithmetic
// In practice, has a small constant
// Time Complexity: O(BITS^3)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> T mulInvNim(T a) {
static_assert(is_unsigned<T>::value, "T must be an unsigned integral type");
return powNim(a, T(-2));
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Helper functions
template <class F, class T> T S(F &f, T a, T b) {
return (f(a) + 4 * f((a + b) / 2) + f(b)) * (b - a) / 6;
}
template <class F, class T> T rec(F &f, T a, T b, T eps, T s) {
T c = (a + b) / 2, S1 = S(f, a, c), S2 = S(f, c, b), SS = S1 + S2;
if (abs(SS - s) <= 15 * eps || b - a < 1e-10) return SS + (SS - s) / 15;
return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
}
// Integrates the function f over the range [a, b]
// Template Arguments:
// F: the type of f
// T: the type of the bounds and the return value of the function f
// Function Arguments:
// a: the lower bound
// b: the upper bound
// f(x): the function returning the y value at x
// eps: a value for epsilon
// Return Value: the integral of f over the range [a, b]
// Time Complexity: O(b - a) * (cost to compute f(x))
// Memory Complexity: O(1)
// Tested:
// https://codeforces.com/problemsets/acmsguru/problem/99999/217
template <class F, class T>
T integrate(F f, T a, T b, T eps) { return rec(f, a, b, eps, S(f, a, b)); }
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Given a sequence A of length N, compute a sequence C of minimum length M,
// such that A[i] = sum (C[j] * A[i - 1 - j]) for 0 <= j < M
// Template Arguments:
// T: the type of the elements in the sequence
// Function Arguments:
// A: the sequence to find the recurrence
// Return Value: the shortest vector C of length M, representing the
// recurrence coefficients
// Time Complexity: O(N^2)
// Memory Complexity: O(N)
// Tested:
// https://judge.yosupo.jp/problem/find_linear_recurrence
// https://dmoj.ca/problem/ddrp6
template <class T> vector<T> berlekampMassey(const vector<T> &A) {
if (A.empty()) return vector<T>();
int N = A.size(), L = 0; vector<T> C(N, T()), B = C, tmp;
T b = C[0] = B[0] = T(1); for (int i = 0, m = 1; i < N; i++, m++) {
T d = A[i]; for (int j = 1; j <= L; j++) d += C[j] * A[i - j];
if (d == T()) continue;
tmp = C; T c = d / b; for (int j = m; j < N; j++) C[j] -= c * B[j - m];
if (2 * L > i) continue;
L = i + 1 - L; B = tmp; b = d; m = 0;
}
C.resize(L + 1); C.erase(C.begin()); for (auto &&c : C) c = -c;
return C;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/unionfind/UnionFindUndo.h"
using namespace std;
// Graphic Matroid for spanning forests
// Constructor Arguments:
// V: the number of vertices in the simple graph
// edges: a vector of pairs in the form (v, w) representing
// an undirected edge in the graph between vertices v and w
// Functions:
// clear(): clears all edges in the independent set
// add(i): adds the ith edge to the independent set
// independent(i): returns whether adding edge i to the current
// existing independent set would still result in an independent set
// In practice, has a small constant
// Time Complexity:
// constructor: O(V + E)
// clear: O(K) for K edges added
// add, independent: O(log V)
// Memory Complexity: O(V + E)
// Tested:
// https://www.spoj.com/problems/COIN/
struct GraphicMatroid {
int V; UnionFindUndo uf; vector<pair<int, int>> edges;
GraphicMatroid(int V, const vector<pair<int, int>> &edges)
: V(V), uf(V), edges(edges) {}
void clear() { while (!uf.history.empty()) uf.undo(); }
void add(int i) { uf.join(edges[i].first, edges[i].second); }
bool independent(int i) {
return !uf.connected(edges[i].first, edges[i].second);
}
};
// Colorful Matroid
// Constructor Arguments:
// color: the colors of each element in the ground set
// Functions:
// clear(): clears all elements in the independent set
// add(i): adds the ith element to the independent set
// independent(i): returns whether adding element i to the current
// existing independent set would still result in an independent set
// In practice, has a small constant
// Time Complexity:
// constructor: O(N) for N elements in the ground set
// clear: O(C) for C colors
// add, independent: O(1)
// Memory Complexity: O(N + C) for N elements in the ground set and C colors
// Tested:
// https://codeforces.com/gym/102156/problem/D
// https://www.spoj.com/problems/COIN/
struct ColorfulMatroid {
vector<bool> in; vector<int> color;
ColorfulMatroid(const vector<int> &color)
: in(*max_element(color.begin(), color.end()) + 1, false),
color(color) {}
void clear() { fill(in.begin(), in.end(), false); }
void add(int i) { in[color[i]] = true; }
bool independent(int i) { return !in[color[i]]; }
};
// Matroid for vectors in Z2
// Template Arguments:
// BITS: the number of bits
// Constructor Arguments:
// vec: the vectors in the ground set
// Functions:
// clear(): clears all vector in the independent set
// add(i): adds the ith vector to the independent set
// independent(i): returns whether adding vector i to the current
// existing independent set would still result in an independent set
// In practice, has a very small constant
// Time Complexity:
// constructor: O(N BITS) for N vectors in the ground set
// clear: O(BITS)
// add, independent: O(BITS^2 / 64)
// Memory Complexity: O(N BITS) for N vectors in the ground set
// Tested:
// https://codeforces.com/gym/102156/problem/D
template <const int BITS> struct Z2Matroid {
vector<bitset<BITS>> basis, vec;
Z2Matroid(const vector<bitset<BITS>> &vec) : basis(BITS), vec(vec) {}
void clear() { fill(basis.begin(), basis.end(), bitset<BITS>()); }
void add(int i) {
bitset<BITS> v = vec[i]; for (int j = 0; j < BITS; j++) if (v[j]) {
if (basis[j].none()) { basis[j] = v; return; }
v ^= basis[j];
}
}
bool independent(int i) {
bitset<BITS> v = vec[i]; for (int j = 0; j < BITS; j++) if (v[j]) {
if (basis[j].none()) return true;
v ^= basis[j];
}
return false;
}
};
// Linear Matroid for vectors
// Template Arguments:
// T: the type of each element
// Constructor Arguments:
// vec: the vectors in the ground set
// EPS: a value for epsilon
// Functions:
// clear(): clears all vector in the independent set
// add(i): adds the ith vector to the independent set
// independent(i): returns whether adding vector i to the current
// existing independent set would still result in an independent set
// In practice, has a small constant
// Time Complexity:
// constructor: O(NV) for N vectors of size V in the ground set
// clear: O(V) for vectors of size V
// add, independent: O(V^2) for vectors of size V
// Memory Complexity: O(NV) for N vectors of size V in the ground set
template <class T> struct LinearMatroid {
static T abs(T a) { return a >= 0 ? a : -a; }
int vars; T EPS; vector<vector<T>> basis, vec;
LinearMatroid(const vector<vector<T>> &vec, T EPS = T(1e-9))
: vars(vec.empty() ? 0 : vec[0].size()), EPS(EPS),
basis(vars), vec(vec) {}
void clear() { fill(basis.begin(), basis.end(), vector<T>()); }
void add(int i) {
vector<T> v = vec[i]; for (int j = 0; j < vars; j++) if (abs(v[j]) > EPS) {
if (basis[j].empty()) { basis[j] = v; return; }
T alpha = v[j] / basis[j][j];
for (int k = j; k < vars; k++) v[j] -= alpha * basis[j][k];
}
}
bool independent(int i) {
vector<T> v = vec[i]; for (int j = 0; j < vars; j++) if (abs(v[j]) > EPS) {
if (basis[j].empty()) return true;
T alpha = v[j] / basis[j][j];
for (int k = j; k < vars; k++) v[j] -= alpha * basis[j][k];
}
return false;
}
};
// Find the largest subset of a ground set of N elements that is
// independent in both matroids
// A matroid must have the basic properties of:
// - the empty set is independent
// - any subset of an independent set is empty
// - if independent set A is smaller than independent set B, then there is
// at least 1 element of B can be added to A without loss of independency
// Elements are 0-indexed
// Template Arguments:
// Matroid1: the type of the first matroid
// Required Functions:
// clear(): clears all elements in the independent set of this matroid
// add(i): adds element i to the independent set of this matroid
// independent(i): returns whether adding element i to the current
// existing independent set would still result in an independent set
// Matroid2: the type of the second matroid
// Required Functions: same as Matroid1
// Constructor Arguments:
// N: the number of elements in the ground set
// m1: an instance of the first matroid
// m2: an instance of the second matroid
// Fields:
// N: the number of elements in the ground set
// inSet: a vector of booleans indicating whether each element is in the
// largest independent set or not
// independentSet: a vector of the indices of the elements in the largest
// independent set
// In practice, has a very small constant
// Time Complexity:
// constructor: O(NI sqrt I) * (time complexity of m1.add, m2.add,
// m1.independent, and m2.independent) where I is the size of the largest
// independent set
// Memory Complexity: O(N + M1 + M2) where M1 and M2 are the memory
// complexities of m1 and m2
// Tested:
// https://codeforces.com/gym/102156/problem/D
// https://www.spoj.com/problems/COIN/
template <class Matroid1, class Matroid2> struct MatroidIntersection {
int N; vector<bool> inSet; vector<int> independentSet;
bool augment(Matroid1 &m1, Matroid2 &m2) {
vector<int> par(N + 1, -1); queue<int> q; q.push(N); while (!q.empty()) {
int v = q.front(); q.pop(); if (inSet[v]) {
m1.clear(); for (int i = 0; i < N; i++) if (inSet[i] && i != v)
m1.add(i);
for (int i = 0; i < N; i++)
if (!inSet[i] && par[i] == -1 && m1.independent(i)) {
par[i] = v; q.push(i);
}
} else {
auto backE = [&] {
m2.clear(); for (int c = 0; c < 2; c++) for (int i = 0; i < N; i++)
if ((v == i || inSet[i]) && (par[i] == -1) == c) {
if (!m2.independent(i)) {
if (c) { par[i] = v; q.push(i); return i; }
else return -1;
}
m2.add(i);
}
return N;
};
for (int w = backE(); w != -1; w = backE()) if (w == N) {
for (; v != N; v = par[v]) inSet[v] = !inSet[v];
return true;
}
}
}
return false;
}
MatroidIntersection(int N, Matroid1 m1, Matroid2 m2)
: N(N), inSet(N + 1, false) {
m1.clear(); m2.clear(); inSet[N] = true; for (int i = N - 1; i >= 0; i--)
if (m1.independent(i) && m2.independent(i)) {
inSet[i] = true; m1.add(i); m2.add(i);
}
while (augment(m1, m2));
inSet.pop_back();
for (int i = 0; i < N; i++) if (inSet[i]) independentSet.push_back(i);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "BinaryExponentiation.h"
#include "Primes.h"
using namespace std;
// Struct representing integers modulo MOD
// Template Arguments:
// T: the type of the integer, must be integral
// MOD: the value to mod by, must be non negative
// PRIME_MOD: a boolean indicating whether MOD is prime, can be computed
// automatically if C++ 14 or above, and if MOD is small
// MUL_OVERFLOW: a boolean indicating whether MOD * MOD overflows, can be
// computed automatically if numeric_limits<T>::max() exists
// Constructor Arguments:
// x: the value to initialize the struct with
// Fields:
// v: the value
// Functions:
// <, <=, >, >=, ==, !=: comparison operators
// ++, --, +, +=, -, -=, *, *=: standard arithmetic operators modulo MOD
// pow(p): returns this value raises this to the power of p
// hasMulInv(): returns whether a multiplicative inverse of this value exists
// mulInv(): returns the multiplicative inverse of this value, only exists
// if gcd(v, MOD) is 1
// /, /=: division in modular arithmetic, only valid if a multiplicative
// inverse of the divisor exists
// >>, <<: input and output operators
// Time Complexity:
// constructor: O(1)
// <, <=, >, >=, ==, !=, ++, --, +, +=, -, -=, >>, <<: O(1)
// *, *=: O(1) if MUL_OVERFLOW is false, O(log MOD) otherwise
// pow: O(log MOD) if MUL_OVERFLOW is false, O((log MOD)^2) otherwise
// hasMulInv, mulInv, /, /=: O(log MOD)
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/angieandfunctions
template <class T, const T MOD,
#if __cplusplus < 201402L
const bool PRIME_MOD,
#else
const bool PRIME_MOD = isPrime(MOD),
#endif
const bool MUL_OVERFLOW = (numeric_limits<T>::max() / MOD < MOD)>
struct IntMod {
static_assert(is_integral<T>::value, "T must be an integral type");
static_assert(is_signed<T>::value, "T must be a signed type");
static_assert(0 < MOD, "MOD must be a positive integer");
using IM = IntMod<T, MOD, PRIME_MOD, MUL_OVERFLOW>;
T v; IntMod() : v(0) {}
IntMod(const T &x) {
v = -MOD < x && x < MOD ? x : x % MOD; if (v < 0) v += MOD;
}
bool operator < (const IM &i) const { return v < i.v; }
bool operator <= (const IM &i) const { return v <= i.v; }
bool operator > (const IM &i) const { return v > i.v; }
bool operator >= (const IM &i) const { return v >= i.v; }
bool operator == (const IM &i) const { return v == i.v; }
bool operator != (const IM &i) const { return v != i.v; }
IM operator ++ () {
if (++v == MOD) v = 0;
return *this;
}
IM operator ++ (int) {
IM ret = *this; if (++v == MOD) v = 0;
return ret;
}
IM operator -- () {
if (v-- == 0) v = MOD - 1;
return *this;
}
IM operator -- (int) {
IM ret = *this; if (v-- == 0) v = MOD - 1; return ret;
}
IM operator + (const IM &i) const { return IM(*this) += i; }
IM &operator += (const IM &i) {
if ((v += i.v) >= MOD) v -= MOD;
return *this;
}
IM operator - (const IM &i) const { return IM(*this) -= i; }
IM &operator -= (const IM &i) {
if ((v -= i.v) < 0) v += MOD;
return *this;
}
IM operator + () const { return *this; }
IM operator - () const { return IM(-v); }
IM operator * (const IM &i) const { return IM(*this) *= i; }
IM &operator *= (const IM &i) {
if (MUL_OVERFLOW) {
IM x = 0, y = *this; T z = i.v;
for (; z > 0; z /= 2, y += y) if (z % 2 == 1) x += y;
*this = x;
} else v = v * i.v % MOD;
return *this;
}
bool hasMulInv() const {
if (v == 0) return false;
if (!PRIME_MOD || MUL_OVERFLOW) {
T g = MOD, r = v; while (r != 0) { g %= r; swap(g, r); }
return g == 1;
} else return true;
}
IM mulInv() const {
if (!PRIME_MOD || MUL_OVERFLOW) {
T g = MOD, r = v, x = 0, y = 1; while (r != 0) {
T q = g / r; g %= r; swap(g, r); x -= q * y; swap(x, y);
}
assert(g == 1); return IM(x);
} else return pow2(*this, MOD - 2);
}
IM operator / (const IM &i) const { return IM(*this) /= i; }
IM &operator /= (const IM &i) { return *this *= i.mulInv(); }
friend istream &operator >> (istream &stream, IM &i) {
T v; stream >> v; i = IM(v); return stream;
}
friend ostream &operator << (ostream &stream, const IM &i) {
return stream << i.v;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds a candidate for the majority element with constant space
// A second pass is required to ensure the candidate is actually a
// majority element
// Template Arguments:
// F: the type of the function generating the elements
// Function Arguments:
// N: the number of elements
// f: a function that returns the ith element on the ith call
// Return Value: returns an element that is a candidate for the
// majority element
// In practice, has a very small constant
// Time Complexity: O(N)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/farmingmars
template <class F>
auto boyerMooreMajority(int N, F f) -> typename decay<decltype(f())>::type {
typename decay<decltype(f())>::type ret = f();
for (int cnt = 1, i = 1; i < N; i++) {
auto v = f(); if (cnt == 0) { ret = v; cnt++; }
else if (v == ret) cnt++;
else cnt--;
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "ModularArithmetic.h"
#include "Primes.h"
using namespace std;
// Helper function to find a primitive root for the mod p
template <class T> T primitiveRoot(T p) {
T phi = p - 1, n = phi; vector<T> pf; for (T i = 2; i * i <= n; i++) {
if (n % i == 0) pf.push_back(i);
while (n % i == 0) n /= i;
}
for (T res = 2; res <= p; res++) {
bool ok = true; for (int i = 0; i < int(pf.size()) && ok; i++)
ok &= powMod(res, phi / pf[i], p) != 1;
if (ok) return res;
}
return -1;
}
// Number Theoretic Transform
// Template Arguments:
// T: the type of the integer, must be integral
// MOD: the value to mod by, must be in the form C * 2^K + 1 for some
// integers C, K where size(a) <= 2^K
// Sample Mods:
// 998244353 = 119 * 2^23 + 1, primitiveRoot = 3
// 754974721 = 45 * 2^24 + 1, primitiveRoot = 11
// 167772161 = 5 * 2^25 + 1, primitiveRoot = 3
// 469762049 = 7 * 2^26 + 1, primitiveRoot = 3
// 1004535809 = 479 * 2^21 + 1, primitiveRoot = 3
// 1012924417 = 483 * 2^21 + 1, primitiveRoot = 5
// Function Arguments:
// a: a reference to the vector of type T in the range [0, MOD)
// In practice, has a moderate constant, faster than FFT and Karatsuba
// Time Complexity: O(N log N) where N = size(a)
// Memory Complexity: O(N)
// Tested:
// https://judge.yosupo.jp/problem/convolution_mod
// https://judge.yosupo.jp/problem/convolution_mod_1000000007
template <class T, const T MOD> void ntt(vector<T> &a) {
static_assert(is_integral<T>::value, "T must be an integral type");
static_assert(is_signed<T>::value, "T must be a signed type");
#if __cplusplus >= 201402L
static_assert(isPrime(MOD), "MOD must be prime");
#endif
static T pk = 1, PK = 0;
for (; pk < MOD; pk *= 2) if ((MOD - 1) % pk == 0) PK = pk;
assert(PK != 0 && "MOD must be of the form C * 2^K + 1");
static T ROOT = powMod(primitiveRoot(MOD), (MOD - 1) / PK, MOD);
static vector<T> rt(2, 1); static vector<int> ord; static int k = 2, len = 1;
int N = a.size(); assert(N <= PK); assert(!(N & (N - 1)));
for (; k < N; k <<= 1, len++) {
rt.resize(N, T()); T x = powMod(ROOT, PK >> (len + 1), MOD);
for (int i = k; i < (k << 1); i++)
rt[i] = i & 1 ? mulMod(rt[i >> 1], x, MOD) : rt[i >> 1];
}
if (int(ord.size()) != N) {
ord.assign(N, 0); int len = __builtin_ctz(N); for (int i = 0; i < N; i++)
ord[i] = (ord[i >> 1] >> 1) + ((i & 1) << (len - 1));
}
for (int i = 0; i < N; i++) if (i < ord[i]) swap(a[i], a[ord[i]]);
for (int len = 1; len < N; len <<= 1) for (int i = 0; i < N; i += len << 1)
for (int j = 0; j < len; j++) {
T u = a[i + j], v = mulMod(a[len + i + j], rt[len + j], MOD);
a[i + j] = addMod(u, v, MOD); a[len + i + j] = subMod(u, v, MOD);
}
}
// Polynomial Multiplication
// Template Arguments:
// T: the type of the integer, must be integral
// MOD: the value to mod by, must be in the form C * 2^K + 1 for some
// integers C, K where size(a) + size(b) - 1 <= 2^K
// Functions Arguments:
// a: a vector of type T representing the first polynomial, a[i] stores
// the coefficient of x^i, must be in the range [0, MOD)
// b: a vector of type T representing the second polynomial, b[i] stores
// the coefficient of x^i, must be in the range [0, MOD)
// eq: a boolean indicating whether a and b are equal (to reduce the number
// of ntt calls)
// Return Value: a vector of type T representing the polynomial a times b with
// no trailing zeros, all value in the range [0, MOD)
// In practice, has a moderate constant
// Time Complexity: O(N log N) where N = size(a) + size(b)
// Memory Complexity: O(N)
// Tested:
// https://judge.yosupo.jp/problem/convolution_mod
// https://judge.yosupo.jp/problem/convolution_mod_1000000007
const int NTT_CUTOFF = 30000;
template <class T, const T MOD>
vector<T> mulPolyNTT(const vector<T> &a, const vector<T> &b, bool eq = false) {
int N = max(0, int(a.size()) + int(b.size()) - 1);
if ((long long)(a.size()) * (long long)(b.size()) <= NTT_CUTOFF) {
vector<T> res(N, T()); for (int i = 0; i < int(a.size()); i++)
for (int j = 0; j < int(b.size()); j++)
res[i + j] = addMod(res[i + j], mulMod(a[i], b[j], MOD), MOD);
while (int(res.size()) > 1 && res.back() == T()) res.pop_back();
return res;
}
while (N & (N - 1)) N++;
vector<T> fa(N, T()), fb, res(N, T());
copy(a.begin(), a.end(), fa.begin()); ntt<T, MOD>(fa); if (eq) fb = fa;
else {
fb.assign(N, T()); copy(b.begin(), b.end(), fb.begin()); ntt<T, MOD>(fb);
}
T invN = mulInvModPrime(T(N), MOD);
res[0] = mulMod(mulMod(fa[0], fb[0], MOD), invN, MOD);
for (int i = 1; i < N; i++)
res[N - i] = mulMod(mulMod(fa[i], fb[i], MOD), invN, MOD);
ntt<T, MOD>(res);
while (int(res.size()) > 1 && res.back() == T()) res.pop_back();
return res;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "ModularArithmetic.h"
#include "GCD.h"
#include "../utils/Random.h"
using namespace std;
// constexpr function (in C++14 and above) to determine if x is prime
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to check if prime
// Return Value: true if x is prime, false otherwise
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(1)
// Tested:
// https://www.spoj.com/SHORTEN/problems/ISPRIME/
// https://dmoj.ca/problem/angieandfunctions
template <class T> constexpr bool isPrime(T x) {
if (x < 2) return false;
for (T i = 2; i * i <= x; i++) if (x % i == 0) return false;
return true;
}
// Finds the prime factors of x
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to prime factor
// Return Value: a sorted vector of T with the prime factorization of x
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(log x)
// Tested:
// https://www.spoj.com/problems/FACT0/
template <class T> vector<T> primeFactor(T x) {
vector<T> ret; for (T i = 2; i * i <= x; i++)
while (x % i == 0) { ret.push_back(i); x /= i; }
if (x > 1) ret.push_back(x);
return ret;
}
// Finds the prime factors of x and its exponent
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to prime factor
// Return Value: a sorted vector of pairs of T and int with each
// prime factor of x and its exponent
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(log x)
// Tested:
// https://www.spoj.com/problems/FACT0/
template <class T> vector<pair<T, int>> primeFactorWithCount(T x) {
vector<pair<T, int>> ret; for (T i = 2; i * i <= x; i++) if (x % i == 0)
for (ret.emplace_back(i, 0); x % i == 0; x /= i) ret.back().second++;
if (x > 1) ret.emplace_back(x, 1);
return ret;
}
// Computes phi(x) which is the number of positive integers less than or equal
// to x that are relatively prime to x
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to find phi(x)
// Return Value: phi(x)
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(1)
// Tested:
// https://www.spoj.com/problems/ETF/
template <class T> T phi(T x) {
T ret = x; for (T i = 2; i * i <= x; i++) if (x % i == 0)
for (ret -= ret / i; x % i == 0; x /= i);
if (x > 1) ret -= ret / x;
return ret;
}
// Computes mobius(x), which is 0 if x contains a squared prime factor,
// -1 if x has an odd number of prime factors with no squares,
// 1 if x has an even number of prime factors with no squares
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to find mobius(x)
// Return Value: the value of mobius(x)
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(1)
template <class T> int mobius(T x) {
int ret = 1; for (T i = 2; i * i <= x; i++)
if (x % i == 0) { x /= i; ret *= -1; if (x % i == 0) return 0; }
if (x > 1) ret *= -1;
return ret;
}
// Finds the factors of x
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to find the factors
// Return Value: a vector of T with the factors of x,
// not guaranteed to be sorted
// In practice, has a small constant
// Time Complexity: O(sqrt x)
// Memory Complexity: O(sqrt x)
// Tested:
// https://www.spoj.com/problems/CZ_PROB2/
template <class T> vector<T> factor(T x) {
vector<T> ret; for (T i = 1; i * i <= x; i++)
if (x % i == 0) { ret.push_back(i); if (x / i != i) ret.push_back(x / i); }
return ret;
}
// Determine if x is prime using the Miller Rabin Primality Test
// Template Arguments:
// T: the type of x
// Function Arguments:
// x: the value to check if prime, mulMod(x, x, x) should not overflow
// iterations: number of iterations to run, should be at least 7
// Return Value: true if x is prime, false otherwise, can return
// false positives for x > 7e18, otherwise is guaranteed to be correct
// In practice, has a small constant
// Time Complexity: O(time complexity of powMod)
// Memory Complexity: O(iterations)
// Tested:
// https://dmoj.ca/problem/bf3hard
template <class T> bool millerRabin(T x, int iterations = 7) {
if (x < 2 || x % 6 % 4 != 1) return (x | 1) == 3;
vector<T> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
while (int(A.size()) < iterations)
A.push_back(uniform_int_distribution<long long>(
1795265023, numeric_limits<long long>::max())(rng64));
int s = 0; while (!(((x - 1) >> s) & 1)) s++;
T d = x >> s; for (T a : A) {
T p = powMod(a % x, d, x); int i = s;
while (p != 1 && p != x - 1 && a % x != 0 && i--) p = mulMod(p, p, x);
if (p != x - 1 && i != s) return false;
}
return true;
}
// Sieve of Erathosthenes to identify primes less than or equal to N
// Constructor Arguments:
// N: the maximum value
// f(i): the function to run a callback on for each prime i
// Fields:
// p: a vector of booleans with the ith indicating whether the integer
// i * 2 + 1 is prime or not
// Functions:
// isPrime(x): returns whether x is prime or not
// In practice, has a very small constant
// Time Complexity:
// constructor: O(N log log N)
// isPrime: O(1)
// Memory Complexity: O(N / 128)
// Tested:
// https://judge.yosupo.jp/problem/enumerate_primes
// https://codeforces.com/contest/1149/problem/A
struct Sieve {
vector<bool> p;
template <class F = function<void(int)>>
Sieve(int N, F f = [] (int) {}) : p(N / 2 + 1, true) {
p[0] = false; if (N >= 2) f(2);
for (int i = 3; i <= N; i += 2) if (p[i / 2]) {
f(i); if (i <= (N + i - 1) / i) for (int j = i * i; j <= N; j += i * 2)
p[j / 2] = false;
}
}
bool isPrime(int x) { return x == 2 || (x % 2 == 1 && p[x / 2]); }
};
// Sieve of Erathosthenes to identify primes, the smallest prime factor of
// each number from 1 to N, the phi function, and the mobius function
// Constructor Arguments:
// N: the maximum value
// Fields:
// isPrime: a vector of N + 1 booleans indicating whether each integer is
// prime or not
// primes: a vector of all primes less than or equal to N
// SPF: a vector of N + 1 integers representing the smallest prime factor
// less than or equal to each integer
// phi: a vector of integers with phi[i] equal to the number of positive
// integers less than or equal to i that are relatively prime to i
// mobius: a vector of chars with mobius[i] equal to 0 if i contains a
// squared prime factor, -1 if it has an odd number of prime factors with
// no squares, 1 if it has an even number of prime factors with no squares
// Functions:
// primeFactor(x): returns a sorted vector of integers with the
// prime factorization of x
// primeFactorWithCount(x): returns a sorted vector of pairs of integers
// with each prime factor of x and its exponent
// In practice, has a small constant
// Time Complexity:
// constructor: O(N)
// primeFactor, primeFactorWithCount: O(log x)
// Memory Complexity: O(N)
// Tested:
// https://tlx.toki.id/problems/troc-16/E
// https://dmoj.ca/problem/nccc7j5
struct SievePrimeFactoring {
vector<bool> isPrime; vector<int> primes, SPF, phi; vector<char> mobius;
SievePrimeFactoring(int N)
: isPrime(N + 1, true), SPF(N + 1, 0), phi(N + 1, 0), mobius(N + 1, 1) {
isPrime[0] = isPrime[1] = false; phi[1] = 1; for (int i = 2; i <= N; i++) {
if (isPrime[i]) {
primes.push_back(SPF[i] = i); phi[i] = i - 1; mobius[i] = -1;
}
for (int p : primes) {
if (i * p > N) break;
isPrime[i * p] = false; SPF[i * p] = p;
if (i % p == 0) { phi[i * p] = phi[i] * p; mobius[i * p] = 0; break; }
phi[i * p] = phi[i] * phi[p]; mobius[i * p] = mobius[i] * -1;
}
}
}
vector<int> primeFactor(int x) {
vector<int> ret; while (x > 1) { ret.push_back(SPF[x]); x /= SPF[x]; }
return ret;
}
vector<pair<int, int>> primeFactorWithCount(int x) {
vector<pair<int, int>> ret; while (x > 1) {
ret.emplace_back(SPF[x], 0);
for (int spf = SPF[x]; x % spf == 0; x /= spf) ret.back().second++;
}
return ret;
}
};
// Segmented Sieve of Eratosthenes to identify primes between lo and hi
// Template Arguments:
// T: the type of lo and hi
// F: the type of f
// Functions Arguments:
// lo: the inclusive lower bound
// hi: the inclusive upper bound
// f(i): the function to run a callback on for each prime i
// In practice, has a small constant
// Time Complexity: O(sqrt(hi) log(log(hi)) + (hi - lo))
// Memory Complexity: O(sqrt(hi) + (hi - lo))
// Tested:
// https://dmoj.ca/problem/phantom3
template <class T, class F> void segmentedSieve(T lo, T hi, F f) {
lo = max(lo, T(2)); T sqrtHi = sqrtl(hi) + 2;
while (sqrtHi * sqrtHi > hi) sqrtHi--;
vector<bool> p1(sqrtHi + 1, false), p2(hi - lo + 1, false);
p1[0] = p1[1] = true; for (T i = 2; i <= sqrtHi; i++) if (!p1[i]) {
for (T j = i * i; j <= sqrtHi; j += i) p1[j] = true;
for (T j = (lo + i - 1) / i * i; j <= hi; j += i)
if (j != i && !p2[j - lo]) p2[j - lo] = true;
}
for (T i = 0; i < hi - lo + 1; i++) if (!p2[i]) f(lo + i);
}
// Returns an arbitrary divisor of non prime N
// Template Arguments:
// T: the type of N
// Function Arguments:
// N: the non prime value to find a divisor, mulMod(N, N, N) should not
// overflow
// iterations: number of iterations to run, should be at least 40
// Return Value: an arbitrary divisor of N
// In practice, has a moderate constant
// Time Complexity: O(N^(1/4))
// Memory Complexity: O(1)
// Tested:
// https://loj.ac/p/6466
// https://www.spoj.com/problems/FACT2/
// https://judge.yosupo.jp/problem/factorize
template <class T> T pollardsRho(T N, int iterations = 40) {
if (N == 1) return 1;
auto f = [&] (T x) { return mulMod(x, x, N) + 1; };
T x = 0, y = 0, p = 2, q; int t = 0, i = 1;
while (t++ % iterations != 0 || gcd(p, N) == 1) {
if (x == y) y = f(x = ++i);
if ((q = mulMod(p, max(x, y) - min(x, y), N)) != 0) p = q;
x = f(x); y = f(f(y));
}
return gcd(p, N);
}
// Prime factors a large integer x
// Template Arguments:
// T: the type of N
// Function Arguments:
// x: the value to prime factor, mulMod(x, x, x) should not overflow
// pollardsRhoIters: number of iterations to run pollard rho, should be
// at least 40
// millerRabinIters: number of iterations to run miller rabin, should be
// at least 7
// Return Value: a sorted vector of T with the prime factorization of x
// In practice, has a moderate constant
// Time Complexity: O(x^(1/4) log(x))
// Memory Complexity: O(log x)
// Tested:
// https://www.spoj.com/problems/FACT2/
// https://judge.yosupo.jp/problem/factorize
template <class T>
vector<T> pollardsRhoPrimeFactor(T x, int pollardsRhoIters = 40,
int millerRabinIters = 7) {
if (x == 1) return vector<T>();
vector<T> ret; queue<T> q; q.push(x); while (!q.empty()) {
T y = q.front(); q.pop();
if (millerRabin(y, millerRabinIters)) ret.push_back(y);
else { q.push(pollardsRho(y, pollardsRhoIters)); q.push(y / q.back()); }
}
return ret;
}
// Prime factors a large integer x and its exponent
// Template Arguments:
// T: the type of N
// Function Arguments:
// x: the value to prime factor, mulMod(x, x, x) should not overflow
// pollardsRhoIters: number of iterations to run pollard rho, should be
// at least 40
// millerRabinIters: number of iterations to run miller rabin, should be
// at least 7
// Return Value: a sorted vector of pairs of T and int with each
// prime factor of x and its exponent
// In practice, has a moderate constant
// Time Complexity: O(x^(1/4) log(x))
// Memory Complexity: O(log x)
// Tested:
// https://www.spoj.com/problems/FACT2/
template <class T>
vector<pair<T, int>> pollardsRhoPrimeFactorWithCount(
T x, int pollardsRhoIters = 40, int millerRabinIters = 7) {
vector<T> pf = pollardsRhoPrimeFactor(x, pollardsRhoIters, millerRabinIters);
sort(pf.begin(), pf.end()); vector<pair<T, int>> ret;
for (int i = 0, cnt = 0; i < int(pf.size()); i++) {
cnt++; if (i + 1 == int(pf.size()) || pf[i] != pf[i + 1]) {
ret.emplace_back(pf[i], cnt); cnt = 0;
}
}
return ret;
}
// Determines the factors of all numbers from 1 to N
// Constructor Arguments:
// N: the maximum value
// Fields:
// factors: a vector of vectors of integers with factors[i] being the sorted
// factors of i
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N log N)
// Memory Complexity: O(N log N)
// Tested:
// https://codeforces.com/contest/111/problem/B
struct Factors {
vector<vector<int>> factors;
Factors(int N) : factors(N + 1) {
for (int i = 1; i <= N; i++) for (int j = i; j <= N; j += i)
factors[j].push_back(i);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes base to the power of pow
// Template Arguments:
// T: the type of base
// U: the type of pow
// Function Arguments:
// base: the base
// pow: the power, must be non negative and integral
// Return Value: returns base to the power of pow
// In practice, has a small constant
// Time Complexity: O(log pow)
// Memory Complexity: O(1)
// Tested:
// https://cses.fi/problemset/task/1095
template <class T, class U> T pow2(T base, U pow) {
T x = 1; while (true) {
if (pow % 2 == 1) x = x * base;
if ((pow /= 2) == 0) break;
base = base * base;
}
return x;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solve the equation Ax = b for a matrix A of size M x N, and vectors b of
// size M, and vector x of size N
// Template Arguments:
// T: the type of each element
// Constructor Arguments:
// A: a M x N matrix
// b: a vector, with dimension M
// EPS: a value for epsilon
// Fields:
// NO_SOLUTION: static const int representing no solution
// ONE_SOLUTION: static const int representing one solution
// INF_SOLUTIONS: static const int representing infinite solution
// M: the number of equations
// N: the number of variables
// solutions: the number of solution to the equation, equal to one of
// NO_SOLUTION, ONE_SOLUTION, or INF_SOLUTIONS
// EPS: the value for epsilon
// x: the solution vector with dimension N, can be any solution if there are
// infinite solutions, undefined if no solutions
// In practice, has a very small constant
// Time Complexity:
// constructor: O(min(M, N) MN)
// Memory Complexity: O(MN)
// Tested:
// https://open.kattis.com/problems/equationsolver
template <class T> struct GaussianElimination {
static const int NO_SOLUTION = 0, ONE_SOLUTION = 1, INF_SOLUTIONS = 2;
T abs(T a) { return a >= 0 ? a : -a; }
int M, N, solutions; T EPS; vector<T> x;
GaussianElimination(vector<vector<T>> A, vector<T> b, T EPS = T(1e-9))
: M(A.size()), N(M == 0 ? 0 : A[0].size()), solutions(ONE_SOLUTION),
EPS(EPS), x(N, T()) {
vector<int> ind(N, -1); for (int r = 0, c = 0; c < N && r < M; c++) {
int mx = r; for (int i = r + 1; i < M; i++)
if (abs(A[i][c]) > abs(A[mx][c])) mx = i;
if (abs(A[mx][c]) <= EPS) continue;
if (r != mx) { A[r].swap(A[mx]); swap(b[r], b[mx]); }
ind[c] = r; T inv = T(1) / A[r][c];
for (int i = 0; i < M; i++) if (i != r) {
T alpha = A[i][c] * inv; b[i] -= b[r] * alpha;
for (int j = c; j < N; j++) A[i][j] -= A[r][j] * alpha;
}
r++;
}
for (int i = 0; i < N; i++) if (ind[i] != -1)
x[i] = b[ind[i]] / A[ind[i]][i];
for (int i = 0; i < M; i++) {
T sm = T(); for (int j = 0; j < N; j++) sm += x[j] * A[i][j];
if (abs(sm - b[i]) > EPS) {
solutions = NO_SOLUTION; x.clear(); return;
}
}
for (int i = 0; i < N; i++) if (ind[i] == -1) solutions = INF_SOLUTIONS;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solve the xor boolean satisfiability problem for a boolean matrix A of
// size M x N, and vectors b of size M, and vector x of size N, so that
// b_i = xor(A[i][j] & x[j]) for 0 <= j < N; equivalent to solving the
// equation Ax = b mod 2 for a matrix A, and vectors b, x where all values
// are 0 or 1
// Template Arguments:
// MAXN: the maximmum value of N
// Constructor Arguments:
// A: a M x N boolean matrix
// b: a boolean vector, with dimension M
// Fields:
// NO_SOLUTION: static const int representing no solution
// ONE_SOLUTION: static const int representing one solution
// INF_SOLUTIONS: static const int representing infinite solution
// M: the number of equations
// N: the number of variables
// solutions: the number of solution to the equation, equal to one of
// NO_SOLUTION, ONE_SOLUTION, or INF_SOLUTIONS
// x: the solution vector with dimension N, can be any solution if there are
// infinite solutions, undefined if no solutions
// In practice, has a very small constant
// Time Complexity:
// constructor: O(min(M, N) M MAXN / 64)
// Memory Complexity: O(M MAXN / 64)
// Tested:
// https://dmoj.ca/problem/tle16c1p6
// https://dmoj.ca/problem/dmopc20c4p6
template <const int MAXN> struct XorSat {
static const int NO_SOLUTION = 0, ONE_SOLUTION = 1, INF_SOLUTIONS = 2;
int M, N, solutions; bitset<MAXN> x;
XorSat(vector<bitset<MAXN>> A, vector<bool> b)
: M(A.size()), N(M == 0 ? 0 : A[0].size()), solutions(ONE_SOLUTION) {
vector<int> ind(N, -1); for (int r = 0, c = 0; c < N && r < M; c++) {
int mx = r; for (int i = r + 1; i < M; i++)
if (A[i][c]) { mx = i; break; }
if (!A[mx][c]) continue;
if (r != mx) { swap(A[r], A[mx]); swap(b[r], b[mx]); }
ind[c] = r; for (int i = 0; i < M; i++)
if (i != r && A[i][c]) { b[i] = b[i] ^ b[r]; A[i] ^= A[r]; }
r++;
}
for (int i = 0; i < N; i++) if (ind[i] != -1) x[i] = b[ind[i]];
for (int i = 0; i < M; i++) {
bool val = false; for (int j = 0; j < N; j++) val ^= x[j] & A[i][j];
if (val != b[i]) { solutions = NO_SOLUTION; x.reset(); return; }
}
for (int i = 0; i < N; i++) if (ind[i] == -1) solutions = INF_SOLUTIONS;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the basis of vectors in base 2
// Template Arguments:
// BITS: the number of bits
// Fields:
// basis: a vector of bitsets of length BITS, with the ith element being the
// reduced vector with the most significant bit of i, or empty if there is
// no such vector
// ids: a vector of integers representing the id of the ith vector in basis,
// or -1 if basis[i] is empty
// Functions:
// addVector(v, id): adds the vector v to the set with and id of id
// inSpan(v): returns whether a vector v is in the span of the basis
// In practice, has a small constant
// Time Complexity:
// constructor, addVector, inSpan: O(BITS^2 / 64)
// Memory Complexity: O(BITS^2 / 64)
// Tested:
// https://dmoj.ca/problem/dmopc19c5p5
template <const int BITS> struct XorBasis {
vector<bitset<BITS>> basis; vector<int> ids;
XorBasis() : basis(BITS), ids(BITS, -1) {}
void addVector(bitset<BITS> v, int id) {
for (int i = 0; i < BITS; i++) if (v[i]) {
if (basis[i].none()) { basis[i] = v; ids[i] = id; return; }
v ^= basis[i];
}
}
bool inSpan(bitset<BITS> v) {
for (int i = 0; i < BITS; i++) if (v[i]) v ^= basis[i];
return v.none();
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Fast Fourier Transform
// Template Arguments:
// F: the floating point type of the complex number components
// Function Arguments:
// a: a reference to the vector of complex numbers (of type complex<F>)
// to convolute
// In practice, has a moderate constant, faster than using Karatsuba, slower
// than NTT
// Time Complexity: O(N log N) where N = size(a)
// Memory Complexity: O(N)
// Tested:
// https://open.kattis.com/problems/polymul2
// https://dmoj.ca/problem/atimesb
template <class F> void fft(vector<complex<F>> &a) {
static_assert(is_floating_point<F>::value,
"F must be a floating point type");
static vector<complex<F>> rt(2, 1); static vector<int> ord; static int k = 2;
static F PI = acos(F(-1)); int N = a.size(); assert(!(N & (N - 1)));
for (; k < N; k <<= 1) {
rt.resize(N); complex<F> x = polar(F(1), PI / k);
for (int i = k; i < (k << 1); i++)
rt[i] = i & 1 ? rt[i >> 1] * x : rt[i >> 1];
}
if (int(ord.size()) != N) {
ord.assign(N, 0); int len = __builtin_ctz(N); for (int i = 0; i < N; i++)
ord[i] = (ord[i >> 1] >> 1) + ((i & 1) << (len - 1));
}
for (int i = 0; i < N; i++) if (i < ord[i]) swap(a[i], a[ord[i]]);
for (int len = 1; len < N; len <<= 1) for (int i = 0; i < N; i += len << 1)
for (int j = 0; j < len; j++) {
complex<F> u = a[i + j], x = a[len + i + j], y = rt[len + j];
complex<F> v(real(x) * real(y) - imag(x) * imag(y),
real(x) * imag(y) + imag(x) * real(y));
a[i + j] = u + v; a[len + i + j] = u - v;
}
}
// Polynomial Multiplication
// Template Arguments:
// T: the type of each element
// F: the floating point type to use for FFT
// Functions Arguments:
// a: a vector of type T representing the first polynomial, a[i] stores
// the coefficient of x^i
// b: a vector of type T representing the second polynomial, b[i] stores
// the coefficient of x^i
// Return Value: a vector of type T representing the polynomial a times b with
// no trailing zeros
// In practice, has a moderate constant
// Time Complexity: O(N log N) where N = size(a) + size(b)
// Memory Complexity: O(N)
// Tested:
// https://open.kattis.com/problems/polymul2
const int FFT_CUTOFF = 30000;
template <class T, class F = long double>
vector<T> mulPolyFFT(const vector<T> &a, const vector<T> &b) {
int N = max(0, int(a.size()) + int(b.size()) - 1);
if ((long long)(a.size()) * (long long)(b.size()) <= FFT_CUTOFF) {
vector<T> res(N, T()); for (int i = 0; i < int(a.size()); i++)
for (int j = 0; j < int(b.size()); j++) res[i + j] += a[i] * b[j];
while (int(res.size()) > 1 && res.back() == T()) res.pop_back();
return res;
}
while (N & (N - 1)) N++;
vector<complex<F>> f(N, complex<F>(0, 0));
for (int i = 0; i < int(a.size()); i++) f[i].real(a[i]);
for (int i = 0; i < int(b.size()); i++) f[i].imag(b[i]);
fft(f); complex<F> r(0, F(-0.25) / N); for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
complex<F> prod = (f[j] * f[j] - conj(f[i] * f[i])) * r;
f[i] = prod; f[j] = conj(prod);
}
fft(f); vector<T> res(N, T()); bool isIntegral = is_integral<T>::value;
for (int i = 0; i < N; i++)
res[i] = isIntegral ? round(real(f[i])) : real(f[i]);
while (int(res.size()) > 1 && res.back() == T()) res.pop_back();
return res;
}
// Integer Multiplication
// Template Arguments:
// T: the type of each digit
// F: the floating point type to use for FFT
// Functions Arguments:
// a: a vector of type T representing the first integer, a[i] stores
// the digit of BASE^i
// b: a vector of type T representing the second polynomial, b[i] stores
// the digit of BASE^i
// BASE: the base of the integer
// Return Value: a vector of type T representing the integer a times b with
// no trailing zeros
// In practice, has a moderate constant
// Time Complexity: O(n log n) where n = size(a) + size(b)
// Memory Complexity: O(n)
// Tested:
// https://dmoj.ca/problem/atimesb
template <class T, class F = long double>
vector<T> mulIntFFT(const vector<T> &a, const vector<T> &b, T BASE = T(10)) {
vector<T> res = mulPolyFFT<T, F>(a, b); T carry = T();
res.reserve(res.size() + 1); for (int i = 0; i < int(res.size()); i++) {
T cur = res[i] + carry; res[i] = T(cur % BASE); carry = T(cur / BASE);
}
if (carry > T()) res.push_back(carry);
return res;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Two Phase Simplex to solve a linear programming problem with N variables
// and M equations in canonical form:
// max c^T x
// subject to Ax <= b and x >= 0
// where A is an M x N matrix; b is a vector with dimension M;
// c, x are vectors with dimension N
// Template Arguments:
// F: a floating point type
// Constructor Arguments:
// A: a M x N coefficient matrix, memory is saved if this is moved and has
// a capacity of M + 2 x N + 2
// b: a constraint vector, with dimension M
// c: a cost vector, with dimension N
// INF: a value for infinity
// EPS: a value for epsilon
// Fields:
// M: the number of equations
// N: the number of variables
// INF: the value for infinity
// EPS: the value for epsilon
// val: the value of the maximum cost of the objective function c^T x,
// INF if unbounded, -INF if infeasible
// x: a solution vector of dimension N producing the maximum cost, can be
// any solution if unbounded, empty if infeasible
// In practice, has a very small constant
// Time Complexity:
// constructor: O(2^N), worst case, much faster in practice
// Memory Complexity: O(MN)
// Tested:
// https://open.kattis.com/problems/cheeseifyouplease
// https://open.kattis.com/problems/goatropes
// https://codeforces.com/contest/375/problem/E
// https://codeforces.com/contest/605/problem/C
// https://codeforces.com/contest/1061/problem/E
// https://codeforces.com/contest/1288/problem/F
// https://www.spoj.com/problems/BABY/
// https://dmoj.ca/problem/noi08p3
template <class F> struct Simplex {
static_assert(is_floating_point<F>::value,
"F must be a floating point type");
int M, N; F INF, EPS, val; vector<int> IN, OUT; vector<F> x;
vector<vector<F>> T;
bool cmp(F a, int b, F c, int d) { return abs(a - c) > EPS ? a < c : b < d; }
void pivot(int r, int s) {
auto &a1 = T[r]; F inv1 = F(1) / a1[s];
for (int i = 0; i <= M + 1; i++) if (i != r && abs(T[i][s]) > EPS) {
auto &a2 = T[i]; F inv2 = a2[s] * inv1;
for (int j = 0; j <= N + 1; j++) a2[j] -= a1[j] * inv2;
a2[s] = a1[s] * inv2;
}
for (int j = 0; j <= N + 1; j++) if (j != s) a1[j] *= inv1;
for (int i = 0; i <= M + 1; i++) if (i != r) T[i][s] *= -inv1;
a1[s] = inv1; swap(IN[r], OUT[s]);
}
bool simplex(int phase) {
int x = M + phase - 1; while (true) {
int s = -1; for (int j = 0; j <= N; j++)
if (OUT[j] != -phase
&& (s == -1 || cmp(T[x][j], OUT[j], T[x][s], OUT[s]))) s = j;
if (T[x][s] >= -EPS) return true;
int r = -1; for (int i = 0; i < M; i++)
if (T[i][s] > EPS
&& (r == -1 || cmp(T[i][N + 1] * T[r][s], IN[i],
T[r][N + 1] * T[i][s], IN[r]))) r = i;
if (r == -1) return false;
pivot(r, s);
}
}
Simplex(vector<vector<F>> A, const vector<F> &b, const vector<F> &c,
F INF = numeric_limits<F>::infinity(), F EPS = F(1e-9))
: M(b.size()), N(c.size()), INF(INF), EPS(EPS), IN(M), OUT(N + 1),
T(move(A)) {
T.reserve(M + 2); for (int i = 0; i < M; i++) {
T[i].resize(N + 2, F());
IN[i] = N + i; T[i][N] = F(-1); T[i][N + 1] = b[i];
}
T.emplace_back(N + 2, F()); T.emplace_back(N + 2, F());
for (int j = 0; j < N; j++) { OUT[j] = j; T[M][j] = -c[j]; }
OUT[N] = -1; T[M + 1][N] = F(1); int r = 0;
for (int i = 1; i < M; i++) if (T[i][N + 1] < T[r][N + 1]) r = i;
if (T[r][N + 1] < -EPS) {
pivot(r, N);
if (!simplex(2) || T[M + 1][N + 1] < -EPS) { val = -INF; return; }
for (int i = 0; i < M; i++) if (IN[i] == -1) {
int s = 0; for (int j = 1; j <= N; j++)
if (s == -1 || cmp(T[i][j], OUT[j], T[i][s], OUT[s])) s = j;
pivot(i, s);
}
}
bool unbounded = !simplex(1); x.assign(N, F());
for (int i = 0; i < M; i++) if (IN[i] < N) x[IN[i]] = T[i][N + 1];
val = unbounded ? INF : T[M][N + 1];
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
template <class T> using Matrix = vector<vector<T>>;
// Returns the size of the first dimension of a matrix
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the matrix
// Return Value: the size of the first dimension of the matrix A
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T> int getN(const Matrix<T> &A) { return A.size(); }
// Returns the size of the second dimension of a matrix
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the matrix
// Return Value: the size of the second dimension of the matrix A
// In practice, has a very small constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz Tested
template <class T>
int getM(const Matrix<T> &A) { return A.empty() ? 0 : A[0].size(); }
// Creates a matrix of size N x M filled with the default value of T
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// N: the size of the first dimension
// M: the size of the second dimension
// Return Value: a matrix of size N x M filled with the default value of T
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T> Matrix<T> makeMatrix(int N, int M) {
return vector<vector<T>>(N, vector<T>(M, T()));
}
// Creates an identity matrix of size N x N
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// N: the size of both dimensions
// Return Value: an identity matrix of size N x N
// In practice, has a very small constant
// Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
// Tested:
// https://www.spoj.com/problems/MPOW/
template <class T> Matrix<T> identityMatrix(int N) {
Matrix<T> A = makeMatrix<T>(N, N);
for (int i = 0; i < N; i++) A[i][i] = T(1);
return A;
}
// Returns the transpose of a matrix
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the matrix
// Return Value: the transpose of the matrix A
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T> Matrix<T> transpose(const Matrix<T> &A) {
Matrix<T> C = makeMatrix<T>(getM(A), getN(A));
for (int i = 0; i < getN(C); i++) for (int j = 0; j < getM(C); j++)
C[i][j] = A[j][i];
return C;
}
// Adds B to the matrix A
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: a reference to the first matrix
// B: a constant reference to the matrix to add
// Return Value: a reference to the matrix A after B is added to it
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T> Matrix<T> &operator += (Matrix<T> &A, const Matrix<T> &B) {
assert(getN(A) == getN(B) && getM(A) == getM(B));
for (int i = 0; i < getN(A); i++) for (int j = 0; j < getM(A); j++)
A[i][j] += B[i][j];
return A;
}
// Adds the matrices A and B
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the first matrix
// B: a constant reference to the matrix to add
// Return Value: the matrix A plus B
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T>
Matrix<T> operator + (Matrix<T> A, const Matrix<T> &B) { return A += B; }
// Subtracts B from the matrix A
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: a reference to the first matrix
// B: a constant reference to the matrix to subtract
// Return Value: a reference to the matrix A after B is subtracted from it
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T> Matrix<T> &operator -= (Matrix<T> &A, const Matrix<T> &B) {
assert(getN(A) == getN(B) && getM(A) == getM(B));
for (int i = 0; i < getN(A); i++) for (int j = 0; j < getM(A); j++)
A[i][j] -= B[i][j];
return A;
}
// Subtracts the matrices A and B
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the first matrix
// B: a constant reference to the matrix to add
// Return Value: the matrix A minus B
// In practice, has a very small constant
// Time Complexity: O(NM)
// Memory Complexity: O(NM)
// Tested:
// Fuzz Tested
template <class T>
Matrix<T> operator - (Matrix<T> A, const Matrix<T> &B) { return A -= B; }
// Multiplies the matrices A and B, getM(A) must equal getN(B)
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: a constant reference to the first matrix
// B: the matrix to multiply
// Return Value: the matrix A times B
// In practice, has a very small constant
// Time Complexity: O(N(A) M(B) M(A))
// Memory Complexity: O((N(A) + N(B)) M(B))
// Tested:
// https://www.spoj.com/problems/MPOW/
template <class T> Matrix<T> operator * (const Matrix<T> &A, Matrix<T> B) {
assert(getM(A) == getN(B));
B = transpose(B); Matrix<T> C = makeMatrix<T>(getN(A), getN(B));
for (int i = 0; i < getN(C); i++) for (int j = 0; j < getM(C); j++) {
T tmp = T(); for (int k = 0; k < getM(A); k++) tmp += A[i][k] * B[j][k];
C[i][j] = tmp;
}
return C;
}
// Multiplies the matrix B into the matrix A, getM(A) must equal getN(B)
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: a reference to the first matrix
// B: a constant reference to the matrix to multiply
// Return Value: a reference to the matrix A after it is multipled by B
// In practice, has a very small constant
// Time Complexity: O(N(A) M(B) M(A))
// Memory Complexity: O((N(A) + N(B)) M(B))
// Tested:
// https://www.spoj.com/problems/MPOW/
template <class T>
Matrix<T> &operator *= (Matrix<T> &A, const Matrix<T> &B) { return A = A * B; }
// Raises the square matrix A to the power of pow, getN(A) must equal getM(A)
// Template Arguments:
// T: the type of each element in the matrix
// U: the type of pow
// Function Arguments:
// A: the base square matrix
// Return Value: the matrix A raised to the power pow
// In practice, has a very small constant
// Time Complexity: O(N^3 log pow)
// Memory Complexity: O(N^2)
// Tested:
// https://www.spoj.com/problems/MPOW/
template <class T, class U> Matrix<T> powMat(Matrix<T> A, U pow) {
assert(getN(A) == getM(A));
Matrix<T> x = identityMatrix<T>(getN(A)); while (true) {
if (pow % 2 == 1) x *= A;
if ((pow /= 2) == 0) break;
A *= A;
}
return x;
}
// Computes the determinant of a square matrix A, getN(A) must equal getM(A)
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the matrix
// Return Value: the determinant of the matrix A
// In practice, has a very small constant
// Time Complexity: O(N^3)
// Memory Complexity: O(N^2)
// Tested:
// https://judge.yosupo.jp/problem/matrix_det
// https://dmoj.ca/problem/det
template <class T> T det(Matrix<T> A) {
auto abs = [&] (T a) { return a >= 0 ? a : -a; };
int N = getN(A); assert(N == getM(A)); T ret = T(1);
for (int i = 0; i < N; i++) {
int mx = i; for (int j = i + 1; j < N; j++)
if (abs(A[j][i]) > abs(A[mx][i])) mx = j;
if (i != mx) { ret = -ret; A[i].swap(A[mx]); }
T inv = T(1) / A[i][i]; for (int j = i + 1; j < N; j++) {
T alpha = A[j][i] * inv;
for (int k = i + 1; k < N; k++) A[j][k] -= alpha * A[i][k];
}
}
for (int i = 0; i < N; i++) ret *= A[i][i];
return ret;
}
// Computes the inverse of a square matrix A, getN(A) must equal getM(A)
// Template Arguments:
// T: the type of each element in the matrix
// Function Arguments:
// A: the matrix
// EPS: a value for epsilon
// Return Value: the inverse of the matrix A,
// or a 0 x 0 matrix if it does not exist
// In practice, has a very small constant
// Time Complexity: O(N^3)
// Memory Complexity: O(N^2)
// Tested:
// https://www.spoj.com/problems/MIFF/
// https://judge.yosupo.jp/problem/inverse_matrix
template <class T> Matrix<T> invMat(Matrix<T> A, T EPS = T(1e-9)) {
auto abs = [&] (T a) { return a >= 0 ? a : -a; };
int N = getN(A); assert(N == getM(A)); Matrix<T> I = identityMatrix<T>(N);
for (int i = 0; i < N; i++) {
int mx = i; for (int j = i; j < N; j++)
if (A[j][i] != 0) { mx = j; break; }
if (abs(A[mx][i]) <= EPS) return makeMatrix<T>(0, 0);
if (i != mx) { A[i].swap(A[mx]); I[i].swap(I[mx]); }
T inv = T(1) / A[i][i]; for (int k = i; k < N; k++) A[i][k] *= inv;
for (int k = 0; k < N; k++) I[i][k] *= inv;
for (int j = 0; j < N; j++) if (j != i) {
T alpha = A[j][i]; if (abs(alpha) <= EPS) continue;
for (int k = i; k < N; k++) A[j][k] -= alpha * A[i][k];
for (int k = 0; k < N; k++) I[j][k] -= alpha * I[i][k];
}
}
return I;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum axis aligned rectangular area of a histogram where
// all bars have width 1
// Template Arguments:
// T: the type of the heights
// Function Arguments:
// A: a vector of the heights of each bar
// Return Value: the maximum axis aligned rectangular area of the histogram
// In practice, has a moderate constant
// Time Complexity: O(N)
// Memory Complexity: O(N)
// Tested:
// https://www.acmicpc.net/problem/6549
template <class T> T maxRectAreaHistogram(vector<T> A) {
T ret = T(); int N = A.size(), top = 0; vector<int> stk(N);
for (int i = 0; i < int(A.size()); i++) {
int j = i; while (top > 0 && A[stk[top - 1]] >= A[i]) {
ret = max(ret, (i - stk[top - 1]) * A[stk[top - 1]]);
A[j = stk[--top]] = A[i];
}
stk[top++] = j;
}
for (; top > 0; top--) ret = max(ret, (N - stk[top - 1]) * A[stk[top - 1]]);
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "MaxRectAreaHistogram.h"
using namespace std;
// Computes the maximum submatrix of a boolean matrix where
// all elements are true
// Function Arguments:
// A: a vector of vectors of booleans
// Return Value: the maximum submatrix of the boolean matrix where
// all elements are true
// In practice, has a moderate constant
// Time Complexity: O(NM)
// Memory Complexity: O(M)
// Tested:
// https://dmoj.ca/problem/ccoprep16q1
int maxOneSubmatrix(const vector<vector<bool>> &A) {
int N = A.size(), M = N == 0 ? 0 : A[0].size(), ret = 0; vector<int> H(M, 0);
for (int i = N - 1; i >= 0; i--) {
for (int j = 0; j < M; j++) H[j] = A[i][j] ? i == N - 1 ? 1 : H[j] + 1 : 0;
ret = max(ret, maxRectAreaHistogram(H));
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes an array z, where z[i] is the length of the longest subarray
// starting at S[i], which is also a prefix of S (maximum k such
// that S[i + j] == S[j] for all 0 <= j < k)
// Indices are 0-indexed and ranges are inclusive
// T: the type of each element in the array
// Constructor Arguments:
// S: a vector of type T
// Fields:
// N: the length of the array
// S: a vector of type T representing the array
// z: a vector of integers where the ith element is the length of the
// longest subarray starting at index i which is also a prefix of S
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N)
// Memory Complexity: O(N)
// Tested:
// https://judge.yosupo.jp/problem/zalgorithm
// https://open.kattis.com/problems/stringmatching
template <class T> struct ZAlgorithm {
int N; vector<int> z;
ZAlgorithm(const vector<T> &S) : N(S.size()), z(N, 0) {
z[0] = N; for (int i = 1, l = 0, r = 0; i < N; i++) {
if (i <= r) z[i] = min(r - i + 1, z[i - l]);
while (i + z[i] < N && S[z[i]] == S[i + z[i]]) z[i]++;
if (i + z[i] - 1 > r) r = (l = i) + z[i] - 1;
}
}
};
// Finds all starting indices of a pattern array in a text array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element in the array
// Constructor Arguments:
// pat: the pattern array
// txt: the text array
// Fields:
// Z: the associated ZAlgorithm object constructed from the concatenation
// of the pattern and the text array
// matches: a vector of all starting indices of the pattern array in
// the text array
// In practice, has a moderate constant, slightly slower than KMP
// Time Complexity:
// constructor: O(N + M)
// Memory Complexity: O(N + M)
// Tested:
// https://open.kattis.com/problems/stringmatching
template <class T> struct StringMatching {
ZAlgorithm<T> Z; vector<int> matches;
vector<T> init(vector<T> pat, const vector<T> &txt) {
pat.reserve(pat.size() + txt.size());
pat.insert(pat.end(), txt.begin(), txt.end()); return pat;
}
StringMatching(const vector<T> &pat, const vector<T> &txt)
: Z(init(pat, txt)) {
assert(int(pat.size()) >= 1); for (int i = 0; i < int(txt.size()); i++)
if (Z.z[pat.size() + i] >= int(pat.size())) matches.push_back(i);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// KMP array searching
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element in the array
// Constructor Arguments:
// pat: the pattern array
// Fields:
// N: the length of the pattern
// fail: a vector of integers where the ith value is the fallback index when
// a match failure occures
// Functions
// search(txt): returns the starting index of the first occurrence of pat in
// txt, or -1 if there are none
// multisearch(txt): returns a vector of all starting indices of the
// pattern array in the text txt
// In practice, has a moderate constant, slightly faster than ZAlgorithm
// Time Complexity:
// constructor: O(N)
// search, multisearch: O(M)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/bf4
// https://open.kattis.com/problems/stringmatching
// https://codeforces.com/contest/1466/problem/G
template <class T> struct KMP {
int N; vector<T> pat; vector<int> fail;
KMP(const vector<T> &pat) : N(pat.size()), pat(pat), fail(N + 1, -1) {
assert(N >= 1); for (int i = 0, j = -1; i < N;) {
while (j >= 0 && pat[i] != pat[j]) j = fail[j];
i++; j++; fail[i] = (i != N && pat[i] == pat[j] ? fail[j] : j);
}
}
int search(const vector<T> &txt) {
for (int i = 0, j = 0; i < int(txt.size()); i++, j++) {
while (j >= 0 && txt[i] != pat[j]) j = fail[j];
if (j == N - 1) return i - j;
}
return -1;
}
vector<int> multiSearch(const vector<T> &txt) {
vector<int> ret; for (int i = 0, j = 0; i < int(txt.size()); i++, j++) {
while (j >= 0 && (j == N || txt[i] != pat[j])) j = fail[j];
if (j == N - 1) ret.push_back(i - j);
}
return ret;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Palindromic Tree Node backed by a map
// Template Arguments:
// _T: the type of the element in the string/array for the Palindromic Tree
// Constructor Arguments:
// len: the length of the longest palindromic substring represented
// by this node
// Fields:
// T: the data type of each element in the string/array
// len: the length of the longest palindromic substring this
// node represents
// link: the index of the suffix link of this node (the node with the
// longest palindromic suffix of this node)
// qlink: the index of the quick link of this node (the node with the
// longest palindromic suffix which has a different preceding character
// as the link node)
// Functions:
// getEdge(a): returns the index of the other node on the
// incident edge with the element a or 1 if no such edge exists
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(1)
// getEdge, setEdge: O(log E) where E is the number of edges
// incident to this node
// Memory Complexity: O(E) where E is the number of edges incident to this node
// Tested:
// https://dmoj.ca/problem/apio14p1
template <class _T> struct PalTreeMapNode {
using T = _T; int len, link, qlink; map<T, int> to;
PalTreeMapNode(int len) : len(len), link(1), qlink(1) {}
int getEdge(const T &a) const {
auto it = to.find(a); return it == to.end() ? 1 : it->second;
}
void setEdge(const T &a, int n) { to[a] = n; }
};
// Palindromic Tree Node backed by an array
// Template Arguments:
// _T: the type of the element in the string/array for the Palindromic Tree
// ALPHABET_SIZE: the size of the alphabet
// OFFSET: the offset for the start of the alphabet
// Constructor Arguments:
// len: the length of the longest palindromic substring represented
// by this node
// Fields:
// T: the data type of each element in the string/array
// len: the length of the longest palindromic substring this
// node represents
// link: the index of the suffix link of this node (the node with the
// longest palindromic suffix of this node)
// qlink: the index of the quick link of this node (the node with the
// longest palindromic suffix which has a different preceding character
// as the link node)
// Functions:
// getEdge(a): returns the index of the other node on the
// incident edge with the element a or 1 if no such edge exists
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(ALPHABET_SIZE)
// getEdge, setEdge: O(1)
// Memory Complexity: O(ALPHABET_SIZE)
// Tested:
// https://dmoj.ca/problem/mmcc15p3
// https://dmoj.ca/problem/apio14p1
template <class _T, const int ALPHABET_SIZE, const _T OFFSET>
struct PalTreeArrayNode {
using T = _T; int len, link, qlink; array<int, ALPHABET_SIZE> to;
PalTreeArrayNode(int len) : len(len), link(1), qlink(1) { to.fill(1); }
int getEdge(const T &a) const { return to[a - OFFSET]; }
void setEdge(const T &a, int n) { to[a - OFFSET] = n; }
};
// Palindromic Tree with two roots at 0 (with length -1) and 1 (with length 0)
// Template Arguments:
// Node: a node class
// Required Fields:
// T: the data type of each element in the string/array
// len: the length of the longest palindromic substring this
// node represents
// link: the index of the suffix link of this node (the node with the
// longest palindromic suffix of this node)
// qlink: the index of the quick link of this node (the node with the
// longest palindromic suffix which has a different preceding character
// as the link node)
// Required Functions:
// constructor(len): initializes the node with a length of len with
// link, qlink, and edges pointing to 1 by default
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Constructor Arguments:
// def: the default value of type T, cannot be in the string/array
// Fields:
// S: the current string with the default character at the front and
// between words
// TR: the vector of all nodes in the tree
// last: a vector of integers with the last node after each addition or
// terminate call
// Functions:
// add(a): adds the element a to the tree
// terminate(): terminates the current word, returning to the root (which
// allows for another word to be added with add(a))
// undo(): undoes the last added element, or a terminate operation
// In practice, has a small constant
// Time Complexity:
// constructor: time complexity of node constructor
// add: O(log N) + time complexity of node constructor
// + time complexity of getEdge in Node
// terminate: O(1)
// undo: time complexity of setEdge in Node
// Memory Complexity: O(N) * memory complexity of node, after N calls to add
// Tested:
// https://dmoj.ca/problem/mmcc15p3
// https://dmoj.ca/problem/apio14p1
template <class Node> struct PalindromicTree {
using T = typename Node::T;
T def; vector<T> S; vector<Node> TR; vector<int> last, modified;
PalindromicTree(const T &def)
: def(def), S(1, def), TR(vector<Node>{Node(-1), Node(0)}), last(1, 1) {
TR[1].link = TR[1].qlink = 0;
}
int getLink(int x, int i) {
while (S[i - 1 - TR[x].len] != S[i])
x = S[i - 1 - TR[TR[x].link].len] == S[i] ? TR[x].link : TR[x].qlink;
return x;
}
void add(const T &a) {
int i = S.size(); S.push_back(a); int p = getLink(last.back(), i);
modified.push_back(-1); if (TR[p].getEdge(a) == 1) {
int u = TR.size(); TR.emplace_back(TR[p].len + 2);
TR[u].link = TR[getLink(TR[p].link, i)].getEdge(a);
T b = S[i - TR[TR[u].link].len], c = S[i - TR[TR[TR[u].link].link].len];
TR[u].qlink = b == c ? TR[TR[u].link].qlink : TR[u].link;
TR[modified.back() = p].setEdge(a, u);
}
last.push_back(TR[p].getEdge(a));
}
void terminate() {
S.push_back(def); last.push_back(1); modified.push_back(-1);
}
void undo() {
if (modified.back() != -1) {
TR[modified.back()].setEdge(S.back(), 1); TR.pop_back();
}
S.pop_back(); last.pop_back(); modified.pop_back();
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Modified from https://github.com/cheran-senthil/PyRival/blob/master/pyrival/strings/suffix_array.py,
// which has an Apache 2.0 license
// Suffix Array Induced Sort to sort suffixes of an array in
// lexicographical order
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// _T: the type of each element in the array
// Constructor Arguments:
// S: a vector of type _T
// Fields:
// T: the type of the character/element in the array
// N: the length of the array
// rnk: a vector of the ranks of the suffixes (rnk[i] is the rank of the
// suffix starting from index i)
// ind: a vector of the indices in the original array of the suffixes
// sorted in lexicographical order (ind[i] is the index in original array
// of the ith lexicographically smallest suffix)
// LCP: a vector of the longest common prefixes between the suffixes when
// sorted in lexicographical order (LCP[i] is the longest common prefix of
// the ith and (i + 1)th lexicographically smallest suffix, with LCP[N - 1]
// being 0)
// In practice, has a moderate constant, usually faster than SuffixArray
// Time Complexity:
// constructor: O(N + K) where K is the range of the array
// Memory Complexity: O(N + K)
// Tested:
// Fuzz and Stress Tested
// https://judge.yosupo.jp/problem/suffixarray
// https://judge.yosupo.jp/problem/number_of_substrings
// https://dmoj.ca/problem/coci06c5p6
// https://dmoj.ca/problem/ccc20s3
template <class _T> struct SAISSuffixArray {
using T = _T;
static vector<int> SAIS(const vector<int> &S) {
if (S.empty()) return vector<int>();
int N = S.size(), K = *max_element(S.begin(), S.end()) + 1;
vector<bool> isL(N + 1, false); vector<int> ind(N), cnt(K + 1, 0), lms;
lms.reserve(N); for (auto &&a : S) cnt[a + 1]++;
partial_sum(cnt.begin(), cnt.end(), cnt.begin());
isL[N - 1] = true; for (int i = N - 2; i >= 0; i--)
isL[i] = S[i] == S[i + 1] ? isL[i + 1] : S[i] > S[i + 1];
auto c = [&] (int i) { return i > 0 && !isL[i] && isL[i - 1]; };
for (int i = 1; i < N; i++) if (c(i)) lms.push_back(i);
auto IS = [&] {
vector<int> tmp(cnt.begin() + 1, cnt.end());
fill(ind.begin(), ind.end(), -1);
for (int i = int(lms.size()) - 1; i >= 0; i--)
ind[--tmp[S[lms[i]]]] = lms[i];
tmp = vector<int>(cnt.begin(), cnt.end() - 1);
for (int i = -1, j; i < N; i++)
if ((j = i < 0 ? N - 1 : ind[i] - 1) >= 0 && isL[j])
ind[tmp[S[j]]++] = j;
tmp = vector<int>(cnt.begin() + 1, cnt.end());
for (int i = N - 1, j; i >= 0; i--)
if ((j = ind[i] - 1) >= 0 && !isL[j]) ind[--tmp[S[j]]] = j;
};
if (int(lms.size()) > 1) {
IS(); vector<int> tmp(ind.begin(), ind.end());
for (int i = 0, j = 0, a = -1; i < N; i++) if (c(tmp[i])) {
for (int b = tmp[i]; a >= 0 && S[a] == S[b];) {
a++; b++; if (c(a) || c(b)) { j -= int(c(a) && c(b)); break; }
}
ind[a = tmp[i]] = ++j;
}
tmp = vector<int>(lms.size());
for (int i = 0; i < int(tmp.size()); i++) tmp[i] = ind[lms[i]];
tmp = SAIS(tmp);
for (int i = 0; i < int(tmp.size()); i++) tmp[i] = lms[tmp[i]];
lms = tmp;
}
IS(); return ind;
}
static vector<int> init(const vector<T> &S) {
if (S.empty()) return vector<int>();
T offset = *min_element(S.begin(), S.end()); vector<int> A(S.size());
for (int i = 0; i < int(S.size()); i++) A[i] = S[i] - offset;
return A;
}
int N; vector<int> ind, rnk, LCP;
SAISSuffixArray(const vector<T> &S) : N(S.size()) {
ind = SAIS(init(S)); rnk.resize(N); LCP.resize(N);
for (int i = 0; i < N; i++) rnk[ind[i]] = i;
for (int i = 0, k = 0; i < N; i++) {
if (rnk[i] == N - 1) { LCP[rnk[i]] = k = 0; continue; }
int j = ind[rnk[i] + 1];
while (i + k < N && j + k < N && S[i + k] == S[j + k]) k++;
if ((LCP[rnk[i]] = k) > 0) k--;
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Factorizes a array S into Lyndon words w1w2w3... where w1, w2, w3, ... are
// in non-increasing order
// Guaranteed to exist and is unique
// A Lyndon word is lexicographically smaller than all of its nontrivial
// suffixes
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// S: a vector of type T
// Return Value: a vector of integers representing the lengths of each factor,
// where the sum of the values in the vector is equal to
// the length of the array
// In practice, has a small constant
// Time Complexity: O(N)
// Memory Complexity: O(N)
// Tested:
// https://cses.fi/problemset/task/1110/
template <class T> vector<int> lyndonFactorization(const vector<T> &S) {
int N = S.size(); vector<int> ret; for (int i = 0; i < N;) {
int j = i + 1, k = i;
for (; j < N && S[k] <= S[j]; j++) k = S[k] < S[j] ? i : k + 1;
for (; i <= k; i += j - k) ret.push_back(j - k);
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../datastructures/FischerHeunStructure.h"
using namespace std;
// Computes the longest common prefix of two suffixes of an array
// be using the Fischer Heun Structure over the LCP array generated by the
// Suffix Array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// SuffixArray: a generic suffix array to be used (should be either
// SuffixArray or SAISSuffixArray)
// Required Fields:
// N: the length of the array
// rnk: a vector of the ranks of the suffixes (rnk[i] is the rank of the
// suffix starting from index i)
// ind: a vector of the indices in the original array of the suffixes
// sorted in lexicographical order (ind[i] is the index in original
// array of the ith lexicographically smallest suffix)
// LCP: a vector of the longest common prefixes between the suffixes when
// sorted in lexicographical order (LCP[i] is the longest common prefix
// of the ith and (i + 1)th lexicographically smallest suffix, with
// LCP[N - 1] being 0)
// Required Functions:
// constructor(S): construts a suffix array from the array S
// Constructor Arguments:
// S: a vector of type SuffixArray::T
// Fields:
// SA: the associated suffix array constructed from the array
// Functions:
// lcpRnk(i, j): computes the longest common prefix of the ith and jth
// lexicographically least suffixes
// lcp(i, j): computes the longest common prefix of the suffixes starting
// from index i and j
// In practice, the constructor has a very small constant, lcp has a
// moderate constant, still faster than using segment trees
// Time Complexity:
// constructor: time complexity of SuffixArray constructor
// lcpRnk, lcp: O(1)
// Memory Complexity: memory complexity of SuffixArray
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/ccc20s3
template <class SuffixArray> struct LongestCommonPrefix {
SuffixArray SA; FischerHeunStructure<int, greater<int>> FHS;
LongestCommonPrefix(const vector<typename SuffixArray::T> &S)
: SA(S), FHS(SA.LCP) {}
int lcpRnk(int i, int j) {
if (i > j) swap(i, j);
return i == j ? int(SA.N) - SA.ind[j] : FHS.query(i, j - 1);
}
int lcp(int i, int j) { return lcpRnk(SA.rnk[i], SA.rnk[j]); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Suffix Array using Sadakane's algorithm to sort suffixes of an array in
// lexicographical order
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// _T: the type of each element in the array
// Constructor Arguments:
// S: a vector of type _T
// Fields:
// T: the type of the character/element in the array
// N: the length of the array
// rnk: a vector of the ranks of the suffixes (rnk[i] is the rank of the
// suffix starting from index i)
// ind: a vector of the indices in the original array of the suffixes
// sorted in lexicographical order (ind[i] is the index in original array
// of the ith lexicographically smallest suffix)
// LCP: a vector of the longest common prefixes between the suffixes when
// sorted in lexicographical order (LCP[i] is the longest common prefix of
// the ith and (i + 1)th lexicographically smallest suffix, with LCP[N - 1]
// being 0)
// In practice, has a very small constant, usually slower than
// SAISSuffixArray.h
// Time Complexity:
// constructor: O(N (log N)^2)
// Memory Complexity: O(N)
// Tested:
// Fuzz and Stress Tested
// https://judge.yosupo.jp/problem/suffixarray
// https://judge.yosupo.jp/problem/number_of_substrings
// https://dmoj.ca/problem/coci06c5p6
// https://dmoj.ca/problem/ccc20s3
template <class _T> struct SuffixArray {
using T = _T; int N; vector<int> ind, rnk, LCP;
SuffixArray(const vector<T> &S)
: N(S.size()), ind(N + 1), rnk(N + 1), LCP(N + 1) {
vector<int> &tmp = LCP; iota(ind.begin(), ind.end(), 0);
sort(ind.begin(), ind.begin() + N, [&] (int a, int b) {
return S[a] < S[b];
});
rnk[ind[N]] = -1; for (int i = 0; i < N; i++) {
rnk[ind[i]] = i > 0 && S[ind[i]] == S[ind[i - 1]] ? rnk[ind[i - 1]] : i;
}
for (int h = 1; h < N; h += h) for (int l = 0, r = 1; r <= N; r++) {
if (rnk[ind[r - 1]] != rnk[ind[r]] && l + 1 < r) {
sort(ind.begin() + l, ind.begin() + r, [&] (int a, int b) {
return rnk[h + a] < rnk[h + b];
});
tmp[l] = l; for (int j = l + 1; j < r; j++)
tmp[j] = rnk[h + ind[j - 1]] < rnk[h + ind[j]] ? j : tmp[j - 1];
for (l++; l < r; l++) rnk[ind[l]] = tmp[l];
} else if (rnk[ind[r - 1]] != rnk[ind[r]]) l++;
}
ind.pop_back(); rnk.pop_back(); tmp.pop_back();
for (int i = 0, k = 0; i < N; i++) {
if (rnk[i] == N - 1) { LCP[rnk[i]] = k = 0; continue; }
int j = ind[rnk[i] + 1];
while (i + k < N && j + k < N && S[i + k] == S[j + k]) k++;
if ((LCP[rnk[i]] = k) > 0) k--;
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds the longest common subarray of two arrays
// Indices are 0-indexed
// Template Arguments:
// SuffixArray: a generic suffix array to be used (should be either
// SuffixArray or SAISSuffixArray)
// Required Fields:
// N: the length of the array
// rnk: a vector of the ranks of the suffixes (rnk[i] is the rank of the
// suffix starting from index i)
// ind: a vector of the indices in the original array of the suffixes
// sorted in lexicographical order (ind[i] is the index in original
// array of the ith lexicographically smallest suffix)
// LCP: a vector of the longest common prefixes between the suffixes when
// sorted in lexicographical order (LCP[i] is the longest common prefix
// of the ith and (i + 1)th lexicographically smallest suffix, with
// LCP[N - 1] being 0)
// Required Functions:
// constructor(S): construts a suffix array from the array S
// Constructor Arguments:
// A: the first vector of type SuffixArray::T
// B: the second vector of type SuffixArray::T
// sep: a separator character that does not appear in either array
// Fields:
// SA: the associated suffix array constructed from the array A,
// concatenated with the separator, conatenated with the array B
// lcs: the longest common subarray of A and B
// In practice, the constructor has a very small constant
// Time Complexity:
// constructor: time complexity of SuffixArray for an array of
// length N + M + 1
// Memory Complexity: memory complexity of SuffixArray for an array of
// length N + M + 1
// Tested:
// https://www.spoj.com/problems/LCS/
template <class SuffixArray> struct LongestCommonSubstringOfTwo {
using T = typename SuffixArray::T; SuffixArray SA; vector<T> lcs;
vector<T> init(vector<T> A, const vector<T> &B, T sep) {
A.reserve(A.size() + B.size() + 1); A.push_back(sep);
A.insert(A.end(), B.begin(), B.end()); return A;
}
LongestCommonSubstringOfTwo(const vector<T> &A, const vector<T> &B, T sep)
: SA(init(A, B, sep)) {
pair<int, int> mx(-1, -1); int N = A.size();
for (int i = 0; i < N + int(B.size()); i++)
if (SA.ind[i] != N && SA.ind[i + 1] != N
&& (SA.ind[i] < N) != (SA.ind[i + 1] < N))
mx = max(mx, make_pair(SA.LCP[i], SA.ind[i]));
if (mx.first != -1) {
lcs.reserve(mx.first); for (int i = 0; i < mx.first; i++) {
int j = mx.second + i; lcs.push_back(j < N ? A[j] : B[j - 1 - N]);
}
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../math/ModularArithmetic.h"
#include "../utils/Random.h"
using namespace std;
// Computes the hash of a 2D array to allow for easy computation of
// submatrix hashes
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// HTYPE: the type of the hash
// HASHES: the number of hashes to compute
// Construtor Arguments:
// A: the elements in the 2D array
// offset: the amount to subtract from each element, a - offset + 1 should be
// positive
// ROWBASE: array<HTYPE, HASHES> that contains the base for the rows for
// each hash, must be less than the repective mod and positive (preferably
// in the range [mod / 4, mod / 4 * 3])
// COLBASE: array<HTYPE, HASHES> that contains the base for the columns for
// each hash, must be less than the repective mod and positive (preferably
// in the range [mod / 4, mod / 4 * 3])
// MOD: array<HTYPE, HASHES> that contains the mods for each hash, should
// be large (products should be least (NM)^2) and prime
// Fields:
// N: the number of rows in the 2D array
// M: the number of columns in the 2D array
// ROWBASE: array<HTYPE, HASHES> with the bases for the rows for each hash
// COLBASE: array<HTYPE, HASHES> with the bases for the columns for each hash
// MOD: array<HTYPE, HASHES> with the mods for each hash
// H: a vector of vectors of array<HTYPE, HASHES> of size N + 1 by M + 1 with
// the suffix hashes starting at each cell
// ROWPOW: a vector of array<HTYPE, HASHES> of size N + 1 with the ith
// representing row_base^i modulo mod
// COLPOW: a vector of array<HTYPE, HASHES> of size M + 1 with the jth
// representing col_base^j modulo mod
// Functions:
// initBase(MOD): returns an array<HTYPE, HASHES> with randomly initialized
// values for the bases for each mod in the range [mod / 4, mod / 4 * 3]
// getHash(u, d, l, r): returns a type HASH with the hashes in the submatrix
// [u, d] x [l, r]
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(NM HASHES)
// getHash: O(HASHES)
// Memory Complexity: O(N HASHES)
template <class T, class HTYPE, const int HASHES> struct Hashing2D {
using arr = array<HTYPE, HASHES>; int N, M; arr ROWBASE, COLBASE, MOD;
vector<vector<arr>> H; vector<arr> ROWPOW, COLPOW;
struct HASH : public arr { int rows, cols; };
Hashing2D(const vector<vector<T>> &A, T offset, const arr &ROWBASE,
const arr &COLBASE, const arr &MOD)
: N(A.size()), M(N == 0 ? 0 : A[0].size()), ROWBASE(ROWBASE),
COLBASE(COLBASE), MOD(MOD), H(N + 1, vector<arr>(M + 1)),
ROWPOW(N + 1), COLPOW(M + 1) {
ROWPOW[0].fill(HTYPE(1)); COLPOW[0].fill(HTYPE(1));
for (int i = 0; i <= N; i++) H[i][M].fill(HTYPE());
for (int j = 0; j <= M; j++) H[N][j].fill(HTYPE());
for (int i = 1; i <= N; i++) for (int h = 0; h < HASHES; h++)
ROWPOW[i][h] = mulMod(ROWPOW[i - 1][h], ROWBASE[h], MOD[h]);
for (int j = 1; j <= M; j++) for (int h = 0; h < HASHES; h++)
COLPOW[j][h] = mulMod(COLPOW[j - 1][h], COLBASE[h], MOD[h]);
for (int i = N - 1; i >= 0; i--) for (int j = M - 1; j >= 0; j--)
for (int h = 0; h < HASHES; h++) {
H[i][j][h] = posMod(HTYPE(A[i][j] - offset) + HTYPE(1), MOD[h]);
H[i][j][h] = addMod(H[i][j][h],
mulMod(H[i + 1][j][h], ROWBASE[h], MOD[h]),
MOD[h]);
H[i][j][h] = addMod(H[i][j][h],
mulMod(H[i][j + 1][h], COLBASE[h], MOD[h]),
MOD[h]);
H[i][j][h] = subMod(H[i][j][h],
mulMod(mulMod(H[i + 1][j + 1][h], ROWBASE[h],
MOD[h]),
COLBASE[h], MOD[h]),
MOD[h]);
}
}
static arr initBase(const arr &MOD) {
arr base;
for (int h = 0; h < HASHES; h++) base[h] = uniform_int_distribution<HTYPE>(
MOD[h] / 4, MOD[h] / 4 * 3)(rng64);
return base;
}
Hashing2D(const vector<vector<T>> &A, T offset, const arr &MOD)
: Hashing2D(A, offset, initBase(MOD), initBase(MOD), MOD) {}
HASH getHash(int u, int d, int l, int r) {
HASH ret; ret.rows = ++d - u; ret.cols = ++r - l;
for (int h = 0; h < HASHES; h++) {
ret[h] = H[u][l][h];
ret[h] = subMod(ret[h], mulMod(H[d][l][h], ROWPOW[d - u][h], MOD[h]),
MOD[h]);
ret[h] = subMod(ret[h], mulMod(H[u][r][h], COLPOW[r - l][h], MOD[h]),
MOD[h]);
ret[h] = addMod(ret[h],
mulMod(mulMod(H[d][r][h], ROWPOW[d - u][h], MOD[h]),
COLPOW[r - l][h], MOD[h]),
MOD[h]);
}
return ret;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Trie Node backed by a map
// Template Arguments:
// _T: the type of the element in the string/array for the Trie
// Fields:
// T: the data type of each element in the string/array
// link: a link to the parent in the trie
// Functions:
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(1)
// hasEdge, getEdge, setEdge: O(log E) where E is the number of edges
// incident to this node
// Memory Complexity: O(E) where E is the number of edges incident to this node
// Tested:
// https://csacademy.com/contest/round-77/task/expected-lcp/
template <class _T> struct TrieMapNode {
using T = _T; int link; map<T, int> to;
TrieMapNode() : link(-1) {}
bool hasEdge(const T &a) const { return to.count(a); }
int getEdge(const T &a) const { return to.at(a); }
void setEdge(const T &a, int n) { to[a] = n; }
};
// Trie Node backed by an array
// Template Arguments:
// _T: the type of the element in the string/array for the Trie
// ALPHABET_SIZE: the size of the alphabet
// OFFSET: the offset for the start of the alphabet
// Fields:
// T: the data type of each element in the string/array
// link: a link to the parent in the trie
// Functions:
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(ALPHABET_SIZE)
// hasEdge, getEdge, setEdge: O(1)
// Memory Complexity: O(ALPHABET_SIZE)
// Tested:
// https://csacademy.com/contest/round-77/task/expected-lcp/
template <class _T, const int ALPHABET_SIZE, const int OFFSET>
struct TrieArrayNode {
using T = _T; int link; array<int, ALPHABET_SIZE> to;
TrieArrayNode() : link(-1) { to.fill(-1); }
bool hasEdge(const T &a) const { return to[a - OFFSET] != -1; }
int getEdge(const T &a) const { return to[a - OFFSET]; }
void setEdge(const T &a, int n) { to[a - OFFSET] = n; }
};
// Trie with the root node at 0
// Template Arguments:
// Node: a node class
// Required Fields:
// T: the data type of each element in the string/array
// link: a link to the parent in the trie
// Required Functions:
// constructor(): initializes the node with a with no links or edges
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Fields:
// TR: the vector of all nodes in the automaton
// last: the last node representing the current string
// Functions:
// add(a): adds the element a to the trie
// terminate(): terminates the current word, returning to the root (which
// allows for another word to be added with add(a))
// Time Complexity:
// constructor: time complexity of node constructor
// add: O(1) + time complexity of node constructor
// + time complexity of getEdge in Node
// terminate: O(1)
// Memory Complexity: O(N) * memory complexity of node, after N calls to add
// Tested:
// https://csacademy.com/contest/round-77/task/expected-lcp/
template <class Node> struct Trie {
using T = typename Node::T; vector<Node> TR; int last;
Trie() : TR(1, Node()), last(0) {}
void add(const T &a) {
if (TR[last].hasEdge(a)) last = TR[last].getEdge(a);
else {
int u = TR.size(); TR.emplace_back();
TR[TR[u].link = last].setEdge(a, u); last = u;
}
}
void terminate() { last = 0; }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Suffix Automaton Node backed by a map
// Template Arguments:
// _T: the type of the element in the string/array for the Suffix Automaton
// Constructor Arguments:
// len: the length of the longest substring represented by this node
// Fields:
// T: the data type of each element in the string/array
// len: the length of the longest substring this node represents
// link: the index of the suffix link of this node (the node with the
// longest suffix of this node)
// Functions:
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(1)
// hasEdge, getEdge, setEdge: O(log E) where E is the number of edges
// incident to this node
// Memory Complexity: O(E) where E is the number of edges incident to this node
// Tested:
// https://www.spoj.com/problems/LCS/
// https://open.kattis.com/problems/stringmultimatching
template <class _T> struct SAMMapNode {
using T = _T; int len, link; map<T, int> to;
SAMMapNode(int len) : len(len), link(-1) {}
bool hasEdge(const T &a) const { return to.count(a); }
int getEdge(const T &a) const { return to.at(a); }
void setEdge(const T &a, int n) { to[a] = n; }
};
// Suffix Automaton Node backed by an array
// Template Arguments:
// _T: the type of the element in the string/array for the Suffix Automaton
// ALPHABET_SIZE: the size of the alphabet
// OFFSET: the offset for the start of the alphabet
// Constructor Arguments:
// len: the length of the longest substring represented by this node
// Fields:
// T: the data type of each element in the string/array
// len: the length of the longest substring this node represents
// link: the index of the suffix link of this node (the node with the
// longest suffix of this node)
// Functions:
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Time Complexity:
// constructor: O(ALPHABET_SIZE)
// hasEdge, getEdge, setEdge: O(1)
// Memory Complexity: O(ALPHABET_SIZE)
// Tested:
// https://www.spoj.com/problems/LCS/
// https://dmoj.ca/problem/coci14c5p6
// https://dmoj.ca/problem/coci11c5p6
template <class _T, const int ALPHABET_SIZE, const _T OFFSET>
struct SAMArrayNode {
using T = _T; int len, link; array<int, ALPHABET_SIZE> to;
SAMArrayNode(int len) : len(len), link(-1) { to.fill(-1); }
bool hasEdge(const T &a) const { return to[a - OFFSET] != -1; }
int getEdge(const T &a) const { return to[a - OFFSET]; }
void setEdge(const T &a, int n) { to[a - OFFSET] = n; }
};
// Suffix Automaton with the root node at 0
// Each distinct path from the root is a substring of the set of words inserted
// Template Arguments:
// Node: a node class
// Required Fields:
// T: the data type of each element in the string/array
// len: the length of the longest substring this node represents
// link: the index of the suffix link of this node (the node with the
// longest suffix of this node)
// Required Functions:
// constructor(len): initializes the node with a length of len with no
// links or edges
// hasEdge(a): returns whether there exists an edge to an adjacent node
// with the element a
// getEdge(a): returns the index of the other node on the
// incident edge with the element a
// setEdge(a, n): sets the other node on the incident edge
// with the element a to n
// Fields:
// TR: the vector of all nodes in the automaton
// last: the last node representing the current string
// Functions:
// add(a): adds the element a to the automaton
// terminate(): terminates the current word, returning to the root (which
// allows for another word to be added with add(a))
// In practice, has a moderate constant
// Time Complexity:
// constructor: time complexity of node constructor
// add: O(1) amortized + time complexity of node constructor
// + time complexity of getEdge in Node
// terminate: O(1)
// Memory Complexity: O(N) * memory complexity of node, after N calls to add
// Tested:
// https://www.spoj.com/problems/LCS/
// https://dmoj.ca/problem/coci14c5p6
// https://open.kattis.com/problems/stringmultimatching
// https://dmoj.ca/problem/coci11c5p6
template <class Node> struct SuffixAutomaton {
using T = typename Node::T; vector<Node> TR; int last;
SuffixAutomaton() : TR(1, Node(0)), last(0) {}
void add(const T &a) {
int u = -1; if (!TR[last].hasEdge(a)) {
u = TR.size(); TR.emplace_back(TR[last].len + 1);
for (; last != -1 && !TR[last].hasEdge(a); last = TR[last].link)
TR[last].setEdge(a, u);
if (last == -1) { TR[last = u].link = 0; return; }
}
int p = TR[last].getEdge(a); if (TR[p].len == TR[last].len + 1) {
(u == -1 ? last : TR[last = u].link) = p; return;
}
int q = TR.size(); TR.push_back(TR[p]); TR[q].len = TR[last].len + 1;
TR[p].link = q; if (u != -1) TR[u].link = q;
while (last != -1 && TR[last].hasEdge(a) && TR[last].getEdge(a) == p) {
TR[last].setEdge(a, q); last = TR[last].link;
}
last = u == -1 ? q : u;
}
void terminate() { last = 0; }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds the minimum lexicographical rotation of an array
// Template Arguments:
// T: the type of each element in the array
// Function Arguments:
// S: a vector of type T
// Return Value: the index of the first element of the minimum
// lexicographical rotation of the array
// In practice, has a small constant
// Time Complexity: O(N)
// Memory Complexity: O(1)
// Tested:
// https://cses.fi/problemset/task/1110/
template <class T> int minRotation(const vector<T> &S) {
int N = S.size(), i = 0;
auto ind = [&] (int i) { return i < N ? i : i - N; };
for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) {
auto &a = S[ind(i + k)], &b = S[ind(j + k)];
if (i + k == j || a < b) { j += max(0, k - 1); break; }
if (a > b) { i = j; break; }
}
return i;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../math/ModularArithmetic.h"
#include "../utils/Random.h"
using namespace std;
// Computes the hash of an array to allow for easy computation of
// subarray hashes
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// HTYPE: the type of the hash
// HASHES: the number of hashes to compute
// Construtor Arguments:
// S: the elements in the array
// offset: the amount to subtract from each element, a - offset + 1 should be
// positive
// BASE: array<HTYPE, HASHES> that contains the base for each hash, must
// be less than the repective mod and positive (preferably in the range
// [mod / 4, mod / 4 * 3])
// MOD: array<HTYPE, HASHES> that contains the mods for each hash, should
// be large (products should be least N^2) and prime
// Fields:
// N: the length of the array
// BASE: array<HTYPE, HASHES> with the bases for each hash
// MOD: array<HTYPE, HASHES> with the mods for each hash
// H: a vector of array<HTYPE, HASHES> of size N + 1 with the suffix hashes
// starting at each index
// POW: a vector of array<HTYPE, HASHES> of size N + 1 with the ith
// representing base^i modulo mod
// Functions:
// initBase(MOD): returns an array<HTYPE, HASHES> with randomly initialized
// values for the bases for each mod in the range [mod / 4, mod / 4 * 3]
// getHash(l, r): returns a type HASH with the hashes in the subarray [l, r]
// merge(h1, h2): returns a type HASH of 2 hashes merged together as if
// the subarray represented by h2 was immediately after h1
// concat(l1, r1, l2, r2): returns a type HASH of
// the subarray [l1, r1] contactenated with the subarray [l2, r2]
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N HASHES)
// getHash, merge, concat: O(HASHES)
// Memory Complexity: O(N HASHES)
// Tested:
// https://dmoj.ca/problem/globexcup19j5hard
template <class T, class HTYPE, const int HASHES> struct Hashing {
using arr = array<HTYPE, HASHES>; int N; arr BASE, MOD; vector<arr> H, POW;
struct HASH : public arr { int len; };
Hashing(const vector<T> &S, T offset, const arr &BASE, const arr &MOD)
: N(S.size()), BASE(BASE), MOD(MOD), H(N + 1), POW(N + 1) {
POW[0].fill(HTYPE(1)); H[N].fill(HTYPE());
for (int i = 1; i <= N; i++) for (int h = 0; h < HASHES; h++)
POW[i][h] = mulMod(POW[i - 1][h], BASE[h], MOD[h]);
for (int i = N - 1; i >= 0; i--) for (int h = 0; h < HASHES; h++)
H[i][h] = addMod(mulMod(H[i + 1][h], BASE[h], MOD[h]),
posMod(HTYPE(S[i] - offset) + HTYPE(1), MOD[h]),
MOD[h]);
}
static arr initBase(const arr &MOD) {
arr base;
for (int h = 0; h < HASHES; h++) base[h] = uniform_int_distribution<HTYPE>(
MOD[h] / 4, MOD[h] / 4 * 3)(rng64);
return base;
}
Hashing(const vector<T> &S, T offset, const arr &MOD)
: Hashing(S, offset, initBase(MOD), MOD) {}
HASH getHash(int l, int r) {
HASH ret; ret.len = ++r - l; for (int h = 0; h < HASHES; h++)
ret[h] = subMod(H[l][h], mulMod(H[r][h], POW[r - l][h], MOD[h]), MOD[h]);
return ret;
}
HASH merge(const HASH &h1, const HASH &h2) {
HASH ret; ret.len = h1.len + h2.len; for (int h = 0; h < HASHES; h++)
ret[h] = addMod(h1[h], mulMod(h2[h], POW[h1.len][h], MOD[h]), MOD[h]);
return ret;
}
HASH concat(int l1, int r1, int l2, int r2) {
return merge(getHash(l1, r1), getHash(l2, r2));
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds the longest common subarray of multiple arrays
// Indices are 0-indexed
// Template Arguments:
// SuffixArray: a generic suffix array to be used (should be either
// SuffixArray or SAISSuffixArray)
// Required Fields:
// N: the length of the array
// rnk: a vector of the ranks of the suffixes (rnk[i] is the rank of the
// suffix starting from index i)
// ind: a vector of the indices in the original array of the suffixes
// sorted in lexicographical order (ind[i] is the index in original
// array of the ith lexicographically smallest suffix)
// LCP: a vector of the longest common prefixes between the suffixes when
// sorted in lexicographical order (LCP[i] is the longest common prefix
// of the ith and (i + 1)th lexicographically smallest suffix, with
// LCP[N - 1] being 0)
// Required Functions:
// constructor(S): construts a suffix array from the array S
// Constructor Arguments:
// A: a vector of the arrays
// sep: a vector of max(0, A.size() - 1) different separator character
// that do not appear in any of the arrays
// Fields:
// SA: the associated suffix array constructed from the arrays
// concatenated together, separated by the separator character
// lcs: the longest common subarray of all arrays
// In practice, the constructor has a very small constant
// Time Complexity:
// constructor: time complexity of SuffixArray for the length of the
// concatenated array
// Memory Complexity: memory complexity of SuffixArray for the length of the
// concatenated array
// Tested:
// https://www.spoj.com/problems/LCS2/
// https://open.kattis.com/problems/longestcommonsubstring
template <class SuffixArray> struct LongestCommonSubstring {
using T = typename SuffixArray::T;
vector<int> ind; vector<T> lcs; vector<T> S; SuffixArray SA;
vector<T> init(const vector<vector<T>> &A, const vector<T> &sep) {
int len = max(0, int(A.size()) - 1); for (auto &&a : A) len += a.size();
vector<T> S; S.reserve(len); ind.resize(len, -1);
for (int i = 0; i < int(A.size()); i++) {
if (i > 0) S.push_back(sep[i - 1]);
fill(ind.begin() + S.size(), ind.begin() + S.size() + A[i].size(), i);
S.insert(S.end(), A[i].begin(), A[i].end());
}
return S;
}
LongestCommonSubstring(const vector<vector<T>> &A, const vector<T> &sep)
: ind(), S(init(A, sep)), SA(S) {
int K = A.size(); if (K == 0) return;
if (K == 1) { lcs = A[0]; return; }
vector<int> freq(K, 0), dq(SA.N); pair<int, int> mx(-1, -1);
for (int l = 0, r = 0, front = 0, back = 0, cnt = 0; r < SA.N; r++) {
if (ind[SA.ind[r]] != -1) {
cnt += freq[ind[SA.ind[r]]]++ == 0; if (cnt == K) {
while (true) {
int i = ind[SA.ind[l]]; if (i != -1 && freq[i] == 1) break;
l++; if (i != -1) freq[i]--;
}
while (dq[front] < l) front++;
mx = max(mx, make_pair(SA.LCP[dq[front]], SA.ind[dq[front]]));
}
}
while (front < back && SA.LCP[dq[back - 1]] >= SA.LCP[r]) back--;
dq[back++] = r;
}
if (mx.first != -1) {
lcs.reserve(mx.first);
for (int i = 0; i < mx.first; i++) lcs.push_back(S[mx.second + i]);
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the longest palindromic subarray centered at each half index
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element in the array
// Constructor Arguments:
// S: a vector of type T
// Fields:
// N: the length of the array
// p: the length of the longest palindromic substring/subarray centered
// at each half index (including paddings at each end)
// Functions:
// lps(): returns a pair containing the starting index and length (in the
// original string) of the longest palindromic substring/subarray, picking
// the earliest string if there are multiple of the same length
// lps(i): returns a pair containing the starting index and length (in the
// original string) of the longest palindromic substring/subarray centered
// at index i/2.0
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N)
// lps(): O(N)
// lps(i): O(1)
// Memory Complexity: O(S)
// Tested:
// https://judge.yosupo.jp/problem/enumerate_palindromes
// https://www.spoj.com/problems/LPS/
template <class T> struct ManacherPalindrome {
int N; vector<int> p;
ManacherPalindrome(const vector<T> &S) : N(S.size()), p(N * 2 + 1, 0) {
vector<T> SS(N * 2 + 1, T());
for (int i = 0; i < N; i++) SS[i * 2 + 1] = S[i];
for (int i = 0, cen = 0, mxr = 0; i < N * 2 + 1; i++) {
if (mxr > i) p[i] = min(mxr - i, p[cen * 2 - i]);
int l = i - p[i], r = i + p[i];
for (; l > 0 && r < N * 2 && SS[l - 1] == SS[r + 1]; l--, r++) p[i]++;
if (r > mxr) { cen = i; mxr = r; }
}
}
pair<int, int> lps() {
int len = 0, cen = 0;
for (int i = 0; i < N * 2 + 1; i++) if (p[i] > len) len = p[cen = i];
return make_pair((cen - len) / 2, len);
}
pair<int, int> lps(int i) {
int len = p[i + 1], cen = i + 1; return make_pair((cen - len) / 2, len);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Two players alternate taking coins from either end of a row. If both players
// play optimally, what is the value of player 1's total minus
// player 2's total?
// The standard dp recurrence is
// dp[l][r] = l > r ? 0 : max(A[l] - dp[l + 1][r], A[r] - dp[l][r - 1])
// This implementation is generalized to support any number of rows, possibly
// with a fixed endpoint on the right
// The value of a single player can be recovered by solving the system of
// equations: P1 + P2 = A, P1 - P2 = B
// Template Arguments:
// T: the type of the value of each coin
// Function Arguments:
// A: a vector of vectors of type T, with each vector representing a row
// fixed: a vector of booleans of the same length of A representing whether
// the right endpoint of that row is fixed
// Return Value: player 1's total minus player 2's total
// In practice, has a small constant
// Time Complexity: O(N log N) for N total coins or O(N) if there is a
// single row
// Memory Complexity: O(N) for N total coins
// Tested:
// https://dmoj.ca/problem/ahardergame
// https://atcoder.jp/contests/dp/tasks/dp_l
template <class T>
T termity(const vector<vector<T>> &A, const vector<bool> &fixed) {
int N = 0; T ret = T(); for (auto &&a : A) N += a.size();
int mult = N % 2 == 0 ? 1 : -1; vector<T> B; B.reserve(N);
for (int i = 0; i < int(A.size()); i++) {
int front = B.size(); for (auto &&a : A[i]) {
B.push_back(a); while (int(B.size()) - front >= 3
&& B[B.size() - 3] <= B[B.size() - 2]
&& B[B.size() - 2] >= B[B.size() - 1]) {
B[B.size() - 3] -= B[B.size() - 2] - B[B.size() - 1];
B.pop_back(); B.pop_back();
}
}
if (fixed[i]) while (int(B.size()) - front >= 2
&& B[B.size() - 2] <= B[B.size() - 1]) {
ret += mult * (B[B.size() - 2] - B[B.size() - 1]);
B.pop_back(); B.pop_back();
}
}
if (int(A.size()) == 1) {
for (int l = 0, r = int(B.size()) - 1, m = 1; l <= r; m *= -1) {
if (B[l] >= B[r]) ret += m * B[l++];
else ret += m * B[r--];
}
} else {
sort(B.begin(), B.end(), greater<T>());
for (int i = 0, m = 1; i < int(B.size()); i++, m *= -1) ret += m * B[i];
}
return ret;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the maximum disjoint intervals problem
// Given a set of intervals in the form [L, R], find the maximum number of
// disjoint intervals
// Maximum number of disjoint intervals is equivalent to the minimum number of
// points to cover each interval (with the points being the right endpoints
// of the disjoint intervals)
// Range is modified in-place
// Template Arguments:
// T: the type of the endpoints of the intervals
// Cmp: the comparator to compare two points
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// A: a reference to a vector of pairs with the first element being the
// inclusive left bound of the interval and the second element being the
// inclusive right bound of the interval
// cmp: an instance of the Cmp struct
// Return Value: a reference to the modified vector
// In practice, has a very small constant
// Time Complexity: O(N log N)
// Memory Complexity: O(1)
// Tested:
// https://codeforces.com/contest/1141/problem/F2
// https://oj.uz/problem/view/COCI21_planine
template <class T, class Cmp = less<T>>
vector<pair<T, T>> &maxDisjointIntervals(vector<pair<T, T>> &A,
Cmp cmp = Cmp()) {
sort(A.begin(), A.end(), [&] (const pair<T, T> &a, const pair<T, T> &b) {
return cmp(a.second, b.second);
});
int i = 0; for (int l = 0, r = 0, N = A.size(); l < N; l = r, i++) {
A[i] = A[l]; for (r = l + 1; r < N && !cmp(A[i].second, A[r].first); r++);
}
A.erase(A.begin() + i, A.end()); return A;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solves the minimum interval cover problem
// Given a set of intervals in the form [L, R], find the minimum number of
// intervals to cover a target interval
// Range is modified in-place
// Template Arguments
// T: the type of the endpoints of the intervals
// Cmp: the comparator to compare two points
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// T: the type of the points
// Function Arguments:
// A: a reference to a vector of pairs with the first element being the
// inclusive left bound of the interval and the second element being the
// inclusive right bound of the interval
// target: the target interval to cover with the first element being the
// inclusive left bound of the target interval and the second element
// being the inclusive right bound of the interval
// cmp: an instance of the Cmp struct
// Return Value: a reference to the modified vector
// In practice, has a very small constant
// Time Complexity: O(N log N)
// Memory Complexity: O(1)
// Tested:
// https://open.kattis.com/problems/intervalcover
template <class T, class Cmp = less<T>>
vector<pair<T, T>> &minIntervalCover(vector<pair<T, T>> &A,
pair<T, T> target, Cmp cmp = Cmp()) {
sort(A.begin(), A.end(), [&] (const pair<T, T> &a, const pair<T, T> &b) {
return cmp(a.first, b.first);
});
bool first = true; int i = 0, N = A.size();
for (int j = 0; j < N && (first || cmp(target.first, target.second));) {
if (cmp(target.first, A[j].first)) { A.clear(); return A; }
else {
for (A[i] = A[j]; j < N && !cmp(target.first, A[j].first); j++)
if (cmp(A[i].second, A[j].second)) A[i] = A[j];
target.first = A[i++].second; first = false;
}
}
if (first || cmp(target.first, target.second)) i = 0;
A.erase(A.begin() + i, A.end()); return A;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
// Unsyncs the C++ and C std output streams and unties cin to
// speed up standard input
void unSyncUntie() {
std::ios::sync_with_stdio(0); std::cin.tie(0);
}
// Functions for fast IO
namespace IO {
#define INTERACTIVE_INPUT 0
template <class T> struct is_iterator {
template <class U, typename std::enable_if<
!std::is_convertible<U, const char *>::value, int>::type = 0>
static constexpr auto has_indirection(int)
->decltype(*std::declval<U>(), bool()) {
return true;
}
template <class>
static constexpr bool has_indirection(long) { return false; }
static constexpr bool value = has_indirection<T>(0);
};
constexpr const int _bufSize = 1 << 16, _maxNumLength = 128;
char _inputBuf[_bufSize + 1], *_inputPtr = _inputBuf, _sign, _c, _last = -1;
char *_tempInputBuf = nullptr, _tempOutputBuf[_maxNumLength];
char _outputBuf[_bufSize], _numBuf[_maxNumLength], _fill = ' ';
int _cur, _tempOutputPtr = 0, _outputPtr = 0, _cnt, _numPtr = 0;
int _width = 0, _precision = 9;
const char *_delimiter = " "; unsigned long long _precisionBase = 1000000000;
FILE *_input = stdin, *_output = stdout, *_error = stderr;
#if INTERACTIVE_INPUT
char _getchar() { return _last = getchar(); }
#else
char _getchar() {
if (!*_inputPtr)
_inputBuf[fread(_inputPtr = _inputBuf, 1, _bufSize, _input)] = '\0';
return _last = *_inputPtr++;
}
#endif
char _getcharskipr() {
while (_getchar() == '\r');
return _last;
}
template <class I> void _readSigned(I &x) {
while ((x = _getchar()) <= ' ');
if ((_sign = x == '-')) x = _getchar();
for (x -= '0'; (_c = _getchar()) >= '0'; x = x * 10 + _c - '0');
if (_sign) x = -x;
}
template <class UI> void _readUnsigned(UI &x) {
while ((x = _getchar()) <= ' ');
for (x -= '0'; (_c = _getchar()) >= '0'; x = x * 10 + _c - '0');
}
template <class F> void _readFloatingPoint(F &x) {
for (x = 0; (_c = _getchar()) <= ' ';);
if ((_sign = _c == '-')) _c = _getchar();
if (_c >= '0')
for (x = _c - '0'; (_c = _getchar()) >= '0'; x = x * 10 + _c - '0');
if (_c == '.') {
F _div = 1.0;
for (; (_c = _getchar()) >= '0'; x += (_c - '0') / (_div *= 10));
}
if (_sign) x = -x;
}
void setLength(int x) {
if (_tempInputBuf) delete[](_tempInputBuf);
_tempInputBuf = new char[x + 1];
}
template <class I> typename std::enable_if<std::is_integral<I>::value
&& std::is_signed<I>::value>::type read(I &x) { _readSigned(x); }
template <class UI> typename std::enable_if<std::is_integral<UI>::value
&& std::is_unsigned<UI>::value>::type read(UI &x) {
_readUnsigned(x);
}
#if __SIZEOF_INT128__
void read(__int128_t &x) { _readSigned(x); }
void read(__uint128_t &x) { _readUnsigned(x); }
#endif
template <class F>
typename std::enable_if<std::is_floating_point<F>::value>::type read(F &x) {
_readFloatingPoint(x);
}
void read(char &x) { while ((x = _getchar()) <= ' '); }
void read(char *x) {
_cur = 0; do { _c = _getchar(); } while (_c <= ' ');
do { x[_cur++] = _c; } while ((_c = _getchar()) > ' ');
x[_cur] = '\0';
}
void readln(char *x) {
if (_last == '\r') _getcharskipr();
for (_cur = 0; (_c = _getcharskipr()) != '\n' && _c; x[_cur++] = _c);
x[_cur] = '\0';
}
void read(std::string &x) {
if (!_tempInputBuf) assert(0);
read(_tempInputBuf); x = std::string(_tempInputBuf, _cur);
}
void readln(std::string &x) {
if (!_tempInputBuf) assert(0);
readln(_tempInputBuf); x = std::string(_tempInputBuf, _cur);
}
template <class T> typename std::enable_if<
is_iterator<typename T::iterator>::value>::type read(T &x);
template <class T1, class T2>
void read(std::pair<T1, T2> &x) { read(x.first); read(x.second); }
template <class T> void read(std::complex<T> &x) {
T _re, _im; read(_re); read(_im); x.real(_re); x.imag(_im);
}
template <class T, class ...Ts> void read(T &x, Ts &&...xs);
template <class It>
typename std::enable_if<is_iterator<It>::value>::type read(It st, It en) {
for (It _i = st; _i != en; _i++) read(*_i);
}
template <class It, class ...Ts>
typename std::enable_if<is_iterator<It>::value>::type read(
It st, It en, Ts &&...xs) {
read(st, en); read(std::forward<Ts>(xs)...);
}
template <class T> typename std::enable_if<
is_iterator<typename T::iterator>::value>::type read(T &x) {
for (auto &&_i : x) read(_i);
}
template <class T, class...Ts> void read(T &x, Ts &&...xs) {
read(x); read(std::forward<Ts>(xs)...);
}
void setInput(FILE *file) { *(_inputPtr = _inputBuf) = 0; _input = file; }
void setInput(const std::string &s) {
*(_inputPtr = _inputBuf) = 0; _input = fopen(s.c_str(), "r");
}
int _flushBuf() {
fwrite(_outputBuf, 1, _outputPtr, _output); return _outputPtr = 0;
}
void flush() { _flushBuf(); fflush(_output); }
int _putchar(char x) {
_outputBuf[_outputPtr == _bufSize ? _flushBuf() : _outputPtr] = x;
return _outputPtr++;
}
void _writeTempBuf(char x) { _tempOutputBuf[_tempOutputPtr++] = x; }
void _writeOutput() {
for (int _i = 0; _i < _tempOutputPtr; _putchar(_tempOutputBuf[_i++]));
_tempOutputPtr = 0;
}
void _fillBuf(int x) { for (int _i = 0; _i < x; _i++) _putchar(_fill); }
void _flushNumBuf() { for (; _numPtr; _writeTempBuf(_numBuf[--_numPtr])); }
void _flushTempBuf() {
int _tempLen = _tempOutputPtr; _fillBuf(_width - _tempLen);
_writeOutput(); _fillBuf(-_width - _tempLen);
}
void setPrecision(int x) {
_precision = x; _precisionBase = 1;
for (int _i = 0; _i < x; _i++, _precisionBase *= 10);
}
void setWidth(int x) { _width = x; }
void setFill(char x) { _fill = x; }
void setDelimiter(const char *x) { _delimiter = x; }
void setDelimiter(const std::string &x) { _delimiter = x.c_str(); }
void writeDelimiter() {
for (const char *_p = _delimiter; *_p; _putchar(*_p++));
}
template <class T> void _writeNum(const T &x, int digits) {
_cnt = 0;
for (T _y = x; _y; _y /= 10, _cnt++) _numBuf[_numPtr++] = '0' + _y % 10;
for (; _cnt < digits; _cnt++) _numBuf[_numPtr++] = '0';
_flushNumBuf();
}
template <class F> void _writeFloatingPoint(const F &x) {
unsigned long long _I = x, _F = (x - _I) * _precisionBase + F(0.5);
if (_F >= _precisionBase) { _I++; _F = 0; }
_writeNum(_I, 1); _writeTempBuf('.'); _writeNum(_F, _precision);
}
void write(const bool &x) {
if (x) _writeTempBuf('1');
else _writeTempBuf('0');
_flushTempBuf();
}
void write(const char &x) { _writeTempBuf(x); _flushTempBuf(); }
void write(const char *x) {
int _slen = strlen(x); _fillBuf(_width - _slen);
for (const char *_p = x; *_p; _putchar(*_p++));
_fillBuf(-_width - _slen);
}
void write(const std::string &x) {
_fillBuf(_width - int(x.length()));
for (int _i = 0; _i < int(x.length()); _putchar(x[_i++]));
_fillBuf(-_width - int(x.length()));
}
template <class I>
typename std::enable_if<std::is_integral<I>::value
&& std::is_signed<I>::value>::type write(const I &x) {
using UI = typename std::make_unsigned<I>::type;
if (x < 0) { _writeTempBuf('-'); _writeNum(UI(-x), 1); }
else { _writeNum(UI(x), 1); }
_flushTempBuf();
}
template <class UI>
typename std::enable_if<std::is_integral<UI>::value
&& std::is_unsigned<UI>::value >::type write(const UI &x) {
_writeNum(x, 1); _flushTempBuf();
}
template <class F>
typename std::enable_if<std::is_floating_point<F>::value>::type write(
const F &x) {
if (std::isnan(x)) write("NaN");
else if (std::isinf(x)) write("Inf");
else if (x < 0) { _writeTempBuf('-'); _writeFloatingPoint(-x); }
else _writeFloatingPoint(x);
_flushTempBuf();
}
#if __SIZEOF_INT128__
void write(const __int128_t &x) {
if (x < 0) { _writeTempBuf('-'); _writeNum(__uint128_t(-x), 1); }
else _writeNum(__uint128_t(x), 1);
_flushTempBuf();
}
void write(const __uint128_t &x) { _writeNum(x, 1); _flushTempBuf(); }
#endif
template <class T> typename std::enable_if<
is_iterator<typename T::iterator>::value>::type write(const T &x);
template <class T1, class T2> void write(const std::pair<T1, T2> &x) {
write(x.first); writeDelimiter(); write(x.second);
}
template <class T> void write(const std::complex<T> &x) {
write(x.real()); writeDelimiter(); write(x.imag());
}
template <class T, class ...Ts> void write(const T &x, Ts &&...xs);
template <class It>
typename std::enable_if<is_iterator<It>::value>::type write(It st, It en) {
bool _first = 1; for (It _i = st; _i != en; _i++) {
if (_first) _first = 0;
else writeDelimiter();
write(*_i);
}
}
template <class It, class ...Ts>
typename std::enable_if<is_iterator<It>::value>::type write(
It st, It en, Ts &&...xs) {
write(st, en); writeDelimiter(); write(std::forward<Ts>(xs)...);
}
template <class T> typename std::enable_if<
is_iterator<typename T::iterator>::value>::type write(const T &x) {
bool _first = 1; for (auto &&_i : x) {
if (_first) _first = 0;
else writeDelimiter();
write(_i);
}
}
template <class T, class ...Ts> void write(const T &x, Ts &&...xs) {
write(x); writeDelimiter(); write(std::forward<Ts>(xs)...);
}
void writeln() { _putchar('\n'); }
template <class ...Ts>
void writeln(Ts &&...xs) { write(std::forward<Ts>(xs)...); _putchar('\n'); }
struct IOManager {
~IOManager() { flush(); if (_tempInputBuf) delete[](_tempInputBuf); }
};
std::unique_ptr<IOManager> iomanager = std::unique_ptr<IOManager>(
new IOManager());
void setOutput(FILE *file) { flush(); _output = file; }
void setOutput(const std::string &s) {
flush(); _output = fopen(s.c_str(), "w");
}
template <class ...Ts> void debug(Ts &&...xs) {
FILE *_temp = _output; setOutput(_error);
write(std::forward<Ts>(xs)...); setOutput(_temp);
}
template <class...Ts> void debugln(Ts &&...xs) {
FILE *_temp = _output; setOutput(_error);
writeln(std::forward<Ts>(xs)...); setOutput(_temp);
}
void setError(FILE *file) { flush(); _error = file; }
void setError(const std::string &s) {
flush(); _error = fopen(s.c_str(), "w");
}
#undef INTERACTIVE_INPUT
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// With C++ 11 not having std::make_unique defined, a simple implementation
// of make_unique is provided
// Template Arguments:
// T: the type of the object to construct
// ...Args: variadic arguments of the types of the arguments being passed to
// the object being constructor
// Return Value:
// a unique_ptr of type T
// Tested:
// https://dmoj.ca/problem/set
template <class T, class ...Args> unique_ptr<T> _make_unique(Args &&...args) {
return unique_ptr<T>(new T(forward<Args>(args)...));
}
#define make_unique _make_unique
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Functions for __int128_t
__int128_t abs(__int128_t a) { return a >= 0 ? a : -a; }
#define FUN(name) \
long double name(__int128_t a) { return name((long double)(a)); }
FUN(sqrt) FUN(sin) FUN(cos) FUN(tan) FUN(asin) FUN(acos) FUN(atan)
#undef FUN
long double atan2(__int128_t y, __int128_t x) {
return atan2((long double)(y), (long double)(x));
}
// 128-bit integers IO operations
__uint128_t stoui128(const string &s) {
__uint128_t x = 0;
for (int i = 0; i < int(s.length()); i++) x = x * 10 + (s[i] - '0');
return x;
}
__int128_t stoi128(const string &s) {
__int128_t x = 0; int i = 0; bool neg = false;
if (s[0] == '-') { neg = true; i++; }
for (; i < int(s.length()); i++) x = x * 10 + (s[i] - '0');
if (neg) x *= -1;
return x;
}
istream &operator >> (istream &stream, __uint128_t &x) {
string s; stream >> s; x = stoui128(s); return stream;
}
istream &operator >> (istream &stream, __int128_t &x) {
string s; stream >> s; x = stoi128(s); return stream;
}
string to_string(__uint128_t x) {
if (x == 0) return string("0");
string s; for (; x > 0; x /= 10) s.push_back('0' + x % 10);
reverse(s.begin(), s.end()); return s;
}
string to_string(__int128_t x) {
string s = to_string(__uint128_t(x >= 0 ? x : -x));
if (x < 0) s.insert(s.begin(), '-');
return s;
}
ostream &operator << (ostream &stream, __uint128_t x) {
return stream << to_string(x);
}
ostream &operator << (ostream &stream, __int128_t x) {
return stream << to_string(x);
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Static allocator to improve the speed of memory access
// Tested:
// https://dmoj.ca/problem/ioi12p3
constexpr const int MB = 200;
char buf[MB << 20]; size_t buf_ind = sizeof(buf);
// Overloading new and delete operators
void *operator new (size_t n) { return (void *) &buf[buf_ind -= n]; }
void *operator new[] (size_t n) { return (void *) &buf[buf_ind -= n]; }
void operator delete (void *) {}
void operator delete[] (void *) {}
void operator delete (void *, size_t) {}
void operator delete[] (void *, size_t) {}
// Allocator class to be used with stl data structures
template <class T> struct StaticAllocator {
typedef T value_type; StaticAllocator() {}
template <class U> StaticAllocator(const U &) {}
T *allocate(size_t n) {
(buf_ind -= n * sizeof(T)) &= 0 - alignof(T); return (T*) (buf + buf_ind);
}
void deallocate(T *, size_t) {}
};
// 32-bit pointer
#define CMP(op, body) bool operator op (small_ptr p) const { return body; }
template <class T> struct small_ptr {
unsigned ind;
small_ptr(T *p = 0) : ind(p ? unsigned((char *) p - buf) : 0) {}
T &operator * () const { return *(T *) (buf + ind); }
T *operator -> () const { return &**this; }
T &operator [] (int a) const { return (&**this)[a]; }
explicit operator bool () const { return ind; }
bool operator < (small_ptr p) const { return ind < p.ind; }
CMP(<=, !(p < *this)) CMP(>, p < *this) CMP(>=, !(*this < p))
CMP(==, !(*this < p) && !(p < *this)) CMP(!=, *this < p || p < *this)
};
#undef CMP
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Functions for epsilon comparison of floating points
using T = long double;
constexpr const T EPS = 1e-9;
bool lt(T a, T b) { return a + EPS < b; }
bool le(T a, T b) { return !lt(b, a); }
bool gt(T a, T b) { return lt(b, a); }
bool ge(T a, T b) { return !lt(a, b); }
bool eq(T a, T b) { return !lt(a, b) && !lt(b, a); }
bool ne(T a, T b) { return lt(a, b) || lt(b, a); }
int sgn(T a) { return lt(a, 0) ? -1 : lt(0, a) ? 1 : 0; }
struct eps_lt { bool operator () (T a, T b) const { return lt(a, b); } };
struct eps_le { bool operator () (T a, T b) const { return !lt(b, a); } };
struct eps_gt { bool operator () (T a, T b) const { return lt(b, a); } };
struct eps_ge { bool operator () (T a, T b) const { return !lt(a, b); } };
struct eps_eq {
bool operator () (T a, T b) const { return !lt(a, b) && !lt(b, a); }
};
struct eps_ne {
bool operator () (T a, T b) const { return lt(a, b) || lt(b, a); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#if __cplusplus < 201402L
#include "MakeUnique.h"
#endif
using namespace std;
// 32-bit and 64-bit random number generators using a time-based seed sequence
// Tested:
// https://dmoj.ca/problem/set
// https://atcoder.jp/contests/agc026/tasks/agc026_c
// https://dmoj.ca/problem/ds4
// https://judge.yosupo.jp/problem/associative_array
seed_seq seq {
uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::steady_clock::now().time_since_epoch()).count()),
uint64_t(__builtin_ia32_rdtsc()),
uint64_t(uintptr_t(make_unique<char>().get()))
};
mt19937 rng(seq); mt19937_64 rng64(seq);
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Combine struct used for maximum non empty subarray
// for Segment Trees, Dynamic Range Operations, Link Cut Trees, etc
// Template Arguments:
// T: the type of the element
// Functions:
// makeData(v): returns a MaxSubarraySumCombine<T>::Data initialized with v
// Time Complexity:
// all functions: O(1)
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// https://www.spoj.com/problems/GSS1/
// https://dmoj.ca/problem/dmpg17g2
// https://mcpt.ca/problem/seq3
// https://dmoj.ca/problem/acc1p1
// https://dmoj.ca/problem/noi05p2
template <class T> struct MaxSubarraySumCombine {
struct Data { T pre, suf, sum, maxSum; };
using Lazy = T;
static Data makeData(const T &v) {
Data ret; ret.pre = ret.suf = ret.sum = ret.maxSum = v; return ret;
}
static Data qdef() {
Data ret = makeData(numeric_limits<T>::lowest()); ret.sum = T();
return ret;
}
static Lazy ldef() { return numeric_limits<T>::lowest(); }
static Data merge(const Data &l, const Data &r) {
if (l.maxSum == numeric_limits<T>::lowest()) return r;
if (r.maxSum == numeric_limits<T>::lowest()) return l;
Data ret; ret.pre = max(l.pre, l.sum + r.pre);
ret.suf = max(l.suf + r.sum, r.suf); ret.sum = l.sum + r.sum;
ret.maxSum = max(max(l.maxSum, r.maxSum), l.suf + r.pre); return ret;
}
template <class IndexType>
static Data applyLazy(const Data &, const Lazy &r, IndexType k) {
Data ret; ret.pre = ret.suf = ret.maxSum = max(Lazy(r * k), r);
ret.sum = r * k; return ret;
}
static Lazy mergeLazy(const Lazy &, const Lazy &r) { return r; }
static void revData(Data &v) { swap(v.pre, v.suf); }
template <class IndexType> static Data getSegmentVdef(IndexType) {
return makeData(IndexType());
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Maintains the aggregate value of a sequence of elements over an associative
// operation where elements can be pushed to the back and popped from the
// front of the queue
// Template Arguments:
// T: the type of each element
// Op: a struct with the operation (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
/// std::function
// Required Functions:
// operator (l, r): merges the values l and r, must be associative
// Constructor Arguments:
// qdef: the query default value
// op: an instance of the Op struct
// Functions:
// reserve(v): reserves space for N elements
// push(v): pushes the value v into the queue
// getAgg(): returns the aggregate value of the elements in the queue
// aggregated in the order they were pushed
// pop(): pops from the front of the queue
// In practice, has a moderate constant
// Time Complexity:
// constructor, getAgg: O(1)
// reserve: O(N)
// push: O(1) if reserved is called beforehand, O(1) amortized otherwise
// pop: O(1) amortized
// Memory Complexity: O(N)
// Tested:
// https://judge.yosupo.jp/problem/queue_operate_all_composite
template <class T, class Op> struct SWAG {
vector<T> q; T qdef, backAgg; int front, mid; Op op;
SWAG(const T &qdef, Op op = Op())
: qdef(qdef), backAgg(qdef), front(0), mid(0), op(op) {}
void reserve(int N) { q.reserve(N); }
void push(const T &v) { q.push_back(v); backAgg = op(backAgg, v); }
T getAgg() const { return front == mid ? backAgg : op(q[front], backAgg); }
void pop() {
if (front++ < mid) return;
for (int i = int(q.size()) - 2; i >= mid; i--) q[i] = op(q[i], q[i + 1]);
mid = q.size(); backAgg = qdef;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include "RandomizedHash.h"
using namespace std;
using namespace __gnu_pbds;
// Policy-based data structures for ordered and unordered sets and maps,
// as well as priority queues
// Unordered hashmap with randomized hash
// API is similar to set and map in C++ 03,
// except there is no count function (use member function find instead)
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/gp_hash_table.html
// and https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/container_base.html
// contain most of the public methods
// In practice, has a moderate constant, faster than unordered_set
// and unordered_map (at the expense of using more memory), but slower than
// a sorted vector + binary search
// Time Complexity: O(1) on average, O(N) worst case
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/set
// https://atcoder.jp/contests/agc026/tasks/agc026_c
// https://judge.yosupo.jp/problem/associative_array
template <class K, class H = rand_hash, class ...Ts>
using hashset = gp_hash_table<K, null_type, H, Ts ...>;
template <class K, class V, class H = rand_hash, class ...Ts>
using hashmap = gp_hash_table<K, V, H, Ts ...>;
// Ordered treeset and treemap
// API is similar to set and map in C++ 03
// There are additional functions to find the kth element with find_by_order(k)
// and find the 0-indexed rank of a key with order_of_key(key)
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/tree.html
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/basic_tree.html
// and https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/container_base.html
// contain most of the public methods
// In practice, has a moderate constant, slower that set and map as well as
// custom written balanced binary search trees
// Time Complexity: O(log N)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/ds4
// https://codeforces.com/contest/1093/problem/E
// http://www.usaco.org/index.php?page=viewproblem2&cpid=898
template <class K, class C = less<K>, class ...Ts>
using treeset = tree<K, null_type, C, rb_tree_tag,
tree_order_statistics_node_update, Ts ...>;
template <class K, class V, class C = less<K>, class ...Ts>
using treemap = tree<K, V, C, rb_tree_tag,
tree_order_statistics_node_update, Ts ...>;
// Priority Queue
// API is similar to std::priority_queue in C++ 03
// There are additional functions to modify an existing key with
// PQ.modify(iter, key) where ptr is an iterator returned from push,
// and merge heap B into A with A.join(B)
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/priority_queue.html
// contains most of the public methods
// There are 5 different types of tags to specify the underlying data structure
// of the heap, which can be seen at
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/pq_design.html
// https://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/pq_performance_tests.html
// contains a summary of the time complexities of each tag
// On average, pairing_heap_tag performs the best out of all tags
// In practice, has a moderate constant, slower than std::priority_queue
// join is only slightly faster than small to large merging when
// amortization applies
// Time Complexity (for pairing_heap_tag):
// push, join: O(1)
// pop: O(log N)
// modify, erase: O(log N) amortized, O(N) worst case
// Memory Complexity (for pairing_heap_tag): O(N)
// Tested:
// https://dmoj.ca/problem/apio16p2
template <class T, class C = less<T>, class Tag = pairing_heap_tag>
using pbdsheap = __gnu_pbds::priority_queue<T, C, Tag>;
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Maintains the difference between adjacent elements in a sorted multiset
// Template Arguments:
// T: the type of the elements being stored
// Fields:
// vals: a mapping from the values in the multiset to its frequency
// diffs: a mapping from the difference of each pair of adjacent elements in
// the multiset to its frequency
// Functions:
// insert(v): inserts the value v into the multiset
// erase(v); erases the value of v from the multiset assuming v exists
// In practice, has a moderate constant
// Time Complexity:
// insert, erase: O(log N)
// Memory Complexity: O(N)
// Tested:
// https://codeforces.com/contest/1418/problem/D
// https://dmoj.ca/problem/coci19c3p3
// https://dmoj.ca/problem/year2018p6
template <class T> struct SetDifferenceMaintenance {
map<T, int> vals, diffs;
void insert(T v) {
auto nxt = vals.lower_bound(v); if (nxt != vals.end() && nxt->first == v) {
++nxt->second; ++diffs[T()]; return;
}
if (nxt != vals.begin()) {
auto prv = prev(nxt); diffs[v - prv->first]++; if (nxt != vals.end()) {
auto it = diffs.find(nxt->first - prv->first);
if (--it->second == 0) diffs.erase(it);
}
}
if (nxt != vals.end()) ++diffs[nxt->first - v];
vals.emplace_hint(nxt, v, 1);
}
void erase(T v) {
auto cur = vals.find(v); if (cur->second >= 2) {
--cur->second; auto it = diffs.find(T());
if (--it->second == 0) diffs.erase(it);
return;
}
auto nxt = vals.erase(cur); if (nxt != vals.end()) {
auto it = diffs.find(nxt->first - v);
if (--it->second == 0) diffs.erase(it);
}
if (nxt != vals.begin()) {
auto prv = prev(nxt); auto it = diffs.find(v - prv->first);
if (--it->second == 0) diffs.erase(it);
if (nxt != vals.end()) ++diffs[nxt->first - prv->first];
}
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sparse Table supporting associative and idempotent range queries on
// a static array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Op: a struct with the operation (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
/// std::function
// Required Functions:
// operator (l, r): combines the values l and r, must be
// associative and idempotent
// Constructor Arguments:
// A: a vector of type T
// op: an instance of the Op struct
// Functions:
// query(l, r): returns the aggregate value of the elements in
// the range [l, r]
// In practice, the constructor has a small constant,
// query has a moderate constant, but still faster than segment trees,
// slightly faster than Fischer Heun Structure, and performs similarly to
// disjoint sparse tables
// Time Complexity:
// constructor: O(N log N)
// query: O(1)
// Memory Complexity: O(N log N)
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/ncco3d2p1
// https://www.spoj.com/problems/RMQSQ/
// https://judge.yosupo.jp/problem/staticrmq
template <class T, class Op> struct SparseTable {
int N; vector<vector<T>> ST; Op op;
SparseTable(vector<T> A, Op op = Op())
: N(A.size()), ST(N == 0 ? 0 : __lg(N) + 1, move(A)), op(op) {
for (int i = 0; i < int(ST.size()) - 1; i++) {
ST[i + 1] = ST[0]; for (int j = 0; j < N; j++)
ST[i + 1][j] = op(ST[i][j], ST[i][min(j + (1 << i), N - 1)]);
}
}
T query(int l, int r) {
int i = __lg(r - l + 1); return op(ST[i][l], ST[i][r - (1 << i) + 1]);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Helper struct to compare two pairs
template <class Cmp> struct PairCmp {
Cmp cmp; PairCmp(Cmp cmp = Cmp()) : cmp(cmp) {}
template <class T>
bool operator () (const pair<T, T> &a, const pair<T, T> &b) const {
if (cmp(a.first, b.first)) return true;
if (cmp(b.first, a.first)) return false;
return cmp(a.second, b.second);
}
};
// Struct representing no operation
struct NoOp {
template <class T> void operator () (const T &, const T &) const {}
};
// Adding and removing half-open intervals from a set such that the combined
// intervals are disjoint
// Template Arguments:
// T: the type of the endpoints of the intervals
// Cmp: the comparator to compare two points
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Add: a struct with a callback function (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
// std::function
// Required Functions:
// operator (l, r): adds the interval [l, r) to the set of
// disjoint intervals
// Rem: a struct with a callback function (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
// std::function
// Required Functions:
// operator (l, r): removes the interval [l, r) from the set of
// disjoint intervals
// Constructor Arguments:
// cmp: an instance of Cmp
// add: an instance of Add
// rem: an instance of Rem
// Functions:
// addInterval(L, R): adds an interval [L, R) to the set
// removeInterval(L, R): removes the interval [L, R) from the set
// In practice, has a moderate constant
// Time Complexity:
// addInterval, removeInterval: O(log N) amortized
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/art6
// http://www.usaco.org/index.php?page=viewproblem2&cpid=973
template <class T, class Cmp = less<T>, class Add = NoOp, class Rem = NoOp>
struct IntervalUnion : public set<pair<T, T>, PairCmp<Cmp>> {
Cmp cmp; Add add; Rem rem;
IntervalUnion(Cmp cmp = Cmp(), Add add = Add(), Rem rem = Rem())
: set<pair<T, T>, PairCmp<Cmp>>(PairCmp<Cmp>(cmp)),
cmp(cmp), add(add), rem(rem) {}
typename set<pair<T, T>, PairCmp<Cmp>>::iterator addInterval(T L, T R) {
if (!cmp(L, R) && !cmp(R, L)) return this->end();
auto it = this->lower_bound(make_pair(L, R)), before = it;
while (it != this->end() && !cmp(R, it->first)) {
R = max(R, it->second, cmp); rem(it->first, it->second);
before = it = this->erase(it);
}
if (it != this->begin() && !cmp((--it)->second, L)) {
L = min(L, it->first, cmp); R = max(R, it->second, cmp);
rem(it->first, it->second); this->erase(it);
}
add(L, R); return this->emplace_hint(before, L, R);
}
void removeInterval(T L, T R) {
if (!cmp(L, R) && !cmp(R, L)) return;
auto it = addInterval(L, R); auto r2 = it->second;
if (!cmp(it->first, L) && !cmp(L, it->first)) {
rem(it->first, it->second); this->erase(it);
} else (T &) it->second = L;
if (cmp(R, r2) || cmp(r2, R)) { add(R, r2); this->emplace(R, r2); }
}
};
// Given a set of intervals (by the PairCmp struct), combine
// them into disjoint half-open intervals of the form [L, R)
// Range is modified in-place
// Template Arguments:
// T: the type of the endpoints of the intervals
// Cmp: the comparator to compare two points
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Function Arguments:
// A: a reference to a vector of pairs with the first element being the
// inclusive left bound of the interval and the second element being the
// exclusive right bound of the interval
// cmp: an instance of the Cmp struct
// Return Value: a reference to the modified vector
// In practice, has a small constant
// Time Complexity: O(N log N)
// Memory Complexity: O(1)
// Tested:
// https://dmoj.ca/problem/art6
// https://open.kattis.com/problems/drawingcircles
template <class T, class Cmp = less<T>>
vector<pair<T, T>> &intervalUnion(vector<pair<T, T>> &A, Cmp cmp = Cmp()) {
sort(A.begin(), A.end(), [&] (const pair<T, T> &a, const pair<T, T> &b) {
if (cmp(a.first, b.first)) return true;
if (cmp(b.first, a.first)) return false;
return cmp(a.second, b.second);
});
int i = 0; for (int l = 0, r = 0, N = A.size(); l < N; l = r, i++) {
A[i] = A[l]; for (r = l + 1; r < N && !cmp(A[i].second, A[r].first); r++)
A[i].second = max(A[i].second, A[r].second, cmp);
}
A.erase(A.begin() + i, A.end()); return A;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "FischerHeunStructure.h"
using namespace std;
// Fischer Heun Structure in 2 dimensions supporting range maximum queries on
// a static 2D array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Cmp: the comparator to compare two values,
// convention is same as std::priority_queue in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// mask_t: the type to store a bitmask, should have around log(N) bits
// Constructor Arguments:
// A: a 2D vector of elements of type T
// cmp: an instance of the Cmp struct
// Functions:
// query(u, d, l, r): returns the maximum element (based on the comparator)
// in the range [u, d] in the first dimension and [l, r] in
// the second dimension
// In practice, the constructor has a moderate constant and is significantly
// faster than sparse table's constructor, query has a moderate constant and
// is slightly slower than sparse table's query
// Time Complexity:
// constructor: O(N log (N) (M + M / B log (M / B))), where B is
// the number of bits in mask_t
// queryInd, query: O(1) assuming bitshift for mask_t is O(1)
// Memory Complexity: O(N log (N) (M + M / B log (M / B))) assuming mask_t is
// O(1) memory
// Tested:
// Fuzz and Stress Tested
// http://www.usaco.org/index.php?page=viewproblem2&cpid=972
template <class T, class Cmp = less<T>, class mask_t = uint32_t>
struct FischerHeunStructure2D {
int N, M, lgN;
vector<vector<FischerHeunStructure<T, Cmp, mask_t>>> FHS; Cmp cmp;
T cmpVal(const T &a, const T &b) { return cmp(a, b) ? b : a; }
FischerHeunStructure2D(vector<vector<T>> A, Cmp cmp = Cmp())
: N(A.size()), M(N == 0 ? 0 : A[0].size()),
lgN(N == 0 ? 0 : __lg(N) + 1), FHS(lgN), cmp(cmp) {
for (int i = 0; i < lgN; i++) {
FHS[i].reserve(N);
for (int j = 0; j < N; j++) FHS[i].emplace_back(A[j], cmp);
if (i < lgN - 1) for (int j = 0; j < N; j++) for (int k = 0; k < M; k++)
A[j][k] = cmpVal(A[j][k], A[min(j + (1 << i), N - 1)][k]);
}
}
T query(int u, int d, int l, int r) {
int i = __lg(d - u + 1);
return cmpVal(FHS[i][u].query(l, r), FHS[i][d - (1 << i) + 1].query(l, r));
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// A map that supports insertions of a key value pair (k, v) and
// queries for the maximum value (based on VCmp) of v for
// all keys less than or equal to (based on KCmp) k
// Template Arguments:
// K: the type of the key
// V: the type of the value
// KCmp: the comparator for the key, convention is the same as
// std::map in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// VCmp: the comparator for the value, convention is the same as
// std::priority_queue in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// kcmp: an instance of KCmp
// vcmp: an instance of VCmp
// NEG_INF: a value for negative infinity
// Functions:
// add(k, v): adds the key value pair (k, v) and maintains the pareto
// optimums
// queryPrefix(k): returns the maximum value (based on VCmp) of v for
// all keys less than or equal to (based on KCmp) k, or NEG_INF if no such
// keys exist
// queryProperPrefix(k): returns the maximum value (based on VCmp) of v for
// all keys less than or equal to (based on KCmp) k, or NEG_INF if no such
// keys exist
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(1)
// add: O(log N) amortized
// queryPrefix, queryProperPrefix: O(log N)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/dpq
template <class K, class V, class KCmp = less<K>, class VCmp = less<V>>
struct ParetoMap : public map<K, V, KCmp> {
using M = map<K, V, KCmp>; VCmp vcmp; V NEG_INF;
ParetoMap(KCmp kcmp = KCmp(), VCmp vcmp = VCmp(),
V NEG_INF = numeric_limits<V>::lowest())
: M(kcmp), vcmp(vcmp), NEG_INF(NEG_INF) {}
void add(K k, V v) {
auto it = M::lower_bound(k);
if (it != M::begin() && !VCmp()(prev(it)->second, v)) return;
while (it != M::end() && !VCmp()(v, it->second)) it = M::erase(it);
M::emplace_hint(it, k, v);
}
V queryPrefix(K k) const {
auto it = M::upper_bound(k);
return it == M::begin() ? NEG_INF : prev(it)->second;
}
V queryProperPrefix(K k) const {
auto it = M::lower_bound(k);
return it == M::begin() ? NEG_INF : prev(it)->second;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "BitPrefixSumArray.h"
using namespace std;
// Wavelet Matrix supporting rank and select operations for a subarray
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of the element of the array
// Cmp: the comparator to compare two elements
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// A: a vector of type T of the values in the array
// cmp: an instance of the Cmp struct
// Functions:
// rank(l, r, k): returns the number of elements less than k (using the
// comparator) in the range [l, r]
// count(l, r, lo, hi) returns the number of elements not less than lo and
// not greater than hi (using the comparator) in the range [l, r]
// select(l, r, k): returns the kth element (0-indexed) sorted by the
// comparator if the range [l, r] was sorted
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N log N)
// rank, count, select: O(log N)
// Memory Complexity: O(N + (N log N) / 64)
// Tested:
// https://www.spoj.com/problems/KQUERY/ (rank/count)
// https://www.spoj.com/problems/KQUERYO/ (rank/count)
// https://codeforces.com/contest/1284/problem/D (rank/count)
// https://www.spoj.com/problems/MKTHNUM/ (select)
// https://judge.yosupo.jp/problem/range_kth_smallest (select)
template <class T, class Cmp = less<T>> struct WaveletMatrix {
#define clt [&] (const T &a, const T &b) { return cmp(a, b); }
#define cle [&] (const T &a, const T &b) { return !cmp(b, a); }
int N, H; Cmp cmp; vector<int> mid; vector<BitPrefixSumArray> B; vector<T> S;
WaveletMatrix(vector<T> A, Cmp cmp = Cmp())
: N(A.size()), H(N == 0 ? 0 : __lg(N) + 1), cmp(cmp), mid(H),
B(H, BitPrefixSumArray(N)), S(move(A)) {
vector<T> temp = S; sort(S.begin(), S.end(), cmp); vector<int> C(N);
for (int i = 0; i < N; i++)
C[i] = lower_bound(S.begin(), S.end(), temp[i], cmp) - S.begin();
for (int h = H - 1; h >= 0; h--) {
int ph = 1 << h; for (int i = 0; i < N; i++) B[h].set(i, C[i] <= ph - 1);
mid[h] = stable_partition(C.begin(), C.end(), [&] (int v) {
return v <= ph - 1;
}) - C.begin();
B[h].build(); for (int i = mid[h]; i < N; i++) C[i] -= ph;
}
}
template <class F> int cnt(int l, int r, const T &v, F f) {
int ret = 0; for (int cur = 0, h = H - 1; h >= 0; h--) {
int ph = 1 << h, ql = B[h].query(l - 1), qr = B[h].query(r);
if (cur + ph - 1 >= N || f(v, S[cur + ph - 1])) { l = ql; r = qr - 1; }
else { cur += ph; ret += qr - ql; l += mid[h] - ql; r += mid[h] - qr; }
}
return ret;
}
int rank(int l, int r, const T &v) { return cnt(l, r, v, cle); }
int count(int l, int r, const T &lo, const T &hi) {
return cnt(l, r, hi, clt) - cnt(l, r, lo, cle);
}
T select(int l, int r, int k) {
int cur = 0; for (int h = H - 1; h >= 0; h--) {
int ql = B[h].query(l - 1), qr = B[h].query(r);
if (k < qr - ql) { l = ql; r = qr - 1; }
else { cur += 1 << h; k -= qr - ql; l += mid[h] - ql; r += mid[h] - qr; }
}
return S[cur];
}
#undef clt
#undef cle
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// 2D Sparse Table supporting associative and idempotent range queries on
// a static 2D array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Op: a struct with the operation (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
/// std::function
// Required Functions:
// operator (l, r): combines the values l and r, must be
// associative and idempotent
// Constructor Arguments:
// A: a 2D vector of elements of type T
// op: an instance of the Op struct
// Functions:
// query(u, d, l, r): returns the aggregate value of the elements in
// the range [u, d] in the first dimension and [l, r] in
// the second dimension
// In practice, the constructor has a small constant,
// query has a moderate constant, but still faster than segment trees
// Time Complexity:
// constructor: O(NM log N log M)
// query: O(1)
// Memory Complexity: O(NM log N log M)
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/2drmq
// http://www.usaco.org/index.php?page=viewproblem2&cpid=972
template <class T, class Op> struct SparseTable2D {
int N, M, lgN, lgM; vector<vector<vector<vector<T>>>> ST; Op op;
SparseTable2D(vector<vector<T>> A, Op op = Op())
: N(A.size()), M(N == 0 ? 0 : A[0].size()),
lgN(N == 0 ? 0 : __lg(N) + 1), lgM(M == 0 ? 0 : __lg(M) + 1),
ST(lgN, vector<vector<vector<T>>>(lgM, move(A))), op(op) {
for (int ir = 0; ir < lgN; ir++) {
for (int ic = 0; ic < lgM - 1; ic++)
for (int jr = 0; jr < N; jr++) for (int jc = 0; jc < M; jc++)
ST[ir][ic + 1][jr][jc] = op(
ST[ir][ic][jr][jc], ST[ir][ic][jr][min(jc + (1 << ic), M - 1)]);
if (ir < lgN - 1) for (int jr = 0; jr < N; jr++)
for (int jc = 0; jc < M; jc++) ST[ir + 1][0][jr][jc] = op(
ST[ir][0][jr][jc], ST[ir][0][min(jr + (1 << ir), N - 1)][jc]);
}
}
T query(int u, int d, int l, int r) {
int ir = __lg(d - u + 1), ic = __lg(r - l + 1);
return op(op(ST[ir][ic][u][l],
ST[ir][ic][d - (1 << ir) + 1][r - (1 << ic) + 1]),
op(ST[ir][ic][d - (1 << ir) + 1][l],
ST[ir][ic][u][r - (1 << ic) + 1]));
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Disjoint Sparse Table supporting associative range queries on a static array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Op: a struct with the operation (can also be of type
// std::function<T(T, T)>); in practice, custom struct is faster than
/// std::function
// Required Functions:
// operator (l, r): combines the values l and r, must be associative
// Constructor Arguments:
// A: a vector of type T
// op: an instance of the Op struct
// Functions:
// query(l, r): returns the aggregate value of the elements in
// the range [l, r]
// In practice, the constructor has a small constant,
// query has a moderate constant, but still faster than segment trees,
// slightly faster than Fischer Heun Structure, and performs similarly to
// sparse tables
// Time Complexity:
// constructor: O(N log N)
// query: O(1)
// Memory Complexity: O(N log N)
// Tested:
// Fuzz and Stress Tested
// https://www.spoj.com/problems/GSS1/
// https://www.spoj.com/problems/GSS5/
// https://judge.yosupo.jp/problem/staticrmq
template <class T, class Op> struct DisjointSparseTable {
int N; vector<vector<T>> ST; Op op;
DisjointSparseTable(vector<T> A, Op op = Op())
: N(A.size()), ST(N == 0 ? 0 : __lg(N * 2 - 1) + 1, move(A)), op(op) {
for (int i = 1; i < int(ST.size()); i++) {
ST[i] = ST[0]; for (int j = 0, len = 1 << i; j < N; j += len) {
int k = min(j + len / 2, N) - 1; T agg = ST[i][k] = ST[0][k];
for (k--; k >= j; k--) agg = ST[i][k] = op(ST[0][k], agg);
k = j + len / 2; if (k < N) agg = ST[i][k] = ST[0][k];
for (k++; k < min(j + len, N); k++) agg = ST[i][k] = op(agg, ST[0][k]);
}
}
}
T query(int l, int r) {
if (l == r) return ST[0][l];
int i = __lg(l ^ r) + 1; return op(ST[i][l], ST[i][r]);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Prefix Sum Array supporting range sum queries where all values are 0 or 1,
// and all values are set before all queries
// Indices are 0-indexed and ranges are inclusive
// Constructor Arguments:
// N: the size of the array
// Functions:
// set(i, v): sets the index i with the boolean value v
// get(i): gets the value of index i
// build(): builds the prefix sum array, must be called before query can
// be called after a set operation
// query(r): queries the sum of the range [0, r]
// query(l, r): queries the sum of the range [l, r]
// In practice, has a moderate constant, performs faster than a regular prefix
// sum array and uses less memory
// Time Complexity:
// constructor, set, get, query: O(1)
// build: O(N / 64)
// Memory Complexity: O(N / 64)
// Tested:
// Fuzz and Stress Tested
struct BitPrefixSumArray {
int M; vector<uint64_t> mask; vector<int> pre;
BitPrefixSumArray(int N) : M((N >> 6) + 1), mask(M, 0), pre(M + 1, 0) {}
void set(int i, bool v) {
int j = i >> 6, k = i & 63;
mask[j] = (mask[j] & ~(uint64_t(1) << k)) | (uint64_t(v) << k);
}
bool get(int i) { return (mask[i >> 6] >> (i & 63)) & 1; }
void build() {
for (int j = 0; j < M; j++)
pre[j + 1] = pre[j] + __builtin_popcountll(mask[j]);
}
int query(int r) {
r++; int j = r >> 6, k = r & 63;
return pre[j] + __builtin_popcountll(mask[j] & ((uint64_t(1) << k) - 1));
}
int query(int l, int r) { return query(r) - query(l - 1); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Supports online queries and FIFO operations on a multiset of elements,
// where the underlying data structure only supports LIFO operations
// Template Arguments:
// S: struct to maintain a multiset of elements
// Required Fields:
// T: the type of each element
// Required Functions:
// constructor(...args): takes any number of arguments (arguments are
// passed from constructor of FIFOWithLIFO)
// push(v): pushes the value v into the multiset
// pop(): pops the most recent element pushed to the multiset
// query(...args): queries the multiset
// Sample Struct: supports queries for graph connectivity
// struct S {
// using T = pair<int, int>;
// UnionFindUndo uf;
// S(int V) : uf(V) {}
// void push(const T &e) { uf.join(e.first, e.second); }
// void pop() { uf.undo(); }
// bool query(int v, int w) { return uf.connected(v, w); }
// };
// Constructor Arguments:
// ...args: arguments to be forwarded to the constructor of S
// Functions:
// push(v): pushes the value v into the multiset
// pop(): pops the least recent element pushed into the multiset
// query(...args): inheirited from S, queries the multiset
// In practice, has a small constant
// Time Complexity:
// push: O(P) where P is the time complexity of S.push
// pop: O(P log N) amortized where P is the time complexity of
// S.push and S.pop, with S.push and S.pop being called at most O(log N)
// times in total for each element, over all operations
// query: O(T) where T is the time complexity of S.query
// Memory Complexity: O(N)
// Tested:
// https://codeforces.com/contest/1386/problem/C
template <class S> struct FIFOWithLIFO : public S {
using T = typename S::T; vector<pair<T, bool>> stk; vector<T> A, B; int cntA;
template <class ...Args>
FIFOWithLIFO(Args &&...args) : S(forward<Args>(args)...), cntA(0) {}
void push(const T &v, bool a = false) { stk.emplace_back(v, a); S::push(v); }
void pop() {
if (cntA == 0) {
reverse(stk.begin(), stk.end()); cntA = stk.size();
for (int i = 0; i < cntA; i++) S::pop();
for (auto &&s : stk) { S::push(s.first); s.second = true; }
}
for (; !stk.back().second; stk.pop_back(), S::pop())
B.push_back(stk.back().first);
int m = cntA & -cntA; for (int i = 0; i < m; i++, stk.pop_back(), S::pop())
A.push_back(stk.back().first);
for (; !B.empty(); B.pop_back()) push(B.back());
for (; !A.empty(); A.pop_back()) push(A.back(), true);
stk.pop_back(); S::pop(); cntA--;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../utils/Random.h"
using namespace std;
const size_t RANDOM = uniform_int_distribution<size_t>(
0, numeric_limits<size_t>::max())(rng64);
// Randomized hash for types with std::hash defined and for pairs
// Tested:
// https://dmoj.ca/problem/set
// https://atcoder.jp/contests/agc026/tasks/agc026_c
// https://judge.yosupo.jp/problem/associative_array
struct rand_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31);
}
template <class T> size_t operator () (const T &x) const {
return splitmix64(hash<T>()(x) + RANDOM);
}
template <class T1, class T2>
size_t operator () (const pair<T1, T2> &p) const {
return 31 * operator ()(p.first) + operator ()(p.second);
}
};
// unordered_set and unordered_map with a randomized hash
// In practice, has a moderate constant, but still slower than
// pbds::gp_hash_table
// Tested:
// https://dmoj.ca/problem/set
// https://atcoder.jp/contests/agc026/tasks/agc026_c
// https://judge.yosupo.jp/problem/associative_array
template <class K, class H = rand_hash, class ...Ts>
using uset = unordered_set<K, H, Ts ...>;
template <class K, class V, class H = rand_hash, class ...Ts>
using umap = unordered_map<K, V, H, Ts ...>;
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Fischer Heun Structure supporting range maximum queries on a static array
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of each element
// Cmp: the comparator to compare two values,
// convention is same as std::priority_queue in STL
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// mask_t: the type to store a bitmask, should have around log(N) bits
// Constructor Arguments:
// A: a vector of type T of the values in the array
// cmp: an instance of the Cmp struct
// Functions:
// queryInd(l, r): returns the index of the maximum element in
// the subarray [l, r], breaking ties by selecting the first such index;
// the last such index can be obtained by using less_equal or greater_equal
// as the Cmp struct
// query(l, r): returns the maximum element (based on the comparator) in
// the subarray [l, r]
// In practice, the constructor has a moderate constant and is significantly
// faster than sparse table's constructor, query has a moderate constant and
// is slightly slower than sparse table's query
// Time Complexity:
// constructor: O(N + N / B log (N / B)), where B is
// the number of bits in mask_t
// queryInd, query: O(1) assuming bitshift for mask_t is O(1)
// Memory Complexity: O(N + N / B log (N / B)) assuming mask_t is O(1) memory
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/ncco3d2p1
// https://www.spoj.com/problems/RMQSQ/
// https://judge.yosupo.jp/problem/staticrmq
template <class T, class Cmp = less<T>, class mask_t = uint32_t>
struct FischerHeunStructure {
static_assert(is_integral<mask_t>::value, "mask_t must be integral");
static_assert(is_unsigned<mask_t>::value, "mask_t must be unsigned");
static constexpr const int B = __lg(numeric_limits<mask_t>::max()) + 1;
int N, M; vector<T> A; vector<mask_t> mask; vector<vector<int>> ST; Cmp cmp;
int cmpInd(int i, int j) { return cmp(A[i], A[j]) ? j : i; }
int small(int r, int sz = B) {
return r - __lg(sz == B ? mask[r] : mask[r] & ((mask_t(1) << sz) - 1));
}
FischerHeunStructure(vector<T> A, Cmp cmp = Cmp())
: N(A.size()), M(N / B), A(move(A)), mask(N),
ST(M == 0 ? 0 : __lg(M) + 1, vector<int>(M)), cmp(cmp) {
mask_t k = 0; for (int i = 0; i < N; mask[i++] = k |= 1)
for (k <<= 1; k && cmpInd(i - __lg(k & -k), i) == i;) k ^= k & -k;
for (int i = 0; i < M; i++) ST[0][i] = small(B * (i + 1) - 1);
for (int i = 0; i < int(ST.size()) - 1; i++) for (int j = 0; j < M; j++)
ST[i + 1][j] = cmpInd(ST[i][j], ST[i][min(j + (1 << i), M - 1)]);
}
int queryInd(int l, int r) {
if (r - l + 1 <= B) return small(r, r - l + 1);
int ql = small(l + B - 1), qr = small(r); l = l / B + 1; r = r / B - 1;
if (l <= r) {
int i = __lg(r - l + 1);
ql = cmpInd(ql, cmpInd(ST[i][l], ST[i][r - (1 << i) + 1]));
}
return cmpInd(ql, qr);
}
T query(int l, int r) { return A[queryInd(l, r)]; }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "WaveletMatrixAggregation.h"
using namespace std;
// Wavelet Matrix supporting 2D aggregation queries where the data can change,
// and the indices and the keys that are updated are known beforehand
// Indices are 0-indexed and ranges are inclusive
// Queries bounded by 3 indices require a commutative operation, while queries
// bounded by 4 indices also requires the data to be invertible
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of the element of the array
// R: struct supporting point updates and range queries on indices
// Required Fields:
// Data: the data type
// Lazy: the lazy type
// Required Functions:
// static qdef(): returns the query default value
// static merge(l, r): returns the values l of type Data merged with
// r of type Data, must be associative and commutative
// static applyLazy(l, r): returns the value r of type Lazy applied to
// l of type Data
// constructor(A): takes a vector A of type Data with the initial
// value of each index
// update(i, val): updates the index i with the value val
// query(l, r): queries the range [l, r]
// Sample Struct: supporting point increments updates and range sum queries
// struct R {
// using Data = int;
// using Lazy = int;
// static Data qdef() { return 0; }
// static Data merge(const Data &l, const Data &r) { return l + r; }
// static Data applyLazy(const Data &l, const Lazy &r) {
// return l + r;
// }
// FenwickTree1D<Data> FT;
// R(vector<Data> A) : FT(move(A)) {}
// void update(int i, const Lazy &val) { FT.update(i, val); }
// Data query(int l, int r) { return FT.query(l, r); }
// };
// Cmp: the comparator to compare two elements of type T
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// A: a vector of type T containing the initial keys of the array
// D: a vector of type R::Data containing the initial data of the array
// updates: a vector of vectors of type T containing the sequence of updates
// to each index in the order they are updated
// cmp: an instance of the Cmp struct
// Functions:
// updateToNextKey(i): updates the ith key to the next key in the update
// sequence
// update(i, v): updates the ith data with the lazy value v
// query(l, r, hi): returns the aggregate value of the data associated with
// all elements with a key less than or equal to hi (using the comparator)
// in the range [l, r]
// query(l, r, lo, hi): returns the aggregate value of the data associated
// with all elements with a key of not less than lo and not greater than hi
// (using the comparator) in the range [l, r]
// bsearch(l, r, f): over all keys in the array, finds the first key k such
// that query(l, r, k) returns true
// In practice, has a small constant, faster than using an
// Offline or Online 2D Sparse Fenwick Tree or Segment Tree
// Time Complexity:
// constructor: O((N + K + C) log N + K) where C is the time complexity of
// R's constructor for K total updates
// updateToNextKey: O(U log (N + K)) where U is the time complexity of R's
// update function for K total updates
// update: O(U log (N + K)) where U is the time complexity of R's update
// function for K total updates
// query, bsearch: O(Q log N) where Q is the time complexity of
// R's query function for K total updates
// Memory Complexity: O(N + K + ((N + K) log (N + K)) / 64 + M log (N + K))
// where M is the memory complexity of R for K total updates
// Tested:
// https://dmoj.ca/problem/oly19practice4
template <class T, class R, class Cmp = less<T>>
struct WaveletMatrixAggregationOfflineUpdates {
using Data = typename R::Data; using Lazy = typename R::Lazy;
vector<int> cur; vector<Data> D; WaveletMatrixAggregation<T, R, Cmp> wm;
WaveletMatrixAggregation<T, R, Cmp> init(
const vector<T> &A, const vector<Data> &D,
const vector<vector<T>> &updates, Cmp cmp) {
assert(A.size() == D.size()); assert(A.size() == updates.size());
int N = A.size();
for (int i = 0; i < N; i++) cur[i + 1] = updates[i].size() + 1;
partial_sum(cur.begin(), cur.end(), cur.begin());
vector<T> ret; ret.reserve(cur[N]); for (int i = 0; i < N; i++) {
ret.push_back(A[i]);
ret.insert(ret.end(), updates[i].begin(), updates[i].end());
}
vector<Data> temp(ret.size(), R::qdef());
for (int i = 0; i < N; i++) temp[cur[i]] = D[i];
return WaveletMatrixAggregation<T, R, Cmp>(move(ret), temp, cmp);
}
WaveletMatrixAggregationOfflineUpdates(
const vector<T> &A, const vector<Data> &D,
const vector<vector<T>> &updates, Cmp cmp = Cmp())
: cur(A.size() + 1, 0), D(D), wm(init(A, D, updates, cmp)) {}
void updateToNextKey(int i) {
wm.update(cur[i], R::qdef()); wm.update(++cur[i], D[i]);
}
void update(int i, const Lazy &v) {
D[i] = R::applyLazy(D[i], v); wm.update(cur[i], v);
}
Data query(int l, int r, const T &hi) {
return wm.query(cur[l], cur[r], hi);
}
Data query(int l, int r, const T &lo, const T &hi) {
return wm.query(cur[l], cur[r], lo, hi);
}
template <class F> pair<bool, T *> bsearch(int l, int r, F f) {
return wm.bsearch(cur[l], cur[r], f);
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// A collections of functions for 2D prefix sum and difference arrays
// Creates a prefix sum array pre from the 2D array A of size N x M
// pre[i][j] is the sum of all elements in the subarray A[0..i][0..j]
// Indices are 0-indexed
// In practice, has a small constant
// Time Complexity: O(NM)
// Memory Complexity: O(1)
// Tested:
// Fuzz and Stress Tested
// https://codeforces.com/contest/635/problem/A
// https://dmoj.ca/problem/dmpg15s5
template <class C> void partial_sum_2d(const C &A, int N, int M, C &pre) {
for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) {
pre[i][j] = A[i][j];
if (i > 0) pre[i][j] += pre[i - 1][j];
if (j > 0) pre[i][j] += pre[i][j - 1];
if (i > 0 && j > 0) pre[i][j] -= pre[i - 1][j - 1];
}
}
// Creates a difference array diff from the 2D array A of size N x M
// A[i][j] is the sum of all elements in the subarray diff[0..i][0..j]
// Indices are 0-indexed
// In practice, has a small constant
// Time Complexity: O(NM)
// Memory Complexity: O(1)
// Tested:
// Fuzz and Stress Tested
template <class C>
void adjacent_difference_2d(const C &A, int N, int M, C &diff) {
for (int i = N - 1; i >= 0; i--) for (int j = M - 1; j >= 0; j--) {
diff[i][j] = A[i][j];
if (i > 0) diff[i][j] -= A[i - 1][j];
if (j > 0) diff[i][j] -= A[i][j - 1];
if (i > 0 && j > 0) diff[i][j] += A[i - 1][j - 1];
}
}
// Computes the sum of a subarray A[u..d][l..r] with prefix sum array pre
// Indices are 0-indexed and ranges are inclusive
// In practice, has a moderate constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz and Stress Tested
// https://codeforces.com/contest/635/problem/A
template <class C> auto rsq(const C &pre, int u, int d, int l, int r)
-> typename decay<decltype(pre[d][r])>::type {
typename decay<decltype(pre[d][r])>::type v = pre[d][r];
if (u > 0) v -= pre[u - 1][r];
if (l > 0) v -= pre[d][l - 1];
if (u > 0 && l > 0) v += pre[u - 1][l - 1];
return v;
}
// Adds v to the subarray A[u..d][l..r] with difference array diff
// of size N x M
// Indices are 0-indexed and ranges are inclusive
// In practice, has a moderate constant
// Time Complexity: O(1)
// Memory Complexity: O(1)
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/dmpg15s5
template <class C, class T>
void add(C &diff, int N, int M, int u, int d, int l, int r, T v) {
diff[u][l] += v;
if (d + 1 < N) diff[d + 1][l] -= v;
if (r + 1 < M) diff[u][r + 1] -= v;
if (d + 1 < N && r + 1 < M) diff[d + 1][r + 1] += v;
}
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "BitPrefixSumArray.h"
using namespace std;
// Wavelet Matrix supporting 2D aggregation queries where the data can change,
// but not the keys
// Indices are 0-indexed and ranges are inclusive
// Queries bounded by 3 indices require a commutative operation, while queries
// bounded by 4 indices also requires the data to be invertible
// Template Arguments:
// T: the type of the element of the array
// R: struct supporting point updates and range queries on indices
// Required Fields:
// Data: the data type
// Lazy: the lazy type
// Required Functions:
// static qdef(): returns the query default value
// static merge(l, r): returns the values l of type Data merged with
// r of type Data, must be associative and commutative
// constructor(A): takes a vector A of type Data with the initial
// value of each index
// update(i, val): updates the index i with the value val
// query(l, r): queries the range [l, r]
// Sample Struct: supporting point increments updates and range sum queries
// struct R {
// using Data = int;
// using Lazy = int;
// static Data qdef() { return 0; }
// static Data merge(const Data &l, const Data &r) { return l + r; }
// FenwickTree1D<Data> FT;
// R(const vector<Data> &A) : FT(A) {}
// void update(int i, const Lazy &val) { FT.update(i, val); }
// Data query(int l, int r) { return FT.query(l, r); }
// };
// Cmp: the comparator to compare two elements of type T
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// A: a vector of type T containing the initial keys of the array
// X: a vector of type R::Data containing the initial data of the array
// cmp: an instance of the Cmp struct
// Functions:
// update(i, v): updates the ith data with the lazy value v
// query(l, r, hi): returns the aggregate value of the data associated with
// all elements with a key less than or equal to hi (using the comparator)
// in the range [l, r]
// query(l, r, lo, hi): returns the aggregate value of the data associated
// with all elements with a key of not less than lo and not greater than hi
// (using the comparator) in the range [l, r]
// bsearch(l, r, f): over all keys in the array, finds the first key k such
// that query(l, r, k) returns true
// In practice, has a small constant, faster than using a
// 2D Sparse Fenwick Tree or Segment Tree
// Time Complexity:
// constructor: O((N + C) log N) where C is the time complexity of
// R's constructor
// update: O(U log N) where U is the time complexity of R's update function
// query, bsearch: O(Q log N) where Q is the time complexity of
// R's query function
// Memory Complexity: O(N + (N log N) / 64 + M log N) where M is the memory
// complexity of R
// Tested:
// Fuzz and Stress Tested
// https://dmoj.ca/problem/dmopc19c7p5
template <class T, class R, class Cmp = less<T>>
struct WaveletMatrixAggregation {
#define clt [&] (const T &a, const T &b) { return cmp(a, b); }
#define cle [&] (const T &a, const T &b) { return !cmp(b, a); }
using Data = typename R::Data; using Lazy = typename R::Lazy;
int N, H; Cmp cmp; vector<int> mid; vector<BitPrefixSumArray> B;
vector<R> D; vector<T> S;
WaveletMatrixAggregation(vector<T> A, const vector<Data> &X, Cmp cmp = Cmp())
: N(A.size()), H(N == 0 ? 0 : __lg(N) + 1), cmp(cmp), mid(H),
B(H, BitPrefixSumArray(N)), S(move(A)) {
vector<T> temp = S; sort(S.begin(), S.end(), cmp);
vector<int> C(N), ind(N); for (int i = 0; i < N; i++)
C[i] = lower_bound(S.begin(), S.end(), temp[i], cmp) - S.begin();
iota(ind.begin(), ind.end(), 0); D.reserve(H); vector<Data> Y = X;
for (int h = H - 1; h >= 0; h--) {
int ph = 1 << h;
for (int i = 0; i < N; i++) B[h].set(i, C[ind[i]] <= ph - 1);
mid[h] = stable_partition(ind.begin(), ind.end(), [&] (int i) {
return C[i] <= ph - 1;
}) - ind.begin();
B[h].build(); for (int i = 0; i < N; i++) Y[i] = X[ind[i]];
D.emplace_back(Y); for (int i = mid[h]; i < N; i++) C[ind[i]] -= ph;
}
reverse(D.begin(), D.end());
}
void update(int i, const Lazy &v) {
for (int h = H - 1; h >= 0; h--) {
if (B[h].get(i)) i = B[h].query(i - 1);
else i += mid[h] - B[h].query(i - 1);
D[h].update(i, v);
}
}
template <class F>
Data qryPre(int h, int cur, int l, int r, const T &v, F f) {
Data ret = R::qdef(); for (; h >= 0; h--) {
int ph = 1 << h, ql = B[h].query(l - 1), qr = B[h].query(r);
if (cur + ph - 1 >= N || f(v, S[cur + ph - 1])) { l = ql; r = qr - 1; }
else {
if (ql < qr) ret = R::merge(ret, D[h].query(ql, qr - 1));
cur += ph; l += mid[h] - ql; r += mid[h] - qr;
}
}
return ret;
}
template <class F>
Data qrySuf(int h, int cur, int l, int r, const T &v, F f) {
Data ret = R::qdef(); for (; h >= 0; h--) {
int ph = 1 << h, ql = B[h].query(l - 1), qr = B[h].query(r);
if (cur + ph - 1 >= N || f(v, S[cur + ph - 1])) {
if (l - ql <= r - qr)
ret = R::merge(ret, D[h].query(l + mid[h] - ql, r + mid[h] - qr));
if (h == 0 && ql < qr) ret = R::merge(ret, D[h].query(ql, qr - 1));
l = ql; r = qr - 1;
} else {
if (h == 0 && l - ql <= r - qr)
ret = R::merge(ret, D[h].query(l + mid[h] - ql, r + mid[h] - qr));
cur += ph; l += mid[h] - ql; r += mid[h] - qr;
}
}
return ret;
}
Data query(int l, int r, const T &hi) {
return qryPre(H - 1, 0, l, r, hi, clt);
}
Data query(int l, int r, const T &lo, const T &hi) {
for (int cur = 0, h = H - 1; h >= 0; h--) {
int ph = 1 << h, ql = B[h].query(l - 1), qr = B[h].query(r);
bool loLeft = cur + ph - 1 >= N || !cmp(S[cur + ph - 1], lo);
bool hiLeft = cur + ph - 1 >= N || cmp(hi, S[cur + ph - 1]);
if (loLeft != hiLeft) {
Data ret = R::merge(qrySuf(h - 1, cur, ql, qr - 1, lo, cle),
qryPre(h - 1, cur + ph, l + mid[h] - ql,
r + mid[h] - qr, hi, clt));
return h == 0 && ql < qr ? R::merge(ret, D[h].query(ql, qr - 1)) : ret;
} else if (loLeft) { l = ql; r = qr - 1; }
else { cur += ph; l += mid[h] - ql; r += mid[h] - qr; }
}
return R::qdef();
}
template <class F> pair<bool, T *> bsearch(int l, int r, F f) {
int cur = 0; Data agg = R::qdef(); for (int h = H - 1; h >= 0; h--) {
int ql = B[h].query(l - 1), qr = B[h].query(r);
Data val = ql < qr ? D[h].query(ql, qr - 1) : R::qdef();
if (f(R::merge(agg, val))) { l = ql; r = qr - 1; }
else {
cur += 1 << h; agg = R::merge(agg, val);
l += mid[h] - ql; r += mid[h] - qr;
}
}
return make_pair(cur < N, cur < N ? &S[cur] : nullptr);
}
#undef clt
#undef cle
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Maintains the rank of an element in a multiset
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of the values being stored
// Cmp: the comparator to compare two f(x) values,
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// v: a vector of type T to initialize the structure
// SCALE: the value to scale sqrt by
// cmp: an instance of the Cmp struct
// Functions:
// rebuild(): rebuilds the multiset by moving all elements in the small
// container to the large container
// insert(val): inserts val into the multiset
// aboveInd(val): returns the index of the smallest element where
// val compares less than that element
// ceilingInd(val): returns the index of the smallest element that
// does not compare less than val
// floorInd(val): returns the index of the largest element where
// val does not compare less than that element
// belowInd(val): returns the index of the largest element that
// compares less than val
// aboveVal(val): returns a pointer to the smallest element where
// val compares less than that element, nullptr if it does not exist
// ceilingVal(val): returns a pointer to the smallest element that
// does not compare less than val, nullptr if it does not exist
// floorVal(val): returns a pointer to the largest element where val does not
// compare less than that element, nullptr if it does not exist
// belowVal(val): returns a pointer to the largest element that
// compares less than val, nullptr if it does not exist
// above(val): returns a pair containing the index and a pointer to the
// smallest element where val compares less than that element,
// pointer is nullptr if it does not exist
// ceiling(val): returns a pair containing the index and a pointer to the
// smallest element that does not compare less than val,
// pointer is nullptr if it does not exist
// floor(val): returns a pair containing the index and a pointer to the
// largest element where val does not compare less than that element,
// pointer is nullptr if it does not exist
// below(val): returns a pair containing the index and a pointer to the
// largest element that compares less than val,
// pointer is nullptr if it does not exist
// contains(val): returns whether val is in the multiset or not
// count(lo, hi): returns the number of values in the range [lo, hi]
// empty(): returns whether the multiset is empty or not
// size(): returns the number of elements the multiset
// clear(): clears the multiset
// values(): returns a vector of the sorted values in the multiset
// In practice, has a very small constant, performs similarly to RootArray,
// and is faster than balanced binary search trees
// Time Complexity:
// constructor: O(N)
// insert: O(1) amortized
// rebuild: O(sqrt N)
// empty, size, clear: O(1)
// floorInd, ceilingInd, aboveInd, belowInd: O(sqrt N) amortized
// floorVal, ceilingVal, aboveVal, belowVal: O(sqrt N) amortized
// floor, ceiling, above, below, contains, count: O(sqrt N) amortized
// values: O(N)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/dmopc19c3p3
// https://dmoj.ca/problem/ccc05s5
// https://mcpt.ca/problem/lcc18c5s3
// https://codeforces.com/contest/1093/problem/E
template <class T, class Cmp = less<T>> struct SqrtBufferSimple {
double SCALE; Cmp cmp; vector<T> small, large;
SqrtBufferSimple(double SCALE = 1, Cmp cmp = Cmp())
: SCALE(SCALE), cmp(cmp) {}
SqrtBufferSimple(vector<T> v, double SCALE = 1, Cmp cmp = Cmp())
: SCALE(SCALE), cmp(cmp), large(move(v)) {
assert(is_sorted(large.begin(), large.end(), cmp));
}
bool rebuild() {
if (int(small.size()) > SCALE * sqrt(small.size() + large.size())) {
int lSz = large.size(); sort(small.begin(), small.end(), cmp);
for (auto &&x : small) large.push_back(x);
inplace_merge(large.begin(), large.begin() + lSz, large.end(), cmp);
small.clear(); return true;
}
return false;
}
void insert(const T &val) { small.push_back(val); }
int aboveInd(const T &val) {
rebuild();
int ret = upper_bound(large.begin(), large.end(), val, cmp)
- large.begin();
for (auto &&x : small) ret += !cmp(val, x);
return ret;
}
int ceilingInd(const T &val) {
rebuild();
int ret = lower_bound(large.begin(), large.end(), val, cmp)
- large.begin();
for (auto &&x : small) ret += cmp(x, val);
return ret;
}
int floorInd(const T &val) { return aboveInd(val) - 1; }
int belowInd(const T &val) { return ceilingInd(val) - 1; }
T *aboveVal(const T &val) {
rebuild(); T *y = nullptr;
auto it = upper_bound(large.begin(), large.end(), val, cmp);
if (it != large.end()) y = &*it;
for (auto &&x : small) if (cmp(val, x) && (!y || cmp(x, *y))) y = &x;
return y;
}
T *ceilingVal(const T &val) {
rebuild(); T *y = nullptr;
auto it = lower_bound(large.begin(), large.end(), val, cmp);
if (it != large.end()) y = &*it;
for (auto &&x : small) if (!cmp(x, val) && (!y || cmp(x, *y))) y = &x;
return y;
}
T *floorVal(const T &val) {
rebuild(); T *y = nullptr;
auto it = upper_bound(large.begin(), large.end(), val, cmp);
if (it != large.begin()) y = &*--it;
for (auto &&x : small) if (!cmp(val, x) && (!y || cmp(*y, x))) y = &x;
return y;
}
T *belowVal(const T &val) {
rebuild(); T *y = nullptr;
auto it = lower_bound(large.begin(), large.end(), val, cmp);
if (it != large.begin()) y = &*--it;
for (auto &&x : small) if (cmp(x, val) && (!y || cmp(*y, x))) y = &x;
return y;
}
pair<int, T *> above(const T &val) {
rebuild(); T *y = nullptr;
auto it = upper_bound(large.begin(), large.end(), val, cmp);
int cnt = it - large.begin(); if (it != large.end()) y = &*it;
for (auto &&x : small) {
if (!cmp(val, x)) cnt++;
else if (!y || cmp(x, *y)) y = &x;
}
return make_pair(cnt, y);
}
pair<int, T *> ceiling(const T &val) {
rebuild(); T *y = nullptr;
auto it = lower_bound(large.begin(), large.end(), val, cmp);
int cnt = it - large.begin(); if (it != large.end()) y = &*it;
for (auto &&x : small) {
if (cmp(x, val)) cnt++;
else if (!y || cmp(x, *y)) y = &x;
}
return make_pair(cnt, y);
}
pair<int, T *> floor(const T &val) {
rebuild(); T *y = nullptr;
auto it = upper_bound(large.begin(), large.end(), val, cmp);
int cnt = it - large.begin(); if (it != large.begin()) y = &*--it;
for (auto &&x : small) if (!cmp(val, x)) {
cnt++; if (!y || cmp(*y, x)) y = &x;
}
return make_pair(--cnt, y);
}
pair<int, T *> below(const T &val) {
rebuild(); T *y = nullptr;
auto it = lower_bound(large.begin(), large.end(), val, cmp);
int cnt = it - large.begin(); if (it != large.begin()) y = &*--it;
for (auto &&x : small) if (cmp(x, val)) {
cnt++; if (!y || cmp(*y, x)) y = &x;
}
return make_pair(--cnt, y);
}
bool contains(const T &val) {
if (binary_search(large.begin(), large.end(), val, cmp)) return true;
if (rebuild() && binary_search(large.begin(), large.end(), val, cmp))
return true;
for (auto &&x : small) if (!cmp(val, x) && !cmp(x, val)) return true;
return false;
}
int count(const T &lo, const T &hi) {
rebuild();
int ret = upper_bound(large.begin(), large.end(), hi, cmp)
- lower_bound(large.begin(), large.end(), lo, cmp);
for (auto &&x : small) ret += !cmp(x, lo) && !cmp(hi, x);
return ret;
}
bool empty() const { return small.empty() && large.empty(); }
int size() const { return int(small.size() + large.size()); }
void clear() { small.clear(); large.clear(); }
vector<T> values() const {
vector<T> ret; ret.reserve(size());
for (auto &&x : small) ret.push_back(x);
int mid = int(ret.size()); for (auto &&x : large) ret.push_back(x);
inplace_merge(ret.begin(), ret.begin() + mid, ret.end(), cmp);
return ret;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Decomposes the array recursively into N ^ (1 / R) containers of
// size N ^ ((R - 1) / R) multiplied by a scale factor
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// R: the number of recursive levels
// T: the type of data being stored
// Constructor Arguments:
// v: a vector of type T to initialize the structure
// SCALE: the value to scale N ^ ((R - 1) / R) by
// Functions:
// insert(val, cmp): inserts val before the first index i where
// cmp(at(i), val) is false assuming the data is sorted by cmp
// insert_at(k, val): inserts val before index k (0 <= k <= N)
// erase(val, cmp): erases the element at the first index i where
// where cmp(at(i), val) and cmp(val, at(i)) are false, if it exists,
// returns true if the element was erased, false otherwise
// erase_at(k): erases the element at index k (0 <= k < N)
// size(): returns the size of the array
// empty(): returns whether or not the array is empty
// front(): accessor or modifier for the first element in the array
// back(): accessor or modifier for the first element in the array
// push_front(val): adds the val to the front of the array
// push_back(val): adds the val to the back of the array
// pop_front(): removes the first element in the array
// pop_back(): removes the last element in the array
// at(k): accessor or modifier for the element at index k (0 <= k < N)
// below(val, cmp): returns the index and a pointer to
// the last element x where cmp(x, val) is true,
// or (-1, nullptr) if none exist
// floor(val, cmp): returns the index and a pointer to
// the last element x where cmp(val, x) is false,
// or (-1, nullptr) if none exist
// ceiling(val, cmp): returns the index and a pointer to
// the first element x where cmp(x, val) is false,
// or (N, nullptr) if none exist
// above(val, cmp): returns the index and a pointer to
// the first element x where cmp(val, x) is true,
// or (N, nullptr) if none exist
// find(val, cmp): returns the index and a pointer to
// the first element x where cmp(val, x) and cmp(x, val) are false,
// or (N, nullptr) if none exist
// values(): returns a vector of all values in the array
// clear(): clears the array
// In practice, has a very small constant, and is faster than balanced binary
// search trees when R = 3, and SCALE = 6, even for N >= 1e7
// Time Complexity:
// constructor: O(N)
// insert, insert_at, erase, erase_at, push_front, pop_front, at:
// O(R (I ^ (1 / R))) where I is the total number of insertions
// below, floor, ceiling, above, find:
// O(R (I ^ (1 / R))) where I is the total number of insertions
// front, back, empty, size, pop_back: O(1)
// push_back: O(1) amortized
// values, clear: O(N)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/ds4
// https://dmoj.ca/problem/cco10p3
// https://dmoj.ca/problem/ccc05s5
// https://dmoj.ca/problem/wc18c4s4
// https://judge.yosupo.jp/problem/predecessor_problem
template <const int R, class T> struct RootArray {
static_assert(R > 0, "R must be positive");
int N; vector<RootArray<R - 1, T>> A; double SCALE;
int getRootN() {
if (N == 0) return 0;
int lg = __lg(N); lg -= lg / R; return SCALE * (1 << lg);
}
RootArray(double SCALE = 6) : N(0), SCALE(SCALE) { assert(SCALE > 0); }
RootArray(const vector<T> &v, double SCALE = 6) : N(v.size()), SCALE(SCALE) {
assert(SCALE > 0); if (N == 0) return;
int rootN = getRootN(); A.reserve((N - 1) / rootN + 1);
for (int i = 0; i < N; i += rootN) {
int en = min(i + rootN, N);
A.emplace_back(vector<T>(make_move_iterator(v.begin() + i),
make_move_iterator(v.begin() + en)), SCALE);
}
}
void split(int i) {
int rootN = getRootN(); if (int(A[i].size()) > 2 * rootN) {
vector<T> tmp; tmp.reserve(int(A[i].size()) - rootN);
while (int(A[i].size()) > rootN) {
tmp.push_back(move(A[i].back())); A[i].pop_back();
}
reverse(tmp.begin(), tmp.end());
A.emplace(A.begin() + i + 1, move(tmp), SCALE);
}
}
template <class Comp> void insert(const T &val, Comp cmp) {
if (N++ == 0) { A.emplace_back(SCALE); A.back().insert(val, cmp); return; }
int i = 0; while (i < int(A.size()) && cmp(A[i].back(), val)) i++;
if (i >= int(A.size())) i = int(A.size()) - 1;
A[i].insert(val, cmp); split(i);
}
void insert_at(int k, const T &val) {
if (k == N) { push_back(val); return; }
N++; int i = 0; while (int(A[i].size()) <= k) k -= int(A[i++].size());
A[i].insert_at(k, val); split(i);
}
template <class Comp> bool erase(const T &val, Comp cmp) {
int i = 0; while (i < int(A.size()) && cmp(A[i].back(), val)) i++;
if (i >= int(A.size()) || !A[i].erase(val, cmp)) return false;
if (A[i].empty()) A.erase(A.begin() + i);
N--; return true;
}
void erase_at(int k) {
int i = 0; while (int(A[i].size()) <= k) k -= int(A[i++].size());
N--; A[i].erase_at(k); if (A[i].empty()) A.erase(A.begin() + i);
}
int size() const { return N; }
bool empty() const { return N == 0; }
const T &front() const { return A.front().front(); }
T &front() { return A.front().front(); }
const T &back() const { return A.back().back(); }
T &back() { return A.back().back(); }
void push_front(const T &val) {
if (N++ == 0) { A.emplace_back(SCALE); A.back().push_back(val); return; }
A.front().push_front(val); split(0);
}
void push_back(const T &val) {
if (N++ == 0) { A.emplace_back(SCALE); A.back().push_back(val); return; }
A.back().push_back(val); split(int(A.size()) - 1);
}
void pop_front() {
N--; A.front().pop_front();
if (A.front().empty()) A.erase(A.begin());
}
void pop_back() {
N--; A.back().pop_back();
if (A.back().empty()) A.pop_back();
}
const T &at(int k) const {
int i = 0; while (int(A[i].size()) <= k) k -= int(A[i++].size());
return A[i].at(k);
}
T &at(int k) {
int i = 0; while (int(A[i].size()) <= k) k -= int(A[i++].size());
return A[i].at(k);
}
template <class Comp> pair<int, T *> below(const T &val, Comp cmp) {
int i = 0, k = 0; while (i < int(A.size()) && cmp(A[i].front(), val))
k += int(A[i++].size());
if (--i >= 0) k -= int(A[i].size());
else return make_pair(-1, nullptr);
pair<int, T *> ret = A[i].below(val, cmp); ret.first += k; return ret;
}
template <class Comp> pair<int, T *> floor(const T &val, Comp cmp) {
int i = 0, k = 0; while (i < int(A.size()) && !cmp(val, A[i].front()))
k += int(A[i++].size());
if (--i >= 0) k -= int(A[i].size());
else return make_pair(-1, nullptr);
pair<int, T *> ret = A[i].floor(val, cmp); ret.first += k; return ret;
}
template <class Comp> pair<int, T *> ceiling(const T &val, Comp cmp) {
int i = 0, k = 0; while (i < int(A.size()) && cmp(A[i].back(), val))
k += int(A[i++].size());
if (i >= int(A.size())) return make_pair(N, nullptr);
pair<int, T *> ret = A[i].ceiling(val, cmp); ret.first += k; return ret;
}
template <class Comp> pair<int, T *> above(const T &val, Comp cmp) {
int i = 0, k = 0; while (i < int(A.size()) && !cmp(val, A[i].back()))
k += int(A[i++].size());
if (i >= int(A.size())) return make_pair(N, nullptr);
pair<int, T *> ret = A[i].above(val, cmp); ret.first += k; return ret;
}
template <class Comp> pair<int, T *> find(const T &val, Comp cmp) {
pair<int, T *> ret = ceiling(val, cmp);
if (!ret.second || cmp(val, *(ret.second)) || cmp(*(ret.second), val))
return make_pair(N, nullptr);
return ret;
}
vector<T> values() const {
vector<T> ret; ret.reserve(N);
for (auto &&ai : A) for (auto &&aij : ai.values()) ret.push_back(aij);
return ret;
}
void clear() { N = 0; A.clear(); }
};
template <class T> struct RootArray<1, T> : public vector<T> {
using vector<T>::begin; using vector<T>::end; using vector<T>::size;
using vector<T>::at; RootArray(double = 6) {}
RootArray(const vector<T> &v, double = 6) : vector<T>(v) {}
template <class Comp> void insert(const T &val, Comp cmp) {
vector<T>::insert(lower_bound(begin(), end(), val, cmp), val);
}
void insert_at(int k, const T &val) { vector<T>::insert(begin() + k, val); }
template <class Comp> bool erase(const T &val, Comp cmp) {
auto it = lower_bound(begin(), end(), val, cmp);
if (it == end() || cmp(*it, val) || cmp(val, *it)) return false;
vector<T>::erase(it); return true;
}
void erase_at(int k) { vector<T>::erase(begin() + k); }
void push_front(const T &val) { vector<T>::insert(begin(), val); }
void pop_front() { vector<T>::erase(begin()); }
template <class Comp> pair<int, T *> below(const T &val, Comp cmp) {
int i = lower_bound(begin(), end(), val, cmp) - begin() - 1;
return make_pair(i, i < 0 ? nullptr : &at(i));
}
template <class Comp> pair<int, T *> floor(const T &val, Comp cmp) {
int i = upper_bound(begin(), end(), val, cmp) - begin() - 1;
return make_pair(i, i < 0 ? nullptr : &at(i));
}
template <class Comp> pair<int, T *> ceiling(const T &val, Comp cmp) {
int i = lower_bound(begin(), end(), val, cmp) - begin();
return make_pair(i, i >= int(size()) ? nullptr : &at(i));
}
template <class Comp> pair<int, T *> above(const T &val, Comp cmp) {
int i = upper_bound(begin(), end(), val, cmp) - begin();
return make_pair(i, i >= int(size()) ? nullptr : &at(i));
}
template <class Comp> pair<int, T *> find(const T &val, Comp cmp) {
pair<int, T *> ret = ceiling(val, cmp);
if (!ret.second || cmp(val, *(ret.second)) || cmp(*(ret.second), val))
return make_pair(size(), nullptr);
return ret;
}
RootArray<1, T> values() const { return *this; }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Maintains the rank of an element in a multiset, allowing for multiple
// insertions of the same element at the same time (including negative)
// Note that elements with a count of 0 or negative are still in the multiset
// as elements cannot be removed
// Indices are 0-indexed and ranges are inclusive
// Template Arguments:
// T: the type of the values being stored
// CountType: the type of the count of elements in the set
// Cmp: the comparator to compare two f(x) values,
// Required Functions:
// operator (a, b): returns true if and only if a compares less than b
// Constructor Arguments:
// v: a vector of type pair<T, CountType> to initialize the structure
// SCALE: the value to scale sqrt by
// cmp: an instance of the Cmp struct
// Functions:
// rebuild(): rebuilds the multiset by moving all elements in the small
// container to the large container
// insert(p): inserts the element p.first with a count of p.second
// into the multiset
// emplace(v, c): inserts the element v with a count of c
// into the multiset
// aboveInd(val): returns the index of the smallest element where
// val compares less than that element
// ceilingInd(val): returns the index of the smallest element that
// does not compare less than val
// floorInd(val): returns the index of the largest element where
// val does not compare less than that element
// belowInd(val): returns the index of the largest element that
// compares less than val
// contains(val): returns whether val is in the multiset or not
// count(lo, hi): returns the number of values in the range [lo, hi]
// empty(): returns whether the multiset is empty or not
// count(): returns the number of elements the multiset
// clear(): clears the multiset
// values(): returns a vector of pairs containing the sorted values and
// their count in the multiset
// In practice, has a very small constant, performs similarly to RootArray,
// and is faster than balanced binary search trees
// Time Complexity:
// constructor: O(N)
// insert: O(1) amortized
// rebuild: O(sqrt N)
// count(): O(1)
// floor, ceiling, above, below, contains, count(val), count(lo, hi):
// O(sqrt N) amortized
// valuesAndCount: O(N)
// Memory Complexity: O(N)
// Tested:
// https://dmoj.ca/problem/apio19p3
// https://dmoj.ca/problem/ioi01p1
template <class T, class CountType, class Cmp = less<T>>
struct SqrtBuffer {
struct PairCmp {
Cmp cmp; PairCmp(Cmp cmp) : cmp(cmp) {}
bool operator () (const pair<T, CountType> &a,
const pair<T, CountType> &b) const {
return cmp(a.first, b.first);
}
};
CountType tot; double SCALE; PairCmp pcmp;
vector<pair<T, CountType>> small, large;
SqrtBuffer(double SCALE = 1, Cmp cmp = Cmp())
: tot(CountType()), SCALE(SCALE), pcmp(PairCmp(cmp)) {}
SqrtBuffer(vector<pair<T, CountType>> v, double SCALE = 1, Cmp cmp = Cmp())
: tot(CountType()), SCALE(SCALE), pcmp(PairCmp(cmp)), large(move(v)) {
assert(is_sorted(large.begin(), large.end(), pcmp));
resizeUnique(large); for (auto &&p : large) tot += p.second;
}
void resizeUnique(vector<pair<T, CountType>> &v) {
if (!v.empty()) {
int j = 0; for (int i = 1; i < int(v.size()); i++) {
if (Cmp()(v[i].first, v[j].first) || Cmp()(v[j].first, v[i].first)) {
v[++j] = v[i]; v[j].second += v[j - 1].second;
} else v[j].second += v[i].second;
}
v.erase(v.begin() + j + 1, v.end());
}
}
bool rebuild() {
if (int(small.size()) > SCALE * sqrt(small.size() + large.size())) {
int lSz = large.size(); sort(small.begin(), small.end(), pcmp);
for (int i = lSz - 1; i > 0; i--) large[i].second -= large[i - 1].second;
for (auto &&p : small) large.push_back(p);
inplace_merge(large.begin(), large.begin() + lSz, large.end(), pcmp);
resizeUnique(large); small.clear(); return true;
}
return false;
}
void insert(const pair<T, CountType> &p) {
small.push_back(p); tot += p.second;
}
void emplace(const T &v, const CountType &c) {
small.emplace_back(v, c); tot += c;
}
CountType aboveInd(const T &val) {
rebuild();
int ind = upper_bound(large.begin(), large.end(),
make_pair(val, CountType()), pcmp)
- large.begin();
CountType ret = ind == 0 ? CountType() : large[ind - 1].second;
for (auto &&p : small) if (!Cmp()(val, p.first)) ret += p.second;
return ret;
}
CountType ceilingInd(const T &val) {
rebuild();
int ind = lower_bound(large.begin(), large.end(),
make_pair(val, CountType()), pcmp)
- large.begin();
CountType ret = ind == 0 ? CountType() : large[ind - 1].second;
for (auto &&p : small) if (Cmp()(p.first, val)) ret += p.second;
return ret;
}
CountType floorInd(const T &val) { return aboveInd(val) - 1; }
CountType belowInd(const T &val) { return ceilingInd(val) - 1; }
bool contains(const T &val) {
if (binary_search(large.begin(), large.end(),
make_pair(val, CountType()), pcmp)) return true;
if (rebuild() && binary_search(large.begin(), large.end(),
make_pair(val, CountType()), pcmp))
return true;
for (auto &&p : small) if (!Cmp()(val, p.first) && !Cmp()(p.first, val))
return true;
return false;
}
CountType count(const T &lo, const T &hi) {
rebuild();
int ind = upper_bound(large.begin(), large.end(),
make_pair(hi, CountType()), pcmp)
- large.begin();
CountType ret = ind == 0 ? CountType() : large[ind - 1].second;
ind = lower_bound(large.begin(), large.end(),
make_pair(lo, CountType()), pcmp)
- large.begin();
ret -= ind == 0 ? CountType() : large[ind - 1].second;
for (auto &&p : small) if (!Cmp()(p.first, lo) && !Cmp()(hi, p.first))
ret += p.second;
return ret;
}
CountType count() const { return tot; }
void clear() { tot = CountType(); small.clear(); large.clear(); }
vector<pair<T, CountType>> valuesAndCount() const {
vector<pair<T, CountType>> ret; ret.reserve(large.size() + small.size());
for (auto &&p : small) ret.push_back(p);
int mid = int(ret.size()); for (auto &&p : large) ret.push_back(p);
inplace_merge(ret.begin(), ret.begin() + mid, ret.end(), pcmp);
resizeUnique(ret); return ret;
}
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |
#pragma once
#include <bits/stdc++.h>
#include "../trees/PersistentArray.h"
using namespace std;
// Persistent Union Find by size where copy assignment/constructor creates
// a new version of the data structure
// Indices are 0-indexed
// Constructor Arguments:
// N: the number of elements in the set
// Fields:
// UF: a vector of integers representing the parent of each element in the
// tree, or the negative of the size of the set if that element is a root
// cnt: the current number of disjoint sets
// Functions:
// find(v): finds the root of the set containing element v in the
// current version
// join(v, w): merges the sets containing v and w, returns true if they
// were originally disjoint before the merge in the current version,
// false otherwise
// connected(v, w): returns true if v and w are in the same set in the
// current version, false otherwise
// getSize(v): returns the size of the set containing element v in the
// current version
// In practice, has a moderate constant
// Time Complexity:
// constructor: O(N)
// find, join, connected, getSize: O((log N)^2)
// Memory Complexity: O(N log N)
// Tested:
// https://judge.yosupo.jp/problem/persistent_unionfind
struct PersistentUnionFind {
PersistentArray<int> UF; int cnt;
PersistentUnionFind(int N) : UF(N, -1), cnt(N) {}
int find(int v) { int ufv = UF.get(v); return ufv < 0 ? v : find(ufv); }
bool join(int v, int w) {
if ((v = find(v)) == (w = find(w))) return false;
int ufv = UF.get(v), ufw = UF.get(w);
if (ufv > ufw) { swap(v, w); swap(ufv, ufw); }
UF.set(v, ufv + ufw); UF.set(w, v); cnt--; return true;
}
bool connected(int v, int w) { return find(v) == find(w); }
int getSize(int v) { return -UF.get(find(v)); }
};
| {
"repo_name": "wesley-a-leung/Resources",
"stars": "34",
"repo_language": "C++",
"file_name": "SkewHeapIncremental.h",
"mime_type": "text/x-c++"
} |