Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Korean
Size:
10K - 100K
ArXiv:
License:
annotations_creators: | |
- crowdsourced | |
language_creators: | |
- found | |
language: | |
- ko | |
license: | |
- cc-by-nd-4.0 | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- question-answering | |
task_ids: | |
- extractive-qa | |
paperswithcode_id: korquad | |
pretty_name: The Korean Question Answering Dataset | |
# Dataset Card for KorQuAD v1.0 | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- [**Homepage:**](https://korquad.github.io/KorQuad%201.0/) | |
- [**Repository:**](https://github.com/korquad/korquad.github.io/tree/master/dataset) | |
- [**Paper:**](https://arxiv.org/abs/1909.07005) | |
### Dataset Summary | |
KorQuAD 1.0 is a large-scale question-and-answer dataset constructed for Korean machine reading comprehension, and investigate the dataset to understand the distribution of answers and the types of reasoning required to answer the question. This dataset benchmarks the data generating process of SQuAD v1.0 to meet the standard. | |
### Supported Tasks and Leaderboards | |
`question-answering` | |
### Languages | |
Korean | |
## Dataset Structure | |
Follows the standars SQuAD format. | |
### Data Instances | |
An example from the data set looks as follows: | |
``` | |
{'answers': {'answer_start': [54], 'text': ['κ΅ν₯곑']}, | |
'context': '1839λ λ°κ·Έλλ κ΄΄ν μ νμ°μ€νΈμ μ²μ μ½κ³ κ·Έ λ΄μ©μ λ§μμ΄ λλ € μ΄λ₯Ό μμ¬λ‘ ν΄μ νλμ κ΅ν₯곑μ μ°λ €λ λ»μ κ°λλ€. μ΄ μκΈ° λ°κ·Έλλ 1838λ μ λΉ λ μ΄μΌλ‘ μ°μ μμ μ λ€ κ±²μ μν©μ΄λΌ μ’μ κ³Ό μ€λ§μ κ°λνμΌλ©° λ©νΌμ€ν ν λ μ€λ₯Ό λ§λλ νμ°μ€νΈμ μ¬κ²½μ 곡κ°νλ€κ³ νλ€. λν ν리μμ μλΈλ€ν¬μ μ§νλ‘ ν리 μμ μ κ΄νμ λ¨μ΄ μ°μ£Όνλ λ² ν λ²€μ κ΅ν₯곑 9λ²μ λ£κ³ κΉμ κ°λͺ μ λ°μλλ°, μ΄κ²μ΄ μ΄λ¬ν΄ 1μμ νμ°μ€νΈμ μ곑μΌλ‘ μ°μ¬μ§ μ΄ μνμ μ‘°κΈμ΄λΌλ μν₯μ λΌμ³€μΌλ¦¬λΌλ κ²μ μμ¬ν μ¬μ§κ° μλ€. μ¬κΈ°μ λΌλ¨μ‘° μ‘°μ±μ κ²½μ°μλ κ·Έμ μ κΈ°μ μ ν μλ κ²μ²λΌ λ¨μν μ μ μ νΌλ‘λ μ€μκ° λ°μλ κ²μ΄ μλλΌ λ² ν λ²€μ ν©μ°½κ΅ν₯곑 μ‘°μ±μ μν₯μ λ°μ κ²μ λ³Ό μ μλ€. κ·Έλ κ² κ΅ν₯곑 μ곑μ 1839λ λΆν° 40λ μ κ±Έμ³ ν리μμ μ°©μνμΌλ 1μ μ₯μ μ΄ λ€μ μ€λ¨νλ€. λν μνμ μμ±κ³Ό λμμ κ·Έλ μ΄ μ곑(1μ μ₯)μ ν리 μμ μμ μ°μ£Όνμμ μ°μ£Όν ννΈλ³΄κΉμ§ μ€λΉνμμΌλ, μ€μ λ‘λ μ΄λ£¨μ΄μ§μ§λ μμλ€. κ²°κ΅ μ΄μ°μ 4λ λ°μ΄ μ§λ νμ λλ μ€λ΄μμ μ°μ£Όλμκ³ μ¬μ°λ μ΄λ£¨μ΄μ‘μ§λ§, μ΄νμ κ·Έλλ‘ λ°©μΉλκ³ λ§μλ€. κ·Έ μ¬μ΄μ κ·Έλ 리μμΉμ λ°©ν©νλ λ€λλλμΈμ μμ±νκ³ ννΈμ΄μ μλ μ°©μνλ λ± λΆμ£Όν μκ°μ 보λλλ°, κ·Έλ° λ°μ μνμ΄ μ΄ κ³‘μ μκ² ν κ²μ΄ μλκ° νλ μ견λ μλ€.', | |
'id': '6566495-0-0', | |
'question': 'λ°κ·Έλλ κ΄΄ν μ νμ°μ€νΈλ₯Ό μ½κ³ 무μμ μ°κ³ μ νλκ°?', | |
'title': 'νμ°μ€νΈ_μ곑'} | |
``` | |
### Data Fields | |
``` | |
{'id': Value(dtype='string', id=None), | |
'title': Value(dtype='string', id=None), | |
'context': Value(dtype='string', id=None), | |
'question': Value(dtype='string', id=None), | |
'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)} | |
``` | |
### Data Splits | |
- Train: 60407 | |
- Validation: 5774 | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
Wikipedia | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
[CC BY-ND 2.0 KR](https://creativecommons.org/licenses/by-nd/2.0/kr/deed.en) | |
### Citation Information | |
``` | |
@article{lim2019korquad1, | |
title={Korquad1. 0: Korean qa dataset for machine reading comprehension}, | |
author={Lim, Seungyoung and Kim, Myungji and Lee, Jooyoul}, | |
journal={arXiv preprint arXiv:1909.07005}, | |
year={2019} | |
``` | |
### Contributions | |
Thanks to [@cceyda](https://github.com/cceyda) for adding this dataset. | |