File size: 6,648 Bytes
1d329b7
 
d3fd2d4
210c578
 
 
 
 
1d329b7
 
a814f40
1d329b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a814f40
 
 
c08dfe4
 
 
 
1d329b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08dfe4
1d329b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889f685
c99e7fe
1d329b7
82d487f
1d329b7
 
 
 
 
 
 
82d487f
 
1d329b7
 
 
82d487f
1d329b7
c08dfe4
1d329b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
license: cc-by-4.0
thumbnail: "https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/NckjqdBE-gOPt8r0L_Apr.png"
configs:
- config_name: default
  data_files:
  - split: train
    path: "Caduceus_Data.jsonl"
---


<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Data Card</title>
    <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
    <style>
        body {
            font-family: 'Quicksand', sans-serif;
            background-color: #1A202C;
            color: #D8DEE9;
            margin: 0;
            padding: 0;
            font-size: 26px;
            background: linear-gradient(to bottom right, #1a1918, #7ab547);
        }
        p {
            padding-left: 10px 
        }
        .container {
            width: 100%;
            margin: auto;
            background-color: rgb(255 255 255 / 1%);
            padding: 20px 30px 40px;
            padding-right: 32px;
            border-radius: 12px;
            box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
            backdrop-filter: blur(10px);
            border: 1px solid rgba(255, 255, 255, 0.05);
            background-color: rgb(0 0 0 / 75%) !important;
        }
        .header h1 {
            font-size: 28px;
            color: #fff;
            margin: 0;
            text-shadow: 
                -1px -1px 0 #000,  
                 1px -1px 0 #000,
                -1px 1px 0 #000,
                 1px 1px 0 #000;
        }
        .header {
            display: flex;
            align-items: center;
            justify-content: space-between;
            gap: 20px;
        }
        img {
            border-radius: 10px 10px 0 0!important;
            padding-left: 0px !important;
            max-width: 500px; 
            height: auto; 
            display: block; 
            margin: 20px auto 0;
        }
        .header h1 {
            font-size: 28px;
            color: #ECEFF4;
            margin: 0;
            text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
        }
        .info {
            background-color: rgba(255, 255, 255, 0.05);
            color: #AEBAC7;
            border-radius: 12px;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
            font-size: 14px;
            line-height: 1.6;
            margin-left: 5px;
            overflow-x: auto;
            margin-top: 40px; 
            border: 1px solid rgba(255, 255, 255, 0.05);
            transition: background-color 0.6s ease;
        }
        .info img {
            width: 100%;
            border-radius: 10px 10px 0 0;
            margin-top: -20px;
        }
        a {
            color: #88C0D0;
            text-decoration: none;
            transition: color 0.3s ease;
            position: relative;
        }
        a:hover {
            color: #A3BE8C;
            text-decoration: none;
        }
        a::before {
            content: '';
            position: absolute;
            width: 100%;
            height: 2px;
            bottom: 0;
            left: 0;
            background-color: #A3BE8C;
            visibility: hidden;
            transform: scaleX(0);
            transition: all 0.3s ease-in-out;
        }
        a:hover::before {
            visibility: visible;
            transform: scaleX(1);
        }
        .button {
            display: inline-block;
            background-color: #5E81AC;
            color: #E5E9F0;
            padding: 10px 20px;
            border-radius: 5px;
            cursor: pointer;
            text-decoration: none;
            transition: background-color 0.3s ease;
        }
        .button:hover {
            background-color: #81A1C1;
        }
    </style>
</head>
<body>
    <div class="container">
        <div class="header">
            <h1>Caduceus Project Dataset</h1>
        </div>
        <div class="info">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/NckjqdBE-gOPt8r0L_Apr.png" alt="Caduceus Project" style="border-radius: 10px;">
            <p><strong>Creator:</strong> <a href="https://github.com/Kquant03" target="_blank">Kquant03</a></p>
            <div>
                <p><strong>About the Dataset:</strong> The Caduceus Project Dataset is a curated collection of scientific and medical protocols sourced from <a href="https://github.com/protocolsio/protocols" target="_blank">protocols.io</a> and converted from PDF to markdown format. This dataset aims to help models learn to read complicated PDFs by either using computer vision on the PDF file, or through processing the raw text directly. You can find the repository for the pipeline <a href="https://github.com/Kquant03/caduceus" target="_blank">here</a>.</p>
                <p><strong>Source Data:</strong></p>
                <ul>
                    <li>Protocols from <a href="https://github.com/protocolsio/protocols" target="_blank">protocols.io</a></li>
                </ul>
                <p><strong>Key Features:</strong></p>
                <ul>
                    <li>Carefully selected high-quality protocols</li>
                    <li>Base64 encodings for potential vision training</li>
                    <li>Guaranteed quality through hand processing the resulting data</li>
                </ul>
                <p><strong>Dataset Structure:</strong></p>
                <ul>
                    <li><code>pdf_files/</code>: Contains the original PDF files of the selected protocols.</li>
                    <li><code>markdown_files/</code>: Contains the individual markdown files converted from the selected PDF files.</li>
                    <li><code>Caduceus_Data.jsonl/</code>: A JSONL file including an input field, a Base64 encoding of the PDF file, the raw text from the PDF, the formatted markdown output, and the name of the corresponding file.</li>
                </ul>
                <p><strong>License:</strong> The Caduceus Project Dataset is released under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 International (CC BY 4.0) License</a>.</p>
                <p><strong>Acknowledgments:</strong> We would like to express our gratitude to the contributors of <a href="https://github.com/protocolsio/protocols" target="_blank">protocols.io</a> for providing the open-source repository of scientific and medical protocols that served as the foundation for this dataset.</p>
            </div>
        </div>
    </div>
</body>
</html>