file
stringlengths
6
44
content
stringlengths
38
162k
__init__.py
import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) from .bin.aion_pipeline import aion_train_model
aion.py
import argparse import sys import os import subprocess INSTALL = 'install' LINUXINSTALL = 'linuxinstall' FE_MIGRATE = 'migrateappfe' LAUNCH_KAFKA = 'launchkafkaconsumer' RUN_LOCAL_MLAC_PIPELINE = 'runpipelinelocal' BUILD_MLAC_CONTAINER = 'buildmlaccontainerlocal' CONVERT_MODEL = 'convertmodel' START_MLFLOW = 'mlflow' COMMON_SERVICE = 'service' TRAINING = 'training' TRAINING_AWS = 'trainingonaws' TRAINING_DISTRIBUTED = 'distributedtraining' START_APPF = 'appfe' ONLINE_TRAINING = 'onlinetraining' TEXT_SUMMARIZATION = 'textsummarization' GENERATE_MLAC = 'generatemlac' AWS_TRAINING = 'awstraining' LLAMA_7B_TUNING = 'llama7btuning' LLM_PROMPT = 'llmprompt' LLM_TUNING = 'llmtuning' LLM_PUBLISH = 'llmpublish' LLM_BENCHMARKING = 'llmbenchmarking' TELEMETRY_PUSH = 'pushtelemetry' def aion_aws_training(confFile): from hyperscalers.aion_aws_training import awsTraining status = awsTraining(confFile) print(status) def aion_training(confFile): from bin.aion_pipeline import aion_train_model status = aion_train_model(confFile) print(status) def aion_awstraining(config_file): from hyperscalers import aws_instance print(config_file) aws_instance.training(config_file) def aion_generatemlac(ConfFile): from bin.aion_mlac import generate_mlac_code status = generate_mlac_code(ConfFile) print(status) def aion_textsummarization(confFile): from bin.aion_text_summarizer import aion_textsummary status = aion_textsummary(confFile) def aion_oltraining(confFile): from bin.aion_online_pipeline import aion_ot_train_model status = aion_ot_train_model(confFile) print(status) def do_telemetry_sync(): from appbe.telemetry import SyncTelemetry SyncTelemetry() def aion_llm_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image): from llm.llm_inference import LLM_publish LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image) def aion_migratefe(operation): import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append(operation) execute_from_command_line(argi) def aion_appfe(url,port): #manage_location = os.path.join(os.path.dirname(os.path.abspath(__file__)),'manage.py') #subprocess.check_call([sys.executable,manage_location, "runserver","%s:%s"%(url,port)]) import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append('runaion') argi.append("%s:%s"%(url,port)) execute_from_command_line(argi) def aion_linux_install(version): from install import linux_dependencies linux_dependencies.process(version) def aion_install(version): from install import dependencies dependencies.process(version) def aion_service(ip,port,username,password): from bin.aion_service import start_server start_server(ip,port,username,password) def aion_distributedLearning(confFile): from distributed_learning import learning learning.training(confFile) def aion_launchkafkaconsumer(): from mlops import kafka_consumer kafka_consumer.launch_kafka_consumer() def aion_start_mlflow(): from appbe.dataPath import DEPLOY_LOCATION import platform import shutil from os.path import expanduser mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','Scripts','mlflow.exe')) print(mlflowpath) home = expanduser("~") if platform.system() == 'Windows': DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') outputStr = subprocess.Popen([sys.executable, mlflowpath,"ui", "--backend-store-uri","file:///"+DEPLOY_LOCATION]) else: DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') subprocess.check_call(['mlflow',"ui","-h","0.0.0.0","--backend-store-uri","file:///"+DEPLOY_LOCATION]) def aion_model_conversion(config_file): from conversions import model_convertions model_convertions.convert(config_file) def aion_model_buildMLaCContainer(config): from mlops import build_container build_container.local_docker_build(config) def aion_model_runpipelinelocal(config): from mlops import local_pipeline local_pipeline.run_pipeline(config) def aion_llm_tuning(config): from llm.llm_tuning import run run(config) def aion_llm_prompt(cloudconfig,instanceid,prompt): from llm.aws_instance_api import LLM_predict LLM_predict(cloudconfig,instanceid,prompt) def llm_bench_marking(hypervisor,instanceid,model,usecaseid,eval): print(eval) from llm.bench_marking import bench_mark bench_mark(hypervisor,instanceid,model,usecaseid,eval) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--configPath', help='Config File Path') parser.add_argument('-i', '--instanceid', help='instanceid') parser.add_argument('-hv', '--hypervisor', help='hypervisor') parser.add_argument('-md', '--model', help='model') parser.add_argument('-uc', '--usecase', help='usecase') parser.add_argument('-cc', '--cloudConfigPath', help='Cloud Config File Path') parser.add_argument('-m', '--module', help='MODULE=TRAINING, APPFE, ONLINETRAINING,DISTRIBUTEDTRAINING') parser.add_argument('-ip', '--ipaddress', help='URL applicable only for APPFE method ') parser.add_argument('-p', '--port', help='APP Front End Port applicable only for APPFE method ') parser.add_argument('-ac', '--appfecommand', help='APP Front End Command ') parser.add_argument('-un','--username', help="USERNAME") parser.add_argument('-passw','--password', help="PASSWORD") parser.add_argument('-j', '--jsoninput', help='JSON Input') parser.add_argument('-v', '--version', help='Installer Version') parser.add_argument('-pf', '--prompt', help='Prompt File') parser.add_argument('-r', '--region', help='REGION NAME') parser.add_argument('-im', '--image', help='IMAGE NAME') parser.add_argument('-e', '--eval', help='evaluation for code or doc', default='doc') args = parser.parse_args() if args.module.lower() == TRAINING: aion_training(args.configPath) elif args.module.lower() == TRAINING_AWS: aion_awstraining(args.configPath) elif args.module.lower() == TRAINING_DISTRIBUTED: aion_distributedLearning(args.configPath) elif args.module.lower() == START_APPF: aion_appfe(args.ipaddress,args.port) elif args.module.lower() == ONLINE_TRAINING: aion_oltraining(args.configPath) elif args.module.lower() == TEXT_SUMMARIZATION: aion_textsummarization(args.configPath) elif args.module.lower() == GENERATE_MLAC: aion_generatemlac(args.configPath) elif args.module.lower() == COMMON_SERVICE: aion_service(args.ipaddress,args.port,args.username,args.password) elif args.module.lower() == START_MLFLOW: aion_mlflow() elif args.module.lower() == CONVERT_MODEL: aion_model_conversion(args.configPath) elif args.module.lower() == BUILD_MLAC_CONTAINER: aion_model_buildMLaCContainer(args.jsoninput) elif args.module.lower() == RUN_LOCAL_MLAC_PIPELINE: aion_model_runpipelinelocal(args.jsoninput) elif args.module.lower() == LAUNCH_KAFKA: aion_launchkafkaconsumer() elif args.module.lower() == INSTALL: aion_install(args.version) elif args.module.lower() == LINUXINSTALL: aion_linux_install(args.version) elif args.module.lower() == FE_MIGRATE: aion_migratefe('makemigrations') aion_migratefe('migrate') elif args.module.lower() == AWS_TRAINING: aion_aws_training(args.configPath) elif args.module.lower() == LLAMA_7B_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_PROMPT: aion_llm_prompt(args.cloudConfigPath,args.instanceid,args.prompt) elif args.module.lower() == LLM_PUBLISH: aion_llm_publish(args.cloudConfigPath,args.instanceid,args.hypervisor,args.model,args.usecase,args.region,args.image) elif args.module.lower() == LLM_BENCHMARKING: llm_bench_marking(args.hypervisor,args.instanceid,args.model,args.usecase, args.eval) elif args.module.lower() == TELEMETRY_PUSH: do_telemetry_sync()
aionMlopsService.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import logging logging.getLogger('tensorflow').disabled = True import json import mlflow import mlflow.sklearn import mlflow.sagemaker as mfs # from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split # from sklearn import datasets import time import numpy as np # Load dataset # from sklearn.datasets import load_iris import pickle # Load the pickled model # from matplotlib import pyplot import sys import os import boto3 import subprocess import os.path from os.path import expanduser import platform from pathlib import Path class aionMlopsService: def __init__(self,model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experiment_name,mlflow_modelname,awsaccesskey_id,awssecretaccess_key,aws_session_token,mlflow_container_name,aws_region,aws_id,iam_sagemakerfullaccess_arn,sm_app_name,sm_deploy_option,delete_ecr_repository,ecrRepositoryName): try: self.model=model self.mlflowtosagemakerDeploy=mlflowtosagemakerDeploy self.mlflowtosagemakerPushOnly=str(mlflowtosagemakerPushOnly) self.mlflowtosagemakerPushImageName=str(mlflowtosagemakerPushImageName) self.mlflowtosagemakerdeployModeluri=str(mlflowtosagemakerdeployModeluri) self.experiment_name=experiment_name self.mlflow_modelname=mlflow_modelname self.awsaccesskey_id=awsaccesskey_id self.awssecretaccess_key=awssecretaccess_key self.aws_session_token=aws_session_token self.mlflow_container_name=mlflow_container_name self.aws_region=aws_region self.aws_id=aws_id self.iam_sagemakerfullaccess_arn=iam_sagemakerfullaccess_arn self.sm_app_name=sm_app_name self.sm_deploy_option=sm_deploy_option self.delete_ecr_repository=delete_ecr_repository self.ecrRepositoryName=ecrRepositoryName from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') self.sagemakerLogLocation=str(sagemakerLogLocation) filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(self.sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format='%(asctime)s %(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format=' %(message)s',filemode='w') # logging.basicConfig(filename='uq_logging.log', encoding='utf-8', level=logging.INFO) self.log = logging.getLogger('aionMLOps') self.log.setLevel(logging.DEBUG) # mlflow.set_experiment(self.experiment_name) except Exception as e: self.log.info('<!------------- mlflow model INIT Error ---------------> '+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def mlflowSetPath(self,path): track_dir=os.path.join(path,'mlruns') uri="file:"+str(Path(track_dir)) return uri #Currently not used this delete ecr repository option def ecr_repository_delete(self,rep_name): # import subprocess client = boto3.client('ecr') repositories = client.describe_repositories() ecr_delete_rep=client.delete_repository(registryId=self.aws_id,repositoryName=self.ecrRepositoryName,force=True) mlflow_ecr_delete=subprocess.run(['aws', 'ecr', 'delete-repository','--repository-name',rep_name,'||','true']) self.log.info('Success: deleted aws ecr repository which contains mlops image.') def check_sm_deploy_status(self,app_name): sage_client = boto3.client('sagemaker', region_name=self.aws_region) endpoint_description = sage_client.describe_endpoint(EndpointName=app_name) endpoint_status = endpoint_description["EndpointStatus"] try: failure_reason=endpoint_description["FailureReason"] self.log.info("sagemaker end point creation failure reason is: "+str(failure_reason)) except: pass endpoint_status=str(endpoint_status) return endpoint_status def invoke_sm_endpoint(self,app_name, input_json): client = boto3.session.Session().client("sagemaker-runtime", self.aws_region) response = client.invoke_endpoint( EndpointName=app_name, Body=input_json, ContentType='application/json; format=pandas-split', ) # preds = response['Body'].read().decode("ascii") preds = response['Body'].read().decode("ascii") preds = json.loads(preds) # print("preds: {}".format(preds)) return preds def predict_sm_app_endpoint(self,X_test): #print(X_test) import pandas as pd prediction=None AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options # mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) # mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) try: import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) ''' aws_region=subprocess.run(['aws', 'configure', 'set','region_name',region]) aws_accesskeyid=subprocess.run(['aws', 'configure', 'set','aws_access_key_id',AWS_ACCESS_KEY_ID]) aws_secretaccesskey=subprocess.run(['aws', 'configure', 'set','aws_secret_access_key',AWS_SECRET_ACCESS_KEY]) ''' except: pass #Create a session for aws communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2) # query_input = pd.DataFrame(X_test).iloc[[1,5]].to_json(orient="split") try: query_input = pd.DataFrame(X_test).to_json(orient="split") #print(query_input) prediction = self.invoke_sm_endpoint(app_name=self.sm_app_name, input_json=query_input) # self.log.info("sagemaker end point Prediction: \n"+str(prediction)) except Exception as e: print(e) return prediction def deleteSagemakerApp(self,app_name,region): # import mlflow.sagemaker as mfs # region = 'ap-south-1' # app_name = 'aion-demo-app' mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("AION mlops sagemaker application endpoint is deleted....\n") self.log.info('AION mlops sagemaker application endpoint is deleted, application name is: '+str(app_name)) def deployModel2sagemaker(self,mlflow_container_name,tag_id,model_path): region = str(self.aws_region) aws_id = str(self.aws_id) iam_sagemakerfullaccess_arn = str(self.iam_sagemakerfullaccess_arn) app_name = str(self.sm_app_name) model_uri = str(model_path) app_status=False mlflow_root_dir = None try: os.chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") try: c_status=self.check_sm_deploy_status(app_name) #if ((c_status == "Failed") or (c_status == "OutOfService")): if ((c_status == "Failed") or (c_status.lower() == "failed")): app_status=False self.log.info("Sagemaker endpoint status: Failed.\n") mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) elif ((c_status.lower() == "inservice") or (c_status == "InService")): app_status=True self.log.info("Sagemaker endpoint status: InService. Running sagemaker endpoint name: \n"+str(app_name)) else: app_status=False pass except: # print("deploy status error.\n") pass #aws ecr model app_name should contain only [[a-zA-Z0-9-]] import re if app_name: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(app_name) is not None: #print("Found match: ") pass else: app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id + '.dkr.ecr.' + region + '.amazonaws.com/' + mlflow_image deploy_option="create" self.log.info('deploy_option: \n'+str(deploy_option)) if (deploy_option.lower() == "create"): # Other deploy modes: mlflow.sagemaker.DEPLOYMENT_MODE_ADD,mlflow.sagemaker.DEPLOYMENT_MODE_REPLACE if not (app_status): try: mfs.deploy(app_name=app_name,model_uri=model_uri,region_name=region,mode="create",execution_role_arn=iam_sagemakerfullaccess_arn,image_url=image_url) self.log.info('sagemaker endpoint created and model deployed. Application name is: \n'+str(app_name)) except: self.log.info('Creating end point application issue.Please check the connection and aws credentials \n') else: self.log.info('Sagemaker application with user endpoint name already running.Please check. Please delete the old endpoint with same name.\n') elif (deploy_option.lower() == "delete"): # import mlflow.sagemaker as mfs # # region = 'ap-south-1' # # app_name = 'aion-demo-app' # mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("Mlflow sagemaker application endpoint is deleted....\n") # self.log.info('Mlflow sagemaker application endpoint is deleted, application name is: '+str(app_name)) pass elif (deploy_option.lower() == "add"): pass elif (deploy_option.lower() == "replace"): pass else: pass return app_status def mlflow2sagemaker_deploy(self): self.log.info('<!------------- Inside AION mlops to sagemaker communication and deploy process. ---------------> ') deploy_status=False app_name = str(self.sm_app_name) self.log.info('Sagemaker Application Name: '+str(app_name)) uri_mlflow=self.mlflowSetPath(self.sagemakerLogLocation) mlflow.set_tracking_uri(uri_mlflow) mlops_trackuri=mlflow.get_tracking_uri() mlops_trackuri=str(mlops_trackuri) self.log.info('mlops tracking uri: '+str(mlops_trackuri)) localhost_deploy=False try: #Loading aion model to deploy in sagemaker mlflow.set_experiment(self.experiment_name) self.log.info('Endpoint Name: '+str(self.experiment_name)) # Assume, the model already loaded from joblib in aionmlflow2smInterface.py file. aionmodel2deploy=self.model # run_id = None # experiment_id=None # Use the loaded pickled model to make predictions # pred = knn_from_pickle.predict(X_test) with mlflow.start_run(run_name='AIONMLOps') as run: # aionmodel2deploy.fit(X_train, y_train) # predictions = aionmodel2deploy.predict(X_test) mlflow.sklearn.log_model(aionmodel2deploy, self.mlflow_modelname) run_id = run.info.run_uuid experiment_id = run.info.experiment_id self.log.info('AION mlops experiment run_id: '+str(run_id)) self.log.info('AION mlops experiment experiment_id: '+str(experiment_id)) self.log.info('AION mlops experiment model_name: '+str(self.mlflow_modelname)) artifact_uri = {mlflow.get_artifact_uri()} # print("1.artifact_uri: \n",artifact_uri) mlflow.end_run() #If we need, we can check the mlflow experiments. # try: # mlflow_client = mlflow.tracking.MlflowClient('./mlruns') # exp_list = mlflow_client.list_experiments() # except: # pass #print("mlflow exp_list: \n",exp_list) mlflow_modelname=str(self.mlflow_modelname) mlops_trackuri=mlops_trackuri.replace('file:','') mlops_trackuri=str(mlops_trackuri) # mlflow_root_dir = os.getcwd() mlflow_root_dir = None try: os.chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") model_path = 'mlruns/%s/%s/artifacts/%s' % (experiment_id, run_id,self.mlflow_modelname) # model_path=mlops_trackuri+'\\%s\\%s\\artifacts\\%s' % (experiment_id, run_id,mlflow_modelname) self.log.info("local host aion mlops model_path is: "+str(model_path)) time.sleep(2) #print("Environment variable setup in the current working dir for aws sagemaker cli connection... \n") self.log.info('Environment variable setup in the current working dir for aws sagemaker cli connection... \n ') AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) #Create a session for aws communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # session = boto3.session.Session( # aws_access_key_id=AWS_ACCESS_KEY_ID, # aws_secret_access_key=AWS_SECRET_ACCESS_KEY, # aws_session_token=AWS_SESSION_TOKEN # ) # awsclient = session.resource('ecr') # s3 = session.resource('s3') self.log.info('aws environment variable setup done... \n') try: os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('Directory does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) mlflow_container_name=str(self.mlflow_container_name) mlflow_version=mlflow.__version__ tag_id=mlflow_version if (self.mlflowtosagemakerPushOnly.lower() == "true"): self.log.info('Selected option is <Deploy existing model to sagemaker> \n') aws_id=str(self.aws_id) arn=str(self.iam_sagemakerfullaccess_arn) mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id+'.dkr.ecr.'+region+'.amazonaws.com/'+mlflow_image # print("image_url:========= \n",image_url) deploy_status=True try: model_path=mlflowtosagemakerdeployModeluri # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. self.log.info('Deploy existing model container-Model path given by user: '+str(model_path)) try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mfs.push_image_to_ecr(image=mlflowtosagemakerPushImageName) deploy_status=True self.log.info('AION mlops pushed the docker container to aws ecr. \n ') except: self.log.info("error in pushing existing container to ecr.\n") deploy_status=False time.sleep(2) #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: # print(" Changing directory to mlflow root dir....\n") os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) # print("{0} is not a directory".format(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) # self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) try: if (deploy_status): self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) self.log.info('AION creates docker container and push the container into aws ecr.. ') time.sleep(2) except: self.log.info('AION deploy error.check connection and aws config parameters. ') deploy_status=False # self.log.info('model deployed in sagemaker. ') except Exception as e: self.log.info('AION mlops failed to push docker container in aws ecr, check configuration parameters. \n'+str(e)) elif (self.mlflowtosagemakerPushOnly.lower() == "false"): if (self.mlflowtosagemakerDeploy.lower() == "true"): self.log.info('Selected option is <Create and Deploy model> \n') deploy_status=True try: # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mlflow_container_push=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--push','--container',mlflow_container_name]) self.log.info('AION mlops creates docker container and push the container into aws ecr.. ') deploy_status=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False self.log.info('Now deploying the model container to sagemaker starts....\n ') # Once docker push completes, again going back to mlflow parent dir for deployment #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('model_path does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) # app_name = str(self.sm_app_name) try: if (deploy_status): self.deployModel2sagemaker(mlflow_container_name,tag_id,model_path) except: self.log.info('mlops deploy error.check connection') deploy_status=False except Exception as e: exc = {"status":"FAIL","message":str(e).strip('"')} out_exc = json.dumps(exc) self.log.info('mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n') elif(self.mlflowtosagemakerDeploy.lower() == "false"): deploy_status=False localhost_deploy=True self.log.info('Selected option is <Create AION mlops container in local host .> \n') self.log.info("User selected create-Deploy sagemaker option as False,") self.log.info("Creates the AION mlops-sagemaker container locally starting,but doesn't push into aws ecr and deploy in sagemaker. Check the container in docker repository. ") try: # ##We need to run AION mlops docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) self.log.info('After change to AION mlops model dir, cwd: '+str(model_path)) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) # mlflow_container_local=subprocess.run(['AION mlops', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) try: if not (deploy_status): mlflow_container_local=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) self.log.info('AION creates local host bsed docker container and push the container local docker repository. Check with <docker images> command.\n ') localhost_deploy=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False localhost_deploy=False # print("AION mlops creates docker container and push the container into aws ecr.\n") self.log.info('AION mlops creates docker container and stored locally... ') time.sleep(2) except Exception as e: localhost_deploy=False # print("mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\n") self.log.info('AION mlops failed to creates docker container in local machine.\n'+str(e)) else: self.log.info('Deploy option not selected, Please check. ') localhost_deploy=False deploy_status=False else: pass localhost_container_status="Notdeployed" mlflow2sm_deploy_status="Notdeployed" if localhost_deploy: localhost_container_status="success" mlflow2sm_deploy_status="Notdeployed" # print("AION creates local docker container successfully.Please check in docker repository.") self.log.info("AION creates local docker container successfully.Please check in docker repository.") # else: # localhost_container_status="failed" # # print("AION failed to create local docker container successfully.Please check in docker repository.") # self.log.info("AION failed to create local docker container successfully.Please check in docker repository.") if (deploy_status): # Finally checking whether mlops model is deployed to sagemaker or not. app_name = str(self.sm_app_name) deploy_s = self.check_sm_deploy_status(app_name) if (deploy_s == "InService"): # print("AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n") self.log.info('AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\n'+str(app_name)) mlflow2sm_deploy_status="success" localhost_container_status="Notdeployed" else: # print("AION Mlflow model not able to deploy at aws sagemaker\n") self.log.info('AION mlops model not able to deploy at aws sagemaker.\n') mlflow2sm_deploy_status="failed" localhost_container_status="Notdeployed" # else: # mlflow2sm_deploy_status="None" return mlflow2sm_deploy_status,localhost_container_status except Exception as inst: exc = {"status":"FAIL","message":str(inst).strip('"')} out_exc = json.dumps(exc)
__init__.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''
aion_pipeline.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import argparse import logging logging.getLogger('tensorflow').disabled = True import math import shutil import re from datetime import datetime as dt import warnings from config_manager.pipeline_config import AionConfigManager import pandas as pd import numpy as np import sklearn import string from records import pushrecords import logging from pathlib import Path from pytz import timezone from config_manager.config_gen import code_configure import joblib from sklearn.model_selection import train_test_split from config_manager.check_config import config_validate from utils.file_ops import save_csv_compressed,save_csv,save_chromadb LOG_FILE_NAME = 'model_training_logs.log' if 'AION' in sys.modules: try: from appbe.app_config import DEBUG_ENABLED except: DEBUG_ENABLED = False else: DEBUG_ENABLED = True def getversion(): configFolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config') version = 'NA' for file in os.listdir(configFolder): if file.endswith(".var"): version = file.rsplit('.', 1) version = version[0] break return version AION_VERSION = getversion() def pushRecordForTraining(): try: status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) def set_log_handler( basic, mode='w'): deploy_loc = Path(basic.get('deployLocation')) log_file_parent = deploy_loc/basic['modelName']/basic['modelVersion']/'log' log_file_parent.mkdir(parents=True, exist_ok=True) log_file = log_file_parent/LOG_FILE_NAME filehandler = logging.FileHandler(log_file, mode,'utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) return log class server(): def __init__(self): self.response = None self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.textFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.dfcols=0 self.dfrows=0 self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj, codeConfigure, log): oldStdout = sys.stdout model_training_details = '' model_tried='' learner_type = '' topics = {} pred_filename = '' numericContinuousFeatures='' discreteFeatures='' sessonal_freq = '' additional_regressors = '' threshold=-1 targetColumn = '' numericalFeatures ='' nonNumericFeatures='' categoricalFeatures='' dataFolderLocation = '' featureReduction = 'False' original_data_file = '' normalizer_pickle_file = '' pcaModel_pickle_file = '' bpca_features= [] apca_features = [] lag_order = 1 profiled_data_file = '' trained_data_file = '' predicted_data_file='' dictDiffCount={} cleaning_kwargs = {} grouperbyjson = '' rowfilterexpression='' featureEngineeringSelector = 'false' conversion_method = '' params={} loss_matrix='binary_crossentropy' optimizer='Nadam' numericToLabel_json='[]' preprocessing_pipe='' firstDocFeature = '' secondDocFeature = '' padding_length = 30 pipe = None scalertransformationFile=None column_merge_flag = False merge_columns = [] score = 0 profilerObj = None imageconfig='' labelMaps={} featureDataShape=[] normFeatures = [] preprocess_out_columns = [] preprocess_pipe = None label_encoder = None unpreprocessed_columns = [] import pickle iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings() inlierLabels=config_obj.getEionInliers() scoreParam = config_obj.getScoringCreteria() noofforecasts = config_obj.getNumberofForecasts() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() filter_expression = config_obj.getFilterExpression() refined_filter_expression = "" sa_images = [] model_tried = '' deploy_config = {} iterName = iterName.replace(" ", "_") deployFolder = deployLocation usecaseLocation,deployLocation,dataFolderLocation,imageFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile,reduction_data_file = config_obj.createDeploymentFolders(deployFolder,iterName,iterVersion) outputLocation=deployLocation mlflowSetPath(deployLocation,iterName+'_'+iterVersion) # mlflowSetPath shut down the logger, so set again set_log_handler( config_obj.basic, mode='a') xtrain=pd.DataFrame() xtest=pd.DataFrame() log.info('Status:-|... AION Training Configuration started') startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textsummarizationStatus,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus, objectDetectionStatus,stateTransitionStatus, similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus = config_obj.getModulesDetails() status, error_id, msg = config_obj.validate_config() if not status: if error_id == 'fasttext': raise ValueError(msg) VideoProcessing = False if(problem_type.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output from transformations.dataReader import dataReader objData = dataReader() DataIsFolder = False folderdetails = config_obj.getFolderSettings() if os.path.isfile(dataLocation): log.info('Status:-|... AION Loading Data') dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) status,msg = save_csv_compressed(dataFrame,original_data_file) if not status: log.info('CSV File Error: '+str(msg)) elif os.path.isdir(dataLocation): if problem_type.lower() == 'summarization': from document_summarizer import summarize keywords, pretrained_type, embedding_sz = summarize.get_params() dataFrame = summarize.to_dataframe(dataLocation,keywords, deploy_loc, pretrained_type, embedding_sz) problem_type = 'classification' targetFeature = 'label' scoreParam = 'Accuracy' elif folderdetails['fileType'].lower() == 'document': dataFrame, error = objData.documentsTodf(dataLocation, folderdetails['labelDataFile']) if error: log.info(error) elif folderdetails['fileType'].lower() == 'object': testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati intermediateLocation = os.path.join(deployLocation,'intermediate') os.mkdir(intermediateLocation) AugEnabled,keepAugImages,operations,augConf = config_obj.getEionImageAugmentationConfiguration() dataFrame, n_class = objData.createTFRecord(dataLocation, intermediateLocation, folderdetails['labelDataFile'], testPercentage,AugEnabled,keepAugImages,operations, "objectdetection",augConf) #Unnati DataIsFolder = True else: datafilelocation = os.path.join(dataLocation,folderdetails['labelDataFile']) dataFrame = objData.csvTodf(datafilelocation,delimiter,textqualifier) DataIsFolder = True if textSimilarityStatus or similarityIdentificationStatus or contextualSearchStatus: similaritydf = dataFrame filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) if timeseriesStatus or anomalyDetectionStatus: from utils.validate_inputs import dataGarbageValue status,msg = dataGarbageValue(dataFrame,datetimeFeature) if status.lower() == 'error': raise ValueError(msg) if not DataIsFolder: if timeseriesStatus: if(modelFeatures != 'NA' and datetimeFeature != ''): if datetimeFeature: if isinstance(datetimeFeature, list): #to handle if time series having multiple time column unpreprocessed_columns = unpreprocessed_columns + datetimeFeature else: unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) elif survival_analysis_status or anomalyDetectionStatus: if(modelFeatures != 'NA'): if datetimeFeature != 'NA' and datetimeFeature != '': unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) else: dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfrows=dataFrame.shape[0] self.dfcols=dataFrame.shape[1] log.info('\n-------> Rows: '+str(self.dfrows)) log.info('\n-------> Columns: '+str(self.dfcols)) topFeatures=[] profilerObj = None normalizer=None dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if timeseriesStatus: if datetimeFeature != 'NA' and datetimeFeature != '': preproces_config = config_obj.basic.get('preprocessing',{}).get('timeSeriesForecasting',{}) if preproces_config: from transformations.preprocess import timeSeries as ts_preprocess preprocess_obj = ts_preprocess( preproces_config,datetimeFeature, log) dataFrame = preprocess_obj.run( dataFrame) log.info('-------> Input dataFrame(5 Rows) after preprocessing: ') log.info(dataFrame.head(5)) deploy_config['preprocess'] = {} deploy_config['preprocess']['code'] = preprocess_obj.get_code() if profiler_status: log.info('\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') from transformations.dataProfiler import profiler as dataProfiler dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati if DataIsFolder: if folderdetails['type'].lower() != 'objectdetection': profilerObj = dataProfiler(dataFrame) topFeatures,VideoProcessing,tfrecord_directory = profilerObj.folderPreprocessing(dataLocation,folderdetails,deployLocation) elif textSimilarityStatus: firstDocFeature = config_obj.getFirstDocumentFeature() secondDocFeature = config_obj.getSecondDocumentFeature() profilerObj = dataProfiler(dataFrame,targetFeature, data_path=dataFolderLocation) dataFrame,pipe,targetColumn,topFeatures = profilerObj.textSimilarityStartProfiler(firstDocFeature,secondDocFeature) elif recommenderStatus: profilerObj = dataProfiler(dataFrame) dataFrame = profilerObj.recommenderStartProfiler(modelFeatures) else: if deeplearner_status or learner_status: if (problem_type.lower() != 'clustering') and (problem_type.lower() != 'topicmodelling'): if targetFeature != '': try: biasingDetail = config_obj.getDebiasingDetail() if len(biasingDetail) > 0: if biasingDetail['FeatureName'] != 'None': protected_feature = biasingDetail['FeatureName'] privileged_className = biasingDetail['ClassName'] target_feature = biasingDetail['TargetFeature'] algorithm = biasingDetail['Algorithm'] from debiasing.DebiasingManager import DebiasingManager mgrObj = DebiasingManager() log.info('Status:-|... Debiasing transformation started') transf_dataFrame = mgrObj.Bias_Mitigate(dataFrame, protected_feature, privileged_className, target_feature, algorithm) log.info('Status:-|... Debiasing transformation completed') dataFrame = transf_dataFrame except Exception as e: print(e) pass # ---------------------------------------------- ---------------------------------------------- targetData = dataFrame[targetFeature] featureData = dataFrame[dataFrame.columns.difference([targetFeature])] testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati xtrain,ytrain,xtest,ytest = self.split_into_train_test_data(featureData,targetData,testPercentage,log,problem_type.lower()) xtrain.reset_index(drop=True,inplace=True) ytrain.reset_index(drop=True,inplace=True) xtest.reset_index(drop=True,inplace=True) ytest.reset_index(drop=True,inplace=True) dataFrame = xtrain dataFrame[targetFeature] = ytrain encode_target_problems = ['classification','anomalyDetection', 'timeSeriesAnomalyDetection'] #task 11997 if problem_type == 'survivalAnalysis' and dataFrame[targetFeature].nunique() > 1: encode_target_problems.append('survivalAnalysis') if timeseriesStatus: #task 12627 calling data profiler without target feature specified separately (i.e) profiling is done for model features along with target features profilerObj = dataProfiler(dataFrame, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) else: profilerObj = dataProfiler(dataFrame, target=targetFeature, encode_target= problem_type in encode_target_problems, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) #task 12627 dataFrame, preprocess_pipe, label_encoder = profilerObj.transform() preprocess_out_columns = dataFrame.columns.tolist() if not timeseriesStatus: #task 12627 preprocess_out_columns goes as output_columns in target folder script/input_profiler.py, It should contain the target feature also as it is what is used for forecasting if targetFeature in preprocess_out_columns: preprocess_out_columns.remove(targetFeature) for x in unpreprocessed_columns: preprocess_out_columns.remove(x) if label_encoder: joblib.dump(label_encoder, Path(deployLocation)/'model'/'label_encoder.pkl') labelMaps = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_))) codeConfigure.update_config('train_features',list(profilerObj.train_features_type.keys())) codeConfigure.update_config('text_features',profilerObj.text_feature) self.textFeatures = profilerObj.text_feature deploy_config['profiler'] = {} deploy_config['profiler']['input_features'] = list(profilerObj.train_features_type.keys()) deploy_config['profiler']['output_features'] = preprocess_out_columns deploy_config['profiler']['input_features_type'] = profilerObj.train_features_type deploy_config['profiler']['word2num_features'] = profilerObj.wordToNumericFeatures deploy_config['profiler']['unpreprocessed_columns'] = unpreprocessed_columns deploy_config['profiler']['force_numeric_conv'] = profilerObj.force_numeric_conv if self.textFeatures: deploy_config['profiler']['conversion_method'] = config_obj.get_conversion_method() if anomalyDetectionStatus and datetimeFeature != 'NA' and datetimeFeature != '': if unpreprocessed_columns: dataFrame.set_index( unpreprocessed_columns[0], inplace=True) log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) if not xtest.empty: if targetFeature != '': non_null_index = ytest.notna() ytest = ytest[non_null_index] xtest = xtest[non_null_index] if profilerObj.force_numeric_conv: xtest[ profilerObj.force_numeric_conv] = xtest[profilerObj.force_numeric_conv].apply(pd.to_numeric,errors='coerce') xtest.astype(profilerObj.train_features_type) if unpreprocessed_columns: xtest_unprocessed = xtest[unpreprocessed_columns] xtest = preprocess_pipe.transform(xtest) if not isinstance(xtest, np.ndarray): xtest = xtest.toarray() xtest = pd.DataFrame(xtest, columns=preprocess_out_columns) if unpreprocessed_columns: xtest[unpreprocessed_columns] = xtest_unprocessed if survival_analysis_status: xtest.astype({x:'float' for x in unpreprocessed_columns}) xtrain.astype({x:'float' for x in unpreprocessed_columns}) #task 11997 removed setting datetime column as index of dataframe code as it is already done before if label_encoder: ytest = label_encoder.transform(ytest) if preprocess_pipe: if self.textFeatures: from text.textProfiler import reset_pretrained_model reset_pretrained_model(preprocess_pipe) # pickle is not possible for fasttext model ( binary) joblib.dump(preprocess_pipe, Path(deployLocation)/'model'/'preprocess_pipe.pkl') self.features=topFeatures if targetColumn in topFeatures: topFeatures.remove(targetColumn) self.topFeatures=topFeatures if normalizer != None: normalizer_file_path = os.path.join(deployLocation,'model','normalizer_pipe.sav') normalizer_pickle_file = 'normalizer_pipe.sav' pickle.dump(normalizer, open(normalizer_file_path,'wb')) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\n') else: datacolumns=list(dataFrame.columns) if targetFeature in datacolumns: datacolumns.remove(targetFeature) if not timeseriesStatus and not anomalyDetectionStatus and not inputDriftStatus and not outputDriftStatus and not imageClassificationStatus and not associationRuleStatus and not objectDetectionStatus and not stateTransitionStatus and not textsummarizationStatus: self.textFeatures,self.vectorizerFeatures,pipe,column_merge_flag,merge_columns = profilerObj.checkForTextClassification(dataFrame) self.topFeatures =datacolumns if(pipe is not None): preprocessing_pipe = 'pppipe'+iterName+'_'+iterVersion+'.sav' ppfilename = os.path.join(deployLocation,'model','pppipe'+iterName+'_'+iterVersion+'.sav') pickle.dump(pipe, open(ppfilename, 'wb')) status, msg = save_csv_compressed(dataFrame,profiled_data_file) if not status: log.info('CSV File Error: ' + str(msg)) if selector_status: log.info("\n================== Feature Selector has started ==================") log.info("Status:-|... AION feature engineering started") fs_mlstart = time.time() selectorJson = config_obj.getEionSelectorConfiguration() if self.textFeatures: config_obj.updateFeatureSelection(selectorJson, codeConfigure, self.textFeatures) log.info("-------> For vectorizer 'feature selection' is disabled and all the features will be used for training") from feature_engineering.featureSelector import featureSelector selectorObj = featureSelector() dataFrame,targetColumn,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,self.similarGroups,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pcaModel,bpca_features,apca_features,featureEngineeringSelector = selectorObj.startSelector(dataFrame, selectorJson,self.textFeatures,targetFeature,problem_type) if(str(pcaModel) != 'None'): featureReduction = 'True' status, msg = save_csv(dataFrame,reduction_data_file) if not status: log.info('CSV File Error: ' + str(msg)) pcaFileName = os.path.join(deployLocation,'model','pca'+iterName+'_'+iterVersion+'.sav') pcaModel_pickle_file = 'pca'+iterName+'_'+iterVersion+'.sav' pickle.dump(pcaModel, open(pcaFileName, 'wb')) if not xtest.empty: xtest = pd.DataFrame(pcaModel.transform(xtest),columns= apca_features) if targetColumn in self.topFeatures: self.topFeatures.remove(targetColumn) fs_mlexecutionTime=time.time() - fs_mlstart log.info('-------> COMPUTING: Total Feature Selection Execution Time '+str(fs_mlexecutionTime)) log.info('================== Feature Selection completed ==================\n') log.info("Status:-|... AION feature engineering completed") if deeplearner_status or learner_status: log.info('Status:-|... AION training started') ldp_mlstart = time.time() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problem_type.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' else: modelType='clustering' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if(modelType == 'clustering') or (modelType == 'topicmodelling'): xtrain = featureData ytrain = pd.DataFrame() xtest = featureData ytest = pd.DataFrame() elif (targetColumn!=''): xtrain = dataFrame[features] ytrain = dataFrame[targetColumn] else: pass categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) if learner_status: base_model_score=0 log.info('\n================== ML Started ==================') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() from learner.machinelearning import machinelearning mlobj = machinelearning() anomalyDetectionStatus = False anomalyMethod =config_obj.getEionanomalyModels() if modelType.lower() == "anomalydetection" or modelType.lower() == "timeseriesanomalydetection": #task 11997 anomalyDetectionStatus = True if anomalyDetectionStatus == True : datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) if datetimeFeature in datacolumns: datacolumns.remove(datetimeFeature) self.features = datacolumns from learner.anomalyDetector import anomalyDetector anomalyDetectorObj=anomalyDetector() model_type ="anomaly_detection" saved_model = model_type+'_'+iterName+'_'+iterVersion+'.sav' if problem_type.lower() == "timeseriesanomalydetection": #task 11997 anomalyconfig = config_obj.getAIONTSAnomalyDetectionConfiguration() modelType = "TimeSeriesAnomalyDetection" else: anomalyconfig = config_obj.getAIONAnomalyDetectionConfiguration() testPercentage = config_obj.getAIONTestTrainPercentage() ##Multivariate feature based anomaly detection status from gui (true/false) mv_featurebased_selection = config_obj.getMVFeaturebasedAD() mv_featurebased_ad_status=str(mv_featurebased_selection['uniVariate']) model,estimator,matrix,trainmatrix,score,labelMaps=anomalyDetectorObj.startanomalydetector(dataFrame,targetColumn,labelMaps,inlierLabels,learnerJson,model_type,saved_model,anomalyMethod,deployLocation,predicted_data_file,testPercentage,anomalyconfig,datetimeFeature,mv_featurebased_ad_status) #Unnati score = 'NA' if(self.matrix != '{'): self.matrix += ',' self.matrix += matrix if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix scoreParam = 'NA' scoredetails = f'{{"Model":"{model}","Score":"{score}"}}' if model_tried != '': model_tried += ',' model_tried += scoredetails model = anomalyMethod else: log.info('-------> Target Problem Type:'+ self.targetType) log.info('-------> Target Model Type:'+ modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() codeConfigure.update_config('scoring_criteria',scoreParam) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=mlobj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps,'MB',codeConfigure,featureEngineeringSelector,config_obj.getModelEvaluationConfig(),imageFolderLocation) #Getting model,data for ensemble calculation e_model=loaded_model base_model_score=score if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('================== ML Completed ==================\n') if deeplearner_status: learner_type = 'DL' log.info('Status:- |... AION DL training started') from dlearning.deeplearning import deeplearning dlobj = deeplearning() from learner.machinelearning import machinelearning mlobj = machinelearning() log.info('\n================== DL Started ==================') dlstart = time.time() deeplearnerJson = config_obj.getEionDeepLearnerConfiguration() targetColumn = targetFeature method = deeplearnerJson['optimizationMethod'] optimizationHyperParameter = deeplearnerJson['optimizationHyperParameter'] cvSplit = optimizationHyperParameter['trainTestCVSplit'] roundLimit=optimizationHyperParameter['roundLimit'] if 'randomMethod' in optimizationHyperParameter: randomMethod = optimizationHyperParameter['randomMethod'] else: randomMethod = 'Quantum' modelType = problem_type.lower() modelParams = deeplearnerJson['modelParams'] modelParamsFile=deeplearnerJson['modelparamsfile'] if roundLimit =="": roundLimit=None else: roundLimit=int(roundLimit) if len(self.modelSelTopFeatures) !=0: dl_features=self.modelSelTopFeatures best_feature_model = 'ModelBased' elif len(self.topFeatures) != 0: dl_features=self.topFeatures if featureEngineeringSelector.lower() == 'true': best_feature_model = 'DimensionalityReduction' else: best_feature_model = 'StatisticalBased' elif len(self.allFeatures) != 0: dl_features=self.allFeatures best_feature_model = 'AllFeatures' else: datacolumns=list(dataFrame.columns) datacolumns.remove(targetColumn) dl_features =datacolumns best_feature_model = 'AllFeatures' log.info('-------> Features Used For Modeling: '+(str(dl_features))[:500]) if cvSplit == "": cvSplit =None else: cvSplit =int(cvSplit) xtrain = xtrain[dl_features] xtest = xtest[dl_features] df_test = xtest.copy() df_test['actual'] = ytest modelParams,modelList = config_obj.getEionDeepLearnerModelParams(modelType) if modelType.lower() == 'classification': scoreParam = dlobj.setScoreParams(scoreParam,modelType) featureDataShape = xtrain.shape model_type = 'Classification' log.info('\n------ Training DL: Classification ----') elif modelType.lower() == 'regression': model_type = "Regression" if scoreParam == 'None': scoreParam = None log.info('\n------ Training DL: Regression ----') featureDataShape = xtrain.shape model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix = dlobj.startLearning(model_type,modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,labelMaps,df_test,deployLocation,iterName,iterVersion,best_feature_model) if model_tried != '': model_tried += ',' model_tried += model_tried_dl bestDL = True if learner_status: if score_dl <= score: bestDL = False log.info("\n----------- Machine Learning is Good ---") log.info("-------> Model: "+str(model) +" Score: "+str(score)) log.info("---------------------------------------\n") else: os.remove(filename) os.remove(predicted_data_file) log.info("\n------------ Deep Learning is Good---") log.info("-------> Model: "+str(model_dl)+" Score: "+str(score_dl)) log.info("---------------------------------------\n") if bestDL: model = model_dl score = score_dl best_model = best_model_dl params = params_dl filename = filename_dl status, msg = save_csv(df_test,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) saved_model = saved_model_dl self.matrix = '{'+performancematrix self.trainmatrix = '{'+trainingperformancematrix self.features = dl_features else: learner_type = 'ML' shutil.rmtree(filename_dl) dlexecutionTime=time.time() - dlstart log.info('-------> DL Execution Time '+str(dlexecutionTime)) log.info('Status:- |... AION DL training completed') log.info('================== Deep Completed ==================\n') if deeplearner_status or learner_status: log.info('Status:-|... AION training completed') if stateTransitionStatus: log.info('Status:-|... AION State Transition start') learner_type = modelType = model_type = 'StateTransition' model = 'MarkovClustering' scoreParam = 'NA' score = 0 from state_transition.pattern import pattern patternobj = pattern(modelFeatures,targetFeature) model_tried,probabilityfile,clusteringfile = patternobj.training(dataFrame,outputLocation) deploy_status = False visualizationstatus = False log.info('Status:-|... AION State Transition completed') if associationRuleStatus: log.info('\n================== Association Rule Started ==================') log.info('Status:-|... AION Association Rule start') learner_type = 'AR' modelType = 'Association Rule' model = 'apriori' scoreParam = 'NA' score = 'NA' model_type = modelType associationRuleJson = config_obj.getEionAssociationRuleConfiguration() modelparams,modelList = config_obj.getEionAssociationRuleModelParams() invoiceNoFeature,itemFeature = config_obj.getAssociationRuleFeatures() if model in modelparams: modelparam = modelparams[model] log.info('\n-------- Assciation Rule Start -----') from association_rules.associationrules import associationrules associationrulesobj = associationrules(dataFrame,associationRuleJson,modelparam,invoiceNoFeature,itemFeature) model_tried = associationrulesobj.apply_associationRules(outputLocation) log.info('-------- Association Rule End -----\n') log.info('<--------Association Rule Completed----->') log.info('Status:-|... AION Association Rule completed') deploy_status = False if textSimilarityStatus: log.info('================ Text Similarity Started ====================') log.info('Status:-|... AION Text Similarity started') learner_type = 'Text Similarity' model_type = 'Text Similarity' scoreParam = 'Accuracy' modelType = model_type firstDocFeature = config_obj.getFirstDocumentFeature() secondDocFeature = config_obj.getSecondDocumentFeature() textSimilarityCongig = config_obj.getEionTextSimilarityConfig() testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati from recommender.text_similarity import eion_similarity_siamese objTextSimilarity = eion_similarity_siamese() model,score,matrix,trainmatrix,modeltried,saved_model,filename,padding_length,threshold = objTextSimilarity.siamese_model(dataFrame,firstDocFeature,secondDocFeature,targetFeature,textSimilarityCongig,pipe,deployLocation,iterName,iterVersion,testPercentage,predicted_data_file) if(self.matrix != '{'): self.matrix += ',' self.matrix += matrix if model_tried != '': model_tried += ',' model_tried += modeltried if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix log.info('Status:-|... AION Text Similarity completed') log.info('================ Text Similarity Started End====================') if timeseriesStatus: log.info('================ Time Series Forecasting Started ====================') #task 11997 log.info('Status:-|... AION TimeSeries Forecasting started') #task 11997 modelType = 'TimeSeriesForecasting' #task 11997 model_type = 'TimeSeriesForecasting' #task 11997 learner_type = 'TS' modelName='ARIMA' numericContinuousFeatures = targetFeature.split(",") profilerJson = config_obj.getEionTimeSeriesConfiguration() modelParams,modelList = config_obj.getEionTimeSeriesModelParams() modelName = modelList testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati from time_series.timeseries import timeseries allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'rmse' objTS = timeseries(profilerJson,modelParams,modelList,dataFrame,targetFeature,datetimeFeature,modelName,testPercentage,iterName,iterVersion,deployLocation,scoreParam) modelName,model,scoreParam,score,best_model,sfeatures,errormatrix,model_tried,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,scalertransformationFile = objTS.timeseries_learning(trained_data_file,predicted_data_file,deployLocation) xtrain = dataFrame self.matrix += errormatrix log.info("Best model to deploy: \n"+str(model)) ## Below part is for var,arima,fbprophet try: with open(filename, 'rb') as f: loaded_model = pickle.load(f) f.close() except: loaded_model=best_model pass df_l=len(dataFrame) pred_threshold=0.1 max_pred_by_user= round((df_l)*pred_threshold) #prediction for 24 steps or next 24 hours if noofforecasts == -1: noofforecasts = max_pred_by_user no_of_prediction=noofforecasts if (no_of_prediction > max_pred_by_user): log.info("-------> Forecast beyond the threshold.So, Reset to Maximum:" +str(max_pred_by_user)) no_of_prediction=max_pred_by_user noofforecasts = no_of_prediction log.info("-------> Number of Forecast Records: "+str(no_of_prediction)) log.info("\n------ Forecast Prediction Start -------------") if(model.lower() == 'var'): sfeatures.remove(datetimeFeature) self.features = sfeatures originalPredictions=objTS.var_prediction(no_of_prediction) log.info("-------> Predictions") log.info(originalPredictions) predictions=originalPredictions forecast_output = predictions.to_json(orient='records') else: if (model.lower() == 'fbprophet'): self.features = sfeatures if not pred_freq: sessonal_freq = 'H' else: sessonal_freq=pred_freq ts_prophet_future = best_model.make_future_dataframe(periods=no_of_prediction,freq=sessonal_freq,include_history = False) #If additional regressor given by user. if (additional_regressors): log.info("------->Prophet additional regressor given by user: "+str(additional_regressors)) ts_prophet_future[additional_regressors] = dataFrame[additional_regressors] ts_prophet_future.reset_index(drop=True) ts_prophet_future=ts_prophet_future.dropna() else: pass train_forecast = best_model.predict(ts_prophet_future) train_forecast = train_forecast.round(2) prophet_forecast_tail=train_forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] prophet_forecast_tail['ds'] = prophet_forecast_tail['ds'].dt.strftime('%Y-%m-%d %H:%i:%s') log.info("------->Prophet Predictions") log.info(prophet_forecast_tail) forecast_output = prophet_forecast_tail.to_json(orient='records') elif (model.lower() == 'arima'): predictions = loaded_model.predict(n_periods=no_of_prediction) predictions = predictions.round(2) self.features = sfeatures col = targetFeature.split(",") pred = pd.DataFrame(predictions,columns=col) predictionsdf = pred log.info("-------> Predictions") log.info(predictionsdf) forecast_output = predictionsdf.to_json(orient='records') elif (model.lower() == 'encoder_decoder_lstm_mvi_uvo'): log.info(datetimeFeature) log.info(sfeatures) self.features = sfeatures if len(sfeatures) == 1: xt = xtrain[self.features].values else: xt = xtrain[self.features].values with open(scalertransformationFile, 'rb') as f: loaded_scaler_model = pickle.load(f) f.close() xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) pred_data = xt y_future = [] featuerlen = len(sfeatures) targetColIndx = (xtrain.columns.get_loc(targetFeature)) #in case of lstm multivariate input and univariate out prediction only one sequence can be predicted #consider the last xtrain window as input sequence pdata = pred_data[-lag_order:] pdata = pdata.reshape((1,lag_order, featuerlen)) pred = loaded_model.predict(pdata) pred_1d = pred.ravel() #pred_1d = pred_1d.reshape(len(pred_1d),1) pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, featuerlen) pdata_2d[:,targetColIndx] = pred_1d pred_2d_inv = loaded_scaler_model.inverse_transform(pdata_2d) predout = pred_2d_inv[:, targetColIndx] predout = predout.reshape(len(pred_1d),1) #y_future.append(predout) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(predout)),columns=col) for i in range(0, len(predout)): pred.iloc[i] = predout[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') elif (model.lower() == 'mlp' or model.lower() == 'lstm'): sfeatures.remove(datetimeFeature) self.features = sfeatures if len(sfeatures) == 1: xt = xtrain[self.features].values else: xt = xtrain[self.features].values with open(scalertransformationFile, 'rb') as f: loaded_scaler_model = pickle.load(f) f.close() xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) pred_data = xt y_future = [] for i in range(no_of_prediction): pdata = pred_data[-lag_order:] if model.lower() == 'mlp': pdata = pdata.reshape((1,lag_order)) else: pdata = pdata.reshape((1,lag_order, len(sfeatures))) if (len(sfeatures) > 1): pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout) pred_data=np.append(pred_data,pred,axis=0) else: pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout.flatten()[-1]) pred_data = np.append(pred_data,pred) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(y_future)),columns=col) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') else: pass log.info('Status:-|... AION TimeSeries Forecasting completed') #task 11997 log.info("------ Forecast Prediction End -------------\n") log.info('================ Time Series Forecasting Completed ================\n') #task 11997 if recommenderStatus: log.info('\n================ Recommender Started ================ ') log.info('Status:-|... AION Recommender started') learner_type = 'RecommenderSystem' model_type = 'RecommenderSystem' modelType = model_type model = model_type targetColumn='' datacolumns=list(dataFrame.columns) self.features=datacolumns svd_params = config_obj.getEionRecommenderConfiguration() from recommender.item_rating import recommendersystem recommendersystemObj = recommendersystem(modelFeatures,svd_params) testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati saved_model,rmatrix,score,trainingperformancematrix,model_tried = recommendersystemObj.recommender_model(dataFrame,outputLocation) scoreParam = 'NA' #Task 11190 log.info('Status:-|... AION Recommender completed') log.info('================ Recommender Completed ================\n') if textsummarizationStatus: log.info('\n================ text Summarization Started ================ ') log.info('Status:-|... AION text Summarization started') modelType = 'textsummarization' model_type = 'textsummarization' learner_type = 'Text Summarization' modelName='TextSummarization' from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from scipy import spatial model = model_type dataLocationTS,deployLocationTS,KeyWordsTS,pathForKeywordFileTS = config_obj.getEionTextSummarizationConfig() #print("dataLocationTS",dataLocationTS) #print("deployLocationTS",deployLocationTS) #print("KeyWordsTS",KeyWordsTS) #print("pathForKeywordFileTS",pathForKeywordFileTS) #PreTrained Model Download starts------------------------- from appbe.dataPath import DATA_DIR preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' models = {'glove':{50:'glove.6B.50d.w2vformat.txt'}} supported_models = [x for y in models.values() for x in y.values()] modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' Path(modelsPath).mkdir(parents=True, exist_ok=True) p = Path(modelsPath).glob('**/*') modelsDownloaded = [x.name for x in p if x.name in supported_models] selected_model="glove.6B.50d.w2vformat.txt" if selected_model not in modelsDownloaded: print("Model not in folder, downloading") import urllib.request location = Path(modelsPath) local_file_path = location/f"glove.6B.50d.w2vformat.txt" urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.50d.w2vformat.txt', local_file_path) from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") tokenizer.save_pretrained(preTrainedModellocation) model.save_pretrained(preTrainedModellocation) #PreTrained Model Download ends----------------------- deployLocationData=deployLocation+"\\data\\" modelLocation=Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'/'glove.6B.50d.w2vformat.txt' KeyWordsTS=KeyWordsTS.replace(",", " ") noOfKeyword = len(KeyWordsTS.split()) keywords = KeyWordsTS.split() embeddings = {} word = '' with open(modelLocation, 'r', encoding="utf8") as f: header = f.readline() header = header.split(' ') vocab_size = int(header[0]) embed_size = int(header[1]) for i in range(vocab_size): data = f.readline().strip().split(' ') word = data[0] embeddings[word] = [float(x) for x in data[1:]] readData=pd.read_csv(pathForKeywordFileTS,encoding='utf-8',encoding_errors= 'replace') for i in range(noOfKeyword): terms=(sorted(embeddings.keys(), key=lambda word: spatial.distance.euclidean(embeddings[word], embeddings[keywords[i]])) )[1:6] readData = readData.append({'Keyword': keywords[i]}, ignore_index=True) for j in range(len(terms)): readData = readData.append({'Keyword': terms[j]}, ignore_index=True) deployLocationDataKwDbFile=deployLocationData+"keywordDataBase.csv" readData.to_csv(deployLocationDataKwDbFile,encoding='utf-8',index=False) datalocation_path=dataLocationTS path=Path(datalocation_path) fileList=os.listdir(path) textExtraction = pd.DataFrame() textExtraction['Sentences']="" rowIndex=0 for i in range(len(fileList)): fileName=str(datalocation_path)+"\\"+str(fileList[i]) if fileName.endswith(".pdf"): print("\n files ",fileList[i]) from pypdf import PdfReader reader = PdfReader(fileName) number_of_pages = len(reader.pages) text="" textOutputForFile="" OrgTextOutputForFile="" for i in range(number_of_pages) : page = reader.pages[i] text1 = page.extract_text() text=text+text1 import nltk tokens = nltk.sent_tokenize(text) for sentence in tokens: sentence=sentence.replace("\n", " ") if (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) : continue textExtraction.at[rowIndex,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 if fileName.endswith(".txt"): print("\n txt files",fileList[i]) data=[] with open(fileName, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele sentences=str1.split(".") count=0 for sentence in sentences: count += 1 textExtraction.at[rowIndex+i,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 df=textExtraction #print("textExtraction",textExtraction) deployLocationDataPreProcessData=deployLocationData+"preprocesseddata.csv" save_csv_compressed(deployLocationDataPreProcessData, df, encoding='utf-8') df['Label']=0 kw=pd.read_csv(deployLocationDataKwDbFile,encoding='utf-8',encoding_errors= 'replace') Keyword_list = kw['Keyword'].tolist() for i in df.index: for x in Keyword_list: if (str(df["Sentences"][i])).find(x) != -1: df['Label'][i]=1 break deployLocationDataPostProcessData=deployLocationData+"postprocesseddata.csv" #df.to_csv(deployLocationDataPostProcessData,encoding='utf-8') save_csv_compressed(deployLocationDataPostProcessData, df, encoding='utf-8') labelledData=df train_df=labelledData labelencoder = LabelEncoder() train_df['Sentences'] = labelencoder.fit_transform(train_df['Sentences']) X = train_df.drop('Label',axis=1) y = train_df['Label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) Classifier = RandomForestClassifier(n_estimators = 10, random_state = 42) modelTs=Classifier.fit(X, y) import pickle deployLocationTS=deployLocation+"\\model\\"+iterName+'_'+iterVersion+'.sav' deployLocationTS2=deployLocation+"\\model\\"+"classificationModel.sav" pickle.dump(modelTs, open(deployLocationTS, 'wb')) pickle.dump(modelTs, open(deployLocationTS2, 'wb')) print("\n trainModel Ends") saved_model = 'textsummarization_'+iterName+'_'+iterVersion log.info('Status:-|... AION text summarization completed') model = learner_type log.info('================ text summarization Completed ================\n') if survival_analysis_status: sa_method = config_obj.getEionanomalyModels() labeldict = {} log.info('\n================ SurvivalAnalysis Started ================ ') log.info('Status:-|... AION SurvivalAnalysis started') log.info('\n================ SurvivalAnalysis DataFrame ================ ') log.info(dataFrame) from survival import survival_analysis from learner.machinelearning import machinelearning sa_obj = survival_analysis.SurvivalAnalysis(dataFrame, preprocess_pipe, sa_method, targetFeature, datetimeFeature, filter_expression, profilerObj.train_features_type) if sa_obj != None: predict_json = sa_obj.learn() if sa_method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']: predicted = sa_obj.models[0].predict(dataFrame[datetimeFeature]) status, msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) self.features = [datetimeFeature] elif sa_method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']: predicted = sa_obj.models[0].predict_cumulative_hazard(dataFrame) datacolumns = list(dataFrame.columns) targetColumn = targetFeature if targetColumn in datacolumns: datacolumns.remove(targetColumn) self.features = datacolumns score = sa_obj.score scoreParam = 'Concordance_Index' status,msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) model = sa_method modelType = "SurvivalAnalysis" model_type = "SurvivalAnalysis" modelName = sa_method i = 1 for mdl in sa_obj.models: saved_model = "%s_%s_%s_%d.sav"%(model_type,sa_method,iterVersion,i) pickle.dump(mdl, open(os.path.join(deployLocation,'model',saved_model), 'wb')), i+=1 p = 1 for plot in sa_obj.plots: img_name = "%s_%d.png"%(sa_method,p) img_location = os.path.join(imageFolderLocation,img_name) plot.savefig(img_location,bbox_inches='tight') sa_images.append(img_location) p+=1 log.info('Status:-|... AION SurvivalAnalysis completed') log.info('\n================ SurvivalAnalysis Completed ================ ') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('\n================== Visualization Recommendation Started ==================') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfrows,self.dfcols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('================== Visualization Recommendation Started ==================\n') if similarityIdentificationStatus or contextualSearchStatus: datacolumns=list(dataFrame.columns) features = modelFeatures.split(",") if indexFeature != '' and indexFeature != 'NA': iFeature = indexFeature.split(",") for ifea in iFeature: if ifea not in features: features.append(ifea) for x in features: dataFrame[x] = similaritydf[x] #get vectordb(chromadb) status selected if similarityIdentificationStatus: learner_type = 'similarityIdentification' else: learner_type = 'contextualSearch' vecDBCosSearchStatus = config_obj.getVectorDBCosSearchStatus(learner_type) if vecDBCosSearchStatus: status, msg = save_chromadb(dataFrame, config_obj, trained_data_file, modelFeatures) if not status: log.info('Vector DB File Error: '+str(msg)) else: status, msg = save_csv(dataFrame,trained_data_file) if not status: log.info('CSV File Error: '+str(msg)) self.features = datacolumns model_type = config_obj.getAlgoName(problem_type) model = model_type #bug 12833 model_tried = '{"Model":"'+model_type+'","FeatureEngineering":"NA","Score":"NA","ModelUncertainty":"NA"}' modelType = learner_type saved_model = learner_type score = 'NA' if deploy_status: if str(model) != 'None': log.info('\n================== Deployment Started ==================') log.info('Status:-|... AION Creating Prediction Service Start') deployer_mlstart = time.time() deployJson = config_obj.getEionDeployerConfiguration() deploy_name = iterName+'_'+iterVersion from prediction_package.model_deploy import DeploymentManager if textsummarizationStatus : deploy = DeploymentManager() deploy.deployTSum(deployLocation,preTrainedModellocation) codeConfigure.save_config(deployLocation) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Deployer completed') log.info('================== Deployment Completed ==================') else: deploy = DeploymentManager() deploy.deploy_model(deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deployLocation,self.features,self.profilerAction,dataLocation,labelMaps,column_merge_flag,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer_pickle_file,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,self.method,deployFolder,iterName,iterVersion,self.wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,noofforecasts,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,deploy_config) codeConfigure.update_config('deploy_path',os.path.join(deployLocation,'publish')) codeConfigure.save_config(deployLocation) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Creating Prediction Service completed') log.info('================== Deployment Completed ==================') if not outputDriftStatus and not inputDriftStatus: from transformations.dataProfiler import set_features self.features = set_features(self.features,profilerObj) self.matrix += '}' self.trainmatrix += '}' print(model_tried) model_tried = eval('['+model_tried+']') matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) deployPath = deployLocation.replace(os.sep, '/') if survival_analysis_status: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"survivalProbability":json.loads(predict_json),"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,"imageLocation":str(sa_images),"LogFile":logFileName}} elif not timeseriesStatus: try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} else: if config_obj.summarize: modelType = 'Summarization' output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,'forecasts':json.loads(forecast_output),"LogFile":logFileName}} if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w',encoding='utf-8') as f: json.dump(output_json, f) f.close() output_json = json.dumps(output_json) log.info('\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfrows)+','+str(self.dfcols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) for i in range(0,len(self.similarGroups)): log.info('------->Similar Groups '+str(i+1)+' '+str(self.similarGroups[i])) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\n') log.info('Status:-|... AION Model Training Successfully Done') except Exception as inst: log.info('server code execution failed !....'+str(inst)) log.error(inst, exc_info = True) output_json = {"status":"FAIL","message":str(inst).strip('"'),"LogFile":logFileName} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\nTotal execution time(sec) :'+str(executionTime)) log.info('\n------------- Output JSON ------------') log.info('aion_learner_status:'+str(output_json)) log.info('------------- Output JSON ------------\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def split_into_train_test_data(self,featureData,targetData,testPercentage,log,modelType='classification'): #Unnati log.info('\n-------------- Test Train Split ----------------') if testPercentage == 0 or testPercentage == 100: #Unnati xtrain=featureData ytrain=targetData xtest=pd.DataFrame() ytest=pd.DataFrame() else: testSize= testPercentage/100 #Unnati if modelType == 'regression': log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) else: try: log.info('-------> Split Type: Stratify Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,random_state=42) except Exception as ValueError: count_unique = targetData.value_counts() feature_with_single_count = count_unique[ count_unique == 1].index.tolist() error = f"The least populated class in {feature_with_single_count} has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2" raise Exception(error) from ValueError except: log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) log.info('Status:- !... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test') #Unnati log.info('-------> Train Data Shape: '+str(xtrain.shape)+' ---------->') log.info('-------> Test Data Shape: '+str(xtest.shape)+' ---------->') log.info('-------------- Test Train Split End ----------------\n') return(xtrain,ytrain,xtest,ytest) def aion_train_model(arg): warnings.filterwarnings('ignore') config_path = Path( arg) with open( config_path, 'r') as f: config = json.load( f) log = set_log_handler(config['basic']) log.info('************* Version - v'+AION_VERSION+' *************** \n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) try: config_validate(arg) valid, msg = pushRecordForTraining() if valid: serverObj = server() configObj = AionConfigManager() codeConfigure = code_configure() codeConfigure.create_config(config) readConfistatus,msg = configObj.readConfigurationFile(config) if(readConfistatus == False): raise ValueError( msg) output = serverObj.startScriptExecution(configObj, codeConfigure, log) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print( f"\naion_learner_status:{output}\n") log.info( f"\naion_learner_status:{output}\n") except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(f"\naion_learner_status:{output}\n") log.info( f"\naion_learner_status:{output}\n") return output if __name__ == "__main__": aion_train_model( sys.argv[1])
aion_uncertainties.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from uncertainties.uq_main import aionUQ import os from datetime import datetime from os.path import expanduser import platform import logging class run_uq: def __init__(self,modelfeatures,modelFile,csvFile,target): self.modelfeatures=modelfeatures self.modelFile=modelFile self.csvFile=csvFile self.target=target ##UQ classification fn def getUQclassification(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) # # object_cols = [col for col, col_type in df.dtypes.iteritems() if col_type == 'object'] -- Fix for python 3.8.11 update (in 2.9.0.8) object_cols = [col for col, col_type in zip(df.columns,df.dtypes) if col_type == 'object'] df = df.drop(object_cols, axis=1) df = df.dropna(axis=1) df = df.reset_index(drop=True) modelfeatures = self.modelfeatures #tar = args.target # target = df[tar] y=df[self.target].values y = y.flatten() X = df.drop(self.target, axis=1) try: uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,self.target) accuracy,uq_ece,output_jsonobject=uqObj.uqMain_BBMClassification() except Exception as e: print("uq error",e) # print("UQ Classification: \n",output_jsonobject) # print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per) #print(output_jsonobject) return accuracy,uq_ece,output_jsonobject ##UQ regression fn def getUQregression(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) modelfeatures = self.modelfeatures dfp = df[modelfeatures] tar = self.target target = df[tar] uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar) total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression() return total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject def uqMain(self,model): #print("inside uq main.\n") reg_status="" class_status="" algorithm_status="" try: model=model if Path(self.modelFile).is_file(): ProblemName = model.__class__.__name__ if ProblemName in ['LogisticRegression','SGDClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','GradientBoostingClassifier']: Problemtype = 'Classification' elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor']: Problemtype = 'Regression' else: Problemtype = "None" if Problemtype.lower() == 'classification': try: Params = model.get_params() accuracy,uq_ece,output = self.getUQclassification(model,ProblemName,Params) class_status="SUCCESS" #print(output) except Exception as e: print(e) class_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) elif Problemtype.lower() == 'regression' : try: Params = model.get_params() total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,output = self.getUQregression(model,ProblemName,Params) #print(uq_jsonobject) reg_status="SUCCESS" except Exception as e: output = {'Problem':'None','msg':str(e)} output = json.dumps(output) reg_status="FAILED" else: try: output={} output['Problem']="None" output['msg']="Uncertainty Quantification not supported for this algorithm." output = json.dumps(output) algorithm_status="FAILED" except: algorithm_status="FAILED" except Exception as e: print(e) reg_status="FAILED" class_status="FAILED" algorithm_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return class_status,reg_status,algorithm_status,output def aion_uq(modelFile,dataFile,features,targetfeatures): try: from appbe.dataPath import DEPLOY_LOCATION uqLogLocation = os.path.join(DEPLOY_LOCATION,'logs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' filepath = os.path.join(uqLogLocation, filename_uq) print(filepath) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.INFO) log.info('************* Version - v1.7.0 *************** \n') if isinstance(features, list): modelfeatures = features else: if ',' in features: modelfeatures = [x.strip() for x in features.split(',')] else: modelfeatures = features.split(',') model = joblib.load(modelFile) uqobj = run_uq(modelfeatures,modelFile,dataFile,targetfeatures) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): log.info('Problem type issue, UQ only support classification and regression. May be selected algorithm not supported by Uncertainty Quantification currently./n') except Exception as e: log.info('uq test failed.n'+str(e)) #print(e) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return(output) #Sagemaker main fn call if __name__=='__main__': try: parser = argparse.ArgumentParser() parser.add_argument('savFile') parser.add_argument('csvFile') parser.add_argument('features') parser.add_argument('target') args = parser.parse_args() home = expanduser("~") if platform.system() == 'Windows': uqLogLocation = os.path.join(home,'AppData','Local','HCLT','AION','uqLogs') else: uqLogLocation = os.path.join(home,'HCLT','AION','uqLogs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') # self.sagemakerLogLocation=str(sagemakerLogLocation) filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(uqLogLocation, filename_uq) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.DEBUG) if ',' in args.features: args.features = [x.strip() for x in args.features.split(',')] else: args.features = args.features.split(',') modelFile = args.savFile modelfeatures = args.features csvFile = args.csvFile target=args.target model = joblib.load(args.savFile) ##Main uq function call uqobj = run_uq(modelfeatures,modelFile,csvFile,target) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): msg = 'Uncertainty Quantification not supported for this algorithm' log.info('Algorithm not supported by Uncertainty Quantification./n') output = {'Problem':'None','msg':str(msg)} output = json.dumps(output) except Exception as e: log.info('uq test failed.n'+str(e)) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) #print(e) print(output)
aion_telemetry.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import requests import json import os from datetime import datetime import socket import getmac def telemetry_data(operation,Usecase,data): now = datetime.now() ID = datetime.timestamp(now) record_date = now.strftime("%y-%m-%d %H:%M:%S") try: user = os.getlogin() except: user = 'NA' computername = socket.getfqdn() macaddress = getmac.get_mac_address() item = {} item['ID'] = str(int(ID)) item['record_date'] = record_date item['UseCase'] = Usecase item['user'] = str(user) item['operation'] = operation item['remarks'] = data item['hostname'] = computername item['macaddress'] = macaddress url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' record = {} record['TableName'] = 'AION_OPERATION' record['Item'] = item record = json.dumps(record) try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) check_telemetry_file() except Exception as inst: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') f=open(filename, "a+") f.write(record+'\n') f.close() def check_telemetry_file(): file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') if(os.path.isfile(file_path)): f = open(file_path, 'r') file_content = f.read() f.close() matched_lines = file_content.split('\n') write_lines = [] url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' for record in matched_lines: try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) except: write_lines.append(record) f = open(file_path, "a") f.seek(0) f.truncate() for record in write_lines: f.write(record+'\n') f.close() return True else: return True
aion_publish.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import shutil import subprocess import sys import glob import json def publish(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] deployFolder = jsonData['deployLocation'] model = model.replace(" ", "_") deployedPath = os.path.join(deployFolder,model+'_'+version) deployedPath = os.path.join(deployedPath,'WHEELfile') whlfilename='na' if os.path.isdir(deployedPath): for file in os.listdir(deployedPath): if file.endswith(".whl"): whlfilename = os.path.join(deployedPath,file) if whlfilename != 'na': subprocess.check_call([sys.executable, "-m", "pip", "uninstall","-y",model]) subprocess.check_call([sys.executable, "-m", "pip", "install", whlfilename]) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': service_stop(json.dumps(jsonData)) service_start(json.dumps(jsonData)) output_json = {'status':"SUCCESS"} output_json = json.dumps(output_json) else: output_json = {'status':'Error','Msg':'Installation Package not Found'} output_json = json.dumps(output_json) return(output_json) def check_service_running(model,serviceFolder): model = model.replace(" ", "_") filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' ip = '' port = '' pid = '' if os.path.exists(modelservicefile): status = 'File Exist' import psutil for proc in psutil.process_iter(): pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections']) if 'python' in pinfo['name']: if filename in pinfo['cmdline'][1]: status = 'Running' pid = pinfo['pid'] for x in pinfo['connections']: ip = x.laddr.ip port = x.laddr.port return(status,pid,ip,port) def service_stop(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': import psutil p = psutil.Process(int(pid)) p.terminate() time.sleep(2) output_json = {'status':'SUCCESS'} output_json = json.dumps(output_json) return(output_json) def service_start(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] ip = jsonData['ip'] port = jsonData['port'] deployFolder = jsonData['deployLocation'] serviceFolder = jsonData['serviceFolder'] model = model.replace(" ", "_") deployLocation = os.path.join(deployFolder,model+'_'+version) org_service_file = os.path.abspath(os.path.join(os.path.dirname(__file__),'model_service.py')) filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' if os.path.exists(modelservicefile): status = 'File Exist' r = ([line.split() for line in subprocess.check_output("tasklist").splitlines()]) for i in range(len(r)): if filename in r[i]: status = 'Running' if status == 'File Not Exist': shutil.copy(org_service_file,modelservicefile) with open(modelservicefile, 'r+') as file: content = file.read() file.seek(0, 0) line = 'from '+model+' import aion_performance' file.write(line+"\n") line = 'from '+model+' import aion_drift' file.write(line+ "\n") line = 'from '+model+' import featureslist' file.write(line+ "\n") line = 'from '+model+' import aion_prediction' file.write(line+ "\n") file.write(content) file.close() status = 'File Exist' if status == 'File Exist': status,pid,ipold,portold = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status != 'Running': command = "python "+modelservicefile+' '+str(port)+' '+str(ip) os.system('start cmd /c "'+command+'"') time.sleep(2) status = 'Running' output_json = {'status':'SUCCESS','Msg':status} output_json = json.dumps(output_json) return(output_json) if __name__ == "__main__": aion_publish(sys.argv[1])
aion_text_summarizer.py
import json import logging import os import shutil import time import sys from sys import platform from distutils.util import strtobool from config_manager.pipeline_config import AionConfigManager from summarizer import Summarizer # Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules. class AionTextManager: def __init__(self): self.log = logging.getLogger('eion') self.data = '' self.problemType = '' self.basic = [] self.advance=[] def readTextfile(self,dataPath): #dataPath=self.[baisc][] file = open(dataPath, "r") data = file.read() return data #print(data) def generateSummary(self,data,algo,stype): bert_model = Summarizer() if stype == "large": bert_summary = ''.join(bert_model(data, min_length=300)) return(bert_summary) elif stype == "medium": bert_summary = ''.join(bert_model(data, min_length=150)) return(bert_summary) elif stype == "small": bert_summary = ''.join(bert_model(data, min_length=60)) return(bert_summary) def aion_textsummary(arg): Obj = AionTextManager() configObj = AionConfigManager() readConfistatus,msg = configObj.readConfigurationFile(arg) dataPath = configObj.getTextlocation() text_data = Obj.readTextfile(dataPath) getAlgo, getMethod = configObj.getTextSummarize() summarize = Obj.generateSummary(text_data, getAlgo, getMethod) output = {'status':'Success','summary':summarize} output_json = json.dumps(output) return(output_json) if __name__ == "__main__": aion_textsummary(sys.argv[1])
__init__.py
import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
aion_service.py
#from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn from functools import partial from http.server import SimpleHTTPRequestHandler, test import base64 from appbe.dataPath import DEPLOY_LOCATION ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse from functools import partial import re import cgi from datetime import datetime import json import sys from datetime import datetime user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): username = kwargs.pop("username") password = kwargs.pop("password") self._auth = base64.b64encode(f"{username}:{password}".encode()).decode() super().__init__(*args) def do_HEAD(self): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() def do_AUTHHEAD(self): self.send_response(401) self.send_header("WWW-Authenticate", 'Basic realm="Test"') self.send_header("Content-type", "text/html") self.end_headers() def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': if self.headers.get("Authorization") == None: self.do_AUTHHEAD() resp = "Authentication Failed: Auth Header Not Present" resp=resp.encode() self.wfile.write(resp) elif self.headers.get("Authorization") == "Basic " + self._auth: length = int(self.headers.get('content-length')) #data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-2] operation = self.path.split('/')[-1] home = expanduser("~") #data = json.loads(data) dataStr = data model_path = os.path.join(DEPLOY_LOCATION,model) isdir = os.path.isdir(model_path) if isdir: if operation.lower() == 'predict': predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'spredict': try: predict_path = os.path.join(model_path,'aion_spredict.py') print(predict_path) outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr except Exception as e: print(e) elif operation.lower() == 'features': predict_path = os.path.join(model_path,'featureslist.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'explain': predict_path = os.path.join(model_path,'explainable_ai.py') outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'monitoring': predict_path = os.path.join(model_path,'aion_ipdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'performance': predict_path = os.path.join(model_path,'aion_opdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'pattern_anomaly_predict': data = json.loads(data) anomaly = False remarks = '' clusterid = -1 configfilename = os.path.join(model_path,'datadetails.json') filename = os.path.join(model_path,'clickstream.json') clusterfilename = os.path.join(model_path,'stateClustering.csv') probfilename = os.path.join(model_path,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid outputStr = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' elif operation.lower() == 'pattern_anomaly_settings': data = json.loads(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] filename = os.path.join(model_path,'clickstream.json') data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() outputStr = '{"Status":"SUCCESS"}' else: outputStr = "{'Status':'Error','Msg':'Operation not supported'}" else: outputStr = "{'Status':'Error','Msg':'Model Not Present'}" resp = outputStr resp=resp+"\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: self.do_AUTHHEAD() self.wfile.write(self.headers.get("Authorization").encode()) resp = "Authentication Failed" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def getModelFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} home = expanduser("~") if platform.system() == 'Windows': predict_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'featureslist.py') else: predict_path = os.path.join(home,'HCLT','AION','target',modelSignature,'featureslist.py') if(os.path.isfile(predict_path)): outputStr = subprocess.check_output([sys.executable,predict_path]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'features:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() displaymsg = outputStr #displaymsg = json.dumps(displaymsg) return(True,displaymsg) else: displaymsg = "{'status':'ERROR','msg':'Unable to fetch featuers'}" return(False,displaymsg) def getFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} urltext = '/AION/UseCase_Version/features' if modelSignature != '': status,displaymsg = self.getModelFeatures(modelSignature) if status: urltext = '/AION/'+modelSignature+'/features' else: displaymsg = json.dumps(datajson) else: displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Output: {displaymsg}. """.format(url=urltext,displaymsg=displaymsg) return(msg) def features_help(self,modelSignature): home = expanduser("~") if platform.system() == 'Windows': display_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'display.json') else: display_path = os.path.join(home,'HCLT','AION','target',modelSignature,'display.json') #display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json') datajson = {'Body':'Data Should be in JSON Format'} if(os.path.isfile(display_path)): with open(display_path) as file: config = json.load(file) file.close() datajson={} for feature in config['numericalFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Numeric Value' for feature in config['nonNumericFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' for feature in config['textFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' displaymsg = json.dumps(datajson) return(displaymsg) def predict_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/predict' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/predict' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: prediction,probability(if Applicable),remarks corresponding to each row. """.format(url=urltext,displaymsg=displaymsg) return(msg) def performance_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/performance' else: urltext = '/AION/UseCase_Version/performance' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def monitoring_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/monitoring' else: urltext = '/AION/UseCase_Version/monitoring' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: Affected Columns. HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def explain_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/explain' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/explain' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: anchor (Local Explanation),prediction,forceplot,multidecisionplot.""".format(url=urltext,displaymsg=displaymsg) return(msg) def help_text(self,modelSignature): predict_help = self.predict_help(modelSignature) explain_help = self.explain_help(modelSignature) features_help = self.getFeatures(modelSignature) monitoring_help = self.monitoring_help(modelSignature) performance_help = self.performance_help(modelSignature) msg=""" Following URL: Prediction {predict_help} Local Explaination {explain_help} Features {features_help} Monitoring {monitoring_help} Performance {performance_help} """.format(predict_help=predict_help,explain_help=explain_help,features_help=features_help,monitoring_help=monitoring_help,performance_help=performance_help) return msg def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() helplist = self.path.split('/')[-1] print(helplist) if helplist.lower() == 'help': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.help_text(model) elif helplist.lower() == 'predict': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.predict_help(model) elif helplist.lower() == 'explain': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.explain_help(model) elif helplist.lower() == 'monitoring': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.monitoring_help(model) elif helplist.lower() == 'performance': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.performance_help(model) elif helplist.lower() == 'features': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' status,msg = self.getModelFeatures(model) else: model = self.path.split('/')[-2] if model.lower() == 'aion': model =helplist msg = self.help_text(model) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class SimpleHttpServer(): def __init__(self, ip, port,username,password): handler_class = partial(HTTPRequestHandler,username=username,password=password,) self.server = ThreadedHTTPServer((ip,port), handler_class) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() def start_server(ip,port,username,password): server = SimpleHttpServer(ip,int(port),username,password) print('HTTP Server Running...........') server.start() server.waitForThread()
aion_online_pipeline.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import logging logging.getLogger('tensorflow').disabled = True import shutil import warnings from config_manager.online_pipeline_config import OTAionConfigManager from records import pushrecords import logging import mlflow from pathlib import Path from pytz import timezone def pushRecordForOnlineTraining(): try: from appbe.pages import getversion status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) class server(): def __init__(self): self.response = None self.dfNumCols=0 self.dfNumRows=0 self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj): rowfilterexpression = '' grouperbyjson = '' model_tried='' learner_type = '' topics = {} numericContinuousFeatures='' discreteFeatures='' threshold=-1 targetColumn = '' categoricalFeatures='' dataFolderLocation = '' original_data_file = '' profiled_data_file = '' trained_data_file = '' predicted_data_file='' featureReduction = 'False' reduction_data_file='' params={} score = 0 labelMaps={} featureDataShape=[] self.riverModels = [] self.riverAlgoNames = ['Online Logistic Regression', 'Online Softmax Regression', 'Online Decision Tree Classifier', 'Online KNN Classifier', 'Online Linear Regression', 'Online Bayesian Linear Regression', 'Online Decision Tree Regressor','Online KNN Regressor'] #ConfigSettings iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings() scoreParam = config_obj.getScoringCreteria() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() iterName = iterName.replace(" ", "_") deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile = config_obj.createDeploymentFolders(deployLocation,iterName,iterVersion) #Mlflow mlflowSetPath(deployLocation,iterName+'_'+iterVersion) #Logger filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v2.2.5 *************** \n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} #ConfigSetting problemType,targetFeature,profilerStatus,selectorStatus,learnerStatus,visualizationstatus,deployStatus = config_obj.getModulesDetails() selectorStatus = False if(problemType.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output #DataReading from transformations.dataReader import dataReader objData = dataReader() if os.path.isfile(dataLocation): dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) dataFrame.rename(columns=lambda x:x.strip(), inplace=True) #FilterDataframe filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) #GroupDataframe timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) #KeepOnlyModelFtrs dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfNumRows=dataFrame.shape[0] self.dfNumCols=dataFrame.shape[1] dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if profilerStatus: log.info('\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) from incremental.incProfiler import incProfiler incProfilerObj = incProfiler() dataFrame,targetColumn,self.mFeatures,self.numericalFeatures,self.nonNumericFeatures,labelMaps,self.configDict,self.textFeatures,self.emptyFeatures,self.wordToNumericFeatures = incProfilerObj.startIncProfiler(dataFrame,profilerJson,targetFeature,deployLocation,problemType) self.features = self.configDict['allFtrs'] log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\n') dataFrame.to_csv(profiled_data_file,index=False) selectorStatus = False if learnerStatus: log.info('Status:-|... AION Learner data preparation started') ldp_mlstart = time.time() testPercentage = config_obj.getAIONTestTrainPercentage() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problemType.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if targetColumn != '': targetData = dataFrame[targetColumn] xtrain,ytrain,xtest,ytest = mlobj.split_into_train_test_data(featureData,targetData,testPercentage,modelType) categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) log.info('Status:-|... AION Learner data preparation completed') if learnerStatus: log.info('\n================== ML Started ==================') log.info('Status:-|... AION training started') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() log.info('-------> Target Model Type:'+ modelType) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() from incremental.incMachineLearning import incMachineLearning incMlObj = incMachineLearning(mlobj) self.configDict['riverModel'] = False status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=incMlObj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,self.features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps) if model in self.riverAlgoNames: self.configDict['riverModel'] = True if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('Status:-|... AION training completed') log.info('================== ML Completed ==================\n') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('Status:-|... AION Visualizer started') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfNumRows,self.dfNumCols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('Status:-|... AION Visualizer completed') try: os.remove(os.path.join(deployLocation,'aion_xai.py')) except: pass if deployStatus: if str(model) != 'None': log.info('\n================== Deployment Started ==================') log.info('Status:-|... AION Deployer started') deployPath = deployLocation deployer_mlstart = time.time() src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','useCaseFiles') shutil.copy2(os.path.join(src,'incBatchLearning.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchLearning.py'),os.path.join(deployPath,'aion_inclearning.py')) shutil.copy2(os.path.join(src,'incBatchPrediction.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchPrediction.py'),os.path.join(deployPath,'aion_predict.py')) self.configDict['modelName'] = str(model) self.configDict['modelParams'] = params self.configDict['problemType'] = problemType.lower() self.configDict['score'] = score self.configDict['metricList'] = [] self.configDict['metricList'].append(score) self.configDict['trainRowsList'] = [] self.configDict['trainRowsList'].append(featureDataShape[0]) self.configDict['scoreParam'] = scoreParam self.configDict['partialFit'] = 0 with open(os.path.join(deployLocation,'production', 'Config.json'), 'w', encoding='utf8') as f: json.dump(self.configDict, f, ensure_ascii=False) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Batch Deployment completed') log.info('================== Deployment Completed ==================') # self.features = profilerObj.set_features(self.features,self.textFeatures,self.vectorizerFeatures) self.matrix += '}' self.trainmatrix += '}' matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) model_tried = eval('['+model_tried+']') try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} print(output_json) if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w') as f: json.dump(output_json, f) output_json = json.dumps(output_json) log.info('\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfNumRows)+','+str(self.dfNumCols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\n') except Exception as inst: log.info('server code execution failed !....'+str(inst)) output_json = {"status":"FAIL","message":str(inst).strip('"')} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\nTotal execution time(sec) :'+str(executionTime)) log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output_json)) log.info('------------- Output JSON ------------\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def aion_ot_train_model(arg): warnings.filterwarnings('ignore') try: valid, msg = pushRecordForOnlineTraining() if valid: serverObj = server() configObj = OTAionConfigManager() jsonPath = arg readConfistatus,msg = configObj.readConfigurationFile(jsonPath) if(readConfistatus == False): output = {"status":"FAIL","message":str(msg).strip('"')} output = json.dumps(output) print("\n") print("aion_learner_status:",output) print("\n") return output output = serverObj.startScriptExecution(configObj) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print("\n") print("aion_learner_status:",output) print("\n") return output except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print("\n") print("aion_learner_status:",output) print("\n") return output if __name__ == "__main__": aion_ot_train_model(sys.argv[1])
aion_mlac.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import os from pathlib import Path os.chdir(Path(__file__).parent) import json import shutil from mlac.timeseries import app as ts_app from mlac.ml import app as ml_app import traceback def create_test_file(config): code_file = 'aionCode.py' text = """ from pathlib import Path import subprocess import sys import json import argparse def run_pipeline(data_path): print('Data Location:', data_path) cwd = Path(__file__).parent monitor_file = str(cwd/'ModelMonitoring'/'{code_file}') load_file = str(cwd/'DataIngestion'/'{code_file}') transformer_file = str(cwd/'DataTransformation'/'{code_file}') selector_file = str(cwd/'FeatureEngineering'/'{code_file}') train_folder = cwd register_file = str(cwd/'ModelRegistry'/'{code_file}') deploy_file = str(cwd/'ModelServing'/'{code_file}') print('Running modelMonitoring') cmd = [sys.executable, monitor_file, '-i', data_path] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running dataIngestion') cmd = [sys.executable, load_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running DataTransformation') cmd = [sys.executable, transformer_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running FeatureEngineering') cmd = [sys.executable, selector_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() train_models = [f for f in train_folder.iterdir() if 'ModelTraining' in f.name] for model in train_models: print('Running',model.name) cmd = [sys.executable, str(model/'{code_file}')] train_result = subprocess.check_output(cmd) train_result = train_result.decode('utf-8') print(train_result) print('Running ModelRegistry') cmd = [sys.executable, register_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running ModelServing') cmd = [sys.executable, deploy_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputPath', help='path of the input data') args = parser.parse_args() if args.inputPath: filename = args.inputPath else: filename = r"{filename}" try: print(run_pipeline(filename)) except Exception as e: print(e) """.format(filename=config['dataLocation'],search='{"Status":',code_file=code_file) deploy_path = Path(config["deploy_path"])/'MLaC' deploy_path.mkdir(parents=True, exist_ok=True) py_file = deploy_path/"run_pipeline.py" with open(py_file, "w") as f: f.write(text) def is_module_in_req_file(mod, folder): status = False if (Path(folder)/'requirements.txt').is_file(): with open(folder/'requirements.txt', 'r') as f: status = mod in f.read() return status def copy_local_modules(config): deploy_path = Path(config["deploy_path"]) local_modules_location = config.get("local_modules_location", None) if local_modules_location: folder_loc = local_modules_location else: folder_loc = Path(__file__).parent/'local_modules' if not folder_loc.exists(): folder_loc = None if folder_loc: file = folder_loc/'config.json' if file.exists(): with open(file, 'r') as f: data = json.load(f) for key, values in data.items(): local_module = folder_loc/key if local_module.exists(): for folder in values: target_folder = Path(deploy_path)/'MLaC'/folder if target_folder.is_dir(): if is_module_in_req_file(key, target_folder): shutil.copy(local_module, target_folder) def validate(config): error = '' if 'error' in config.keys(): error = config['error'] return error def generate_mlac_code(config): with open(config, 'r') as f: config = json.load(f) error = validate(config) if error: raise ValueError(error) if config['problem_type'] in ['classification','regression']: return generate_mlac_ML_code(config) elif config['problem_type'].lower() == 'timeseriesforecasting': #task 11997 return generate_mlac_TS_code(config) def generate_mlac_ML_code(config): try: ml_app.run_loader(config) ml_app.run_transformer(config) ml_app.run_selector(config) ml_app.run_trainer(config) ml_app.run_register(config) ml_app.run_deploy(config) ml_app.run_drift_analysis(config) copy_local_modules(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status) def generate_mlac_TS_code(config): try: ts_app.run_loader(config) ts_app.run_transformer(config) ts_app.run_selector(config) ts_app.run_trainer(config) ts_app.run_register(config) ts_app.run_deploy(config) ts_app.run_drift_analysis(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status)
aion_gluon.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging logging.getLogger('tensorflow').disabled = True #from autogluon.tabular import TabularDataset, TabularPredictor #from autogluon.core.utils.utils import setup_outputdir #from autogluon.core.utils.loaders import load_pkl #from autogluon.core.utils.savers import save_pkl import datetime, time, timeit from datetime import datetime as dt import os.path import json import io import shutil import sys #from Gluon_MultilabelPredictor import MultilabelPredictor class MultilabelPredictor(): """ Tabular Predictor for predicting multiple columns in table. Creates multiple TabularPredictor objects which you can also use individually. You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)` Parameters ---------- labels : List[str] The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object. path : str Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors. problem_types : List[str] The ith element is the `problem_type` for the ith TabularPredictor stored in this object. eval_metrics : List[str] The ith element is the `eval_metric` for the ith TabularPredictor stored in this object. consider_labels_correlation : bool Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others. If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion). Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels. kwargs : Arguments passed into the initialization of each TabularPredictor. """ multi_predictor_file = 'multilabel_predictor.pkl' def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs): if len(labels) < 2: raise ValueError("MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column).") self.path = setup_outputdir(path, warn_if_exist=False) self.labels = labels #print(self.labels) self.consider_labels_correlation = consider_labels_correlation self.predictors = {} # key = label, value = TabularPredictor or str path to the TabularPredictor for this label if eval_metrics is None: self.eval_metrics = {} else: self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))} problem_type = None eval_metric = None for i in range(len(labels)): label = labels[i] path_i = self.path + "Predictor_" + label if problem_types is not None: problem_type = problem_types[i] if eval_metrics is not None: eval_metric = self.eval_metrics[i] self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs) def fit(self, train_data, tuning_data=None, **kwargs): """ Fits a separate TabularPredictor to predict each of the labels. Parameters ---------- train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame See documentation for `TabularPredictor.fit()`. kwargs : Arguments passed into the `fit()` call for each TabularPredictor. """ if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) train_data_og = train_data.copy() if tuning_data is not None: tuning_data_og = tuning_data.copy() save_metrics = len(self.eval_metrics) == 0 for i in range(len(self.labels)): label = self.labels[i] predictor = self.get_predictor(label) if not self.consider_labels_correlation: labels_to_drop = [l for l in self.labels if l!=label] else: labels_to_drop = [self.labels[j] for j in range(i+1,len(self.labels))] train_data = train_data_og.drop(labels_to_drop, axis=1) if tuning_data is not None: tuning_data = tuning_data_og.drop(labels_to_drop, axis=1) print(f"Fitting TabularPredictor for label: {label} ...") predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs) self.predictors[label] = predictor.path if save_metrics: self.eval_metrics[label] = predictor.eval_metric self.save() def eval_metrics(self): return(self.eval_metrics) def predict(self, data, **kwargs): """ Returns DataFrame with label columns containing predictions for each label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`. kwargs : Arguments passed into the predict() call for each TabularPredictor. """ return self._predict(data, as_proba=False, **kwargs) def predict_proba(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`. kwargs : Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call). """ return self._predict(data, as_proba=True, **kwargs) def evaluate(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`. kwargs : Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call). """ data = self._get_data(data) eval_dict = {} for label in self.labels: print(f"Evaluating TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) eval_dict[label] = predictor.evaluate(data, **kwargs) if self.consider_labels_correlation: data[label] = predictor.predict(data, **kwargs) return eval_dict def save(self): """ Save MultilabelPredictor to disk. """ for label in self.labels: if not isinstance(self.predictors[label], str): self.predictors[label] = self.predictors[label].path save_pkl.save(path=self.path+self.multi_predictor_file, object=self) print(f"MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')") @classmethod def load(cls, path): """ Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """ path = os.path.expanduser(path) if path[-1] != os.path.sep: path = path + os.path.sep return load_pkl.load(path=path+cls.multi_predictor_file) def get_predictor(self, label): """ Returns TabularPredictor which is used to predict this label. """ predictor = self.predictors[label] if isinstance(predictor, str): return TabularPredictor.load(path=predictor) return predictor def _get_data(self, data): if isinstance(data, str): return TabularDataset(data) return data.copy() def _predict(self, data, as_proba=False, **kwargs): data = self._get_data(data) if as_proba: predproba_dict = {} for label in self.labels: print(f"Predicting with TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) if as_proba: predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs) data[label] = predictor.predict(data, **kwargs) if not as_proba: return data[self.labels] else: return predproba_dict def aion_train_gluon(arg): configFile = arg with open(configFile, 'rb') as cfile: data = json.load(cfile) cfile.close() rootElement = data['basic'] modelname = rootElement['modelName'] version = rootElement['modelVersion'] dataLocation = rootElement['dataLocation'] deployFolder = rootElement['deployLocation'] analysisType = rootElement['analysisType'] testPercentage = data['advance']['testPercentage'] deployLocation = os.path.join(deployFolder,modelname+'_'+version) try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) os.makedirs(deployLocation) logLocation = os.path.join(deployLocation,'log') try: os.makedirs(logLocation) except OSError as e: pass etcLocation = os.path.join(deployLocation,'etc') try: os.makedirs(etcLocation) except OSError as e: pass logFileName=os.path.join(deployLocation,'log','model_training_logs.log') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v1.2.0 *************** \n') msg = '-------> Execution Start Time: '+ dt.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') log.info(msg) dataLabels = rootElement['targetFeature'].split(',') # Create and Write the config file used in Prediction # ----------------------------------------------------------------------------# tdata = TabularDataset(dataLocation) #train_data = tdata train_data = tdata.sample(frac = 0.8) test_data = tdata.drop(train_data.index) if rootElement['trainingFeatures'] != '': trainingFeatures = rootElement['trainingFeatures'].split(',') else: trainingFeatures = list(train_data.columns) features = trainingFeatures for x in dataLabels: if x not in features: features.append(x) indexFeature = rootElement['indexFeature'] if indexFeature != '': indexFeature = indexFeature.split(',') for x in indexFeature: if x in features: features.remove(x) dateTimeFeature = rootElement['dateTimeFeature'] if dateTimeFeature != '': dateTimeFeature = dateTimeFeature.split(',') for x in dateTimeFeature: if x in features: features.remove(x) train_data = train_data[features] test_data = test_data[features] configJsonFile = {"targetFeature":dataLabels,"features":",".join([feature for feature in features])} configJsonFilePath = os.path.join(deployLocation,'etc','predictionConfig.json') if len(dataLabels) == 1 and analysisType['multiLabelPrediction'] == "False": dataLabels = rootElement['targetFeature'] with io.open(configJsonFilePath, 'w', encoding='utf8') as outfile: str_ = json.dumps(configJsonFile, ensure_ascii=False) outfile.write(str_) # ----------------------------------------------------------------------------# if analysisType['multiLabelPrediction'] == "True": # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiLabelPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) # ----------------------------------------------------------------------------# labels = dataLabels # which columns to predict based on the others #problem_types = dataProblem_types # type of each prediction problem save_path = os.path.join(deployLocation,'ModelPath') # specifies folder to store trained models time_limit = 5 # how many seconds to train the TabularPredictor for each label log.info('Status:-|... AION Gluon Start') try: if len(labels) < 2: log.info('Status:-|... AION Evaluation Error: Target should be multiple column') # ----------------------------------------------------------------------------# output = {'status':'FAIL','message':'Number of target variable should be 2 or more than 2'} else: multi_predictor = MultilabelPredictor(labels=labels, path=save_path) multi_predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = multi_predictor.evaluate(train_data) testevaluations = multi_predictor.evaluate(test_data) best_model = {} for label in labels: predictor_class = multi_predictor.get_predictor(label) predictor_class.get_model_best() best_model[label] = predictor_class.get_model_best() log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiLabelPrediction','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'ACCURACY','deployLocation':deployLocation,'matrix':trainevaluations,'testmatrix':testevaluations,'BestModel':best_model, 'LogFile':logFileName}} except Exception as inst: log.info('Status:-|... AION Gluon Error') output = {"status":"FAIL","message":str(inst).strip('"')} if analysisType['multiModalLearning'] == "True": from autogluon.core.utils.utils import get_cpu_count, get_gpu_count from autogluon.text import TextPredictor # check the system and then set the equivelent flag # ----------------------------------------------------------------------------# os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "0" if get_gpu_count() == 0: os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "1" # ----------------------------------------------------------------------------# # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiModalPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) time_limit = None # set to larger value in your applications save_path = os.path.join(deployLocation,'text_prediction') predictor = TextPredictor(label=dataLabels, path=save_path) predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = predictor.evaluate(train_data) log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiModelLearning','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'SCORE','deployLocation':deployLocation,'matrix':trainevaluations,'LogFile':logFileName}} output = json.dumps(output) print("\n") print("aion_learner_status:",output) print("\n") log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return(output) if __name__ == "__main__": aion_train_gluon(sys.argv[1])
aion_sagemaker.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time from pandas import json_normalize import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from sagemaker.aionMlopsService import aionMlopsService import logging import os.path from os.path import expanduser import platform,sys from pathlib import Path from sklearn.model_selection import train_test_split def getAWSConfiguration(mlops_params,log): awsId=mlops_params['awsSagemaker']['awsID'] if ((not awsId) or (awsId is None)): awsId="" log.info('awsId error. ') awsAccesskeyid=mlops_params['awsSagemaker']['accesskeyID'] if ((not awsAccesskeyid) or (awsAccesskeyid is None)): awsAccesskeyid="" log.info('awsAccesskeyid error. ') awsSecretaccesskey=mlops_params['awsSagemaker']['secretAccesskey'] if ((not awsSecretaccesskey) or (awsSecretaccesskey is None)): awsSecretaccesskey="" log.info('awsSecretaccesskey error. ') awsSessiontoken=mlops_params['awsSagemaker']['sessionToken'] if ((not awsSessiontoken) or (awsSessiontoken is None)): awsSessiontoken="" log.info('awsSessiontoken error. ') awsRegion=mlops_params['awsSagemaker']['region'] if ((not awsRegion) or (awsRegion is None)): awsRegion="" log.info('awsRegion error. ') IAMSagemakerRoleArn=mlops_params['awsSagemaker']['IAMSagemakerRoleArn'] if ((not IAMSagemakerRoleArn) or (IAMSagemakerRoleArn is None)): IAMSagemakerRoleArn="" log.info('IAMSagemakerRoleArn error. ') return awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn def getMlflowParams(mlops_params,log): modelInput = mlops_params['modelInput'] data = mlops_params['data'] mlflowtosagemakerDeploy=mlops_params['sagemakerDeploy'] if ((not mlflowtosagemakerDeploy) or (mlflowtosagemakerDeploy is None)): mlflowtosagemakerDeploy="True" mlflowtosagemakerPushOnly=mlops_params['deployExistingModel']['status'] if ((not mlflowtosagemakerPushOnly) or (mlflowtosagemakerPushOnly is None)): mlflowtosagemakerPushOnly="False" mlflowtosagemakerPushImageName=mlops_params['deployExistingModel']['dockerImageName'] if ((not mlflowtosagemakerPushImageName) or (mlflowtosagemakerPushImageName is None)): mlflowtosagemakerPushImageName="mlops_image" mlflowtosagemakerdeployModeluri=mlops_params['deployExistingModel']['deployModeluri'] if ((not mlflowtosagemakerdeployModeluri) or (mlflowtosagemakerdeployModeluri is None)): mlflowtosagemakerdeployModeluri="None" log.info('mlflowtosagemakerdeployModeluri error. ') cloudInfrastructure = mlops_params['modelOutput']['cloudInfrastructure'] if ((not cloudInfrastructure) or (cloudInfrastructure is None)): cloudInfrastructure="Sagemaker" endpointName=mlops_params['endpointName'] if ((not endpointName) or (endpointName is None)): sagemakerAppName="aion-demo-app" log.info('endpointName not given, setting default one. ') experimentName=str(endpointName) mlflowContainerName=str(endpointName) return modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName def getPredictionParams(mlops_params,log): predictStatus=mlops_params['prediction']['status'] if ((not predictStatus) or (predictStatus is None)): predictStatus="False" modelInput = mlops_params['modelInput'] data = mlops_params['data'] if (predictStatus == "True" or predictStatus.lower()== "true"): if ((not modelInput) or (modelInput is None)): log.info('prediction model input error.Please check given model file or its path for prediction ') if ((not data) or (data is None)): log.info('prediction data input error.Please check given data file or its path for prediction ') targetFeature=mlops_params['prediction']['target'] return predictStatus,targetFeature def sagemakerPrediction(mlopsobj,data,log): df = json_normalize(data) model=None predictionStatus=False try: endpointPrediction=mlopsobj.predict_sm_app_endpoint(df) if (endpointPrediction is None): log.info('Sagemaker endpoint application prediction Issue.') outputjson = {"status":"Error","msg":"Sagemaker endpoint application prediction Issue"} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=False else: log.info("sagemaker end point Prediction: \n"+str(endpointPrediction)) df['prediction'] = endpointPrediction outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=True except Exception as e: #log.info("sagemaker end point Prediction error: \n") outputjson = {"status":"Error","msg":str(e)} outputjson=None predictionStatus=False return outputjson,predictionStatus ## Main aion sagemaker fn call def sagemaker_exec(mlops_params,log): #mlops_params = json.loads(config) mlops_params=mlops_params modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName = getMlflowParams(mlops_params,log) mlflowModelname=None awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn = getAWSConfiguration(mlops_params,log) predictStatus,targetFeature = getPredictionParams(mlops_params,log) sagemakerDeployOption='create' deleteAwsecrRepository='False' sagemakerAppName=str(endpointName) ecrRepositoryName='aion-ecr-repo' #aws ecr model app_name should contain only [[a-zA-Z0-9-]], again rechecking here. import re if sagemakerAppName: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(sagemakerAppName) is not None: #print("Found match: ") pass else: log.info('wrong sagemaker Application Name, Nmae should contains only [A-Za-z0-9-] .') app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' #Following 3 aws parameter values are now hard coded , because currently we are not using. If aion using the options, please make sure to get the values from GUI . sagemakerDeployOption="create" deleteAwsecrRepository="False" ecrRepositoryName="aion_test_repo" log.info('mlops parameter check done.') # predictionStatus=False deploystatus = 'SUCCESS' try: log.info('cloudInfrastructure: '+str(cloudInfrastructure)) if(cloudInfrastructure.lower() == "sagemaker"): ## sagemaker app prediction call if (predictStatus.lower() == "true"): # df = json_normalize(data) model=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) outputjson,predictionStatus = sagemakerPrediction(mlopsobj,data,log) print("predictions: "+str(outputjson)) predictionStatus=predictionStatus return(outputjson) else: if Path(modelInput).is_file(): msg = '' model = joblib.load(modelInput) ProblemName = model.__class__.__name__ mlflowModelname=str(ProblemName) log.info('aion mlops Model name: '+str(mlflowModelname)) df=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) mlflow2sm_status,localhost_container_status=mlopsobj.mlflow2sagemaker_deploy() log.info('mlflow2sm_status: '+str(mlflow2sm_status)) log.info('localhost_container_status: '+str(localhost_container_status)) # Checking deploy status if (mlflowtosagemakerPushOnly.lower() == "true" ): if (mlflow2sm_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker (Push eisting model container).\n ') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker. (Push eisting model container).\n ') else: pass elif(mlflowtosagemakerDeploy.lower() == "true"): if (mlflow2sm_status.lower() == "success"): deploystatus='SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker.\n ') elif (mlflow2sm_status.lower() == "Notdeployed"): deploystatus= 'ERROR' msg = 'Sagemaker compatible container created' log.info('sagemaker endpoint not deployed, check aws connection and credentials. \n') elif (mlflowtosagemakerDeploy.lower() == "false"): if(localhost_container_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Localhost mlops docker created successfully' log.info('Localhost mlops docker created successfully. \n') elif(localhost_container_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Localhost mlops docker created failed' log.info('Localhost mlops docker creation failed. \n') elif (localhost_container_status.lower() == "Notdeployed"): deploystatus= 'ERROR' log.info('Localhost mlops docker not deployed, check local docker status. \n') else: pass else: pass else: deploystatus = 'ERROR' msg = 'Model Path not Found' print('Error: Model Path not Found') outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) except Exception as inst: outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) def aion_sagemaker(config): try: mlops_params = config print(mlops_params) from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' filepath = os.path.join(sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionMLOps') log.setLevel(logging.DEBUG) output = sagemaker_exec(mlops_params,log) return output except Exception as inst: print(inst) deploystatus = 'ERROR' output = {"status":str(deploystatus),"data":str(inst)} output = json.dumps(output) print("predictions: "+str(output)) return(output) #Sagemaker main fn call if __name__=='__main__': json_config = str(sys.argv[1]) output = aion_sagemaker(json.loads(json_config))
mergeLogs.py
import json from pathlib import Path import shutil class mergeLogs(): def __init__(self, folders, dataLocation=None): self.folders = [Path(x) for x in folders] self.dataLocation = dataLocation self.baseFolder = "" self.outputData = {} def readOutputStr(self, data): text = "-------> Output :" output = data.find(text) def keywithmaxval(self, d): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v=list(d.values()) k=list(d.keys()) return k[v.index(max(v))] def getBestScore(self, data): text = "-------> Output :" output = [x[len(text):-1] for x in data if text in x] self.outputData = json.loads(output[0]) return self.outputData['data']['BestScore'] def getModelParams(self, data): capture = False startText = "---------- ClassifierModel has started ----------" endText = "---------- ClassifierModel End ---------- " modelBasedText = "Models Based Selected Features Start" CorrelationBased = "Top/CorrelationBased Features Start" removableText = "Status:- |... Search Optimization Method applied: random\n" modelsParam = [] modelcorrelation = None output = {} for x in data: if endText in x: capture = False output[modelcorrelation] = ''.join(modelsParam) modelcorrelation = None modelsParam = [] elif capture: if x != removableText: modelsParam.append(x) elif startText in x: capture = True elif modelBasedText in x: modelcorrelation = 'modelBased' elif CorrelationBased in x: modelcorrelation = 'correlationBased' return output def mergeConfigFiles(self, bestScoreFolder): # path is already updated with open(bestScoreFolder/'etc'/'code_config.json', 'r') as f: config = json.load(f) if self.dataLocation: config['dataLocation'] = self.dataLocation if 'modelVersion' in config.keys(): config['modelVersion'] = '_'.join(config['modelVersion'].split('_')[:-1]) with open(bestScoreFolder/'etc'/'code_config.json', 'w') as f: json.dump(config, f, indent=4) with open(bestScoreFolder/'etc'/'display.json', 'r') as f: config = json.load(f) if 'version' in config.keys(): config['version'] = '_'.join(config['version'].split('_')[:-1]) with open(bestScoreFolder/'etc'/'display.json', 'w') as f: json.dump(config, f, indent=4) if len(self.folders) > 1: with open(bestScoreFolder/'etc'/'output.json', 'r') as f: config = json.load(f) evaluated_models = config['data']['EvaluatedModels'] for folder in self.folders: if folder != bestScoreFolder: with open(folder/'etc'/'output.json', 'r') as f: sub_config = json.load(f) for evaluated_model in sub_config['data']['EvaluatedModels']: evaluated_models.append(evaluated_model) with open(bestScoreFolder/'etc'/'output.json', 'w') as f: config['data']['EvaluatedModels'] = evaluated_models json.dump(config, f, indent=4) def mergeLogFiles(self, bestScoreFolder, data): startText = "---------- ClassifierModel has started ----------\n" endText = "---------- ClassifierModel End ---------- \n" modelBasedText = "Models Based Selected Features Start" CorrelationBased = "Top/CorrelationBased Features Start" with open(bestScoreFolder/'log'/'model_training_logs.log', 'r') as f: text = f.read() CorrelationBasedIndex = text.find(CorrelationBased) modelBasedTextIndex = text.find(modelBasedText) firstendIndex = text.find(endText) numOfMethods = 0 if CorrelationBasedIndex > 0: numOfMethods += 1 if modelBasedTextIndex > 0: numOfMethods += 1 if numOfMethods == 2: secondendIndex = text[firstendIndex+ len(endText):].find(endText) +firstendIndex+len(endText) # assuming correlation is always first for k,v in data.items(): if k != bestScoreFolder: if 'correlationBased' in v.keys(): text = text[:firstendIndex] + v['correlationBased'] + text[firstendIndex:] firstendIndex += len(v['correlationBased']) if numOfMethods == 2: secondendIndex += len(v['correlationBased']) if 'modelBased' in v.keys(): if numOfMethods == 2: text = text[:secondendIndex] + v['modelBased'] + text[secondendIndex:] secondendIndex += len(v['modelBased']) else: text = text[:firstendIndex] + v['modelBased'] + text[firstendIndex:] firstendIndex += len(v['modelBased']) with open(bestScoreFolder/'log'/'model_training_logs.log', 'w') as f: text = text.replace(str(bestScoreFolder), str(self.baseFolder)) f.write(text) def mergeFolder(self): bestScoreInFile = {} modelsTrainOutput = {} self.baseFolder = self.folders[0].parent/"_".join(self.folders[0].name.split('_')[:-1]) if len(self.folders) == 1: if self.baseFolder.exists(): shutil.rmtree(self.baseFolder) self.folders[0].rename(self.baseFolder) else: for folder in self.folders: with open(folder/'log'/'model_training_logs.log', 'r') as f: data = f.readlines() bestScoreInFile[folder] = self.getBestScore(data) modelsTrainOutput[folder] = self.getModelParams(data) bestScoreFolder = self.keywithmaxval(bestScoreInFile) self.mergeLogFiles(bestScoreFolder, modelsTrainOutput ) self.mergeConfigFiles(bestScoreFolder) if self.baseFolder.exists(): shutil.rmtree(self.baseFolder) bestScoreFolder.rename(self.baseFolder) #remove extra folders for folder in self.folders: if folder.exists(): shutil.rmtree(folder) return self.outputData
aion_aws_training.py
import json import sys,os from pathlib import Path, PurePosixPath from fabric import Connection import tarfile import copy from hyperscalers.cloudServer import awsGPUTraining import time import shutil import logging import multiprocessing from hyperscalers.mergeLogs import mergeLogs class AION(awsGPUTraining): def __init__(self, config): config['AMAZON_EC2']['InstanceIds'] = [] #removing the support for Instance Id super().__init__(config) self.remoteUpload = {} def copyDataOnServer(self, index): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDeployLocation'])) client.put(self.remoteUpload['configFile'], self.remoteUpload['remoteConfigLoc']) if not Path(self.remoteUpload['dataLoc']).exists(): raise ValueError(" data location {} does not exist".format(self.remoteUpload['dataLoc'])) if Path(self.remoteUpload['dataLoc']).is_file(): client.put(self.remoteUpload['dataLoc'], self.remoteUpload['remoteDataLoc']) else: client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDataLoc'])) p = Path(self.remoteUpload['dataLoc']).glob('**/*') files = [x for x in p if x.is_file()] for file in files: client.put(file, self.remoteUpload['remoteDataLoc']) if self.remoteUpload.get('imgCsvLoc', None): client.put(self.remoteUpload['imgCsvLoc'], self.remoteUpload['remoteDataLoc']) except Exception as e: raise ValueError("Error in copying data to cloud server. " + str(e)) def executeCode(self): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) cmd = '{} {} {}'.format("/home/ubuntu/aws/venv/aion-env/bin/python3.8", "/home/ubuntu/aws/venv/aion-env/lib/python3.8/site-packages/AION/aion.py", self.remoteUpload['remoteConfigLoc']) output = client.run( cmd, warn=True) except Exception as e: raise ValueError("Error in running code on cloud server. " + str(e)) def downloadAndExtractModel(self): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) remote = PurePosixPath(self.remoteUpload['remoteDeployLocation']) fileName = self.remoteUpload['deployName'] local = Path(self.remoteUpload['localDeployLocation']) tarFileName = fileName+".tar.gz" cmd = 'cd {};tar -czvf {} -C {}/ {}'.format(remote, tarFileName, remote, fileName) client.run( cmd) extractFile = str(local/tarFileName) client.get( str(remote/tarFileName), extractFile) with tarfile.open(extractFile, "r:gz") as tar: tar.extractall(local) Path(extractFile).unlink() client.run( 'rm -r {}'.format(remote/fileName)) client.run( 'rm {}'.format(remote/tarFileName)) except Exception as e: raise ValueError("Error in downloading file from server. " + str(e)) def deleteDataOnServer(self): client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) dataPaths = [self.remoteUpload['remoteDataLoc'], self.remoteUpload['remoteDeployLocation'], self.remoteUpload['remoteConfigLoc']] for loc in dataPaths: if Path(loc).is_file(): client.run( 'rm {}'.format(loc)) else: client.run( 'rm -r {}'.format(loc)) # only for csv files def updateConfigGetRemoteLoc(self, config, index=0): remote_location = '/home/ubuntu/aws/usecase' remoteInputLoc = PurePosixPath(remote_location)/"input" remoteOutputLoc = PurePosixPath(remote_location)/"target" if Path(config['basic']['dataLocation']).is_dir(): if Path(config['basic']['folderSettings']['labelDataFile']).parent !=Path(config['basic']['dataLocation']): self.remoteUpload['imgCsvLoc'] = config['basic']['folderSettings']['labelDataFile'] config['basic']['folderSettings']['labelDataFile'] = Path(config['basic']['folderSettings']['labelDataFile']).name csvFile = Path(config['basic']['dataLocation']).name localFile = config['basic']['dataLocation'] localDeployLoc = config['basic']['deployLocation'] config['basic']['dataLocation'] = str(remoteInputLoc/csvFile) config['basic']['deployLocation'] = str(remoteOutputLoc) jsonFile = Path(__file__).parent/'remote_{}.json'.format(index) with open(jsonFile,"w") as f: json.dump(config, f) self.remoteUpload['remoteDataLoc'] = config['basic']['dataLocation'] self.remoteUpload['remoteConfigLoc'] = str(remoteInputLoc)+ "/temp.json" self.remoteUpload['remoteDeployLocation'] = config['basic']['deployLocation'] self.remoteUpload['dataLoc'] = localFile self.remoteUpload['configFile'] = str(jsonFile) self.remoteUpload['localDeployLocation'] = localDeployLoc self.remoteUpload['deployName'] = "{}_{}".format(config['basic']['modelName'],config['basic']['modelVersion']) def updateDeployPath(self): import fileinput logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"model_training_logs.log" self.remoteUpload['localDeployLocation'] = self.remoteUpload['localDeployLocation'].replace('\\','/') if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"output.json" if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"display.json" if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') def updateUserServerConfig(aws_config): aws_config['ssh']['keyFilePath'] = str(Path(__file__).parent/"AION_GPU.pem") return aws_config def getKeyByValue(dictionary, refValue): for key, value in dictionary.items(): if value == refValue: return key return None def getKeysByValue(dictionary, refValue): keys = [] for key, value in dictionary.items(): if value == refValue: keys.append(key) return keys class openInstancesStatus(): def __init__(self): pass def addInstance(self, instanceId, args=None): fileName = instanceId + '.ec2instance' data = {} data[instanceId] = args with open(fileName, "w") as f: json.dump( data, f, indent=4) #TODO do we need to encrypt def removeInstance(self, instanceId): fileName = instanceId + '.ec2instance' if Path(fileName).exists(): Path(fileName).unlink() def clearPreviousInstancesState(self): # check and stop the previous instance openInstances = Path().glob("*.ec2instance") for file in openInstances: with open(file, 'r') as f: data = json.load(f) prevConfig = list(data.values())[0] key = Path(file).stem if prevConfig['AMAZON_EC2']['amiId']: prevConfig['AMAZON_EC2']['InstanceIds'] = [key] prevConfig['AMAZON_EC2']['amiId'] = "" # clear amiId instance = awsGPUTraining(prevConfig) if len(prevConfig['AMAZON_EC2']['InstanceIds']) > 0: try: if instance.is_instance_running(prevConfig['AMAZON_EC2']['InstanceIds'][0]): instance.stop_server_instance() except: pass self.removeInstance(key) class prepareConfig(): def __init__(self, config,noOfInstance,ComputeInfrastructure): if isinstance(config, dict): self.config = config self.configDir = Path(__file__).parent elif isinstance(config, str): with open(config, 'r') as f: self.config = json.load(f) self.configDir = Path(config).parent else: raise TypeError("{} type object is not supported for config".format(type(config))) self.problemType = getKeyByValue(self.config['basic']['analysisType'] ,"True") self.algorithms = getKeysByValue(self.config['basic']['algorithms'][self.problemType] ,"True") self.numInstances = int(noOfInstance) self.computeInfrastructure = ComputeInfrastructure self.isMultiInstance = False self.validateMultiInstance() self.newConfigs = [] def isRemoteTraining(self): return True if(self.computeInfrastructure == "True") else False def validateMultiInstance(self): if self.isRemoteTraining(): if self.problemType == 'classification' or self.problemType == 'regression': if self.numInstances > len(self.algorithms): self.numInstances = len(self.algorithms) if len(self.algorithms) > 1 and self.numInstances > 1: self.isMultiInstance = True def createNewConfigs(self): configs = [] algos = self.algorithms if len(algos) <= self.numInstances: self.numInstances = len(algos) algosPerInstances = (len(algos)+(self.numInstances - 1))//self.numInstances remainingAlgos = len(algos) for i in range(self.numInstances): newConfig = copy.deepcopy(self.config) for k,v in newConfig['basic']['algorithms'][self.problemType].items(): newConfig['basic']['algorithms'][self.problemType][k] = "False" algosPerInstances = remainingAlgos // (self.numInstances - i) for j in range(algosPerInstances): newConfig['basic']['algorithms'][self.problemType][algos[len(algos) - remainingAlgos + j]] = "True" newConfig['basic']['modelVersion'] = newConfig['basic']['modelVersion'] + "_{}".format(i) newFileName = str(self.configDir/"splittedConfig_{}.json".format(i)) with open(newFileName, 'w') as jsonFile: json.dump(newConfig, jsonFile, indent=4) configs.append(newFileName) remainingAlgos -= algosPerInstances return configs class Process(multiprocessing.Process): def __init__(self, aws_config, configFile, index, openInstancesLog): super(Process, self).__init__() self.index = index self.aws_config = aws_config self.configFile = configFile self.openInstances = openInstancesLog def run(self): log = logging.getLogger('eion') serverStart = False try: server = AION(self.aws_config) with open(self.configFile,"r") as f: config = json.load(f) server.updateConfigGetRemoteLoc(config, self.index) instanceId = server.start_instance() log.info('Status:-|... start instance: {}'.format(instanceId)) serverStart = True self.openInstances.addInstance(instanceId, self.aws_config) time.sleep(40) log.info('Status:-|... copying data on instance: {}'.format(instanceId)) server.copyDataOnServer( config) log.info('Status:-|... Training on instance: {}'.format(instanceId)) server.executeCode() log.info('Status:-|... downloading data from instance: {}'.format(instanceId)) server.downloadAndExtractModel() server.deleteDataOnServer() log.info('Status:-|... stopping instance: {}'.format(instanceId)) server.stop_server_instance() serverStart = False self.openInstances.removeInstance(instanceId) server.updateDeployPath() except Exception as e: print(e) pass finally: if serverStart: log.info('Status:-|... stopping instance: {}'.format(instanceId)) server.stop_server_instance() self.openInstances.removeInstance(instanceId) def awsTraining(configPath): try: # This function responsible for starting the training with AWS with open(configPath, "r") as f: config = json.load(f) ec2 = boto3.resource('ec2',region_name=AWS_Region) instance_id= instance[0].instance_id deployFolder = config['basic']['deployLocation'] iterName = config['basic']['modelName'] iterVersion = config['basic']['modelVersion'] dataLocation = config['basic']['dataLocation'] usecaseLocation = os.path.join(deployFolder,iterName) if not Path(usecaseLocation).exists(): os.makedirs(usecaseLocation) deployLocation = os.path.join(usecaseLocation,iterVersion) if Path(deployLocation).exists(): shutil.rmtree(deployLocation) os.makedirs(deployLocation) logLocation = os.path.join(deployLocation,'log') if not Path(logLocation).exists(): os.makedirs(logLocation) #read the server config logFileName=os.path.join(logLocation,'model_training_logs.log') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('Status:-|... Compute Infrastructure:AMAZON EC2') with open(Path(__file__).parent/"../config/compute.conf", "r") as f: aws_config = json.load(f) aws_config = updateUserServerConfig(aws_config) configSplitter = prepareConfig(sys.argv[1],aws_config['AMAZON_EC2']['NoOfInstance'],aws_config['ComputeInfrastructure']) newConfigs = configSplitter.createNewConfigs() print(newConfigs) openInstances = openInstancesStatus() openInstances.clearPreviousInstancesState() folders = [] processes = [0] * len(newConfigs) for index, config in enumerate(newConfigs): processes[index] = Process(aws_config, config, index, openInstances) processes[index].start() for index, config in enumerate(newConfigs): processes[index].join() folders.append(deployLocation + '_{}'.format(index)) if Path(deployLocation+'_0').exists(): filehandler.close() log.removeHandler(filehandler) merge = mergeLogs(folders) merge.mergeFolder() else: output = {"status":"FAIL","message":"Please check cloud server configuration."} output = json.dumps(output) log.info('server code execution failed !....') log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\n') print("\n") print("aion_learner_status:",output) print("\n") except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) log.info('server code execution failed !....'+str(inst)) log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\n') print("\n") print("aion_learner_status:",output) print("\n")
aws_instance.py
import json import sys,os from pathlib import Path, PurePosixPath from fabric import Connection import tarfile import copy from hyperscalers.cloudServer import awsGPUTraining import time import shutil import logging import multiprocessing from hyperscalers.mergeLogs import mergeLogs class AION(awsGPUTraining): def __init__(self, config): config['AMAZON_EC2']['InstanceIds'] = [] #removing the support for Instance Id super().__init__(config) self.remoteUpload = {} def copyDataOnServer(self, index): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDeployLocation'])) client.put(self.remoteUpload['configFile'], self.remoteUpload['remoteConfigLoc']) if not Path(self.remoteUpload['dataLoc']).exists(): raise ValueError(" data location {} does not exist".format(self.remoteUpload['dataLoc'])) if Path(self.remoteUpload['dataLoc']).is_file(): client.put(self.remoteUpload['dataLoc'], self.remoteUpload['remoteDataLoc']) else: client.run( 'mkdir -p {}'.format(self.remoteUpload['remoteDataLoc'])) p = Path(self.remoteUpload['dataLoc']).glob('**/*') files = [x for x in p if x.is_file()] for file in files: client.put(file, self.remoteUpload['remoteDataLoc']) if self.remoteUpload.get('imgCsvLoc', None): client.put(self.remoteUpload['imgCsvLoc'], self.remoteUpload['remoteDataLoc']) except Exception as e: raise ValueError("Error in copying data to cloud server. " + str(e)) def executeCode(self): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) cmd = '{} {} {}'.format("/home/ubuntu/aws/venv/aion-env/bin/python3.8", "/home/ubuntu/aws/venv/aion-env/lib/python3.8/site-packages/AION/aion.py", self.remoteUpload['remoteConfigLoc']) output = client.run( cmd, warn=True) except Exception as e: raise ValueError("Error in running code on cloud server. " + str(e)) def downloadAndExtractModel(self): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) remote = PurePosixPath(self.remoteUpload['remoteDeployLocation']) fileName = self.remoteUpload['deployName'] local = Path(self.remoteUpload['localDeployLocation']) tarFileName = fileName+".tar.gz" cmd = 'cd {};tar -czvf {} -C {}/ {}'.format(remote, tarFileName, remote, fileName) client.run( cmd) extractFile = str(local/tarFileName) client.get( str(remote/tarFileName), extractFile) with tarfile.open(extractFile, "r:gz") as tar: tar.extractall(local) Path(extractFile).unlink() client.run( 'rm -r {}'.format(remote/fileName)) client.run( 'rm {}'.format(remote/tarFileName)) except Exception as e: raise ValueError("Error in downloading file from server. " + str(e)) def deleteDataOnServer(self): client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) dataPaths = [self.remoteUpload['remoteDataLoc'], self.remoteUpload['remoteDeployLocation'], self.remoteUpload['remoteConfigLoc']] for loc in dataPaths: if Path(loc).is_file(): client.run( 'rm {}'.format(loc)) else: client.run( 'rm -r {}'.format(loc)) # only for csv files def updateConfigGetRemoteLoc(self, config, index=0): remote_location = '/home/ubuntu/aws/usecase' remoteInputLoc = PurePosixPath(remote_location)/"input" remoteOutputLoc = PurePosixPath(remote_location)/"target" if Path(config['basic']['dataLocation']).is_dir(): if Path(config['basic']['folderSettings']['labelDataFile']).parent !=Path(config['basic']['dataLocation']): self.remoteUpload['imgCsvLoc'] = config['basic']['folderSettings']['labelDataFile'] config['basic']['folderSettings']['labelDataFile'] = Path(config['basic']['folderSettings']['labelDataFile']).name csvFile = Path(config['basic']['dataLocation']).name localFile = config['basic']['dataLocation'] localDeployLoc = config['basic']['deployLocation'] config['basic']['dataLocation'] = str(remoteInputLoc/csvFile) config['basic']['deployLocation'] = str(remoteOutputLoc) jsonFile = Path(__file__).parent/'remote_{}.json'.format(index) with open(jsonFile,"w") as f: json.dump(config, f) self.remoteUpload['remoteDataLoc'] = config['basic']['dataLocation'] self.remoteUpload['remoteConfigLoc'] = str(remoteInputLoc)+ "/temp.json" self.remoteUpload['remoteDeployLocation'] = config['basic']['deployLocation'] self.remoteUpload['dataLoc'] = localFile self.remoteUpload['configFile'] = str(jsonFile) self.remoteUpload['localDeployLocation'] = localDeployLoc self.remoteUpload['deployName'] = "{}_{}".format(config['basic']['modelName'],config['basic']['modelVersion']) def updateDeployPath(self): import fileinput logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"model_training_logs.log" self.remoteUpload['localDeployLocation'] = self.remoteUpload['localDeployLocation'].replace('\\','/') if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"output.json" if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') logFile = Path(self.remoteUpload['localDeployLocation'])/self.remoteUpload['deployName']/"display.json" if Path(logFile).exists(): with fileinput.FileInput(logFile, inplace=True, backup='.bak') as file: for line in file: remoteLoc = self.remoteUpload['remoteDeployLocation'] +'/'+ self.remoteUpload['deployName'] localLoc = self.remoteUpload['localDeployLocation'] +'/'+ "_".join(self.remoteUpload['deployName'].split('_')[:-1]) print(line.replace(remoteLoc, localLoc), end='') def updateUserServerConfig(aws_config): aws_config['ssh']['keyFilePath'] = str(Path(__file__).parent/"AION_GPU.pem") return aws_config def getKeyByValue(dictionary, refValue): for key, value in dictionary.items(): if value == refValue: return key return None def getKeysByValue(dictionary, refValue): keys = [] for key, value in dictionary.items(): if value == refValue: keys.append(key) return keys class openInstancesStatus(): def __init__(self): pass def addInstance(self, instanceId, args=None): fileName = instanceId + '.ec2instance' data = {} data[instanceId] = args with open(fileName, "w") as f: json.dump( data, f, indent=4) #TODO do we need to encrypt def removeInstance(self, instanceId): fileName = instanceId + '.ec2instance' if Path(fileName).exists(): Path(fileName).unlink() def clearPreviousInstancesState(self): # check and stop the previous instance openInstances = Path().glob("*.ec2instance") for file in openInstances: with open(file, 'r') as f: data = json.load(f) prevConfig = list(data.values())[0] key = Path(file).stem if prevConfig['AMAZON_EC2']['amiId']: prevConfig['AMAZON_EC2']['InstanceIds'] = [key] prevConfig['AMAZON_EC2']['amiId'] = "" # clear amiId instance = awsGPUTraining(prevConfig) if len(prevConfig['AMAZON_EC2']['InstanceIds']) > 0: try: if instance.is_instance_running(prevConfig['AMAZON_EC2']['InstanceIds'][0]): instance.stop_server_instance() except: pass self.removeInstance(key) class prepareConfig(): def __init__(self, config,noOfInstance,ComputeInfrastructure): if isinstance(config, dict): self.config = config self.configDir = Path(__file__).parent elif isinstance(config, str): with open(config, 'r') as f: self.config = json.load(f) self.configDir = Path(config).parent else: raise TypeError("{} type object is not supported for config".format(type(config))) self.problemType = getKeyByValue(self.config['basic']['analysisType'] ,"True") self.algorithms = getKeysByValue(self.config['basic']['algorithms'][self.problemType] ,"True") self.numInstances = int(noOfInstance) self.computeInfrastructure = ComputeInfrastructure self.isMultiInstance = False self.validateMultiInstance() self.newConfigs = [] def isRemoteTraining(self): return True if(self.computeInfrastructure == "True") else False def validateMultiInstance(self): if self.isRemoteTraining(): if self.problemType == 'classification' or self.problemType == 'regression': if self.numInstances > len(self.algorithms): self.numInstances = len(self.algorithms) if len(self.algorithms) > 1 and self.numInstances > 1: self.isMultiInstance = True def createNewConfigs(self): configs = [] algos = self.algorithms if len(algos) <= self.numInstances: self.numInstances = len(algos) algosPerInstances = (len(algos)+(self.numInstances - 1))//self.numInstances remainingAlgos = len(algos) for i in range(self.numInstances): newConfig = copy.deepcopy(self.config) for k,v in newConfig['basic']['algorithms'][self.problemType].items(): newConfig['basic']['algorithms'][self.problemType][k] = "False" algosPerInstances = remainingAlgos // (self.numInstances - i) for j in range(algosPerInstances): newConfig['basic']['algorithms'][self.problemType][algos[len(algos) - remainingAlgos + j]] = "True" newConfig['basic']['modelVersion'] = newConfig['basic']['modelVersion'] + "_{}".format(i) newFileName = str(self.configDir/"splittedConfig_{}.json".format(i)) with open(newFileName, 'w') as jsonFile: json.dump(newConfig, jsonFile, indent=4) configs.append(newFileName) remainingAlgos -= algosPerInstances return configs class Process(multiprocessing.Process): def __init__(self, aws_config, configFile, index, openInstancesLog): super(Process, self).__init__() self.index = index self.aws_config = aws_config self.configFile = configFile self.openInstances = openInstancesLog def run(self): log = logging.getLogger('eion') serverStart = False try: server = AION(self.aws_config) with open(self.configFile,"r") as f: config = json.load(f) server.updateConfigGetRemoteLoc(config, self.index) instanceId = server.start_instance() log.info('Status:-|... start instance: {}'.format(instanceId)) serverStart = True self.openInstances.addInstance(instanceId, self.aws_config) time.sleep(40) log.info('Status:-|... copying data on instance: {}'.format(instanceId)) server.copyDataOnServer( config) log.info('Status:-|... Training on instance: {}'.format(instanceId)) server.executeCode() log.info('Status:-|... downloading data from instance: {}'.format(instanceId)) server.downloadAndExtractModel() server.deleteDataOnServer() log.info('Status:-|... stopping instance: {}'.format(instanceId)) server.stop_server_instance() serverStart = False self.openInstances.removeInstance(instanceId) server.updateDeployPath() except Exception as e: print(e) pass finally: if serverStart: log.info('Status:-|... stopping instance: {}'.format(instanceId)) server.stop_server_instance() self.openInstances.removeInstance(instanceId) def training(config_path): try: # read the aion configuration file for server enabled with open(config_path, "r") as f: config = json.load(f) deployFolder = config['basic']['deployLocation'] iterName = config['basic']['modelName'] iterVersion = config['basic']['modelVersion'] dataLocation = config['basic']['dataLocation'] deployLocation = os.path.join(deployFolder,iterName+'_'+iterVersion) if Path(deployLocation).exists(): shutil.rmtree(deployLocation) os.makedirs(deployLocation) #read the server config logFileName=os.path.join(deployLocation,'model_training_logs.log') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('Status:-|... Compute Infrastructure:AMAZON EC2') with open(Path(__file__).parent/"../config/compute.conf", "r") as f: aws_config = json.load(f) aws_config = updateUserServerConfig(aws_config) configSplitter = prepareConfig(config_path,aws_config['AMAZON_EC2']['NoOfInstance'],aws_config['ComputeInfrastructure']) newConfigs = configSplitter.createNewConfigs() print(newConfigs) openInstances = openInstancesStatus() openInstances.clearPreviousInstancesState() folders = [] processes = [0] * len(newConfigs) for index, config in enumerate(newConfigs): processes[index] = Process(aws_config, config, index, openInstances) processes[index].start() for index, config in enumerate(newConfigs): processes[index].join() folders.append(deployLocation + '_{}'.format(index)) if Path(deployLocation+'_0').exists(): filehandler.close() log.removeHandler(filehandler) merge = mergeLogs(folders) merge.mergeFolder() else: output = {"status":"FAIL","message":"Please check cloud server configuration."} output = json.dumps(output) log.info('server code execution failed !....') log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\n') print("\n") print("aion_learner_status:",output) print("\n") except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) log.info('server code execution failed !....'+str(inst)) log.info('\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\n') print("\n") print("aion_learner_status:",output) print("\n")
__init__.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''
cloudServer.py
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import boto3 import json import time import requests import datetime import uuid import shutil from websocket import create_connection from botocore.exceptions import ClientError import tarfile from pathlib import Path, PurePosixPath from stat import S_ISDIR from fabric import Connection import time import logging class awsGPUTraining(): def __init__(self, config): local_config = {"location":{"data":"aion/data/od", "code":"", "pretrainedModel":"aion/pretrainedModels"}, "jupyter":{"header":{"Authorization":"Token f3af05d5348301997fb014f245569e872d27bb9018fd70d2"}, "portNo":"8888", "notebook_path":"aion/code/AWS_GPU_OD_Training.ipynb"}} self.serverConfig = config["server"] self.sshConfig = config["ssh"] self.log = logging.getLogger('eion') self.codeLocation = local_config["location"]["code"] self.dataLocation = local_config["location"]["data"] self.pretrainedModelLocation = local_config["location"]["pretrainedModel"] self.jupyterConfig = local_config["jupyter"] self.serverIP = "" if self.serverConfig["awsAccessKeyId"] == "" or self.serverConfig["awsSecretAccessKey"] == "": raise ValueError("Cloud server configuration is not available.") if len(self.serverConfig["InstanceIds"]) == 0 and self.serverConfig["amiId"] == "": raise ValueError("Please provide either InstanceIds or amiId in server config") self.instanceId = [] self.separate_instance = False if self.serverConfig["amiId"] != "": self.separate_instance = True else: if len(self.serverConfig["InstanceIds"]): if isinstance(self.serverConfig["InstanceIds"], list): self.instanceId = self.serverConfig["InstanceIds"] elif isinstance(self.serverConfig["InstanceIds"], str): self.instanceId = [self.serverConfig["InstanceIds"]] self.ec2_client = boto3.client(self.serverConfig["serverName"], region_name=self.serverConfig["regionName"], aws_access_key_id=self.serverConfig["awsAccessKeyId"], aws_secret_access_key=self.serverConfig["awsSecretAccessKey"]) def __sftp_exists(self, sftp, path): try: sftp.stat(path) return True except:# IOError, e: #if e.errno == errno.ENOENT: return False def __rmtree(self, sftp, remotepath, level=0): for f in sftp.listdir_attr(remotepath): rpath = str(PurePosixPath(remotepath)/f.filename) if S_ISDIR(f.st_mode): self.__rmtree(sftp, rpath, level=(level + 1)) sftp.rmdir(rpath) else: rpath = str(PurePosixPath(remotepath)/f.filename) sftp.remove(rpath) def copy_files_to_server(self, location): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) client.sudo('rm -rf {}/*'.format(self.dataLocation)) tarFile = str((PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix(".tar.gz")) client.put(location+'/test.tfrecord', self.dataLocation+'/test.tfrecord') client.put(location+'/train.tfrecord', self.dataLocation+'/train.tfrecord') client.put(location+'/pipeline.config', self.dataLocation+'/pipeline.config') client.put(location+'/label_map.pbtxt', self.dataLocation+'/label_map.pbtxt') client.put(location+'/model.config', self.dataLocation+'/model.config') if self.jupyterConfig != "": client.run("touch {}".format(self.dataLocation+'/log.txt')) except Exception as e: raise ValueError("Error in copying data to cloud server. " + str(e)) def __myexec(self, ssh, cmd, timeout, want_exitcode=False): # one channel per command stdin, stdout, stderr = ssh.exec_command(cmd) # get the shared channel for stdout/stderr/stdin channel = stdout.channel # we do not need stdin. stdin.close() # indicate that we're not going to write to that channel anymore channel.shutdown_write() # read stdout/stderr in order to prevent read block hangs stdout_chunks = [] stdout_chunks.append(stdout.channel.recv(len(stdout.channel.in_buffer))) # chunked read to prevent stalls while not channel.closed or channel.recv_ready() or channel.recv_stderr_ready(): # stop if channel was closed prematurely, and there is no data in the buffers. got_chunk = False readq, _, _ = select.select([stdout.channel], [], [], timeout) for c in readq: if c.recv_ready(): stdout_chunks.append(stdout.channel.recv(len(c.in_buffer))) got_chunk = True if c.recv_stderr_ready(): # make sure to read stderr to prevent stall stderr.channel.recv_stderr(len(c.in_stderr_buffer)) got_chunk = True ''' 1) make sure that there are at least 2 cycles with no data in the input buffers in order to not exit too early (i.e. cat on a >200k file). 2) if no data arrived in the last loop, check if we already received the exit code 3) check if input buffers are empty 4) exit the loop ''' if not got_chunk \ and stdout.channel.exit_status_ready() \ and not stderr.channel.recv_stderr_ready() \ and not stdout.channel.recv_ready(): # indicate that we're not going to read from this channel anymore stdout.channel.shutdown_read() # close the channel stdout.channel.close() break # exit as remote side is finished and our bufferes are empty # close all the pseudofiles stdout.close() stderr.close() if want_exitcode: # exit code is always ready at this point return (''.join(stdout_chunks), stdout.channel.recv_exit_status()) return ''.join(stdout_chunks) def __myexec1(self, ssh, cmd, timeout, want_exitcode=False): # one channel per command stdin, stdout, stderr = ssh.exec_command(cmd, get_pty=True) for line in iter(stderr.readline, ""): print(line, end="") stdin.close() stdout.close() stderr.close() def executeCode(self): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) cmd = 'python3.8 {} {} {}'.format(self.codeLocation, self.dataLocation, self.pretrainedModelLocation) client.run( cmd) except Exception as e: raise ValueError("Error in running code on cloud server. " + str(e)) def start_executing_notebook(self): try: publicIp_Port = self.serverIP + ":" + self.jupyterConfig["portNo"] conURL = "ws://" + publicIp_Port base = 'http://' + publicIp_Port + '' headers = self.jupyterConfig["header"] url = base + '/api/kernels' flag = True while flag: # deadlock need to add timeout response = requests.post(url, headers=headers) flag = False kernel = json.loads(response.text) # Load the notebook and get the code of each cell url = base + '/api/contents/' + self.jupyterConfig["notebook_path"] response = requests.get(url, headers=headers) file = json.loads(response.text) code = [c['source'] for c in file['content']['cells'] if len(c['source']) > 0 and c['cell_type']=='code' ] ws = create_connection(conURL + "/api/kernels/" + kernel["id"] + "/channels", header=headers) def send_execute_request(code): msg_type = 'execute_request'; content = {'code': code, 'silent': False} hdr = {'msg_id': uuid.uuid1().hex, 'username': 'test', 'session': uuid.uuid1().hex, 'data': datetime.datetime.now().isoformat(), 'msg_type': msg_type, 'version': '5.0'} msg = {'header': hdr, 'parent_header': hdr, 'metadata': {}, 'content': content} return msg for c in code: ws.send(json.dumps(send_execute_request(c))) # We ignore all the other messages, we just get the code execution output # (this needs to be improved for production to take into account errors, large cell output, images, etc.) error_msg = '' traceback_msg = '' for i in range(0, len(code)): msg_type = ''; while msg_type != "stream": rsp = json.loads(ws.recv()) msg_type = rsp["msg_type"] if msg_type == 'error': raise ValueError("Error on Cloud machine: "+rsp['content']['evalue']) ws.close() self.log.info('Status:- |...Execution Started`') except ClientError as e: raise ValueError(e) def __wait_for_completion(self, sftp, remoteLogFile, localLogFile): waiting = True error_msg = "" while waiting: time.sleep(5 * 60) try: sftp.get(str(remoteLogFile), str(localLogFile)) with open(localLogFile, "r") as f: content = f.readlines() for x in content: if "Error" in x: waiting = False error_msg = x if "success" in x: waiting = False except: raise (str(e)) return error_msg def copy_file_from_server(self, localPath): try: client = Connection( host=self.serverIP, user=self.sshConfig["userName"], connect_kwargs={ "key_filename": self.sshConfig["keyFilePath"], }, ) remoteLogFile = PurePosixPath(self.dataLocation)/'log.txt' localLogFile = Path(localPath)/'remote_log.txt' client.get(str(remoteLogFile), str(localLogFile)) tarFile = (PurePosixPath(self.dataLocation).parent/PurePosixPath(self.dataLocation).name).with_suffix(".tar.gz") client.get(str(tarFile), str(Path(localPath)/tarFile.name)) except: raise return str(Path(localPath)/tarFile.name) def create_instance(self): instances = self.ec2_client.run_instances( ImageId=self.serverConfig["amiId"], MinCount=1, MaxCount=1, InstanceType="t2.xlarge", KeyName="AION_GPU", SecurityGroupIds = ["sg-02c3a6c8dd67edb74"] ) self.instanceId = [instances['Instances'][0]['InstanceId']] def start_instance(self): if self.separate_instance: self.create_instance() try: response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=True) except Exception as e: if 'DryRunOperation' not in str(e): raise ValueError("Error in starting the EC2 instance, check server configuration. " + str(e)) try: running_state_code = 16 response = self.ec2_client.start_instances(InstanceIds=self.instanceId, DryRun=False) instance_status_code = 0 while instance_status_code != running_state_code: response = self.ec2_client.describe_instances(InstanceIds=self.instanceId) instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code'] if instance_status_code == running_state_code: self.serverIP = response['Reservations'][0]['Instances'][0]['PublicIpAddress'] break except ClientError as e: raise ValueError("Error in starting the EC2 instance. " + str(e)) def terminate_instance(self): ec2 = boto3.resource(self.serverConfig["serverName"], region_name=self.serverConfig["regionName"], aws_access_key_id=self.serverConfig["awsAccessKeyId"], aws_secret_access_key=self.serverConfig["awsSecretAccessKey"]) ec2.instances.filter(InstanceIds=self.instanceId).terminate() # for terminating an ec2 instance def stop_server_instance(self): try: self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=True) except Exception as e: if 'DryRunOperation' not in str(e): raise stopped_state_code = 80 # Dry run succeeded, call stop_instances without dryrun try: response = self.ec2_client.stop_instances(InstanceIds=self.instanceId, DryRun=False) response = self.ec2_client.describe_instances(InstanceIds=self.instanceId) instance_status_code = 0 while instance_status_code != stopped_state_code: response = self.ec2_client.describe_instances(InstanceIds=self.instanceId) instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code'] if instance_status_code == stopped_state_code: break except: raise ValueError("Error in stopping the EC2 instance {}.Please stop it manually ".format(self.instanceId[0])) if self.separate_instance: try: self.terminate_instance() except: raise ValueError("Error in terminating the EC2 instance {}.Please terminate it manually ".format(self.instanceId[0]))
manage.py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
urls.py
"""mpgWebApp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include, re_path from appfe.api import inferenceApis from django.urls import path, re_path urlpatterns = [ #path('predict', inferenceApis.apipredict,name='PredictAPI'), path('predict', inferenceApis.apipredict,name='PredictAPI'), path('spredict',inferenceApis.apispredict,name='SecurePredictAPI'), path('monitoring', inferenceApis.apiinputdrift,name='MonitoringAPI'), path('performance', inferenceApis.apioutputdrift,name='Performance'), path('xplain', inferenceApis.apixplain,name='Xplain'), path('features',inferenceApis.apifeatures,name='Features'), path('uploadfile',inferenceApis.uploadfile,name='uploadfile'), path('retrain',inferenceApis.retrain,name='retrain'), path('trainstatus',inferenceApis.trainstatus,name='trainstatus'), path('publish',inferenceApis.publish,name='publish'), path('geteda',inferenceApis.geteda,name='geteda'), path('pattern_anomaly_settings',inferenceApis.apiPatternAnomalySettings,name='PatternAnomalySettings'), path('pattern_anomaly_predict',inferenceApis.apiPatternAnomalyPredict,name='PatternAnomalyPredict') ] #df=pd.read_csv("C:\Project\Analytics\Deployment\germancredit_9\germancreditdata.csv") # #bool_cols = [col for col in df if np.isin(df[col].dropna().unique(), [0, 1]).all()] # #bool_cols
inferenceApis.py
from django.shortcuts import render from django.http import HttpResponse from appbe.dataPath import DEPLOY_LOCATION from rest_framework import status from django.db.models import Max, F import os,sys import time import json import re import pandas as pd from rest_framework.permissions import IsAuthenticated from django.views.decorators.csrf import csrf_exempt from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import subprocess from pathlib import Path user_records = {} @csrf_exempt def geteda(request): if request.method == 'POST': if request.content_type == 'application/json': output = {} try: data=request.body.decode('utf-8') data = json.loads(data) file_id = data['fileid'] edaOptions = 'All' if 'options' in data: edaOptions = data['options'] dataFile = os.path.join(DATA_FILE_PATH,file_id) from appbe.eda import ux_eda eda_obj = ux_eda(dataFile) if 'dataoverview' in edaOptions.lower() or 'all' in edaOptions.lower(): dataDistributionDF = eda_obj.dataDistribution() dataDistributionJson = dataDistributionDF.to_json(orient = 'records') output['DataOverview'] = json.loads(dataDistributionJson) if 'top10records' in edaOptions.lower() or 'all' in edaOptions.lower(): top10df = eda_obj.getTopRows(10) top10dfJson = top10df.to_json(orient = 'records') output['Top10Records'] = json.loads(top10dfJson) if 'datadistribution' in edaOptions.lower() or 'all' in edaOptions.lower(): distributionJson = eda_obj.getDistribution() output['DataDistribution'] = distributionJson if "featureimportance" in edaOptions.lower() or 'all' in edaOptions.lower(): pca_map = eda_obj.getPCATop10Features() pca_details = pca_map pca_df=pd.DataFrame() if len(pca_details) > 0: pca_df = pd.DataFrame({'Feature':pca_details.index, 'Explained Variance Ratio':pca_details.values}).round(2) pca_json = pca_df.to_json(orient="records") output['FeatureImportance'] = json.loads(pca_json) else: pca_json = 'Error During feature importance processing' output['FeatureImportance'] = pca_json if "correlationanalysis" in edaOptions.lower() or 'all' in edaOptions.lower(): corr_mat = eda_obj.getCorrelationMatrix() if not corr_mat.empty: corr_mat = corr_mat.to_json(orient="columns") output['CorrelationAnalysis'] = json.loads(corr_mat) else: output['CorrelationAnalysis'] = 'Error during correlation analysis' if "unsupervisedclustering" in edaOptions.lower() or 'all' in edaOptions.lower(): clusteringDetails,hopkins_val = eda_obj.getClusterDetails() output['UnsupervisedClustering'] = clusteringDetails output['HopkinsValue'] = hopkins_val except Exception as e: print(e) return HttpResponse(json.dumps({"status":"Success","output":output}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") @csrf_exempt def publish(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: from appbe.models import publishmodel status,msg,url = publishmodel(request,usecaseid,currentVersion,Existusecases,usecasedetails) return HttpResponse(json.dumps({"status":status,"msg":msg,"url":url}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def trainstatus(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: data=request.body.decode('utf-8') data = json.loads(data) trainingid = int(data['trainingid']) model = Existusecases.objects.get(id=trainingid) if model.Status.lower() == 'success': return HttpResponse(json.dumps({"status":"success","trainingStatus":"Trained","usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") else: from appbe.training import checkversionrunningstatus status = checkversionrunningstatus(trainingid,usecasedetails,Existusecases) if status.lower() == 'success': return HttpResponse(json.dumps({"status":"success","trainingStatus":"Trained","usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"success","trainingStatus":status,"usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def retrain(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: data=request.body.decode('utf-8') data = json.loads(data) file_id = data['fileid'] p = usecasedetails.objects.get(usecaseid=usecaseid) s1 = Existusecases.objects.filter(ModelName=p).annotate(maxver=Max('ModelName__existusecases__Version')) config_list = s1.filter(Version=F('maxver')) if config_list.count() > 0: Version = config_list[0].Version Version = Version + 1 model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) indexVal = 0 configfile = str(model[indexVal].ConfigPath) f = open(configfile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) configSettingsJson['basic']['modelVersion'] = str(Version) dataFile = configSettingsJson['basic']['dataLocation'] if os.path.isfile(dataFile): data = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') dataFile = os.path.join(DATA_FILE_PATH,file_id) data2 = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') data = data.append(data2,ignore_index=True) data.to_csv(dataFile,index=False) dataFile = os.path.join(DATA_FILE_PATH,file_id) configSettingsJson['basic']['dataLocation'] = str(dataFile) updatedConfigSettings = json.dumps(configSettingsJson) filetimestamp = str(int(time.time())) outputfile = os.path.join(CONFIG_FILE_PATH, 'AION_OUTPUT_' + filetimestamp + '.json') config_json_filename = os.path.join(CONFIG_FILE_PATH, 'AION_' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(updatedConfigSettings) fpWrite.close() ps = Existusecases(DataFilePath=str(dataFile), DeployPath='', Status='Not Trained',ConfigPath=str(config_json_filename), Version=Version, ModelName=p,TrainOuputLocation=str(outputfile)) ps.save() scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','training','-c',config_json_filename]) ps.Status = 'Running' ps.trainingPID = outputStr.pid ps.save() return HttpResponse(json.dumps({"status":"success","trainingid":str(ps.id),"version":str(ps.Version),"usecaseid":usecaseid}),content_type="application/json") ''' outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resultJsonObj = json.loads(outputStr) ps.Status = resultJsonObj['status'] if resultJsonObj['status'] == 'SUCCESS': ps.modelType = resultJsonObj['data']['ModelType'] ps.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997 ps.ProblemType = 'unsupervised' else: ps.ProblemType = 'supervised' ps.save() ''' else: return HttpResponse(json.dumps({"status":"error","msg":'Existing trained model not found'}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def uploadfile(request): try: if 'file' not in request.FILES: msg = 'No file part in the request' return HttpResponse(json.dumps({"status":"error","msg":msg}),content_type="application/json") else: file = request.FILES['file'] if file.size > 31457280: msg = 'Upload limit is 30 MB only' ext = str(file).split('.')[-1] if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: filetimestamp = str(int(time.time())) file_id = 'AION_' + filetimestamp+'.'+ext dataFile = os.path.join(DATA_FILE_PATH,file_id) with open(dataFile, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) destination.close() return HttpResponse(json.dumps({"status":"success","fileid":file_id}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"File extension not supported"}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"File upload exception"}),content_type="application/json") def help_text(request,usecaseid,version): hosturl =request.get_host() url='http://'+hosturl+'/api/' msg = """ Request_Type: Post Content_Type: applicattion/json For Prediction URL: {url}'predict?usecaseid={usecaseid}&version={version} For Explanations URL: {url}xplain?usecaseid={usecaseid}&version={version} For Input Drift URL: {url}monitoring?usecaseid={usecaseid}&version={version} For Output Drift URL: {url}performance?usecaseid={usecaseid}&version={version} BODY: Data in json format """.format(url=url,usecaseid=usecaseid,version=version) return msg @csrf_exempt def apispredict(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_spredict.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apipredict(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] #print(request.content_type) if request.method == 'POST': if request.content_type in ['application/json','multipart/form-data']: model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data = '' msg = 'Bad request' if 'file' not in request.FILES: data=request.body.decode('utf-8') else: file = request.FILES['file'] if file.size > 31457280: msg = 'Upload limit is 30 MB only' else: ext = str(file).split('.')[-1] if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: urlData = file.read() import io rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') else: msg = 'Extension not supported' if data != '': predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":msg}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apiinputdrift(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_ipdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apioutputdrift(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_opdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apixplain(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = (Path(DEPLOY_LOCATION)/usecaseid)/str(version) if model_path.is_dir(): try: with open( (model_path/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: is_explainable = True try: if not is_explainable: return HttpResponse(json.dumps({"status":"error","msg":"explain api is not supported when text features are used for training"}),content_type="application/json") data=request.body.decode('utf-8') predict_path = model_path/'aion_xai.py' outputStr = subprocess.check_output([sys.executable,predict_path,'local',data]) #BugId:13304 outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") #@api_view(['POST','GET']) def apifeatures(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'featureslist.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") @csrf_exempt def apiPatternAnomalySettings(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') data = json.loads(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] filename = os.path.join(model_path,'clickstream.json') print(filename) data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() return HttpResponse(json.dumps({"status":'Success'}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") #@api_view(['POST']) @csrf_exempt def apiPatternAnomalyPredict(request): import pandas as pd usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') data = json.loads(data) anomaly = False remarks = '' clusterid = -1 configfilename = os.path.join(model_path,'datadetails.json') filename = os.path.join(model_path,'clickstream.json') clusterfilename = os.path.join(model_path,'stateClustering.csv') probfilename = os.path.join(model_path,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid outputStr = {'status':'SUCCESS','data':{'Anomaly':str(anomaly),'Remarks':str(remarks)}} return HttpResponse(json.dumps(outputStr),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain")
urls.py
"""mpgWebApp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include, re_path from appfe.modelTraining import views from appfe.modelTraining import upload_views from appfe.modelTraining import bc_views from appfe.modelTraining import mltest_views from appfe.modelTraining import train_views from appfe.modelTraining import dg_views from appfe.modelTraining import settings_views from appfe.modelTraining import drift_views from appfe.modelTraining import landing_views from appfe.modelTraining import mllite_views from appfe.modelTraining import trustedAI_views from appfe.modelTraining import llm_views from appfe.modelTraining import visualizer_views as v from appfe.modelTraining import prediction_views from django.urls import path, re_path urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('appfe.api.urls')), path('', views.index, name="index"), re_path('^$',views.index,name='Homepage'), re_path('prediction', prediction_views.Prediction, name="Prediction"), path('edit/<int:id>', views.edit), path('update/<int:id>', views.update), path('opentraining/<int:id>/<int:currentVersion>',views.opentraining), path('opentraininglogs/<int:id>/<int:currentVersion>',landing_views.opentraininglogs), path('show',views.show,name="show"), path('ucdetails/<int:id>',views.ucdetails,name='ucdetails'), path('delete/<int:id>', views.destroy,name='DeleteUseCase'), path('deleteversion/<int:id>',views.remove_version,name='RemoveVersion'), path('deletes3Bucket/<str:name>', settings_views.removes3bucket,name='removes3bucket'), path('deleteGcsBucket/<str:name>', settings_views.removegcsbucket,name='removegcsbucket'), path('deleteAzureBucket/<str:name>', settings_views.removeazurebucket,name='removeazurebucket'), path('publish/<int:id>',views.publish), path('createpackagedocker/<int:id>/<int:version>',views.createpackagedocker), path('stoptraining',train_views.stoptraining), path('downloadPackage/<int:id>/<int:version>',views.downloadpackage), re_path('startmodelservice',views.startmodelservice,name="startmodelservice"), re_path('stopmodelservice',views.stopmodelservice,name="stopmodelservice"), path('retrain/<int:id>/<int:currentVersion>', landing_views.retrain), re_path('computetoAWS',settings_views.computetoAWS,name='computeInfrastructure'), re_path('computetoLLaMMA7b',settings_views.computetoLLaMMA7b,name='computeInfrastructure'), re_path('computetoGCPLLaMA13B',settings_views.computetoGCPLLaMA13B,name='computeInfrastructure'), re_path('help',views.help,name = "help"), re_path('mlac_userguide',views.mlac_userguide,name = "mlac_userguide"), path('launchmodel/<int:id>/<int:version>', landing_views.launchmodel), path('modxplain/<int:id>/<int:version>', landing_views.modxplain), path('moddrift/<int:id>/<int:version>',landing_views.moddrift), re_path('ConvertOnnx', mllite_views.ConvertOnnx, name="ConvertOnnx"), re_path('runtimeutility', mllite_views.runtimeutility, name="runtimeutility"), re_path('sagepredict', mllite_views.sageprediction, name="sageprediction"), re_path('mlstyles', views.mlstyles, name="mlstyles"), re_path('mltrain', views.mltrain, name="mltrain"), re_path('usecasefilter', views.usecasefilter, name="usecasefilter"), re_path('mlpredict', views.mlpredict, name="mlpredict"), re_path('getdataclasses',views.getdataclasses,name="getdataclasses"), re_path('usecases', views.AIusecases, name="AIusecases"), re_path('modelkafka',views.modelkafka,name="ModelKafka"), re_path('AionProblem', views.AionProblem, name="AionProblem"), re_path('UQTesting', mltest_views.UQTesting, name="UQTesting"), re_path('maaccommand',views.maaccommand,name='MAAC'), re_path('GCSbucketAdd',settings_views.GCSbucketAdd,name="gcsbucket"), re_path('adds3bucket',settings_views.adds3bucket,name="adds3bucket"), re_path('azurestorageAdd',settings_views.azurestorageAdd,name="azurestorageAdd"), re_path('features', views.features, name="features"), re_path('downloadedareport',upload_views.downloadedareport,name="downloadedareport"), re_path('downloadxplainreport',views.downloadxplainreport,name="downloadxplainreport"), re_path('downlpredictreport',views.downlpredictreport,name="DownloadPrediction"), re_path('LoadBasicConfiguration',views.LoadBasicConfiguration,name='LoadBasicConfiguration'), re_path('LoadAdvanceConfiguration',views.LoadAdvanceConfiguration,name='LoadAdvanceConfiguration'), re_path('uploaddatafromscript',upload_views.uploaddatafromscript,name='uploaddatafromscript'), re_path('features', views.features, name="features"), re_path('uploadDatafromSatandardDataset',upload_views.uploadDatafromSatandardDataset,name="uploadDatafromSatandardDataset"), re_path('uploadDatafromunsupervisedmodel',views.uploadDatafromunsupervisedmodel,name="uploadDatafromunsupervisedmodel"), re_path('mltesting',mltest_views.mltesting,name='mltesting'), re_path('mllite',views.mllite,name="MLLite"), re_path('settings',settings_views.settings_page,name="settings"), re_path('openneural',mllite_views.openneural,name="openneural"), re_path('Tfliteneural',mllite_views.Tfliteneural,name="Tfliteneural"), re_path('encryptedpackage',views.encryptedpackage,name='encryptedpackage'), re_path('ABtesting', mltest_views.ABtest, name="ABtesting"), re_path('uploadedData', upload_views.uploadedData, name='uploadedData'), # Text Data Labelling using LLM related changes # -------------------------------------------------------- re_path('uploadedTextData', llm_views.uploadedTextData, name='uploadedTextData'), re_path('getTextLabel', llm_views.getTextLabel, name='getTextLabel'), re_path('downloadTextLabelReport',llm_views.downloadTextLabelReport,name="downloadTopicReport"), # -------------------------------------------------------- # QnA Generator using LLM related changes # -------------------------------------------------------- re_path('genearateQA', llm_views.genearateQA, name='genearateQA'), re_path('downloadQnAReport',llm_views.downloadQnAReport,name="downloadQnAReport"), # -------------------------------------------------------- re_path('advanceconfig', bc_views.savebasicconfig, name='Advance'), re_path('edaReport',upload_views.EDAReport,name='edareport'), re_path('readlogfile',views.readlogfile,name="readlogfile"), re_path('flcommand',views.flcommand,name="flcommand"), re_path('openmlflow',views.mlflowtracking,name="MLflow"), re_path('basicconfig',bc_views.basicconfig,name='basicConfig'), re_path('Advance',views.Advance,name='Advance'), re_path('uploaddata', views.uploaddata, name='uploaddata'), re_path('dataupload', views.Dataupload, name='dataupload'), re_path('trainmodel', train_views.trainmodel, name='next'), #Sagemaker re_path('Sagemaker',mllite_views.Sagemaker,name="Sagemaker"), re_path('batchlearning',views.batchlearning,name="batchlearning"), # EDA Reports changes re_path('gotoreport', views.gotoreport, name='report'), re_path('llmmodelevaluate',train_views.llmmodelevaluate, name='llmmodelevaluate'), # EDA Visualization changes re_path('getgraph',views.getgraph,name="getgraph"), # Fairness Metrics changes re_path('getmetrics',views.getmetrics,name="getmetrics"), re_path('getDeepDiveData',views.getDeepDiveData,name="getDeepDiveData"), # 12686:Data Distribution related Changes re_path('getDataDistribution',views.getDataDistribution,name="getDataDistribution"), re_path('licensekey',views.licensekey,name="licensekey"), # -------------------------------- Graviton-Integration Changes S T A R T -------------------------------- re_path('getuserdata',views.getuserdata,name="getuserdata"), re_path('getdataservice',views.getdataservice,name="getdataservice"), # ------------------------------------------------ E N D ------------------------------------------------- re_path('getdataimbalance',views.getdataimbalance,name="getdataimbalance"), re_path('trainresult',train_views.trainresult,name='trainresult'), re_path('LoadDataForSingleInstance',views.LoadDataForSingleInstance,name='LoadDataForSingleInstance'), re_path('PredictForSingleInstance',prediction_views.PredictForSingleInstance,name='PredictForSingleInstance'), re_path('stateTransitionSettings',views.stateTransitionSettings,name='stateTransitionSettings'), re_path('instancepredict',views.instancepredict,name='predict'), re_path('onnxruntime',views.onnxruntime,name='onnxruntime'), re_path('home',views.Dataupload,name='manage'), re_path('show',views.show,name="show"), re_path('delete',views.show,name="delete"), re_path('inputdrift', landing_views.inputdrift, name='inputdrift'), re_path('dotextSummarization',views.dotextSummarization,name='textSummarization'), re_path('outputdrift', views.outputdrift, name='outputdrift'), re_path('xplain', v.xplain, name='xplain'), re_path('sensitivity', trustedAI_views.sensitivityAnalysis, name='sensitivity'), re_path('fairnesmetrics', trustedAI_views.fairnesmetrics, name='fairnesmetrics'), re_path('handlefairness', trustedAI_views.handlefairness, name='handlefairness'), re_path('performance', trustedAI_views.performance_metrics, name='performance'), re_path('uquncertainty', trustedAI_views.uquncertainty, name='uquncertainty'), re_path('uqtransparency', trustedAI_views.uqtransparency, name='uqtransparency'), re_path('RLpath',views.RLpath,name='RLpath'), path('opendetailedlogs/<int:id>/<int:currentVersion>', views.opendetailedlogs, name='logfile'), path('downloadlogfile/<int:id>/<int:currentVersion>',views.downloadlogfile), path('openmodelevaluation/<int:id>',views.openmodelevaluation,name='openmodelevaluation'), re_path('startPublishServices',settings_views.startPublishServices,name="PublishService"), re_path('startKafka',settings_views.startKafka,name='startKafka'), re_path('startService',views.startService,name='startService'), re_path('startTracking',views.startTracking,name="startTracking"), re_path('Drift', drift_views.Drift, name='Drift'), re_path('Distribution', drift_views.Distribution, name='Distribution'), re_path('newfile', views.newfile, name='newfile'), re_path('Evaluate', drift_views.Evaluate, name='Evaluate'), re_path('qlearning',views.qlearning,name='qlearning'), re_path('listfiles',upload_views.listfiles,name='listfiles'), #url('actionavalanche',views.actionavalanche,name='actionavalanche'), re_path('sqlAlchemy',upload_views.sqlAlchemy,name='sqlAlchemy'), re_path('submitquery',upload_views.submitquery,name='submitquery'), re_path('validatecsv',upload_views.validatecsv,name='validatecsv'), path('ObjLabelAdd/<int:id>',views.ObjLabelAdd), path('objectlabel/<int:id>',views.objectlabel), path('imagelabel/<int:id>',views.imagelabel), path('ObjLabelRemove/<int:id>',views.ObjLabelRemove), re_path('objectlabelling',views.objectlabelling,name='objectlabelling'), re_path('imagelabelling',views.imagelabelling,name='imagelabelling'), re_path('ObjLabelDiscard',views.ObjLabelDiscard,name='ObjLabelDiscard'), re_path('ObjLabelNext',views.ObjLabelNext,name='ObjLabelNext'), re_path('ObjLabelPrev',views.ObjLabelPrev,name="ObjLabelPrev"), re_path('saveaionconfig',settings_views.saveaionconfig,name='saveaionconfig'), re_path('savegravitonconfig',settings_views.savegravitonconfig,name='savegravitonconfig'), re_path('saveopenaiconfig',settings_views.saveopenaiconfig,name="saveopenaiconfig"), re_path('getvalidateddata',views.getvalidateddata,name="getvalidateddata"), re_path('updateawsconfig',settings_views.amazonec2settings,name="amazonec2settings"), re_path('updategcpconfig',settings_views.gcpcomputesettings,name="gcpcomputesettings"), re_path('localsetings',views.localsetings,name="localsetings"), re_path('ImgLabelNext',views.ImgLabelNext,name='ImgLabelNext'), re_path('objectlabeldone',views.objectlabeldone,name='ObjectLabeling'), re_path(r'^get_table_list', upload_views.get_table_list, name='get_table_list'), re_path(r'^getdatasetname', views.getdatasetname, name='getdatasetname'), re_path(r'^get_tables_fields_list', upload_views.get_tables_fields_list, name='get_tables_fields_list'), re_path(r'^validate_query', upload_views.validate_query, name='validate_query'), re_path(r'^trigger_DAG', views.trigger_DAG, name = 'trigger_DAG'), # The home page path('dataoperations', views.dataoperations, name='dataoperations'), path('summarization',views.summarization,name='summarization'), path('datalabel', views.datalabel, name='datalabel'), path('upload_and_read_file_data', views.upload_and_read_file_data, name='upload_and_read_file_data'), path('apply_rule', views.apply_rule, name='apply_rule'), path('apply_rule_ver2', views.apply_rule_ver2, name='apply_rule_ver2'), path('download_result_dataset', views.download_result_dataset, name='download_result_dataset'), path('get_sample_result_of_individual_rule', views.get_sample_result_of_individual_rule, name='get_sample_result_of_individual_rule'), path('get_sample_result_of_individual_rule_ver2', views.get_sample_result_of_individual_rule_ver2, name='get_sample_result_of_individual_rule_ver2'), path('upload_and_read_test_data', views.upload_and_read_test_data, name='upload_and_read_test_data'), path('get_label_and_weightage', views.get_label_and_weightage, name='get_label_and_weightage'), path('datagenrate', dg_views.datagenrate, name='datagenrate'), path('generateconfig', dg_views.generateconfig, name='generateconfig'), path('StationarySeasonalityTest', views.StationarySeasonalityTest, name='StationarySeasonalityTest'), path('modelcompare', views.modelcompare, name='modelcompare'), path('textsummarization', views.textsummarization, name='textsummarization'), path('azureOpenAiDavinci', llm_views.azureOpenAiDavinci, name='azureOpenAiDavinci'), path('azureOpenAiDavinciSumarization', llm_views.azureOpenAiDavinciSumarization, name='azureOpenAiDavinciSumarization'), # LLM Testing path('llmtesting', views.llmtesting, name='llmtesting'), path('llmtestingresult', views.llmtestingresult, name='llmtestingresult'), re_path('llmtestreport',views.llmtestreport,name="llmtestreport"), # Code Clone Detection path('codeclonedetectionresult', views.codeclonedetectionresult, name='codeclonedetectionresult'), re_path('codeclonereport',views.codeclonereport,name="codeclonereport"), re_path('evaluateprompt',views.evaluatepromptmetrics,name="evaluatepromptmetrics"), path('libraries', views.libraries, name='libraries'), #To display libraries ] #df=pd.read_csv("C:\Project\Analytics\Deployment\germancredit_9\germancreditdata.csv") # #bool_cols = [col for col in df if np.isin(df[col].dropna().unique(), [0, 1]).all()] # #bool_cols
error_handler.py
from django.http import HttpResponse from django.conf import settings import traceback class ErrorHandlerMiddleware: def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) return response def process_exception(self, request, exception): if not settings.DEBUG: if exception: # Format your message here message = "**{url}**\n\n{error}\n\n````{tb}````".format( url=request.build_absolute_uri(), error=repr(exception), tb=traceback.format_exc() ) # Do now whatever with this message # e.g. requests.post(<slack channel/teams channel>, data=message) return HttpResponse("Error processing the request.", status=500)
wsgi.py
""" WSGI config for ux project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ux.settings') application = get_wsgi_application()
asgi.py
""" ASGI config for ux project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ux.settings') application = get_asgi_application()
settings.py
""" Django settings for mpgWebApp project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os from os.path import expanduser import platform from appbe.dataPath import DATA_DIR #from cloghandler import ConcurrentRotatingFileHandler sql_database_path = os.path.join(DATA_DIR,'sqlite') if os.path.isdir(sql_database_path) == False: os.makedirs(sql_database_path) DATA_UPLOAD_MAX_NUMBER_FIELDS = None DATA_UPLOAD_MAX_MEMORY_SIZE = None # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath())) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y8d*&k0jv4c*zu^ykqz$=yyv@(lcmz495uj^()hthjs=x&&g0y' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'appfe.modelTraining', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'appfe.ux.error_handler.ErrorHandlerMiddleware' ] ROOT_URLCONF = 'appfe.ux.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'appfe.ux.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(sql_database_path, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT=os.path.join(BASE_DIR,'static')
forms.py
from django import forms from modelTraining.models import usecasedetails import os class usecasedetailsForm(forms.ModelForm): class Meta: model = usecasedetails fields = "__all__" from modelTraining.models import Existusecases class ExistusecasesForm(forms.ModelForm): class Meta: model = Existusecases fields = "__all__"
forms.py
from django import forms from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases class usecasedetailsForm(forms.ModelForm): class Meta: model = usecasedetails fields = "__all__" class ExistusecasesForm(forms.ModelForm): class Meta: model = Existusecases fields = "__all__"
views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import time from django.template import loader from django import template from django.views.decorators.csrf import csrf_exempt from os import walk from plotly.subplots import make_subplots import plotly.graph_objects as go from appbe import help_Text as ht import random from appbe import service_url from appbe import compute from appbe import installPackage from appbe.pages import getusercasestatus from appbe import images_analysis as ia from django.db.models import Max, F from appbe.aion_config import settings from appbe.aion_config import get_graviton_data from appbe.aion_config import get_llm_data from appbe.aion_config import get_edafeatures from appbe.training import calculate_total_activities from appbe.training import calculate_total_interations from appbe.training import checkModelUnderTraining from appbe.training import checkversionrunningstatus from appbe.training import changeModelStatus from appbe.training import getStatusCount from appbe.training import getModelStatus from appbe.training import check_unsupported_col from appbe.publish import chech_publish_info from appbe.publish import check_input_data import uuid import numpy as np from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe.validatecsv import csv_validator from appbe.aion_config import addKafkaModel from appbe.aion_config import getrunningstatus from appbe.aion_config import aion_service from appbe.pages import getversion from appbe.s3bucketsDB import get_s3_bucket from appbe.s3bucketsDB import read_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.gcsbucketsDB import read_gcs_bucket from appbe.azureStorageDB import get_azureStorage from appbe.azureStorageDB import read_azureStorage from appbe.dataIngestion import getcommonfields from appbe.dataIngestion import ingestDataFromFile from appbe.dataIngestion import delimitedsetting import pdfplumber from docx import Document from appbe.trainresult import ParseResults import pandas as pd import numpy as np import re import xml.etree.ElementTree as ET import json import glob from appbe import dataPath from pathlib import Path import urllib, base64 import os from os.path import expanduser import platform import time import sys import csv import subprocess import base64 from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.forms import usecasedetailsForm from appfe.modelTraining.models import Existusecases from django.shortcuts import get_list_or_404, get_object_or_404 from pandas import json_normalize from django.contrib.sessions.models import Session import logging from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from utils.file_ops import read_df_compressed from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg LOG_FILE_NAME = 'model_training_logs.log' LOG_FOLDER = 'log' if os.path.isdir(DATA_FILE_PATH) == False: os.makedirs(DATA_FILE_PATH) if os.path.isdir(CONFIG_FILE_PATH) == False: os.makedirs(CONFIG_FILE_PATH) if os.path.isdir(DEPLOY_LOCATION) == False: os.makedirs(DEPLOY_LOCATION) # EION_SCRIPT_PATH = 'C:\\Project\\Analytics\\eion\\eion\\eion.py' PYTHON_PATH = 'python.exe' AION_VERSION = getversion() usecasetab = settings() #AION_VERSION # MainPage logg_obj = logg(LOG_LOCATION) log = logg_obj.create_log(AION_VERSION) def index(request): from appbe.pages import index_page status,context,action = index_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) def localsetings(request): from appbe.pages import get_usecase_page try: compute.updatelocalsetings(request) time.sleep(2) request.session['IsRetraining'] = 'No' #print(1) status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION #print(2) return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update localsetings','version':AION_VERSION}) def computetoAWS(request): from appbe.pages import get_usecase_page try: compute.updateToComputeSettings(request) time.sleep(2) #print(1) request.session['IsRetraining'] = 'No' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION}) def licensekey(request): try: command = request.POST['licensesubmit'] if command.lower() == 'generatelicense': userkey = request.POST['userkey'] from records import pushrecords msg = pushrecords.generateLicenseKey(userkey) context = {'msg':msg} context['selected'] = 'License' print(context) return render(request,'licenseexpired.html',context) else: licensekey = request.POST['licensekey'] from records import pushrecords pushrecords.updateLicense(licensekey) from appbe.pages import get_usecase_page status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fails in loading the page','version':AION_VERSION}) def help(request): context = {'selected': 'userguide', 'usecasetab': usecasetab} context['version'] = AION_VERSION return render(request, 'help.html', context) def mlac_userguide(request): context = {'selected': 'mlac_userguide', 'usecasetab': usecasetab} context['version'] = AION_VERSION return render(request, 'help.html', context) def AionProblem(request): if request.method == "POST": AionProblem = request.POST["Algorithm"] request.session["AionProblem"] = AionProblem return HttpResponse(AionProblem) def features(request): if request.method == "POST": typedata = request.POST['datatype'] if typedata == "datapath": datapath = request.POST['datap'] if(os.path.isfile(datapath) and os.path.isfile(datapath)): df = pd.read_csv(datapath) modelfeature = df.columns.tolist() modelfeatures = json.dumps(modelfeature) return HttpResponse(modelfeatures) else: return HttpResponse(json.dumps("Data path does not exist "), content_type="application/error") elif typedata == "scriptpath": scriptPath = request.POST['scriptp'] #print(scriptPath) f = open(scriptPath, "r") pythoncode = f.read() f.close() ldict = {} exec(pythoncode, globals(), ldict) df = ldict['dfpy'] filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') df.to_csv(dataFile, index=False) modelfeature = df.columns.tolist() output = {'features':modelfeature,'datafile':dataFile} output = json.dumps(output) # return render(request,'prediction.html',{'modelfeatures':modelfeatures,'test':'test'}) return HttpResponse(output) def mllite(request): from appbe.pages import mllite_page context = mllite_page(request) context['version'] = AION_VERSION return render(request, 'ConvertOnnx.html',context) def usecasefilter(request): from appbe import mlstyles as mls selectedoption = request.GET["selectedoption"] context = mls.Aiusecases(request,selectedoption) context['listtype'] = selectedoption context['version'] = AION_VERSION return render(request, 'aiUseCases.html',context) def AIusecases(request): from appbe import mlstyles as mls context = mls.Aiusecases(request,'Implemented') context['listtype'] = 'Implemented' context['version'] = AION_VERSION return render(request, 'aiUseCases.html',context) def mlstyles(request): from appbe import mlstyles as mls context = mls.mlstyles(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION return render(request, 'mlstyles.html',context) def mlpredict(request): from appbe import mlstyles as mls context, button_flag = mls.mlpredict(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION if button_flag in ['prediction','predictsingle']: return render(request, 'mlstyles.html', context) else: return context def mltrain(request): from appbe import mlstyles as mls context, button_flag = mls.mltrain(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION if button_flag == 'training': return render(request, 'mlstyles.html', context) else: return context def getdatasetname(request): try: from appbe.dataPath import DATA_DIR from appbe.sqliteUtility import sqlite_db file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') temp_data = sqlite_obj.read_data('dataingest') data = [] for x in temp_data: data_dict = {} data_dict['datasetname'] = x[1] data.append(data_dict) except Exception as e: print(e) data = [] return HttpResponse(json.dumps(data)) def outputdrift(request): try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() if ModelStatus != 'SUCCESS': context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure} else: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break problem = problem_type ser_url = service_url.read_performance_service_url_params() iterName = request.session['UseCaseName'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion) if problem.lower() not in ['classification','regression']: context = {'error': 'Output drift only available for classification and regression problems type', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} else: context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'usecasetab':usecasetab, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'ser_url':ser_url,'trainingDataLocation':request.session['datalocation']} return render(request, 'outputdrif.html', context) except: return render(request, 'outputdrif.html', {'error':'Fail to do outputdrift analysis','usecasetab':usecasetab}) # -------------------------------- Graviton-Integration Changes S T A R T -------------------------------- def getuserdata(request): import requests data = [] try: graviton_url,graviton_userid = get_graviton_data() gravitonURL = graviton_url gravitonUserId = graviton_userid # url = 'https://xenius.azurewebsites.net/api/dataservices?userid='+ url = gravitonURL + 'dataservices?userid=' + gravitonUserId print(url) response = requests.get(url) statuscode = response.status_code print(statuscode) if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['result'] print(data) except Exception as e: print(e) data = [] data_json = json.dumps(data) return HttpResponse(data_json) def getdataservice(request): import requests data = [] dataServiceId = request.GET.get('DataServiceId') try: graviton_url,graviton_userid = get_graviton_data() gravitonURL = graviton_url gravitonUserId = graviton_userid # url = 'https://xenius.azurewebsites.net/api/getmetadata?userid=1&dataserviceid='+str(dataServiceId) url = gravitonURL + 'getmetadata?userid=' + gravitonUserId +'&dataserviceid='+str(dataServiceId) response = requests.get(url) statuscode = response.status_code if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['result'] except Exception as e: print(e) data = [] data_json = json.dumps(data) return HttpResponse(data_json) # ------------------------------------------------ E N D ------------------------------------------------- def getvalidateddata(request): import requests computeinfrastructure = compute.readComputeConfig() taskid = request.POST.get('elixirdatataskid') try: url = 'http://'+elixir_ip+':'+elixir_port+'/api/get_validation_result?task_id='+str(taskid) #print(url) response = requests.get(url) statuscode = response.status_code if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['Result'] else: data = [] except Exception as e: print(e) data = [] try: df = pd.DataFrame.from_dict(data) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False,'computeinfrastructure':computeinfrastructure} return render(request, 'upload.html', context) except: context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,"usecaseerror":"Error in validating data!"} return render(request, 'upload.html', context) def trigger_DAG(request): from appfe.modelTraining import AirflowLib response = AirflowLib.TriggerDag("example_complex", "") return HttpResponse(response, content_type="application/json") def Airflow(request): try: selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring', 'airflow': True} return render(request, 'upload.html', context) except: return render(request, 'upload.html', {'error':'interrupted error'}) def Results(request): return render(request, 'modeltraning.html', context) def uploadnext(request): return render(request, 'basicconfig.html', {'selected': 'modeltraning','version':AION_VERSION}) def basicconfignext(request): from appbe import advance_Config as ac context = ac.basicconfignex(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION return render(request, 'advancedconfig.html', context) def updateRunConfig(_trainingTime, _filesize, _features, _modelname, _problem_type): returnVal = 'Success' try: import psutil memInGB = round(psutil.virtual_memory().total / (1024 * 1024 * 1024)) _resource = str(memInGB) + " GB" _time = str(_trainingTime) + " Mins" new_record = { "sampleSize": _filesize, "features": _features, "algorithm": _modelname, "machineResource": _resource, "trainingTime": _time, "problemtype": _problem_type } configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training_runs.json') if(os.path.isfile(configfilepath)): with open(configfilepath,'r+') as file: # load existing data into a dict. file_data = json.load(file) # join new_record with file_data inside runs file_data["runs"].append(new_record) # sets file's current position at offset. file.seek(0) # convert back to json. json.dump(file_data, file, indent = 4) except Exception as inst: returnVal = 'Fail' pass return returnVal def objectlabeldone(request): try: computeinfrastructure = compute.readComputeConfig() request.session['datatype'] = 'Object' request.session['csvfullpath'] = request.session['objectLabelFileName'] df = pd.read_csv(request.session['csvfullpath']) df1 = df.groupby(['Label']).agg({"File":{"count","nunique"}}) df1.columns = df1.columns.droplevel(0) df1 = df1.reset_index() class_count = [] for i in range(len(df1)): dct = {} dct['Label'] = df1.loc[i, "Label"] dct['TotalAnnotations'] = df1.loc[i, "count"] dct['Images'] = df1.loc[i, "nunique"] class_count.append(dct) #orxml_file in glob.glob(request.session['datalocation'] + '/*.xml'): status_msg = 'Successfully Done' wordcloudpic = '' bargraph = '' firstFile = pd.DataFrame() #print(class_count) context = {'tab': 'upload','firstFile':firstFile,'dataa': class_count,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure} return render(request, 'upload.html', context) except: context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,"usecaseerror":"Error in labeling object!"} return render(request, 'upload.html', context) def ObjLabelDiscard(request): return redirect(reverse('objectlabelling')) def ObjLabelAdd(request,id): angle = request.GET.get("angle") gid = request.GET.get("gid") xMin = min(int(request.GET.get("xMin")),int(request.GET.get("xMax"))) xMax =max(int(request.GET.get("xMin")),int(request.GET.get("xMax"))) yMin = min(int(request.GET.get("yMin")),int(request.GET.get("yMax"))) yMax = max(int(request.GET.get("yMin")),int(request.GET.get("yMax"))) height = request.GET.get("height") width = request.GET.get("width") #print("=====> "+str(angle) +" "+ str(gid) +" "+ str(xMin) + " " + str(xMax) + " " +str(yMin) +" "+ str(yMax)+" "+str(width)) # with open("out.csv", 'w') as f: # # writer = csv.writer(f) # # writer.writerow([angle, id, gid, xMin, xMax, yMin, yMax]) # f.write(angle +" "+ gid +" "+ xMin + " " + xMax + " " +yMin +" "+ yMax) labels = request.session['labels'] labels.append({"id":id, "name":"", "xMin":xMin, "xMax":xMax, "yMin":yMin, "yMax":yMax, "height":height,"width":width, "angle":angle}) request.session['labels'] = labels return redirect(reverse('objectlabelling')) def imageeda(request): try: computeinfrastructure = compute.readComputeConfig() request.session['datatype'] = 'Image' filename = request.session['csvfullpath'] os.remove(filename) request.session['csvfullpath'] = request.session['LabelFileName'] df = pd.read_csv(request.session['csvfullpath']) eda_result = '' duplicate_img = '' color_plt = '' df2 = df.groupby('Label', as_index=False)['File'].count().reset_index() df_json = df2.to_json(orient="records") df_json = json.loads(df_json) cfig = go.Figure() xaxis_data = df2['Label'].tolist() yaxis_data = df2['File'].tolist() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data)) cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520) firstFile = df.groupby('Label').first().reset_index() #firstFile['FilePath'] = firstFile['File'].apply(lambda x: os.path.join(request.session['datalocation'], x)) images = [] qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation']) for i in range(len(firstFile)): filename = firstFile.loc[i, "File"] filePath = os.path.join(request.session['datalocation'], filename) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) firstFile.loc[i, "Image"] = image_64 firstFile.loc[i, "Quality"] = qualityscore[filename] status_msg = 'Successfully Done' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'tab': 'upload', 'featuregraph': bargraph,'dataa': df_json, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'validcsv': True,'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt, 'firstFile': firstFile, 'status_msg': status_msg,'computeinfrastructure':computeinfrastructure} return(context) except: context={'error':'Fail to load Eda result'} return (context) def imagelabelling(request): if (request.session['currentIndex']) == (request.session['endIndex']+1): try: context = imageeda(request) return render(request, 'upload.html', context) except: context = {'error': 'Image labeling error'} return render(request, 'upload.html', context) else: try: df = pd.read_csv(request.session['csvfullpath']) filePath = os.path.join(request.session['datalocation'],df["File"].iloc[request.session['currentIndex']]) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) context = {'tab': 'upload','id':request.session['currentIndex'],'labels': request.session['labels'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df)} return render(request, 'imagelabelling.html', context) except: context = {'error': 'Image labeling error'} return render(request, 'upload.html', context) def objecteda(request): request.session['datatype'] = 'Object' filename = request.session['csvfullpath'] try: os.remove(filename) except: pass try: request.session['csvfullpath'] = request.session['LabelFileName'] df = pd.read_csv(request.session['csvfullpath']) df1 = df.groupby(['Label']).agg({"File":{"count","nunique"}}) df1.columns = df1.columns.droplevel(0) df1 = df1.reset_index() class_count = [] for i in range(len(df1)): dct = {} dct['Label'] = df1.loc[i, "Label"] dct['TotalAnnotations'] = df1.loc[i, "count"] dct['Images'] = df1.loc[i, "nunique"] class_count.append(dct) #orxml_file in glob.glob(request.session['datalocation'] + '/*.xml'): status_msg = 'Successfully Done' wordcloudpic = '' bargraph = '' firstFile = pd.DataFrame() context = {'tab': 'upload','firstFile':firstFile,'dataa': class_count,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True} return(context) except: context={'tab': 'upload','error':'Fail to load Eda result'} return(context) def objectlabelling(request): if (request.session['currentIndex']) == (request.session['endIndex']+1): try: context = objecteda(request) context['version'] = AION_VERSION return render(request, 'upload.html', context) except: return render(request, 'upload.html', {'error':'objectlabelling error','version':AION_VERSION}) else: try: df = pd.read_csv(request.session['csvfullpath']) filePath = os.path.join(request.session['datalocation'],df["File"].iloc[request.session['currentIndex']]) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) bounds = [] context = {'tab': 'upload','bounds':bounds,'labels': request.session['labels'],'directory':request.session['datalocation'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'filelist':df,'selectedfile':df["File"].iloc[request.session['currentIndex']]} context['version'] = AION_VERSION return render(request, 'objectlabelling.html',context) except: return render(request, 'objectlabelling.html',{'tab': 'upload','error':'Objectlabelling Error','version':AION_VERSION}) def imagelabel(request,id): request.session['labels'] = request.GET.get("name") return redirect(reverse('imagelabelling')) def objectlabel(request,id): name = request.GET.get("name") labels = request.session['labels'] labels[int(id) - 1]["name"] = name request.session['labels'] = labels return redirect(reverse('objectlabelling')) def ObjLabelRemove(request,id): index = int(id) - 1 labels = request.session['labels'] del labels[index] for label in labels[index:]: label["id"] = str(int(label["id"]) - 1) request.session['labels'] = labels return redirect(reverse('objectlabelling')) def ImgLabelNext(request): df = pd.read_csv(request.session['csvfullpath']) filePath = df["File"].iloc[request.session['currentIndex']] if request.session['labels'] != '': dataFile = request.session['LabelFileName'] #print(dataFile) with open(dataFile,'a') as f: f.write(filePath + "," + request.session['labels'] + "\n") f.close() request.session['currentIndex'] = request.session['currentIndex']+1 request.session['labels'] = '' return redirect(reverse('imagelabelling')) def ObjLabelPrev(request): df = pd.read_csv(request.session['csvfullpath']) imagePath = df["File"].iloc[request.session['currentIndex']] request.session['currentIndex'] = request.session['currentIndex'] - 1 process_marked_area_on_image(imagePath,request) return redirect(reverse('objectlabelling')) def remove_labelling_from_csv(imagePath,request): dataFile = request.session['LabelFileName'] df = pd.read_csv(dataFile) if not df.empty: if imagePath in df.values: df = df.set_index("File") df = df.drop(imagePath, axis=0) df.to_csv(dataFile, index=True) def process_marked_area_on_image(imagePath,request): df = pd.read_csv(request.session['csvfullpath']) dataFile = request.session['LabelFileName'] remove_labelling_from_csv(imagePath,request) write_coordinates_and_label_to_csv(imagePath,request) if request.session['currentIndex'] < len(df): image = df["File"].iloc[request.session['currentIndex']] request.session['labels'] = [] with open(dataFile, 'r') as file: reader = csv.reader(file) for row in reader: if row[0] == image: labels = request.session['labels'] labels.append({"id":row[1], "name":row[9], "xMin": row[3], "xMax":row[4], "yMin":row[5], "yMax":row[6], "height":row[7],"width":row[8], "angle":row[2]}) request.session['labels'] = labels labels = request.session['labels'] return True def write_coordinates_and_label_to_csv(imagePath,request): dataFile = request.session['LabelFileName'] with open(dataFile, 'a') as f: for label in request.session['labels']: f.write(imagePath + "," + str(round(float(label["id"]))) + "," + str(label["angle"]) + "," + str(round(float(label["xMin"]))) + "," + str(round(float(label["xMax"]))) + "," + str(round(float(label["yMin"]))) + "," + str(round(float(label["yMax"]))) + "," + str(round(float(label["height"]))) + "," + str(round(float(label["width"]))) + "," + label["name"] + "\n") f.close() def ObjLabelSelect(request): selectedimage=request.GET.get('file') df = pd.read_csv(request.session['csvfullpath']) filePath = df["File"].iloc[request.session['currentIndex']] remove_labelling_from_csv(filePath,request) dataFile = request.session['LabelFileName'] with open(dataFile,'a') as f: for label in request.session['labels']: f.write(filePath + "," + str(round(float(label["id"]))) + "," + str(label["angle"]) + "," + str(round(float(label["xMin"]))) + "," + str(round(float(label["xMax"]))) + "," + str(round(float(label["yMin"]))) + "," + str(round(float(label["yMax"]))) + "," + str(round(float(label["height"]))) + "," + str(round(float(label["width"]))) + "," + label["name"] + "\n") f.close() currentIndex = 0 for index,row in df.iterrows(): #print(row['File']) if row['File'] == selectedimage: break else: currentIndex = currentIndex+1 request.session['currentIndex'] = currentIndex if request.session['currentIndex'] < len(df): image = df["File"].iloc[request.session['currentIndex']] request.session['labels'] = [] with open(dataFile, 'r') as file: reader = csv.reader(file) for row in reader: if row[0] == image: labels = request.session['labels'] labels.append({"id":row[1], "name":row[9], "xMin": row[3], "xMax":row[4], "yMin":row[5], "yMax":row[6], "height":row[7],"width":row[8], "angle":row[2]}) request.session['labels'] = labels labels = request.session['labels'] return redirect(reverse('objectlabelling')) def ObjLabelNext(request): df = pd.read_csv(request.session['csvfullpath']) filePath = df["File"].iloc[request.session['currentIndex']] remove_labelling_from_csv(filePath,request) dataFile = request.session['LabelFileName'] with open(dataFile,'a') as f: for label in request.session['labels']: f.write(filePath + "," + str(round(float(label["id"]))) + "," + str(label["angle"]) + "," + str(round(float(label["xMin"]))) + "," + str(round(float(label["xMax"]))) + "," + str(round(float(label["yMin"]))) + "," + str(round(float(label["yMax"]))) + "," + str(round(float(label["height"]))) + "," + str(round(float(label["width"]))) + "," + label["name"] + "\n") f.close() request.session['currentIndex'] = request.session['currentIndex']+1 if request.session['currentIndex'] < len(df): image = df["File"].iloc[request.session['currentIndex']] request.session['labels'] = [] with open(dataFile, 'r') as file: reader = csv.reader(file) for row in reader: if row[0] == image: labels = request.session['labels'] labels.append({"id":row[1], "name":row[9], "xMin": row[3], "xMax":row[4], "yMin":row[5], "yMax":row[6], "height":row[7],"width":row[8], "angle":row[2]}) request.session['labels'] = labels labels = request.session['labels'] return redirect(reverse('objectlabelling')) def encryptedpackage(request): from appbe.encryptedPackage import encrptpackage_command from appbe.encryptedPackage import download_sclient context = encrptpackage_command(request,Existusecases,usecasedetails) context['version'] = AION_VERSION try: return download_sclient(request,context) #Task 9981 except Exception as e: print(e) return render(request, 'usecases.html', context) def StationarySeasonalityTest(request): from appbe.stationarity_seasonality_check import StationarySeasonalityTest as sst datapath = request.GET.get('datapath') datetimefeature = request.GET.get('datefeature') featurename = request.GET.get('targetfeature') seasonality_status = request.GET.get('seasonality_status') stationarity_status = request.GET.get('stationarity_status') df=pd.read_csv(datapath) ss_obj=sst(df,featurename,datetimefeature) result_dict=ss_obj.analysis(seasonality_status,stationarity_status) return HttpResponse(json.dumps(result_dict), content_type="application/json") def dataoverframe(df): from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator gfsg = GenericFeatureStatisticsGenerator() proto = gfsg.ProtoFromDataFrames([{'name': 'train', 'table': df}]) protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8") return protostr def getimpfeatures(dataFile, numberoffeatures): imp_features = [] if numberoffeatures > 20: from appbe.eda import ux_eda eda_obj = ux_eda(dataFile, optimize=1) pca_map = eda_obj.getPCATop10Features() imp_features = pca_map.index.values.tolist() return imp_features def uploaddata(request): from appbe import exploratory_Analysis as ea from appbe.aion_config import eda_setting # context={'test':'test'} selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() try: if selected_use_case == 'Not Defined': context = {'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'tab': 'tabconfigure', 'usecaseerror': 'Please create a new use case for training the model or select an existing use case for retraining', 'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage() ,'usecasetab':usecasetab,'version':AION_VERSION} return render(request, 'upload.html', context) if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' if request.session['finalstate'] > 0: if request.session['datatype'] in ['Video', 'Image','Document','Object']: folderLocation = str(request.session['datalocation']) dataFile = os.path.join(folderLocation, request.session['csvfullpath']) df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace') if df['Label'].isnull().sum() > 0: if request.session['datatype'] == 'Document': dataDf = pd.DataFrame() dataDict = {} keys = ["text"] for key in keys: dataDict[key] = [] for i in range(len(df)): filename = os.path.join(request.session['datalocation'],df.loc[i,"File"]) with open(filename, "r",encoding="utf-8") as f: dataDict["text"].append(f.read()) f.close() dataDf = pd.DataFrame.from_dict(dataDict) tcolumns=['text'] wordcloudpic,df_text = ea.getWordCloud(dataDf,tcolumns) status_msg = 'Successfully Done' request.session['currentstate'] = 0 firstFile = pd.DataFrame() context = {'tab': 'upload','firstFile':firstFile,'validcsv': True,'singletextdetails':wordcloudpic,'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage() ,'usecasetab':usecasetab,'version':AION_VERSION} return render(request, 'upload.html', context) eda_result = '' duplicate_img = '' color_plt = '' df2 = df.groupby('Label', as_index=False)['File'].count().reset_index() df_json = df2.to_json(orient="records") df_json = json.loads(df_json) cfig = go.Figure() xaxis_data = df2['Label'].tolist() yaxis_data = df2['File'].tolist() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data)) cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520) firstFile = df.groupby('Label').first().reset_index() images = [] if request.session['datatype'] == 'Image': qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation']) for i in range(len(firstFile)): filename = firstFile.loc[i, "File"] filePath = os.path.join(request.session['datalocation'], filename) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) firstFile.loc[i, "Image"] = image_64 firstFile.loc[i, "Quality"] = qualityscore[filename] elif request.session['datatype'] == 'Document': dataDrift = '' dataDf = pd.DataFrame() dataDict = {} keys = ["text","Label"] for key in keys: dataDict[key] = [] for i in range(len(df)): filename = os.path.join(request.session['datalocation'],df.loc[i,"File"]) with open(filename, "r",encoding="utf-8") as f: dataDict["text"].append(f.read()) f.close() dataDict["Label"].append(df.loc[i,"Label"]) dataDf = pd.DataFrame.from_dict(dataDict) wordcloudpic = ea.getCategoryWordCloud(dataDf) status_msg = 'Successfully Done' context = {'tab': 'upload','dataa': df_json,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket() ,'usecasetab':usecasetab,'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request, 'upload.html', context) status_msg = 'Successfully Done' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 context = {'tab': 'upload', 'featuregraph': bargraph, 'validcsv': True, 'firstFile': firstFile, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(), 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt,'azurestorage':get_azureStorage(), 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure, 'usecasetab':usecasetab,'version':AION_VERSION } return render(request, 'upload.html', context) elif request.session['datatype'].lower() in ['llm_document', 'llm_code']: request.session['currentstate'] = 0 dataFile = request.session['csvfullpath'] df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace') filesCount = 0 filesSize = 0 files = [] for index, row in df.iterrows(): filename = row['File'] files.append(filename) filesCount = filesCount + 1 get_size = os.path.getsize(filename) filesSize = round(filesSize + get_size, 1) if filesSize > 1048576: size = round((filesSize / (1024 * 1024)), 1) filesSize = str(size) + ' M' elif filesSize > 1024: size = round((filesSize /1024), 1) filesSize = str(size) + ' K' else: filesSize = str(filesSize) + ' B' files = pd.DataFrame(files, columns=['File']) files.index = range(1, len(files) + 1) files.reset_index(level=0, inplace=True) files = files.to_json(orient="records") files = json.loads(files) from appbe.prediction import get_instance hypervisor, instanceid,region,image = get_instance(selected_use_case + '_' + str(ModelVersion)) if hypervisor != '': computeinfrastructure['computeInfrastructure'] = hypervisor else: computeinfrastructure['computeInfrastructure'] = 'AWS' context = {'tab': 'upload',"selected_use_case":selected_use_case,"selectedPath":request.session['datalocation'],"selectedfile":request.session['fileExtension'],'csvgenerated': True,'filesCount':filesCount,'filesSize':filesSize,'files':files, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(), 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'azurestorage':get_azureStorage(), 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'datatype':request.session['datatype'], 'usecasetab':usecasetab,'version':AION_VERSION,"selectedfile":request.session['fileExtension'],"selectedPath":request.session['datalocation'] } return render(request, 'upload.html', context) else: dataFile = str(request.session['datalocation']) check_df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace') check_df.rename(columns=lambda x: x.strip(), inplace=True) featuresList = check_df.columns.tolist() numberoffeatures = len(featuresList) imp_features = getimpfeatures(dataFile, numberoffeatures) # check_df = pd.read_csv(dataFile) # check_df.rename(columns=lambda x: x.strip(), inplace=True) # ---------------------------- # EDA Performance change # ---------------------------- sample_size = int(eda_setting()) samplePercentage = 100 samplePercentval = 0 showRecommended = False #dflength = len(eda_obj.getdata()) dflength = len(check_df) if dflength > sample_size: samplePercentage = round(float((sample_size/dflength) * 100),2) samplePercentval = samplePercentage / 100 showRecommended = True # ---------------------------- # df_top = df.head(10) df_top = check_df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = '' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 # EDA Subsampling changes context = {'range':range(1,101),'samplePercentage':samplePercentage,'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList, 'selected_use_case': selected_use_case,'data': df_json,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage(), 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'imp_features':imp_features,'numberoffeatures':numberoffeatures, 'version':AION_VERSION, 'selected': 'modeltraning','exploratory':False,'computeinfrastructure':computeinfrastructure} else: request.session['uploaddone'] = False request.session['currentstate'] = 0 request.session['finalstate'] = 0 clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') context = {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage(),'clusteringModels':clusteringModels, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(), 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure } context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) print(e) return render(request, 'upload.html', {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Fail to upload Data','usecasetab':usecasetab,'version':AION_VERSION}) def mlflowtracking(request): import requests response = requests.get("http://localhost:5000/") #response = requests.get(url) statuscode = response.status_code data = [] context = {'statuscode':statuscode} context['version'] = AION_VERSION return render(request, 'openmlflow.html', context) def readlogfile(request): file_path = request.session['logfilepath'] try: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+") configSettingsData = f.read() configSettings = json.loads(configSettingsData) f.close() if os.path.exists(file_path): my_file = open(file_path, 'r',encoding="utf-8") file_content = my_file.read() my_file.close() matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if "Status:-" in line] matched_status_lines = matched_lines[::-1] if len(matched_status_lines) > 0: no_lines = len(matched_lines) if 'noflines' not in request.session: request.session['noflines'] = 0 request.session['noflines'] = request.session['noflines'] + 1 if request.session['ModelStatus'] != 'SUCCESS': numberoflines = request.session['noflines'] if numberoflines > no_lines: numberoflines = no_lines request.session['noflines'] = no_lines matched_lines = matched_lines[0:numberoflines] matched_status_lines = matched_status_lines[0] output = getStatusCount(matched_lines,request.session['total_steps']) matched_status_lines = matched_status_lines.split('...') matched_status_lines = matched_status_lines[1] output2=[] output2.append(matched_status_lines) from appbe import leaderboard import pandas result = leaderboard.get_leaderboard(file_content) if result.empty==False: result = result.to_html(classes='table',col_space='100px', index=False) else: result = 'Leaderboard is not available' data_details = {'status':output2,'logs':output,'log_file':file_content,'leaderboard': result,'trainingstatus':request.session['ModelStatus']} return HttpResponse(json.dumps(data_details), content_type="application/json") else: matched_lines = [] matched_lines.append('Initializing Training Engine') data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines} return HttpResponse(json.dumps(data_details), content_type="application/json") else: stepsdone = 0 matched_lines = [] if request.session['ModelStatus'] == 'Running': matched_lines.append('Initializing Training Engine') else: matched_lines.append('Not Trained') data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines} return HttpResponse(json.dumps(data_details), content_type="application/json") except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) matched_lines = [] if request.session['ModelStatus'] == 'Running': stepsdone = 0 matched_lines.append('Initializing Training Engine') data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines, 'leaderboard':matched_lines,'trainingstatus':matched_lines} return HttpResponse(json.dumps(data_details), content_type="application/json") else: matched_lines.append('Not Trained') data_details = {'status':matched_lines,'logs':matched_lines,'log_file':matched_lines,'leaderboard':matched_lines,'trainingstatus':matched_lines} return HttpResponse(json.dumps(data_details), content_type="application/json") # EDA Visualization changes # ---------------------------- def getgraph(request): from appbe import exploratory_Analysis as ea output = ea.get_edaGraph(request) return HttpResponse(output) # ---------------------------- # --- 12686:Data Distribution related Changes S T A R T --- def getDataDistribution(request): from appbe import exploratory_Analysis as ea output = ea.get_DataDistribution(request) return HttpResponse(output) # ---------------------- E N D ---------------------- def getDeepDiveData(request): from appbe import exploratory_Analysis as ea output = ea.get_DeepDiveData(request) return HttpResponse(output) # Fairness Metrics changes # ---------------------------- def getmetrics(request): from appbe import exploratory_Analysis as ea output = ea.get_fairmetrics(request) return HttpResponse(output) # ---------------------------- def getdataimbalance(request): d3_url = request.GET.get('d3_url') mpld3_url = request.GET.get('mpld3_url') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8') targetFeature = configSettingsJson['basic']['targetFeature'] df1 = df[targetFeature].value_counts().to_frame() if (len(df1) < 1): response = 'Data balancing detail is not available due to no class is found in target feature.' elif (len(df1) > 30): response = 'Data balancing detail is not available due to high number of classes in target feature.' else: dfStyler = df1.style.set_properties(**{'text-align': 'right'}) dfStyler.set_table_styles([dict(selector='th', props=[('text-align', 'right')])]) valueCount = dfStyler.to_html() import matplotlib.pyplot as plt import mpld3 fig, ax = plt.subplots(figsize=[6.5,6]) df2 = df[targetFeature].value_counts().sort_values() _ncol = 1 _radius = 0.5 if (len(df1) > 10): _radius = 0.4 _ncol = 1 else: _radius = 0.6 _ncol = 1 ax = df2.plot(kind = 'pie', ylabel='', title=targetFeature, labeldistance=None, radius=_radius, autopct='%1.0f%%') ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol = _ncol) # ax.legend(bbox_to_anchor=(1,1), bbox_transform=plt.gcf().transFigure) plt.subplots_adjust(left=0.02, bottom=0.05, right=0.9) ax.get_yaxis().set_visible(False) html_graph = mpld3.fig_to_html(fig,d3_url=d3_url,mpld3_url=mpld3_url) response = valueCount + ' ' + html_graph return HttpResponse(response) def dotextSummarization(request): from appbe.textSummarization import startSummarization context = startSummarization(request,DEFAULT_FILE_PATH,CONFIG_FILE_PATH,DATA_FILE_PATH) context['version'] = AION_VERSION return render(request, 'summarization.html', context) def openmodelevaluation(request,id): deploypath = request.session['deploypath'] if id == 1: contentFile= os.path.join(deploypath,'log','boosting_overfit.html') if id == 2: contentFile= os.path.join(deploypath,'log','boosting_overfit_condition.html') if id == 3: contentFile= os.path.join(deploypath,'log','smc.html') if id == 4: contentFile= os.path.join(deploypath,'log','smc_condition.html') if id == 5: contentFile= os.path.join(deploypath,'log','mi.html') if id == 6: contentFile= os.path.join(deploypath,'log','mi_con.html') try: my_file = open(contentFile, 'r', encoding="utf-8") file_content = my_file.read() my_file.close() context = {'content': file_content,'status':request.session['ModelStatus']} context['version'] = AION_VERSION return render(request, 'deepcheck.html', context, content_type="text/html") except: context = {'content': 'Not available'} context['version'] = AION_VERSION return render(request, 'deepcheck.html', context, content_type="text/html") def downloadlogfile(request,id,currentVersion): import mimetypes from django.http import FileResponse p = usecasedetails.objects.get(id=id) model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) if model[0].DeployPath != 'NA': file_path = os.path.join(str(model[0].DeployPath),'log','model_training_logs.log') else: file_path = os.path.join(DEPLOY_LOCATION,model[0].ModelName.usecaseid,str(currentVersion),'log','model_training_logs.log') try: if os.path.exists(file_path): my_file = open(file_path, 'r', encoding="utf-8") file_content = my_file.read() my_file.close() mime_type, _ = mimetypes.guess_type(file_path) response = HttpResponse(file_content, content_type=mime_type)#bugid 12513 # Set the HTTP header for sending to browser filename = p.usecaseid+'.log' response['Content-Disposition'] = "attachment; filename=%s" % filename return response else: response = HttpResponse('File Not Found')#bugid 12513 # Set the HTTP header for sending to browser filename = p.usecaseid+'.log' response['Content-Disposition'] = "attachment; filename=%s" % filename return response except Exception as e: response = HttpResponse('File Not Found')#bugid 12513 # Set the HTTP header for sending to browser filename = p.usecaseid+'.log' response['Content-Disposition'] = "attachment; filename=%s" % filename return response def opendetailedlogs(request,id,currentVersion): p = usecasedetails.objects.get(id=id) model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) if model[0].DeployPath != 'NA': file_path = os.path.join(str(model[0].DeployPath),'log','model_training_logs.log') else: file_path = os.path.join(DEPLOY_LOCATION,model[0].ModelName.usecaseid,str(currentVersion),'log','model_training_logs.log') try: if os.path.exists(file_path): my_file = open(file_path, 'r', encoding="utf-8") file_content = my_file.read() my_file.close() context = {'content':file_content} return HttpResponse(json.dumps(context),content_type="application/json") else: context = {'content':'Status not available'} return HttpResponse(json.dumps(context),content_type="application/json") except Exception as e: print(e) context = {'content':'Status not available'} return HttpResponse(json.dumps(context),content_type="application/json") def batchlearning(request): from appbe.onlineLearning import startIncrementallearning action,context = startIncrementallearning(request,usecasedetails,Existusecases,DATA_FILE_PATH) context['version'] = AION_VERSION return render(request,action,context) def downlpredictreport(request): predictionResults = request.POST.get('predictionResults') predictionResults = pd.DataFrame.from_dict(eval(predictionResults)) usename = request.session['UseCaseName'].replace(" ", "_") + '_' + str(request.session['ModelVersion']) predictFileName = usename + '_prediction.xlsx' from io import BytesIO as IO excel_file = IO() excel_writer = pd.ExcelWriter(excel_file, engine="xlsxwriter") predictionResults.to_excel(excel_writer, sheet_name='Predictions') workbook = excel_writer.book #excel_writer.save() excel_writer.close() excel_file.seek(0) response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + predictFileName return response # EDA Reports changes # ---------------------------- def downloadxplainreport(request): from appbe.xplain import global_explain status,msg,ale_view,sentences,bargraph,inputFields,nrows,ncols,targetFeature,dataPoints,target_classes,df_proprocessed,numberofclasses,modelfeatures,problemType,mfcount,topTwoFeatures,topFeaturesMsg,most_influencedfeature,interceppoint,anchorjson,labelMaps = global_explain(request) if status == 'Success': usename = request.session['UseCaseName'].replace(" ", "_") + '_' + str(request.session['ModelVersion']) predictFileName = usename + '_xplain.xlsx' df = pd.DataFrame({'What kind of data does the system learn from?': ['This dataset is a dataset of measurements taken for '+str(numberofclasses)+' categories of '+str(targetFeature),'The '+str(numberofclasses)+' different categories of '+str(targetFeature)+' as per the data are:']}) i = 1 df1 = [] for x in target_classes: df1.append({'What kind of data does the system learn from?':' '+str(i)+':'+str(x)}) i = i+1 df1.append({'What kind of data does the system learn from?':'The total number of data points is '+str(dataPoints)}) df = pd.concat([df, pd.DataFrame(df1)], ignore_index = True) from io import BytesIO as IO excel_file = IO() excel_writer = pd.ExcelWriter(excel_file, engine="xlsxwriter") df.to_excel(excel_writer, sheet_name='Dashboard',index=False) pd.DataFrame(df_proprocessed).to_excel(excel_writer, sheet_name='Top 5 Rows',index=False) df = pd.DataFrame({'What are the various features of the data used for model training?': ['The various features of the data are:']}) i = 1 df1 = [] for x in modelfeatures: df1.append({'What are the various features of the data used for model training?':' '+str(i)+': '+str(x)}) i = i+1 df = pd.concat( [df, pd.DataFrame( df1)], ignore_index = True) df.to_excel(excel_writer, sheet_name='Features',index=False) topFeaturesMsg = pd.DataFrame(topFeaturesMsg,columns=["Feature Importance"]) topFeaturesMsg.to_excel(excel_writer, sheet_name='Feature importance',index=False) achors = pd.DataFrame(anchorjson) achors.to_excel(excel_writer, sheet_name='Prediction',index=False) workbook = excel_writer.book #excel_writer.save() excel_writer.close() excel_file.seek(0) response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + predictFileName return response else: response = HttpResponse() return response def gotoreport(request): report_button = request.POST.get('trainmodel') usename = request.session['UseCaseName'].replace(" ", "_") + '_' + str(request.session['ModelVersion']) if report_button == 'download_edafile': from appbe.reports import downloadtrainingfile edaFileName,excel_file = downloadtrainingfile(request,Existusecases) response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + edaFileName return response def LoadBasicConfiguration(request): try: from appbe import exploratory_Analysis as ea configFile = DEFAULT_FILE_PATH + 'eion_config.json' f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) temp = {} temp['ModelName'] = request.session['UseCaseName'] temp['Version'] = request.session['ModelVersion'] dataLocation = str(request.session['datalocation']) df = pd.read_csv(dataLocation, encoding='latin1') featuresList = df.columns.values.tolist() datetimeFeatures = [] sequenceFeatures = [] unimportantFeatures = [] featuresRatio = {} for i in featuresList: check = ea.match_date_format(df[i]) if check == True: datetimeFeatures.append(i) unimportantFeatures.append(i) continue seq_check = ea.check_seq_feature(df[i]) if seq_check == True: sequenceFeatures.append(i) unimportantFeatures.append(i) continue ratio = ea.check_category(df[i]) if ratio != 0: featuresRatio[i] = ratio else: unimportantFeatures.append(i) targetFeature = min(featuresRatio, key=featuresRatio.get) unimportantFeatures.append(targetFeature) config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = datetimeFeatures config['sequenceFeatures'] = sequenceFeatures config['FeaturesList'] = featuresList config['unimportantFeatures'] = unimportantFeatures config['targetFeature'] = targetFeature context = {'tab': 'configure', 'temp': temp, 'config': config} context['version'] = AION_VERSION return render(request, 'modeltraning.html', context) except: return render(request, 'modeltraning.html', {'error':'Fail to load basic config file','version':AION_VERSION}) def LoadDataForSingleInstance(request): try: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemtypes = configSettingsJson['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type == 'timeSeriesForecasting': #task 11997 inputFieldsDict = {'noofforecasts': 10} elif problem_type == 'recommenderSystem': inputFieldsDict = {"uid": 1, "iid": 31, "rating": 0} elif problem_type == 'videoForecasting': inputFieldsDict = {'VideoPath': 'person01_boxing_d1_uncomp.avi'} else: inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) dataFilePath = str(configSettingsJson['basic']['dataLocation']) df = pd.read_csv(dataFilePath, encoding='latin1') singleInstanceData = df.loc[0, inputFeaturesList] inputFieldsDict = singleInstanceData.to_dict() inputFields = [] inputFields.append(inputFieldsDict) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'tab': 'predict', 'inputFields': inputFields, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction'} return render(request, 'prediction.html', context=context) except: return render(request, 'prediction.html', {'tab': 'predict', 'error': 'Fail to load inputfields', 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction'}) def uploadDatafromunsupervisedmodel(request): computeinfrastructure = compute.readComputeConfig() try: modelid = request.POST.get('modelid') p = Existusecases.objects.get(id=modelid) dataFile = str(p.DataFilePath) deploypath = str(p.DeployPath) if(os.path.isfile(dataFile) == False): context = {'tab': 'tabconfigure', 'error': 'Data file does not exist','computeinfrastructure':computeinfrastructure} return render(request, 'prediction.html', context) predictionScriptPath = os.path.join(deploypath,'aion_predict.py') outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() predict_dict = json.loads(outputStr) if (predict_dict['status'] == 'SUCCESS'): predictionResults = predict_dict['data'] df2 = pd.json_normalize(predictionResults) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df2.to_csv(dataFile, index=False) request.session['datalocation'] = str(dataFile) from appbe.eda import ux_eda eda_obj = ux_eda(dataFile) featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures() # ---------------------------- samplePercentage = 100 samplePercentval = 0 showRecommended = False df = pd.read_csv(dataFile,nrows=100) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' No_of_Permissible_Features_EDA = get_edafeatures() clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') context = {'tab': 'tabconfigure','range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage,'computeinfrastructure':computeinfrastructure, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'clusteringModels':clusteringModels, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','version':AION_VERSION}) def qlearning(request): return render(request, 'qlearning.html', {}) def RLpath(request): return render(request, 'rl_path.html', {}) def stateTransitionSettings(request): selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] import requests setting_url = service_url.read_service_url_params(request) usecasename = request.session['usecaseid'].replace(" ", "_") setting_url = setting_url+'pattern_anomaly_settings?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion']) #print(setting_url) inputFieldsDict = {} inputFieldsDict['groupswitching'] = request.POST.get('groupswitching') inputFieldsDict['transitionprobability'] = request.POST.get('transitionprobability') inputFieldsDict['transitionsequence'] = request.POST.get('transitionsequence') inputFieldsDict['sequencethreshold'] = request.POST.get('sequencethreshold') # print(inputFieldsDict) inputFieldsJson = json.dumps(inputFieldsDict) #print(inputFieldsJson) try: response = requests.post(setting_url,data=inputFieldsJson,headers={"Content-Type":"application/json",}) if response.status_code != 200: outputStr=response.content context = {'tab': 'tabconfigure', 'error': outputStr.decode('utf-8'), 'selected': 'prediction'} return render(request, 'prediction.html', context) except Exception as inst: if 'Failed to establish a new connection' in str(inst): context = {'tab': 'tabconfigure', 'error': 'AION Service needs to be started', 'selected': 'prediction'} else: context = {'tab': 'tabconfigure', 'error': 'Prediction Error '+str(inst), 'selected': 'prediction'} return render(request, 'prediction.html', context) try: outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() #print(outputStr) predict_dict = json.loads(str(outputStr)) selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'} inputFields = [] inputFields.append(inputFieldsDict) iterName = request.session['UseCaseName'].replace(" ", "_") settings_url = '' problemtypes = configSettingsJson['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type == 'StateTransition': ser_url = service_url.read_pattern_anomaly_url_params(request) settings_url = service_url.read_pattern_anomaly_setting_url_params(request) else: ser_url = service_url.read_service_url_params(request) ser_url = ser_url+'predict?usecaseid='+iterName+'&version='+str(ModelVersion) onnx_runtime = False if str(configSettingsJson['advance']['deployer']['edge_deployment']) == 'True': if str(configSettingsJson['advance']['deployer']['edge_format']['onnx']) == 'True': onnx_runtime = True analyticsTypes = problem_type imagedf = '' return render(request, 'prediction.html', {'inputFields': inputFields,'imagedf':imagedf, 'selected_use_case': selected_use_case,'ser_url':ser_url,'analyticsType':analyticsTypes,'settings_url':settings_url,'usecasetab':usecasetab, 'ModelStatus': ModelStatus,'onnx_edge':onnx_runtime,'ModelVersion': ModelVersion, 'selected': 'prediction'}) except Exception as e: print(e) return render(request, 'prediction.html', {'error': 'Fail to do state Transition Settings', 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction'}) def flcommand(request): try: from appbe.flconfig import fl_command context = fl_command(request,Existusecases,usecasedetails) return render(request, 'usecases.html', context) except Exception as e: print(e) return render(request, 'models.html',{'error': 'Failed to generate federated learning client code'}) def maaccommand(request): from appbe.models import maac_command try: context,page = maac_command(request,Existusecases,usecasedetails) context['version'] = AION_VERSION return render(request,page,context) except Exception as e: print(e) return render(request, 'usecases.html',{'errormlac': 'Failed to generate code: '+str(e),'version':AION_VERSION}) def onnxruntime(request): try: onnx_scriptPath = os.path.join(request.session['deploypath'],'edge','onnxvalidation.py') outputStr = subprocess.check_output([sys.executable, onnx_scriptPath]) #print(outputStr) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() predict_dict = json.loads(outputStr) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'tab': 'predict', 'predictionResults': predict_dict, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction','onnx_edge':True,'version':AION_VERSION} return render(request, 'prediction.html', context=context) except Exception as inst: print('-------------------->'+str(inst)) context = {'tab': 'tabconfigure', 'error': 'Failed To Perform Prediction', 'selected': 'prediction','version':AION_VERSION} return render(request, 'prediction.html', context) def instancepredict(request): log = logging.getLogger('log_ux') from appbe.train_output import get_train_model_details modelType='' trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request) computeinfrastructure = compute.readComputeConfig() selected_use_case, ModelVersion, ModelStatus = getusercasestatus(request) try: t1 = time.time() if request.FILES: Datapath = request.FILES['DataFilePath'] from io import StringIO ext = str(Datapath).split('.')[-1] if ext.lower() in ['csv','tsv','tar','zip','avro','parquet','txt']: content = StringIO(Datapath.read().decode('utf-8')) reader = csv.reader(content) df = pd.DataFrame(reader) df.columns = df.iloc[0] df = df[1:] filetimestamp = str(int(time.time())) if ext.lower() in ['csv','tsv','tar','zip','avro','parquet','txt','pdf']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() dataPath = dataFile if(os.path.isfile(dataFile) == False): context = {'tab': 'tabconfigure', 'error': 'Data file does not exist','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Data file does not exist') return render(request, 'prediction.html', context) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) predictionScriptPath = os.path.join(request.session['deploypath'], 'aion_predict.py') outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() predict_dict = json.loads(outputStr) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = '' for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break PredictionResultsOfTextSum = [] if (predict_dict['status'] == 'SUCCESS'): predictionResults = predict_dict['data'] predictionResultsTextSum= predict_dict['data'] if problem_type in ['similarityIdentification','contextualSearch']: for x in predictionResults: msg='' for y in x['prediction']: msg += str(y) msg += '\n' msg += '\n' msg += '\n' msg += '\n' msg += '\n' x['prediction'] = msg if problem_type == 'textSummarization': Results = {} Results['msg'] = predict_dict['msg'] PredictionResultsOfTextSum.append(Results) Results['prediction'] = predict_dict['data'] PredictionResultsOfTextSum.append(Results) t2 = time.time() log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str( round(t2 - t1)) + ' sec' + ' : ' + 'Success') else: context = {'tab': 'tabconfigure', 'error': 'Failed To perform prediction','version':AION_VERSION} log.info('Predict Batch : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction') return render(request, 'prediction.html', context) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] from appfe.modelTraining.train_views import getMLModels problem_type,dproblemtype,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettingsJson) from appbe.prediction import createInstanceFeatures ser_url = service_url.read_service_url_params(request) inputFields,ser_url = createInstanceFeatures(configSettingsJson,problem_type,mlmodels,request.session['usecaseid'],request.session['ModelVersion'],ser_url) from appfe.modelTraining.prediction_views import getTrainingStatus result = getTrainingStatus(request) context = {'tab': 'predict','ser_url':ser_url,'predictionResults': predictionResults, 'selected_use_case': selected_use_case,'problem_type':problem_type,'result':result, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'bestmodel':bestmodel,'usecasetab':usecasetab,'version':AION_VERSION,'modelType':modelType,'inputFields':inputFields,'configSettingsJson':configSettingsJson} if problem_type == 'textSummarization': context={'tab': 'predict','predictionResultsTextSum': predictionResultsTextSum, 'PredictionResultsOfTextSum': PredictionResultsOfTextSum,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction','problem_type':problem_type} return render(request, 'prediction.html', context=context) except Exception as inst: print(inst) context = {'tab': 'tabconfigure', 'error': 'Failed To perform prediction', 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} log.info('Predict Batch :' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction, '+str(inst)) return render(request, 'prediction.html', context) def LoadAdvanceConfiguration(request): try: if request.method == 'POST': configFile = request.session['config_json'] f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) context = {'tab': 'advconfig', 'advconfig': configSettingsJson} context['version'] = AION_VERSION context['usecasetab'] = usecasetab return render(request, 'modeltraning.html', context) except: return render(request, 'modeltraning.html', {'error':'Fail to load advance config file','version':AION_VERSION,'usecasetab':usecasetab}) # advance def Advance(request): try: from appbe import advance_Config as ac request.session['defaultfilepath'] = DEFAULT_FILE_PATH context = ac.save(request) submittype = request.POST.get('AdvanceSubmit') computeinfrastructure = compute.readComputeConfig() if submittype != 'AdvanceDefault': from appfe.modelTraining.train_views import trainmodel return trainmodel(request) else: context['version'] = AION_VERSION context['usecasetab'] = usecasetab context['computeinfrastructure'] = computeinfrastructure return render(request, 'advancedconfig.html', context) except Exception as e: print(e) return render(request, 'advancedconfig.html', {'erroradvance':'Fail to save','version':AION_VERSION,'usecasetab':usecasetab,'computeinfrastructure':computeinfrastructure}) def templatepage(request): computeinfrastructure = compute.readComputeConfig() try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() ser_url = service_url.read_service_url_params(request) packagetip=''' Call From Command Line 1. Click AION Shell 2. python {packageAbsolutePath}/aion_prediction.py {json_data} Call As a Package 1. Go To package_path\WHEELfile 2. python -m pip install {packageName}-py3-none-any.whl Call the predict function after wheel package installation 1. from {packageName} import aion_prediction as p1 2. p1.predict({json_data}) ''' usecase = usecasedetails.objects.all() models = Existusecases.objects.filter(Status='SUCCESS') selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 context = {'usecasedetail': usecase, 'nouc': nouc,'models': models, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ser_url':ser_url,'packagetip':packagetip,'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab} return (context) except: context = {'error':'Fail to load usecases details','usecasetab':usecasetab} return (context) def modelkafka(request): try: addKafkaModel(request,request.session['datalocation']) selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() kafkaSetting = kafka_setting() ruuningSetting = running_setting() ser_url = service_url.read_service_url_params(request) packagetip=''' Call From Command Line 1. Click AION Shell 2. python {packageAbsolutePath}/aion_prediction.py {json_data} Call As a Package 1. Go To package_path\WHEELfile 2. python -m pip install {packageName}-py3-none-any.whl Call the predict function after wheel package installation 1. from {packageName} import aion_prediction as p1 2. p1.predict({json_data}) ''' models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id') usecase = usecasedetails.objects.all().order_by('-id') if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 return render(request, 'usecases.html', {'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting}) except: return render(request, 'usecases.html',{'selected': 'usecase', 'selected_use_case': selected_use_case,'error': 'Fail to load modelkafka'}) def startTracking(request): from appbe.aion_config import aion_tracking from appbe.aion_config import start_tracking try: status = aion_tracking() if status.lower() == 'error': start_tracking() status = 'MLflowSuccess' else: status = 'MLflowSuccess' context = {'selected':'DataOperations','usecasetab':usecasetab,'status':status} context['version'] = AION_VERSION return render(request, "dataoperations.html",context) except: context = {'selected':'DataOperations','usecasetab':usecasetab,'status':'Error'} context['version'] = AION_VERSION return render(request, "dataoperations.html",context) def startService(request): try: status = aion_service() if status == 'Running': status = 'AION service already running' elif status == 'Started': status = 'AION service started successfully' else: status = 'Error in starting' context = settings(request) context['status'] = status return render(request, 'settings_page.html', context) except: return render(request, 'settings_page.html', {'error':'Fail to start service'}) def Dataupload(request): from appbe.pages import usecases_page checkModelUnderTraining(request,usecasedetails,Existusecases) request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION context['currentstate'] =0 from appbe.aion_config import get_telemetryoptout telemetryoptout = get_telemetryoptout() if telemetryoptout == 'No': from appbe.telemetry import checkTelemtry checkTelemtry() return render(request,action,context) def show(request): try: models = Existusecases.objects.all() # print(models) return render(request, "usecases.html", {'models': models, 'selected': 'usecase'}) except: return render(request, "usecases.html", {'error': 'Error to show Usecases', 'selected': 'usecase'}) def edit(request, id): try: usecasedetail = usecasedetails.objects.get(id=id) return render(request, 'edit.html', {'usecasedetail': usecasedetail, 'selected': 'usecase'}) except: return render(request, "usecases.html", {'error': 'Error in editing usecase', 'selected': 'usecase'}) def opentraining(request, id,currentVersion): from appbe.pages import usecases_page try: p = usecasedetails.objects.get(id=id) model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) Version = model[0].Version usecasename = p.UsecaseName request.session['ModelName'] = p.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.usecaseid request.session['ModelVersion'] = Version request.session['ModelStatus'] = 'Not Trained' request.session['finalstate'] = 0 usecase = usecasedetails.objects.all().order_by('-id') configfile = str(model[0].ConfigPath) dataFile = '' if configfile != '': request.session['finalstate'] = 2 f = open(configfile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) dataFile = configSettings['basic']['dataLocation'] if configSettings['basic']['folderSettings']['fileType'] == 'Object': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['objectLabelFileName'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] return objectlabeldone(request) elif configSettings['basic']['folderSettings']['fileType'] in ['LLM_Document','LLM_Code']: request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['fileExtension'] = configSettings['basic']['folderSettings']['fileExtension'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] else: request.session['datalocation'] = str(configSettings['basic']['dataLocation']) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' if dataFile == '': dataFile = str(model[0].DataFilePath) if dataFile != '': request.session['finalstate'] = 2 request.session['datalocation'] = dataFile return uploaddata(request) except Exception as e: print(e) checkModelUnderTraining(request,usecasedetails,Existusecases) request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION context['Status'] = 'Error' context['Msg'] = 'Error in retraining usecase. Check log file for more details' return render(request,action,context) def stopmodelservice(request): try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) id = request.POST.get('modelid') pid = request.POST.get('pid') installPackage.stopService(pid) time.sleep(5) usecasedetail = usecasedetails.objects.get(id=id) usecasename = usecasedetail.UsecaseName runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' model.maacsupport = 'False' model.flserversupport = 'False' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath), 'output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] supportedmodels = ["Logistic Regression", "Naive Bayes","Decision Tree","Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Random Forest","Linear Regression","Lasso","Ridge"] if model.deploymodel in supportedmodels: model.maacsupport = 'True' else: model.maacsupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' except Exception as e: pass selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) nouc = 0 usecase = usecasedetails.objects.all() return render(request, 'models.html', {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id}) except: return render(request, 'models.html',{'error': 'Fail to stop model service'}) def startmodelservice(request): try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) installPackage.startService(request.POST.get('modelName'),request.POST.get('ip'),request.POST.get('portNo')) time.sleep(5) id = request.POST.get('modelid') usecasedetail = usecasedetails.objects.get(id=id) usecasename = usecasedetail.UsecaseName runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) installationStatus,modelName,modelVersion=insallPackage.checkInstalledPackge(usecasename) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' model.maacsupport = 'False' model.flserversupport = 'False' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc', 'output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] supportedmodels = ["Logistic Regression", "Naive Bayes","Decision Tree","Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Random Forest","Linear Regression","Lasso","Ridge"] if model.deploymodel in supportedmodels: model.maacsupport = 'True' else: model.maacsupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' except Exception as e: pass selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) nouc = 0 usecase = usecasedetails.objects.all() return render(request, 'models.html', {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id}) except: return render(request, 'models.html',{'error': 'Fail to start model service'}) def downloadpackage(request, id,version): return(installPackage.downloadPackage(request,id,version,usecasedetails,Existusecases)) def createpackagedocker(request, id,version): try: context = installPackage.createPackagePackage(request,id,version,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request, 'usecases.html',context) except Exception as e: return render(request, 'usecases.html',{'error': str(e)}) def publish(request, id): print("Inside Publish Tab") try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() usecasedetail = usecasedetails.objects.get(id=id) usecasename = usecasedetail.UsecaseName publish_version,publish_status,publish_drift_status =chech_publish_info(usecasename) runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' model.maacsupport = 'False' model.flserversupport = 'False' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc', 'output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.featuresused = eval(outputconfig['data']['featuresused']) model.targetFeature = outputconfig['data']['targetFeature'] if 'params' in outputconfig['data']: model.modelParams = outputconfig['data']['params'] model.modelType = outputconfig['data']['ModelType'] model.dataPath = os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv') supportedmodels = ["Logistic Regression", "Naive Bayes","Decision Tree","Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Random Forest","Linear Regression","Lasso","Ridge","Extreme Gradient Boosting (XGBoost)","Light Gradient Boosting (LightGBM)","Categorical Boosting (CatBoost)","LSTM"] print(model.deploymodel) if model.deploymodel in supportedmodels: model.maacsupport = 'True' else: model.maacsupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' except Exception as e: print(e) pass selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) nouc = 0 usecase = usecasedetails.objects.all() print(models) return render(request, 'models.html', {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case,'usecasetab':usecasetab,'publish_version':publish_version,'publish_status':publish_status,'publish_drift_status':publish_drift_status, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'runningStatus':runningStatus,'pid':pid,'ip':ip,'port':port,'usecaseid':id}) except Exception as e: print(e) return render(request, 'models.html',{'error': 'Fail to publish model'}) def remove_version(request, id): from appbe.pages import get_usecase_page try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() if request.method == 'GET': try: model = Existusecases.objects.get(id=id) usecaseid = model.ModelName.id if os.path.isdir(str(model.DeployPath)): import shutil if DEPLOY_LOCATION != str(model.DeployPath): shutil.rmtree(str(model.DeployPath)) else: uname = model.ModelName.usecaseid.replace(" ", "_") usecaseversion = model.Version deployLocation = os.path.join(str(model.DeployPath),uname+'_'+str(usecaseversion)) if os.path.isdir(str(deployLocation)): shutil.rmtree(str(deployLocation)) model.delete() usecasedetail = usecasedetails.objects.get(id=model.ModelName.id) models = Existusecases.objects.filter(ModelName=usecasedetail) if len(models) == 0: usecasedetail.delete() Status = 'SUCCESS' Msg = 'Version Deleted Successfully' except Exception as e: print(e) Status = 'Error' Msg = str(e) status, context,page = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['Msg'] = Msg context['version'] = AION_VERSION return render(request, 'usecases.html',context) except Exception as e: print(e) status, context,page = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = 'Error' context['Msg'] = 'Usecase Version Deletion Error' context['version'] = AION_VERSION return render(request, 'usecases.html',context) def destroy(request, id): from appbe.pages import get_usecase_page try: kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() if request.method == 'GET': try: usecasedetail = usecasedetails.objects.get(id=id) usecasename = usecasedetail.usecaseid models = Existusecases.objects.filter(ModelName=usecasedetail) for model in models: if os.path.isdir(str(model.DeployPath)): import shutil if DEPLOY_LOCATION != str(model.DeployPath): shutil.rmtree(str(model.DeployPath)) else: uname = usecasename.replace(" ", "_") usecaseversion = model.Version deployLocation = os.path.join(str(model.DeployPath),uname+'_'+str(usecaseversion)) if os.path.isdir(str(deployLocation)): shutil.rmtree(str(deployLocation)) usecasedetail.delete() Status = 'SUCCESS' Msg = 'Deleted Successfully' except Exception as e: print(e) Status = 'Error' Msg = str(e) else: usecasename = 'Not Defined' if 'UseCaseName' in request.session: if (usecasename == request.session['UseCaseName']): selected_use_case = 'Not Defined' request.session['UseCaseName'] = selected_use_case request.session['ModelVersion'] = 0 request.session['ModelStatus'] = 'Not Trained' else: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' status, context,page = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['Msg'] = Msg context['version'] = AION_VERSION return render(request, 'usecases.html',context) except: status, context,page = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = 'Error' context['Msg'] = 'Usecase Deletion Error' context['version'] = AION_VERSION return render(request, 'usecases.html',context) def update(request, id): try: lab = get_object_or_404(usecasedetails, id=id) if request.method == 'POST': form = usecasedetailsForm(request.POST, instance=lab) request.session['usecaseid'] = form['id'] # print(request.session['usecaseid']) if form.is_valid(): form.save() return redirect('/show') else: form = usecasedetailsForm(instance=lab) request.session['usecaseid'] = form['id'] # print(request.session['usecaseid']) return render(request, 'edit.html', {'form': form, 'selected': 'usecase'}) except: return render(request, 'edit.html', {'error': 'Error in updating usecase', 'selected': 'usecase'}) def newfile(request): selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] try: model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() training_output = json.loads(training_output) dataFile = request.POST.get('localfilePath') if(os.path.isfile(dataFile) == False): context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} return render(request, 'outputdrif.html', context) df = pd.read_csv(dataFile) request.session['drift_datalocations'] = dataFile request.session['Features_dr'] = df.columns.values.tolist() Featrs = request.session['Features_dr'] statusmsg = 'Data File Uploaded Successfully' context = {'tab': 'tabconfigure', 'status_msg': statusmsg, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring', 'z': Featrs} context['version'] = AION_VERSION return render(request, 'outputdrif.html', context) except Exception as Isnt: context = {'error': 'Error during output drift.'+str(Isnt), 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} context['version'] = AION_VERSION return render(request, 'outputdrif.html', context) def summarization(request): context = {'selected':'DataOperations','usecasetab':usecasetab} context['version'] = AION_VERSION return render(request, "summarization.html",context) # ------------------ Debiasing Changes ------------------ def getdataclasses(request): updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8') classeslist = [] selectedFeature = request.GET.get('features') classeslist = df[selectedFeature].unique().tolist() _list = [] for item in classeslist: _list.append("<option value='"+ item +"'>" + item +"</option>") return HttpResponse(_list) # ------------------ ------------------ def ucdetails(request, id): from appbe.pages import usecases_page checkModelUnderTraining(request, usecasedetails, Existusecases) request.session['IsRetraining'] = 'No' status, context, action = usecases_page(request, usecasedetails, Existusecases, id) context['version'] = AION_VERSION return render(request, 'usecasedetails.html', context) def dataoperations(request): context = {'selected':'DataOperations','usecasetab':usecasetab} context['version'] = AION_VERSION return render(request, "dataoperations.html",context) # @login_required(login_url="/login/") def datalabel(request): context = {'selected':'DataOperations','usecasetab':usecasetab} context['version'] = AION_VERSION return render(request, "label_dataset_ver2.html",context) # @login_required(login_url="/login/") def pages(request): context = {} # All resource paths end in .html. # Pick out the html file name from the url. And load that template. try: load_template = request.path.split('/')[-1] html_template = loader.get_template(load_template) return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template('page-404.html') return HttpResponse(html_template.render(context, request)) except: html_template = loader.get_template('page-500.html') return HttpResponse(html_template.render(context, request)) def delimitedsetting(delimiter='',textqualifier='',other=''): if delimiter != '': if delimiter.lower() == 'tab' or delimiter.lower() == '\t': delimiter = '\t' elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';': delimiter = ';' elif delimiter.lower() == 'comma' or delimiter.lower() == ',': delimiter = ',' elif delimiter.lower() == 'space' or delimiter.lower() == ' ': delimiter = ' ' elif delimiter.lower() == 'other' or other.lower() != '': if other != '': delimiter = other else: delimiter = ',' elif delimiter != '': delimiter = delimiter else: delimiter = ',' else: delimiter = ',' if textqualifier == '': textqualifier = '"' return delimiter,textqualifier @csrf_exempt def upload_and_read_file_data(request): file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file']) file_delim = request.POST.get("file_delim") textqualifier = request.POST.get("qualifier") delimiters = request.POST.get("delimiters") delimiter,textqualifier = delimitedsetting(request.POST.get('file_delim'),request.POST.get('qualifier'),request.POST.get('delimiters_custom_value')) size_take = 100 if file_ext in ["csv", "tsv"]: num_records = sum(1 for line in open(file_path)) - 1 num_rows = num_records if num_records > size_take: skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take)) else: skip = 0 # with open(file_path, 'r') as file: # data = file.readline(10) # from detect_delimiter import detect # row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t', ' ']) # if file_delim == "custom" and request.POST["custom_delim"] != "": # row_delimiter = request.POST["custom_delim"] # print('row_delimiter',row_delimiter) file_content = pd.read_csv(file_path, sep=delimiter,quotechar=textqualifier, engine='python',skiprows=skip,encoding='utf-8-sig',skipinitialspace = True) elif file_path.endswith(".json"): file_content_df = pd.read_json(file_path) file_content = pd.json_normalize(file_content_df.to_dict("records")) num_rows = len(file_content) elif file_path.endswith(".avro"): import pandavro as pdx from avro.datafile import DataFileReader from avro.io import DatumReader reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) file_content = pdx.read_avro(file_path, schema=schema, na_dtypes=True) num_rows = len(file_content) elif file_path.endswith(".parquet"): from pyarrow.parquet import ParquetFile import pyarrow as pa import pyarrow.parquet as pq pf = ParquetFile(file_path) take_rows = next(pf.iter_batches(batch_size=size_take)) file_content = pa.Table.from_batches([take_rows]).to_pandas() table = pq.read_table(file_path, columns=[]) num_rows = table.num_rows # file_content = pd.read_parquet(file_path, engine="pyarrow") else: raise ValueError("Invalid file format") response = {} column_list = [] for key, val in dict(file_content.dtypes).items(): if str(val) == 'object': try: pd.to_datetime(file_content[str(key)]) column_list.append({"column_name": str(key), 'data_type': 'datetime64'}) except ValueError: column_list.append({"column_name": str(key), 'data_type': 'string'}) pass else: column_list.append({"column_name": str(key), 'data_type': str(val)}) response["column_list"] = column_list response["data_html"] = file_content.to_html(classes='table table-striped table-bordered table-hover dataTable no-footer', justify='left', index=False) response["record_count"] = num_rows response["file_ext"] = file_ext return HttpResponse(json.dumps(response), content_type="application/json") @csrf_exempt def handle_uploaded_file(path, file, test_dataset=False): print('path',path) if test_dataset: filename = os.path.join(path,"test_data_file." + file.name.split('.')[1]) with open(filename, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) return filename, file.name.split('.')[1] else: filename = os.path.join(path,"uploaded_file." + file.name.split('.')[1]) with open(filename, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) return filename, file.name.split('.')[1] @csrf_exempt def apply_rule(request): from appbe import labelling_utils as utils rule_list = json.loads(request.POST['rule_list']) file_ext = request.POST.get("file_ext") label_list = json.loads(request.POST['label_list']) not_satisfy_label = request.POST.get("non_satisfied_label") response = utils.label_dataset(rule_list, file_ext, label_list, not_satisfy_label) return HttpResponse(json.dumps(response), content_type="application/json") @csrf_exempt def get_sample_result_of_individual_rule(request): from appbe import labelling_utils as utils rule_json = json.loads(request.POST['rule_json']) file_ext = request.POST.get("file_ext") label_list = json.loads(request.POST['label_list']) not_satisfy_label = request.POST.get("non_satisfied_label") print("rule_json>>>", rule_json) print("file_ext>>>", file_ext) print("label_list>>>>", label_list) print("not_satisfied_label", not_satisfy_label) response = utils.get_sample_result_of_individual_rule(rule_json, file_ext, label_list, not_satisfy_label) return HttpResponse(json.dumps(response), content_type="application/json") def download_result_dataset(request): #file_name = request.GET.get("filename") file_name = request.session['AION_labelled_Dataset'] file_path = os.path.join(DATA_FILE_PATH, file_name) is_exist = os.path.exists(file_path) if is_exist: with open(file_path, "rb") as file: response = HttpResponse(file, content_type="application/force-download") response["Content-Disposition"] = "attachment; filename=%s" % file_name return response else: return HttpResponse(json.dumps("file not found"), content_type="application/error") @csrf_exempt def get_sample_result_of_individual_rule_ver2(request): from appbe import labelling_utils as utils rule_json = json.loads(request.POST['rule_json']) file_ext = request.POST.get("file_ext") label_list = json.loads(request.POST['label_list']) not_satisfy_label = request.POST.get("non_satisfied_label") response = utils.get_sample_result_of_individual_rule_ver2(rule_json, file_ext, label_list, not_satisfy_label) return HttpResponse(json.dumps(response), content_type="application/json") def get_label_list(label_json): label_list = [] label_weightage = [] for item in label_json: label_list.append(item["label_name"]) if item["label_weightage"] != "": weightage_perc = float(item["label_weightage"]) / 100 label_weightage.append(np.around(weightage_perc, 2)) else: label_weightage.append(100 / len(label_json)) return label_list, label_weightage @csrf_exempt def apply_rule_ver2(request): from appbe import labelling_utils as utils rule_list = json.loads(request.POST['rule_list']) file_ext = request.POST.get("file_ext") label_json = json.loads(request.POST['label_list']) label_list, label_weightage = get_label_list(label_json) not_satisfy_label = request.POST.get("non_satisfied_label") include_proba = request.POST.get("is_include_proba") == 'true' response = utils.label_dataset_ver2(request,rule_list, file_ext, label_list, not_satisfy_label, label_weightage, include_proba) return HttpResponse(json.dumps(response), content_type="application/json") @csrf_exempt def upload_and_read_test_data(request): file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file'], test_dataset=True) # file_path, file_ext = handle_uploaded_file(path=DATA_FILE_PATH, file=request.FILES['uploaded_file']) file_delim_test = request.POST.get("file_delim_test") size_take = 100 if file_ext in ["csv", "tsv"]: num_records = sum(1 for line in open(file_path)) - 1 num_rows = num_records if num_records > size_take: skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take)) else: skip = 0 with open(file_path, 'r') as file: data = file.readline(10) from detect_delimiter import detect row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t', ' ']) if file_delim_test == "custom" and request.POST["custom_test_delim"] != "": row_delimiter = request.POST["custom_test_delim"] file_content = pd.read_csv(file_path, sep=row_delimiter, quotechar="'", escapechar="/", engine='python',skiprows=skip,encoding='utf-8-sig',skipinitialspace = True) elif file_path.endswith(".json"): file_content_df = pd.read_json(file_path) file_content = pd.json_normalize(file_content_df.to_dict("records")) num_rows = len(file_content) elif file_path.endswith(".avro"): import pandavro as pdx from avro.datafile import DataFileReader from avro.io import DatumReader reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) file_content = pdx.read_avro(file_path, schema=schema, na_dtypes=True) num_rows = len(file_content) elif file_path.endswith(".parquet"): from pyarrow.parquet import ParquetFile import pyarrow as pa import pyarrow.parquet as pq pf = ParquetFile(file_path) take_rows = next(pf.iter_batches(batch_size=size_take)) file_content = pa.Table.from_batches([take_rows]).to_pandas() table = pq.read_table(file_path, columns=[]) num_rows = table.num_rows # file_content = pd.read_parquet(file_path, engine="pyarrow") else: raise ValueError("Invalid file format") response = {} column_list = [] for key, val in dict(file_content.dtypes).items(): if str(val) == 'object': try: pd.to_datetime(file_content[str(key)]) column_list.append({"column_name": str(key), 'data_type': 'datetime64'}) except ValueError: column_list.append({"column_name": str(key), 'data_type': 'string'}) pass else: column_list.append({"column_name": str(key), 'data_type': str(val)}) response["column_list"] = column_list response["data_html"] = file_content.to_html(classes='table table-striped text-left',table_id='testdata', justify='left', index=False) response["record_count"] = num_rows response["file_ext"] = file_ext response["file_delim_test"] = file_delim_test response["custom_test_delim"] = request.POST["custom_test_delim"] return HttpResponse(json.dumps(response), content_type="application/json") @csrf_exempt def get_label_and_weightage(request): from appbe import labelling_utils as utils test_file_ext = request.POST.get("test_file_ext") file_delim_test = request.POST.get("file_delim_test") marked_label_column = request.POST.get("marked_label_column") custom_test_delim = request.POST.get("custom_test_delim") label_list_with_weightage = utils.get_label_and_weightage(test_file_ext, marked_label_column, file_delim_test, custom_test_delim) return HttpResponse(json.dumps(label_list_with_weightage), content_type="application/json") def modelcompare(request): deploypath = request.GET.get('DeployLocation') filepath = os.path.join(deploypath,'etc','output.json') with open(filepath) as file: config = json.load(file) file.close() # training/testing data needs to be updated as below once it is available in deployment folder #trainingDataPath = os.path.join(deploypath,'data','trainData.csv') #testingDataPath = os.path.join(deploypath,'data','testData.csv') trainingDataPath = os.path.join(deploypath,'data','postprocesseddata.csv.gz') testingDataPath = os.path.join(deploypath,'data','postprocesseddata.csv.gz') featureUsedInTraining=config['data']['featuresused'] targetFeature= config['data']['targetFeature'] scoringCriteria=config['data']['ScoreType'] scoringCriteria=scoringCriteria.lower() problemType=config['data']['ModelType'] problemType=problemType.lower() tempFeatureUsedInTraining = featureUsedInTraining.split(',') finalFeatures=[] for i in range (len(tempFeatureUsedInTraining)) : tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace('[', '') tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace(']', '') tempFeatureUsedInTraining[i]=tempFeatureUsedInTraining[i].replace("'", '') tempFeatureUsedInTraining[i] = tempFeatureUsedInTraining[i].lstrip() tempFeatureUsedInTraining[i] = tempFeatureUsedInTraining[i].rstrip() finalFeatures.append(tempFeatureUsedInTraining[i]) featureUsedInTraining = finalFeatures #print("trainingDataPath----",trainingDataPath) #print("testingDataPath----",testingDataPath) #print("problemType----",problemType) #print("scoringCriteria----",scoringCriteria) #print("featureUsedInTraining----",featureUsedInTraining,type(featureUsedInTraining)) #print("targetFeature----",targetFeature) if problemType == 'classification': try: df1 = pd.read_csv(trainingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip') df2 = pd.read_csv(testingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip') trainX=df1[featureUsedInTraining] trainY=df1[targetFeature] testX=df2[featureUsedInTraining] testY=df2[targetFeature].to_numpy() from sklearn import linear_model estimator = linear_model.LogisticRegression() estimator.fit(trainX, trainY) predictedData = estimator.predict(testX) from learner.aion_matrix import aion_matrix scoring = aion_matrix() score = scoring.get_score(scoringCriteria, testY, predictedData) context = {'Model': 'Logistic regression','Testing Score': score, 'Confidence Score': "Not supported", 'Feature Engineering Method': "ModelBased"} return HttpResponse(json.dumps(context), content_type="application/json") except Exception as e: print("exception "+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) context = {'Model': 'Logistic regression','Testing Score': "Exception Occured", 'Confidence Score': "Not supported", 'Feature Engineering Method': "ModelBased"} return HttpResponse(json.dumps(context), content_type="application/json") if problemType == 'regression': try: df1 = pd.read_csv(trainingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip') df2 = pd.read_csv(testingDataPath,encoding='utf-8',skipinitialspace = True,compression='gzip') trainX=df1[featureUsedInTraining] trainY=df1[targetFeature] testX=df2[featureUsedInTraining] testY=df2[targetFeature].to_numpy() from sklearn import linear_model estimator = linear_model.LinearRegression() estimator.fit(trainX, trainY) predictedData = estimator.predict(testX) from learner.aion_matrix import aion_matrix scoring = aion_matrix() score = scoring.get_score(scoringCriteria, testY, predictedData) context = {'Model': 'Linear regression','Testing Score': score, 'Confidence Score': "Not supported", 'Feature Engineering Method': "ModelBased"} return HttpResponse(json.dumps(context), content_type="application/json") except Exception as e: print("exception") context = {'Model': 'Linear regression','Testing Score': "Exception Occured", 'Confidence Score': "Not supported", 'Feature Engineering Method': "ModelBased"} return HttpResponse(json.dumps(context), content_type="application/json") def textsummarization(request): return render(request, "textsummarization.html",context={'version':AION_VERSION,'selected': 'textsummarization'}) # LLM Testing Task ID 14533 def validate_llm(prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample): default = {'temperature':{'default':0.9,'lower':0.0,'upper':1.0},'similarity_threshold':{'default':0.75,'lower':0.0,'upper':1.0},'perturbations_per_sample':5} if not isinstance( prompts, (list,str)): raise ValueError(f"Prompt should be of type str, got '{prompt}' of type {type(prompt)}") elif prompts == '': raise ValueError("Prompt field can not be empty") if not isinstance( reference_generation, str): raise ValueError(f"Reference Generated Answer should be of type str, got '{reference_generation}' of type {type(reference_generation)}") # elif reference_generation == '': # raise ValueError("Reference Generation field can not be empty") if not isinstance( temperature, float) or temperature < default['temperature']['lower'] or temperature > default['temperature']['upper']: if isinstance( temperature, str) and temperature == '': temperature = default['temperature']['default'] else: raise ValueError(f"Model Parameter Temperature should be of type float with range {default['temperature']['lower']} - {default['temperature']['upper']}, got {temperature} of type {type(temperature)}") if not isinstance( similarity_threshold, float) or similarity_threshold < default['similarity_threshold']['lower'] or similarity_threshold > default['similarity_threshold']['upper']: if isinstance( similarity_threshold, str) and similarity_threshold == '': similarity_threshold = default['similarity_threshold']['default'] else: raise ValueError(f"Similarity Threshold should be of type float with range {default['similarity_threshold']['lower']} - {default['similarity_threshold']['upper']}, got {similarity_threshold} of type {type(similarity_threshold)}") if not isinstance( perturbations_per_sample, int): if isinstance( perturbations_per_sample, str) and perturbations_per_sample == '': perturbations_per_sample = default['perturbations_per_sample'] else: raise ValueError(f"Perturbations Per Sample should be of type integer, got {perturbations_per_sample} of type {type(perturbations_per_sample)}") return prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample def llmtesting(request): ftmodels = [] usecase = usecasedetails.objects.all().order_by('-id') for x in usecase: #print(x.id) models = Existusecases.objects.filter(Status='SUCCESS',ModelName=x.id).order_by('-id') if len(models) > 0: for model in models: #print(str(model.ConfigPath)) version = model.Version if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') with open(modelPath) as file: outputconfig = json.load(file) problemType = outputconfig['data']['ModelType'] if problemType.lower() == 'llm fine-tuning': from appbe.models import get_instance hypervisor,instanceid,region,image,status = get_instance(x.usecaseid+ '_' + str(version)) with open(str(model.ConfigPath)) as file: configSettingsJson = json.load(file) file.close() from appbe.pages import getMLModels problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettingsJson) ft = mlmodels+'-'+smodelsize+'-'+x.usecaseid+'_'+str(version) finetunedModel = {} finetunedModel['ft']=ft finetunedModel['basemodel'] = mlmodels+'-'+smodelsize finetunedModel['usecaseid'] = x.usecaseid+'_'+str(version) ftmodels.append(finetunedModel) return render(request, "llmtesting.html",context={'version':AION_VERSION,'selected': 'llmtesting','ftmodels':ftmodels}) # LLM Testing Result Task ID 14533 def llmtestingresult(request): try: context = {'result':result,'provider':provider,'tabledata':tabledata,'summary':summary,'modelName':modelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompt,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'version':AION_VERSION,'selected': 'llmtestingresults','success':'success'} return render(request, "llmtestingresults.html",context) except Exception as e: print(e) context = {'error': 'Fail to Generate LLM Testing Report '+str(e),'version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'} return render(request, "llmtestingresults.html",context) # LLM Testing Result Task ID 14533 def llmtestingresult(request): try: generate_test = request.POST['prompt_temp'] if generate_test == "generatetest": UseCaseName = request.POST['selectusecase'] ModelName = request.POST['selectmodel'] temperature = request.POST['modelparam'] similarity_threshold = request.POST['similarity_threshold'] perturbations_per_sample = request.POST['perturbations_per_sample'] selecttype = request.POST['selectquestion'] reference_generation = (request.POST['reference_generation']) baseModel = request.POST['basemodel'] from appbe.llmTesting import test_LLM if selecttype == "Single": prompts = request.POST['prompt'] else: data_file = request.POST['dataFilePath']#Task 16794 file_name = os.path.splitext(data_file)[0] file_extension = os.path.splitext(data_file)[-1].lower() if file_extension != ".csv": questions = [] answers = [] if file_extension == ".pdf": with pdfplumber.open(data_file) as pdf: for page in pdf.pages: text = page.extract_text() lines = text.split("\n") current_question = "" current_answer = "" reading_question = False for line in lines: line = line.strip() if line.endswith("?"): if reading_question: questions.append(current_question) answers.append(current_answer) current_question = "" current_answer = "" current_question = line reading_question = True elif reading_question: current_answer += " " + line if reading_question: questions.append(current_question) answers.append(current_answer) elif file_extension == ".docx": doc = Document(data_file) current_question = "" current_answer = "" reading_question = False for paragraph in doc.paragraphs: text = paragraph.text.strip() if text.endswith("?"): if reading_question: questions.append(current_question) answers.append(current_answer) current_question = "" current_answer = "" current_question = text reading_question = True elif reading_question: current_answer += " "+ text if reading_question: questions.append(current_question) answers.append(current_answer) else: print("unsupported file format. please provide a pdf or docx file.") faq = pd.DataFrame({'Question':questions, 'Answers':answers}) # print(faq) data_file_csv = file_name+".csv" faq.to_csv(data_file_csv, index=False, encoding='utf-8') else: faq = pd.read_csv(data_file,encoding='cp1252') rows = faq.shape[0] prompts = list(faq['Question']) try: temperature = float( temperature) similarity_threshold = float(similarity_threshold) perturbations_per_sample = int( perturbations_per_sample) except: pass prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample = validate_llm(prompts, reference_generation,temperature, similarity_threshold, perturbations_per_sample) from appbe.aion_config import get_llm_data llm_key,llm_url,api_type,api_version=get_llm_data() urls = { 'OPENAI_API_BASE' : llm_url, 'OPENAI_API_KEY' : llm_key, 'OPENAI_API_TYPE' :api_type, 'OPENAI_API_VERSION':api_version } llm_obj = test_LLM() llm_obj.set_params(urls) if selecttype == "Single": print(UseCaseName,ModelName) if ModelName.lower() == 'basemodel': result = llm_obj.run_offline_model( UseCaseName,baseModel,temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,False ) llmModelName = baseModel else: result = llm_obj.run_offline_model( UseCaseName,ModelName,temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,True ) llmModelName = ModelName+'-'+UseCaseName print(result) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'llmreport_' + filetimestamp+'.html') result = result.split("LLMTestingResultOutput:")[-1] output = json.loads(result) with open(dataFile,'w') as htmlfile: htmlfile.write(output['data']['html_file']) request.session['llmtestreport'] = str(dataFile) # provider = result.generation_kwargs['Provider'] provider = "" # metric_name = list(result.metric[0].keys())[0] metric_name = output['data']['metric_name'] # metric_values = output['data']['metric_values'] metric_values = eval(output['data']['metric_values']) passed_tests = output['data']['passed_tests'] total_tests = output['data']['total_tests'] summary = f'{passed_tests}/{total_tests}' tabledata = {} prompts = output['data']['prompts'] generations= output['data']['generations'] Generations = [] for sub in generations: Generations.append(sub.replace("\n", "")) metricvalues = metric_values text = [eval(x) for x in generations] gen = [x[0]['generated_text'].split('\n')[1:] for x in text] Generations = [' '.join(x) for x in gen] resultoutput = eval(output['data']['resultoutput'])[0] for index,val in enumerate(Generations): Generations[index]= Generations[index].strip() if len(Generations[index])<=2: metricvalues[index] = 0 resultoutput[index] = 0 tabledata = zip(prompts,Generations,metricvalues,resultoutput) context = {'result':result,'provider':provider,'tabledata':tabledata,'summary':summary,'modelName':llmModelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompts,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'single':'single','version':AION_VERSION,'selected': 'llmtestingresults','success':'success'} # context = {'result':result,'provider':"provider",'tabledata':"tabledata",'summary':"summary",'modelName':modelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'prompt':prompts,'reference_generation':reference_generation,'perturbations_per_sample':perturbations_per_sample,'single':'single','version':AION_VERSION,'selected': 'llmtestingresults','success':'success'} else: if ModelName.lower() == 'basemodel': result_str =llm_obj.run_multiple_offline_model(UseCaseName,baseModel,temperature, similarity_threshold, perturbations_per_sample,faq,False) llmModelName = baseModel else: result_str =llm_obj.run_multiple_offline_model(UseCaseName,ModelName,temperature, similarity_threshold, perturbations_per_sample,faq,True) llmModelName = ModelName+'-'+UseCaseName result_str = result_str.split("LLMTestingResultOutput:")[-1] output = json.loads(result_str) # result will be df converted from output['data'] result = pd.DataFrame(json.loads(output['data'])) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'llmreport_' + filetimestamp+'.csv') request.session['llmtestreport'] = str(dataFile) result.rename(columns={'Perturbed Prompts':'PerturbedPrompts','Similarity [Generations]':'Similarity'},inplace=True) result_df = result.head(5) result.to_csv(dataFile, index=False) context={'result':result_df,'modelName':llmModelName,'temperature':temperature,'similarity_threshold':similarity_threshold,'perturbations_per_sample':perturbations_per_sample,'selected': 'llmtestingresults','multiple':'multiple','success':'success'} return render(request, "llmtestingresults.html",context) if generate_test == "download_prompt": csvdata= os.path.join(DEFAULT_FILE_PATH,"Prompt_template.csv") if os.path.isfile(csvdata) and os.path.exists(csvdata): df = pd.read_csv(csvdata,encoding='utf8') downloadFileName = 'llmreport.csv' response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename='+downloadFileName df.to_csv(response, index=False) return response else: context = {'error': 'Fail to Download File','version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'} return render(request, "llmtestingresults.html",context) except Exception as e: print(e) errormsg = str(e) if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg: errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.' if 'Max retries exceeded with url' in errormsg: errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.' context = {'error':errormsg,'version':AION_VERSION,'selected': 'llmtestingresults','fail':'fail'} return render(request, "llmtestingresults.html",context) def llmtestreport(request): file_path = request.session['llmtestreport'] # file_path = "C:\AION\To_Kiran\To_Kiran\codeCloneReport\code_clone_report.txt" report_path = os.path.join(file_path) if os.path.exists(report_path): with open(report_path, 'rb') as fh: response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(report_path) return response else: return render(request, "llmtestingresults.html",context={"error":"Fail To Download File",'version':AION_VERSION,'result':'result','selected': 'llmtestingresults'}) ### To display libraries in UI #### def libraries(request): current_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.normpath(os.path.join(current_dir,'..','..','lic',"requirement.csv")) library_data = [] with open(file_path, 'r') as file: csv_reader = csv.DictReader(file) for row in csv_reader: library_info = { "library" :row["Library"] if row.get("Library") else "none", "version" :row["Version"] if row.get("Version") else "none", "license" :row["License"] if row.get("License") else "none" } library_data.append(library_info) # print(library_data) return render(request, "libraries.html", context={"data":library_data,'version':AION_VERSION,'selected': 'libraries'}) # For Code Clone Detection def codeclonedetectionresult(request): from appbe.codeclonedetection import CodeCloneDetectionFiles try: codecloneconfig = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','code_clone_config.json') f = open(codecloneconfig, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) rootdir = request.POST.get('rootdirectory') ccdmode = request.POST.get('ccdmode') if(os.path.isdir(rootdir)): llm_key,llm_url,api_type,api_version = get_llm_data() openai_apiKey = llm_key openai_baseUrl = llm_url try: openai_apiType = api_type openai_apiVersion = api_version except: openai_apiType = configSettings['openaiApiType'] openai_apiVersion = configSettings['openaiApiVersion'] openai_embeddingEngine = configSettings['codeCloneDetection']['openaiEmbeddingEngine'] openai_embeddingModel = configSettings['codeCloneDetection']['openaiEmbeddingModel'] openai_chatModel = configSettings['codeCloneDetection']['openaiChatModel'] openai_deploymentId = configSettings['codeCloneDetection']['openaiDeploymentId'] rootDirFilesType = configSettings['codeCloneDetection']['rootDirFilesType'] else: return render(request, "codeclone.html",context={"codeclonedetectionerror":"Please provide valid root directory file path.",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'}) filetimestamp = str(int(time.time())) config_json_filename = os.path.join(CONFIG_FILE_PATH, 'code_clone_config_' + filetimestamp + '.json') updatedConfigSettings = json.dumps(configSettings) with open(config_json_filename, "w") as fpWrite: fpWrite.write(updatedConfigSettings) fpWrite.close() from appbe.dataPath import DEPLOY_LOCATION codeclonedir_path = os.path.join(DEPLOY_LOCATION,('codeCloneDetection_'+filetimestamp)) os.makedirs(codeclonedir_path,exist_ok=True) request.session['clonereport'] = str(codeclonedir_path) try: if (rootDirFilesType.lower() == "python" and ccdmode.lower() == "openai"): cdobj = CodeCloneDetectionFiles(rootdir,openai_baseUrl, openai_apiKey,openai_apiType,openai_apiVersion,codeclonedir_path,openai_embeddingEngine,openai_embeddingModel,openai_chatModel,openai_deploymentId) report_str,report_dict,report_df,report_json = cdobj.getCloneReport() clonetype = report_dict['Code_clones_count_by_clone_type'].to_dict() for i in clonetype: clonevalues = clonetype[i].values() clonekeys = clonetype[i].keys() clonetype = zip(clonekeys,clonevalues) return render(request, "codeclonedetectionresult.html",context={'report_json':json.loads(report_json),'report_dict':report_dict,'clonetype':clonetype,'clonefunctions':report_dict['clone_functions'],'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult','openai':'openai'}) ## Pls uncomment below code if you need to use sklearn based code clone detection. # elif (ccdmode.lower() =="sklearn"): # from appbe.codeclonedetection_sklearn import codeCloneDetectionSklearn # chunk_size = 10000 # cdobj = codeCloneDetectionSklearn(rootdir,codeclonedir_path,chunk_size) # report_dict = cdobj.get_clone() # return render(request, "codeclonedetectionresult.html",context={'report_dict':report_dict,'function_df':report_dict['result_df'],'function_dict':report_dict['result_df'].to_dict(),'sklearn':'sklearn'}) else: raise Exception ("Invalid clonedetection input.") return render(request, "codeclone.html",context={"codeclonedetectionerror":"Python Files Are Only Supported."}) except Exception as e: return render(request, "codeclone.html",context={"codeclonedetectionerror":"OpenAI Model Connection Error",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'}) except Exception as e: print('code clone detection interface issue.Error message: ',e) return render(request, "codeclone.html",context={"codeclonedetectionerror":"OpenAI Model Connection Error",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'}) def codeclonereport(request): file_path = request.session['clonereport'] report_path = os.path.join(file_path, 'codeCloneReport','code_clone_report.txt') if os.path.exists(report_path): with open(report_path, 'rb') as fh: response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(report_path) return response else: return render(request, "codeclonedetectionresult.html",context={"codeclonedetectionerror":"Fail To Download File",'version':AION_VERSION,'result':'result','selected': 'codeclonedetectionresult'}) def evaluatepromptmetrics(request): """ Evaluate prompt only information for LLM Evaluation.""" import whylogs as why from langkit import light_metrics from whylogs.experimental.core.udf_schema import udf_schema from whylogs.experimental.core.udf_schema import register_dataset_udf from langkit import lang_config, response_column import json prompt_msg = request.GET.get('instruction') text_schema = udf_schema() llm_schema = light_metrics.init() df = pd.DataFrame({ "prompt": [ prompt_msg ]}) results = why.log(df, schema=udf_schema()) # .profile() view = results.view() # import pdb # pdb.set_trace() from appbe.evaluate_prompt import evaluate_prompt_metrics final_output_json,prompt_results = evaluate_prompt_metrics(prompt_msg) prompt_results_json = json.dumps(prompt_results, indent=4) # return prompt_results_json,prompt_results return HttpResponse(final_output_json)
bc_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion from appbe.aion_config import running_setting from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases from appbe import compute AION_VERSION = getversion() def basicconfig(request): try: from appbe.aion_config import settings usecasetab = settings() from appbe import basic_Config as bc request.session['defaultfilepath'] = DEFAULT_FILE_PATH request.session['configfilepath'] = CONFIG_FILE_PATH request.session['deploylocation'] = DEPLOY_LOCATION computeinfrastructure = compute.readComputeConfig() submit_button = request.POST.get('upload_submit') ModelVersion = request.session['ModelVersion'] ruuningSetting = running_setting() selected_use_case = request.session['UseCaseName'] ModelStatus = request.session['ModelStatus'] #print(request.method) # Retraing settings changes if request.method == 'POST' and request.session['finalstate'] == 0: context = bc.gotoconf(request) else: context = bc.openbasicconf(request) context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['usecasetab'] = usecasetab return render(request, 'basicconfig.html', context) except Exception as e: print(e) import sys,os exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request, 'basicconfig.html', {'error':'Fail to retreive basic config file inputs','version':AION_VERSION,'usecasetab':usecasetab}) def savebasicconfig(request): from appbe import basic_Config as bc from appbe import advance_Config as ac from appfe.modelTraining.train_views import trainmodel try: if request.method != 'GET': status,msg,context =bc.save(request) else: status = 'pass' msg = '' except Exception as e: print(e) if status.lower()!='error': if request.method == 'GET': context = ac.basicconfignex(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['currentstate'] = 1 return render(request, 'advancedconfig.html', context) elif request.POST.get('BasicSubmit') == 'GotoAdvance': context = ac.basicconfignex(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['currentstate'] = 1 return render(request, 'advancedconfig.html', context) else: return trainmodel(request) else: context = bc.openbasicconf(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['config_error']= msg context['version'] = AION_VERSION return render(request, 'basicconfig.html', context)
models.py
from django.db import models class usecasedetails(models.Model): id = models.AutoField(primary_key=True) UsecaseName = models.CharField(max_length=50) usecaseid = models.CharField(max_length=10, default=UsecaseName) Description = models.CharField(max_length=200) class Meta: db_table = "usecasedetails" class Existusecases(models.Model): id = models.AutoField(primary_key=True) ModelName = models.ForeignKey(usecasedetails, on_delete=models.CASCADE) Version = models.IntegerField(default=0) DataFilePath = models.FileField(upload_to=None) ConfigPath = models.FileField(upload_to=None) DeployPath = models.FileField(upload_to=None) Status = models.CharField(max_length=200) publishStatus = models.CharField(max_length=20, default='') publishPID = models.IntegerField(default=0) trainingPID = models.IntegerField(default=0) driftStatus = models.CharField(max_length=20, default='') ProblemType = models.CharField(max_length=20, default='') modelType = models.CharField(max_length=40, default='') portNo = models.IntegerField(default=0) TrainOuputLocation = models.CharField(max_length=200, default='') class Meta: db_table = "Existusecases"
mllite_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getusercasestatus import pandas as pd import numpy as np from appbe.pages import getversion import logging import json import time import os import subprocess import sys import base64 from appbe import compute import urllib AION_VERSION = getversion() def Sagemaker(request): if request.method == "POST": try: datafile = request.POST['datap'] endpoint = request.POST['endpoint'] awsaccountid = request.POST['awsaccountid'] accesskeyid = request.POST['accesskeyid'] secretaccesskey = request.POST['secretaccesskey'] sessionToken = request.POST['sessionToken'] region = request.POST['region'] if (awsaccountid != "" and accesskeyid != "" and secretaccesskey != "" and sessionToken != "" and endpoint != "") : awsSagemaker = {} awsSagemaker['awsID'] = awsaccountid awsSagemaker['accesskeyID'] = request.POST['accesskeyid'] awsSagemaker['secretAccesskey'] = request.POST['secretaccesskey'] awsSagemaker['sessionToken'] = request.POST['sessionToken'] awsSagemaker['region'] = request.POST['region'] configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) configSettingsJson['awsSagemaker'] = awsSagemaker if(os.path.exists(datafile)): inputDataType = datafile.rsplit('.', 1)[1] if inputDataType.lower() == 'csv': df = pd.read_csv(datafile) # df1 = df.iloc[0, :] df2 = df.head(1) df3 =df2.to_dict(orient='records')[0] inputFields = [] inputFields.append(df3) # models = models.rsplit('.', 1)[1] context = {'sagepredict':'sagepredict','endpoint':endpoint,'datafile':datafile,'inputFields':inputFields,'sagemaker':configSettingsJson,'version':AION_VERSION} else: context = {'exception':'exception','error':'Data File Error','version':AION_VERSION} else: context = {'error': 'Error: Please enter valid input','runtimeerror':'runtimeerror','version':AION_VERSION} except Exception as e: context = {'exception':'exception','error':'Exception :'+str(e),'sagepredict':'sagepredict','version':AION_VERSION} return render(request, 'ConvertOnnx.html',context) def Tfliteneural(request): try: if request.method == "POST": try: models = request.POST['model1'] datafile = request.POST['datafile1'] if(os.path.isfile(models)): modelformat = models.rsplit('.', 1)[1] if(os.path.isfile(models) and os.path.exists(datafile) and modelformat.lower()=='tflite'): inputDataType = datafile.rsplit('.', 1)[1] if inputDataType.lower() == 'csv': df = pd.read_csv(datafile) df2 = df.head(1) df3 =df2.to_dict(orient='records')[0] inputFields = [] inputFields.append(df3) context = {'mlalgotf':'mlalgotf','models':models,'datafile':datafile,'inputFields':inputFields,'selected':'mllite','version':AION_VERSION} elif inputDataType.lower() == 'jpg': from PIL import Image img = Image.open(datafile) string = base64.b64encode(open(datafile, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) context = {'dlalgotf':'dlalgotf','models':models,'datafile':datafile,'im':image_64,'selected':'mllite','version':AION_VERSION} else: context={'error':'Either model path or data path does not exists','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION} except Exception as e: context={'error':'Exception i.e., '+str(e),'runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION} return render(request, 'ConvertOnnx.html',context) except: context={'error':'Failed to perform TFlite Runtime Prediction','runtimeerror':'runtimeerror','selected':'mllite'} return render(request, 'ConvertOnnx.html',context) def openneural(request): try: if request.method == "POST": models = request.POST['model'] datafile = request.POST['datafile'] if(os.path.isfile(models)): modelformat = models.rsplit('.', 1)[1] if(os.path.isfile(models) and os.path.exists(datafile)) and modelformat.lower()=='onnx': inputDataType = datafile.rsplit('.', 1)[1] if inputDataType.lower() == 'csv': df = pd.read_csv(datafile) df2 = df.head(1) df3 =df2.to_dict(orient='records')[0] inputFields = [] inputFields.append(df3) # models = models.rsplit('.', 1)[1] context = {'mlalgo':'mlalgo','models':models,'datafile':datafile,'selected':'mllite','inputFields':inputFields,'version':AION_VERSION} elif inputDataType.lower() == 'jpg': from PIL import Image img = Image.open(datafile) string = base64.b64encode(open(datafile, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) context = {'dlalgo':'dlalgo','models':models,'datafile':datafile,'im':image_64,'selected':'mllite','version':AION_VERSION} else: context={'error':'Either model path or data path does not exists','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION} return render(request, 'ConvertOnnx.html',context) except: context={'error':'Failed to perform ONNX Runtime Prediction','runtimeerror':'runtimeerror','selected':'mllite','version':AION_VERSION} return render(request, 'ConvertOnnx.html',context) def ConvertOnnx(request): try: if request.method == "POST": modelpath = request.POST['models'] deploypath = request.POST['deploy'] outputonnx = request.POST['outputonnx'] inputtonnx = request.POST['inputtonnx'] outputonnx = request.POST['outputonnx'] Features = request.POST['Features'] modelinput = inputtonnx modeloutput = outputonnx if (os.path.exists(modelpath) == False) and (outputonnx !="sagemaker") and (os.path.exists(deploypath) == False): context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'error2':'error2','convert':'convert','logfile':'','selected':'mllite','version':AION_VERSION} elif outputonnx !="sagemaker": filetimestamp = str(int(time.time())) convjson = os.path.join(DEFAULT_FILE_PATH, 'conversion.json') with open(convjson, 'r+') as f: conv = json.load(f) f.close() conv['basic']['modelName'] = 'conversion_'+ str(filetimestamp) conv['basic']['modelVersion'] = "1" conv['advance']['aionConversionUtility']['modelpath'] = modelpath conv['advance']['aionConversionUtility']['deployedlocation'] = deploypath conv['advance']['aionConversionUtility']['numberoffeatures'] = Features temp = {} temp['inputModelType'] = inputtonnx temp['outputModelType'] = outputonnx inputtype = conv['advance']['aionConversionUtility']['inputModelType'] outputtype = conv['advance']['aionConversionUtility']['outputModelType'] for i in list(inputtype.keys()): conv['advance']['aionConversionUtility']['inputModelType'][i] = 'False' for i in list(outputtype.keys()): conv['advance']['aionConversionUtility']['outputModelType'][i] = 'False' conv['advance']['aionConversionUtility']['inputModelType'][temp['inputModelType'][0].lower() + temp['inputModelType'][1:]] = 'True' conv['advance']['aionConversionUtility']['outputModelType'][temp['outputModelType'][0].lower() + temp['outputModelType'][1:]] = 'True' conv = json.dumps(conv) config_json_filename = os.path.join(CONFIG_FILE_PATH, 'conv' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(conv) fpWrite.close() scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) try: outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','convertmodel','-c',config_json_filename]) outputStr = outputStr.decode('utf-8') outputStr= outputStr.replace('\'','\"') #print('ou',outputStr) outputStr = outputStr.strip() MLlite = json.loads(outputStr) logsfile = MLlite['logfiles'] if MLlite['Convert'] == 'Success': context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'convert1':'convert1','convert':'convert','logfile':MLlite['logfiles'],'selected':'mllite','version':AION_VERSION} else: logfile = logsfile.replace('\\','@') context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'error1':'error1','convert':'convert','logfile':logfile,'selected':'mllite','version':AION_VERSION} except Exception as e: print(e) context = {'modelpath':modelpath,'deploypath':deploypath,'inputtype':modelinput,'outputtype':modeloutput,'Features':Features,'Notconvert':'Notconvert','convert':'convert','version':AION_VERSION} elif ( outputonnx =="sagemaker") : configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json') #print(configFile) f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) configSettingsJson['modelInput'] = request.POST.get('ModelInput') #print('pushonly:',request.POST.get('sagemaker')) if request.POST.get('sagemaker') == 'CreateDeploy': configSettingsJson['sagemakerDeploy'] = 'True' configSettingsJson['deployExistingModel']['status'] = 'False' else: configSettingsJson['sagemakerDeploy'] = 'False' if request.POST.get('sagemaker') == 'DeployOnly': configSettingsJson['deployExistingModel']['status'] = 'True' else: configSettingsJson['deployExistingModel']['status'] = 'False' #configSettingsJson['deployExistingModel']['status'] = request.POST.get('Status') configSettingsJson['deployExistingModel']['dockerImageName'] = request.POST.get('imagename') configSettingsJson['deployExistingModel']['deployModeluri'] = request.POST.get('deploymodel') configSettingsJson['modelOutput']['cloudInfrastructure'] = request.POST.get('problemname') configSettingsJson['endpointName'] = request.POST.get('endpointname') configSettingsJson['awsSagemaker']['awsID'] = request.POST.get('awskeyid1') configSettingsJson['awsSagemaker']['accesskeyID'] = request.POST.get('accesskey1') configSettingsJson['awsSagemaker']['secretAccesskey'] = request.POST.get('secretaccess1') configSettingsJson['awsSagemaker']['sessionToken'] = request.POST.get('token1') configSettingsJson['awsSagemaker']['region'] = request.POST.get('region1') configSettingsJson['awsSagemaker']['IAMSagemakerRoleArn'] = request.POST.get('fullaccess') conv = json.dumps(configSettingsJson) ''' filetimestamp = str(int(time.time())) config_json_filename = os.path.join(CONFIG_FILE_PATH, 'Sagemaker' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(conv) fpWrite.close() ''' from bin.aion_sagemaker import aion_sagemaker aion_sagemaker(configSettingsJson) #print(conv) #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_sagemaker.py')) #outputStr = subprocess.check_output([sys.executable, scriptPath, conv]) #outputStr = outputStr.decode('utf-8') #outputStr=outputStr.strip() #print('kir',outputStr) context = {'convert':'convert','sagemaker1':'sagemaker1','mlflow':'mlflow','inputtype':modelinput,'outputtype':modeloutput,'deploy':outputStr,'selected':'mllite','version':AION_VERSION} else: context={'exception':'exception','error':'Please Enter Valid Inputs','selected':'mllite','version':AION_VERSION} except Exception as e: print(e) context={'exception':'exception','error':'Error during Conversion','selected':'mllite','version':AION_VERSION} return render(request, 'ConvertOnnx.html',context) def sageprediction(request): #print("=========asdecdefefefefefefefef=======") values = request.POST['value'] keys = request.POST['keys'] endpoint = request.POST['endpointname'] x = keys.split(",") y = values.split(",") dictionary = {key:value for key, value in zip(x,y)} awsSagemaker={} awsSagemaker['awsID'] = request.POST['awsaccountid'] awsSagemaker['accesskeyID'] = request.POST['accesskeyid'] awsSagemaker['secretAccesskey'] = request.POST['secretaccesskey'] awsSagemaker['sessionToken'] = request.POST['sessionToken'] awsSagemaker['region'] = request.POST['region'] configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) awsSagemaker['IAMSagemakerRoleArn'] = configSettingsJson['awsSagemaker']['IAMSagemakerRoleArn'] configSettingsJson['awsSagemaker'] = awsSagemaker configSettingsJson['data'] = dictionary configSettingsJson['endpointName'] = endpoint configSettingsJson['prediction']['status'] = 'True' conv = json.dumps(configSettingsJson) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_sagemaker.py')) outputStr = subprocess.check_output([sys.executable, scriptPath, conv]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr=outputStr.strip() output = json.loads(outputStr) if output['status'] == 'SUCCESS': outputStr = output['data'] outputStr = pd.json_normalize(outputStr) outputStr = outputStr.to_html() else: outputStr = output['msg'] return HttpResponse(outputStr) def runtimeutility(request): if request.method == "POST": models = request.POST['model'] datafile = request.POST['datafile'] inputDataType = datafile.rsplit('.', 1)[1] if inputDataType.lower() == 'csv': values = request.POST['value'] keys = request.POST['keys'] x = keys.split(",") y = values.split(",") dictionary = {key:value for key, value in zip(x,y)} jsondata = json.dumps(dictionary, indent = 4) #print(jsondata) config_json_filename = os.path.join(DEFAULT_FILE_PATH, 'runtime.json') #print(config_json_filename) with open(config_json_filename, "w") as fpWrite: fpWrite.write(jsondata) fpWrite.close() from conversions.runtime_utility import runTimeTesting #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','conversions', 'runtime_utility.py')) config_json_file = os.path.join(DEFAULT_FILE_PATH, 'runtime.json') #outputStr = subprocess.check_output([sys.executable, scriptPath, models, config_json_file]) #outputStr = outputStr.decode('utf-8') outputStr=runTimeTesting(models,config_json_file) # context = {'outputStr':outputStr,'modeltype':modeltype} else: from conversions.runtime_utility import runTimeTesting outputStr=runTimeTesting(models,datafile) return HttpResponse(outputStr)
mltest_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion AION_VERSION = getversion() import os import time import subprocess import sys import re import pandas as pd def mltesting(request): from appbe.pages import mltesting_page context = mltesting_page(request) context['selected']='mltesting' context['version'] = AION_VERSION return render(request, 'mltesting.html',context) def ABtest(request): try: if request.method == "POST": models = request.POST["model"] data = request.POST["data"] #context['version'] = AION_VERSION if(os.path.isfile(models) and os.path.isfile(data)): AlgorithmNames={'LogisticRegression':'Logistic Regression','SGDClassifier':'Stochastic Gradient Descent','GaussianNB':'Naive Bayes','SVC':'Support Vector Machine','KNeighborsClassifier':'K Nearest Neighbors','DecisionTreeClassifier':'Decision Tree','RandomForestClassifier':'Random Forest','GradientBoostingClassifier':'Gradient Boosting','XGBClassifier':'Extreme Gradient Boosting (XGBoost)','DecisionTreeRegressor':'Decision Tree','LinearRegression':'Linear Regression','Lasso':'Lasso','Ridge':'Ridge','RandomForestRegressor':'Random Forest','XGBRegressor':'Extreme Gradient Boosting (XGBoost)'} filetimestamp = str(int(time.time())) mltestjson = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json') with open(mltestjson, 'r+') as f: mltest = json.load(f) f.close() with open(request.session['MLTestResult'], 'r+') as f: mltestresult = json.load(f) f.close() models = mltestresult['models'] datapath = mltestresult['datap'] featurs = mltestresult['feature'] featurs = featurs.split(",") tar = mltestresult['target'] tar = tar.split(",") # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy mltest['basic']['modelName'] = 'MLtest_'+ str(filetimestamp) mltest['basic']['modelVersion'] = "1" mltest['basic']['dataLocation'] = mltestresult['datap'] mltest['basic']['deployLocation'] = DEPLOY_LOCATION mltest['basic']['trainingFeatures'] = mltestresult['feature'] mltest['basic']['targetFeature'] = mltestresult['target'] mltest['advance']['profiler']['featureDict']=[] temp = {} Problemtype = mltestresult['Problemtype'] if Problemtype == 'Classification': Accuracyscore1 = mltestresult['Score'] Accuracyscore = float(Accuracyscore1)*100 temp['ScoringCriteria'] = 'Accuracy' else: R2_Score = round(float(mltestresult['Score']),2) temp['ScoringCriteria'] = 'R2' baselineparam = mltestresult['Params'] temp['algorithm'] = [] if request.session["AionProblem"] == 'Samebaseline': baselineprob = AlgorithmNames[mltestresult['ProblemName']] temp['algorithm'].append(baselineprob) else: baselineprob = request.session["AionProblem"] temp['algorithm'] = baselineprob.split(",") #print(baselineprob) temp['ProblemType'] = Problemtype #temp['algorithm'] = ['K Nearest Neighbors'] problemtyp = mltest['basic']['analysisType'] scoring = mltest['basic']['scoringCriteria'] for i in list(scoring.keys()): for x in list(mltest['basic']['scoringCriteria'][i].keys()): mltest['basic']['scoringCriteria'][i][x] = 'False' if temp['ProblemType'].lower() in ["classification","regression",]: mltest['basic']['scoringCriteria'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][temp['ScoringCriteria']] = 'True' for i in list(problemtyp.keys()): mltest['basic']['analysisType'][i]='False' algorithm = mltest['basic']['algorithms'] for i in list(algorithm.keys()): for x in list(mltest['basic']['algorithms'][i].keys()): mltest['basic']['algorithms'][i][x] = 'False' mltest['basic']['analysisType'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]] = 'True' for X in temp['algorithm']: mltest['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][X] = 'True' mltest = json.dumps(mltest) config_json_filename = os.path.join(CONFIG_FILE_PATH, 'MLtest' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(mltest) fpWrite.close() scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','training','-c',config_json_filename]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() decoded_data = json.loads(outputStr) #print(decoded_data) if decoded_data['data']['ScoreType'] == 'R2': decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2)) if decoded_data['data']['ScoreType'].lower() == 'accuracy': decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2)) #print(decoded_data) #print('123',Accuracyscore) if Problemtype == 'Classification': if Accuracyscore >= float(decoded_data['data']['BestScore']) : context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION} else: context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':Accuracyscore,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION} else: if R2_Score >= float(decoded_data['data']['BestScore']) : context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','regression':'regression','regsuccess':'regsuccess','selected':'mltesting'} else: context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':R2_Score,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'regression':'regression','regsuccess':'regsuccess','selected':'mltesting','version':AION_VERSION} else: context= {'error':'Error - Model file or Data file does not exist','abtesting':'abtesting','selected':'mltesting'} context['version'] = AION_VERSION return render(request, 'mltesting.html', context) except Exception as e: print(e) context= {'error':'Error - Fail to perform A/B Testing','abtesting':'abtesting','selected':'mltesting'} context['version'] = AION_VERSION return render(request, 'mltesting.html', context) def UQTesting(request): try: if request.method == "POST": models = request.POST['modeluq'] datap = request.POST['datauq'] if(os.path.isfile(models) and os.path.isfile(datap)): df = pd.read_csv(datap) trainfea = df.columns.tolist() featurs = request.POST.getlist('Traininguq') feature = ",".join(featurs) # features = ['PetalLengthCm','PetalWidthCm'] targ = request.POST['Targetuq'] tar =[targ] from bin.aion_uncertainties import aion_uq outputStr = aion_uq(models,datap,feature,tar) print(outputStr) uq_test = json.loads(outputStr) #print("==============") #print(uq_test) #print("==============") Problemtype= uq_test['Problem'] msg = uq_test['msg'] if Problemtype == 'Regression': # Confidence_Interval_Plot = uq_test['Confidence Interval Plot'] # #print(Confidence_Interval_Plot) # if Confidence_Interval_Plot != '': # string = base64.b64encode(open(Confidence_Interval_Plot, "rb").read()) # Confidence_Interval_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) # PICP_Plot = uq_test['PICP Plot'] # if PICP_Plot != '': # string = base64.b64encode(open(PICP_Plot, "rb").read()) # PICP_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) # Confidence_Plot = uq_test['Confidence Plot'] # if Confidence_Plot != '': # string = base64.b64encode(open(Confidence_Plot, "rb").read()) # Confidence_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) if msg == "Good": context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Green':'Green','selected':'mllite','version':AION_VERSION} elif msg == "Bad": context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Red':'Red','selected':'mllite','version':AION_VERSION} else: context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'orange':'orange','selected':'mllite','version':AION_VERSION} elif Problemtype == 'Classification': # df3 = pd.DataFrame.from_dict(uq_test,orient='index') df3 = pd.DataFrame.from_dict(uq_test, orient='index', columns=['value']) df3 = df3.rename_axis('Attributes').reset_index() # risk_plot = uq_test['Risk Plot'] # if risk_plot != '': # string = base64.b64encode(open(risk_plot, "rb").read()) # risk_plot = 'data:image/png;base64,' + urllib.parse.quote(string) # reliability_plot = uq_test['Reliability Plot'] # if reliability_plot != '': # string = base64.b64encode(open(reliability_plot, "rb").read()) # reliability_plot = 'data:image/png;base64,' + urllib.parse.quote(string) df3['Attributes'] = df3['Attributes'].str.replace(r'_', ' ') # df3.loc[(df3.Attributes == 'Model_total_confidence_score'),'Attributes']='Model Total Confidence' # df3.loc[(df3.Attributes == 'Expected_Calibration_Error'),'Attributes']='Expected Calibration Error' df3 = df3.iloc[4:, :] report = df3.to_html(index=False) if msg == "Good": context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} elif msg == "Bad": context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} else: context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} elif Problemtype == 'None': #print('hi') context={'Uqerror':'Uqerror','errormsg':"Error:"+str(msg),'version':AION_VERSION} else: context= {'error':'Please enter valid inputs','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION} return render(request, 'mltesting.html', context) except Exception as e: print("uqregression error: ",e) context= {'error':'Error - Fail to perform Uncertainty Quantification ','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION} return render(request, 'mltesting.html', context)
trustedAI_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getusercasestatus import pandas as pd import numpy as np from appbe.pages import getversion import logging import json import time import os from appbe import compute AION_VERSION = getversion() def sensitivityAnalysis(request): #usnish from appbe.pages import usecases_page t1 = time.time() from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] try: from trusted_ai.sensitivity_analysis import startSA # request.session['deploypath'] = str(p.DeployPath) sensitivitystr= startSA(request) sensitivitystr = json.loads(sensitivitystr) ModelStatus = request.session['ModelStatus'] if sensitivitystr['Status']=='Success': sensitivityGraph = sensitivitystr['graph'] t2 = time.time() log.info('Sensitivity Analysis : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return HttpResponse(json.dumps(sensitivitystr)) else: error = sensitivitystr['reason'] raise Exception(error) except Exception as e: print(e) log.info('Sensitivity Analysis : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to Perform Sensitivity Analysis, ' + str(e)) outputstr = json.dumps({'Status':'','msg':'Failed to Perform Sensitivity Analysis. '+str(e)}) return HttpResponse(outputstr) def handlefairness(request): from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemType = 'classification' for key in configSettings['basic']['analysisType']: if configSettings['basic']['analysisType'][key] == 'True': problemType = key break trainingfeature = configSettings['basic']['trainingFeatures'] targetfeature = configSettings['basic']['targetFeature'] featuretype = configSettings['advance']['profiler']['featureDict'] catfeature = [] for feat_conf in featuretype: colm = feat_conf.get('feature', '') if feat_conf['type'] == "categorical": catfeature.append(feat_conf['feature']) output={'targetfeature':targetfeature,'trainingfeature':trainingfeature,'catfeature':catfeature,'problemType':problemType} return HttpResponse(json.dumps(output)) def fairnesmetrics(request): #Richard--Task-13581 from appbe.pages import usecases_page from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') t1 = time.time() log = logging.getLogger('log_ux') selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) try: from trusted_ai.fairness_metrics import get_metrics output = get_metrics(request) t2 = time.time() log.info('Fairness Metrics : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return HttpResponse(output) except Exception as e: print(e) log.info('Fairness Metrics : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Fairness Metrics, ' + str(e)) return HttpResponse('') def performance_metrics(request): from appbe.pages import usecases_page from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') t1 = time.time() log = logging.getLogger('log_ux') selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) try: from trusted_ai.performance import get_metrics output = get_metrics(request) t2 = time.time() log.info('Performance Metrics : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') print( output) return HttpResponse(json.dumps(output)) except Exception as e: print(e) log.info('Performance Metrics : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Performance Metrics, ' + str(e)) return HttpResponse('') def uquncertainty(request): from trusted_ai.trustedai_uq import trustedai_uq from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') output = trustedai_uq(request) return HttpResponse(output) def uqtransparency(request): t1 = time.time() log = logging.getLogger('log_ux') from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') selected_use_case = request.session['UseCaseName'] model_version = request.session['ModelVersion'] try: deploypath = request.session['deploypath'] configpath = os.path.join(deploypath,'etc','display.json') f = open(configpath, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemType = configSettings['problemType'] model_Features = configSettings['modelFeatures'] if problemType.lower() == 'classification': from trusted_ai.brier_score import get_brier_score problem_type, brier_score = get_brier_score(request) display_dict = {"ProblemType":problem_type.title(),"BrierScore":round(brier_score, 2),'model_Features':model_Features,'problemTypeuq':problemType} else: display_dict = {"ProblemType":problemType,"BrierScore":'','model_Features':model_Features,'problemTypeuq':problemType} display_json = json.dumps(display_dict) t2 = time.time() log.info('Brier Score : ' + str(selected_use_case) + ' : ' + str( model_version) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return HttpResponse(display_json, content_type="application/json") except Exception as e: print(e) log.info('Brier Score : ' + str(selected_use_case) + ' : ' + str( model_version) + ' : ' + '0' + 'sec' + ' : ' + 'Error : Failed to diaplay Brier Score, ' + str(e)) return HttpResponse('')
upload_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getusercasestatus import os import plotly.graph_objects as go import time import sys from pathlib import Path import csv import pandas as pd import numpy as np from appbe.pages import getversion AION_VERSION = getversion() def uploadedData(request): from appbe.dataIngestion import ingestDataFromFile context = ingestDataFromFile(request,DATA_FILE_PATH) context['version'] = AION_VERSION from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() context['FeturesEDA'] = No_of_Permissible_Features_EDA return render(request, 'upload.html', context) def uploaddatafromscript(request): from appbe.aion_config import settings usecasetab = settings() from appbe import compute computeinfrastructure = compute.readComputeConfig() from appfe.modelTraining.models import Existusecases clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] try: scriptPath = request.POST.get('pythonscriptPath') if(os.path.isfile(scriptPath) == False ): context = {'tab': 'upload', 'error': 'File does not exist', 'selected': 'modeltraning','clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} context['version'] = AION_VERSION return render(request, 'upload.html', context) if(scriptPath != ''): try: f = open(scriptPath, "r") pythoncode = f.read() f.close() ldict = {} exec(pythoncode, globals(), ldict) except Exception as e: context = {'tab': 'upload', 'error': 'Error in script execution i.e., '+str(e), 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} context['version'] = AION_VERSION return render(request, 'upload.html', context) if 'dfpy' not in ldict: context = {'tab': 'upload', 'error': 'dfpy dataset not found', 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} context['version'] = AION_VERSION return render(request, 'upload.html', context) raw_data = '' if 'df_aion_raw' in ldict: df_raw = ldict['df_aion_raw'] raw_data = df_raw.to_json(orient="records") raw_data = json.loads(raw_data) df = ldict['dfpy'] filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() context = {'tab': 'tabconfigure','FeturesEDA':No_of_Permissible_Features_EDA,'computeinfrastructure':computeinfrastructure,'raw_data':raw_data,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False,'usecasetab':usecasetab} return render(request, 'upload.html', context) else: from appfe.modelTraining.models import Existusecases clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') context = {'tab': 'upload','computeinfrastructure':computeinfrastructure, 'error': 'Please enter script path', 'selected': 'modeltraning','usecasetab':usecasetab,'clusteringModels':clusteringModels,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} return render(request, 'upload.html', context) except: from appfe.modelTraining.models import Existusecases clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') return render(request, 'upload.html', {'tab': 'upload','clusteringModels':clusteringModels,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'error':'Fail to upload data from script','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}) def listfiles(request): from appbe.labels import label_filename selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) from appbe import compute computeinfrastructure = compute.readComputeConfig() path = request.POST.get('scriptPath') print(path) dirstatus = os.path.isdir(path) import glob try: if(path != '' and dirstatus == True): radiovalue = request.POST.get('filetype') # create csv filetimestamp = str(int(time.time())) header = ['File', 'Label'] filename = 'AION_List_' + selected_use_case + '.csv' dataFile = os.path.join(DATA_FILE_PATH, filename) csvfilename = 'AION_List_' + filetimestamp request.session['csvfilename'] = dataFile request.session['datalocation'] = path type = 'NA' request.session['fileExtension'] = radiovalue if radiovalue in ['avi', 'wmv', 'mp4']: if request.POST.get('computeInfrastructure') in ['AWS','GCP']: request.session['datatype'] = 'LLM_Video' type = 'LLM_Video' else: request.session['datatype'] = 'Video' type = 'Video' elif radiovalue in ['jpeg', 'png', 'bmp']: if request.POST.get('computeInfrastructure') in ['AWS','GCP']: request.session['datatype'] = 'LLM_Image' type = 'LLM_Image' else: request.session['datatype'] = 'Image' type = 'Image' elif radiovalue in ['txt', 'log', 'pdf','docs','docx','doc']: if request.POST.get('computeInfrastructure') in ['AWS','GCP']: request.session['datatype'] = 'LLM_Document' type = 'LLM_Document' else: request.session['datatype'] = 'Document' type = 'Document' elif radiovalue in ['java','py']: if request.POST.get('computeInfrastructure') in ['AWS','GCP']: request.session['datatype'] = 'LLM_Code' type = 'LLM_Code' else: request.session['datatype'] = 'Code' type = 'Document' if type == 'NA': context = {'tab': 'upload', 'error': 'Please select the type', 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'version':AION_VERSION, 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} return render(request, 'upload.html', context) request.session['folderPath'] = path request.session['csvfullpath'] = dataFile file = open(dataFile, 'w', newline='') writer = csv.DictWriter(file, fieldnames=header) # writing data row-wise into the csv file writer.writeheader() #os.chdir(path) tifCounter = 0 if radiovalue == 'doc': tifCounter = len(glob.glob(os.path.join(path,"**/*."+'doc'),recursive=True)) tifCounter = tifCounter+len(glob.glob(os.path.join(path,"**/*."+'docx'),recursive=True) ) else: tifCounter = len(glob.glob(os.path.join(path, "**/*." + radiovalue), recursive=True)) if radiovalue == 'jpeg': tifCounter += len(glob.glob1(path,"*.jpg")) labelfileexists = False dflabels = pd.DataFrame() if type == 'Image': labelfilename = label_filename(request) labelfileexists = os.path.isfile(labelfilename) if labelfileexists == True: dflabels = pd.read_csv(labelfilename) if len(dflabels) == 0: labelfileexists = False else: dflabels = dflabels.head(5) if tifCounter == 0: context = {'tab': 'upload', 'error': 'No files in the folder with selected file type', 'selected': 'modeltraning','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION} return render(request, 'upload.html', context) filesCount = 0 filesSize = 0 files=[] for filename in glob.iglob(os.path.join(path, "**/*." + radiovalue), recursive=True): files.append(filename) if radiovalue == 'doc': for filename in glob.iglob(os.path.join(path, "**/*." + 'docx'), recursive=True): files.append(filename) for filename in files: filesCount = filesCount+1 writer.writerow({'File': filename, 'Label': ''}) get_size = os.path.getsize(filename) filesSize = round(filesSize + get_size, 1) if filesSize > 1048576: size = round((filesSize / (1024 * 1024)), 1) filesSize = str(size) + ' M' elif filesSize > 1024: size = round((filesSize /1024), 1) filesSize = str(size) + ' K' else: filesSize = str(filesSize) + ' B' files = pd.DataFrame(files,columns=['File']) files.index = range(1, len(files) + 1) files.reset_index(level=0, inplace=True) files = files.to_json(orient="records") files = json.loads(files) if radiovalue == 'jpeg': for filename in glob.iglob(os.path.join(path,"**/*.jpg"), recursive=True): writer.writerow({'File': filename, 'Label': ''}) from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() #filesSize = str(filesSize)+' M' print(filesSize) print(filesCount) context = {'tab': 'upload','files':files,'filesCount':filesCount,'filesSize':filesSize,'filelist':dataFile,'finalstate':0, 'file': dataFile,'FeturesEDA':No_of_Permissible_Features_EDA, 'csvfilename': csvfilename,'type':type,'csvgenerated': True,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION,"selectedfile":radiovalue,"selectedPath":path} return render(request, 'upload.html', context) else: context = {'tab': 'upload', 'error': 'Error: Folder path either not entered or does not exists.', 'modeltraning': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION,"selectedfile":radiovalue,"selectedPath":path} return render(request, 'upload.html', context) except Exception as e: print(e) return render(request, 'upload.html', {'tab': 'upload','error':'Folder path is mandatory','version':AION_VERSION,'computeinfrastructure':computeinfrastructure, 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}) def validatecsv(request): from appbe.aion_config import settings usecasetab = settings() from appbe import exploratory_Analysis as ea from appbe.labels import label_filename try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) from appbe import compute computeinfrastructure = compute.readComputeConfig() #print(request.POST.get('validatesubmit')) if request.POST.get('validatesubmit') == 'ObjectDetection': df = pd.read_csv(request.session['csvfullpath']) dataFile = label_filename(request) request.session['LabelFileName'] = dataFile request.session['currentIndex'] = 0 request.session['endIndex'] = len(df)-1 not_end = not(request.session['currentIndex'] == request.session['endIndex']) filePath = os.path.join(request.session['datalocation'],df["File"].iloc[request.session['currentIndex']]) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) request.session['labels'] = [] if os.path.isfile(dataFile): image = df["File"].iloc[request.session['currentIndex']] with open(dataFile, 'r') as file: reader = csv.reader(file) for row in reader: if row[0] == image: labels = request.session['labels'] labels.append({"id":row[1], "name":row[9], "xMin": row[3], "xMax":row[4], "yMin":row[5], "yMax":row[6], "height":row[7],"width":row[8], "angle":row[2]}) request.session['labels'] = labels labels = request.session['labels'] else: with open(dataFile,'w') as f: f.write("File,id,angle,xmin,xmax,ymin,ymax,height,width,Label\n") f.close() bounds = [] context = {'tab': 'upload','bounds':bounds,'labels': request.session['labels'],'directory':request.session['datalocation'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'filelist':df,'computeinfrastructure':computeinfrastructure} context['version'] = AION_VERSION return render(request, 'objectlabelling.html', context) elif request.POST.get('validatesubmit') == 'bulkLabeling': type = 'BulkImage' dataFile = request.session['csvfullpath'] csvfilename = request.session['csvfullpath'] labelfileexists = False dflabels = pd.DataFrame() context = {'tab': 'upload', 'file': dataFile, 'csvfilename': csvfilename,'type':type,'csvgenerated': True,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'labelfileexists':labelfileexists,'dflabels':dflabels,'computeinfrastructure':computeinfrastructure} context['version'] = AION_VERSION return render(request, 'upload.html', context) elif request.POST.get('validatesubmit') == 'ImageClassification': df = pd.read_csv(request.session['csvfullpath']) dataFile = label_filename(request) request.session['LabelFileName'] = dataFile with open(dataFile,'w') as f: f.write("File,Label\n") f.close() request.session['currentIndex'] = 0 request.session['endIndex'] = len(df)-1 not_end = not(request.session['currentIndex'] == request.session['endIndex']) filePath = os.path.join(request.session['datalocation'],df["File"].iloc[request.session['currentIndex']]) string = base64.b64encode(open(filePath, "rb").read()) request.session['labels'] = '' image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) context = {'tab': 'upload','id':request.session['currentIndex'],'labels': request.session['labels'],'image':image_64,'head':request.session['currentIndex']+1,'len':len(df),'computeinfrastructure':computeinfrastructure} context['version'] = AION_VERSION return render(request, 'imagelabelling.html', context) elif request.POST.get('validatesubmit') == 'submitpreviouslabel': dataFile = label_filename(request) request.session['LabelFileName'] = dataFile df = pd.read_csv(dataFile) if len(df.columns) == 2: context = imageeda(request) context['version'] = AION_VERSION return render(request, 'upload.html', context) else: context = objecteda(request) context['version'] = AION_VERSION return render(request, 'upload.html', context) else: df = pd.read_csv(request.session['csvfullpath']) if request.session['datatype'] in ['LLM_Document','LLM_Code']: from appfe.modelTraining.bc_views import basicconfig return basicconfig(request) else: if df['Label'].isnull().sum() > 0: # show error message if request.session['datatype'] == 'Document': dataDf = pd.DataFrame() dataDict = {} keys = ["text"] for key in keys: dataDict[key] = [] for i in range(len(df)): filename = os.path.join(request.session['datalocation'],df.loc[i,"File"]) if Path(filename).suffix == '.pdf': from appbe.dataIngestion import pdf2text text = pdf2text(filename) dataDict["text"].append(text) else: with open(filename, "r",encoding="utf-8") as f: dataDict["text"].append(f.read()) f.close() dataDf = pd.DataFrame.from_dict(dataDict) tcolumns=['text'] wordcloudpic,df_text = ea.getWordCloud(dataDf,tcolumns) status_msg = 'Successfully Done' firstFile = pd.DataFrame() context = {'tab': 'upload','firstFile':firstFile,'singletextdetails':wordcloudpic,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} else: errormessage = str(df['Label'].isnull().sum()) + " rows do not contain label values" context = {'error': errormessage} else: eda_result = '' duplicate_img = '' color_plt = '' df2 = df.groupby('Label', as_index=False)['File'].count().reset_index().rename(columns ={'File':'Number of Files'}) df_json = df2.to_json(orient="records") df_json = json.loads(df_json) cfig = go.Figure() xaxis_data = df2['Label'].tolist() yaxis_data = df2['Number of Files'].tolist() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data)) cfig.update_layout(barmode='stack', xaxis_title='Label', yaxis_title='File') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=520) firstFile = df.groupby('Label').first().reset_index() #firstFile['FilePath'] = firstFile['File'].apply(lambda x: os.path.join(request.session['datalocation'], x)) images = [] if request.session['datatype'] == 'Image': qualityscore,eda_result,duplicate_img,color_plt = ia.analysis_images(request.session['datalocation']) #print(qualityscore) for i in range(len(firstFile)): filename = firstFile.loc[i, "File"] filePath = os.path.join(request.session['datalocation'], filename) string = base64.b64encode(open(filePath, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) firstFile.loc[i, "Image"] = image_64 firstFile.loc[i, "Quality"] = qualityscore[filename] elif request.session['datatype'] == 'Document': dataDrift = '' dataDf = pd.DataFrame() dataDict = {} keys = ["text","Label"] for key in keys: dataDict[key] = [] for i in range(len(df)): filename = os.path.join(request.session['datalocation'],df.loc[i,"File"]) if Path(filename).suffix == '.pdf': from appbe.dataIngestion import pdf2text text = pdf2text(filename) dataDict["text"].append(text) dataDict["Label"].append(df.loc[i,"Label"]) else: with open(filename, "r",encoding="utf-8") as f: dataDict["text"].append(f.read()) f.close() dataDict["Label"].append(df.loc[i,"Label"]) dataDf = pd.DataFrame.from_dict(dataDict) wordcloudpic = ea.getCategoryWordCloud(dataDf) status_msg = 'Successfully Done' firstFile = pd.DataFrame() context = {'tab': 'upload','firstFile':firstFile,'dataa': df_json,'textdetails':wordcloudpic,'featuregraph': bargraph,'status_msg': status_msg,'validcsv': True,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} return render(request, 'upload.html', context) status_msg = 'Successfully Done' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'tab': 'upload', 'featuregraph': bargraph,'dataa': df_json, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'validcsv': True,'eda_result':eda_result,'duplicate_img':duplicate_img,'color_plt':color_plt, 'firstFile': firstFile, 'status_msg': status_msg,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} context['version'] = AION_VERSION return render(request, 'upload.html', context) except UnicodeDecodeError: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request, 'upload.html', {'tab': 'upload','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Only utf8 file encoding supported','computeinfrastructure':computeinfrastructure}) except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request, 'upload.html', {'tab': 'upload','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'error':'Validation Failed','computeinfrastructure':computeinfrastructure}) def file_successfully_created(request,dataFile): from appbe import compute computeinfrastructure = compute.readComputeConfig() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) try: request.session['datalocation'] = str(dataFile) request.session['delimiter'] = ',' request.session['textqualifier'] = '"' from appbe.eda import ux_eda eda_obj = ux_eda(dataFile,optimize=1) featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures() # ---------------------------- numberoffeatures = len(featuresList) from appfe.modelTraining.views import getimpfeatures imp_features = getimpfeatures(dataFile,numberoffeatures) samplePercentage = 100 samplePercentval = 0 showRecommended = False from utils.file_ops import read_df status,df_top = read_df(dataFile,nrows=10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() context = {'tab': 'tabconfigure','computeinfrastructure':computeinfrastructure,'range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'imp_features':imp_features, 'numberoffeatures':numberoffeatures, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning'}) def uploadDatafromSatandardDataset(request): from appbe import compute computeinfrastructure = compute.readComputeConfig() try: dataobject = request.POST.get('dataset') if dataobject == 'Iris': from sklearn.datasets import load_iris data = load_iris() df = pd.DataFrame(data.data, columns=data.feature_names) df['Species']=data['target'] df['Species']=df['Species'].apply(lambda x: data['target_names'][x]) elif dataobject == 'Boston': from sklearn.datasets import load_boston df1 = load_boston() df = pd.DataFrame(data=df1.data, columns=df1.feature_names) df["target"] = df1.target elif dataobject == 'BreastCancer': from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() df = pd.DataFrame(np.c_[cancer['data'], cancer['target']],columns= np.append(cancer['feature_names'], ['target'])) elif dataobject == 'Diabetes': from sklearn.datasets import load_diabetes data = load_diabetes() df = pd.DataFrame(data.data, columns=data.feature_names) df['y']=data['target'] elif dataobject == 'Wine': from sklearn.datasets import load_wine data = load_wine() df = pd.DataFrame(data.data, columns=data.feature_names) df['class']=data['target'] df['class']=df['class'].apply(lambda x: data['target_names'][x]) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) request.session['delimiter'] = ',' request.session['textqualifier'] = '"' # EDA Subsampling changes # ---------------------------- from appbe.eda import ux_eda eda_obj = ux_eda(dataFile) featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeature = eda_obj.getFeatures() # ---------------------------- numberoffeatures = len(featuresList) from appfe.modelTraining.views import getimpfeatures imp_features = getimpfeatures(dataFile,numberoffeatures) samplePercentage = 100 samplePercentval = 0 showRecommended = False df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() from appfe.modelTraining.models import Existusecases clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') context = {'tab': 'tabconfigure','computeinfrastructure':computeinfrastructure,'range':range(1,101),'FeturesEDA':No_of_Permissible_Features_EDA,'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList':featuresList,'data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'clusteringModels':clusteringModels, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'imp_features':imp_features, 'numberoffeatures':numberoffeatures, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) return render(request, 'upload.html', {'error':'Failed to upload Data','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning'}) def sqlAlchemy(request): from appbe import alchemy selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) dbType = request.POST.get('dbType') request.session['dbType'] = dbType from appbe import compute computeinfrastructure = compute.readComputeConfig() from appbe.aion_config import get_edafeatures No_of_Permissible_Features_EDA = get_edafeatures() if dbType.lower() == "sqlite": request.session['filepath'] = request.POST.get('filepath') request.session['tablenamesql'] = request.POST.get('tablenamesql') table_details = {"Database Type": dbType, "File Path": request.session['filepath']} if dbType.lower() in ["postgresql", "mysql", "mssql"]: if dbType.lower()=='mssql': db = "mssql" else: db = "postgresql" request.session['tablename'] = request.POST.get('tablename'+'_'+db) request.session['dbname'] = request.POST.get('dbname'+'_'+db) request.session['password'] = request.POST.get('password'+'_'+db) request.session['username'] = request.POST.get('username'+'_'+db) request.session['port'] = request.POST.get('port'+'_'+db) request.session['host'] = request.POST.get('host'+'_'+db) table_details = {"Database Type": dbType, "Database Name": request.session['dbname'], "Host": request.session['host'], "Port": request.session['port']} if dbType.lower() == "mssql": request.session['driver'] = request.POST.get('driver'+'_'+db) table_details.update({"driver": request.session['driver']}) request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' #print(dbType) submit_button = request.POST.get('sql_submit') if submit_button == 'multitable': try: connection_string = alchemy.get_connection(request) import sqlalchemy as db engine = db.create_engine(connection_string) engine.connect() request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' print(request.POST.get('dbType')) context = {'tab': 'tabconfigure','FeturesEDA':No_of_Permissible_Features_EDA,'computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'version':AION_VERSION} context.update({'db_details':table_details}) return render(request, 'querybuildersql.html', context) except Exception as e: print(str(e)) if "No module named 'psycopg2'" in str(e): error = 'Not found module: psycopg2. Please install and try again' else: error = 'Error in connecting to the database' return render(request, 'upload.html', {'tab': 'tabconfigure', 'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'modeltraning', 'version': AION_VERSION, 'error': error}) else: try: df = alchemy.getDataFromSingleTable(request) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'FeturesEDA':No_of_Permissible_Features_EDA, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) if "No module named 'psycopg2'" in str(e): context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,"error":"Not found module: psycopg2. Please install and try again"} else: context = {'tab': 'upload','computeinfrastructure':computeinfrastructure,'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,"error":"Error in fetching the data from database."} context['version'] = AION_VERSION return render(request, 'upload.html', context) def get_table_list(request): from appbe import alchemy dbType = request.session['dbType'] table_list = alchemy.list_tables(request) #print(json.dumps(table_list)) return HttpResponse(json.dumps(table_list), content_type="application/json") def get_tables_fields_list(request): from appbe import alchemy table_list = request.GET.get("sel_tables") table_field_list = alchemy.list_tables_fields(request,table_list) return HttpResponse(table_field_list, content_type="application/json") def validate_query(request): from appbe import alchemy query = request.GET.get("query") table_details = request.GET.get("table_details") join_details = request.GET.get("join_details") where_details = request.GET.get("where_details") request.session["table_details"]=table_details request.session["join_details"]=join_details request.session["where_details"]=where_details df,msg = alchemy.validatequery(request,table_details,join_details,where_details) return HttpResponse(json.dumps(msg), content_type="application/json") def submitquery(request): from appbe import alchemy from appbe import compute selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] computeinfrastructure = compute.readComputeConfig() try: query = request.POST.get("txtfinalquery") table_details = request.session["table_details"] join_details = request.session["join_details"] where_details = request.session["where_details"] df,msg = alchemy.validatequery(request,table_details,join_details,where_details) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False} return render(request, 'upload.html', context) except: return render(request, 'upload.html', {'tab': 'tabconfigure','selected_use_case': selected_use_case,'computeinfrastructure':computeinfrastructure,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','error':'Failed to upload datafile'}) def EDAReport(request): from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'EDA','Yes') from appbe import exploratory_Analysis as ea request.session['defaultfilepath'] = DEFAULT_FILE_PATH request.session['configfilepath'] = CONFIG_FILE_PATH request.session['deploylocation'] = DEPLOY_LOCATION from appbe import compute computeinfrastructure = compute.readComputeConfig() submit_button = request.POST.get('upload_submit') ModelVersion = request.session['ModelVersion'] #print(submit_button) if submit_button == 'data_eda': try: from appbe.aion_config import settings usecasetab = settings() from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = ea.get_eda(request) context['computeinfrastructure'] = computeinfrastructure context['s3buckets'] = get_s3_bucket() context['gcsbuckets'] = get_gcs_bucket() context['azurestorage'] = get_azureStorage() context['version'] = AION_VERSION context['usecasetab'] = usecasetab except Exception as e: print(e) context = {'error':'Error in doing the EDA','ModelVersion': ModelVersion,'version':AION_VERSION} return render(request, 'upload.html', context) def get_features_datatype(v,num_list,cat_list,text_list): """ To get exact datatype of the feature in Data Overview.""" if v in cat_list: return 'Categorical' elif v in num_list: return 'Numerical' elif v in text_list: return 'Text' def downloadedareport(request): des1 = json.loads(request.POST.get('des1')) des1 = pd.DataFrame(des1) cluster_df = json.loads(request.POST.get('cluster_df')) cluster_df = pd.DataFrame(cluster_df) pca_df = [] if request.POST.get('pca_df') != 'Empty DataFrame\r\nColumns: []\r\nIndex: []': pca_df = json.loads(request.POST.get('pca_df')) pca_df = pd.DataFrame(pca_df) cor_mat = json.loads(request.POST.get('cor_mat')) cor_mat = pd.DataFrame(cor_mat) cor_mat.replace(np.nan, 0, inplace=True) cor_mat.fillna('None',inplace=True) usename = request.session['UseCaseName'].replace(" ", "_") + '_' + str(request.session['ModelVersion']) edaFileName = usename + '_EDA.xlsx' from io import BytesIO as IO excel_file = IO() excel_writer = pd.ExcelWriter(excel_file, engine="xlsxwriter") ##For Task 17622 actual_df = json.loads(request.POST.get('data_deep_json')) actual_df = pd.DataFrame(actual_df) actual_df.replace(np.nan, 0,inplace=True) actual_df.fillna('None',inplace=True) top_10_rows = actual_df.head(10) top_10_rows.to_excel(excel_writer, sheet_name='Top 10 Rows',index=True) des1 = des1.fillna(0) #Write everything in one single column actual_df_numerical_features = actual_df.select_dtypes(exclude='object') actual_df_categorical_features = actual_df.select_dtypes(include='object') #For text features textFeature = json.loads(request.POST.get('textFeature')) textFeature_df = actual_df.filter(textFeature) actual_df_categorical_features = actual_df_categorical_features.drop(textFeature, axis=1) for i in des1['Features']: num_cols = actual_df_numerical_features.columns.to_list() cat_cols = actual_df_categorical_features.columns.to_list() text_cols = textFeature des1['Features Type'] = des1['Features'].apply(lambda x: get_features_datatype(x, num_cols,cat_cols,text_cols)) curr_columns = des1.columns.to_list() curr_columns.remove('Features Type') insert_i = curr_columns.index('Features')+1 curr_columns.insert(insert_i,'Features Type') des1 = des1[curr_columns] des1.to_excel(excel_writer, sheet_name='Data Overview',startrow=0, startcol=0,index=False) ## Hopkins value addition hopkins_value = str(request.POST.get('hopkins_val')) hopkins_tip = request.POST.get('hopkins_tip') hopkins_dict = {'Hopkins_value':[hopkins_value],"hopkins_information":[hopkins_tip]} hopkins_df = pd.DataFrame.from_dict(hopkins_dict) ##Data Distribution from appbe.eda import ux_eda eda_obj = ux_eda(actual_df) datadist_dict={} for k,v in enumerate(actual_df.columns.to_list()): distname, sse = eda_obj.DistributionFinder(actual_df[v]) datadist_dict[v]=[distname,sse] data_dist_df = pd.DataFrame(datadist_dict) data_dist_df = data_dist_df.T data_dist_df.reset_index(inplace=True) data_dist_df.columns = ['Features','Distribution','SSE'] data_dist_df.drop(['SSE'],axis=1,inplace=True) data_dist_df.fillna("NA",inplace = True) data_dist_df = data_dist_df.replace(['',None,pd.NaT],"NA") data_dist_df = data_dist_df.replace(["geom"],"geometric") data_dist_df.to_excel(excel_writer, sheet_name='Data Distribution',index=False) if len(pca_df) > 0: pca_df.to_excel(excel_writer, sheet_name='Feature Importance',index=False) cor_mat.to_excel(excel_writer, sheet_name='Correlation Analysis',index=False) #Unsupervised clustering cdf_start_row = 1+len(hopkins_df)+6 if not textFeature: import io hs_info = "Hopkins Statistics" hs_info_df = pd.read_csv(io.StringIO(hs_info), sep=",") hs_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=0, startcol=2,index=False) hopkins_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=2, startcol=0,index=False) else: # If text features available in data. import io hs_info = "Hopkins Statistics is not availble for data with text features. Unselect text features and retry EDA." hs_info_df = pd.read_csv(io.StringIO(hs_info), sep=",") hs_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=0, startcol=3,index=False) #cluster_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row, startcol=1,index=True) cdf_start_row = 1+len(hopkins_df)+4 cluster_info = " Unsupervised clustering results (Excluding text features) " cluster_info_df = pd.read_csv(io.StringIO(cluster_info), sep=",") cluster_info_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row-2, startcol=1,index=False) cluster_df.to_excel(excel_writer, sheet_name='Unsupervised Clustering',startrow=cdf_start_row, startcol=0,index=False) workbook = excel_writer.book #excel_writer.save() #Save() is deprecated,instead we need to use close(). excel_writer.close() excel_file.seek(0) response = HttpResponse(excel_file.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + edaFileName return response
visualizer_views.py
import os,sys import re import logging from django.http import HttpRequest, HttpResponse from django.conf import settings from django.shortcuts import render from appbe.pages import getversion import plotly.graph_objects as go import plotly.figure_factory as ff from django.shortcuts import render from plotly.subplots import make_subplots from django.contrib.sessions.models import Session from sklearn.metrics import confusion_matrix from IPython.core.display import HTML from IPython.core import display from django.template import Context, loader import pandas as pd import numpy as np import io import urllib, base64 from natsort import natsorted import matplotlib.pyplot as plt import plotly.express as px import json from IPython.core.display import display, HTML from appbe import compute import base64 import warnings warnings.filterwarnings('ignore') import subprocess from appbe import installPackage from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases from utils.file_ops import read_df_compressed from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg import time AION_VERSION = getversion() def getusercasestatus(request): if 'UseCaseName' in request.session: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' return selected_use_case,ModelVersion,ModelStatus def xplain(request): log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() from appbe.aion_config import settings usecasetab = settings() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) if request.method == 'GET': try: if ModelStatus != 'SUCCESS': log.info('xplain :' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:Please train the model first or launch an existing trained model') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please train the model first or launch an existing trained model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) else: if 'ModelVersion' not in request.session: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelVersion'] == 0: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif 'ModelStatus' not in request.session: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelStatus'] != 'SUCCESS': log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() != 'classification' and problemType.lower() != 'regression': log.info('xplain:' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error:Explainable AI only available for classification and regression problem') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) dataFilePath = str(configSettingsJson['basic']['dataLocation']) df = pd.read_csv(dataFilePath,nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) df = df[inputFeaturesList] inputFieldsDict = df.to_dict(orient='index')[5] inputFields = [] inputFields.append(inputFieldsDict) targetfeatures = targetFeature.split(",") ##### Bug 20649 starts featureDict = configSettingsJson['advance']['profiler']['featureDict'] catFeatureList = [] for feature in featureDict: if feature['type'] == 'categorical': catFeatureList.append(feature['feature']) for feature in targetfeatures: if feature in catFeatureList: catFeatureList.remove(feature) fairness_error = "" if len(catFeatureList)>0 else "Fairness metrics is not applicable as categorical feature(s) is not present." ##### Bug 20649 ends context = {"fairness_error":fairness_error,"catFeatureList":catFeatureList,'selected_use_case':selected_use_case,'configSettings':configSettingsJson,'targetfeatures':targetfeatures,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','inputFields':inputFields,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'problemType':problemType} return render(request, 'businessview.html', context) except Exception as e: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Unexpected error occur, '+str(e)) print(e) return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Unexpected error occur','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) if request.method == 'POST': if request.POST.get("submit") == 'modelxplain': return modelxplain(request) if request.POST.get("submit") == 'xplainprediction': return predictionxplain(request) def modelxplain(request): log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) from appbe.aion_config import settings usecasetab = settings() t1 = time.time() if 'UseCaseName' not in request.session: return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please create the use case first, trained the model and then visualize the data','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) else: if 'ModelVersion' not in request.session: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelVersion'] == 0: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif 'ModelStatus' not in request.session: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelStatus'] != 'SUCCESS': log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() != 'classification' and problemType.lower() != 'regression': log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Explainable AI only available for classification and regression problem') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() targetFeature = configSettingsJson['basic']['targetFeature'] dataFilePath = str(configSettingsJson['basic']['dataLocation']) status, df = read_df_compressed(config['postprocessedData'], nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) if targetFeature in df.columns: df.drop( targetFeature, axis=1, inplace=True) inputFieldsDict = df.to_dict(orient='index')[5] inputFields = [] inputFields.append(inputFieldsDict) if 'nrows' in config: nrows = config['nrows'] else: nrows = 'Not Available' if 'ncols' in config: ncols = config['ncols'] else: ncols = 'Not Available' if 'targetFeature' in config: targetFeature = config['targetFeature'] else: targetFeature = '' labelMaps = config['labelMaps'] modelfeatures = configSettingsJson['basic']['trainingFeatures'].split(',') mfcount = len(modelfeatures) dataFilePath = str(configSettingsJson['basic']['dataLocation']) df_proprocessed = pd.read_csv(dataFilePath,nrows=1000) df_proprocessed.rename(columns=lambda x: x.strip(), inplace=True) if 'targetFeature' != '': target_classes = df_proprocessed[targetFeature].unique() numberofclasses = len(target_classes) else: target_classes = [] numberofclasses = 'Not Available' dataPoints = df_proprocessed.shape[0] df_proprocessed = df_proprocessed.head(5) df_proprocessed = df_proprocessed.to_json(orient="records") df_proprocessed = json.loads(df_proprocessed) expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') outputStr = subprocess.check_output([sys.executable,expainableAIPath,'global']) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() ale_json = json.loads(str(outputStr)) ale_json = ale_json['data'] ale_view = ale_json['data'] sentences = ale_json['sentences'] scoreMessage = '' feature_importance = ale_json['feature_importance'] dfimp = pd.DataFrame.from_dict(feature_importance) dfimp = dfimp.sort_values(by=['values'],ascending=False).reset_index() yaxis_data = dfimp['values'].tolist() xaxis_data = dfimp['labels'].tolist() cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data,y=yaxis_data,name='Feature Importance')) cfig.update_layout(barmode='stack',xaxis_title='Features') bargraph = cfig.to_html(full_html=False, default_height=450,default_width=1000) dftoprecords = dfimp.head(2) topTwoFeatures = dfimp['labels'].tolist() topFeaturesMsg = [] for i in range(0,len(dfimp)): value = round(dfimp.loc[i, "values"],2)*100 value = round(value,2) tvalue = str(dfimp.loc[i, "labels"])+' contributing to '+ str(value)+'%' topFeaturesMsg.append(tvalue) most_influencedfeature = ale_json['most_influencedfeature'] interceppoint = ale_json['interceptionpoint'] anchorjson = ale_json['anchorjson'] t2 = time.time() context = {'ale_view':ale_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','sentences':sentences,"bargraph":bargraph,'inputFields':inputFields,'nrows':nrows,'ncols':ncols,'targetFeature':targetFeature,'dataPoints':dataPoints,'target_classes':target_classes,'datarows':df_proprocessed,'numberofclasses':numberofclasses,'modelfeatures':modelfeatures,'problemType':problemType,'mfcount':mfcount,'topTwoFeatures':topTwoFeatures,'topFeaturesMsg':topFeaturesMsg,'most_influencedfeature':most_influencedfeature,'interceppoint':interceppoint,'achors':anchorjson,'labelMaps':labelMaps,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION} log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return render(request, 'businessview.html', context) except Exception as Inst: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(Inst) log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to Xplain Model, '+str(Inst)) log.info('Details : '+str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error1':'Failed to Xplain Model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) def predictionxplain(request): log = logging.getLogger('log_ux') from appbe.aion_config import settings usecasetab = settings() computeinfrastructure = compute.readComputeConfig() selected_use_case, ModelVersion, ModelStatus = getusercasestatus(request) try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') t1 = time.time() displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) inputFieldsDict = {} problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() == 'timeseriesforecasting': #task 11997 inputFieldsDict['noofforecasts'] = request.POST.get('noofforecasts') elif problemType == 'RecommenderSystem': inputFieldsDict['uid'] = request.POST.get('uid') inputFieldsDict['iid'] = request.POST.get('iid') inputFieldsDict['rating'] = request.POST.get('rating') else: for feature in inputFeaturesList: try: dataFilePath = str(configSettingsJson['basic']['dataLocation']) df = pd.read_csv(dataFilePath,nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) df = df[inputFeaturesList] inputFieldsDict = df.to_dict(orient='index')[5] except: inputFieldsDict[feature] = request.POST.get(feature) for key, value in inputFieldsDict.items(): if value == 'nan': inputFieldsDict[key] = '' inputFieldsJson = json.dumps(inputFieldsDict) expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') #print(inputFieldsJson) outputStr = subprocess.check_output([sys.executable,expainableAIPath,'local',inputFieldsJson]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() #print(outputStr) predict_dict = json.loads(str(outputStr)) if (predict_dict['status'] == 'SUCCESS'): predict_dict = predict_dict['data'] prediction = predict_dict['prediction'] anchor = predict_dict['anchor'] precision = predict_dict['precision'] coverage = round(predict_dict['coverage'],2) confidence = '95%' forceplot_view = predict_dict['forceplot'] multidecisionplot_view = predict_dict['multidecisionplot'] waterfallplot_view = predict_dict['waterfallplot'] #Task12581 else: context={'tab':'tabconfigure','error':'Failed to xplain','selected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion} log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to xplain') return render(request,'businessview.html',context) inputFields = [] inputFields.append(inputFieldsDict) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context={'tab' : 'predict','inputFields':inputFields,'prediction':prediction,'reason':anchor, 'precision': precision,'coverage':coverage,'confidence':confidence,'forceplot_view':forceplot_view,'multidecisionplot_view':multidecisionplot_view,'waterfallplot_view':waterfallplot_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION} t2= time.time() log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return render(request, 'businessview.html', context = context) except Exception as inst: print(inst) log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' +'0'+ 'sec' + ' : ' + 'Error : Failed to Xplain Prediction, ' + str(inst)) context={'tab' : 'tabconfigure','error' : 'Failed to Xplain Prediction','selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion} return render(request,'businessview.html',context)
train_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion from appbe.aion_config import running_setting from appbe.training import checkModelUnderTraining from appbe.training import calculate_total_activities from appbe.training import check_unsupported_col from appbe.training import check_granularity from appbe.training import checkversionrunningstatus from appbe.training import getModelStatus from appbe.training import changeModelStatus from appbe.training import calculate_total_interations from appbe.pages import getusercasestatus from utils.file_ops import read_df_compressed import plotly.graph_objects as go from appbe.pages import getMLModels from appfe.modelTraining.models import usecasedetails from appbe.training import getStatusCount from appfe.modelTraining.models import Existusecases import os,sys import urllib, base64 import subprocess import time import re import numpy as np import pandas as pd from pathlib import Path import importlib from appbe.log_ut import logg from appbe import compute import logging AION_VERSION = getversion() LOG_FILE_NAME = 'model_training_logs.log' LOG_FOLDER = 'log' def getPerformanceMatrix(deploypath,output_json): displaypath = os.path.join(deploypath,'etc','display.json') model_perf = [] try: with open(displaypath) as file: config = json.load(file) file.close() except Exception as e: print(e) import glob resultJsonObj = json.loads(output_json) if (resultJsonObj['data']['ModelType'] == 'anomalydetection' and resultJsonObj['data']['BestScore'] != 0) or resultJsonObj['data']['ModelType'].lower() == 'timeseriesanomalydetection': #task 11997 if resultJsonObj['data']['BestModel'].lower() == 'autoencoder' or resultJsonObj['data']['BestModel'].lower() == 'dbscan' : try: anomaly_plot_files = glob.glob(os.path.normpath(os.path.join(deploypath,'output','anomaly_plot','*.png'))) for plot in anomaly_plot_files: if(os.path.isfile(plot)): string = base64.b64encode(open(plot, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) model_perf.append(image_64) else: model_perf.append('nograph') except Exception as e: print("Anomaly plot exe error: \n",e) else: predictfile = os.path.join(deploypath,'data','predicteddata.csv') if(os.path.isfile(predictfile)): df = pd.read_csv(predictfile) outliers=df.loc[df['predict']==-1] outlier_index=list(outliers.index) normals=df.loc[df['predict']!=-1] normals_index=list(normals.index) featuresList = df.columns.values.tolist() #print(featuresList) if 'predict' in featuresList: featuresList.remove('predict') if 'score' in featuresList: featuresList.remove('score') if len(featuresList) == 1: xdata = df[featuresList[0]] ydata = df['score'] fig = go.Figure() fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[normals_index], y=df['score'].iloc[normals_index],mode='markers',name='Normal')) fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df['score'].iloc[outlier_index],mode='markers',name='Predicted Outliers')) fig.update_layout(xaxis_title=featuresList[0],yaxis_title="Score") frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) if len(featuresList) == 2: fig = go.Figure() df = df.reset_index() fig.add_trace(go.Scatter(x=df[featuresList[0]], y=df[featuresList[1]],mode='markers',name='Normal Points')) fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df[featuresList[1]].iloc[outlier_index],mode='markers',name='Predicted Outliers')) fig.update_xaxes(title_text=featuresList[0]) fig.update_yaxes(title_text=featuresList[1]) fig.update_layout(xaxis_title=featuresList[0],yaxis_title=featuresList[1]) frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) if len(featuresList) > 2: from sklearn.decomposition import PCA pca = PCA(2) pca.fit(df) res=pd.DataFrame(pca.transform(df)) Z = np.array(res) fig = go.Figure() fig.add_trace(go.Scatter(x=res[0], y=res[1],mode='markers',name='Normal Points')) fig.add_trace(go.Scatter(x=res.iloc[outlier_index,0], y=res.iloc[outlier_index,1],mode='markers',name='Predicted Outliers')) fig.update_xaxes(title_text="Principal Component 1") fig.update_yaxes(title_text="Principal Component 2") frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) return (model_perf) if config['problemType'].lower() == 'classification' or config['problemType'].lower() == 'anomaly_detection' or config['problemType'].lower() == 'timeseriesanomalydetection': displaypath = os.path.join(deploypath,'log','img') import glob for img in glob.glob(displaypath+"/*.png"): string = base64.b64encode(open(img, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) model_perf.append(image_64) #print(model_perf) elif config['problemType'].lower() == 'regression' or config['problemType'].lower() == 'recommendersystem' or \ config['problemType'].lower() == 'text similarity': dataPath = config['predictedData'] readstatus,predict_df=read_df_compressed(dataPath) regfig = go.Figure() regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['actual'], mode='lines', name='Actual')) regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['predict'], mode='lines', name='Predict')) frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100) rfgraph = '' model_perf.append(frgraph) elif config['problemType'].lower() == 'clustering': dataPath = config['predictedData'] readstatus,predict_df=read_df_compressed(dataPath) distinctCount = len(predict_df['predict'].unique()) clusterlist = predict_df['predict'].unique() color = ['green','blue','red','orange','green','blue','red','orange'] fig = go.Figure() for cluster in clusterlist: df_cluster = predict_df[predict_df['predict'] == cluster] modelFeatures = config['modelFeatures'] X1= df_cluster[modelFeatures[0]].tolist() X2= df_cluster[modelFeatures[1]].tolist() fig.add_trace(go.Scatter(x=X1, y=X2,mode='markers',name='cluster '+str(cluster))) fig.update_layout(title="Cluster Graph",xaxis_title=modelFeatures[0],yaxis_title=modelFeatures[1],) frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) elif config['problemType'].lower() == 'timeseriesforecasting': #task 11997 dataPath = config['predictedData'] predict_df = pd.read_csv(dataPath) modelFeatures = config['modelFeatures'] for feature in modelFeatures: feature_name = feature + '_actual' prediction = feature + '_pred' if feature_name in predict_df.columns: regfig = go.Figure() regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[feature_name], mode='lines', name=feature)) regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[prediction], mode='lines', name='Predict')) frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) return (model_perf) def stoptraining(request): request.session['ModelStatus'] = 'Terminated' request.session.save() changeModelStatus(Existusecases,request.session['modelid'],'Terminated','NA','NA') return HttpResponse('Terminated') def kill_child_proc_rec(ppid): import psutil for process in psutil.process_iter(): _ppid = process.ppid() if _ppid == ppid: _pid = process.pid kill_child_proc_rec(_pid) print(f'Terminating: {_pid}') if sys.platform == 'win32': process.terminate() else: os.system('kill -9 {0}'.format(_pid)) def getDataFileCountAndSize(basicConfig): import glob path = basicConfig['dataLocation'] radiovalue = basicConfig['folderSettings']['fileExtension'] filesCount = 0 filesSize = 0 files = [] for filename in glob.iglob(os.path.join(path, "**/*." + radiovalue), recursive=True): files.append(filename) if radiovalue == 'doc': for filename in glob.iglob(os.path.join(path, "**/*." + 'docx'), recursive=True): files.append(filename) for filename in files: #for filename in glob.iglob(os.path.join(path, "**/*." + radiovalue), recursive=True): filesCount = filesCount + 1 get_size = os.path.getsize(filename) filesSize = round(filesSize + get_size, 1) if filesSize > 1048576: size = round((filesSize / (1024 * 1024)), 1) filesSize = str(size) + ' M' elif filesSize > 1024: size = round((filesSize /1024), 1) filesSize = str(size) + ' K' else: filesSize = str(filesSize) + ' B' return filesCount,filesSize # task 4343 Abort training def read_log_file( config_file): outputStr = 'aion_learner_status:{"status":"Fail","message":"Log file not found"}' if Path(config_file).exists(): with open(config_file, 'r', encoding='utf-8') as f: config = json.load(f) deployPath = Path(config['basic']['deployLocation']) log_file = deployPath/config['basic']['modelName'].replace(' ', '_')/config['basic']['modelVersion']/LOG_FOLDER/LOG_FILE_NAME if log_file.exists(): with open(log_file, 'r', encoding='utf-8') as f: outputStr = f.read() return outputStr def checkVectorDBPackage(embeddedDB): errorStatus = 'False' if embeddedDB.lower() == 'vectordb': status = importlib.util.find_spec('chromadb') if not status: errorStatus = 'True' return errorStatus def getModelSize(configSettings,model): modelSize = 'NA' if 'modelSize' in configSettings['basic']: selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][model] for k in selectedModelSize.keys(): if configSettings['basic']['modelSize']['llmFineTuning'][model][k] == 'True': modelSize = k break return modelSize def llmmodelevaluate(request): selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) usecasename = request.session['usecaseid'].replace(" ", "_") from appbe.prediction import get_instance hypervisor,instanceid,region,image = get_instance(usecasename+'_'+str(ModelVersion)) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) usecaseconfigfile = request.session['config_json'] f = open(usecaseconfigfile, "r+", encoding="utf-8") configSettingsData = f.read() f.close() configSettings = json.loads(configSettingsData) problem_type = '' modelSize = '' problemtypes = configSettings['basic']['analysisType'] for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break mlmodels ='' algorihtms = configSettings['basic']['algorithms'][problem_type] for k in algorihtms.keys(): if configSettings['basic']['algorithms'][problem_type][k] == 'True': if mlmodels != '': mlmodels += ', ' mlmodels += k if 'modelSize' in configSettings['basic']: selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][mlmodels] for k in selectedModelSize.keys(): if configSettings['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True': modelSize = k break eval = '' if configSettings['basic']['folderSettings']['fileType'] == 'LLM_Document': eval = 'doc' elif configSettings['basic']['folderSettings']['fileType'] == 'LLM_Code': eval = 'code' #print(sys.executable, scriptPath,hypervisor,instanceid,f'{mlmodels}-{modelSize}',selected_use_case+'_'+str(ModelVersion),eval) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmbenchmarking','-hv',hypervisor,'-i',instanceid,'-md',f'{mlmodels}-{modelSize}','-uc',usecasename+'_'+str(ModelVersion),'-e',eval]) return trainmodel(request) def trainresult(request): from appbe.aion_config import settings usecasetab = settings() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) usecasename = request.session['usecaseid'].replace(" ", "_") log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() trainmodel =request.POST.get('trainmodel') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettings = json.loads(configSettingsData) total_steps = calculate_total_activities(configSettings) request.session['total_steps'] = total_steps p = usecasedetails.objects.get(usecaseid=request.session['usecaseid']) usecaseindex = p.id #bugid:14163 if trainmodel == 'Train Model': try: if configSettings['basic']['analysisType']['survivalAnalysis'] != 'True' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True': configSettings['advance']['testPercentage'] = int(request.POST.get('TrainTestPercentage',0)) #Unnati configSettings['advance']['categoryBalancingMethod'] = request.POST.get('BalancingMethod','NA') if configSettings['basic']['analysisType']['llmFineTuning'] == 'True': configSettings['basic']['vmRunning'] = request.POST.get('vmRunning','KeepRunning') if configSettings['basic']['analysisType']['similarityIdentification'] == 'True': dbs = configSettings['basic']['preprocessing']['similarityIdentification'] for dbt in dbs.keys(): configSettings['basic']['preprocessing']['similarityIdentification'][dbt]='False' configSettings['basic']['preprocessing']['similarityIdentification'][request.POST.get('contentdb')] = 'True' errorStatus = checkVectorDBPackage(request.POST.get('contentdb')) if errorStatus.lower() == 'true': return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) if configSettings['basic']['analysisType']['contextualSearch'] == 'True': dbs = configSettings['basic']['preprocessing']['contextualSearch'] for dbt in dbs.keys(): configSettings['basic']['preprocessing']['contextualSearch'][dbt]='False' configSettings['basic']['preprocessing']['contextualSearch'][request.POST.get('contentdb')] = 'True' errorStatus = checkVectorDBPackage(request.POST.get('contentdb')) if errorStatus.lower() == 'true': return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) updatedConfigSettingsJson = json.dumps(configSettings) f.seek(0) f.write(updatedConfigSettingsJson) f.truncate() f.close() # output_json = aion_train_model(updatedConfigFile) request.session['noflines'] = 0 request.session['ModelStatus'] = 'Running' request.session.save() changeModelStatus(Existusecases,request.session['modelid'],'Running','NA','NA') #print(configSettings['basic']['distributedLearning']) #sys.exit() import timeit startTime = timeit.default_timer() process_killed = False if computeinfrastructure['computeInfrastructure'].lower() == 'aws' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) #print(scriptPath,updatedConfigFile) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','awstraining','-c',updatedConfigFile]) elif computeinfrastructure['computeInfrastructure'].lower() in ['aws','gcp']: scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmtuning','-c',updatedConfigFile]) else: if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettings['basic']['analysisType']['multiModalLearning'] == 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_gluon.py')) outputStr = subprocess.check_output([sys.executable, scriptPath, updatedConfigFile]) elif configSettings['basic']['onlineLearning'] == 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','onlinetraining','-c',updatedConfigFile]) elif configSettings['basic']['distributedLearning'] == 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','distributedtraining','-c',updatedConfigFile]) else: scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) cmd = [sys.executable, scriptPath,'-m','training','-c',updatedConfigFile] # task 4343 abort training training_proc = subprocess.Popen( cmd) outputStr = '' while training_proc.poll() == None: if getModelStatus(Existusecases,request.session['modelid']) == 'Terminated': kill_child_proc_rec(training_proc.pid) training_proc.kill() process_killed = True time.sleep(1) if process_killed: outputStr = 'aion_learner_status:{"status":"Fail","message":"Terminated by user"}' else: outputStr = read_log_file( updatedConfigFile) usename = request.session['UseCaseName'].replace(" ", "_") outputfile = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'etc','output.json') if os.path.isfile(outputfile): f1 = open(outputfile, "r+", encoding="utf-8") outputStr = f1.read() f1.close() else: if not isinstance( outputStr, str): outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resultJsonObj = json.loads(outputStr) #print(resultJsonObj) odataFile = request.session['outputfilepath'] with open(odataFile, 'w') as json_file: json.dump(resultJsonObj, json_file) json_file.close() model = Existusecases.objects.get(id=request.session['modelid']) request.session['ModelStatus'] = resultJsonObj['status'] ModelStatus = request.session['ModelStatus'] model.Status = resultJsonObj['status'] training_error = '' if resultJsonObj['status'] == 'SUCCESS': model.modelType = resultJsonObj['data']['ModelType'] model.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997 model.ProblemType = 'unsupervised' else: model.ProblemType = 'supervised' else: training_error = resultJsonObj['message'] model.save() problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_typ = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_typ = k break modeltyp = problem_typ listofmodels = '' problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) if mlmodels != '': listofmodels += str(mlmodels) if dlmodels != '': listofmodels += listofmodels+' '+str(dlmodels) from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Algorithms',listofmodels) # ----------------------------------------------------------------------------- # if (problem_type == 'classification' or problem_type == 'regression'): if len(mlmodels.split(',')) == 1: trainingTime = timeit.default_timer() - startTime trainingTime = round(trainingTime/60) # calculate the size of uploaded dataset filePath = configSettings['basic']['dataLocation'] sz = os.path.getsize(filePath) fileSizeMB = sz / (1024 * 1024) filesize = str(fileSizeMB) + " MB" featuresCount = str(len(configSettings['basic']['trainingFeatures'].split(','))) modelname = mlmodels.split(',')[0] fileSizeMBLimit = 0 configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config') if(os.path.isfile(configfilepath)): file = open(configfilepath, "r", encoding="utf-8") read = file.read() file.close() for line in read.splitlines(): if 'fileSizeMBLimit=' in line: fileSizeMBLimit = int(line.split('=',1)[1]) # append the new entry into config only if size of uploaded dataset meets the threshold if fileSizeMB > fileSizeMBLimit: _val = updateRunConfig(trainingTime, filesize, featuresCount, modelname, problem_type) # ----------------------------------------------------------------------------- # if resultJsonObj['status'] == 'SUCCESS': #from appbe import telemetry request.session['deploypath'] = str(resultJsonObj['data']['deployLocation']) from appbe.trainresult import ParseResults result, survical_images = ParseResults(outputStr) model_perf = getPerformanceMatrix(request.session['deploypath'],outputStr) #telemetry.telemetry_data('Training Successfully Done',selected_use_case+'_'+str(ModelVersion),str(listofmodels)) UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Success') request.session['currentstate'] = 3 request.session['finalstate'] = 4 request.session.save() file_path = request.session['logfilepath'] my_file = open(file_path, 'r',encoding="utf8") file_content = my_file.read() my_file.close() matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if "Status:-" in line] matched_status_lines = matched_lines[::-1] matched_status_lines = matched_status_lines[0] matched_status_lines = matched_status_lines.split('...') matched_status_lines = matched_status_lines[1] no_lines = len(matched_lines) if 'noflines' not in request.session: request.session['noflines'] = 0 request.session['noflines'] = request.session['noflines'] + 1 if request.session['ModelStatus'] != 'SUCCESS': numberoflines = request.session['noflines'] if numberoflines > no_lines: numberoflines = no_lines request.session['noflines'] = no_lines matched_lines = matched_lines[0:numberoflines] shortlogs = getStatusCount(matched_lines,request.session['total_steps']) temp = {} temp['modelName'] = request.session['UseCaseName'] temp['modelVersion'] = request.session['ModelVersion'] config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = configSettings['basic']['dateTimeFeature'] config['sequenceFeatures'] = configSettings['basic']['indexFeature'] config['FeaturesList'] = configSettings['basic']['trainingFeatures'] config['unimportantFeatures'] = '' config['targetFeature'] = configSettings['basic']['targetFeature'] modelCondition = '' problemtypes = configSettings['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break problem_type,dproblemType,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) configSettings['basic']['problem_type'] = problem_type configSettings['basic']['dproblem_type'] = dproblemType if mlmodels != '': configSettings['basic']['mllearner'] = 'enable' if dlmodels != '': configSettings['basic']['dllearner'] = 'enable' if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True': configSettings['basic']['selected_ML_Models'] = 'AutoGluon' configSettings['basic']['mllearner'] = 'enable' else: configSettings['basic']['selected_ML_Models'] = mlmodels configSettings['basic']['selected_DL_Models'] = dlmodels configSettings['basic']['smodel_size'] = smodelsize if 'noOfRecords' in configSettings['basic']: records = configSettings['basic']['noOfRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettings['basic']['dataLocation']) filesCount = 0 filesSize = 0 #print(configSettings['basic']['analysisType']['llmFineTuning'].lower()) #print(configSettings['basic']['folderSettings']['fileType'].lower()) if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document','llm_code']: filesCount,filesSize = getDataFileCountAndSize(configSettings['basic']) noofIteration = calculate_total_interations(configSettings) features = configSettings['basic']['trainingFeatures'].split(',') noOfTrainingFeatures = len(features) configSettings['basic']['problem_type']=problem_type featuretype = configSettings['advance']['profiler']['featureDict'] if ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels): selectedmodel = 'modelcomparision' else: selectedmodel = " " user_provided_data_type = {} text_type='' for feat_conf in featuretype: colm = feat_conf.get('feature', '') if feat_conf['type'] == "text": text_type="text" break contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' context = {'tab': 'trainresult','filesCount':filesCount,'filesSize':filesSize, 'result': result, 'selectedmodel': selectedmodel, 'advconfig': configSettings, 'shortlogs':shortlogs, 'selected_use_case': selected_use_case, 'noOfRecords': records,'noOfTrainingFeatures':noOfTrainingFeatures, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336 'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'model_perf': model_perf,'logs':matched_status_lines, 'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename} context['version'] = AION_VERSION return render(request, 'training.html', context) else: UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Error') request.session['currentstate'] = 3 request.session['finalstate'] = 4 #from appbe import telemetry if process_killed: errorMsg = 'Terminated by user' else: errorMsg = 'Model Training Error (check log file for more details)' contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' #telemetry.telemetry_data('Training Error',selected_use_case+'_'+str(ModelVersion),str(listofmodels)) context = {'tab': 'trainresult', 'error': errorMsg,'selected_use_case': selected_use_case,'contentdb':contentdb, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename} context['version'] = AION_VERSION return render(request, 'training.html', context) except Exception as e: log.info('Training Fail:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0' + 'sec' + ':' + 'Training fail '+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(e) return render(request, 'training.html', {'error': 'Model Training Error','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasename':usecasename,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) else: modelCondition = '' problemtypes = configSettings['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) configSettings['basic']['problem_type'] = problem_type configSettings['basic']['dproblem_type'] = dproblem_type if mlmodels != '': configSettings['basic']['mllearner'] = 'enable' if dlmodels != '': configSettings['basic']['dllearner'] = 'enable' if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True': configSettings['basic']['selected_ML_Models'] = 'AutoGluon' configSettings['basic']['mllearner'] = 'enable' else: configSettings['basic']['selected_ML_Models'] = mlmodels configSettings['basic']['selected_DL_Models'] = dlmodels if 'noofRecords' in configSettings['basic']: records = configSettings['basic']['noofRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettings['basic']['dataLocation']) filesCount = 0 filesSize = 0 print(configSettings['basic']['analysisType']['llmFineTuning'].lower()) print(configSettings['basic']['folderSettings']['fileType'].lower()) if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \ configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document', 'llm_code']: filesCount, filesSize = getDataFileCountAndSize(configSettings['basic']) noofIteration = calculate_total_interations(configSettings) features = configSettings['basic']['trainingFeatures'].split(',') noOfTrainingFeatures = len(features) configSettings['basic']['problem_type']=problem_type context = { 'advconfig': configSettings,'filesCount':filesCount,'filesSize':filesSize, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion,'noofIteration':noofIteration,'usecasename':usecasename, 'modelCondition':modelCondition, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures} context['version'] = AION_VERSION return render(request, 'training.html',context) def getTrainingTime(filePath, no_of_features): #filePath = 'C:\\MyFolder\AION\\AION Datasets\\Heavy Datasets\\class_1MRows_26Cols.csv' returnVal = '0_0' if(os.path.isfile(filePath)): trainingTime = 0 neartrainingTime = 0 # It's used to store the closest Training-Time nearsampleSize = 0 # It's used to store the closest Sample-Size leastSizeDifference = 0 # It's used to find the possible minimum difference between the dataset's actual size and Sample-Size in JSON file inRange = 0 # It's used to identify if Extrapolation is needed or not fileSizeMBLimit = 0 # It's used to check/limit the size of uploaded dataset acceptSizeVariance = 10 # It's used to cover the variance in sample-size featuresThreshold = 50 # It's used to set the boundary/binary-classification of records-typte # ------------------------------------------------------------------------------------------------------------ # configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config') if(os.path.isfile(configfilepath)): file = open(configfilepath, "r") read = file.read() file.close() for line in read.splitlines(): if 'fileSizeMBLimit=' in line: fileSizeMBLimit = int(line.split('=',1)[1]) if 'acceptSizeVariance=' in line: acceptSizeVariance = int(line.split('=',1)[1]) if 'featuresThreshold=' in line: featuresThreshold = int(line.split('=',1)[1]) # get the size of uploaded dataset/file (in MB) sz = os.path.getsize(filePath) fileSizeMB = sz / (1024 * 1024) # check if uploaded dataset/file is bigger than defined threshold or not. If yes, only than go to calculate the tentative training-time if(fileSizeMB > fileSizeMBLimit): configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training_runs.json') try: if(os.path.isfile(configfilepath)): # Opening JSON file f = open(configfilepath) # returns JSON object as a dictionary data = json.load(f) # Iterating through the json list for run in data['runs']: sampleSize = run['sampleSize'].replace(" MB","") sampleSize = int(float(sampleSize)) features = int(run['features']) # match records under 10% (+ or -) of variance sizeDifference = fileSizeMB - sampleSize if (sizeDifference < 0): sizeDifference = sizeDifference * -1 if (leastSizeDifference == 0): leastSizeDifference = sizeDifference # ------------------------------------------------------------------------------------------------ # if (no_of_features <= featuresThreshold): if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features <= featuresThreshold): acceptSizeVariance = (sizeDifference * 100)/fileSizeMB trainingTime = run['trainingTime'].replace(" Mins","") trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_match' inRange = 1 # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file if (sizeDifference <= leastSizeDifference and features <= featuresThreshold): nearsampleSize = sampleSize leastSizeDifference = sizeDifference neartrainingTime = run['trainingTime'].replace(" Mins","") neartrainingTime = int(neartrainingTime) # ------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------ # if (no_of_features > featuresThreshold): if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features > featuresThreshold): acceptSizeVariance = (sizeDifference * 100)/fileSizeMB trainingTime = run['trainingTime'].replace(" Mins","") trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_match' inRange = 1 # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file if (sizeDifference <= leastSizeDifference and features > featuresThreshold): nearsampleSize = sampleSize leastSizeDifference = sizeDifference neartrainingTime = run['trainingTime'].replace(" Mins","") neartrainingTime = int(neartrainingTime) # ------------------------------------------------------------------------------------------------ # # When there is no record (sample-size) matched with 10% of variance then go for the extrapolation if (inRange == 0): sizeDifference = fileSizeMB - nearsampleSize ratio = (sizeDifference * 100)/nearsampleSize trainingTime = neartrainingTime + ((ratio * neartrainingTime)/100) trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_extrapolation' # Closing file f.close() except Exception as inst: pass return returnVal def getllmmodelscore(usecaseid,model): DB_TABLE = 'llm_benchmarking' from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = str(Path(DATA_DIR)/'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') usecaseidcond = f'usecaseid="{usecaseid}"' helptxt ='' msg = '' #print(usecaseidcond) if sqlite_obj.table_exists(DB_TABLE): usecasemodelscore = sqlite_obj.read_data(DB_TABLE,usecaseidcond) status = '' finetunedscore = 'NA' foundationscore = 'NA' benchmarkdataset = 'NA' modelfunctionscore = {'CodeLLaMA-2-7B':'33%','CodeLLaMA-2-13B':'36%','LLaMA-2-7B':'16.8%','LLaMA-2-13B':'20.1%','LLaMA-2-70B':'31.0%','LLaMA-2-Chat-7B':'76%','LLaMA-2-Chat-13B':'79.2%','LLaMA-2-Chat-70B':'84.2%','Falcon-7B':'NA','Falcon-40B':'NA'} foundationscore = modelfunctionscore.get(model,'NA') scoretype='NA' for x in usecasemodelscore: #print(x) keys = sqlite_obj.column_names(DB_TABLE) #print(keys) status = x[keys.index('state')] if status.lower() in ['success','finished']: result_type = x[keys.index('result_type')] result = eval(x[keys.index('result')]) scoretype = list(result.keys())[0] if scoretype.lower() == 'hellaswag': benchmarkdataset = 'HellaSwag' helptxt = 'HellaSwag is a challenge dataset for evaluating commonsense Natural Language Inferencing. It consists of ~70k multiple choice questions with four answer choices about what might happen next. The correct answer is the (real) sentence for the next event; the three incorrect answers are adversarial generated and human verified.' else: benchmarkdataset = 'HumanEval' if result_type == 'dict': sub_result = list(result.values())[0] scoretype = list(sub_result.keys())[0] if scoretype == 'acc': scoretype = 'Accuracy' finetunedscore = str(round((float(list(sub_result.values())[0])*100),2)) finetunedscore = f'{finetunedscore}%' else: finetunedscore = str(round((float(list(result.values())[0])*100),2)) elif status.lower() == 'error': msg = x[keys.index('result')] evaluation = {'status':status,'msg':msg,'benchmarkdataset':benchmarkdataset,'scoreType':scoretype,'finetunedscore':str(finetunedscore),'foundationscore':foundationscore,'helptxt':helptxt} else: evaluation = {'status':'','scoreType':'','benchmarkdataset':'','finetunedscore':'','foundationscore':'','helptxt':''} #print(evaluation) return evaluation def trainmodel(request): from appbe.aion_config import settings usecasetab = settings() selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] usecasename = request.session['usecaseid'].replace(" ", "_") try: checkModelUnderTraining(request,usecasedetails,Existusecases) computeinfrastructure = compute.readComputeConfig() updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) total_steps = calculate_total_activities(configSettingsJson) warning = check_unsupported_col(configSettingsJson) time_series_warning = check_granularity(configSettingsJson) noofIteration = calculate_total_interations(configSettingsJson) request.session['total_steps'] = total_steps p = usecasedetails.objects.get(usecaseid=request.session['usecaseid']) usecaseid = p.id modelCondition = '' problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettingsJson) configSettingsJson['basic']['problem_type'] = problem_type configSettingsJson['basic']['dproblem_type'] = dproblem_type if mlmodels != '': configSettingsJson['basic']['mllearner'] = 'enable' if dlmodels != '': configSettingsJson['basic']['dllearner'] = 'enable' if configSettingsJson['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettingsJson['basic']['analysisType']['multiModalLearning'] == 'True': configSettingsJson['basic']['selected_ML_Models'] = 'AutoGluon' configSettingsJson['basic']['mllearner'] = 'enable' else: configSettingsJson['basic']['selected_ML_Models'] = mlmodels configSettingsJson['basic']['selected_DL_Models'] = dlmodels configSettingsJson['basic']['smodel_size'] = smodelsize # ---------------------------------------------------------------------- # cal_trainingTime = 0. is_extrapolation = 'No' is_DataImbalance = 'No' if (request.session['ModelStatus'] == 'Not Trained' and (problem_type == 'classification' or problem_type == 'regression')): # <!-- ------------------------------ Data Imbalance Changes ------------------------------ --> if ( problem_type == 'classification' ): is_DataImbalance = 'Yes' # <!-- ------------------------------------------------------------------------------------- --> if len(mlmodels.split(',')) == 1: filePath = configSettingsJson['basic']['dataLocation'] no_of_features = len(configSettingsJson['basic']['trainingFeatures'].split(',')) returnVal = getTrainingTime(filePath, no_of_features) cal_trainingTime = int(returnVal.split('_')[0]) if (returnVal.split('_')[1] == 'extrapolation'): is_extrapolation = 'Yes' # ---------------------------------------------------------------------- # features = configSettingsJson['basic']['trainingFeatures'].split(',') if configSettingsJson['basic']['targetFeature'] in features: features.remove(configSettingsJson['basic']['targetFeature']) noOfTrainingFeatures = len(features) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] if 'noOfRecords' in configSettingsJson['basic']: records = configSettingsJson['basic']['noOfRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettingsJson['basic']['dataLocation']) filesCount = 0 filesSize = 0 try: if configSettingsJson['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \ configSettingsJson['basic']['folderSettings']['fileType'].lower() in ['llm_document', 'llm_code']: filesCount, filesSize = getDataFileCountAndSize(configSettingsJson['basic']) except: pass if request.session['finalstate'] <= 3: request.session['finalstate'] = 3 request.session['currentstate'] = 3 if request.session['ModelStatus'].lower() == 'running': model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) status = checkversionrunningstatus(model.id,usecasedetails,Existusecases) request.session['ModelStatus'] = status request.session.save() if request.session['ModelStatus'] == 'SUCCESS': model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() model_perf = getPerformanceMatrix(request.session['deploypath'],training_output) from appbe.trainresult import ParseResults result, survical_images = ParseResults(training_output) file_path = request.session['logfilepath'] my_file = open(file_path, 'r',encoding="utf-8") file_content = my_file.read() my_file.close() matched_lines = [line.replace('Status:-', '') for line in file_content.split('\n') if "Status:-" in line] matched_status_lines = matched_lines[::-1] matched_status_lines = matched_status_lines[0] matched_status_lines = matched_status_lines.split('...') matched_status_lines = matched_status_lines[1] no_lines = len(matched_lines) if 'noflines' not in request.session: request.session['noflines'] = 0 request.session['noflines'] = request.session['noflines'] + 1 if request.session['ModelStatus'] != 'SUCCESS': numberoflines = request.session['noflines'] if numberoflines > no_lines: numberoflines = no_lines request.session['noflines'] = no_lines matched_lines = matched_lines[0:numberoflines] shortlogs = getStatusCount(matched_lines,request.session['total_steps']) featuretype = configSettingsJson['advance']['profiler']['featureDict'] user_provided_data_type = {} text_type='' for feat_conf in featuretype: colm = feat_conf.get('feature', '') if feat_conf['type'] == "text": text_type="text" break configSettingsJson['basic']['problem_type']= problem_type configSettingsJson['basic']['selected_ML_Models']= mlmodels if ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels): selectedmodel = 'modelcomparision' else: selectedmodel = " " contentdb = '' finetunedeval = {} if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' if problem_type.lower() == 'llmfinetuning': modelSize = getModelSize(configSettingsJson,mlmodels) usecasename = request.session['usecaseid'].replace(" ", "_") finetunedeval = getllmmodelscore(f'{usecasename}_{ModelVersion}',f'{mlmodels}-{modelSize}') context = {'result': result,'filesCount':filesCount,'filesSize':filesSize, 'text_type':text_type,'selectedmodel':selectedmodel, 'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'warning':warning,'time_series_warning':time_series_warning, 'modelCondition':modelCondition,'ModelVersion': ModelVersion,'shortlogs':shortlogs,'logs':matched_status_lines,'currentstate': request.session['currentstate'],'finalstate': request.session['finalstate'], 'model_perf': model_perf,'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb,'finetunedeval':finetunedeval} else: contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': status = importlib.util.find_spec('chromadb') if not status: contentdb = 'CSV' else: contentdb = 'VectorDB' else: status = importlib.util.find_spec('chromadb') if not status: contentdb = 'CSV' else: contentdb = 'VectorDB' configSettingsJson['basic']['problem_type']=problem_type context = {'cal_trainingTime':cal_trainingTime,'filesCount':filesCount,'filesSize':filesSize, 'is_extrapolation': is_extrapolation,'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus, 'warning':warning,'time_series_warning':time_series_warning,'is_DataImbalance' : is_DataImbalance, 'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'], 'modelCondition':modelCondition,'finalstate': request.session['finalstate'], 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'contentdb':contentdb} return render(request, 'training.html', context) except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = { 'error': 'Model Training Error','selected_use_case': selected_use_case,'contentdb':'','usecasename':usecasename, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} return render(request, 'training.html', context)
apps.py
from django.apps import AppConfig class ModelTrainingConfig(AppConfig): name = 'appfe.modelTraining'
tests.py
from django.test import TestCase # Create your tests here.
landing_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.pages import getusercasestatus from appbe.pages import getversion AION_VERSION = getversion() from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import os from django.db.models import Max, F import pandas as pd from appbe.publish import check_input_data from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe import installPackage import json from appbe import compute from appbe.training import checkModelUnderTraining import logging def opentraininglogs(request, id,currentVersion): from appbe.pages import usecases_page try: from appbe import installPackage modelID = installPackage.getMIDFromUseCaseVersion(id,currentVersion,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type.lower() in ['videoforecasting','imageclassification','objectdetection','document','llmfinetuning']: request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] if problem_type.lower() == 'llmfinetuning': request.session['fileExtension'] = configSettings['basic']['folderSettings']['fileExtension'] else: request.session['datalocation'] = str(p.DataFilePath) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' from appfe.modelTraining.views import uploaddata return uploaddata(request) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION}) def retrain(request, id,currentVersion): from appbe.aion_config import eda_setting from appbe.pages import usecases_page from appbe.aion_config import settings usecasetab = settings() try: p = usecasedetails.objects.get(id=id) s1 = Existusecases.objects.filter(ModelName=id).annotate(maxver=Max('ModelName__existusecases__Version')) config_list = s1.filter(Version=F('maxver')) if config_list.count() > 0: Version = config_list[0].Version Version = Version + 1 else: Version = 1 usecasename = p.UsecaseName request.session['ModelName'] = p.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.usecaseid request.session['ModelVersion'] = Version request.session['ModelStatus'] = 'Not Trained' request.session['finalstate'] = 0 usecase = usecasedetails.objects.all().order_by('-id') # Retraing settings changes # -------- S T A R T -------- model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) samplePercentage = 100 samplePercentval = 0 showRecommended = False if(model.count() > 0): indexVal = 0 configfile = str(model[indexVal].ConfigPath) f = open(configfile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) dataFile = configSettings['basic']['dataLocation'] if configSettings['basic']['folderSettings']['fileType'] == 'Object': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['objectLabelFileName'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] return objectlabeldone(request) else: request.session['datalocation'] = str(configSettings['basic']['dataLocation']) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' df = pd.read_csv(dataFile, encoding='utf8',nrows=10,encoding_errors= 'replace') records = df.shape[0] df1 = check_input_data(usecasename) if df1.shape[0] > 0: df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace') df = df.append(df1, ignore_index=True) df = df.reset_index(drop=True) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') df.to_csv(dataFile, index=False) print(df.shape[0]) request.session['datalocation'] = str(dataFile) request.session['NoOfRecords'] = records request.session['IsRetraining'] = 'Yes' df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) # from AION import ux_eda # eda_obj = ux_eda(dataFile) # featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature = eda_obj.getFeatures() featuresList = df.columns.tolist() numberoffeatures = len(featuresList) from appfe.modelTraining.views import getimpfeatures imp_features = getimpfeatures(dataFile,numberoffeatures) check_df = pd.read_csv(dataFile,encoding='utf8',encoding_errors= 'replace') # EDA Performance change # ---------------------------- sample_size = int(eda_setting()) # dflength = len(eda_obj.getdata()) dflength = len(check_df) if dflength > sample_size: samplePercentage = int((sample_size/dflength) * 100) samplePercentval = samplePercentage / 100 showRecommended = True # ---------------------------- statusmsg = 'Data loaded Successfully for Retraining.' computeinfrastructure = compute.readComputeConfig() # ---------------------------- selected_use_case = request.session['UseCaseName'] ModelVersion = Version ModelStatus = 'Not Trained' if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 # Retraing settings changes # -------- S T A R T -------- # return render(request, 'usecases.html', {'usecasedetail': usecase,'nouc':nouc,'models': models, 'selectedusecase': usecasename, # 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, # 'ModelVersion': ModelVersion, 'selected': 'usecase'}) ps = Existusecases(DataFilePath=request.session['datalocation'], DeployPath='', Status='Not Trained',ConfigPath=configfile, Version=Version, ModelName=p,TrainOuputLocation='') ps.save() if(model.count() > 0): context = {'range':range(1,101),'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList, 'tab': 'tabconfigure','data': df_json,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','exploratory':False, 'status_msg': statusmsg,'computeinfrastructure':computeinfrastructure,'IsRetrainingModel':True,'imp_features':imp_features,'numberoffeatures':numberoffeatures, 'dataSetPath': dataFile,'usecasetab':usecasetab,'finalstate':request.session['finalstate'],'version':AION_VERSION} else: context = {'tab': 'tabconfigure','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'Modelretrain':request.session['ModelVersion'],'finalstate':request.session['finalstate'],'version':AION_VERSION} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) checkModelUnderTraining(request,usecasedetails,Existusecases) request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) #print(context) context['version'] = AION_VERSION context['Status'] = 'Error' context['Msg'] = 'Error in retraining usecase. Check log file for more details' return render(request,action,context) def launchmodel(request, id,version): from appbe.pages import usecases_page try: modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type == 'videoForecasting' or problem_type == 'imageClassification' or problem_type == 'objectDetection': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] elif configSettings['basic']['folderSettings']['fileType'] == 'Document': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] else: request.session['datalocation'] = str(p.DataFilePath) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' from appfe.modelTraining.prediction_views import Prediction return Prediction(request) except Exception as e: print(e) return render(request, 'prediction.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION}) def modxplain(request, id,version): from appbe.pages import usecases_page log = logging.getLogger('log_ux') modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' log.info('modxplain:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0 ' + 'sec' + ':' + 'Error:Error in model launching: Some of the files are missing') return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status from appfe.modelTraining import visualizer_views as v return v.xplain(request) def moddrift(request, id,version): from appbe.pages import usecases_page modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status f = open( configpath, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) trainingdataloc = configSettingsJson['basic']['dataLocation'] request.session['datalocation']= trainingdataloc return inputdrift(request) def inputdrift(request): log = logging.getLogger('log_ux') from appbe.aion_config import settings usecasetab = settings() from appbe import service_url try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() if ModelStatus != 'SUCCESS': context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} log.info('Error Please train the model first or launch an existing trained model') else: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break problem = problem_type ser_url = service_url.read_monitoring_service_url_params(request) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion) pser_url = service_url.read_performance_service_url_params(request) pser_url = pser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion) if problem.lower() not in ['classification','regression']: context = {'error': 'Input drift only available for classification and regression problems', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'version':AION_VERSION, 'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} else: context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'version':AION_VERSION, 'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} return render(request, 'inputdrif.html', context) except Exception as e: print(e) log.info('inputdrift; Error: Failed to perform drift analysis'+str(e)) return render(request, 'inputdrif.html', {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION,'error':'Fail to do inputdrift analysis','usecasetab':usecasetab})
AirflowLib.py
# # AirflowLib.py # # It contains methods to consume rest API of Apache airflow instance # Apache Airflow exposed experimental API # One can achieve the API output just by using the methods implemented within this python file by importing the same # import requests import pandas as pd # base_url = 'http://localhost:8080/api/experimental' # It defines the API error which actually raised when error occured during API consumption from modelTraining.airflow_config import base_url class ApiError(Exception): """An API Error Exception""" def __init__(self, status): self.status = status def __str__(self): return "APIError: status={}".format(self.status) # This method takes dagId as parameter and return the list of Dag Run from apache airflow instance def GetDagRunList(dagId): resp = requests.get(base_url + '/dags/' + dagId + '/dag_runs') if resp.status_code != 200: raise ApiError('GetDagRunList {}'.format(resp)) dfData = ConvertJSONtoDF(resp.json()) return dfData # It is responsible to create/trigger dag of the Airflow instance # It takes 2 parameter dagId and paramJson def TriggerDag(dagId, paramJson): paramJson = {"conf": "{\"key\":\"value\"}"} resp = requests.post(base_url + '/dags/' + dagId + '/dag_runs', json=paramJson) print(resp) if resp.status_code != 200: raise ApiError('TriggerDag {}'.format(resp)) return resp.json() # This method toggle the Dag as off in the airflow instance def PauseDagRun(dagId): resp = requests.get(base_url + '/dags/' + dagId + '/paused/true') if resp.status_code != 200: raise ApiError('PauseDagRun {}'.format(resp)) return resp.json() # This method toggle the Dag as on in the airflow instance def UnPauseDagRun(dagId): resp = requests.get(base_url + '/dags/' + dagId + '/paused/false') if resp.status_code != 200: raise ApiError('UnPauseDagRun {}'.format(resp)) return resp.json() # It checks if Apache Airflow instance is up and running def TestAPI(): resp = requests.get(base_url + '/test') if resp.status_code != 200: raise ApiError('TestAPI {}'.format(resp)) return resp.json() # It return the latest dag run info for each available dag def GetLatestDagRun(): resp = requests.get(base_url + '/latest_runs') if resp.status_code != 200: raise ApiError('GetLatestDagRun {}'.format(resp)) dfData = ConvertJSONtoDF(resp.json()['items']) return dfData # It will return the list of available pools def GetPoolsList(): resp = requests.get(base_url + '/pools') if resp.status_code != 200: raise ApiError('GetPoolsList {}'.format(resp)) return resp.json() # It return the specific pool info by pool Name def GetPoolInfo(poolName): resp = requests.get(base_url + '/pools/' + poolName) if resp.status_code != 200: raise ApiError('GetPoolInfo {}'.format(resp)) return resp.json() # Return the task info created within the DAG def GetDagTaskInfo(dagId, taskId): resp = requests.get(base_url + '/dags/' + dagId + '/tasks/' + taskId) if resp.status_code != 200: raise ApiError('GetDagTaskInfo {}'.format(resp)) return resp.json() # Returns the Paused state of a DAG def GetDagPausedState(dagId): resp = requests.get(base_url + '/dags/' + dagId + '/paused') if resp.status_code != 200: raise ApiError('GetDagPausedState {}'.format(resp)) return resp.json() # It will create a pool into the Airflow instance def CreatePool(name, description, slots): paramJson = {"description": description, "name": name, "slots": slots} resp = requests.post(base_url + '/pools', json=paramJson) if resp.status_code != 200: raise ApiError('CreatePool {}'.format(resp)) return resp.json() # It is responsible to delete the specific pool by pool Name def DeletePool(name): resp = requests.delete(base_url + '/pools/' + name) if resp.status_code != 200: raise ApiError('DeletePool {}'.format(resp)) return resp.json() def ConvertJSONtoDF(jsonData): df = pd.json_normalize(jsonData) return df
settings_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.pages import getusercasestatus from appbe.pages import getversion AION_VERSION = getversion() from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases from appbe.aion_config import getrunningstatus import time def computetoGCPLLaMA13B(request): from appbe import compute from appbe.pages import get_usecase_page try: compute.updateToComputeSettings('GCP') time.sleep(2) request.session['IsRetraining'] = 'No' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION}) def computetoLLaMMA7b(request): from appbe import compute from appbe.pages import get_usecase_page try: compute.updateToComputeSettings('AWS') time.sleep(2) #print(1) request.session['IsRetraining'] = 'No' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION}) def computetoAWS(request): from appbe import compute from appbe.pages import get_usecase_page try: compute.updateToComputeSettings('AWS') time.sleep(2) #print(1) request.session['IsRetraining'] = 'No' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION}) def setting_context(request): from appbe.aion_config import get_graviton_data from appbe.aion_config import get_edafeatures from appbe.aion_config import get_telemetryoptout from appbe.aion_config import get_llm_data from appbe.aion_config import running_setting from appbe import compute from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage from appbe.aion_config import settings usecasetab = settings() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) graviton_url, graviton_userid = get_graviton_data() No_of_Permissible_Features_EDA = get_edafeatures() telemetryoptout = get_telemetryoptout() llm_key,llm_url,api_type,api_version =get_llm_data() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() try: context = {'computeinfrastructure':computeinfrastructure,'graviton_url':graviton_url,'graviton_userid':graviton_userid,'FeaturesEDA':No_of_Permissible_Features_EDA,'llm_key':llm_key,'llm_url':llm_url,'ruuningSetting':ruuningSetting,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'api_type':api_type,'api_version':api_version,'telemetryoptout':telemetryoptout, 'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion':ModelVersion,'usecasetab':usecasetab,'azurestorage':get_azureStorage()} context['version'] = AION_VERSION return context except Exception as e: print(e) context = {'computeinfrastructure':computeinfrastructure,'error':'Error in Settings'} context['version'] = AION_VERSION return context def startKafka(request): try: nooftasks = getrunningstatus('AION_Consumer') if len(nooftasks): status = 'AION Kafka Consumer Already Running' else: import subprocess kafkapath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','sbin','AION_Consumer.bat')) #subprocess.Popen(kafkapath, shell=True) os.system('start cmd /c "'+kafkapath+'"') #addKafkaModel(request,request.session['datalocation']) status = 'Kafka Consumer Initiated Successfully' context = settings(request) context['status'] = status return render(request, 'settings_page.html', context) except: return render(request, 'settings_page.html', {'error':'Fail to start Kafka'}) def startPublishServices(request): from appbe.models import startServices startServices(request,usecasedetails,Existusecases) status = 'Publish services start successfully' context = setting_context(request) context['status'] = status return render(request, 'settings_page.html', context) def saveopenaiconfig(request): from appbe.aion_config import saveopenaisettings try: saveopenaisettings(request) context = setting_context(request) context['version'] = AION_VERSION context['success'] = True return render(request, 'settings_page.html', context) except: context = {'error': 'error', 'runtimeerror': 'runtimeerror'} return render(request, 'settings_page.html', context) def savegravitonconfig(request): from appbe.aion_config import savegravitonconfig try: savegravitonconfig(request) context = setting_context(request) context['version'] = AION_VERSION context['success'] = True return render(request, 'settings_page.html', context) except: context={'error':'error','runtimeerror':'runtimeerror'} return render(request, 'settings_page.html',context) def saveaionconfig(request): from appbe.aion_config import saveconfigfile try: saveconfigfile(request) context = setting_context(request) context['version'] = AION_VERSION context['success'] = True return render(request, 'settings_page.html', context) except: context={'error':'error','runtimeerror':'runtimeerror'} return render(request, 'settings_page.html',context) def settings_page(request): try: context = setting_context(request) context['version'] = AION_VERSION context['selected'] = 'Settings' return render(request, 'settings_page.html', context) except: return render(request, 'settings_page.html', {'error':'Please enter valid inputs','version':AION_VERSION}) def adds3bucket(request): try: if request.method == 'POST': from appbe.s3bucketsDB import add_new_s3bucket status = add_new_s3bucket(request) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Some values are missing','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} if status == 'error1': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Fail to Add S3bucket'}) def GCSbucketAdd(request): try: if request.method == 'POST': from appbe.gcsbucketsDB import add_new_GCSBucket status = add_new_GCSBucket(request) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Some values are missing','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} if status == 'error1': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except Exception as e: print(e) return render(request, 'settings_page.html',{'error': 'Fail to Add GCSbucket','version':AION_VERSION}) def azurestorageAdd(request): try: if request.method == 'POST': from appbe.azureStorageDB import add_new_azureStorage status = add_new_azureStorage(request) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Some values are missing','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} if status == 'error1': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Bucket with same name already exist','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Fail to Add Azure Container'}) def removeazurebucket(request,name): try: if request.method == 'GET': from appbe.azureStorageDB import remove_azure_bucket status = remove_azure_bucket(name) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Failed to delete Azure Bucket','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Failed to delete Azure Bucket'}) def removes3bucket(request,name): try: if request.method == 'GET': from appbe.s3bucketsDB import remove_s3_bucket status = remove_s3_bucket(name) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Failed to delete S3bucket','s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Failed to delete S3bucket'}) def removegcsbucket(request,name): try: if request.method == 'GET': from appbe.gcsbucketsDB import remove_gcs_bucket status = remove_gcs_bucket(name) context = setting_context(request) context['version'] = AION_VERSION if status == 'error': from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage context = {'error':'Failed to delete GCS Bucket','gcsbuckets':get_gcs_bucket(),'s3buckets':get_s3_bucket(),'azurestorage':get_azureStorage(),'version':AION_VERSION} return render(request,'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Failed to delete GCS Bucket'}) def gcpcomputesettings(request): try: from appbe import compute status = compute.updateGCPConfig(request) context = setting_context(request) if status == 'error': context['ErrorMsg'] = 'Some values are missing' context['version'] = AION_VERSION context['success'] = True return render(request, 'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Fail to Save GCP Settings','version':AION_VERSION}) def amazonec2settings(request): try: from appbe import compute status = compute.updateComputeConfig(request) context = setting_context(request) if status == 'error': context['ErrorMsg'] = 'Some values are missing' context['version'] = AION_VERSION context['success'] = True return render(request, 'settings_page.html',context) except: return render(request, 'settings_page.html',{'error': 'Fail to Save AWS Settings','version':AION_VERSION})
dg_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from appbe.pages import getversion AION_VERSION = getversion() def datagenrate(request): from appbe.aion_config import settings usecasetab = settings() context = {'selected':'DataOperations','usecasetab':usecasetab} context['version'] = AION_VERSION return render(request, "datagenrate.html",context) def generateconfig(request): from appbe import generate_json_config as gjc try: gjc.generate_json_config(request) return render(request, "datagenrate.html",context={'success':'success','selected':'DataOperations'}) except Exception as e: print(e) return render(request, "datagenrate.html",context={'error':str(e),'selected':'DataOperations'})
admin.py
from django.contrib import admin # Register your models here.
prediction_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.pages import getusercasestatus from appbe.pages import getversion AION_VERSION = getversion() from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import os from django.db.models import Max, F import pandas as pd from appbe.publish import check_input_data from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION import json from appbe import compute import logging def get_instance_id(modelID): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID) print(data) if len(data) > 0: return (data[3]+' instance '+data[2]) else: return 'Instance ID not available' else: return 'Instance ID not available' def PredictForSingleInstance(request): from appbe.trainresult import ParseResults submittype = request.POST.get('predictsubmit') from appbe.prediction import singleInstancePredict context = singleInstancePredict(request,Existusecases,usecasedetails) if submittype.lower() == 'predict': from appbe.train_output import get_train_model_details trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request) imagedf = '' model_count = Existusecases.objects.filter(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'],Status='SUCCESS').count() model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+", encoding="utf-8") training_output = f.read() f.close() result,survical_images = ParseResults(training_output) context.update({'result':result}) context['version'] = AION_VERSION context['modelType'] = modelType context['bestmodel'] = bestmodel return render(request, 'prediction.html', context) else: context['version'] = AION_VERSION return context def getTrainingStatus(request): model = Existusecases.objects.get(ModelName=request.session['ModelName'],Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+", encoding="utf-8") training_output = f.read() f.close() from appbe.trainresult import FeaturesUsedForTraining return FeaturesUsedForTraining(training_output) def Prediction(request): log = logging.getLogger('log_ux') from appbe.trainresult import ParseResults from appbe.dataIngestion import delimitedsetting from appbe import service_url from appbe.aion_config import settings usecasetab = settings() try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() #print(computeinfrastructure) if ModelStatus != 'SUCCESS': log.info('Prediction:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first or launch an existing trained model') return render(request, 'prediction.html', { 'error': 'Please train the model first or launch an existing trained model', 'selected': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecasetab':usecasetab,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION}) else: if 'ModelVersion' not in request.session: log.info('Prediction:' + str(selected_use_case) + ':' + str( ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first') return render(request, 'prediction.html', {'usecasetab':usecasetab,'error': 'Please train the model first', 'selected': 'prediction','version':AION_VERSION}) elif request.session['ModelVersion'] == 0: log.info('Prediction:' + str(selected_use_case) + ':' + str( ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error: Please train the model first') return render(request,'prediction.html',{'usecasetab':usecasetab,'error':'Please train the model first','selected':'prediction','version':AION_VERSION}) else: from appbe.train_output import get_train_model_details trainingStatus,modelType,bestmodel = get_train_model_details(DEPLOY_LOCATION,request) imagedf = '' model_count = Existusecases.objects.filter(ModelName=request.session['ModelName'],Version=request.session['ModelVersion'],Status='SUCCESS').count() model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() result,survical_images = ParseResults(training_output) if model_count >= 1: updatedConfigFile = request.session['config_json'] #print(updatedConfigFile) f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) analysisType = configSettingsJson['basic']['analysisType'] problem_type = "" for k in analysisType.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type.lower() == 'recommendersystem': modelName = "" recommender_models = configSettingsJson['basic']['algorithms']['recommenderSystem'] for k in recommender_models.keys(): if configSettingsJson['basic']['algorithms']['recommenderSystem'][k] == 'True': modelName = k break if modelName.lower() == 'associationrules-apriori': return render(request, 'prediction.html', { 'error': 'Prediction not supported for Association Rules (Apriori)', 'selected': 'prediction','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version':AION_VERSION}) delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier']) #problemtypes = configSettingsJson['basic']['analysisType'] #print(problemtypes.keys()) from appfe.modelTraining.train_views import getMLModels problem_type,dproblemtype,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettingsJson) iterName = request.session['usecaseid'].replace(" ", "_") selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] if problem_type == 'timeSeriesForecasting': #task 11997 inputFieldsDict = {'noofforecasts': 10} elif problem_type == 'recommenderSystem' and mlmodels=='ItemRating': inputFieldsDict = {"uid": 1, "numberOfRecommendation":10} #Task 11190 elif problem_type == 'stateTransition': inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] if inputFeatures != '': inputFeaturesList = inputFeatures.split(',') else: inputFeaturesList = [] inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'} else: inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] if inputFeatures != '': inputFeaturesList = inputFeatures.split(',') else: inputFeaturesList = [] if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) if configSettingsJson['basic']['contextFeature'] != '': inputFeaturesList.append(configSettingsJson['basic']['contextFeature']) if problem_type == 'llmFineTuning': inputFeaturesList.append('Temperature') inputFeaturesList.append('Max Tokens') if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997 if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na': inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature']) dataFilePath = str(configSettingsJson['basic']['dataLocation']) if problem_type != 'llmFineTuning': if os.path.isfile(dataFilePath): df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace') try: inputFieldsDict = df.to_dict(orient='index')[0] except: inputFieldsDict = pd.Series(0, index =inputFeaturesList).to_dict() else: inputFieldsDict = {"File":"EnterFileContent"} else: inputFieldsDict = pd.Series('', index =inputFeaturesList).to_dict() inputFieldsDict['Temperature'] = '0.1' from appbe.prediction import get_instance hypervisor,instanceid,region,image = get_instance(iterName+'_'+str(ModelVersion)) if hypervisor.lower() == 'aws': inputFieldsDict['Max Tokens'] = '1024' else: inputFieldsDict['Max Tokens'] = '4096' inputFields = [] inputFields.append(inputFieldsDict) settings_url = '' if problem_type == 'llmFineTuning': ser_url = get_instance_id(iterName+'_'+str(ModelVersion)) settings_url = '' modelSize = '' if 'modelSize' in configSettingsJson['basic']: selectedModelSize = configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels] for k in selectedModelSize.keys(): if configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True': modelSize = k break mlmodels = mlmodels+'-'+modelSize elif problem_type == 'stateTransition': ser_url = service_url.read_service_url_params(request) settings_url = service_url.read_service_url_params(request) ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+iterName+'&version='+str(ModelVersion) settings_url = settings_url+'pattern_anomaly_settings?usecaseid='+iterName+'&version='+str(ModelVersion) else: ser_url = service_url.read_service_url_params(request) ser_url = ser_url+'predict?usecaseid='+iterName+'&version='+str(ModelVersion) onnx_runtime = False analyticsTypes = problem_type usecasename = request.session['usecaseid'].replace(" ", "_") return render(request, 'prediction.html', {'inputFields': inputFields,'usecasename':usecasename,'mlmodels':mlmodels,'configSettingsJson':configSettingsJson,'result':result,'imagedf':imagedf, 'selected_use_case': selected_use_case,'ser_url':ser_url,'analyticsType':analyticsTypes,'settings_url':settings_url, 'ModelStatus': ModelStatus,'onnx_edge':onnx_runtime,'ModelVersion': ModelVersion, 'selected': 'prediction','computeinfrastructure':computeinfrastructure,'version':AION_VERSION,'modelType':modelType,'bestmodel':bestmodel,'usecasetab':usecasetab}) else: log.info('Prediction; Error: Please train the model first') return render(request, 'prediction.html', {'usecasetab':usecasetab,'error': 'Please train the model first', 'selected': 'prediction','version':AION_VERSION}) except Exception as e: print(e) log.info('Prediction:' + str(selected_use_case) + ':' + str( ModelVersion) + ':' + '0' + 'sec' + ':' + 'Error:'+str(e)) return render(request, 'prediction.html',{'usecasetab':usecasetab,'error': 'Failed to perform prediction', 'selected': 'prediction','version':AION_VERSION})
drift_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.pages import getusercasestatus from appbe.pages import getversion AION_VERSION = getversion() from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import os from django.db.models import Max, F import pandas as pd from appbe.publish import check_input_data from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe import installPackage import json from appbe import service_url from appbe import compute import sys import csv import time from appbe.training import checkModelUnderTraining import logging def Distribution(request): from appbe import exploratory_Analysis as ea log = logging.getLogger('log_ux') from appbe.aion_config import settings usecasetab = settings() computeinfrastructure = compute.readComputeConfig() try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Drift','Yes') t1 = time.time() model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() training_output = json.loads(training_output) featuresused = training_output['data']['featuresused'] feature = eval(featuresused) dataFilePath = request.session['datalocation'] selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] ser_url = service_url.read_monitoring_service_url_params(request) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion) pser_url = service_url.read_performance_service_url_params(request) pser_url = pser_url+'performanceusecaseid='+iterName+'&version='+str(ModelVersion) if request.POST.get('inputdriftsubmit') == 'trainingdatadrift': historicadata = request.session['datalocation'] trainingdf = pd.read_csv(historicadata) trainingDrift = ea.getDriftDistribution(feature, trainingdf) newDataDrift = '' concatDataDrift = '' drift_msg = '' driftdata = 'NA' else: historicadata = request.session['datalocation'] trainingdf = pd.read_csv(historicadata) trainingDrift = '' type = request.POST.get("optradio") if type == "url": try: url = request.POST.get('urlpathinput') newdatadf = pd.read_csv(url) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv') newdatadf.to_csv(dataFile, index=False) request.session['drift_datalocations']= dataFile driftdata = request.session['drift_datalocations'] except Exception as e: request.session['currentstate'] = 0 e = str(e) if e.find("tokenizing")!=-1: error = "This is not an open source URL to access data" elif e.find("connection")!=-1: error = "Can not access the URL through HCL network, please try with other network" else: error = 'Please provide a correct URL' context = {'error': error,'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'emptycsv':'emptycsv','s3buckets': get_s3_bucket(),'gcsbuckets':get_gcs_bucket(), 'kafkaSetting':'kafkaSetting','ruuningSetting':'ruuningSetting','usecasetab':usecasetab} log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+error+', ' + e) return render(request, 'upload.html', context) else: if request.FILES: Datapath = request.FILES['DataFilePath'] from io import StringIO content = StringIO(Datapath.read().decode('utf-8')) reader = csv.reader(content) df = pd.DataFrame(reader) df.columns = df.iloc[0] df = df[1:] ext = str(Datapath).split('.')[-1] filetimestamp = str(int(time.time())) if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() if(os.path.isfile(dataFile) == False): context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case, ' ModelStatus': ModelStatus, 'ModelVersion': ModelVersion} log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Data file does not exist') return render(request, 'inputdrif.html', context) request.session['drift_datalocations'] = dataFile driftdata = request.session['drift_datalocations'] newdatadf = pd.read_csv(driftdata) newDataDrift = ea.getDriftDistribution(feature, trainingdf, newdatadf) condf = pd.concat([trainingdf, newdatadf], ignore_index=True, sort=True) concatDataDrift = ea.getDriftDistribution(feature,trainingdf,condf) drift_msg,htmlPath = Drift(request,historicadata, dataFile, feature) if htmlPath != 'NA': file = open(htmlPath, "r",errors='ignore') driftdata = file.read() file.close() else: driftdata = 'NA' t2 = time.time() log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return render(request, 'inputdrif.html', {'trainingDrift': trainingDrift, 'newDataDrift': newDataDrift, 'concatDataDrift': concatDataDrift,'usecasetab':usecasetab, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'version' :AION_VERSION, 'selected': 'monitoring', 'drift_msg': drift_msg,'htmlPath':driftdata,'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure}) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] ser_url = service_url.read_monitoring_service_url_params(request) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion) pser_url = service_url.read_performance_service_url_params(request) pser_url = pser_url+'performanceusecaseid='+iterName+'&version='+str(ModelVersion) context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': 'Failed to perform drift analysis', 'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'version' : AION_VERSION} log.info('Input Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to do drift analysis'+', '+str(inst)) log.info('Details : '+str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request, 'inputdrif.html', context) def Drift(request,trainingdatalocation, newdatalocation, features): log = logging.getLogger('log_ux') selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) try: inputFieldsJson = {"trainingDataLocation":trainingdatalocation,"currentDataLocation":newdatalocation} inputFieldsJson = json.dumps(inputFieldsJson) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = service_url.read_monitoring_service_url_params(request) ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion) import requests try: #print(inputFieldsJson) #print(ser_url) response = requests.post(ser_url,data=inputFieldsJson,headers={"Content-Type":"application/json",}) if response.status_code != 200: outputStr=response.content return outputStr except Exception as inst: print(inst) if 'Failed to establish a new connection' in str(inst): Msg = 'AION Service needs to be started' else: Msg = 'Error during Drift Analysis' log.info('Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + Msg+', '+str(inst)) return Msg outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() decoded_data = json.loads(outputStr) #print(decoded_data) htmlPath = 'NA' if decoded_data['status'] == 'SUCCESS': data = decoded_data['data'] htmlPath = decoded_data['htmlPath'] if 'Message' in data: Msg = [] Msg.append(data['Message']) else: Msg = data['Affected Columns'] log.info('Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Success') else: Msg = 'Error during Drift Analysis' htmlPath = 'NA' log.info('Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' +str(Msg)) return Msg,htmlPath except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) log.info('Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + str(e)) log.info('Details : ' +str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def Evaluate(request): from appbe.aion_config import settings usecasetab = settings() log = logging.getLogger('log_ux') try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Drift','Yes') t1 = time.time() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() type = request.POST.get("optradio") ser_url = service_url.read_monitoring_service_url_params(request) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'monitoring?usecaseid='+iterName+'_'+str(ModelVersion) pser_url = service_url.read_performance_service_url_params(request) pser_url = pser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion) if type == "url": try: url = request.POST.get('urlpathinput') newdatadf = pd.read_csv(url) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv') newdatadf.to_csv(dataFile, index=False) except Exception as e: request.session['currentstate'] = 0 e = str(e) if e.find("tokenizing")!=-1: error = "This is not an open source URL to access data" log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+error+', '+str(e)) elif e.find("connection")!=-1: error = "Can not access the URL through HCL network, please try with other network" log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' + error +', '+e) else: error = 'Please provide a correct URL' log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:' + error+', '+e) context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': error,'ModelVersion': ModelVersion,'computeinfrastructure':computeinfrastructure,'emptycsv':'emptycsv','kafkaSetting':'kafkaSetting','ruuningSetting':'ruuningSetting','usecasetab':usecasetab,'version':AION_VERSION} return render(request, 'upload.html', context) else: if request.FILES: Datapath = request.FILES['DataFilePath'] from io import StringIO content = StringIO(Datapath.read().decode('utf-8')) reader = csv.reader(content) df = pd.DataFrame(reader) df.columns = df.iloc[0] df = df[1:] ext = str(Datapath).split('.')[-1] filetimestamp = str(int(time.time())) if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() if(os.path.isfile(dataFile) == False): context = {'error': 'Data file does not exist', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'version':AION_VERSION} log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + ' Error : Data file does not exist') return render(request, 'inputdrif.html', context) trainingdatalocation = request.session['datalocation'] inputFieldsJson = {"trainingDataLocation":trainingdatalocation,"currentDataLocation":dataFile} inputFieldsJson = json.dumps(inputFieldsJson) import requests try: #response = requests.post(pser_url,auth=(aion_service_username,aion_service_password),data=inputFieldsJson,headers={"Content-Type":"application/json",}) response = requests.post(pser_url,data=inputFieldsJson,headers={"Content-Type":"application/json",}) if response.status_code != 200: outputStr=response.content log.info('Performance Drift:' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error: Status code != 200') return outputStr except Exception as inst: if 'Failed to establish a new connection' in str(inst): Msg = 'AION Service needs to be started' else: Msg = 'Error during Drift Analysis' log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' +'0 ' + 'sec' + ' : ' + 'Error : '+Msg+', ' + str(inst)) return Msg outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() decoded_data = json.loads(outputStr) #print(decoded_data) if decoded_data['status'] == 'SUCCESS': htmlPath = decoded_data['htmlPath'] #print(htmlPath) if htmlPath != 'NA': file = open(htmlPath, "r",errors='ignore') driftdata = file.read() file.close() else: driftdata = 'NA' print(htmlPath) context = {'status':'SUCCESS','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'htmlPath': driftdata,'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} t2 = time.time() log.info('Performance Drift:' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2-t1)) + 'sec' + ' : ' + 'Success') return render(request, 'inputdrif.html', context=context) else: driftdata = 'Error' context = {'status':'ERROR','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'htmlPath': driftdata,'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : driftdata = Error') return render(request, 'inputdrif.html', context=context) except Exception as e: print(e) context = {'ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'error': 'Fail to perform Drift Analysis', 'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} log.info('Performance Drift : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Fail to perform Drift Analysis' + ', ' + str(e)) return render(request, 'inputdrif.html', context=context)
llm_views.py
from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import time from django.template import loader from django import template from appbe.aion_config import get_llm_data from django.views.decorators.csrf import csrf_exempt import os import json from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from utils.file_ops import read_df_compressed from appbe.dataPath import LOG_LOCATION from appbe.pages import getversion AION_VERSION = getversion() def QueryToOpenAI(text,tempPrompt): FragmentationAllowed="yes" #yes or no try: import openai key,url,api_type,api_version=get_llm_data() if (key == "") and (url == "") : print("No API Key") return("API Key and URL not provided") openai.api_key = key openai.api_base = url openai.api_type = 'azure' openai.api_version = '2023-05-15' deployment_name="Text-Datvinci-03" import tiktoken encoding = tiktoken.encoding_for_model("text-davinci-003") maxTokens=1024 #4096-1024 == 3072 lgt=0 if FragmentationAllowed=="yes" : words = text.split(".") chunk="" chunks=[] multipleChunk="no" partialData="no" for i in range(len(words)): chunk=chunk+words[i]+"." chunk_token_count = encoding.encode(chunk) length=len(chunk_token_count) partialData="yes" if length > 2800 : chunks.append(chunk) chunk="" #print("\n\n\n") partialData="no" multipleChunk="yes" if (multipleChunk =="no" ): chunks.append(chunk) chunk="" if ((partialData =="yes") and (multipleChunk =="yes")): chunks.append(chunk) chunk="" summaries = [] for chunk in chunks: response = openai.Completion.create(engine=deployment_name, prompt=f"{tempPrompt}: {chunk}",temperature=0.2, max_tokens=maxTokens,frequency_penalty=0,presence_penalty=0) summary = response['choices'][0]['text'].replace('\n', '').replace(' .', '.').strip() summaries.append(summary) wordsInSum = summary.split() summaries=' '.join(summaries) wordsInSum = summaries.split() return summaries else : return "ok" except openai.error.Timeout as e: return "exception : Timeout Error due to Network Connection" except Exception as e: return "exception : "+str(e) def azureOpenAiDavinciSumarization(request): inputDataType = str(request.GET.get('FileType')) import time t1=time.time() documentType="" if inputDataType == 'file': dataPath = str(request.GET.get('dataPath')) #print("Datapath--",dataPath) if dataPath.endswith(".pdf"): from appbe.dataIngestion import pdf2text originalText=pdf2text(dataPath) if dataPath.endswith(".txt"): data=[] with open(dataPath, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele originalText=str1 if dataPath.endswith(".docx"): import docx doc = docx.Document(dataPath) fullText = [] for para in doc.paragraphs: fullText.append(para.text) fullText= '\n'.join(fullText) originalText=fullText if inputDataType == 'rawText': originalText = str(request.GET.get('textDataProcessing')) dataPath="" if originalText== "None" or originalText== "": context = {'originalText': originalText,'returnedText': "No Input given"} print("returned due to None") return render(request, "textsummarization.html",context) KeyWords=str(request.GET.get('userUpdatedKeyword')) contextOfText=str(request.GET.get('userUpdatedContext')) doctype = str(request.GET.get('doctypeUserProvided')) docDomainType = ["medical","other"] Prompts = [ "Summarize the following article within 500 words with proper sub-heading so that summarization include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;", "Summarize the following article with minimum 500 words so that summarization include all main points from topics like: " ] for i in range (len(docDomainType)) : if docDomainType[i] in doctype.lower() : docDomainPrompts=Prompts[i] if docDomainType[i]=="medical" : print("medical doc") documentType="medical" docDomainFinalPrompts=docDomainPrompts tempPrompt1="Summarize the following article so that summarization must include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;" tempPrompt2="Summarize the following article within 500 words with proper sub-heading so that summarization include all main points from topics like: study objective; study design;demographics of patients; devices used in study; duration of exposure to device; study outcomes; complications;adverse events;confounding factors; study limitations and weakness;usability of the device; misuse and off-label use of the device;conflict of interest;statistical analysis;conclusions;" else : print("other doc-a-") docDomainFinalPrompts=docDomainPrompts+" "+contextOfText tempPrompt1="Summarize the following article with minimum 500 words so that summarization include all main points from topics like: "+contextOfText tempPrompt2=tempPrompt1 break if (i== len(docDomainType)-1) : print("other doc-b-") docDomainPrompts=Prompts[i] docDomainFinalPrompts=docDomainPrompts+" "+contextOfText tempPrompt1="Summarize the following article so that summarization include all main points from topics like: "+contextOfText tempPrompt2=tempPrompt1 try: pattern =['Summary','Study Objective','Study Design', 'Demographics of Patients', 'Devices Used in Study','Duration of Exposure to Device','Study Outcomes','Complications','Adverse Events','Confounding Factors','Study Limitations and Weakness','Usability of the Device','Misuse and Off-Label Use of the Device','Conflict of Interest','Statistical Analysis','Conclusions'] import tiktoken encoding = tiktoken.encoding_for_model("text-davinci-003") encodedData = encoding.encode(originalText) totalToken=len(encodedData) while totalToken > 2800: originalText=QueryToOpenAI(originalText,tempPrompt1) encodedData = encoding.encode(originalText) totalToken=len(encodedData) retText=QueryToOpenAI(originalText,tempPrompt2) import re summary1=retText summary2=retText if documentType=="medical" : for i in range(len(pattern)): summary1=summary1.replace(pattern[i]+':','<br>'+'<u>'+pattern[i]+'</u>'+'<br>') for i in range(len(pattern)): summary1=summary1.replace(pattern[i],'<br>'+'<u>'+pattern[i]+'</u>'+'<br>') for i in range(len(pattern)): summary2=summary2.replace(pattern[i]+':','') for i in range(len(pattern)): summary2=summary2.replace(pattern[i],'') #retText2="" #tempPrompt="Find some most highlighting points in the following article" #retText2=QueryToOpenAI(originalText,tempPrompt) #retText3="" #tempPrompt="Find only one or two risk factors that are mentioned in the following article" #retText3=QueryToOpenAI(originalText,tempPrompt) #retText4="" #tempPrompt="Find statistical informtation that are mentioned in the following article" #retText4=QueryToOpenAI(originalText,tempPrompt) #retText5="" #tempPrompt="Find name of the author only one time that are mentioned in the following article" #retText5=QueryToOpenAI(originalText,tempPrompt) #retText6="" #tempPrompt="Suggest the name of the title for the following article" #retText6=QueryToOpenAI(originalText,tempPrompt) t2=time.time() #print("\n time taken-->", t2-t1 ,"length of sum",str(length)) print("\n time taken-->", t2-t1 ) #print("\n summary from LLM-->\n",returnedText) #context = {'title': retText6, 'summary': summary1, 'summary2': summary2, 'AuthorName': "Author names :"+retText5,'BulletPoints': retText2,'Riskfactor': retText3,'StatInfo': retText4} context = {'title': "", 'summary': summary1, 'summary2': summary2, 'AuthorName': "",'BulletPoints': "",'Riskfactor': "",'StatInfo': ""} return HttpResponse(json.dumps(context), content_type="application/json") except: context = {'returnedText': "exception"} return HttpResponse(json.dumps(context), content_type="application/json") def azureOpenAiDavinci(request): key,url,api_type,api_version=get_llm_data() inputDataType = str(request.POST.get('FileType')) if inputDataType == 'file': Datapath = request.FILES['file'] #dataPath = str(request.GET.get('dataPath')) ext = str(Datapath).split('.')[-1] temp1=str(Datapath).split('.') filetimestamp = str(int(time.time())) if ext.lower() in ['pdf','txt','docx']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' +temp1[0]+'_'+filetimestamp+'.'+ext) #dataFile = os.path.join(DATA_FILE_PATH,'AION_' +filetimestamp+'.'+ext) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() dataPath = dataFile if dataPath.endswith(".pdf"): from appbe.dataIngestion import pdf2text originalText=pdf2text(dataPath) if dataPath.endswith(".txt"): data=[] with open(dataPath, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele originalText=str1 if dataPath.endswith(".docx"): import docx doc = docx.Document(dataPath) fullText = [] for para in doc.paragraphs: fullText.append(para.text) fullText= '\n'.join(fullText) originalText=fullText if inputDataType == 'rawText': originalText = str(request.POST.get('textDataProcessing')) dataPath="" doctype = str(request.POST.get('doctypeUserProvided')) if originalText== "None" or originalText== "": context = {'originalText': originalText,'returnedText': "No Input given"} print("returned due to None") return render(request, "textsummarization.html",context) length=len(originalText.split()) inputTextPromptForKeyWords="Create a list of keywords to summrizing the following document." inputTextPromptForKeyWords="Suggest only ten most important keywords from the following document." inputTextPromptForContext="Suggest ten most important context in the following article. " #inputTextPromptForDocType="Suggest on which domain or field or area the following article is or the article is on sports or politics or medical or music or technology or legal field. " try: tempPrompt=inputTextPromptForKeyWords retText=QueryToOpenAI(originalText,tempPrompt) KeyWords=retText tempPrompt=inputTextPromptForContext retText=QueryToOpenAI(originalText,tempPrompt) contextOfText=retText #tempPrompt=inputTextPromptForDocType #retText=QueryToOpenAI(originalText,tempPrompt) #doctype=retText context = {'originalText': originalText,'KeyWords': KeyWords,'contextOfText': contextOfText,'doctype': doctype,'dataPath' :dataPath} return HttpResponse(json.dumps(context), content_type="application/json") except Exception as e: print(e) context = {'originalText': originalText,'KeyWords': KeyWords,'contextOfText': contextOfText,'doctype': doctype,'dataPath' :dataPath} return HttpResponse(json.dumps(context), content_type="application/json") # Text Data Labelling using LLM related changes # -------------------------------------------------------- def uploadedTextData(request): from appbe.dataIngestion import ingestTextData context = ingestTextData(request,DATA_FILE_PATH) context['version'] = AION_VERSION return render(request, 'textdatalabelling.html', context) def getTextLabel(request): from appbe.llm_textdatalabelling import generateTextLabel context = generateTextLabel(request,DATA_FILE_PATH) context['version'] = AION_VERSION return render(request, 'textdatalabelling.html', context) def downloadTextLabelReport(request): file_path = request.session['texttopicdatapath'] if os.path.exists(file_path): with open(file_path, 'rb') as fh: response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(file_path) return response raise Http404 # QnA Generator using LLM related changes # -------------------------------------------------------- def genearateQA(request): from appbe.llm_generateQnA import ingestDataForQA context = ingestDataForQA(request,DATA_FILE_PATH) context['version'] = AION_VERSION context['selected'] = "llm_features" return render(request, 'QnA.html', context) def downloadQnAReport(request): file_path = request.session['QnAfilepath'] if os.path.exists(file_path): with open(file_path, 'rb') as fh: response = HttpResponse(fh.read(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(file_path) return response raise Http404 # --------------------------------------------------------
0002_auto_20200803_1820.py
# Generated by Django 3.0.8 on 2020-08-03 12:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0001_initial'), ] operations = [ migrations.AlterField( model_name='existusecases', name='ModelName', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='modelTraining.usecasedetails'), ), migrations.AlterField( model_name='existusecases', name='id', field=models.AutoField(primary_key=True, serialize=False), ), migrations.AlterField( model_name='usecasedetails', name='Description', field=models.CharField(max_length=200), ), migrations.AlterField( model_name='usecasedetails', name='UsecaseName', field=models.CharField(max_length=50), ), ]
0011_existusecases_trainingpid_and_more.py
# Generated by Django 4.1.7 on 2023-05-17 10:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0010_existusecases_modeltype'), ] operations = [ migrations.AddField( model_name='existusecases', name='trainingPID', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='existusecases', name='ProblemType', field=models.CharField(blank=True, max_length=20, null=True), ), migrations.AlterField( model_name='existusecases', name='TrainOuputLocation', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AlterField( model_name='existusecases', name='driftStatus', field=models.CharField(blank=True, max_length=20, null=True), ), migrations.AlterField( model_name='existusecases', name='modelType', field=models.CharField(blank=True, max_length=40, null=True), ), migrations.AlterField( model_name='existusecases', name='portNo', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='existusecases', name='publishPID', field=models.IntegerField(blank=True, null=True), ), ]
0008_existusecases_publishtask.py
# Generated by Django 3.2.8 on 2023-03-28 18:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0007_auto_20230328_1823'), ] operations = [ migrations.AddField( model_name='existusecases', name='publishtask', field=models.CharField(default='', max_length=500), ), ]
0009_auto_20230329_0541.py
# Generated by Django 3.2.8 on 2023-03-29 05:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0008_existusecases_publishtask'), ] operations = [ migrations.RemoveField( model_name='existusecases', name='publishtask', ), migrations.AddField( model_name='existusecases', name='publishPID', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='existusecases', name='Version', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='existusecases', name='portNo', field=models.IntegerField(default=0), ), ]
0005_usecasedetails_userdefinedname.py
# Generated by Django 3.2.8 on 2023-02-06 17:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0004_existusecases_problemtype'), ] operations = [ migrations.AddField( model_name='usecasedetails', name='UserDefinedName', field=models.CharField(default=models.CharField(max_length=50), max_length=50), ), ]
0001_initial.py
# Generated by Django 3.0.8 on 2020-08-01 17:33 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Existusecases', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ModelName', models.CharField(max_length=200)), ('Version', models.IntegerField()), ('DataFilePath', models.FileField(upload_to=None)), ('ConfigPath', models.FileField(upload_to=None)), ('DeployPath', models.FileField(upload_to=None)), ('Status', models.CharField(max_length=200)), ], options={ 'db_table': 'Existusecases', }, ), migrations.CreateModel( name='usecasedetails', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('UsecaseName', models.CharField(max_length=20)), ('Description', models.CharField(max_length=100)), ], options={ 'db_table': 'usecasedetails', }, ), ]
0003_existusecases_trainouputlocation.py
# Generated by Django 3.0.8 on 2020-09-18 12:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0002_auto_20200803_1820'), ] operations = [ migrations.AddField( model_name='existusecases', name='TrainOuputLocation', field=models.CharField(default='', max_length=200), ), ]
0010_existusecases_modeltype.py
# Generated by Django 3.2.8 on 2023-03-29 18:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0009_auto_20230329_0541'), ] operations = [ migrations.AddField( model_name='existusecases', name='modelType', field=models.CharField(default='', max_length=40), ), ]
0006_auto_20230206_1759.py
# Generated by Django 3.2.8 on 2023-02-06 17:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0005_usecasedetails_userdefinedname'), ] operations = [ migrations.RemoveField( model_name='usecasedetails', name='UserDefinedName', ), migrations.AddField( model_name='usecasedetails', name='usecaseid', field=models.CharField(default=models.CharField(max_length=50), max_length=10), ), ]
0007_auto_20230328_1823.py
# Generated by Django 3.2.8 on 2023-03-28 18:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0006_auto_20230206_1759'), ] operations = [ migrations.AddField( model_name='existusecases', name='driftStatus', field=models.CharField(default='', max_length=20), ), migrations.AddField( model_name='existusecases', name='portNo', field=models.CharField(default='', max_length=5), ), migrations.AddField( model_name='existusecases', name='publishStatus', field=models.CharField(default='', max_length=20), ), migrations.AlterField( model_name='existusecases', name='ProblemType', field=models.CharField(default='', max_length=20), ), ]
0004_existusecases_problemtype.py
# Generated by Django 3.2.8 on 2022-10-28 09:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelTraining', '0003_existusecases_trainouputlocation'), ] operations = [ migrations.AddField( model_name='existusecases', name='ProblemType', field=models.CharField(default='', max_length=100), ), ]
runaion.py
from django.contrib.staticfiles.management.commands.runserver import Command as RunServer class Command(RunServer): def check(self, *args, **kwargs): self.stdout.write(self.style.WARNING("SKIPPING SYSTEM CHECKS!\n")) def check_migrations(self, *args, **kwargs): self.stdout.write(self.style.WARNING("SKIPPING MIGRATION CHECKS!\n"))
__init__.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """
__init__.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """
input_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class input_drift(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = '' def addInputDriftClass(self): text = "\ \nclass inputdrift():\ \n\ \n def __init__(self,base_config):\ \n self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\ \n self.currentDataLocation = base_config['currentDataLocation']\ \n home = Path.home()\ \n if platform.system() == 'Windows':\ \n from pathlib import WindowsPath\ \n output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\ \n output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\ \n else:\ \n from pathlib import PosixPath\ \n output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\ \n output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\ \n if not output_model_dir.exists():\ \n raise ValueError(f'Configuration file not found at {output_model_dir}')\ \n\ \n tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\ \n registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\ \n mlflow.set_tracking_uri(tracking_uri)\ \n mlflow.set_registry_uri(registry_uri)\ \n client = mlflow.tracking.MlflowClient(\ \n tracking_uri=tracking_uri,\ \n registry_uri=registry_uri,\ \n )\ \n model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\ \n model = mlflow.pyfunc.load_model(model_version_uri)\ \n run = client.get_run(model.metadata.run_id)\ \n if run.info.artifact_uri.startswith('file:'):\ \n artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\ \n else:\ \n artifact_path = Path(run.info.artifact_uri)\ \n self.trainingDataPath = artifact_path/(self.usecase + '_data.csv')\ \n\ \n def get_input_drift(self,current_data, historical_data):\ \n curr_num_feat = current_data.select_dtypes(include='number')\ \n hist_num_feat = historical_data.select_dtypes(include='number')\ \n num_features = [feat for feat in historical_data.columns if feat in curr_num_feat]\ \n alert_count = 0\ \n data = {\ \n 'current':{'data':current_data},\ \n 'hist': {'data': historical_data}\ \n }\ \n dist_changed_columns = []\ \n dist_change_message = []\ \n for feature in num_features:\ \n curr_static_value = st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue\ \n if (curr_static_value < 0.05):\ \n distribution = {}\ \n distribution['hist'] = self.DistributionFinder( historical_data[feature])\ \n distribution['curr'] = self.DistributionFinder( current_data[feature])\ \n if(distribution['hist']['name'] == distribution['curr']['name']):\ \n pass\ \n else:\ \n alert_count = alert_count + 1\ \n dist_changed_columns.append(feature)\ \n changed_column = {}\ \n changed_column['Feature'] = feature\ \n changed_column['KS_Training'] = curr_static_value\ \n changed_column['Training_Distribution'] = distribution['hist']['name']\ \n changed_column['New_Distribution'] = distribution['curr']['name']\ \n dist_change_message.append(changed_column)\ \n if alert_count:\ \n resultStatus = dist_change_message\ \n else :\ \n resultStatus='Model is working as expected'\ \n return(alert_count, resultStatus)\ \n\ \n def DistributionFinder(self,data):\ \n best_distribution =''\ \n best_sse =0.0\ \n if(data.dtype in ['int','int64']):\ \n distributions= {'bernoulli':{'algo':st.bernoulli},\ \n 'binom':{'algo':st.binom},\ \n 'geom':{'algo':st.geom},\ \n 'nbinom':{'algo':st.nbinom},\ \n 'poisson':{'algo':st.poisson}\ \n }\ \n index, counts = np.unique(data.astype(int),return_counts=True)\ \n if(len(index)>=2):\ \n best_sse = np.inf\ \n y1=[]\ \n total=sum(counts)\ \n mean=float(sum(index*counts))/total\ \n variance=float((sum(index**2*counts) -total*mean**2))/(total-1)\ \n dispersion=mean/float(variance)\ \n theta=1/float(dispersion)\ \n r=mean*(float(theta)/1-theta)\ \n\ \n for j in counts:\ \n y1.append(float(j)/total)\ \n distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean)\ \n distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index))\ \n distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean))\ \n distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r)\ \n distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean)\ \n\ \n sselist = []\ \n for dist in distributions.keys():\ \n distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0))\ \n if np.isnan(distributions[dist]['sess']):\ \n distributions[dist]['sess'] = float('inf')\ \n best_dist = min(distributions, key=lambda v: distributions[v]['sess'])\ \n best_distribution = best_dist\ \n best_sse = distributions[best_dist]['sess']\ \n\ \n elif (len(index) == 1):\ \n best_distribution = 'Constant Data-No Distribution'\ \n best_sse = 0.0\ \n elif(data.dtype in ['float64','float32']):\ \n distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]\ \n best_distribution = st.norm.name\ \n best_sse = np.inf\ \n nrange = data.max() - data.min()\ \n\ \n y, x = np.histogram(data.astype(float), bins='auto', density=True)\ \n x = (x + np.roll(x, -1))[:-1] / 2.0\ \n\ \n for distribution in distributions:\ \n with warnings.catch_warnings():\ \n warnings.filterwarnings('ignore')\ \n params = distribution.fit(data.astype(float))\ \n arg = params[:-2]\ \n loc = params[-2]\ \n scale = params[-1]\ \n pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)\ \n sse = np.sum(np.power(y - pdf, 2.0))\ \n if( sse < best_sse):\ \n best_distribution = distribution.name\ \n best_sse = sse\ \n\ \n return {'name':best_distribution, 'sse': best_sse}\ \n\ " return text def addSuffixCode(self, indent=1): text ="\n\ \ndef check_drift( config):\ \n inputdriftObj = inputdrift(config)\ \n historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath)\ \n currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation)\ \n dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)\ \n if message == 'Model is working as expected':\ \n output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}}\ \n else:\ \n output_json = {'status':'SUCCESS','data':{'Affected Columns':message}}\ \n return(output_json)\ \n\ \nif __name__ == '__main__':\ \n try:\ \n if len(sys.argv) < 2:\ \n raise ValueError('config file not present')\ \n config = sys.argv[1]\ \n if Path(config).is_file() and Path(config).suffix == '.json':\ \n with open(config, 'r') as f:\ \n config = json.load(f)\ \n else:\ \n config = json.loads(config)\ \n output = check_drift(config)\ \n status = {'Status':'Success','Message':output}\ \n print('input_drift:'+json.dumps(status))\ \n except Exception as e:\ \n status = {'Status':'Failure','Message':str(e)}\ \n print('input_drift:'+json.dumps(status))" return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def generateCode(self): self.codeText += self.addInputDriftClass() self.codeText += self.addSuffixCode() def getCode(self): return self.codeText
output_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class output_drift(): def __init__(self, missing=False, word2num_features = None, cat_encoder=False, target_encoder=False, normalizer=False, text_profiler=False, feature_reducer=False, score_smaller_is_better=True, problem_type='classification', tab_size=4): self.tab = ' ' * tab_size self.codeText = '' self.missing = missing self.word2num_features = word2num_features self.cat_encoder = cat_encoder self.target_encoder = target_encoder self.normalizer = normalizer self.text_profiler = text_profiler self.feature_reducer = feature_reducer self.score_smaller_is_better = score_smaller_is_better self.problem_type = problem_type def addDatabaseClass(self, indent=0): text = "\ \nclass database():\ \n def __init__(self, config):\ \n self.host = config['host']\ \n self.port = config['port']\ \n self.user = config['user']\ \n self.password = config['password']\ \n self.database = config['database']\ \n self.measurement = config['measurement']\ \n self.tags = config['tags']\ \n self.client = self.get_client()\ \n\ \n def read_data(self, query)->pd.DataFrame:\ \n cursor = self.client.query(query)\ \n points = cursor.get_points()\ \n my_list=list(points)\ \n df=pd.DataFrame(my_list)\ \n return df\ \n\ \n def get_client(self):\ \n client = InfluxDBClient(self.host,self.port,self.user,self.password)\ \n databases = client.get_list_database()\ \n databases = [x['name'] for x in databases]\ \n if self.database not in databases:\ \n client.create_database(self.database)\ \n return InfluxDBClient(self.host,self.port,self.user,self.password, self.database)\ \n\ \n def write_data(self,data):\ \n if isinstance(data, pd.DataFrame):\ \n sorted_col = data.columns.tolist()\ \n sorted_col.sort()\ \n data = data[sorted_col]\ \n data = data.to_dict(orient='records')\ \n for row in data:\ \n if 'time' in row.keys():\ \n p = '%Y-%m-%dT%H:%M:%S.%fZ'\ \n time_str = datetime.strptime(row['time'], p)\ \n del row['time']\ \n else:\ \n time_str = None\ \n if 'model_ver' in row.keys():\ \n self.tags['model_ver']= row['model_ver']\ \n del row['model_ver']\ \n json_body = [{\ \n 'measurement': self.measurement,\ \n 'time': time_str,\ \n 'tags': self.tags,\ \n 'fields': row\ \n }]\ \n self.client.write_points(json_body)\ \n\ \n def close(self):\ \n self.client.close()\ \n" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addPredictClass(self, indent=0): text = "\ \nclass predict():\ \n\ \n def __init__(self, base_config):\ \n self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\ \n self.dataLocation = base_config['dataLocation']\ \n self.db_enabled = base_config.get('db_enabled', False)\ \n if self.db_enabled:\ \n self.db_config = base_config['db_config']\ \n home = Path.home()\ \n if platform.system() == 'Windows':\ \n from pathlib import WindowsPath\ \n output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\ \n output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\ \n else:\ \n from pathlib import PosixPath\ \n output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\ \n output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\ \n if not output_model_dir.exists():\ \n raise ValueError(f'Configuration file not found at {output_model_dir}')\ \n\ \n tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\ \n registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\ \n mlflow.set_tracking_uri(tracking_uri)\ \n mlflow.set_registry_uri(registry_uri)\ \n client = mlflow.tracking.MlflowClient(\ \n tracking_uri=tracking_uri,\ \n registry_uri=registry_uri,\ \n )\ \n self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )[0].version\ \n model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\ \n self.model = mlflow.pyfunc.load_model(model_version_uri)\ \n run = client.get_run(self.model.metadata.run_id)\ \n if run.info.artifact_uri.startswith('file:'): #remove file:///\ \n self.artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\ \n else:\ \n self.artifact_path = Path(run.info.artifact_uri)\ \n with open(self.artifact_path/'deploy.json', 'r') as f:\ \n deployment_dict = json.load(f)\ \n with open(self.artifact_path/'features.txt', 'r') as f:\ \n self.train_features = f.readline().rstrip().split(',')\ \n\ \n self.dataLocation = base_config['dataLocation']\ \n self.selected_features = deployment_dict['load_data']['selected_features']\ \n self.target_feature = deployment_dict['load_data']['target_feature']\ \n self.output_model_dir = output_model_dir" if self.missing: text += "\n self.missing_values = deployment_dict['transformation']['fillna']" if self.word2num_features: text += "\n self.word2num_features = deployment_dict['transformation']['word2num_features']" if self.cat_encoder == 'labelencoding': text += "\n self.cat_encoder = deployment_dict['transformation']['cat_encoder']" elif (self.cat_encoder == 'targetencoding') or (self.cat_encoder == 'onehotencoding'): text += "\n self.cat_encoder = deployment_dict['transformation']['cat_encoder']['file']" text += "\n self.cat_encoder_cols = deployment_dict['transformation']['cat_encoder']['features']" if self.target_encoder: text += "\n self.target_encoder = joblib.load(self.artifact_path/deployment_dict['transformation']['target_encoder'])" if self.normalizer: text += "\n self.normalizer = joblib.load(self.artifact_path/deployment_dict['transformation']['normalizer']['file'])\ \n self.normalizer_col = deployment_dict['transformation']['normalizer']['features']" if self.text_profiler: text += "\n self.text_profiler = joblib.load(self.artifact_path/deployment_dict['transformation']['Status']['text_profiler']['file'])\ \n self.text_profiler_col = deployment_dict['transformation']['Status']['text_profiler']['features']" if self.feature_reducer: text += "\n self.feature_reducer = joblib.load(self.artifact_path/deployment_dict['featureengineering']['feature_reducer']['file'])\ \n self.feature_reducer_cols = deployment_dict['featureengineering']['feature_reducer']['features']" text += """ def read_data_from_db(self): if self.db_enabled: try: db = database(self.db_config) query = "SELECT * FROM {} WHERE model_ver = '{}' AND {} != ''".format(db.measurement, self.model_version, self.target_feature) if 'read_time' in self.db_config.keys() and self.db_config['read_time']: query += f" time > now() - {self.db_config['read_time']}" data = db.read_data(query) except: raise ValueError('Unable to read from the database') finally: if db: db.close() return data return None""" text += "\ \n def predict(self, data):\ \n df = pd.DataFrame()\ \n if Path(data).exists():\ \n if Path(data).suffix == '.tsv':\ \n df=read_data(data,encoding='utf-8',sep='\t')\ \n elif Path(data).suffix == '.csv':\ \n df=read_data(data,encoding='utf-8')\ \n else:\ \n if Path(data).suffix == '.json':\ \n jsonData = read_json(data)\ \n df = pd.json_normalize(jsonData)\ \n elif is_file_name_url(data):\ \n df = read_data(data,encoding='utf-8')\ \n else:\ \n jsonData = json.loads(data)\ \n df = pd.json_normalize(jsonData)\ \n if len(df) == 0:\ \n raise ValueError('No data record found')\ \n missing_features = [x for x in self.selected_features if x not in df.columns]\ \n if missing_features:\ \n raise ValueError(f'some feature/s is/are missing: {missing_features}')\ \n if self.target_feature not in df.columns:\ \n raise ValueError(f'Ground truth values/target column({self.target_feature}) not found in current data')\ \n df_copy = df.copy()\ \n df = df[self.selected_features]" if self.word2num_features: text += "\n for feat in self.word2num_features:" text += "\n df[ feat ] = df[feat].apply(lambda x: s2n(x))" if self.missing: text += "\n df.fillna(self.missing_values, inplace=True)" if self.cat_encoder == 'labelencoding': text += "\n df.replace(self.cat_encoder, inplace=True)" elif self.cat_encoder == 'targetencoding': text += "\n cat_enc = joblib.load(self.artifact_path/self.cat_encoder)" text += "\n df = cat_enc.transform(df)" elif self.cat_encoder == 'onehotencoding': text += "\n cat_enc = joblib.load(self.artifact_path/self.cat_encoder)" text += "\n transformed_data = cat_enc.transform(df[self.cat_encoder_cols]).toarray()" text += "\n df[cat_enc.get_feature_names()] = pd.DataFrame(transformed_data, columns=cat_enc.get_feature_names())[cat_enc.get_feature_names()]" if self.normalizer: text += "\n df[self.normalizer_col] = self.normalizer.transform(df[self.normalizer_col])" if self.text_profiler: text += "\n text_corpus = df[self.text_profiler_col].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)\ \n df_vect=self.text_profiler.transform(text_corpus)\ \n if isinstance(df_vect, np.ndarray):\ \n df1 = pd.DataFrame(df_vect)\ \n else:\ \n df1 = pd.DataFrame(df_vect.toarray(),columns = self.text_profiler.named_steps['vectorizer'].get_feature_names())\ \n df1 = df1.add_suffix('_vect')\ \n df = pd.concat([df, df1],axis=1)" if self.feature_reducer: text += "\n df = self.feature_reducer.transform(df[self.feature_reducer_cols])" else: text += "\n df = df[self.train_features]" if self.target_encoder: text += "\n output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\ \n df_copy['prediction'] = output.idxmax(axis=1)" else: text += "\n output = self.model.predict(df).reshape(1, -1)[0].round(2)\ \n df_copy['prediction'] = output" text += "\n return df_copy" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def getClassificationMatrixCode(self, indent=0): text = "\ \ndef get_classification_metrices(actual_values, predicted_values):\ \n result = {}\ \n accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\ \n avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\ \n average='macro')\ \n\ \n result['accuracy'] = accuracy_score\ \n result['precision'] = avg_precision\ \n result['recall'] = avg_recall\ \n result['f1'] = avg_f1\ \n return result\ \n\ " if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def getRegrssionMatrixCode(self, indent=0): text = "\ \ndef get_regression_metrices( actual_values, predicted_values):\ \n result = {}\ \n\ \n me = np.mean(predicted_values - actual_values)\ \n sde = np.std(predicted_values - actual_values, ddof = 1)\ \n\ \n abs_err = np.abs(predicted_values - actual_values)\ \n mae = np.mean(abs_err)\ \n sdae = np.std(abs_err, ddof = 1)\ \n\ \n abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\ \n mape = np.mean(abs_perc_err)\ \n sdape = np.std(abs_perc_err, ddof = 1)\ \n\ \n result['mean_error'] = me\ \n result['mean_abs_error'] = mae\ \n result['mean_abs_perc_error'] = mape\ \n result['error_std'] = sde\ \n result['abs_error_std'] = sdae\ \n result['abs_perc_error_std'] = sdape\ \n return result\ \n\ " if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addSuffixCode(self, indent=1): text ="\n\ \ndef check_drift( config):\ \n prediction = predict(config)\ \n usecase = config['modelName'] + '_' + config['modelVersion']\ \n train_data_path = prediction.artifact_path/(usecase+'_data.csv')\ \n if not train_data_path.exists():\ \n raise ValueError(f'Training data not found at {train_data_path}')\ \n curr_with_pred = prediction.read_data_from_db()\ \n if prediction.target_feature not in curr_with_pred.columns:\ \n raise ValueError('Ground truth not updated for corresponding data in database')\ \n train_with_pred = prediction.predict(train_data_path)\ \n performance = {}" if self.problem_type == 'classification': text += "\n\ \n performance['train'] = get_classification_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\ \n performance['current'] = get_classification_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])" else: text += "\n\ \n performance['train'] = get_regression_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\ \n performance['current'] = get_regression_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])" text += "\n return performance" text += "\n\ \nif __name__ == '__main__':\ \n try:\ \n if len(sys.argv) < 2:\ \n raise ValueError('config file not present')\ \n config = sys.argv[1]\ \n if Path(config).is_file() and Path(config).suffix == '.json':\ \n with open(config, 'r') as f:\ \n config = json.load(f)\ \n else:\ \n config = json.loads(config)\ \n output = check_drift(config)\ \n status = {'Status':'Success','Message':json.loads(output)}\ \n print('output_drift:'+json.dumps(status))\ \n except Exception as e:\ \n status = {'Status':'Failure','Message':str(e)}\ \n print('output_drift:'+json.dumps(status))" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def generateCode(self): self.codeText += self.addDatabaseClass() self.codeText += self.addPredictClass() if self.problem_type == 'classification': self.codeText += self.getClassificationMatrixCode() elif self.problem_type == 'regression': self.codeText += self.getRegrssionMatrixCode() else: raise ValueError(f"Unsupported problem type: {self.problem_type}") self.codeText += self.addSuffixCode() def getCode(self): return self.codeText
deploy.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class deploy(): def __init__(self, target_encoder=False, feature_reducer=False, score_smaller_is_better=True, tab_size=4): self.tab = ' ' * tab_size self.codeText = "\n\n\ \nclass deploy():\ \n\ \n def __init__(self, base_config, log=None):\ \n self.targetPath = (Path('aion')/base_config['targetPath']).resolve()\ \n if log:\ \n self.logger = log\ \n else:\ \n log_file = self.targetPath/IOFiles['log']\ \n self.logger = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\ \n try:\ \n self.initialize(base_config)\ \n except Exception as e:\ \n self.logger.error(e, exc_info=True)\ \n\ \n def initialize(self, base_config):\ \n self.usecase = base_config['targetPath']\ \n monitoring_data = read_json(self.targetPath/IOFiles['monitor'])\ \n self.prod_db_type = monitoring_data['prod_db_type']\ \n self.db_config = monitoring_data['db_config']\ \n mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\ \n tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(monitoring_data.get('mlflow_config',mlflow_default_config), self.targetPath)\ \n mlflow.tracking.set_tracking_uri(tracking_uri)\ \n mlflow.tracking.set_registry_uri(registry_uri)\ \n client = mlflow.tracking.MlflowClient()\ \n self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )\ \n model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\ \n self.model = mlflow.pyfunc.load_model(model_version_uri)\ \n run = client.get_run(self.model.metadata.run_id)\ \n if run.info.artifact_uri.startswith('file:'): #remove file:///\ \n skip_name = 'file:'\ \n if run.info.artifact_uri.startswith('file:///'):\ \n skip_name = 'file:///'\ \n self.artifact_path = Path(run.info.artifact_uri[len(skip_name) : ])\ \n self.artifact_path_type = 'file'\ \n meta_data = read_json(self.artifact_path/IOFiles['metaData'])\ \n else:\ \n self.artifact_path = run.info.artifact_uri\ \n self.artifact_path_type = 'url'\ \n meta_data_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+IOFiles['metaData'])\ \n meta_data = read_json(meta_data_file)\ \n self.selected_features = meta_data['load_data']['selected_features']\ \n self.train_features = meta_data['training']['features']" if target_encoder: self.codeText += "\ \n if self.artifact_path_type == 'url':\ \n preprocessor_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['preprocessor'])\ \n target_encoder_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['target_encoder'])\ \n else:\ \n preprocessor_file = self.artifact_path/meta_data['transformation']['preprocessor']\ \n target_encoder_file = self.artifact_path/meta_data['transformation']['target_encoder']\ \n self.target_encoder = joblib.load(target_encoder_file)" else: self.codeText += "\ \n if self.artifact_path_type == 'url':\ \n preprocessor_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['transformation']['preprocessor'])\ \n else:\ \n preprocessor_file = self.artifact_path/meta_data['transformation']['preprocessor']" self.codeText += "\ \n self.preprocessor = joblib.load(preprocessor_file)\ \n self.preprocess_out_columns = meta_data['transformation']['preprocess_out_columns']\ " if feature_reducer: self.codeText += "\ \n if self.artifact_path_type == 'url':\ \n feature_reducer_file = mlflow.artifacts.download_artifacts(self.artifact_path+'/'+meta_data['featureengineering']['feature_reducer']['file'])\ \n else:\ \n feature_reducer_file = self.artifact_path/meta_data['featureengineering']['feature_reducer']['file']\ \n self.feature_reducer = joblib.load(feature_reducer_file)\ \n self.feature_reducer_cols = meta_data['featureengineering']['feature_reducer']['features']" self.codeText +="\n\ \n def write_to_db(self, data):\ \n prod_file = IOFiles['prodData']\ \n writer = dataReader(reader_type=self.prod_db_type,target_path=self.targetPath, config=self.db_config )\ \n writer.write(data, prod_file)\ \n writer.close()\ \n\ \n def predict(self, data=None):\ \n try:\ \n return self.__predict(data)\ \n except Exception as e:\ \n if self.logger:\ \n self.logger.error(e, exc_info=True)\ \n raise ValueError(json.dumps({'Status':'Failure', 'Message': str(e)}))\ \n\ \n def __predict(self, data=None):\ \n df = pd.DataFrame()\ \n jsonData = json.loads(data)\ \n df = pd.json_normalize(jsonData)\ \n if len(df) == 0:\ \n raise ValueError('No data record found')\ \n missing_features = [x for x in self.selected_features if x not in df.columns]\ \n if missing_features:\ \n raise ValueError(f'some feature/s is/are missing: {missing_features}')\ \n df_copy = df.copy()\ \n df = df[self.selected_features]\ \n df = self.preprocessor.transform(df)\ \n if isinstance(df, scipy.sparse.spmatrix):\ \n df = df.toarray()\ \n df = pd.DataFrame(df, columns=self.preprocess_out_columns)" if feature_reducer: self.codeText += "\n df = self.feature_reducer.transform(df[self.feature_reducer_cols])" else: self.codeText += "\n df = df[self.train_features]" if target_encoder: self.codeText += "\n df = df.astype(np.float32)\ \n output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\ \n df_copy['prediction'] = output.idxmax(axis=1)\ \n self.write_to_db(df_copy)\ \n df_copy['probability'] = output.max(axis=1).round(2)\ \n df_copy['remarks'] = output.apply(lambda x: x.to_json(), axis=1)\ \n output = df_copy.to_json(orient='records')" else: self.codeText += "\n output = self.model._model_impl.predict(df).reshape(1, -1)[0].round(2)\ \n df_copy['prediction'] = output\ \n self.write_to_db(df_copy)\ \n output = df_copy.to_json(orient='records')" self.codeText += "\n return output" self.input_files = {} self.output_files = {} self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json', 'performance' : 'performance.json','monitor':'monitoring.json','log':'predict.log','prodData':'prodData'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() text += '\n' text += self.getOutputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def addStatement(self, statement, indent=1): pass def getCode(self): return self.codeText def getGroundtruthCode(self): return """ import sys import math import json import sqlite3 import pandas as pd from datetime import datetime from pathlib import Path import platform from utility import * from data_reader import dataReader IOFiles = { "monitoring":"monitoring.json", "prodDataGT":"prodDataGT" } class groundtruth(): def __init__(self, base_config): self.targetPath = Path('aion')/base_config['targetPath'] data = read_json(self.targetPath/IOFiles['monitoring']) self.prod_db_type = data['prod_db_type'] self.db_config = data['db_config'] def actual(self, data=None): df = pd.DataFrame() jsonData = json.loads(data) df = pd.json_normalize(jsonData) if len(df) == 0: raise ValueError('No data record found') self.write_to_db(df) status = {'Status':'Success','Message':'uploaded'} return json.dumps(status) def write_to_db(self, data): prod_file = IOFiles['prodDataGT'] writer = dataReader(reader_type=self.prod_db_type, target_path=self.targetPath, config=self.db_config ) writer.write(data, prod_file) writer.close() """ def getServiceCode(self): return """ from http.server import BaseHTTPRequestHandler,HTTPServer from socketserver import ThreadingMixIn import os from os.path import expanduser import platform import threading import subprocess import argparse import re import cgi import json import shutil import logging import sys import time import seaborn as sns from pathlib import Path from predict import deploy from groundtruth import groundtruth import pandas as pd import scipy.stats as st import numpy as np import warnings from utility import * from data_reader import dataReader warnings.filterwarnings("ignore") config_input = None IOFiles = { "inputData": "rawData.dat", "metaData": "modelMetaData.json", "production": "production.json", "log": "aion.log", "monitoring":"monitoring.json", "prodData": "prodData", "prodDataGT":"prodDataGT" } def DistributionFinder(data): try: distributionName = "" sse = 0.0 KStestStatic = 0.0 dataType = "" if (data.dtype == "float64" or data.dtype == "float32"): dataType = "Continuous" elif (data.dtype == "int"): dataType = "Discrete" elif (data.dtype == "int64"): dataType = "Discrete" if (dataType == "Discrete"): distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson] index, counts = np.unique(data.astype(int), return_counts=True) if (len(index) >= 2): best_sse = np.inf y1 = [] total = sum(counts) mean = float(sum(index * counts)) / total variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1) dispersion = mean / float(variance) theta = 1 / float(dispersion) r = mean * (float(theta) / 1 - theta) for j in counts: y1.append(float(j) / total) pmf1 = st.bernoulli.pmf(index, mean) pmf2 = st.binom.pmf(index, len(index), p=mean / len(index)) pmf3 = st.geom.pmf(index, 1 / float(1 + mean)) pmf4 = st.nbinom.pmf(index, mean, r) pmf5 = st.poisson.pmf(index, mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1 - pmf5, 2.0)) sselist = [sse1, sse2, sse3, sse4, sse5] best_distribution = 'NA' for i in range(0, len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName = best_distribution sse = best_sse elif (dataType == "Continuous"): distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t, st.gamma, st.beta] best_distribution = st.norm.name best_sse = np.inf datamin = data.min() datamax = data.max() nrange = datamax - datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: params = distribution.fit(data.astype(float)) arg = params[:-2] loc = params[-2] scale = params[-1] pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if (best_sse > sse > 0): best_distribution = distribution.name best_sse = sse distributionName = best_distribution sse = best_sse except: response = str(sys.exc_info()[0]) message = 'Job has Failed' + response exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) print(message) return distributionName, sse def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()): import matplotlib.pyplot as plt import math import io, base64, urllib np.seterr(divide='ignore', invalid='ignore') try: plt.clf() except: pass plt.rcParams.update({'figure.max_open_warning': 0}) sns.set(color_codes=True) pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] if len(feature) > 4: numneroffeatures = len(feature) plt.figure(figsize=(10, numneroffeatures*2)) else: plt.figure(figsize=(10,5)) for i in enumerate(feature): dataType = dataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: dataframe[i[1]] = pd.Categorical(dataframe[i[1]]) dataframe[i[1]] = dataframe[i[1]].cat.codes dataframe[i[1]] = dataframe[i[1]].astype(int) dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0]) else: dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean()) plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1) plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1) distname, sse = DistributionFinder(dataframe[i[1]]) print(distname) ax = sns.distplot(dataframe[i[1]], label=distname) ax.legend(loc='best') if newdataframe.empty == False: dataType = newdataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]]) newdataframe[i[1]] = newdataframe[i[1]].cat.codes newdataframe[i[1]] = newdataframe[i[1]].astype(int) newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0]) else: newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean()) distname, sse = DistributionFinder(newdataframe[i[1]]) print(distname) ax = sns.distplot(newdataframe[i[1]],label=distname) ax.legend(loc='best') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) string = base64.b64encode(buf.read()) uri = urllib.parse.quote(string) return uri def read_json(file_path): data = None with open(file_path,'r') as f: data = json.load(f) return data class HTTPRequestHandler(BaseHTTPRequestHandler): def do_POST(self): print('PYTHON ######## REQUEST ####### STARTED') if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) usecase = self.path.split('/')[-2] if usecase.lower() == config_input['targetPath'].lower(): operation = self.path.split('/')[-1] data = json.loads(data) dataStr = json.dumps(data) if operation.lower() == 'predict': output=deployobj.predict(dataStr) resp = output elif operation.lower() == 'groundtruth': gtObj = groundtruth(config_input) output = gtObj.actual(dataStr) resp = output elif operation.lower() == 'delete': targetPath = Path('aion')/config_input['targetPath'] for file in data: x = targetPath/file if x.exists(): os.remove(x) resp = json.dumps({'Status':'Success'}) else: outputStr = json.dumps({'Status':'Error','Msg':'Operation not supported'}) resp = outputStr else: outputStr = json.dumps({'Status':'Error','Msg':'Wrong URL'}) resp = outputStr else: outputStr = json.dumps({'Status':'ERROR','Msg':'Content-Type Not Present'}) resp = outputStr resp=resp+'\\n' resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print('python ==> else1') self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print('PYTHON ######## REQUEST ####### ENDED') return def do_GET(self): print('PYTHON ######## REQUEST ####### STARTED') if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path): usecase = self.path.split('/')[-2] self.send_response(200) self.targetPath = Path('aion')/config_input['targetPath'] meta_data_file = self.targetPath/IOFiles['metaData'] if meta_data_file.exists(): meta_data = read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') production_file = self.targetPath/IOFiles['production'] if production_file.exists(): production_data = read_json(production_file) else: raise ValueError(f'Production Details not found: {production_file}') operation = self.path.split('/')[-1] if (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'metrices'): self.send_header('Content-Type', 'text/html') self.end_headers() ModelString = production_data['Model'] ModelPerformance = ModelString+'_performance.json' performance_file = self.targetPath/ModelPerformance if performance_file.exists(): performance_data = read_json(performance_file) else: raise ValueError(f'Production Details not found: {performance_data}') Scoring_Creteria = performance_data['scoring_criteria'] train_score = round(performance_data['metrices']['train_score'],2) test_score = round(performance_data['metrices']['test_score'],2) current_score = 'NA' monitoring = read_json(self.targetPath/IOFiles['monitoring']) reader = dataReader(reader_type=monitoring['prod_db_type'],target_path=self.targetPath, config=monitoring['db_config']) inputDatafile = self.targetPath/IOFiles['inputData'] NoOfPrediction = 0 NoOfGroundTruth = 0 inputdistribution = '' if reader.file_exists(IOFiles['prodData']): dfPredict = reader.read(IOFiles['prodData']) dfinput = pd.read_csv(inputDatafile) features = meta_data['training']['features'] inputdistribution = getDriftDistribution(features,dfinput,dfPredict) NoOfPrediction = len(dfPredict) if reader.file_exists(IOFiles['prodDataGT']): dfGroundTruth = reader.read(IOFiles['prodDataGT']) NoOfGroundTruth = len(dfGroundTruth) common_col = [k for k in dfPredict.columns.tolist() if k in dfGroundTruth.columns.tolist()] proddataDF = pd.merge(dfPredict, dfGroundTruth, on =common_col,how = 'inner') if Scoring_Creteria.lower() == 'accuracy': from sklearn.metrics import accuracy_score current_score = accuracy_score(proddataDF[config_input['target_feature']], proddataDF['prediction']) current_score = round((current_score*100),2) elif Scoring_Creteria.lower() == 'recall': from sklearn.metrics import accuracy_score current_score = recall_score(proddataDF[config_input['target_feature']], proddataDF['prediction'],average='macro') current_score = round((current_score*100),2) msg = \"""<html> <head> <title>Performance Details</title> </head> <style> table, th, td {border} </style> <body> <h2><b>Deployed Model:</b>{ModelString}</h2> <br/> <table style="width:50%"> <tr> <td>No of Prediction</td> <td>{NoOfPrediction}</td> </tr> <tr> <td>No of GroundTruth</td> <td>{NoOfGroundTruth}</td> </tr> </table> <br/> <table style="width:100%"> <tr> <th>Score Type</th> <th>Train Score</th> <th>Test Score</th> <th>Production Score</th> </tr> <tr> <td>{Scoring_Creteria}</td> <td>{train_score}</td> <td>{test_score}</td> <td>{current_score}</td> </tr> </table> <br/> <br/> <img src="data:image/png;base64,{newDataDrift}" alt="" > </body> </html> \""".format(border='{border: 1px solid black;}',ModelString=ModelString,Scoring_Creteria=Scoring_Creteria,NoOfPrediction=NoOfPrediction,NoOfGroundTruth=NoOfGroundTruth,train_score=train_score,test_score=test_score,current_score=current_score,newDataDrift=inputdistribution) elif (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'logs'): self.send_header('Content-Type', 'text/plain') self.end_headers() log_file = self.targetPath/IOFiles['log'] if log_file.exists(): with open(log_file) as f: msg = f.read() f.close() else: raise ValueError(f'Log Details not found: {log_file}') else: self.send_header('Content-Type', 'application/json') self.end_headers() features = meta_data['load_data']['selected_features'] bodydes='[' for x in features: if bodydes != '[': bodydes = bodydes+',' bodydes = bodydes+'{"'+x+'":"value"}' bodydes+=']' urltext = '/AION/'+config_input['targetPath']+'/predict' urltextgth='/AION/'+config_input['targetPath']+'/groundtruth' urltextproduction='/AION/'+config_input['targetPath']+'/metrices' msg=\""" Version:{modelversion} RunNo: {runNo} URL for Prediction ================== URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: prediction,probability(if Applicable),remarks corresponding to each row. URL for GroundTruth =================== URL:{urltextgth} RequestType: POST Content-Type=application/json Note: Make Sure that one feature (ID) should be unique in both predict and groundtruth. Otherwise outputdrift will not work URL for Model In Production Analysis ==================================== URL:{urltextproduction} RequestType: GET Content-Type=application/json \""".format(modelversion=config_input['modelVersion'],runNo=config_input['deployedRunNo'],url=urltext,urltextgth=urltextgth,urltextproduction=urltextproduction,displaymsg=bodydes) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class file_status(): def __init__(self, reload_function, params, file, logger): self.files_status = {} self.initializeFileStatus(file) self.reload_function = reload_function self.params = params self.logger = logger def initializeFileStatus(self, file): self.files_status = {'path': file, 'time':file.stat().st_mtime} def is_file_changed(self): if self.files_status['path'].stat().st_mtime > self.files_status['time']: self.files_status['time'] = self.files_status['path'].stat().st_mtime return True return False def run(self): global config_input while( True): time.sleep(30) if self.is_file_changed(): production_details = targetPath/IOFiles['production'] if not production_details.exists(): raise ValueError(f'Model in production details does not exist') productionmodel = read_json(production_details) config_file = Path(__file__).parent/'config.json' if not Path(config_file).exists(): raise ValueError(f'Config file is missing: {config_file}') config_input = read_json(config_file) config_input['deployedModel'] = productionmodel['Model'] config_input['deployedRunNo'] = productionmodel['runNo'] self.logger.info('Model changed Reloading.....') self.logger.info(f'Model: {config_input["deployedModel"]}') self.logger.info(f'Version: {str(config_input["modelVersion"])}') self.logger.info(f'runNo: {str(config_input["deployedRunNo"])}') self.reload_function(config_input) class SimpleHttpServer(): def __init__(self, ip, port, model_file_path,reload_function,params, logger): self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler) self.status_checker = file_status( reload_function, params, model_file_path, logger) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() self.status_thread = threading.Thread(target=self.status_checker.run) self.status_thread.start() def waitForThread(self): self.server_thread.join() self.status_thread.join() def stop(self): self.server.shutdown() self.waitForThread() if __name__=='__main__': parser = argparse.ArgumentParser(description='HTTP Server') parser.add_argument('-ip','--ipAddress', help='HTTP Server IP') parser.add_argument('-pn','--portNo', type=int, help='Listening port for HTTP Server') args = parser.parse_args() config_file = Path(__file__).parent/'config.json' if not Path(config_file).exists(): raise ValueError(f'Config file is missing: {config_file}') config = read_json(config_file) if args.ipAddress: config['ipAddress'] = args.ipAddress if args.portNo: config['portNo'] = args.portNo targetPath = Path('aion')/config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') production_details = targetPath/IOFiles['production'] if not production_details.exists(): raise ValueError(f'Model in production details does not exist') productionmodel = read_json(production_details) config['deployedModel'] = productionmodel['Model'] config['deployedRunNo'] = productionmodel['runNo'] #server = SimpleHttpServer(config['ipAddress'],int(config['portNo'])) config_input = config logging.basicConfig(filename= Path(targetPath)/IOFiles['log'], filemode='a', format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S') logger = logging.getLogger(Path(__file__).parent.name) deployobj = deploy(config_input, logger) server = SimpleHttpServer(config['ipAddress'],int(config['portNo']),targetPath/IOFiles['production'],deployobj.initialize,config_input, logger) logger.info('HTTP Server Running...........') logger.info(f"IP Address: {config['ipAddress']}") logger.info(f"Port No.: {config['portNo']}") print('HTTP Server Running...........') print('For Prediction') print('================') print('Request Type: Post') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/predict') print('\\nFor GroundTruth') print('================') print('Request Type: Post') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/groundtruth') print('\\nFor Help') print('================') print('Request Type: Get') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/help') print('\\nFor Model In Production Analysis') print('================') print('Request Type: Get') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/metrices') server.start() server.waitForThread() """
trainer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class learner(): def __init__(self, problem_type="classification", target_feature="", sample_method=None,indent=0, tab_size=4): self.tab = " "*tab_size self.df_name = 'df' self.problem_type = problem_type self.target_feature = target_feature self.search_space = [] self.codeText = f"\ndef train(log):" self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'featureEngineeredData.dat','testData' : 'test.dat', 'metaData' : 'modelMetaData.json','monitor':'monitoring.json','log' : 'aion.log'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config" return text def __addSaveModelCode(self): text = "\n\ \ndef save_model( experiment_id, estimator, features, metrices, params,tags, scoring):\ \n # mlflow log model, metrices and parameters\ \n with mlflow.start_run(experiment_id = experiment_id, run_name = model_name):\ \n return logMlflow(params, metrices, estimator, tags, model_name.split('_')[0])" return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): return self.function_code + '\n' + self.codeText def addLocalFunctionsCode(self): self.function_code += self.__addValidateConfigCode() self.function_code += self.__addSaveModelCode() def getPrefixModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ] return modules def addPrefixCode(self, indent=1): self.codeText += "\ \n config = validateConfig()\ \n targetPath = Path('aion')/config['targetPath']\ \n if not targetPath.exists():\ \n raise ValueError(f'targetPath does not exist')\ \n meta_data_file = targetPath/IOFiles['metaData']\ \n if meta_data_file.exists():\ \n meta_data = read_json(meta_data_file)\ \n else:\ \n raise ValueError(f'Configuration file not found: {meta_data_file}')\ \n log_file = targetPath/IOFiles['log']\ \n log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\ \n dataLoc = targetPath/IOFiles['inputData']\ \n if not dataLoc.exists():\ \n return {'Status':'Failure','Message':'Data location does not exists.'}\ \n\ \n status = dict()\ \n usecase = config['targetPath']\ \n df = pd.read_csv(dataLoc)\ \n prev_step_output = meta_data['featureengineering']['Status']" def getSuffixModules(self): modules = [{'module':'platform'} ,{'module':'time'} ,{'module':'mlflow'} ] return modules def add_100_trainsize_code(self): self.codeText +="\n\ \n else:\ \n test_score = train_score\ \n metrices = {}" def addSuffixCode(self, indent=1): self.codeText += "\n\ \n meta_data['training'] = {}\ \n meta_data['training']['features'] = features\ \n scoring = config['scoring_criteria']\ \n tags = {'estimator_name': model_name}\ \n monitoring_data = read_json(targetPath/IOFiles['monitor'])\ \n mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\ \n mlflow_client, experiment_id = mlflow_create_experiment(monitoring_data.get('mlflow_config',mlflow_default_config), targetPath, usecase)\ \n run_id = save_model(experiment_id, estimator,features, metrices,best_params,tags,scoring)\ \n write_json(meta_data, targetPath/IOFiles['metaDataOutput'])\ \n write_json({'scoring_criteria': scoring, 'metrices':metrices, 'param':best_params}, targetPath/IOFiles['performance'])\ \n\ \n # return status\ \n status = {'Status':'Success','mlflow_run_id':run_id,'FeaturesUsed':features,'test_score':metrices['test_score'],'train_score':metrices['train_score']}\ \n log.info(f'Test score: {test_score}')\ \n log.info(f'Train score: {train_score}')\ \n log.info(f'MLflow run id: {run_id}')\ \n log.info(f'output: {status}')\ \n return json.dumps(status)" def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'sys'} ,{'module':'json'} ,{'module':'logging'} ] return modules def addMainCode(self, indent=1): self.codeText += "\n\ \nif __name__ == '__main__':\ \n log = None\ \n try:\ \n print(train(log))\ \n except Exception as e:\ \n if log:\ \n log.error(e, exc_info=True)\ \n status = {'Status':'Failure','Message':str(e)}\ \n print(json.dumps(status))\ " def add_variable(self, name, value, indent=1): if isinstance(value, str): self.codeText += f"\n{self.tab * indent}{name} = '{value}'" else: self.codeText += f"\n{self.tab * indent}{name} = {value}" def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}" def add_search_space_w(self, algoritms): for model, params in algoritms.items(): d = {'clf': f"[{model}()]"} for k,v in params.items(): if isinstance(v, str): d[f'clf__{k}']=f"'{v}'" else: d[f'clf__{k}']= f"{v}" self.search_space.append(d) def add_search_space(self, indent=1): self.codeText += f"\n{self.tab}search_space = config['search_space']" def add_train_test_split(self, train_feature, target_feature,test_ratio, indent=1): self.codeText += "\n\n # split the data for training\ \n selected_features = prev_step_output['selected_features']\ \n target_feature = config['target_feature']\ \n train_features = prev_step_output['total_features'].copy()\ \n train_features.remove(target_feature)\ \n X_train = df[train_features]\ \n y_train = df[target_feature]\ \n if config['test_ratio'] > 0.0:\ \n test_data = read_data(targetPath/IOFiles['testData'])\ \n X_test = test_data[train_features]\ \n y_test = test_data[target_feature]\ \n else:\ \n X_test = pd.DataFrame()\ \n y_test = pd.DataFrame()" def add_model_fit(self, estimator, optimizer, selector_method, importer, indent=1): # need to adjust the indent importer.addModule('importlib') importer.addModule('operator') text = f"\n features = selected_features['{selector_method}']\ \n estimator = {estimator}()\ \n param = config['algorithms']['{estimator}']" if optimizer == 'GridSearchCV': text += "\n grid = GridSearchCV(estimator, param,cv=config['optimization_param']['trainTestCVSplit'])\ \n grid.fit(X_train[features], y_train)\ \n train_score = grid.best_score_ * 100\ \n best_params = grid.best_params_\ \n estimator = grid.best_estimator_" elif optimizer == 'GeneticSelectionCV': text += "\n grid = GeneticSelectionCV(estimator, scoring=scorer, n_generations=config['optimization_param']['iterations'],cv=config['optimization_param']['trainTestCVSplit'],n_population=config['optimization_param']['geneticparams']['n_population'],crossover_proba=config['optimization_param']['geneticparams']['crossover_proba'],mutation_proba=config['optimization_param']['geneticparams']['mutation_proba'],crossover_independent_proba=config['optimization_param']['geneticparams']['crossover_independent_proba'],mutation_independent_proba=config['optimization_param']['geneticparams']['mutation_independent_proba'],tournament_size=config['optimization_param']['geneticparams']['tournament_size'],n_gen_no_change=config['optimization_param']['geneticparams']['n_gen_no_change'])\ \n grid.fit(X_train[features], y_train)\ \n train_score = grid.score(X_train[features], y_train)\ \n best_params = grid.estimator_.get_params()\ \n estimator = grid.estimator_" else: text += f"\n grid = {optimizer}(estimator, param, scoring=scorer, n_iter=config['optimization_param']['iterations'],cv=config['optimization_param']['trainTestCVSplit'])\ \n grid.fit(X_train[features], y_train)\ \n train_score = grid.best_score_ * 100\ \n best_params = grid.best_params_\ \n estimator = grid.best_estimator_" self.codeText += text def addLearner(self, model_name, params, importer, indent=1): importer.addModule('Pipeline', mod_from='sklearn.pipeline') importer.addModule('ColumnTransformer', mod_from='sklearn.compose') importer.addModule('confusion_matrix', mod_from='sklearn.metrics') model_params = [] for k,v in params.items(): if isinstance(v, str): model_params.append(f"{k}='{v}'") else: model_params.append(f"{k}={v}") model_params = ",".join(model_params) self.codeText += self.getTransformer() text = f"\n{self.tab * indent}pipeline = Pipeline(steps = [('preprocessor', preprocessor),('learner',{model_name}({model_params}))])" self.codeText += text self.codeText += self.splitTargetFeature(importer) if self.balancing: self.codeText += self.balancingCode(importer) self.codeText += self.fitModelCode(importer) def splitTargetFeature(self, importer, indent=1): importer.addModule('train_test_split', mod_from='sklearn.model_selection') return f"\n{self.tab * indent}target = df['{self.target_feature}']\ \n{self.tab * indent}df = df.drop(['{self.target_feature}'], axis=1)\ \n{self.tab * indent}X_train, X_test, y_train, y_test = train_test_split(df,target, train_size = percentage/100.0)" def getCode_remove(self, model_name=None, indent=1): return self.codeText def getDFName(self): return self.df_name def copyCode(self, learner): self.codeText = learner.getCode()
selector.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class selector(): def __init__(self, indent=0, tab_size=4): self.tab = " "*tab_size self.codeText = f"\n\ndef featureSelector(log):" self.pipe = 'pipe' self.code_generated = False self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'transformedData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','outputData' : 'featureEngineeredData.dat'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config" return text def addMainCode(self): self.codeText += "\n\ \nif __name__ == '__main__':\ \n log = None\ \n try:\ \n print(featureSelector(log))\ \n except Exception as e:\ \n if log:\ \n log.error(e, exc_info=True)\ \n status = {'Status':'Failure','Message':str(e)}\ \n print(json.dumps(status))\ " def addValidateConfigCode(self, indent=1): self.function_code += self.__addValidateConfigCode() def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): return self.function_code + '\n' + self.codeText def addLocalFunctionsCode(self): self.addValidateConfigCode() def getPrefixModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ] return modules def addPrefixCode(self, indent=1): self.codeText += "\ \n config = validateConfig()\ \n targetPath = Path('aion')/config['targetPath']\ \n if not targetPath.exists():\ \n raise ValueError(f'targetPath does not exist')\ \n meta_data_file = targetPath/IOFiles['metaData']\ \n if meta_data_file.exists():\ \n meta_data = read_json(meta_data_file)\ \n else:\ \n raise ValueError(f'Configuration file not found: {meta_data_file}')\ \n log_file = targetPath/IOFiles['log']\ \n log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\ \n dataLoc = targetPath/IOFiles['inputData']\ \n if not dataLoc.exists():\ \n return {'Status':'Failure','Message':'Data location does not exists.'}\ \n\ \n status = dict()\ \n df = pd.read_csv(dataLoc)\ \n prev_step_output = meta_data['transformation']" def getSuffixModules(self): modules = [{'module':'platform'} ,{'module':'time'} ] return modules def addSuffixCode(self, indent=1): self.codeText += "\n\ \n csv_path = str(targetPath/IOFiles['outputData'])\ \n write_data(df, csv_path,index=False)\ \n status = {'Status':'Success','DataFilePath':IOFiles['outputData'],'total_features':total_features, 'selected_features':selected_features}\ \n log.info(f'Selected data saved at {csv_path}')\ \n meta_data['featureengineering']['Status'] = status\ \n write_json(meta_data, str(targetPath/IOFiles['metaData']))\ \n log.info(f'output: {status}')\ \n return json.dumps(status)" def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'sys'} ,{'module':'json'} ,{'module':'logging'} ,{'module':'argparse'} ] return modules def add_variable(self, name, value, indent=1): if isinstance(value, str): self.codeText += f"\n{self.tab * indent}{name} = '{value}'" else: self.codeText += f"\n{self.tab * indent}{name} = {value}" def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}" def modelBased(self, problem_type, indent=1): if problem_type == 'classification': self.codeText += f"\n{self.tab * indent}selector = SelectFromModel(ExtraTreesClassifier())" self.codeText += f"\n{self.tab * indent}selector()" if problem_type == 'regression': self.codeText += f"\n{self.tab * indent}pipe = Pipeline([('selector', SelectFromModel(Lasso()))])" self.codeText += f"\n{self.tab * indent}selector.fit(df[train_features],df[target_feature])" self.codeText += f"\n{self.tab * indent}selected_features = [x for x,y in zip(train_features, selector.get_support()) if y]" self.codeText += f"\n{self.tab * indent}df = df[selected_features + [target_feature]]" def featureReductionBased(self, reducer, n_components, indent=1): if reducer == 'pca': if n_components == 0: self.codeText += f"\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components='mle',svd_solver = 'full'))])" elif n_components < 1: self.codeText += f"\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components={n_components},svd_solver = 'full'))])" else: self.codeText += f"\n{self.tab * indent}pipe = Pipeline([('selector', PCA(n_components=int({n_components})))])" self.codeText += "pipe.fit_transform(df)" def getPipe(self): return self.pipe
utility.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .imports import importModule utility_functions = { 'load_data': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'transformer': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'selector': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'train': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'register': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'Prediction': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'drift': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], } #TODO convert read and write functions in to class functions functions_code = { 'read_json':{'imports':[{'mod':'json'}],'code':"\n\ \ndef read_json(file_path):\ \n data = None\ \n with open(file_path,'r') as f:\ \n data = json.load(f)\ \n return data\ \n"}, 'write_json':{'imports':[{'mod':'json'}],'code':"\n\ \ndef write_json(data, file_path):\ \n with open(file_path,'w') as f:\ \n json.dump(data, f)\ \n"}, 'read_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef read_data(file_path, encoding='utf-8', sep=','):\ \n return pd.read_csv(file_path, encoding=encoding, sep=sep)\ \n"}, 'write_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef write_data(data, file_path, index=False):\ \n return data.to_csv(file_path, index=index)\ \n\ \n#Uncomment and change below code for google storage\ \n#from google.cloud import storage\ \n#def write_data(data, file_path, index=False):\ \n# file_name= file_path.name\ \n# data.to_csv('output_data.csv')\ \n# storage_client = storage.Client()\ \n# bucket = storage_client.bucket('aion_data')\ \n# bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\ \n# return data\ \n"}, 'is_file_name_url':{'imports':[],'code':"\n\ \ndef is_file_name_url(file_name):\ \n supported_urls_starts_with = ('gs://','https://','http://')\ \n return file_name.startswith(supported_urls_starts_with)\ \n"}, 'logger_class':{'imports':[{'mod':'logging'}, {'mod':'io'}],'code':"\n\ \nclass logger():\ \n #setup the logger\ \n def __init__(self, log_file, mode='w', logger_name=None):\ \n logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\ \n self.log = logging.getLogger(logger_name)\ \n\ \n #get logger\ \n def getLogger(self):\ \n return self.log\ \n\ \n def info(self, msg):\ \n self.log.info(msg)\ \n\ \n def error(self, msg, exc_info=False):\ \n self.log.error(msg,exc_info)\ \n\ \n # format and log dataframe\ \n def log_dataframe(self, df, rows=2, msg=None):\ \n buffer = io.StringIO()\ \n df.info(buf=buffer)\ \n log_text = 'Data frame{}'.format(' after ' + msg + ':' if msg else ':')\ \n log_text += '\\n\\t'+str(df.head(rows)).replace('\\n','\\n\\t')\ \n log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\ \n self.log.info(log_text)\ \n"}, } class utility_function(): def __init__(self, module): if module in utility_functions.keys(): self.module_name = module else: self.module_name = None self.importer = importModule() self.codeText = "" def get_code(self): code = "" if self.module_name: functions = utility_functions[self.module_name] for function in functions: self.codeText += self.get_function_code(function) code = self.importer.getCode() code += self.codeText return code def get_function_code(self, name): code = "" if name in functions_code.keys(): code += functions_code[name]['code'] if self.importer: if 'imports' in functions_code[name].keys(): for module in functions_code[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) return code def get_importer(self): return self.importer if __name__ == '__main__': obj = utility_function('load_data') p = obj.get_utility_code() print(p)
drift_analysis.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class drift(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = '' def getInputFiles(self): IOFiles = { "log": "aion.log", "trainingData":"rawData.dat", "production": "production.json", "monitoring":"monitoring.json", "prodData": "prodData", "prodDataGT":"prodDataGT" } text = 'IOFiles = ' if not IOFiles: text += '{ }' else: text += json.dumps(IOFiles, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): return self.codeText # temporary code def get_input_drift_import_modules(self): return [ {'module': 'sys', 'mod_from': None, 'mod_as': None}, {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'mlflow', 'mod_from': None, 'mod_as': None}, {'module': 'stats', 'mod_from': 'scipy', 'mod_as': 'st'}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'warnings', 'mod_from': None, 'mod_as': None}, {'module': 'platform', 'mod_from': None, 'mod_as': None } ] def get_input_drift_code(self): return """ class inputdrift(): def __init__(self,base_config): if 'mlflowURL' in base_config: self.usecase = base_config['modelName'] + '_' + base_config['modelVersion'] self.currentDataLocation = base_config['currentDataLocation'] home = Path.home() if platform.system() == 'Windows': from pathlib import WindowsPath output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data' output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase else: from pathlib import PosixPath output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data' output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase if not output_model_dir.exists(): raise ValueError(f'Configuration file not found at {output_model_dir}') tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns') registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db') mlflow.set_tracking_uri(tracking_uri) mlflow.set_registry_uri(registry_uri) client = mlflow.tracking.MlflowClient( tracking_uri=tracking_uri, registry_uri=registry_uri, ) model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase) model = mlflow.pyfunc.load_model(model_version_uri) run = client.get_run(model.metadata.run_id) if run.info.artifact_uri.startswith('file:'): artifact_path = Path(run.info.artifact_uri[len('file:///') : ]) else: artifact_path = Path(run.info.artifact_uri) self.trainingDataPath = artifact_path/(self.usecase + '_data.csv') def get_input_drift(self,current_data, historical_data): curr_num_feat = current_data.select_dtypes(include='number') hist_num_feat = historical_data.select_dtypes(include='number') num_features = [feat for feat in historical_data.columns if feat in curr_num_feat] alert_count = 0 data = { 'current':{'data':current_data}, 'hist': {'data': historical_data} } dist_changed_columns = [] dist_change_message = [] for feature in num_features: curr_static_value = round(st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue,3) if (curr_static_value < 0.05): try: distribution = {} distribution['hist'] = self.DistributionFinder( historical_data[feature]) distribution['curr'] = self.DistributionFinder( current_data[feature]) if(distribution['hist']['name'] == distribution['curr']['name']): pass else: alert_count = alert_count + 1 dist_changed_columns.append(feature) changed_column = {} changed_column['Feature'] = feature changed_column['KS_Training'] = curr_static_value changed_column['Training_Distribution'] = distribution['hist']['name'] changed_column['New_Distribution'] = distribution['curr']['name'] dist_change_message.append(changed_column) except: pass if alert_count: resultStatus = dist_change_message else : resultStatus='Model is working as expected' return(alert_count, resultStatus) def DistributionFinder(self,data): best_distribution ='' best_sse =0.0 if(data.dtype in ['int','int64']): distributions= {'bernoulli':{'algo':st.bernoulli}, 'binom':{'algo':st.binom}, 'geom':{'algo':st.geom}, 'nbinom':{'algo':st.nbinom}, 'poisson':{'algo':st.poisson} } index, counts = np.unique(data.astype(int),return_counts=True) if(len(index)>=2): best_sse = np.inf y1=[] total=sum(counts) mean=float(sum(index*counts))/total variance=float((sum(index**2*counts) -total*mean**2))/(total-1) dispersion=mean/float(variance) theta=1/float(dispersion) r=mean*(float(theta)/1-theta) for j in counts: y1.append(float(j)/total) distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean) distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index)) distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean)) distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r) distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean) sselist = [] for dist in distributions.keys(): distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0)) if np.isnan(distributions[dist]['sess']): distributions[dist]['sess'] = float('inf') best_dist = min(distributions, key=lambda v: distributions[v]['sess']) best_distribution = best_dist best_sse = distributions[best_dist]['sess'] elif (len(index) == 1): best_distribution = 'Constant Data-No Distribution' best_sse = 0.0 elif(data.dtype in ['float64','float32']): distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta] best_distribution = st.norm.name best_sse = np.inf nrange = data.max() - data.min() y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: with warnings.catch_warnings(): warnings.filterwarnings('ignore') params = distribution.fit(data.astype(float)) arg = params[:-2] loc = params[-2] scale = params[-1] pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if( sse < best_sse): best_distribution = distribution.name best_sse = sse return {'name':best_distribution, 'sse': best_sse} def check_drift( config): inputdriftObj = inputdrift(config) historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath,skipinitialspace = True,na_values=['-','?']) currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation,skipinitialspace = True,na_values=['-','?']) historicaldataFrame.columns = historicaldataFrame.columns.str.strip() currentdataFrame.columns = currentdataFrame.columns.str.strip() dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame) if message == 'Model is working as expected': output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}} else: output_json = {'status':'SUCCESS','data':{'Affected Columns':message}} return(output_json) """ def get_main_drift_code(self, problem_type, smaller_is_better=True): text = '' if problem_type == 'classification': text += """ def is_drift_within_limits(production, current_matrices,scoring_criteria,threshold = 5): testscore = production['score'] current_score = current_matrices[scoring_criteria] threshold_value = testscore * threshold / 100.0 if current_score > (testscore - threshold_value) : return True else: return False def get_metrices(actual_values, predicted_values): from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score result = {} accuracy_score = accuracy_score(actual_values, predicted_values) avg_precision = precision_score(actual_values, predicted_values, average='macro') avg_recall = recall_score(actual_values, predicted_values, average='macro') avg_f1 = f1_score(actual_values, predicted_values, average='macro') result['accuracy'] = round((accuracy_score*100),2) result['precision'] = round((avg_precision*100),2) result['recall'] = round((avg_recall*100),2) result['f1'] = round((avg_f1*100),2) return result """ else: text += """ def is_drift_within_limits(production, current_matrices,scoring_criteria,threshold = 5): testscore = production['score'] current_score = current_matrices[scoring_criteria] threshold_value = testscore * threshold / 100.0 """ if smaller_is_better: text += """ if current_score < (testscore + threshold_value) :""" else: text += """ if current_score > (testscore - threshold_value) :""" text += """ return True else: return False def get_metrices(actual_values, predicted_values): import numpy as np result = {} me = np.mean(predicted_values - actual_values) sde = np.std(predicted_values - actual_values, ddof = 1) abs_err = np.abs(predicted_values - actual_values) mae = np.mean(abs_err) sdae = np.std(abs_err, ddof = 1) abs_perc_err = 100.0 * np.abs(predicted_values - actual_values) / actual_values mape = np.mean(abs_perc_err) sdape = np.std(abs_perc_err, ddof = 1) result['mean_error'] = me result['mean_abs_error'] = mae result['mean_abs_perc_error'] = mape result['error_std'] = sde result['abs_error_std'] = sdae result['abs_perc_error_std'] = sdape return result """ text += """ def monitoring(config, log=None): targetPath = Path('aion')/config['targetPath'] targetPath.mkdir(parents=True, exist_ok=True) log_file = targetPath/IOFiles['log'] log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) output_json = {} trainingDataLocation = targetPath/IOFiles['trainingData'] monitoring = targetPath/IOFiles['monitoring'] log.info(f'Input Location External: {config["inputUriExternal"]}') trainingStatus = 'False' dataFileLocation = '' driftStatus = 'No Drift' if monitoring.exists(): monitoring_data = read_json(monitoring) if monitoring_data.get('runNo', False): reader = dataReader(reader_type=monitoring_data.get('prod_db_type','sqlite'),target_path=targetPath, config=config.get('db_config',None)) production= targetPath/IOFiles['production'] proddataDF = pd.DataFrame() predicted_data = pd.DataFrame() if production.exists(): production = read_json(production) if reader.file_exists(IOFiles['prodData']) and reader.file_exists(IOFiles['prodDataGT']): predicted_data = reader.read(IOFiles['prodData']) actual_data = reader.read(IOFiles['prodDataGT']) common_col = [k for k in predicted_data.columns.tolist() if k in actual_data.columns.tolist()] proddataDF = pd.merge(actual_data, predicted_data, on =common_col,how = 'inner') currentPerformance = {} currentPerformance = get_metrices(proddataDF[config['target_feature']], proddataDF['prediction']) if is_drift_within_limits(production, currentPerformance,config['scoring_criteria']): log.info(f'OutputDrift: No output drift found') output_json.update({'outputDrift':'Model score is with in limits'}) else: log.info(f'OutputDrift: Found Output Drift') log.info(f'Original Test Score: {production["score"]}') log.info(f'Current Score: {currentPerformance[config["scoring_criteria"]]}') output_json.update({'outputDrift':{'Meassage': 'Model output is drifted','trainedScore':production["score"], 'currentScore':currentPerformance[config["scoring_criteria"]]}}) trainingStatus = 'True' driftStatus = 'Output Drift' else: if reader.file_exists(IOFiles['prodData']): predicted_data = reader.read(IOFiles['prodData']) log.info(f'OutputDrift: Prod Data not found') output_json.update({'outputDrift':'Prod Data not found'}) else: log.info(f'Last Time pipeline not executed completely') output_json.update({'Msg':'Pipeline is not executed completely'}) trainingStatus = 'True' if config['inputUriExternal']: dataFileLocation = config['inputUriExternal'] elif 's3' in config.keys(): dataFileLocation = 'cloud' else: dataFileLocation = config['inputUri'] if trainingStatus == 'False': historicaldataFrame=pd.read_csv(trainingDataLocation) if config['inputUriExternal']: currentdataFrame=pd.read_csv(config['inputUriExternal']) elif not predicted_data.empty: currentdataFrame = predicted_data.copy() elif 's3' in config.keys(): reader = dataReader(reader_type='s3',target_path=config['targetPath'], config=config['s3']) currentdataFrame = reader.read(config['s3']['file_name']) else: currentdataFrame=pd.read_csv(config['inputUri']) inputdriftObj = inputdrift(config) dataalertcount,inputdrift_message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame) if inputdrift_message == 'Model is working as expected': log.info(f'InputDrift: No input drift found') output_json.update({'Status':'SUCCESS','inputDrift':'Model is working as expected'}) else: log.info(f'InputDrift: Input drift found') log.info(f'Affected Columns {inputdrift_message}') output_json.update({'inputDrift':{'Affected Columns':inputdrift_message}}) trainingStatus = 'True' driftStatus = 'Input Drift' if config['inputUriExternal']: dataFileLocation = config['inputUriExternal'] elif actual_data_path.exists() and predict_data_path.exists(): dataFileLocation = '' elif 's3' in config.keys(): dataFileLocation = 'cloud' else: dataFileLocation = config['inputUri'] else: log.info(f'Pipeline Executing first Time') output_json.update({'Msg':'Pipeline executing first time'}) trainingStatus = 'True' if config['inputUriExternal']: dataFileLocation = config['inputUriExternal'] elif 's3' in config.keys(): dataFileLocation = 'cloud' else: dataFileLocation = config['inputUri'] else: log.info(f'Pipeline Executing first Time') output_json.update({'Msg':'Pipeline executing first time'}) trainingStatus = 'True' if config['inputUriExternal']: dataFileLocation = config['inputUriExternal'] elif 's3' in config.keys(): dataFileLocation = 'cloud' else: dataFileLocation = config['inputUri'] if monitoring.exists(): monitoring_data['runNo'] = int(monitoring_data.get('runNo', '0')) + 1 else: monitoring_data = {} monitoring_data['runNo'] = 1 monitoring_data['prod_db_type'] = config.get('prod_db_type', 'sqlite') monitoring_data['db_config'] = config.get('db_config', {}) monitoring_data['mlflow_config'] = config.get('mlflow_config', None) if 's3' in config.keys(): monitoring_data['s3'] = config['s3'] monitoring_data['dataLocation'] = dataFileLocation monitoring_data['driftStatus'] = driftStatus write_json(monitoring_data,targetPath/IOFiles['monitoring']) output = {'Status':'SUCCESS'} output.update(output_json) return(json.dumps(output)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputUri', help='Training Data Location') args = parser.parse_args() config_file = Path(__file__).parent/'config.json' if not Path(config_file).exists(): raise ValueError(f'Config file is missing: {config_file}') config = read_json(config_file) config['inputUriExternal'] = None if args.inputUri: if args.inputUri != '': config['inputUriExternal'] = args.inputUri log = None try: print(monitoring(config, log)) except Exception as e: if log: log.error(e, exc_info=True) status = {'Status':'Failure','Message':str(e)} print(json.dumps(status)) raise Exception(str(e)) """ return text
data_reader.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .imports import importModule supported_reader = ['sqlite', 'influx','s3'] functions_code = { 'dataReader':{'imports':[{'mod':'json'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""" class dataReader(): def get_reader(self, reader_type, target_path=None, config=None): if reader_type == 'sqlite': return sqlite_writer(target_path=target_path) elif reader_type == 'influx': return Influx_writer(config=config) elif reader_type == 'gcs': return gcs(config=config) elif reader_type == 'azure': return azure(config=config) elif reader_type == 's3': return s3bucket(config=config) else: raise ValueError(reader_type) """ }, 'sqlite':{'imports':[{'mod':'sqlite3'},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None}],'code':"""\n\ class sqlite_writer(): def __init__(self, target_path): self.target_path = Path(target_path) database_file = self.target_path.stem + '.db' self.db = sqlite_db(self.target_path, database_file) def file_exists(self, file): if file: return self.db.table_exists(file) else: return False def read(self, file): return self.db.read(file) def write(self, data, file): self.db.write(data, file) def close(self): self.db.close() class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem + '.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self, table_name): return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close() """ }, 'influx':{'imports':[{'mod':'InfluxDBClient','mod_from':'influxdb'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':"""\n\ class Influx_writer(): def __init__(self, config): self.db = influx_db(config) def file_exists(self, file): if file: return self.db.table_exists(file) else: return False def read(self, file): query = "SELECT * FROM {}".format(file) if 'read_time' in self.db_config.keys() and self.db_config['read_time']: query += f" time > now() - {self.db_config['read_time']}" return self.db.read(query) def write(self, data, file): self.db.write(data, file) def close(self): pass class influx_db(): def __init__(self, config): self.host = config['host'] self.port = config['port'] self.user = config.get('user', None) self.password = config.get('password', None) self.token = config.get('token', None) self.database = config['database'] self.measurement = config['measurement'] self.tags = config['tags'] self.client = self.get_client() def table_exists(self, name): query = f"SHOW MEASUREMENTS ON {self.database}" result = self.client(query) for measurement in result['measurements']: if measurement['name'] == name: return True return False def read(self, query)->pd.DataFrame: cursor = self.client.query(query) points = cursor.get_points() my_list=list(points) df=pd.DataFrame(my_list) return df def get_client(self): headers = None if self.token: headers={"Authorization": self.token} client = InfluxDBClient(self.host,self.port,self.user, self.password,headers=headers) databases = client.get_list_database() databases = [x['name'] for x in databases] if self.database not in databases: client.create_database(self.database) return InfluxDBClient(self.host,self.port,self.user,self.password,self.database,headers=headers) def write(self,data, measurement=None): if isinstance(data, pd.DataFrame): sorted_col = data.columns.tolist() sorted_col.sort() data = data[sorted_col] data = data.to_dict(orient='records') if not measurement: measurement = self.measurement for row in data: if 'time' in row.keys(): p = '%Y-%m-%dT%H:%M:%S.%fZ' time_str = datetime.strptime(row['time'], p) del row['time'] else: time_str = None if 'model_ver' in row.keys(): self.tags['model_ver']= row['model_ver'] del row['model_ver'] json_body = [{ 'measurement': measurement, 'time': time_str, 'tags': self.tags, 'fields': row }] self.client.write_points(json_body) def delete(self, name): pass def close(self): self.client.close() """ }, 's3':{'imports':[{'mod':'boto3'},{'mod': 'ClientError', 'mod_from': 'botocore.exceptions'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ class s3bucket(): def __init__(self, config={}): if 's3' in config.keys(): config = config['s3'] aws_access_key_id = config.get('aws_access_key_id','') aws_secret_access_key = config.get('aws_secret_access_key','') bucket_name = config.get('bucket_name','') if not aws_access_key_id: raise ValueError('aws_access_key_id can not be empty') if not aws_secret_access_key: raise ValueError('aws_secret_access_key can not be empty') self.client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(aws_secret_access_key)) self.bucket_name = bucket_name def read(self, file_name): try: response = self.client.get_object(Bucket=self.bucket_name, Key=file_name) return pd.read_csv(response['Body']) except ClientError as ex: if ex.response['Error']['Code'] == 'NoSuchBucket': raise ValueError(f"Bucket '{self.bucket_name}' not found in aws s3 storage") elif ex.response['Error']['Code'] == 'NoSuchKey': raise ValueError(f"File '{file_name}' not found in s3 bucket '{self.bucket_name}'") else: raise """ }, 'azure':{'imports':[{'mod':'DataLakeServiceClient', 'mod_from':'azure.storage.filedatalake'},{'mod':'detect', 'mod_from':'detect_delimiter'},{'mod':'pandavro', 'mod_as':'pdx'},{'mod':'io'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ def azure(): def __init__(self,config={}): if 'azure' in config.keys(): config = config['azure'] account_name = config.get('account_name','') account_key = config.get('account_key','') container_name = config.get('container_name','') if not account_name: raise ValueError('Account name can not be empty') if not account_key: raise ValueError('Account key can not be empty') if not container_name: raise ValueError('Container name can not be empty') service_client = DataLakeServiceClient(account_url="{}://{}.dfs.core.windows.net".format("https", account_name), credential=account_key) self.file_system_client = service_client.get_file_system_client(container_name) def read(self, directory_name): root_dir = str(directory_name) file_paths = self.file_system_client.get_paths(path=root_dir) main_df = pd.DataFrame() for path in file_paths: if not path.is_directory: file_client = file_system_client.get_file_client(path.name) file_ext = Path(path.name).suffix if file_ext in [".csv", ".tsv"]: with open(csv_local, "wb") as my_file: file_client.download_file().readinto(my_file) with open(csv_local, 'r') as file: data = file.read() row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t']) processed_df = pd.read_csv(csv_local, sep=row_delimiter) elif file_ext == ".parquet": stream = io.BytesIO() file_client.download_file().readinto(stream) processed_df = pd.read_parquet(stream, engine='pyarrow') elif file_ext == ".avro": with open(avro_local, "wb") as my_file: file_client.download_file().readinto(my_file) processed_df = pdx.read_avro(avro_local) if main_df.empty: main_df = pd.DataFrame(processed_df) else: main_df = main_df.append(processed_df, ignore_index=True) return main_df """ }, 'gcs':{'imports':[{'mod':'storage','mod_from':'google.cloud'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ class gcs(): def __init__(self, config={}): if 'gcs' in config.keys(): config = config['gcs'] account_key = config.get('account_key','') bucket_name = config.get('bucket_name','') if not account_key: raise ValueError('Account key can not be empty') if not bucket_name: raise ValueError('bucket name can not be empty') storage_client = storage.Client.from_service_account_json(account_key) self.bucket = storage_client.get_bucket(bucket_name) def read(self, bucket_name, file_name): data = self.bucket.blob(file_name).download_as_text() return pd.read_csv(data, encoding = 'utf-8', sep = ',') """ } } class data_reader(): def __init__(self, reader_type=[]): self.supported_readers = supported_reader if isinstance(reader_type, str): self.readers = [reader_type] elif not reader_type: self.readers = self.supported_readers else: self.readers = reader_type unsupported_reader = [ x for x in self.readers if x not in self.supported_readers] if unsupported_reader: raise ValueError(f"reader type '{unsupported_reader}' is not supported\nSupported readers are {self.supported_readers}") self.codeText = "" self.importer = importModule() def get_reader_code(self, readers): reader_code = { 'sqlite': 'return sqlite_writer(target_path=target_path)', 'influx': 'return Influx_writer(config=config)', 'gcs': 'return gcs(config=config)', 'azure': 'return azure(config=config)', 's3': 'return s3bucket(config=config)' } code = "\n\ndef dataReader(reader_type, target_path=None, config=None):\n" for i, reader in enumerate(readers): if not i: code += f" if reader_type == '{reader}':\n" else: code += f" elif reader_type == '{reader}':\n" code += f" {reader_code[reader]}\n" if readers: code += " else:\n" code += f""" raise ValueError("'{{reader_type}}' not added during code generation")\n""" else: code += f""" raise ValueError("'{{reader_type}}' not added during code generation")\n""" return code def get_code(self): code = self.get_reader_code(self.readers) functions = [] for reader in self.readers: functions.append(reader) for function in functions: code += self.get_function_code(function) self.codeText += self.importer.getCode() self.codeText += code return self.codeText def get_function_code(self, name): code = "" if name in functions_code.keys(): code += functions_code[name]['code'] if self.importer: if 'imports' in functions_code[name].keys(): for module in functions_code[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) return code def get_importer(self): return self.importer
imports.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from importlib.metadata import version import sys class importModule(): def __init__(self): self.importModule = {} self.stdlibModule = [] self.localModule = {} def addLocalModule(self,module, mod_from=None, mod_as=None): if module == '*': if module not in self.localModule.keys(): self.localModule[module]= [mod_from] else: self.localModule[module].append(mod_from) elif module not in self.localModule.keys(): self.localModule[module] = {'from':mod_from, 'as':mod_as} def addModule(self, module, mod_from=None, mod_as=None): if module not in self.importModule.keys(): self.importModule[module] = {'from':mod_from, 'as':mod_as} if module in sys.stdlib_module_names: self.stdlibModule.append(module) elif isinstance(self.importModule[module], list): if mod_as not in [x['as'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as not in [x['from'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as != self.importModule[module]['as']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list elif mod_from != self.importModule[module]['from']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list def getModules(self): return (self.importModule, self.stdlibModule) def getBaseModule(self, extra_importers=[]): modules_alias = { 'sklearn':'scikit-learn', 'genetic_selection':'sklearn-genetic', 'google': 'google-cloud-storage', 'azure':'azure-storage-file-datalake'} local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'} modules = [] require = "" if extra_importers: extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)] importers_module = [self.importModule] + extra_importers for importer_module in importers_module: for k,v in importer_module.items(): if v['from']: mod = v['from'].split('.')[0] else: mod = k if mod in modules_alias.keys(): mod = modules_alias[mod] modules.append(mod) modules = list(set(modules)) for mod in modules: try: if mod in local_modules.keys(): require += f"{local_modules[mod]}\n" else: require += f"{mod}=={version(mod)}\n" except : if mod not in sys.stdlib_module_names: raise return require def getCode(self): def to_string(k, v): mod = '' if v['from']: mod += 'from {} '.format(v['from']) mod += 'import {}'.format(k) if v['as']: mod += ' as {} '.format(v['as']) return mod modules = "" local_modules = "" std_lib_modules = "" third_party_modules = "" for k,v in self.importModule.items(): if k in self.stdlibModule: std_lib_modules = std_lib_modules + '\n' + to_string(k, v) elif isinstance(v, dict): third_party_modules = third_party_modules + '\n' + to_string(k, v) elif isinstance(v, list): for alias in v: third_party_modules = third_party_modules + '\n' + to_string(k, alias) for k,v in self.localModule.items(): if k != '*': local_modules = local_modules + '\n' + to_string(k, v) else: for mod_from in v: local_modules = local_modules + '\n' + f'from {mod_from} import {k}' if std_lib_modules: modules = modules + "\n#Standard Library modules" + std_lib_modules if third_party_modules: modules = modules + "\n\n#Third Party modules" + third_party_modules if local_modules: modules = modules + "\n\n#local modules" + local_modules + '\n' return modules def copyCode(self, importer): self.importModule, self.stdlibModule = importer.getModules()
transformer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class transformer(): def __init__(self, indent=0, tab_size=4): self.df_name = 'df' self.tab = ' ' * tab_size self.codeText = "" self.transformers = [] self.TxCols = [] self.imputers = {} self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','trainData' : 'transformedData.dat','testData' : 'test.dat','preprocessor' : 'preprocessor.pkl'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config" return text def getPrefixModules(self): modules = [ {'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ,{'module':'numpy', 'mod_as':'np'} ,{'module':'scipy'} ] return modules def addPrefixCode(self, indent=1): self.codeText += """ def transformation(log): config = validateConfig() targetPath = Path('aion')/config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') meta_data_file = targetPath/IOFiles['metaData'] if meta_data_file.exists(): meta_data = read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') log_file = targetPath/IOFiles['log'] log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) dataLoc = targetPath/IOFiles['inputData'] if not dataLoc.exists(): return {'Status':'Failure','Message':'Data location does not exists.'} status = dict() df = read_data(dataLoc) log.log_dataframe(df) target_feature = config['target_feature'] if config['test_ratio'] == 0.0: train_data = df test_data = pd.DataFrame() else: """ def getSuffixModules(self): modules = [{'module':'pandas','mod_as':'pd'} ,{'module':'json'} ,{'module':'joblib'} ] return modules def addSuffixCode(self,encoder=False, indent=1): self.codeText += """ train_data, preprocess_pipe, label_encoder = profilerObj.transform() if not preprocess_pipe: raise ValueError('Pipeline not created') joblib.dump(preprocess_pipe, targetPath/IOFiles['preprocessor']) test_data.reset_index(inplace=True) """ if encoder: self.codeText += """ joblib.dump(label_encoder, targetPath/IOFiles['targetEncoder']) if not test_data.empty: ytest = label_encoder.transform(test_data[target_feature]) """ else: self.codeText += """ if not test_data.empty: ytest = test_data[target_feature] """ self.codeText += """ test_data.astype(profilerObj.train_features_type) test_data = preprocess_pipe.transform(test_data) if isinstance(test_data, scipy.sparse.spmatrix): test_data = test_data.toarray() preprocess_out_columns = train_data.columns.tolist() preprocess_out_columns.remove(target_feature) write_data(train_data,targetPath/IOFiles['trainData'],index=False) if isinstance( test_data, np.ndarray): test_data = pd.DataFrame(test_data, columns=preprocess_out_columns) test_data[target_feature] = ytest write_data(test_data,targetPath/IOFiles['testData'],index=False) log.log_dataframe(train_data) status = {'Status':'Success','trainData':IOFiles['trainData'],'testData':IOFiles['testData']} meta_data['transformation'] = {} meta_data['transformation']['cat_features'] = train_data.select_dtypes('category').columns.tolist() meta_data['transformation']['preprocessor'] = IOFiles['preprocessor'] meta_data['transformation']['preprocess_out_columns'] = preprocess_out_columns """ if encoder: self.codeText += """ meta_data['transformation']['target_encoder'] = IOFiles['targetEncoder'] """ self.codeText += """ meta_data['transformation']['Status'] = status write_json(meta_data, str(targetPath/IOFiles['metaData'])) log.info(f"Transformed data saved at {targetPath/IOFiles['trainData']}") log.info(f'output: {status}') return json.dumps(status) """ def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'sys'} ,{'module':'json'} ,{'module':'logging'} ,{'module':'argparse'} ] return modules def addMainCode(self, indent=1): self.codeText += "\n\ \nif __name__ == '__main__':\ \n log = None\ \n try:\ \n print(transformation(log))\ \n except Exception as e:\ \n if log:\ \n log.error(e, exc_info=True)\ \n status = {'Status':'Failure','Message':str(e)}\ \n print(json.dumps(status))" def addValidateConfigCode(self, indent=1): self.function_code += self.__addValidateConfigCode() def addLocalFunctionsCode(self): self.addValidateConfigCode() def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self, indent=1): return self.function_code + '\n' + self.codeText def getDFName(self): return self.df_name class data_profiler(): def __init__(self, importer, text_features=False): self.importer = importer self.codeText = "" self.text_features = text_features def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def get_module_import_statement(self, mod): text = "" if not mod.get('module', None): return text if mod.get('mod_from', None): text += f"from {mod['mod_from']} " text += f"import {mod['module']} " if mod.get('mod_as', None): text += f"as {mod['mod_as']}" text += "\n" return text def get_import_modules(self): profiler_importes = [ {'module': 'scipy', 'mod_from': None, 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'w2n', 'mod_from': 'word2number', 'mod_as': None}, {'module': 'LabelEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'OrdinalEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'OneHotEncoder', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'SimpleImputer', 'mod_from': 'sklearn.impute', 'mod_as': None }, {'module': 'KNNImputer', 'mod_from': 'sklearn.impute', 'mod_as': None }, {'module': 'Pipeline', 'mod_from': 'sklearn.pipeline', 'mod_as': None }, {'module': 'FeatureUnion', 'mod_from': 'sklearn.pipeline', 'mod_as': None }, {'module': 'MinMaxScaler', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'StandardScaler', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'PowerTransformer', 'mod_from': 'sklearn.preprocessing', 'mod_as': None }, {'module': 'ColumnTransformer', 'mod_from': 'sklearn.compose', 'mod_as': None }, {'module': 'TransformerMixin', 'mod_from': 'sklearn.base', 'mod_as': None }, {'module': 'IsolationForest', 'mod_from': 'sklearn.ensemble', 'mod_as': None }, {'module': 'TargetEncoder', 'mod_from': 'category_encoders', 'mod_as': None } ] if self.text_features: profiler_importes.append({'module': 'textProfiler', 'mod_from': 'text.textProfiler', 'mod_as': None }) profiler_importes.append({'module': 'textCombine', 'mod_from': 'text.textProfiler', 'mod_as': None }) return profiler_importes def get_importer(self): return self.importer def get_code(self): common_importes = self.get_import_modules() for module in common_importes: mod_name = module['module'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) if module['module'] in ['textProfiler','textCombine']: self.importer.addLocalModule(mod_name, mod_from=mod_from, mod_as=mod_as) else: self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) self.codeText += """ STR_TO_CAT_CONVERSION_LEN_MAX = 10 log_suffix = f'[{Path(__file__).stem}] ' target_encoding_method_change = {'targetencoding': 'labelencoding'} supported_method = { 'fillNa': { 'categorical' : ['mode','zero','na'], 'numeric' : ['median','mean','knnimputer','zero','drop','na'], }, 'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'], 'normalization': ['standardscaler','minmax','lognormal', 'na','none'], 'outlier_column_wise': ['iqr','zscore', 'disable'], 'outlierOperation': ['dropdata', 'average', 'nochange'] } def findiqrOutlier(df): Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))) return index def findzscoreOutlier(df): z = np.abs(scipy.stats.zscore(df)) index = (z < 3) return index def findiforestOutlier(df): isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(df) y_pred_train = isolation_forest.predict(df) return y_pred_train == 1 def get_one_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_boolean(value): if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True): return True else: return False class profiler(): def __init__(self, xtrain, ytrain=None, target=None, encode_target = True, config={}, keep_unprocessed=[], log=None): if not isinstance(xtrain, pd.DataFrame): raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type') if xtrain.empty: raise ValueError(f'{log_suffix}Data frame is empty') if target and target in xtrain.columns: self.target = xtrain[target] xtrain.drop(target, axis=1, inplace=True) self.target_name = target elif ytrain: self.target = ytrain self.target_name = 'target' else: self.target = pd.Series() self.target_name = None self.encode_target = encode_target self.label_encoder = None keep_unprocessed = [x for x in keep_unprocessed if x in xtrain.columns] if keep_unprocessed: self.unprocessed = xtrain[keep_unprocessed] self.data = xtrain.drop(keep_unprocessed, axis=1) else: self.data = xtrain self.unprocessed = pd.DataFrame() self.colm_type = {} for colm, infer_type in zip(self.data.columns, self.data.dtypes): self.colm_type[colm] = infer_type self.numeric_feature = [] self.cat_feature = [] self.text_feature = [] self.wordToNumericFeatures = [] self.added_features = [] self.pipeline = [] self.dropped_features = {} self.train_features_type={} self.__update_type() self.config = config self.featureDict = config.get('featureDict', []) self.output_columns = [] self.feature_expender = [] self.text_to_num = {} if log: self.log = log else: self.log = logging.getLogger('eion') self.type_conversion = {} def log_dataframe(self, msg=None): import io buffer = io.StringIO() self.data.info(buf=buffer) if msg: log_text = f'Data frame after {msg}:' else: log_text = 'Data frame:' log_text += '\\n\\t'+str(self.data.head(2)).replace('\\n','\\n\\t') log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t')) self.log.info(log_text) def transform(self): if self.is_target_available(): if self.target_name: self.log.info(f"Target feature name: '{self.target_name}'") self.log.info(f"Target feature size: {len(self.target)}") else: self.log.info(f"Target feature not present") self.log_dataframe() try: self.process() except Exception as e: self.log.error(e, exc_info=True) raise pipe = FeatureUnion(self.pipeline) self.log.info(pipe) process_data = pipe.fit_transform(self.data, y=self.target) self.update_output_features_names(pipe) if isinstance(process_data, scipy.sparse.spmatrix): process_data = process_data.toarray() df = pd.DataFrame(process_data, columns=self.output_columns) if self.is_target_available() and self.target_name: df[self.target_name] = self.target if not self.unprocessed.empty: df[self.unprocessed.columns] = self.unprocessed self.log_numerical_fill() self.log_categorical_fill() self.log_normalization() return df, pipe, self.label_encoder def log_type_conversion(self): if self.log: self.log.info('----------- Inspecting Features -----------') self.log.info('----------- Type Conversion -----------') count = 0 for k, v in self.type_conversion.items(): if v[0] != v[1]: self.log.info(f'{k} -> from {v[0]} to {v[1]} : {v[2]}') self.log.info('Status:- |... Feature inspection done') def check_config(self): removeDuplicate = self.config.get('removeDuplicate', False) self.config['removeDuplicate'] = get_boolean(removeDuplicate) self.config['misValueRatio'] = float(self.config.get('misValueRatio', '1.0')) self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', '1.0')) self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', '20')) featureDict = self.config.get('featureDict', []) if isinstance(featureDict, dict): self.config['featureDict'] = [] if isinstance(featureDict, str): self.config['featureDict'] = [] def process(self): #remove duplicate not required at the time of prediction self.check_config() self.remove_constant_feature() self.remove_empty_feature(self.config['misValueRatio']) self.remove_index_features() self.drop_na_target() if self.config['removeDuplicate']: self.drop_duplicate() self.check_categorical_features() self.string_to_numeric() self.process_target() self.train_features_type = dict(zip(self.data.columns, self.data.dtypes)) self.parse_process_step_config() self.process_drop_fillna() #self.log_type_conversion() self.update_num_fill_dict() #print(self.num_fill_method_dict) self.update_cat_fill_dict() self.create_pipeline() self.text_pipeline(self.config) self.apply_outlier() self.log.info(self.process_method) self.log.info(self.train_features_type) def is_target_available(self): return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target) def process_target(self, operation='encode', arg=None): if self.encode_target: if self.is_target_available(): self.label_encoder = LabelEncoder() self.target = self.label_encoder.fit_transform(self.target) return self.label_encoder return None def is_target_column(self, column): return column == self.target_name def fill_default_steps(self): num_fill_method = get_one_true_option(self.config.get('numericalFillMethod',None)) normalization_method = get_one_true_option(self.config.get('normalization',None)) for colm in self.numeric_feature: if num_fill_method: self.fill_missing_value_method(colm, num_fill_method.lower()) if normalization_method: self.fill_normalizer_method(colm, normalization_method.lower()) cat_fill_method = get_one_true_option(self.config.get('categoricalFillMethod',None)) cat_encode_method = get_one_true_option(self.config.get('categoryEncoding',None)) for colm in self.cat_feature: if cat_fill_method: self.fill_missing_value_method(colm, cat_fill_method.lower()) if cat_encode_method: self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True) def parse_process_step_config(self): self.process_method = {} user_provided_data_type = {} for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: user_provided_data_type[colm] = feat_conf['type'] if user_provided_data_type: self.update_user_provided_type(user_provided_data_type) self.fill_default_steps() for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: if feat_conf.get('fillMethod', None): self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower()) if feat_conf.get('categoryEncoding', None): self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower()) if feat_conf.get('normalization', None): self.fill_normalizer_method(colm, feat_conf['normalization'].lower()) if feat_conf.get('outlier', None): self.fill_outlier_method(colm, feat_conf['outlier'].lower()) if feat_conf.get('outlierOperation', None): self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower()) def update_output_features_names(self, pipe): columns = self.output_columns start_index = {} for feat_expender in self.feature_expender: if feat_expender: step_name = list(feat_expender.keys())[0] index = list(feat_expender.values())[0] for transformer_step in pipe.transformer_list: if transformer_step[1].steps[-1][0] in step_name: start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names()} if start_index: index_shifter = 0 for key,value in start_index.items(): for k,v in value.items(): if k == 'vectorizer': v = [f'{x}_vect' for x in v] key = key + index_shifter self.output_columns[key:key] = v index_shifter += len(v) self.added_features = [*self.added_features, *v] def text_pipeline(self, conf_json): if self.text_feature: pipeList = [] max_features = 2000 text_pipe = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", self.text_feature) ], remainder="drop")), ("text_fillNa",SimpleImputer(strategy='constant', fill_value='')), ("merge_text_feature", textCombine())]) obj = textProfiler() pipeList = obj.textProfiler(conf_json, pipeList, max_features) last_step = "merge_text_feature" for pipe_elem in pipeList: text_pipe.steps.append((pipe_elem[0], pipe_elem[1])) last_step = pipe_elem[0] text_transformer = ('text_process', text_pipe) self.pipeline.append(text_transformer) self.feature_expender.append({last_step:len(self.output_columns)}) def create_pipeline(self): num_pipe = {} for k,v in self.num_fill_method_dict.items(): for k1,v1 in v.items(): if k1 and k1 != 'none': num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)), (k1, self.get_num_scaler(k1)) ]) else: num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)) ]) self.output_columns.extend(v1) cat_pipe = {} for k,v in self.cat_fill_method_dict.items(): for k1,v1 in v.items(): cat_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_cat_imputer(k)), (k1, self.get_cat_encoder(k1)) ]) if k1 not in ['onehotencoding']: self.output_columns.extend(v1) else: self.feature_expender.append({k1:len(self.output_columns)}) for key, pipe in num_pipe.items(): self.pipeline.append((key, pipe)) for key, pipe in cat_pipe.items(): self.pipeline.append((key, pipe)) if not self.unprocessed.empty: self.pipeline.append(Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", self.unprocessed.columns) ], remainder="drop"))])) "Drop: feature during training but replace with zero during prediction " def process_drop_fillna(self): drop_column = [] if 'numFill' in self.process_method.keys(): for col, method in self.process_method['numFill'].items(): if method == 'drop': self.process_method['numFill'][col] = 'zero' drop_column.append(col) if 'catFill' in self.process_method.keys(): for col, method in self.process_method['catFill'].items(): if method == 'drop': self.process_method['catFill'][col] = 'zero' drop_column.append(col) if drop_column: self.data.dropna(subset=drop_column, inplace=True) def update_num_fill_dict(self): self.num_fill_method_dict = {} if 'numFill' in self.process_method.keys(): for f in supported_method['fillNa']['numeric']: self.num_fill_method_dict[f] = {} for en in supported_method['normalization']: self.num_fill_method_dict[f][en] = [] for col in self.numeric_feature: numFillDict = self.process_method.get('numFill',{}) normalizationDict = self.process_method.get('normalization',{}) if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''): self.num_fill_method_dict[f][en].append(col) if not self.num_fill_method_dict[f][en] : del self.num_fill_method_dict[f][en] if not self.num_fill_method_dict[f]: del self.num_fill_method_dict[f] def update_cat_fill_dict(self): self.cat_fill_method_dict = {} if 'catFill' in self.process_method.keys(): for f in supported_method['fillNa']['categorical']: self.cat_fill_method_dict[f] = {} for en in supported_method['categoryEncoding']: self.cat_fill_method_dict[f][en] = [] for col in self.cat_feature: catFillDict = self.process_method.get('catFill',{}) catEncoderDict = self.process_method.get('catEncoder',{}) if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''): self.cat_fill_method_dict[f][en].append(col) if not self.cat_fill_method_dict[f][en] : del self.cat_fill_method_dict[f][en] if not self.cat_fill_method_dict[f]: del self.cat_fill_method_dict[f] def __update_type(self): self.numeric_feature = self.data.select_dtypes(include='number').columns.tolist() self.cat_feature = self.data.select_dtypes(include='category').columns.tolist() self.date_time = self.data.select_dtypes(include='datetime').columns.tolist() self.text_feature = self.data.select_dtypes(include='object').columns.tolist() def update_user_provided_type(self, data_types): allowed_types = ['numerical','categorical', 'text','date','index'] type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),} mapped_type = {k:type_mapping[v] for k,v in data_types.items()} #self.log.info(mapped_type) self.update_type(mapped_type, 'user provided data type') def get_type(self, as_list=False): if as_list: return [self.colm_type.values()] else: return self.colm_type def update_type(self, data_types={}, reason=''): invalid_features = [x for x in data_types.keys() if x not in self.data.columns] if invalid_features: valid_feat = list(set(data_types.keys()) - set(invalid_features)) valid_feat_type = {k:v for k,v in data_types if k in valid_feat} else: valid_feat_type = data_types for k,v in valid_feat_type.items(): if v != self.colm_type[k].name: try: self.data.astype({k:v}) self.colm_type.update({k:self.data[k].dtype}) self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason) except: self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason) self.data = self.data.astype(valid_feat_type) self.__update_type() def string_to_numeric(self): def to_number(x): try: return w2n.word_to_num(x) except: return np.nan for col in self.text_feature: col_values = self.data[col].copy() col_values = pd.to_numeric(col_values, errors='coerce') if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)): self.text_to_num[col] = 'float64' self.wordToNumericFeatures.append(col) if self.text_to_num: columns = list(self.text_to_num.keys()) self.data[columns] = self.data[columns].apply(lambda x: to_number(x)) self.update_type(self.text_to_num) self.log.info('----------- Inspecting Features -----------') for col in self.text_feature: self.log.info(f'-------> Feature : {col}') if col in self.text_to_num: self.log.info('----------> Numeric Status :Yes') self.log.info('----------> Data Type Converting to numeric :Yes') else: self.log.info('----------> Numeric Status :No') self.log.info(f'\\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric') self.log.info(f'\\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}') self.log.info('----------- Inspecting Features End -----------') def check_categorical_features(self): num_data = self.data.select_dtypes(include='number') num_data_unique = num_data.nunique() num_to_cat_col = {} for i, value in enumerate(num_data_unique): if value < self.config['categoryMaxLabel']: num_to_cat_col[num_data_unique.index[i]] = 'category' if num_to_cat_col: self.update_type(num_to_cat_col, 'numerical to categorical') str_to_cat_col = {} str_data = self.data.select_dtypes(include='object') str_data_unique = str_data.nunique() for i, value in enumerate(str_data_unique): if value < self.config['categoryMaxLabel']: str_to_cat_col[str_data_unique.index[i]] = 'category' for colm in str_data.columns: if self.data[colm].str.len().max() < STR_TO_CAT_CONVERSION_LEN_MAX: str_to_cat_col[colm] = 'category' if str_to_cat_col: self.update_type(str_to_cat_col, 'text to categorical') def drop_features(self, features=[], reason='unspecified'): if isinstance(features, str): features = [features] feat_to_remove = [x for x in features if x in self.data.columns] if feat_to_remove: self.data.drop(feat_to_remove, axis=1, inplace=True) for feat in feat_to_remove: self.dropped_features[feat] = reason self.log_drop_feature(feat_to_remove, reason) self.__update_type() def drop_duplicate(self): index = self.data.duplicated(keep='first') if index.sum(): self.remove_rows(index, 'duplicate rows') def drop_na_target(self): if self.is_target_available(): self.remove_rows(self.target.isna(), 'null target values') def log_drop_feature(self, columns, reason): self.log.info(f'---------- Dropping {reason} features ----------') self.log.info(f'\\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found') self.log.info(f'-------> Drop Features: {columns}') self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}') def log_normalization(self): if self.process_method.get('normalization', None): self.log.info(f'\\nStatus:- !... Normalization treatment done') for method in supported_method['normalization']: cols = [] for col, m in self.process_method['normalization'].items(): if m == method: cols.append(col) if cols and method != 'none': self.log.info(f'Running {method} on features: {cols}') def log_numerical_fill(self): if self.process_method.get('numFill', None): self.log.info(f'\\nStatus:- !... Fillna for numeric feature done') for method in supported_method['fillNa']['numeric']: cols = [] for col, m in self.process_method['numFill'].items(): if m == method: cols.append(col) if cols: self.log.info(f'-------> Running {method} on features: {cols}') def log_categorical_fill(self): if self.process_method.get('catFill', None): self.log.info(f'\\nStatus:-!... FillNa for categorical feature done') for method in supported_method['fillNa']['categorical']: cols = [] for col, m in self.process_method['catFill'].items(): if m == method: cols.append(col) if cols: self.log.info(f'-------> Running {method} on features: {cols}') def remove_constant_feature(self): unique_values = self.data.nunique() constant_features = [] for i, value in enumerate(unique_values): if value == 1: constant_features.append(unique_values.index[i]) if constant_features: self.drop_features(constant_features, "constant") for i in constant_features: try: self.numeric_feature.remove(i) except ValueError: pass try: self.cat_feature.remove(i) except ValueError: pass def remove_empty_feature(self, misval_ratio=1.0): missing_ratio = self.data.isnull().sum() / len(self.data) missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)} empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio] if empty_features: self.drop_features(empty_features, "empty") for i in empty_features: try: self.numeric_feature.remove(i) except ValueError: pass try: self.cat_feature.remove(i) except: pass def remove_index_features(self): index_feature = [] for feat in self.numeric_feature: if self.data[feat].nunique() == len(self.data): if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)): index_feature.append(feat) self.drop_features(index_feature, "index") for i in index_feature: try: self.numeric_feature.remove(i) except ValueError: pass try: self.cat_feature.remove(i) except: pass def fill_missing_value_method(self, colm, method): if colm in self.numeric_feature: if method in supported_method['fillNa']['numeric']: if 'numFill' not in self.process_method.keys(): self.process_method['numFill'] = {} if method == 'na' and self.process_method['numFill'].get(colm, None): pass # don't overwrite else: self.process_method['numFill'][colm] = method if colm in self.cat_feature: if method in supported_method['fillNa']['categorical']: if 'catFill' not in self.process_method.keys(): self.process_method['catFill'] = {} if method == 'na' and self.process_method['catFill'].get(colm, None): pass else: self.process_method['catFill'][colm] = method def check_encoding_method(self, method, colm,default=False): if not self.is_target_available() and (method.lower() == list(target_encoding_method_change.keys())[0]): method = target_encoding_method_change[method.lower()] if default: self.log.info(f"Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present") return method def fill_encoder_value_method(self,colm, method, default=False): if colm in self.cat_feature: if method.lower() in supported_method['categoryEncoding']: if 'catEncoder' not in self.process_method.keys(): self.process_method['catEncoder'] = {} if method == 'na' and self.process_method['catEncoder'].get(colm, None): pass else: self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default) else: self.log.info(f"-------> categorical encoding method '{method}' is not supported. supported methods are {supported_method['categoryEncoding']}") def fill_normalizer_method(self,colm, method): if colm in self.numeric_feature: if method in supported_method['normalization']: if 'normalization' not in self.process_method.keys(): self.process_method['normalization'] = {} if (method == 'na' or method == 'none') and self.process_method['normalization'].get(colm, None): pass else: self.process_method['normalization'][colm] = method else: self.log.info(f"-------> Normalization method '{method}' is not supported. supported methods are {supported_method['normalization']}") def apply_outlier(self): inlier_indices = np.array([True] * len(self.data)) if self.process_method.get('outlier', None): self.log.info('-------> Feature wise outlier detection:') for k,v in self.process_method['outlier'].items(): if k in self.numeric_feature: if v == 'iqr': index = findiqrOutlier(self.data[k]) elif v == 'zscore': index = findzscoreOutlier(self.data[k]) elif v == 'disable': index = None if k in self.process_method['outlierOperation'].keys(): if self.process_method['outlierOperation'][k] == 'dropdata': inlier_indices = np.logical_and(inlier_indices, index) elif self.process_method['outlierOperation'][k] == 'average': mean = self.data[k].mean() index = ~index self.data.loc[index,[k]] = mean self.log.info(f'-------> {k}: Replaced by Mean {mean}: total replacement {index.sum()}') elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable': self.log.info(f'-------> Total outliers in "{k}": {(~index).sum()}') if self.config.get('outlierDetection',None): if self.config['outlierDetection'].get('IsolationForest','False') == 'True': index = findiforestOutlier(self.data[self.numeric_feature]) inlier_indices = np.logical_and(inlier_indices, index) self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):') if inlier_indices.sum() != len(self.data): self.remove_rows( inlier_indices == False, 'outlier detection') self.log.info('Status:- |... Outlier treatment done') self.log.info(f'-------> Data Frame Shape After Outlier treatment (Rows,Columns): {self.data.shape}') def remove_rows(self, indices, msg=''): if indices.sum(): indices = ~indices if len(indices) != len(self.data): raise ValueError('Data Frame length mismatch') self.data = self.data[indices] self.data.reset_index(drop=True, inplace=True) if self.is_target_available(): self.target = self.target[indices] if isinstance(self.target, pd.Series): self.target.reset_index(drop=True, inplace=True) if not self.unprocessed.empty: self.unprocessed = self.unprocessed[indices] self.unprocessed.reset_index(drop=True, inplace=True) self.log.info(f'-------> {msg} dropped rows count: {(indices == False).sum()}') def fill_outlier_method(self,colm, method): if colm in self.numeric_feature: if method in supported_method['outlier_column_wise']: if 'outlier' not in self.process_method.keys(): self.process_method['outlier'] = {} if method != 'Disable': self.process_method['outlier'][colm] = method else: self.log.info(f"-------> outlier detection method '{method}' is not supported for column wise. supported methods are {supported_method['outlier_column_wise']}") def fill_outlier_process(self,colm, method): if colm in self.numeric_feature: if method in supported_method['outlierOperation']: if 'outlierOperation' not in self.process_method.keys(): self.process_method['outlierOperation'] = {} self.process_method['outlierOperation'][colm] = method else: self.log.info(f"-------> outlier process method '{method}' is not supported for column wise. supported methods are {supported_method['outlieroperation']}") def get_cat_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_cat_encoder(self,method): if method == 'labelencoding': return OrdinalEncoder(handle_unknown="error") elif method == 'onehotencoding': return OneHotEncoder(sparse=False,handle_unknown="error") elif method == 'targetencoding': if not self.is_target_available(): raise ValueError('Can not apply Target Encoding when target feature is not present') return TargetEncoder(handle_unknown='error') def get_num_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'mean': return SimpleImputer(strategy='mean') elif method == 'median': return SimpleImputer(strategy='median') elif method == 'knnimputer': return KNNImputer() elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_num_scaler(self,method): if method == 'minmax': return MinMaxScaler() elif method == 'standardscaler': return StandardScaler() elif method == 'lognormal': return PowerTransformer(method='yeo-johnson', standardize=False) """ return self.codeText
functions.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class global_function(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = "" self.available_functions = { 'iqr':{'name':'iqrOutlier','code':f"\n\ndef iqrOutlier(df):\ \n{self.tab}Q1 = df.quantile(0.25)\ \n{self.tab}Q3 = df.quantile(0.75)\ \n{self.tab}IQR = Q3 - Q1\ \n{self.tab}index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis=1)\ \n{self.tab}return index"}, 'zscore':{'name':'zscoreOutlier','imports':[{'mod':'stats','mod_from':'scipy'},{'mod':'numpy'}],'code':f"\n\ndef zscoreOutlier(df):\ \n{self.tab}z = numpy.abs(stats.zscore(df))\ \n{self.tab}index = (z < 3).all(axis=1)\ \n{self.tab}return index"}, 'iforest':{'name':'iforestOutlier','imports':[{'mod':'IsolationForest','mod_from':'sklearn.ensemble'}],'code':f"\n\ndef iforestOutlier(df):\ \n{self.tab}from sklearn.ensemble import IsolationForest\ \n{self.tab}isolation_forest = IsolationForest(n_estimators=100)\ \n{self.tab}isolation_forest.fit(df)\ \n{self.tab}y_pred_train = isolation_forest.predict(df)\ \n{self.tab}return y_pred_train == 1"}, 'minMaxImputer':{'name':'minMaxImputer','code':f"\n\nclass minMaxImputer(TransformerMixin):\ \n{self.tab}def __init__(self, strategy='max'):\ \n{self.tab}{self.tab}self.strategy = strategy\ \n{self.tab}def fit(self, X, y=None):\ \n{self.tab}{self.tab}self.feature_names_in_ = X.columns\ \n{self.tab}{self.tab}if self.strategy == 'min':\ \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.min()\ \n{self.tab}{self.tab}else:\ \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.max()\ \n{self.tab}{self.tab}return self\ \n{self.tab}def transform(self, X):\ \n{self.tab}{self.tab}import numpy\ \n{self.tab}{self.tab}return numpy.where(X.isna(), self.statistics_, X)"}, 'DummyEstimator':{'name':'DummyEstimator','code':f"\n\nclass DummyEstimator(BaseEstimator):\ \n{self.tab}def fit(self): pass\ \n{self.tab}def score(self): pass"}, 'start_reducer':{'name':'start_reducer','imports':[{'mod':'itertools'},{'mod':'numpy','mod_as':'np'},{'mod':'pandas','mod_as':'pd'},{'mod':'VarianceThreshold','mod_from':'sklearn.feature_selection'}], 'code':""" def start_reducer(df,target_feature,corr_threshold=0.85,var_threshold=0.05): qconstantColumns = [] train_features = df.columns.tolist() train_features.remove(target_feature) df = df.loc[:, (df != df.iloc[0]).any()] #remove constant feature numeric_features = df.select_dtypes(include='number').columns.tolist() non_numeric_features = df.select_dtypes(exclude='number').columns.tolist() if numeric_features and var_threshold: qconstantFilter = VarianceThreshold(threshold=var_threshold) tempDf=df[numeric_features] qconstantFilter.fit(tempDf) qconstantColumns = [column for column in numeric_features if column not in tempDf.columns[qconstantFilter.get_support()]] if target_feature in qconstantColumns: qconstantColumns.remove(target_feature) numeric_features = list(set(numeric_features) - set(qconstantColumns)) if numeric_features: numColPairs = list(itertools.product(numeric_features, numeric_features)) for item in numColPairs: if(item[0] == item[1]): numColPairs.remove(item) tempArray = [] for item in numColPairs: tempCorr = np.abs(df[item[0]].corr(df[item[1]])) if(tempCorr > corr_threshold): tempArray.append(item[0]) tempArray = np.unique(tempArray).tolist() nonsimilarNumericalCols = list(set(numeric_features) - set(tempArray)) groupedFeatures = [] if tempArray: corrDic = {} for feature in tempArray: temp = [] for col in tempArray: tempCorr = np.abs(df[feature].corr(df[col])) temp.append(tempCorr) corrDic[feature] = temp #Similar correlation df corrDF = pd.DataFrame(corrDic,index = tempArray) corrDF.loc[:,:] = np.tril(corrDF, k=-1) alreadyIn = set() similarFeatures = [] for col in corrDF: perfectCorr = corrDF[col][corrDF[col] > corr_threshold].index.tolist() if perfectCorr and col not in alreadyIn: alreadyIn.update(set(perfectCorr)) perfectCorr.append(col) similarFeatures.append(perfectCorr) updatedSimFeatures = [] for items in similarFeatures: if(target_feature != '' and target_feature in items): for p in items: updatedSimFeatures.append(p) else: updatedSimFeatures.append(items[0]) newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols)) updatedFeatures = list(set(newTempFeatures + non_numeric_features)) else: updatedFeatures = list(set(df.columns) -set(qconstantColumns)) else: updatedFeatures = list(set(df.columns) -set(qconstantColumns)) return updatedFeatures """}, 'feature_importance_class':{'name':'feature_importance_class','code':"\n\ \ndef feature_importance_class(df, numeric_features, cat_features,target_feature,pValTh,corrTh):\ \n import pandas as pd\ \n from sklearn.feature_selection import chi2\ \n from sklearn.feature_selection import f_classif\ \n from sklearn.feature_selection import mutual_info_classif\ \n \ \n impFeatures = []\ \n if cat_features:\ \n categoricalData=df[cat_features]\ \n chiSqCategorical=chi2(categoricalData,df[target_feature])[1]\ \n corrSeries=pd.Series(chiSqCategorical, index=cat_features)\ \n impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist())\ \n if numeric_features:\ \n quantData=df[numeric_features]\ \n fclassScore=f_classif(quantData,df[target_feature])[1]\ \n miClassScore=mutual_info_classif(quantData,df[target_feature])\ \n fClassSeries=pd.Series(fclassScore,index=numeric_features)\ \n miClassSeries=pd.Series(miClassScore,index=numeric_features)\ \n impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist())\ \n impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist())\ \n pearsonScore=df.corr() \ \n targetPScore=abs(pearsonScore[target_feature])\ \n impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\ \n return list(set(sum(impFeatures, [])))"}, 'feature_importance_reg':{'name':'feature_importance_reg','code':"\n\ \ndef feature_importance_reg(df, numeric_features, target_feature,pValTh,corrTh):\ \n import pandas as pd\ \n from sklearn.feature_selection import f_regression\ \n from sklearn.feature_selection import mutual_info_regression\ \n \ \n impFeatures = []\ \n if numeric_features:\ \n quantData =df[numeric_features]\ \n fregScore=f_regression(quantData,df[target_feature])[1]\ \n miregScore=mutual_info_regression(quantData,df[target_feature])\ \n fregSeries=pd.Series(fregScore,index=numeric_features)\ \n miregSeries=pd.Series(miregScore,index=numeric_features)\ \n impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist())\ \n impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist())\ \n pearsonScore=df.corr()\ \n targetPScore=abs(pearsonScore[target_feature])\ \n impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\ \n return list(set(sum(impFeatures, [])))"}, 'scoring_criteria':{'name':'scoring_criteria','imports':[{'mod':'make_scorer','mod_from':'sklearn.metrics'},{'mod':'roc_auc_score','mod_from':'sklearn.metrics'}], 'code':"\n\ \ndef scoring_criteria(score_param, problem_type, class_count):\ \n if problem_type == 'classification':\ \n scorer_mapping = {\ \n 'recall':{'binary_class': 'recall', 'multi_class': 'recall_weighted'},\ \n 'precision':{'binary_class': 'precision', 'multi_class': 'precision_weighted'},\ \n 'f1_score':{'binary_class': 'f1', 'multi_class': 'f1_weighted'},\ \n 'roc_auc':{'binary_class': 'roc_auc', 'multi_class': 'roc_auc_ovr_weighted'}\ \n }\ \n if (score_param.lower() == 'roc_auc') and (class_count > 2):\ \n score_param = make_scorer(roc_auc_score, needs_proba=True,multi_class='ovr',average='weighted')\ \n else:\ \n class_type = 'binary_class' if class_count == 2 else 'multi_class'\ \n if score_param in scorer_mapping.keys():\ \n score_param = scorer_mapping[score_param][class_type]\ \n else:\ \n score_param = 'accuracy'\ \n return score_param"}, 'log_dataframe':{'name':'log_dataframe','code':f"\n\ \ndef log_dataframe(df, msg=None):\ \n import io\ \n buffer = io.StringIO()\ \n df.info(buf=buffer)\ \n if msg:\ \n log_text = f'Data frame after {{msg}}:'\ \n else:\ \n log_text = 'Data frame:'\ \n log_text += '\\n\\t'+str(df.head(2)).replace('\\n','\\n\\t')\ \n log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\ \n get_logger().info(log_text)"}, 'BayesSearchCV':{'name':'BayesSearchCV','imports':[{'mod':'cross_val_score','mod_from':'sklearn.model_selection'},{'mod':'fmin','mod_from':'hyperopt'},{'mod':'tpe','mod_from':'hyperopt'},{'mod':'hp','mod_from':'hyperopt'},{'mod':'STATUS_OK','mod_from':'hyperopt'},{'mod':'Trials','mod_from':'hyperopt'},{'mod':'numpy','mod_as':'np'}],'code':"\n\ \nclass BayesSearchCV():\ \n\ \n def __init__(self, estimator, params, scoring, n_iter, cv):\ \n self.estimator = estimator\ \n self.params = params\ \n self.scoring = scoring\ \n self.iteration = n_iter\ \n self.cv = cv\ \n self.best_estimator_ = None\ \n self.best_score_ = None\ \n self.best_params_ = None\ \n\ \n def __min_fun(self, params):\ \n score=cross_val_score(self.estimator, self.X, self.y,scoring=self.scoring,cv=self.cv)\ \n acc = score.mean()\ \n return {'loss':-acc,'score': acc, 'status': STATUS_OK,'model' :self.estimator,'params': params}\ \n\ \n def fit(self, X, y):\ \n trials = Trials()\ \n self.X = X\ \n self.y = y\ \n best = fmin(self.__min_fun,self.params,algo=tpe.suggest, max_evals=self.iteration, trials=trials)\ \n result = sorted(trials.results, key = lambda x: x['loss'])[0]\ \n self.best_estimator_ = result['model']\ \n self.best_score_ = result['score']\ \n self.best_params_ = result['params']\ \n self.best_estimator_.fit(X, y)\ \n\ \n def hyperOptParamConversion( paramSpace):\ \n paramDict = {}\ \n for j in list(paramSpace.keys()):\ \n inp = paramSpace[j]\ \n isLog = False\ \n isLin = False\ \n isRan = False\ \n isList = False\ \n isString = False\ \n try:\ \n # check if functions are given as input and reassign paramspace\ \n v = paramSpace[j]\ \n if 'logspace' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isLog = True\ \n elif 'linspace' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isLin = True\ \n elif 'range' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isRan = True\ \n elif 'list' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isList = True\ \n elif '[' and ']' in paramSpace[j]:\ \n paramSpace[j] = v.split('[')[1].split(']')[0].replace(' ', '')\ \n isList = True\ \n x = paramSpace[j].split(',')\ \n except:\ \n x = paramSpace[j]\ \n str_arg = paramSpace[j]\ \n\ \n # check if arguments are string\ \n try:\ \n test = eval(x[0])\ \n except:\ \n isString = True\ \n\ \n if isString:\ \n paramDict.update({j: hp.choice(j, x)})\ \n else:\ \n res = eval(str_arg)\ \n if isLin:\ \n y = eval('np.linspace' + str(res))\ \n paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\ \n elif isLog:\ \n y = eval('np.logspace' + str(res))\ \n paramDict.update(\ \n {j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))})\ \n elif isRan:\ \n y = eval('np.arange' + str(res))\ \n paramDict.update({j: hp.choice(j, y)})\ \n # check datatype of argument\ \n elif isinstance(eval(x[0]), bool):\ \n y = list(map(lambda i: eval(i), x))\ \n paramDict.update({j: hp.choice(j, eval(str(y)))})\ \n elif isinstance(eval(x[0]), float):\ \n res = eval(str_arg)\ \n if len(str_arg.split(',')) == 3 and not isList:\ \n y = eval('np.linspace' + str(res))\ \n #print(y)\ \n paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\ \n else:\ \n y = list(res) if isinstance(res, tuple) else [res]\ \n paramDict.update({j: hp.choice(j, y)})\ \n else:\ \n res = eval(str_arg)\ \n if len(str_arg.split(',')) == 3 and not isList:\ \n y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))\ \n else:\ \n y = list(res) if isinstance(res, tuple) else [res]\ \n paramDict.update({j: hp.choice(j, y)})\ \n return paramDict"}, 's2n':{'name':'s2n','imports':[{'mod':'word2number','mod_as':'w2n'},{'mod':'numpy','mod_as':'np'}],'code':"\n\ \ndef s2n(value):\ \n try:\ \n x=eval(value)\ \n return x\ \n except:\ \n try:\ \n return w2n.word_to_num(value)\ \n except:\ \n return np.nan"}, 'readWrite':{'name':'readWrite','imports':[{'mod':'json'},{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef read_json(file_path):\ \n data = None\ \n with open(file_path,'r') as f:\ \n data = json.load(f)\ \n return data\ \n\ \ndef write_json(data, file_path):\ \n with open(file_path,'w') as f:\ \n json.dump(data, f)\ \n\ \ndef read_data(file_path, encoding='utf-8', sep=','):\ \n return pd.read_csv(file_path, encoding=encoding, sep=sep)\ \n\ \ndef write_data(data, file_path, index=False):\ \n return data.to_csv(file_path, index=index)\ \n\ \n#Uncomment and change below code for google storage\ \n#def write_data(data, file_path, index=False):\ \n# file_name= file_path.name\ \n# data.to_csv('output_data.csv')\ \n# storage_client = storage.Client()\ \n# bucket = storage_client.bucket('aion_data')\ \n# bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\ \n# return data\ \n\ \ndef is_file_name_url(file_name):\ \n supported_urls_starts_with = ('gs://','https://','http://')\ \n return file_name.startswith(supported_urls_starts_with)\ \n"}, 'logger':{'name':'set_logger','imports':[{'mod':'logging'}],'code':f"\n\ \nlog = None\ \ndef set_logger(log_file, mode='a'):\ \n global log\ \n logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\ \n log = logging.getLogger(Path(__file__).parent.name)\ \n return log\ \n\ \ndef get_logger():\ \n return log\n"}, 'mlflowSetPath':{'name':'mlflowSetPath','code':f"\n\ndef mlflowSetPath(path, name):\ \n{self.tab}db_name = str(Path(path)/'mlruns')\ \n{self.tab}mlflow.set_tracking_uri('file:///' + db_name)\ \n{self.tab}mlflow.set_experiment(str(Path(path).name))\ \n"}, 'mlflow_create_experiment':{'name':'mlflow_create_experiment','code':f"\n\ndef mlflow_create_experiment(config, path, name):\ \n{self.tab}tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(config, path)\ \n{self.tab}mlflow.tracking.set_tracking_uri(tracking_uri)\ \n{self.tab}mlflow.tracking.set_registry_uri(registry_uri)\ \n{self.tab}client = mlflow.tracking.MlflowClient()\ \n{self.tab}experiment = client.get_experiment_by_name(name)\ \n{self.tab}if experiment:\ \n{self.tab}{self.tab}experiment_id = experiment.experiment_id\ \n{self.tab}else:\ \n{self.tab}{self.tab}experiment_id = client.create_experiment(name, artifact_uri)\ \n{self.tab}return client, experiment_id\ \n"}, 'get_mlflow_uris':{'name':'get_mlflow_uris','code':f"\n\ndef get_mlflow_uris(config, path):\ \n artifact_uri = None\ \n tracking_uri_type = config.get('tracking_uri_type',None)\ \n if tracking_uri_type == 'localDB':\ \n tracking_uri = 'sqlite:///' + str(path.resolve()/'mlruns.db')\ \n elif tracking_uri_type == 'server' and config.get('tracking_uri', None):\ \n tracking_uri = config['tracking_uri']\ \n if config.get('artifacts_uri', None):\ \n if Path(config['artifacts_uri']).exists():\ \n artifact_uri = 'file:' + config['artifacts_uri']\ \n else:\ \n artifact_uri = config['artifacts_uri']\ \n else:\ \n artifact_uri = 'file:' + str(path.resolve()/'mlruns')\ \n else:\ \n tracking_uri = 'file:' + str(path.resolve()/'mlruns')\ \n artifact_uri = None\ \n if config.get('registry_uri', None):\ \n registry_uri = config['registry_uri']\ \n else:\ \n registry_uri = 'sqlite:///' + str(path.resolve()/'registry.db')\ \n return tracking_uri, artifact_uri, registry_uri\ \n"}, 'logMlflow':{'name':'logMlflow','code':f"\n\ndef logMlflow( params, metrices, estimator,tags={{}}, algoName=None):\ \n{self.tab}run_id = None\ \n{self.tab}for k,v in params.items():\ \n{self.tab}{self.tab}mlflow.log_param(k, v)\ \n{self.tab}for k,v in metrices.items():\ \n{self.tab}{self.tab}mlflow.log_metric(k, v)\ \n{self.tab}if 'CatBoost' in algoName:\ \n{self.tab}{self.tab}model_info = mlflow.catboost.log_model(estimator, 'model')\ \n{self.tab}else:\ \n{self.tab}{self.tab}model_info = mlflow.sklearn.log_model(sk_model=estimator, artifact_path='model')\ \n{self.tab}tags['processed'] = 'no'\ \n{self.tab}tags['registered'] = 'no'\ \n{self.tab}mlflow.set_tags(tags)\ \n{self.tab}if model_info:\ \n{self.tab}{self.tab}run_id = model_info.run_id\ \n{self.tab}return run_id\ \n"}, 'classification_metrices':{'name':'classification_metrices','imports':[{'mod':'sklearn'},{'mod':'math'}],'code':"\ndef get_classification_metrices( actual_values, predicted_values):\ \n result = {}\ \n accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\ \n avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\ \n average='macro')\ \n\ \n result['accuracy'] = math.floor(accuracy_score*10000)/100\ \n result['precision'] = math.floor(avg_precision*10000)/100\ \n result['recall'] = math.floor(avg_recall*10000)/100\ \n result['f1'] = math.floor(avg_f1*10000)/100\ \n return result\ \n"}, 'regression_metrices':{'name':'regression_metrices','imports':[{'mod':'numpy', 'mod_as':'np'}],'code':"\ndef get_regression_metrices( actual_values, predicted_values):\ \n result = {}\ \n\ \n me = np.mean(predicted_values - actual_values)\ \n sde = np.std(predicted_values - actual_values, ddof = 1)\ \n\ \n abs_err = np.abs(predicted_values - actual_values)\ \n mae = np.mean(abs_err)\ \n sdae = np.std(abs_err, ddof = 1)\ \n\ \n abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\ \n mape = np.mean(abs_perc_err)\ \n sdape = np.std(abs_perc_err, ddof = 1)\ \n\ \n result['mean_error'] = me\ \n result['mean_abs_error'] = mae\ \n result['mean_abs_perc_error'] = mape\ \n result['error_std'] = sde\ \n result['abs_error_std'] = sdae\ \n result['abs_perc_error_std'] = sdape\ \n return result\ \n"} } def add_function(self, name, importer=None): if name in self.available_functions.keys(): self.codeText += self.available_functions[name]['code'] if importer: if 'imports' in self.available_functions[name].keys(): for module in self.available_functions[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) def get_function_name(self, name): if name in self.available_functions.keys(): return self.available_functions[name]['name'] return None def getCode(self): return self.codeText
register.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class register(): def __init__(self, importer, indent=0, tab_size=4): self.tab = " "*tab_size self.codeText = "" self.function_code = "" self.importer = importer self.input_files = {} self.output_files = {} self.addInputFiles({'log' : 'aion.log', 'metaData' : 'modelMetaData.json','model' : 'model.pkl', 'performance': 'performance.json','production':'production.json','monitor':'monitoring.json'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def code_imports(self): modules = [{'module':'sys'} ,{'module':'json'} ,{'module':'time'} ,{'module':'platform'} ,{'module':'tempfile'} ,{'module':'sqlite3'} ,{'module':'mlflow'} ,{'module':'Path', 'mod_from':'pathlib'} ,{'module':'ViewType', 'mod_from':'mlflow.entities'} ,{'module':'MlflowClient', 'mod_from':'mlflow.tracking'} ,{'module':'ModelVersionStatus', 'mod_from':'mlflow.entities.model_registry.model_version_status'} ] self.import_modules(modules) def import_module(self, module, mod_from=None, mod_as=None): self.importer.addModule(module, mod_from=mod_from, mod_as=mod_as) def import_modules(self, modules): if isinstance(modules, list): for mod in modules: if isinstance(mod, dict): self.importer.addModule(mod['module'], mod_from= mod.get('mod_from', None), mod_as=mod.get('mod_as', None)) def getImportCode(self): return self.importer.getCode() def __addValidateConfigCode(self, models=None): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config\ " return text def addLocalFunctionsCode(self, models): self.function_code += self.__addValidateConfigCode(models) def addPrefixCode(self, indent=1): self.code_imports() self.codeText += "\n\ \ndef __merge_logs(log_file_sequence,path, files):\ \n if log_file_sequence['first'] in files:\ \n with open(path/log_file_sequence['first'], 'r') as f:\ \n main_log = f.read()\ \n files.remove(log_file_sequence['first'])\ \n for file in files:\ \n with open(path/file, 'r') as f:\ \n main_log = main_log + f.read()\ \n (path/file).unlink()\ \n with open(path/log_file_sequence['merged'], 'w') as f:\ \n f.write(main_log)\ \n\ \ndef merge_log_files(folder, models):\ \n log_file_sequence = {\ \n 'first': 'aion.log',\ \n 'merged': 'aion.log'\ \n }\ \n log_file_suffix = '_aion.log'\ \n log_files = [x+log_file_suffix for x in models if (folder/(x+log_file_suffix)).exists()]\ \n log_files.append(log_file_sequence['first'])\ \n __merge_logs(log_file_sequence, folder, log_files)\ \n\ \ndef register_model(targetPath,models,usecasename, meta_data):\ \n register = mlflow_register(targetPath, usecasename, meta_data)\ \n register.setup_registration()\ \n\ \n runs_with_score = register.get_unprocessed_runs(models)\ \n best_run = register.get_best_run(runs_with_score)\ \n register.update_unprocessed(runs_with_score)\ \n return register.register_model(models, best_run)\ \n\ \ndef register(log):\ \n config = validateConfig()\ \n targetPath = Path('aion')/config['targetPath']\ \n models = config['models']\ \n merge_log_files(targetPath, models)\ \n meta_data_file = targetPath/IOFiles['metaData']\ \n if meta_data_file.exists():\ \n meta_data = read_json(meta_data_file)\ \n else:\ \n raise ValueError(f'Configuration file not found: {meta_data_file}')\ \n usecase = config['targetPath']\ \n # enable logging\ \n log_file = targetPath/IOFiles['log']\ \n log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem)\ \n register_model_name = register_model(targetPath,models,usecase, meta_data)\ \n status = {'Status':'Success','Message':f'Model Registered: {register_model_name}'}\ \n log.info(f'output: {status}')\ \n return json.dumps(status)" def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'sys'} ,{'module':'os'} ,{'module':'json'} ,{'module':'logging'} ,{'module':'shutil'} ,{'module':'argparse'} ] return modules def addMainCode(self, models, indent=1): self.codeText += "\n\ \nif __name__ == '__main__':\ \n log = None\ \n try:\ \n print(register(log))\ \n except Exception as e:\ \n if log:\ \n log.error(e, exc_info=True)\ \n status = {'Status':'Failure','Message':str(e)}\ \n print(json.dumps(status))" def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}" def query_with_quetes_code(self, decs=True, indent=1): return """\n{first_indentation}def __get_unprocessed_runs_sorted(self): {indentation}query = "tags.processed = 'no'" {indentation}runs = self.client.search_runs( {indentation} experiment_ids=self.experiment_id, {indentation} filter_string=query, {indentation} run_view_type=ViewType.ACTIVE_ONLY, {indentation} order_by=['metrics.test_score {0}'] {indentation}) {indentation}return runs\n""".format('DESC' if decs else 'ASC', first_indentation=indent*self.tab, indentation=(1+indent)*self.tab) def addClassCode(self, smaller_is_better=False): self.codeText += "\ \nclass mlflow_register():\ \n\ \n def __init__(self, input_path, model_name, meta_data):\ \n self.input_path = Path(input_path).resolve()\ \n self.model_name = model_name\ \n self.meta_data = meta_data\ \n self.logger = logging.getLogger('ModelRegister')\ \n self.client = None\ \n self.monitoring_data = read_json(self.input_path/IOFiles['monitor'])\ \n mlflow_default_config = {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}\ \n if not self.monitoring_data.get('mlflow_config',False):\ \n self.monitoring_data['mlflow_config'] = mlflow_default_config\ \n\ \n def setup_registration(self):\ \n tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(self.monitoring_data['mlflow_config'],self.input_path)\ \n self.logger.info(f'MLflow tracking uri: {tracking_uri}')\ \n self.logger.info(f'MLflow registry uri: {registry_uri}')\ \n mlflow.set_tracking_uri(tracking_uri)\ \n mlflow.set_registry_uri(registry_uri)\ \n self.client = mlflow.tracking.MlflowClient(\ \n tracking_uri=tracking_uri,\ \n registry_uri=registry_uri,\ \n )\ \n self.experiment_id = self.client.get_experiment_by_name(self.model_name).experiment_id\ \n" self.codeText += self.query_with_quetes_code(smaller_is_better == False) self.codeText += "\ \n def __log_unprocessed_runs(self, runs):\ \n self.logger.info('Unprocessed runs:')\ \n for run in runs:\ \n self.logger.info(' {}: {}'.format(run.info.run_id,run.data.metrics['test_score']))\ \n\ \n def get_unprocessed_runs(self, model_path):\ \n unprocessed_runs = self.__get_unprocessed_runs_sorted()\ \n if not unprocessed_runs:\ \n raise ValueError('Registering fail: No new trained model')\ \n self.__log_unprocessed_runs( unprocessed_runs)\ \n return unprocessed_runs\ \n\ \n def __wait_until_ready(self, model_name, model_version):\ \n client = MlflowClient()\ \n for _ in range(10):\ \n model_version_details = self.client.get_model_version(\ \n name=model_name,\ \n version=model_version,\ \n )\ \n status = ModelVersionStatus.from_string(model_version_details.status)\ \n if status == ModelVersionStatus.READY:\ \n break\ \n time.sleep(1)\ \n\ \n def __create_model(self, run):\ \n artifact_path = 'model'\ \n model_uri = 'runs:/{run_id}/{artifact_path}'.format(run_id=run.info.run_id, artifact_path=artifact_path)\ \n self.logger.info(f'Registering model (run id): {run.info.run_id}')\ \n model_details = mlflow.register_model(model_uri=model_uri, name=self.model_name)\ \n self.__wait_until_ready(model_details.name, model_details.version)\ \n self.client.set_tag(run.info.run_id, 'registered', 'yes' )\ \n state_transition = self.client.transition_model_version_stage(\ \n name=model_details.name,\ \n version=model_details.version,\ \n stage='Production',\ \n )\ \n self.logger.info(state_transition)\ \n return model_details\ \n\ \n def get_best_run(self, models):\ \n return models[0]\ \n\ \n def __validate_config(self):\ \n try:\ \n load_data_loc = self.meta_data['load_data']['Status']['DataFilePath']\ \n except KeyError:\ \n raise ValueError('DataIngestion step output is corrupted')\ \n\ \n def __mlflow_log_transformer_steps(self, best_run):\ \n run_id = best_run.info.run_id\ \n meta_data = read_json(self.input_path/(best_run.data.tags['mlflow.runName']+'_'+IOFiles['metaData']))\ \n self.__validate_config()\ \n with mlflow.start_run(run_id):\ \n if 'transformation' in meta_data.keys():\ \n if 'target_encoder' in meta_data['transformation'].keys():\ \n source_loc = meta_data['transformation']['target_encoder']\ \n mlflow.log_artifact(str(self.input_path/source_loc))\ \n meta_data['transformation']['target_encoder'] = Path(source_loc).name\ \n if 'preprocessor' in meta_data['transformation'].keys():\ \n source_loc = meta_data['transformation']['preprocessor']\ \n mlflow.log_artifact(str(self.input_path/source_loc))\ \n meta_data['transformation']['preprocessor'] = Path(source_loc).name\ \n\ \n write_json(meta_data, self.input_path/IOFiles['metaData'])\ \n mlflow.log_artifact(str(self.input_path/IOFiles['metaData']))\ \n\ \n def __update_processing_tag(self, processed_runs):\ \n self.logger.info('Changing status to processed:')\ \n for run in processed_runs:\ \n self.client.set_tag(run.info.run_id, 'processed', 'yes')\ \n self.logger.info(f' run id: {run.info.run_id}')\ \n\ \n def update_unprocessed(self, runs):\ \n return self.__update_processing_tag( runs)\ \n\ \n def __force_register(self, best_run):\ \n self.__create_model( best_run)\ \n self.__mlflow_log_transformer_steps( best_run)\ \n production_json = self.input_path/IOFiles['production']\ \n production_model = {'Model':best_run.data.tags['mlflow.runName'],'runNo':self.monitoring_data['runNo'],'score':best_run.data.metrics['test_score']}\ \n write_json(production_model, production_json)\ \n database_path = self.input_path/(self.input_path.stem + '.db')\ \n if database_path.exists():\ \n database_path.unlink()\ \n return best_run.data.tags['mlflow.runName']\ \n\ \n def __get_register_model_score(self):\ \n reg = self.client.list_registered_models()\ \n if not reg:\ \n return '', 0\ \n run_id = reg[0].latest_versions[0].run_id\ \n run = self.client.get_run(run_id)\ \n score = run.data.metrics['test_score']\ \n return run_id, score\ \n\ \n def register_model(self, models, best_run):\ \n return self.__force_register(best_run)" def local_functions_code(self, smaller_is_better=True, indent=1): if smaller_is_better: min_max = 'min' else: min_max = 'max' self.codeText += "\ndef validate_config(deploy_dict):\ \n try:\ \n load_data_loc = deploy_dict['load_data']['Status']['DataFilePath']\ \n except KeyError:\ \n raise ValueError('DataIngestion step output is corrupted')\ \n\ \ndef get_digest(fname):\ \n import hashlib\ \n hash_algo = hashlib.sha256()\ \n with open(fname, 'rb') as f:\ \n for chunk in iter(lambda: f.read(2 ** 20), b''):\ \n hash_algo.update(chunk)\ \n return hash_algo.hexdigest()\ \n" def getCode(self, indent=1): return self.function_code + '\n' + self.codeText
__init__.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .imports import importModule from .load_data import tabularDataReader from .transformer import transformer as profiler from .transformer import data_profiler from .selector import selector from .trainer import learner from .register import register from .deploy import deploy from .drift_analysis import drift from .functions import global_function from .data_reader import data_reader from .utility import utility_function
load_data.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class tabularDataReader(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.function_code = '' self.codeText = '' self.code_generated = False def getInputFiles(self): IOFiles = { "rawData": "rawData.dat", "metaData" : "modelMetaData.json", "log" : "aion.log", "outputData" : "rawData.dat", "monitoring":"monitoring.json", "prodData": "prodData", "prodDataGT":"prodDataGT" } text = 'IOFiles = ' if not IOFiles: text += '{ }' else: text += json.dumps(IOFiles, indent=4) return text def getOutputFiles(self): output_files = { 'metaData' : 'modelMetaData.json', 'log' : 'aion.log', 'outputData' : 'rawData.dat' } text = 'output_file = ' if not output_files: text += '{ }' else: text += json.dumps(output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n if not config['targetPath']:\ \n raise ValueError(f'Target Path is not configured')\ \n return config" return text def addMainCode(self): self.codeText += "\n\ \nif __name__ == '__main__':\ \n log = None\ \n try:\ \n print(load_data(log))\ \n except Exception as e:\ \n if log:\ \n log.getLogger().error(e, exc_info=True)\ \n status = {'Status':'Failure','Message':str(e)}\ \n print(json.dumps(status))\ \n raise Exception(str(e))\ " def addLoadDataCode(self): self.codeText += """ #This function will read the data and save the data on persistent storage def load_data(log): config = validateConfig() targetPath = Path('aion')/config['targetPath'] targetPath.mkdir(parents=True, exist_ok=True) log_file = targetPath/IOFiles['log'] log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) monitoring = targetPath/IOFiles['monitoring'] if monitoring.exists(): monitoringStatus = read_json(monitoring) if monitoringStatus['dataLocation'] == '' and monitoringStatus['driftStatus'] != 'No Drift': reader = dataReader(reader_type=monitoring_data.get('prod_db_type','sqlite'),target_path=targetPath, config=config.get('db_config',None)) raw_data_location = targetPath/IOFiles['rawData'] if reader.file_exists(IOFiles['prodData']) and reader.file_exists(IOFiles['prodDataGT']): predicted_data = reader.read(IOFiles['prodData']) actual_data = reader.read(IOFiles['prodDataGT']) common_col = [k for k in predicted_data.columns.tolist() if k in actual_data.columns.tolist()] mergedRes = pd.merge(actual_data, predicted_data, on =common_col,how = 'inner') raw_data_path = pd.read_csv(raw_data_location) df = pd.concat([raw_data_path,mergedRes]) else: raise ValueError(f'Prod Data not found') elif monitoringStatus['dataLocation'] == '': raise ValueError(f'Data Location does not exist') else: if 's3' in monitoringStatus.keys(): input_reader = dataReader(reader_type='s3',target_path=None, config=monitoringStatus['s3']) log.info(f"Downloading '{monitoringStatus['s3']['file_name']}' from s3 bucket '{monitoringStatus['s3']['bucket_name']}'") df = input_reader.read(monitoringStatus['s3']['file_name']) else: location = monitoringStatus['dataLocation'] log.info(f'Dataset path: {location}') df = read_data(location) else: raise ValueError(f'Monitoring.json does not exist') status = {} output_data_path = targetPath/IOFiles['outputData'] log.log_dataframe(df) required_features = list(set(config['selected_features'] + [config['target_feature']])) log.info('Dataset features required: ' + ','.join(required_features)) missing_features = [x for x in required_features if x not in df.columns.tolist()] if missing_features: raise ValueError(f'Some feature/s is/are missing: {missing_features}') log.info('Removing unused features: '+','.join(list(set(df.columns) - set(required_features)))) df = df[required_features] log.info(f'Required features: {required_features}') try: log.info(f'Saving Dataset: {str(output_data_path)}') write_data(df, output_data_path, index=False) status = {'Status':'Success','DataFilePath':IOFiles['outputData'],'Records':len(df)} except: raise ValueError('Unable to create data file') meta_data_file = targetPath/IOFiles['metaData'] meta_data = dict() meta_data['load_data'] = {} meta_data['load_data']['selected_features'] = [x for x in config['selected_features'] if x != config['target_feature']] meta_data['load_data']['Status'] = status write_json(meta_data, meta_data_file) output = json.dumps(status) log.info(output) return output """ def addValidateConfigCode(self, indent=1): self.function_code += self.__addValidateConfigCode() def generateCode(self): self.addValidateConfigCode() self.addLoadDataCode() self.addMainCode() self.code_generated = True def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): if not self.code_generated: self.generateCode() return self.function_code + '\n' + self.codeText
input_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json from mlac.ml.core import * from .utility import * def run_input_drift(config): importer = importModule() drifter = input_drift() importer.addModule('sys') importer.addModule('json') importer.addModule('mlflow') importer.addModule('platform') importer.addModule('warnings') importer.addModule('numpy', mod_as='np') importer.addModule('pandas', mod_as='pd') importer.addModule('stats', mod_from='scipy', mod_as='st') importer.addModule('Path', mod_from='pathlib') code = file_header(config['modelName']+'_'+config['modelVersion']) code += importer.getCode() drifter.generateCode() code += drifter.getCode() deploy_path = Path(config["deploy_path"])/'MLaC'/'InputDrift' deploy_path.mkdir(parents=True, exist_ok=True) py_file = deploy_path/"input_drift.py" with open(py_file, "w") as f: f.write(code) req_file = deploy_path/"requirements.txt" with open(req_file, "w") as f: f.write(importer.getBaseModule()) create_docker_file('input_drift', deploy_path)
output_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json from mlac.ml.core import * from .utility import * def run_output_drift(config): importer = importModule() drifter = output_drift(missing = get_variable('fillna', False), word2num_features= get_variable('word2num_features', False), cat_encoder = get_variable('cat_encoder', False),target_encoder = get_variable('target_encoder', False),normalizer = get_variable('normalizer', False),text_profiler = get_variable('text_features', False),feature_reducer = get_variable('feature_reducer', False),score_smaller_is_better = get_variable('smaller_is_better', False),problem_type=config['problem_type']) function = global_function() importer.addModule('sys') importer.addModule('math') importer.addModule('json') importer.addModule('platform') importer.addModule('joblib') importer.addModule('mlflow') importer.addModule('sklearn') importer.addModule('numpy', mod_as='np') importer.addModule('pandas', mod_as='pd') importer.addModule('Path', mod_from='pathlib') importer.addModule('InfluxDBClient', mod_from='influxdb') function.add_function('readWrite') code = file_header(config['modelName']+'_'+config['modelVersion']) code += importer.getCode() code += function.getCode() drifter.generateCode() code += drifter.getCode() deploy_path = Path(config["deploy_path"])/'MLaC'/'OutputDrift' deploy_path.mkdir(parents=True, exist_ok=True) py_file = deploy_path/"output_drift.py" with open(py_file, "w") as f: f.write(code) req_file = deploy_path/"requirements.txt" with open(req_file, "w") as f: f.write(importer.getBaseModule()) create_docker_file('output_drift', deploy_path)
deploy.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import shutil from pathlib import Path import json from mlac.ml.core import * from .utility import * import tarfile def add_text_dependency(): return """nltk==3.6.3 textblob==0.15.3 spacy==3.1.3 demoji==1.1.0 bs4==0.0.1 text_unidecode==1.3 contractions==0.1.73 """ def get_deploy_params(config): param_keys = ["modelVersion","problem_type","target_feature"] data = {key:value for (key,value) in config.items() if key in param_keys} data['targetPath'] = config['modelName'] data['ipAddress'] = '127.0.0.1' data['portNo'] = '8094' return data def import_trainer_module(importer): non_sklearn_modules = get_variable('non_sklearn_modules') if non_sklearn_modules: for mod in non_sklearn_modules: module = get_module_mapping(mod) mod_from = module.get('mod_from',None) mod_as = module.get('mod_as',None) importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as) imported_modules = [ {'module': 'sys', 'mod_from': None, 'mod_as': None}, {'module': 'math', 'mod_from': None, 'mod_as': None}, {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'scipy', 'mod_from': None, 'mod_as': None}, {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'shutil', 'mod_from': None, 'mod_as': None}, {'module': 'mlflow', 'mod_from': None, 'mod_as': None}, {'module': 'sklearn', 'mod_from': None, 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'argparse', 'mod_from': None, 'mod_as': None}, {'module': 'platform', 'mod_from': None, 'mod_as': None} ] def run_deploy(config): generated_files = [] importer = importModule() deployer = deploy(target_encoder = get_variable('target_encoder', False),feature_reducer = get_variable('feature_reducer', False),score_smaller_is_better = get_variable('smaller_is_better', False)) function = global_function() importModules(importer, imported_modules) if get_variable('cat_encoder', False): importer.addModule('category_encoders') import_trainer_module(importer) if get_variable('word2num_features'): function.add_function('s2n', importer) if get_variable('text_features'): importer.addLocalModule('textProfiler', mod_from='text.textProfiler') usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'ModelServing' deploy_path.mkdir(parents=True, exist_ok=True) # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('Prediction') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create the production data reader file importer.addLocalModule('*', mod_from='data_reader') reader_obj = data_reader(['sqlite','influx']) with open(deploy_path/"data_reader.py", 'w') as f: f.write(file_header(usecase) + reader_obj.get_code()) generated_files.append("data_reader.py") # need to copy data profiler from AION code as code is splitted and merging code amnnually # can add bugs aion_utilities = Path(__file__).parent.parent.parent.parent / 'utilities' with tarfile.open(aion_utilities / 'text.tar') as file: file.extractall(deploy_path) if (deploy_path / 'utils').exists(): shutil.rmtree(deploy_path / 'utils') with tarfile.open(aion_utilities / 'utils.tar') as file: file.extractall(deploy_path ) generated_files.append("text") generated_files.append("utils") # create empty init file required for creating a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") function.add_function('get_mlflow_uris') code = file_header(usecase) code += importer.getCode() code += deployer.getInputOutputFiles() code += function.getCode() code += deployer.getCode() # create prediction file with open(deploy_path/"predict.py", 'w') as f: f.write(code) generated_files.append("predict.py") # create groundtruth file with open(deploy_path/"groundtruth.py", 'w') as f: f.write(file_header(usecase) + deployer.getGroundtruthCode()) generated_files.append("groundtruth.py") # create create service file with open(deploy_path/"aionCode.py", 'w') as f: f.write(file_header(usecase) + deployer.getServiceCode()) generated_files.append("aionCode.py") importer.addModule('seaborn') # create requirements file req_file = deploy_path/"requirements.txt" with open(req_file, "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer()]) if config["text_features"]: req += add_text_dependency() f.write(req) generated_files.append("requirements.txt") # create config file config_file = deploy_path/"config.json" config_data = get_deploy_params(config) with open (config_file, "w") as f: json.dump(config_data, f, indent=4) generated_files.append("config.json") # create docker file create_docker_file('Prediction', deploy_path,config['modelName'], generated_files, True if config["text_features"] else False)
trainer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json from mlac.ml.core import * from .utility import * def get_model_name(algo, method): if method == 'modelBased': return algo + '_' + 'MLBased' if method == 'statisticalBased': return algo + '_' + 'StatisticsBased' else: return algo def get_training_params(config, algo): param_keys = ["modelVersion","problem_type","target_feature","train_features","scoring_criteria","test_ratio","optimization_param"] data = {key:value for (key,value) in config.items() if key in param_keys} data['algorithms'] = {algo: config['algorithms'][algo]} data['targetPath'] = config['modelName'] return data def addImporterLearner(model, importer): module = get_module_mapping(model) mod_from = module.get('mod_from',None) mod_as = module.get('mod_as',None) importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as) if not get_variable('non_sklearn_modules'): update_variable('non_sklearn_modules', []) if 'sklearn' not in mod_from: modules = get_variable('non_sklearn_modules') modules.append(model) update_variable('non_sklearn_modules', modules) def addEvaluator(scorer_type, optimizer,trainer, importer): trainer.addStatement("if not X_test.empty:") if optimizer == 'genetic': trainer.addStatement('features = [x for i,x in enumerate(features) if grid.support_[i]]',indent=2) trainer.addStatement('y_pred = estimator.predict(X_test[features])',indent=2) if scorer_type == 'accuracy': importer.addModule('accuracy_score', mod_from='sklearn.metrics') trainer.addStatement(f"test_score = round(accuracy_score(y_test,y_pred),2) * 100",indent=2) importer.addModule('confusion_matrix', mod_from='sklearn.metrics') trainer.addStatement("log.info('Confusion Matrix:')",indent=2) trainer.addStatement("log.info('\\n' + pd.DataFrame(confusion_matrix(y_test,y_pred)).to_string())",indent=2) elif scorer_type == 'recall': importer.addModule('recall_score', mod_from='sklearn.metrics') trainer.addStatement(f"test_score = round(recall_score(y_test,y_pred,average='macro'),2) * 100",indent=2) importer.addModule('confusion_matrix', mod_from='sklearn.metrics') trainer.addStatement(f"log.info('Confusion Matrix:\\n')",indent=2) trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2) elif scorer_type == 'precision': importer.addModule('precision_score', mod_from='sklearn.metrics') trainer.addStatement(f"test_score = round(precision_score(y_test,y_pred,average='macro'),2) * 100",indent=2) importer.addModule('confusion_matrix', mod_from='sklearn.metrics') trainer.addStatement(f"log.info('Confusion Matrix:\\n')",indent=2) trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2) elif scorer_type == 'f1_score': importer.addModule('f1_score', mod_from='sklearn.metrics') trainer.addStatement(f"test_score = round(f1_score(y_test,y_pred,average='macro'),2) * 100",indent=2) importer.addModule('confusion_matrix', mod_from='sklearn.metrics') trainer.addStatement(f"log.info('Confusion Matrix:\\n')",indent=2) trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=2) elif scorer_type == 'roc_auc': importer.addModule('roc_auc_score', mod_from='sklearn.metrics') trainer.addStatement("try:") trainer.addStatement(f"test_score = round(roc_auc_score(y_test,y_pred),2) * 100", indent=3) importer.addModule('confusion_matrix', mod_from='sklearn.metrics') trainer.addStatement(f"log.info('Confusion Matrix:\\n')",indent=3) trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=3) trainer.addStatement("except:") trainer.addStatement("try:",indent=3) trainer.addStatement("actual = pd.get_dummies(y_test)",indent=4) trainer.addStatement("y_pred = pd.get_dummies(y_pred)",indent=4) trainer.addStatement(f"test_score = round(roc_auc_score(y_test,y_pred,average='weighted', multi_class='ovr'),2) * 100", indent=3) trainer.addStatement(f"log.info('Confusion Matrix:\\n')",indent=4) trainer.addStatement(f'log.info(pd.DataFrame(confusion_matrix(y_test,y_pred)))',indent=4) trainer.addStatement("except:",indent=3) trainer.addStatement(f"test_score = 0.0", indent=4) elif scorer_type == 'neg_mean_squared_error' or scorer_type == 'mse': importer.addModule('mean_squared_error', mod_from='sklearn.metrics') trainer.addStatement(f'test_score = round(mean_squared_error(y_test,y_pred),2)',indent=2) update_variable('smaller_is_better', True) elif scorer_type == 'neg_root_mean_squared_error' or scorer_type == 'rmse': importer.addModule('mean_squared_error', mod_from='sklearn.metrics') trainer.addStatement(f'test_score = round(mean_squared_error(y_test,y_pred,squared=False),2)',indent=2) update_variable('smaller_is_better', True) elif scorer_type == 'neg_mean_absolute_error' or scorer_type == 'mae': importer.addModule('mean_absolute_error', mod_from='sklearn.metrics') trainer.addStatement(f'test_score = round(mean_absolute_error(y_test,y_pred),2)',indent=2) update_variable('smaller_is_better', True) elif scorer_type == 'r2': importer.addModule('r2_score', mod_from='sklearn.metrics') trainer.addStatement(f'test_score = round(r2_score(y_test,y_pred),2)',indent=2) def update_search_space(algo, config): search_space = [] algoritms = config["algorithms"] model = algo params = algoritms[model] model_dict = {model:get_module_mapping(model)['mod_from']} d = {'algo': model_dict} d['param'] = params search_space.append(d) config['search_space'] = search_space def get_optimization(optimization, importer, function=None): if optimization == 'grid': importer.addModule('GridSearchCV', mod_from='sklearn.model_selection') optimization = 'GridSearchCV' elif optimization == 'random': importer.addModule('RandomizedSearchCV', mod_from='sklearn.model_selection') optimization = 'RandomizedSearchCV' elif optimization == 'genetic': importer.addModule('GeneticSelectionCV', mod_from='genetic_selection') optimization = 'GeneticSelectionCV' elif optimization == 'bayesopt': optimization = 'BayesSearchCV' function.add_function(optimization,importer) return optimization def scoring_criteria_reg(score_param): scorer_mapping = { 'mse':'neg_mean_squared_error', 'rmse':'neg_root_mean_squared_error', 'mae':'neg_mean_absolute_error', 'r2':'r2' } return scorer_mapping.get(score_param, 'neg_mean_squared_error') def addBalancing(balancingMethod, importer, code): if balancingMethod == 'oversample': importer.addModule('SMOTE', mod_from='imblearn.over_sampling') code.addStatement("\n # data balancing") code.addStatement("X_train, y_train = SMOTE(sampling_strategy='auto', k_neighbors=1, random_state=100).fit_resample(X_train, y_train)") if balancingMethod == 'undersample': importer.addModule('TomekLinks', mod_from='imblearn.under_sampling') code.addStatement("\n # data balancing") code.addStatement("X_train, y_train = TomekLinks().fit_resample(X_train, y_train)") def run_trainer(base_config): base_trainer = learner() base_importer = importModule() function = global_function() base_importer.addModule('joblib') base_importer.addModule('warnings') base_importer.addModule('argparse') base_importer.addModule('pandas', mod_as='pd') base_importer.addModule('Path', mod_from='pathlib') function.add_function('get_mlflow_uris') function.add_function('mlflow_create_experiment') importModules(base_importer,base_trainer.getPrefixModules()) base_trainer.addPrefixCode() if base_config["algorithms"]: base_trainer.add_train_test_split('train_features', 'target_feature', "config['test_ratio']") if base_config["problem_type"] == 'classification': if base_config["balancingMethod"]: addBalancing(base_config["balancingMethod"],base_importer,base_trainer) base_trainer.addStatement(f"log.info('Data balancing done')") base_trainer.addStatement("\n #select scorer") if base_config["problem_type"] == 'classification': function.add_function('scoring_criteria', base_importer) base_trainer.addStatement("scorer = scoring_criteria(config['scoring_criteria'],config['problem_type'], df[target_feature].nunique())") else: base_config['scoring_criteria'] = scoring_criteria_reg(base_config['scoring_criteria']) base_trainer.addStatement(f"scorer = config['scoring_criteria']") base_trainer.addStatement(f"log.info('Scoring criteria: {base_config['scoring_criteria']}')") feature_selector = [] if base_config['feature_reducer']: feature_selector.append(base_config['feature_reducer']) elif base_config['feature_selector']: feature_selector = base_config['feature_selector'] for algo in base_config["algorithms"].keys(): for method in feature_selector: trainer = learner() importer = importModule() trainer.copyCode(base_trainer) importer.copyCode(base_importer) config = base_config usecase = config['modelName']+'_'+config['modelVersion'] addImporterLearner(algo, importer) trainer.addStatement("\n #Training model") trainer.addStatement(f"log.info('Training {algo} for {method}')") trainer.add_model_fit(algo, get_optimization(config["optimization"], importer, function), method, importer) trainer.addStatement("\n #model evaluation") addEvaluator(config['scoring_criteria'],config["optimization"], trainer, importer) function.add_function('mlflowSetPath') function.add_function('logMlflow') importModules(importer, trainer.getSuffixModules()) importModules(importer, trainer.getMainCodeModules()) if base_config["problem_type"] == 'classification': function.add_function('classification_metrices', importer) trainer.addStatement("metrices = get_classification_metrices(y_test,y_pred)",indent=2) trainer.add_100_trainsize_code() trainer.addStatement("metrices.update({'train_score': train_score, 'test_score':test_score})") else: function.add_function('regression_metrices', importer) trainer.addStatement("metrices = get_regression_metrices(y_test,y_pred)",indent=2) trainer.add_100_trainsize_code() trainer.addStatement("metrices.update({'train_score': train_score, 'test_score':test_score})") trainer.addSuffixCode() trainer.addMainCode() model_name = get_model_name(algo,method) deploy_path = Path(config["deploy_path"])/'MLaC'/('ModelTraining'+'_' + model_name) deploy_path.mkdir(parents=True, exist_ok=True) generated_files = [] # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('train') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create empty init file to make a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") code = importer.getCode() code += 'warnings.filterwarnings("ignore")\n' code += f"\nmodel_name = '{model_name}'\n" append_variable('models_name',model_name) out_files = {'log':f'{model_name}_aion.log','model':f'{model_name}_model.pkl','performance':f'{model_name}_performance.json','metaDataOutput':f'{model_name}_modelMetaData.json'} trainer.addOutputFiles(out_files) code += trainer.getInputOutputFiles() code += function.getCode() trainer.addLocalFunctionsCode() code += trainer.getCode() with open(deploy_path/"aionCode.py", "w") as f: f.write(code) generated_files.append("aionCode.py") with open(deploy_path/"requirements.txt", "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()]) f.write(req) generated_files.append("requirements.txt") with open (deploy_path/"config.json", "w") as f: json.dump(get_training_params(config, algo), f, indent=4) generated_files.append("config.json") create_docker_file('train', deploy_path,config['modelName'], generated_files)
selector.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json import platform from mlac.ml.core import * from .utility import * output_file_map = { 'feature_reducer' : {'feature_reducer' : 'feature_reducer.pkl'} } def get_selector_params(config): param_keys = ["modelVersion","problem_type","target_feature","train_features","cat_features","n_components"] data = {key:value for (key,value) in config.items() if key in param_keys} data['targetPath'] = config['modelName'] return data def run_selector(config): select = selector() importer = importModule() function = global_function() importModules(importer,select.getPrefixModules()) select.addPrefixCode() if config["target_feature"] in config["train_features"]: config["train_features"].remove(config["target_feature"]) select.addStatement("train_features = df.columns.tolist()") select.addStatement("target_feature = config['target_feature']") select.addStatement("train_features.remove(target_feature)") select.addStatement("cat_features = prev_step_output['cat_features']") select.add_variable('total_features',[]) select.addStatement("log.log_dataframe(df)") methods = config.get("feature_selector", None) feature_reducer = config.get("feature_reducer", None) select.addStatement("selected_features = {}") select.addStatement("meta_data['featureengineering']= {}") if feature_reducer: update_variable('feature_reducer', True) select.addStatement(f"log.info('Running dimensionality reduction technique( {feature_reducer})')") if feature_reducer == 'pca': importer.addModule('PCA', mod_from='sklearn.decomposition') if int(config["n_components"]) == 0: select.addStatement("dimension_reducer = PCA(n_components='mle',svd_solver = 'full')") elif int(config["n_components"]) < 1: select.addStatement("dimension_reducer = PCA(n_components=config['n_components'],svd_solver = 'full')") else: select.addStatement("dimension_reducer = PCA(n_components=config['n_components'])") elif feature_reducer == 'svd': importer.addModule('TruncatedSVD', mod_from='sklearn.decomposition') if config["n_components"] < 2: config["n_components"] = 2 select.addStatement("dimension_reducer = TruncatedSVD(n_components=config['n_components'], n_iter=7, random_state=42)") elif feature_reducer == 'factoranalysis': importer.addModule('FactorAnalysis', mod_from='sklearn.decomposition') if config["n_components"] == 0: select.addStatement("dimension_reducer = FactorAnalysis()") else: select.addStatement("dimension_reducer = FactorAnalysis(n_components=config['n_components'])") elif feature_reducer == 'ica': importer.addModule('FastICA', mod_from='sklearn.decomposition') if config["n_components"] == 0: select.addStatement("dimension_reducer = FastICA()") else: select.addStatement("dimension_reducer = FastICA(n_components=config['n_components'])") select.addStatement("pca_array = dimension_reducer.fit_transform(df[train_features])") select.addStatement("pca_columns = ['pca_'+str(e) for e in list(range(pca_array.shape[1]))]") select.addStatement("scaledDF = pd.DataFrame(pca_array, columns=pca_columns)") select.addStatement("scaledDF[target_feature] = df[target_feature]") select.addStatement("df = scaledDF") select.addStatement(f"selected_features['{feature_reducer}'] = pca_columns") select.addStatement("total_features = df.columns.tolist()") select.addStatement("meta_data['featureengineering']['feature_reducer']= {}") select.addStatement("reducer_file_name = str(targetPath/IOFiles['feature_reducer'])") importer.addModule('joblib') select.addStatement("joblib.dump(dimension_reducer, reducer_file_name)") select.addStatement("meta_data['featureengineering']['feature_reducer']['file']= IOFiles['feature_reducer']") select.addStatement("meta_data['featureengineering']['feature_reducer']['features']= train_features") select.addOutputFiles(output_file_map['feature_reducer']) elif methods: if 'allFeatures' in methods: addDropFeature('target_feature', 'train_features', select) select.addStatement("selected_features['allFeatures'] = train_features") if 'modelBased' in methods: select.addStatement(f"log.info('Model Based Correlation Analysis Start')") select.addStatement("model_based_feat = []") importer.addModule('numpy', mod_as='np') importer.addModule('RFE', mod_from='sklearn.feature_selection') importer.addModule('MinMaxScaler', mod_from='sklearn.preprocessing') if config["problem_type"] == 'classification': importer.addModule('ExtraTreesClassifier', mod_from='sklearn.ensemble') select.addStatement("estimator = ExtraTreesClassifier(n_estimators=100)") else: importer.addModule('Lasso', mod_from='sklearn.linear_model') select.addStatement("estimator = Lasso()") select.addStatement("estimator.fit(df[train_features],df[target_feature])") select.addStatement("rfe = RFE(estimator, n_features_to_select=1, verbose =0 )") select.addStatement("rfe.fit(df[train_features],df[target_feature])") select.addStatement("ranks = MinMaxScaler().fit_transform(-1*np.array([list(map(float, rfe.ranking_))]).T).T[0]") select.addStatement("ranks = list(map(lambda x: round(x,2), ranks))") select.addStatement("for item, rank in zip(df.columns,ranks):") select.addStatement("if rank > 0.30:", indent=2) select.addStatement("model_based_feat.append(item)", indent=3) addDropFeature('target_feature', 'model_based_feat', select) select.addStatement("selected_features['modelBased'] = model_based_feat") select.addStatement(f"log.info(f'Highly Correlated Features : {{model_based_feat}}')") if 'statisticalBased' in methods: select.addStatement(f"log.info('Statistical Based Correlation Analysis Start')") function.add_function('start_reducer',importer) select.addStatement(f"features = start_reducer(df, target_feature, {config['corr_threshold']},{config['var_threshold']})") select.addStatement("train_features = [x for x in features if x in train_features]") select.addStatement("cat_features = [x for x in cat_features if x in features]") select.addStatement("numeric_features = df[features].select_dtypes('number').columns.tolist()") if config["problem_type"] == 'classification': function.add_function('feature_importance_class') select.addStatement(f"statistics_based_feat = feature_importance_class(df[features], numeric_features, cat_features, target_feature, {config['pValueThreshold']},{config['corr_threshold']})") else: function.add_function('feature_importance_reg') select.addStatement(f"statistics_based_feat = feature_importance_reg(df[features], numeric_features, target_feature, {config['pValueThreshold']},{config['corr_threshold']})") addDropFeature('target_feature', 'statistics_based_feat', select) select.addStatement("selected_features['statisticalBased'] = statistics_based_feat") select.addStatement(f"log.info('Highly Correlated Features : {{statistics_based_feat}}')") select.addStatement("total_features = list(set([x for y in selected_features.values() for x in y] + [target_feature]))") select.addStatement(f"df = df[total_features]") select.addStatement("log.log_dataframe(df)") select.addSuffixCode() importModules(importer, select.getSuffixModules()) importModules(importer, select.getMainCodeModules()) select.addMainCode() generated_files = [] usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'FeatureEngineering' deploy_path.mkdir(parents=True, exist_ok=True) # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('selector') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create empty init file to make a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") code = file_header(usecase) code += importer.getCode() code += select.getInputOutputFiles() code += function.getCode() select.addLocalFunctionsCode() code += select.getCode() with open(deploy_path/"aionCode.py", "w") as f: f.write(code) generated_files.append("aionCode.py") with open(deploy_path/"requirements.txt", "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()]) f.write(req) generated_files.append("requirements.txt") config_file = deploy_path/"config.json" config_data = get_selector_params(config) with open (config_file, "w") as f: json.dump(config_data, f, indent=4) generated_files.append("config.json") create_docker_file('selector', deploy_path,config['modelName'], generated_files)
utility.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import datetime from pathlib import Path variables = {} def init_variables(): global variables variables = {} def update_variable(name, value): variables[name] = value def get_variable(name, default=None): return variables.get(name, default) def append_variable(name, value): data = get_variable(name) if not data: update_variable(name, [value]) elif not isinstance(data, list): update_variable(name, [data, value]) else: data.append(value) update_variable(name, data) def addDropFeature(feature, features_list, coder, indent=1): coder.addStatement(f'if {feature} in {features_list}:', indent=indent) coder.addStatement(f'{features_list}.remove({feature})', indent=indent+1) def importModules(importer, modules_list): for module in modules_list: mod_from = module.get('mod_from',None) mod_as = module.get('mod_as',None) importer.addModule(module['module'], mod_from=mod_from, mod_as=mod_as) def file_header(use_case, module_name=None): time_str = datetime.datetime.now().isoformat(timespec='seconds', sep=' ') text = "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n" return text + f"'''\nThis file is automatically generated by AION for {use_case} usecase.\nFile generation time: {time_str}\n'''" def get_module_mapping(module): mapping = { "LogisticRegression": {'module':'LogisticRegression', 'mod_from':'sklearn.linear_model'} ,"GaussianNB": {'module':'GaussianNB', 'mod_from':'sklearn.naive_bayes'} ,"DecisionTreeClassifier": {'module':'DecisionTreeClassifier', 'mod_from':'sklearn.tree'} ,"SVC": {'module':'SVC', 'mod_from':'sklearn.svm'} ,"KNeighborsClassifier": {'module':'KNeighborsClassifier', 'mod_from':'sklearn.neighbors'} ,"GradientBoostingClassifier": {'module':'GradientBoostingClassifier', 'mod_from':'sklearn.ensemble'} ,'RandomForestClassifier':{'module':'RandomForestClassifier','mod_from':'sklearn.ensemble'} ,'XGBClassifier':{'module':'XGBClassifier','mod_from':'xgboost'} ,'LGBMClassifier':{'module':'LGBMClassifier','mod_from':'lightgbm'} ,'CatBoostClassifier':{'module':'CatBoostClassifier','mod_from':'catboost'} ,"LinearRegression": {'module':'LinearRegression', 'mod_from':'sklearn.linear_model'} ,"Lasso": {'module':'Lasso', 'mod_from':'sklearn.linear_model'} ,"Ridge": {'module':'Ridge', 'mod_from':'sklearn.linear_model'} ,"DecisionTreeRegressor": {'module':'DecisionTreeRegressor', 'mod_from':'sklearn.tree'} ,'RandomForestRegressor':{'module':'RandomForestRegressor','mod_from':'sklearn.ensemble'} ,'XGBRegressor':{'module':'XGBRegressor','mod_from':'xgboost'} ,'LGBMRegressor':{'module':'LGBMRegressor','mod_from':'lightgbm'} ,'CatBoostRegressor':{'module':'CatBoostRegressor','mod_from':'catboost'} } return mapping.get(module, None) def create_docker_file(name, path,usecasename,files=[],text_feature=False): text = "" if name == 'load_data': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='RUN pip install --no-cache-dir -r requirements.txt' elif name == 'transformer': text='FROM python:3.8-slim-buster\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='''RUN \ ''' text+=''' pip install --no-cache-dir -r requirements.txt\ ''' if text_feature: text += ''' && python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\ ''' text+='\n' elif name == 'selector': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='RUN pip install --no-cache-dir -r requirements.txt' elif name == 'train': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' text+='COPY requirements.txt requirements.txt' text+='\n' text+='COPY config.json config.json' text+='\n' text+='COPY aionCode.py aionCode.py' text+='\n' text+='COPY utility.py utility.py' text+='\n' text+='RUN pip install --no-cache-dir -r requirements.txt' elif name == 'register': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='RUN pip install --no-cache-dir -r requirements.txt' elif name == 'Prediction': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='''RUN \ ''' text+='''pip install --no-cache-dir -r requirements.txt\ ''' if text_feature: text += ''' && python -m nltk.downloader stopwords && python -m nltk.downloader punkt && python -m nltk.downloader wordnet && python -m nltk.downloader averaged_perceptron_tagger\ ''' text+='\n' text+='ENTRYPOINT ["python", "aionCode.py","-ip","0.0.0.0","-pn","8094"]\n' elif name == 'input_drift': text='FROM python:3.8-slim-buster' text+='\n' text+='LABEL "usecase"="'+str(usecasename)+'"' text+='\n' text+='LABEL "usecase_test"="'+str(usecasename)+'_test'+'"' text+='\n' for file in files: text+=f'\nCOPY {file} {file}' text+='\n' text+='RUN pip install --no-cache-dir -r requirements.txt' file_name = Path(path)/'Dockerfile' with open(file_name, 'w') as f: f.write(text)
drift_analysis.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json from mlac.ml.core import * from .utility import * imported_modules = [ {'module': 'sys', 'mod_from': None, 'mod_as': None}, {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'math', 'mod_from': None, 'mod_as': None}, {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'mlflow', 'mod_from': None, 'mod_as': None}, {'module': 'sklearn', 'mod_from': None, 'mod_as': None}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'argparse', 'mod_from': None, 'mod_as': None}, {'module': 'stats', 'mod_from': 'scipy', 'mod_as': 'st'}, {'module': 'platform', 'mod_from': None, 'mod_as': None } ] def get_drift_params(config): param_keys = ["modelVersion","problem_type","target_feature","selected_features","scoring_criteria","s3"] data = {key:value for (key,value) in config.items() if key in param_keys} usecase = config['modelName'] data['targetPath'] = usecase if config['dataLocation'] != '': data['inputUri'] = config['dataLocation'] else: data['inputUri'] = '<input datalocation>' data['prod_db_type'] = config.get('prod_db_type', 'sqlite') data['db_config'] = config.get('db_config', {}) data['mlflow_config'] = config.get('mlflow_config', {'artifacts_uri':'','tracking_uri_type':'','tracking_uri':'','registry_uri':''}) return data def run_drift_analysis(config): init_variables() importer = importModule() function = global_function() drifter = drift() importModules(importer, imported_modules) usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'ModelMonitoring' deploy_path.mkdir(parents=True, exist_ok=True) generated_files = [] # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('drift') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create the production data reader file importer.addLocalModule('dataReader', mod_from='data_reader') readers = ['sqlite','influx'] if 's3' in config.keys(): readers.append('s3') reader_obj = data_reader(readers) with open(deploy_path/"data_reader.py", 'w') as f: f.write(file_header(usecase) + reader_obj.get_code()) generated_files.append("data_reader.py") # create empty init file to make a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") importer.addLocalModule('inputdrift', mod_from='input_drift') code = file_header(usecase) code += importer.getCode() code += drifter.getInputOutputFiles() code += function.getCode() code += drifter.get_main_drift_code(config['problem_type'], get_variable('smaller_is_better', False)) with open(deploy_path/"aionCode.py", "w") as f: f.write(code) generated_files.append("aionCode.py") input_drift_importer = importModule() importModules(input_drift_importer, drifter.get_input_drift_import_modules()) code = file_header(usecase) code += input_drift_importer.getCode() code += drifter.get_input_drift_code() with open(deploy_path/"input_drift.py", "w") as f: f.write(code) generated_files.append("input_drift.py") with open (deploy_path/"config.json", "w") as f: json.dump(get_drift_params(config), f, indent=4) generated_files.append("config.json") req_file = deploy_path/"requirements.txt" with open(req_file, "w") as f: f.write(importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer(), input_drift_importer])) generated_files.append("requirements.txt") create_docker_file('input_drift', deploy_path,config['modelName'], generated_files)
transformer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import shutil from pathlib import Path import json from mlac.ml.core import * from .utility import * import tarfile output_file_map = { 'text' : {'text' : 'text_profiler.pkl'}, 'targetEncoder' : {'targetEncoder' : 'targetEncoder.pkl'}, 'featureEncoder' : {'featureEncoder' : 'inputEncoder.pkl'}, 'normalizer' : {'normalizer' : 'normalizer.pkl'} } def add_common_imports(importer): common_importes = [ {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'argparse', 'mod_from': None, 'mod_as': None}, {'module': 'platform', 'mod_from': None, 'mod_as': None } ] for mod in common_importes: importer.addModule(mod['module'], mod_from=mod['mod_from'], mod_as=mod['mod_as']) def add_text_dependency(): return """nltk==3.6.3 textblob==0.15.3 spacy==3.1.3 demoji==1.1.0 bs4==0.0.1 text_unidecode==1.3 contractions==0.1.73 """ def get_transformer_params(config): param_keys = ["modelVersion","problem_type","target_feature","train_features","text_features","profiler","test_ratio"] #Bugid 13217 data = {key:value for (key,value) in config.items() if key in param_keys} data['targetPath'] = config['modelName'] return data def run_transformer(config): transformer = profiler() importer = importModule() function = global_function() importModules(importer, transformer.getPrefixModules()) importer.addModule('warnings') transformer.addPrefixCode() importer.addModule('train_test_split', mod_from='sklearn.model_selection') if config["problem_type"] == 'classification': importer.addModule('LabelEncoder', mod_from='sklearn.preprocessing') transformer.addInputFiles({'targetEncoder':'targetEncoder.pkl'}) update_variable('target_encoder', True) transformer.addStatement("train_data, test_data = train_test_split(df,stratify=df[target_feature],test_size=config['test_ratio'])",indent=2) #Bugid 13217 transformer.addStatement("profilerObj = profiler(xtrain=train_data, target=target_feature, encode_target=True, config=config['profiler'],log=log)") #Bugid 13217 else: transformer.addStatement("train_data, test_data = train_test_split(df,test_size=config['test_ratio'])",indent=2) transformer.addStatement("profilerObj = profiler(xtrain=train_data, target=target_feature, config=config['profiler'],log=log)") importModules(importer, transformer.getSuffixModules()) importModules(importer, transformer.getMainCodeModules()) transformer.addSuffixCode( config["problem_type"] == 'classification') transformer.addMainCode() usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'DataTransformation' deploy_path.mkdir(parents=True, exist_ok=True) generated_files = [] # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('transformer') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create empty init file to make a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") # create the dataProfiler file profiler_importer = importModule() importer.addLocalModule('profiler', mod_from='dataProfiler') profiler_obj = data_profiler(profiler_importer, True if config["text_features"] else False) code_text = profiler_obj.get_code() # import statement will be generated when profiler_obj.get_code is called. # need to copy data profiler from AION code as code is splitted and merging code amnnually # can add bugs. need a better way to find the imported module #aion_transformer = Path(__file__).parent.parent.parent.parent/'transformations' aion_utilities = Path(__file__).parent.parent.parent.parent/'utilities' #added for non encryption --Usnish (deploy_path/'transformations').mkdir(parents=True, exist_ok=True) if not (aion_utilities/'transformations'/'dataProfiler.py').exists(): raise ValueError('Data profiler file removed from AION') shutil.copy(aion_utilities/'transformations'/'dataProfiler.py',deploy_path/"dataProfiler.py") shutil.copy(aion_utilities/'transformations'/'data_profiler_functions.py',deploy_path/"transformations"/"data_profiler_functions.py") if (deploy_path/'text').exists(): shutil.rmtree(deploy_path/'text') with tarfile.open(aion_utilities/'text.tar') as file: file.extractall(deploy_path) if (deploy_path/'utils').exists(): shutil.rmtree(deploy_path/'utils') with tarfile.open(aion_utilities / 'utils.tar') as file: file.extractall(deploy_path) generated_files.append("dataProfiler.py") generated_files.append("transformations") generated_files.append("text") generated_files.append("utils") code = file_header(usecase) code += "\nimport os\nos.path.abspath(os.path.join(__file__, os.pardir))\n" #chdir to import from current dir code += importer.getCode() code += '\nwarnings.filterwarnings("ignore")\n' code += transformer.getInputOutputFiles() code += function.getCode() transformer.addLocalFunctionsCode() code += transformer.getCode() with open(deploy_path/"aionCode.py", "w") as f: f.write(code) generated_files.append("aionCode.py") with open(deploy_path/"requirements.txt", "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), profiler_importer]) if config["text_features"]: req += add_text_dependency() f.write(req) generated_files.append("requirements.txt") config_file = deploy_path/"config.json" config_data = get_transformer_params(config) with open (config_file, "w") as f: json.dump(config_data, f, indent=4) generated_files.append("config.json") create_docker_file('transformer', deploy_path,config['modelName'], generated_files,True if config["text_features"] else False)
register.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json from mlac.ml.core import * from .utility import * def get_register_params(config, models): param_keys = ["modelVersion","problem_type"] data = {key:value for (key,value) in config.items() if key in param_keys} data['targetPath'] = config['modelName'] data['models'] = models return data def run_register(config): importer = importModule() function = global_function() registration = register(importer) function.add_function('get_mlflow_uris') models = get_variable('models_name') smaller_is_better = get_variable('smaller_is_better', False) registration.addClassCode(smaller_is_better) registration.addLocalFunctionsCode(models) registration.addPrefixCode() registration.addMainCode(models) importModules(importer, registration.getMainCodeModules()) importer.addModule('warnings') generated_files = [] usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'ModelRegistry' deploy_path.mkdir(parents=True, exist_ok=True) # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('register') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create empty init file required for creating a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") code = registration.getImportCode() code += '\nwarnings.filterwarnings("ignore")\n' code += registration.getInputOutputFiles() code += function.getCode() code += registration.getCode() # create serving file with open(deploy_path/"aionCode.py", 'w') as f: f.write(file_header(usecase) + code) generated_files.append("aionCode.py") # create requirements file req_file = deploy_path/"requirements.txt" with open(req_file, "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer()]) f.write(req) generated_files.append("requirements.txt") # create config file with open (deploy_path/"config.json", "w") as f: json.dump(get_register_params(config, models), f, indent=4) generated_files.append("config.json") # create docker file create_docker_file('register', deploy_path,config['modelName'], generated_files)
__init__.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .load_data import run_loader from .transformer import run_transformer from .selector import run_selector from .trainer import run_trainer from .register import run_register from .deploy import run_deploy from .drift_analysis import run_drift_analysis
load_data.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from pathlib import Path import json import platform from mlac.ml.core import * from .utility import * imported_modules = [ {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'argparse', 'mod_from': None, 'mod_as': None}, {'module': 'platform', 'mod_from': None, 'mod_as': None } ] def get_load_data_params(config): param_keys = ["modelVersion","problem_type","target_feature","selected_features"] data = {key:value for (key,value) in config.items() if key in param_keys} data['targetPath'] = config['modelName'] return data def run_loader(config): generated_files = [] importer = importModule() loader = tabularDataReader() importModules(importer, imported_modules) usecase = config['modelName']+'_'+config['modelVersion'] deploy_path = Path(config["deploy_path"])/'MLaC'/'DataIngestion' deploy_path.mkdir(parents=True, exist_ok=True) # create the utility file importer.addLocalModule('*', mod_from='utility') utility_obj = utility_function('load_data') with open(deploy_path/"utility.py", 'w') as f: f.write(file_header(usecase) + utility_obj.get_code()) generated_files.append("utility.py") # create the production data reader file importer.addLocalModule('dataReader', mod_from='data_reader') readers = ['sqlite','influx'] if 's3' in config.keys(): readers.append('s3') reader_obj = data_reader(readers) with open(deploy_path/"data_reader.py", 'w') as f: f.write(file_header(usecase) + reader_obj.get_code()) generated_files.append("data_reader.py") # create empty init file to make a package with open(deploy_path/"__init__.py", 'w') as f: f.write(file_header(usecase)) generated_files.append("__init__.py") code = file_header(usecase) code += importer.getCode() code += loader.getInputOutputFiles() code += loader.getCode() with open(deploy_path/"aionCode.py", "w") as f: f.write(code) generated_files.append("aionCode.py") with open(deploy_path/"requirements.txt", "w") as f: req=importer.getBaseModule(extra_importers=[utility_obj.get_importer(), reader_obj.get_importer()]) f.write(req) generated_files.append("requirements.txt") config_file = deploy_path/"config.json" config_data = get_load_data_params(config) with open (config_file, "w") as f: json.dump(config_data, f, indent=4) generated_files.append("config.json") create_docker_file('load_data', deploy_path,config['modelName'],generated_files)
__init__.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """
input_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class input_drift(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = '' def addInputDriftClass(self): text = "\ \nclass inputdrift():\ \n\ \n def __init__(self,base_config):\ \n self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\ \n self.currentDataLocation = base_config['currentDataLocation']\ \n home = Path.home()\ \n if platform.system() == 'Windows':\ \n from pathlib import WindowsPath\ \n output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\ \n output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\ \n else:\ \n from pathlib import PosixPath\ \n output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\ \n output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\ \n if not output_model_dir.exists():\ \n raise ValueError(f'Configuration file not found at {output_model_dir}')\ \n\ \n tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\ \n registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\ \n mlflow.set_tracking_uri(tracking_uri)\ \n mlflow.set_registry_uri(registry_uri)\ \n client = mlflow.tracking.MlflowClient(\ \n tracking_uri=tracking_uri,\ \n registry_uri=registry_uri,\ \n )\ \n model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\ \n model = mlflow.pyfunc.load_model(model_version_uri)\ \n run = client.get_run(model.metadata.run_id)\ \n if run.info.artifact_uri.startswith('file:'):\ \n artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\ \n else:\ \n artifact_path = Path(run.info.artifact_uri)\ \n self.trainingDataPath = artifact_path/(self.usecase + '_data.csv')\ \n\ \n def get_input_drift(self,current_data, historical_data):\ \n curr_num_feat = current_data.select_dtypes(include='number')\ \n hist_num_feat = historical_data.select_dtypes(include='number')\ \n num_features = [feat for feat in historical_data.columns if feat in curr_num_feat]\ \n alert_count = 0\ \n data = {\ \n 'current':{'data':current_data},\ \n 'hist': {'data': historical_data}\ \n }\ \n dist_changed_columns = []\ \n dist_change_message = []\ \n for feature in num_features:\ \n curr_static_value = st.ks_2samp( hist_num_feat[feature], curr_num_feat[feature]).pvalue\ \n if (curr_static_value < 0.05):\ \n distribution = {}\ \n distribution['hist'] = self.DistributionFinder( historical_data[feature])\ \n distribution['curr'] = self.DistributionFinder( current_data[feature])\ \n if(distribution['hist']['name'] == distribution['curr']['name']):\ \n pass\ \n else:\ \n alert_count = alert_count + 1\ \n dist_changed_columns.append(feature)\ \n changed_column = {}\ \n changed_column['Feature'] = feature\ \n changed_column['KS_Training'] = curr_static_value\ \n changed_column['Training_Distribution'] = distribution['hist']['name']\ \n changed_column['New_Distribution'] = distribution['curr']['name']\ \n dist_change_message.append(changed_column)\ \n if alert_count:\ \n resultStatus = dist_change_message\ \n else :\ \n resultStatus='Model is working as expected'\ \n return(alert_count, resultStatus)\ \n\ \n def DistributionFinder(self,data):\ \n best_distribution =''\ \n best_sse =0.0\ \n if(data.dtype in ['int','int64']):\ \n distributions= {'bernoulli':{'algo':st.bernoulli},\ \n 'binom':{'algo':st.binom},\ \n 'geom':{'algo':st.geom},\ \n 'nbinom':{'algo':st.nbinom},\ \n 'poisson':{'algo':st.poisson}\ \n }\ \n index, counts = np.unique(data.astype(int),return_counts=True)\ \n if(len(index)>=2):\ \n best_sse = np.inf\ \n y1=[]\ \n total=sum(counts)\ \n mean=float(sum(index*counts))/total\ \n variance=float((sum(index**2*counts) -total*mean**2))/(total-1)\ \n dispersion=mean/float(variance)\ \n theta=1/float(dispersion)\ \n r=mean*(float(theta)/1-theta)\ \n\ \n for j in counts:\ \n y1.append(float(j)/total)\ \n distributions['bernoulli']['pmf'] = distributions['bernoulli']['algo'].pmf(index,mean)\ \n distributions['binom']['pmf'] = distributions['binom']['algo'].pmf(index,len(index),p=mean/len(index))\ \n distributions['geom']['pmf'] = distributions['geom']['algo'].pmf(index,1/float(1+mean))\ \n distributions['nbinom']['pmf'] = distributions['nbinom']['algo'].pmf(index,mean,r)\ \n distributions['poisson']['pmf'] = distributions['poisson']['algo'].pmf(index,mean)\ \n\ \n sselist = []\ \n for dist in distributions.keys():\ \n distributions[dist]['sess'] = np.sum(np.power(y1 - distributions[dist]['pmf'], 2.0))\ \n if np.isnan(distributions[dist]['sess']):\ \n distributions[dist]['sess'] = float('inf')\ \n best_dist = min(distributions, key=lambda v: distributions[v]['sess'])\ \n best_distribution = best_dist\ \n best_sse = distributions[best_dist]['sess']\ \n\ \n elif (len(index) == 1):\ \n best_distribution = 'Constant Data-No Distribution'\ \n best_sse = 0.0\ \n elif(data.dtype in ['float64','float32']):\ \n distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta]\ \n best_distribution = st.norm.name\ \n best_sse = np.inf\ \n nrange = data.max() - data.min()\ \n\ \n y, x = np.histogram(data.astype(float), bins='auto', density=True)\ \n x = (x + np.roll(x, -1))[:-1] / 2.0\ \n\ \n for distribution in distributions:\ \n with warnings.catch_warnings():\ \n warnings.filterwarnings('ignore')\ \n params = distribution.fit(data.astype(float))\ \n arg = params[:-2]\ \n loc = params[-2]\ \n scale = params[-1]\ \n pdf = distribution.pdf(x, loc=loc, scale=scale, *arg)\ \n sse = np.sum(np.power(y - pdf, 2.0))\ \n if( sse < best_sse):\ \n best_distribution = distribution.name\ \n best_sse = sse\ \n\ \n return {'name':best_distribution, 'sse': best_sse}\ \n\ " return text def addSuffixCode(self, indent=1): text ="\n\ \ndef check_drift( config):\ \n inputdriftObj = inputdrift(config)\ \n historicaldataFrame=pd.read_csv(inputdriftObj.trainingDataPath)\ \n currentdataFrame=pd.read_csv(inputdriftObj.currentDataLocation)\ \n dataalertcount,message = inputdriftObj.get_input_drift(currentdataFrame,historicaldataFrame)\ \n if message == 'Model is working as expected':\ \n output_json = {'status':'SUCCESS','data':{'Message':'Model is working as expected'}}\ \n else:\ \n output_json = {'status':'SUCCESS','data':{'Affected Columns':message}}\ \n return(output_json)\ \n\ \nif __name__ == '__main__':\ \n try:\ \n if len(sys.argv) < 2:\ \n raise ValueError('config file not present')\ \n config = sys.argv[1]\ \n if Path(config).is_file() and Path(config).suffix == '.json':\ \n with open(config, 'r') as f:\ \n config = json.load(f)\ \n else:\ \n config = json.loads(config)\ \n output = check_drift(config)\ \n status = {'Status':'Success','Message':output}\ \n print('input_drift:'+json.dumps(status))\ \n except Exception as e:\ \n status = {'Status':'Failure','Message':str(e)}\ \n print('input_drift:'+json.dumps(status))" return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def generateCode(self): self.codeText += self.addInputDriftClass() self.codeText += self.addSuffixCode() def getCode(self): return self.codeText
output_drift.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class output_drift(): def __init__(self, missing=False, word2num_features = None, cat_encoder=False, target_encoder=False, normalizer=False, text_profiler=False, feature_reducer=False, score_smaller_is_better=True, problem_type='classification', tab_size=4): self.tab = ' ' * tab_size self.codeText = '' self.missing = missing self.word2num_features = word2num_features self.cat_encoder = cat_encoder self.target_encoder = target_encoder self.normalizer = normalizer self.text_profiler = text_profiler self.feature_reducer = feature_reducer self.score_smaller_is_better = score_smaller_is_better self.problem_type = problem_type def addDatabaseClass(self, indent=0): text = "\ \nclass database():\ \n def __init__(self, config):\ \n self.host = config['host']\ \n self.port = config['port']\ \n self.user = config['user']\ \n self.password = config['password']\ \n self.database = config['database']\ \n self.measurement = config['measurement']\ \n self.tags = config['tags']\ \n self.client = self.get_client()\ \n\ \n def read_data(self, query)->pd.DataFrame:\ \n cursor = self.client.query(query)\ \n points = cursor.get_points()\ \n my_list=list(points)\ \n df=pd.DataFrame(my_list)\ \n return df\ \n\ \n def get_client(self):\ \n client = InfluxDBClient(self.host,self.port,self.user,self.password)\ \n databases = client.get_list_database()\ \n databases = [x['name'] for x in databases]\ \n if self.database not in databases:\ \n client.create_database(self.database)\ \n return InfluxDBClient(self.host,self.port,self.user,self.password, self.database)\ \n\ \n def write_data(self,data):\ \n if isinstance(data, pd.DataFrame):\ \n sorted_col = data.columns.tolist()\ \n sorted_col.sort()\ \n data = data[sorted_col]\ \n data = data.to_dict(orient='records')\ \n for row in data:\ \n if 'time' in row.keys():\ \n p = '%Y-%m-%dT%H:%M:%S.%fZ'\ \n time_str = datetime.strptime(row['time'], p)\ \n del row['time']\ \n else:\ \n time_str = None\ \n if 'model_ver' in row.keys():\ \n self.tags['model_ver']= row['model_ver']\ \n del row['model_ver']\ \n json_body = [{\ \n 'measurement': self.measurement,\ \n 'time': time_str,\ \n 'tags': self.tags,\ \n 'fields': row\ \n }]\ \n self.client.write_points(json_body)\ \n\ \n def close(self):\ \n self.client.close()\ \n" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addPredictClass(self, indent=0): text = "\ \nclass predict():\ \n\ \n def __init__(self, base_config):\ \n self.usecase = base_config['modelName'] + '_' + base_config['modelVersion']\ \n self.dataLocation = base_config['dataLocation']\ \n self.db_enabled = base_config.get('db_enabled', False)\ \n if self.db_enabled:\ \n self.db_config = base_config['db_config']\ \n home = Path.home()\ \n if platform.system() == 'Windows':\ \n from pathlib import WindowsPath\ \n output_data_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'Data'\ \n output_model_dir = WindowsPath(home)/'AppData'/'Local'/'HCLT'/'AION'/'target'/self.usecase\ \n else:\ \n from pathlib import PosixPath\ \n output_data_dir = PosixPath(home)/'HCLT'/'AION'/'Data'\ \n output_model_dir = PosixPath(home)/'HCLT'/'AION'/'target'/self.usecase\ \n if not output_model_dir.exists():\ \n raise ValueError(f'Configuration file not found at {output_model_dir}')\ \n\ \n tracking_uri = 'file:///' + str(Path(output_model_dir)/'mlruns')\ \n registry_uri = 'sqlite:///' + str(Path(output_model_dir)/'mlruns.db')\ \n mlflow.set_tracking_uri(tracking_uri)\ \n mlflow.set_registry_uri(registry_uri)\ \n client = mlflow.tracking.MlflowClient(\ \n tracking_uri=tracking_uri,\ \n registry_uri=registry_uri,\ \n )\ \n self.model_version = client.get_latest_versions(self.usecase, stages=['production'] )[0].version\ \n model_version_uri = 'models:/{model_name}/production'.format(model_name=self.usecase)\ \n self.model = mlflow.pyfunc.load_model(model_version_uri)\ \n run = client.get_run(self.model.metadata.run_id)\ \n if run.info.artifact_uri.startswith('file:'): #remove file:///\ \n self.artifact_path = Path(run.info.artifact_uri[len('file:///') : ])\ \n else:\ \n self.artifact_path = Path(run.info.artifact_uri)\ \n with open(self.artifact_path/'deploy.json', 'r') as f:\ \n deployment_dict = json.load(f)\ \n with open(self.artifact_path/'features.txt', 'r') as f:\ \n self.train_features = f.readline().rstrip().split(',')\ \n\ \n self.dataLocation = base_config['dataLocation']\ \n self.selected_features = deployment_dict['load_data']['selected_features']\ \n self.target_feature = deployment_dict['load_data']['target_feature']\ \n self.output_model_dir = output_model_dir" if self.missing: text += "\n self.missing_values = deployment_dict['transformation']['fillna']" if self.word2num_features: text += "\n self.word2num_features = deployment_dict['transformation']['word2num_features']" if self.cat_encoder == 'labelencoding': text += "\n self.cat_encoder = deployment_dict['transformation']['cat_encoder']" elif (self.cat_encoder == 'targetencoding') or (self.cat_encoder == 'onehotencoding'): text += "\n self.cat_encoder = deployment_dict['transformation']['cat_encoder']['file']" text += "\n self.cat_encoder_cols = deployment_dict['transformation']['cat_encoder']['features']" if self.target_encoder: text += "\n self.target_encoder = joblib.load(self.artifact_path/deployment_dict['transformation']['target_encoder'])" if self.normalizer: text += "\n self.normalizer = joblib.load(self.artifact_path/deployment_dict['transformation']['normalizer']['file'])\ \n self.normalizer_col = deployment_dict['transformation']['normalizer']['features']" if self.text_profiler: text += "\n self.text_profiler = joblib.load(self.artifact_path/deployment_dict['transformation']['Status']['text_profiler']['file'])\ \n self.text_profiler_col = deployment_dict['transformation']['Status']['text_profiler']['features']" if self.feature_reducer: text += "\n self.feature_reducer = joblib.load(self.artifact_path/deployment_dict['featureengineering']['feature_reducer']['file'])\ \n self.feature_reducer_cols = deployment_dict['featureengineering']['feature_reducer']['features']" text += """ def read_data_from_db(self): if self.db_enabled: try: db = database(self.db_config) query = "SELECT * FROM {} WHERE model_ver = '{}' AND {} != ''".format(db.measurement, self.model_version, self.target_feature) if 'read_time' in self.db_config.keys() and self.db_config['read_time']: query += f" time > now() - {self.db_config['read_time']}" data = db.read_data(query) except: raise ValueError('Unable to read from the database') finally: if db: db.close() return data return None""" text += "\ \n def predict(self, data):\ \n df = pd.DataFrame()\ \n if Path(data).exists():\ \n if Path(data).suffix == '.tsv':\ \n df=read_data(data,encoding='utf-8',sep='\t')\ \n elif Path(data).suffix == '.csv':\ \n df=read_data(data,encoding='utf-8')\ \n else:\ \n if Path(data).suffix == '.json':\ \n jsonData = read_json(data)\ \n df = pd.json_normalize(jsonData)\ \n elif is_file_name_url(data):\ \n df = read_data(data,encoding='utf-8')\ \n else:\ \n jsonData = json.loads(data)\ \n df = pd.json_normalize(jsonData)\ \n if len(df) == 0:\ \n raise ValueError('No data record found')\ \n missing_features = [x for x in self.selected_features if x not in df.columns]\ \n if missing_features:\ \n raise ValueError(f'some feature/s is/are missing: {missing_features}')\ \n if self.target_feature not in df.columns:\ \n raise ValueError(f'Ground truth values/target column({self.target_feature}) not found in current data')\ \n df_copy = df.copy()\ \n df = df[self.selected_features]" if self.word2num_features: text += "\n for feat in self.word2num_features:" text += "\n df[ feat ] = df[feat].apply(lambda x: s2n(x))" if self.missing: text += "\n df.fillna(self.missing_values, inplace=True)" if self.cat_encoder == 'labelencoding': text += "\n df.replace(self.cat_encoder, inplace=True)" elif self.cat_encoder == 'targetencoding': text += "\n cat_enc = joblib.load(self.artifact_path/self.cat_encoder)" text += "\n df = cat_enc.transform(df)" elif self.cat_encoder == 'onehotencoding': text += "\n cat_enc = joblib.load(self.artifact_path/self.cat_encoder)" text += "\n transformed_data = cat_enc.transform(df[self.cat_encoder_cols]).toarray()" text += "\n df[cat_enc.get_feature_names()] = pd.DataFrame(transformed_data, columns=cat_enc.get_feature_names())[cat_enc.get_feature_names()]" if self.normalizer: text += "\n df[self.normalizer_col] = self.normalizer.transform(df[self.normalizer_col])" if self.text_profiler: text += "\n text_corpus = df[self.text_profiler_col].apply(lambda row: ' '.join(row.values.astype(str)), axis=1)\ \n df_vect=self.text_profiler.transform(text_corpus)\ \n if isinstance(df_vect, np.ndarray):\ \n df1 = pd.DataFrame(df_vect)\ \n else:\ \n df1 = pd.DataFrame(df_vect.toarray(),columns = self.text_profiler.named_steps['vectorizer'].get_feature_names())\ \n df1 = df1.add_suffix('_vect')\ \n df = pd.concat([df, df1],axis=1)" if self.feature_reducer: text += "\n df = self.feature_reducer.transform(df[self.feature_reducer_cols])" else: text += "\n df = df[self.train_features]" if self.target_encoder: text += "\n output = pd.DataFrame(self.model._model_impl.predict_proba(df), columns=self.target_encoder.classes_)\ \n df_copy['prediction'] = output.idxmax(axis=1)" else: text += "\n output = self.model.predict(df).reshape(1, -1)[0].round(2)\ \n df_copy['prediction'] = output" text += "\n return df_copy" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def getClassificationMatrixCode(self, indent=0): text = "\ \ndef get_classification_metrices(actual_values, predicted_values):\ \n result = {}\ \n accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\ \n avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\ \n average='macro')\ \n\ \n result['accuracy'] = accuracy_score\ \n result['precision'] = avg_precision\ \n result['recall'] = avg_recall\ \n result['f1'] = avg_f1\ \n return result\ \n\ " if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def getRegrssionMatrixCode(self, indent=0): text = "\ \ndef get_regression_metrices( actual_values, predicted_values):\ \n result = {}\ \n\ \n me = np.mean(predicted_values - actual_values)\ \n sde = np.std(predicted_values - actual_values, ddof = 1)\ \n\ \n abs_err = np.abs(predicted_values - actual_values)\ \n mae = np.mean(abs_err)\ \n sdae = np.std(abs_err, ddof = 1)\ \n\ \n abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\ \n mape = np.mean(abs_perc_err)\ \n sdape = np.std(abs_perc_err, ddof = 1)\ \n\ \n result['mean_error'] = me\ \n result['mean_abs_error'] = mae\ \n result['mean_abs_perc_error'] = mape\ \n result['error_std'] = sde\ \n result['abs_error_std'] = sdae\ \n result['abs_perc_error_std'] = sdape\ \n return result\ \n\ " if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addSuffixCode(self, indent=1): text ="\n\ \ndef check_drift( config):\ \n prediction = predict(config)\ \n usecase = config['modelName'] + '_' + config['modelVersion']\ \n train_data_path = prediction.artifact_path/(usecase+'_data.csv')\ \n if not train_data_path.exists():\ \n raise ValueError(f'Training data not found at {train_data_path}')\ \n curr_with_pred = prediction.read_data_from_db()\ \n if prediction.target_feature not in curr_with_pred.columns:\ \n raise ValueError('Ground truth not updated for corresponding data in database')\ \n train_with_pred = prediction.predict(train_data_path)\ \n performance = {}" if self.problem_type == 'classification': text += "\n\ \n performance['train'] = get_classification_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\ \n performance['current'] = get_classification_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])" else: text += "\n\ \n performance['train'] = get_regression_metrices(train_with_pred[prediction.target_feature], train_with_pred['prediction'])\ \n performance['current'] = get_regression_metrices(curr_with_pred[prediction.target_feature], curr_with_pred['prediction'])" text += "\n return performance" text += "\n\ \nif __name__ == '__main__':\ \n try:\ \n if len(sys.argv) < 2:\ \n raise ValueError('config file not present')\ \n config = sys.argv[1]\ \n if Path(config).is_file() and Path(config).suffix == '.json':\ \n with open(config, 'r') as f:\ \n config = json.load(f)\ \n else:\ \n config = json.loads(config)\ \n output = check_drift(config)\ \n status = {'Status':'Success','Message':json.loads(output)}\ \n print('output_drift:'+json.dumps(status))\ \n except Exception as e:\ \n status = {'Status':'Failure','Message':str(e)}\ \n print('output_drift:'+json.dumps(status))" if indent: text = text.replace('\n', (self.tab * indent) + '\n') return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def generateCode(self): self.codeText += self.addDatabaseClass() self.codeText += self.addPredictClass() if self.problem_type == 'classification': self.codeText += self.getClassificationMatrixCode() elif self.problem_type == 'regression': self.codeText += self.getRegrssionMatrixCode() else: raise ValueError(f"Unsupported problem type: {self.problem_type}") self.codeText += self.addSuffixCode() def getCode(self): return self.codeText
deploy.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class deploy(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = "" self.input_files = {} self.output_files = {} self.addInputFiles({'metaData' : 'modelMetaData.json','log':'predict.log'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() text += '\n' text += self.getOutputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def addStatement(self, statement, indent=1): pass def getPredictionCodeModules(self): modules = [{'module':'json'} ,{'module':'joblib'} ,{'module':'pandas', 'mod_as':'pd'} ,{'module':'numpy', 'mod_as':'np'} ,{'module':'Path', 'mod_from':'pathlib'} ,{'module':'json_normalize', 'mod_from':'pandas'} ,{'module':'load_model', 'mod_from':'tensorflow.keras.models'} ] return modules def addPredictionCode(self): self.codeText += """ class deploy(): def __init__(self, base_config, log=None): self.targetPath = (Path('aion') / base_config['targetPath']).resolve() if log: self.logger = log else: log_file = self.targetPath / IOFiles['log'] self.logger = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) try: self.initialize(base_config) except Exception as e: self.logger.error(e, exc_info=True) def initialize(self, base_config): targetPath = Path('aion') / base_config['targetPath'] meta_data_file = targetPath / IOFiles['metaData'] if meta_data_file.exists(): meta_data = utils.read_json(meta_data_file) self.dateTimeFeature = meta_data['training']['dateTimeFeature'] self.targetFeature = meta_data['training']['target_feature'] normalization_file = meta_data['transformation']['Status']['Normalization_file'] self.normalizer = joblib.load(normalization_file) self.lag_order = base_config['lag_order'] self.noofforecasts = base_config['noofforecasts'] run_id = str(meta_data['register']['runId']) model_path = str(targetPath/'runs'/str(meta_data['register']['runId'])/meta_data['register']['model']/'model') self.model = load_model(model_path) self.model_name = meta_data['register']['model'] def predict(self, data=None): try: return self.__predict(data) except Exception as e: if self.logger: self.logger.error(e, exc_info=True) raise ValueError(json.dumps({'Status': 'Failure', 'Message': str(e)})) def __predict(self, data=None): jsonData = json.loads(data) dataFrame = json_normalize(jsonData) xtrain = dataFrame if len(dataFrame) == 0: raise ValueError('No data record found') df_l = len(dataFrame) pred_threshold = 0.1 max_pred_by_user = round((df_l) * pred_threshold) # prediction for 24 steps or next 24 hours if self.noofforecasts == -1: self.noofforecasts = max_pred_by_user no_of_prediction = self.noofforecasts if (str(no_of_prediction) > str(max_pred_by_user)): no_of_prediction = max_pred_by_user noofforecasts = no_of_prediction # self.sfeatures.remove(self.datetimeFeature) features = self.targetFeature if len(features) == 1: xt = xtrain[features].values else: xt = xtrain[features].values xt = xt.astype('float32') xt = self.normalizer.transform(xt) pred_data = xt y_future = [] self.lag_order = int(self.lag_order) for i in range(int(no_of_prediction)): pdata = pred_data[-self.lag_order:] if len(features) == 1: pdata = pdata.reshape((1, self.lag_order)) else: pdata = pdata.reshape((1, self.lag_order, len(features))) if (len(features) > 1): pred = self.model.predict(pdata) predout = self.normalizer.inverse_transform(pred) y_future.append(predout) pred_data = np.append(pred_data, pred, axis=0) else: pred = self.model.predict(pdata) predout = self.normalizer.inverse_transform(pred) y_future.append(predout.flatten()[-1]) pred_data = np.append(pred_data, pred) pred = pd.DataFrame(index=range(0, len(y_future)), columns=self.targetFeature) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] predictions = pred forecast_output = predictions.to_json(orient='records') return forecast_output """ def getCode(self): return self.codeText def getServiceCode(self): return """ from http.server import BaseHTTPRequestHandler,HTTPServer from socketserver import ThreadingMixIn import os from os.path import expanduser import platform import threading import subprocess import argparse import re import cgi import json import shutil import logging import sys import time import seaborn as sns from pathlib import Path from predict import deploy import pandas as pd import scipy.stats as st import numpy as np import warnings from utility import * warnings.filterwarnings("ignore") config_input = None IOFiles = { "inputData": "rawData.dat", "metaData": "modelMetaData.json", "production": "production.json", "log": "aion.log", "monitoring":"monitoring.json", "prodData": "prodData", "prodDataGT":"prodDataGT" } def DistributionFinder(data): try: distributionName = "" sse = 0.0 KStestStatic = 0.0 dataType = "" if (data.dtype == "float64" or data.dtype == "float32"): dataType = "Continuous" elif (data.dtype == "int"): dataType = "Discrete" elif (data.dtype == "int64"): dataType = "Discrete" if (dataType == "Discrete"): distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson] index, counts = np.unique(data.astype(int), return_counts=True) if (len(index) >= 2): best_sse = np.inf y1 = [] total = sum(counts) mean = float(sum(index * counts)) / total variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1) dispersion = mean / float(variance) theta = 1 / float(dispersion) r = mean * (float(theta) / 1 - theta) for j in counts: y1.append(float(j) / total) pmf1 = st.bernoulli.pmf(index, mean) pmf2 = st.binom.pmf(index, len(index), p=mean / len(index)) pmf3 = st.geom.pmf(index, 1 / float(1 + mean)) pmf4 = st.nbinom.pmf(index, mean, r) pmf5 = st.poisson.pmf(index, mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1 - pmf5, 2.0)) sselist = [sse1, sse2, sse3, sse4, sse5] best_distribution = 'NA' for i in range(0, len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName = best_distribution sse = best_sse elif (dataType == "Continuous"): distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t, st.gamma, st.beta] best_distribution = st.norm.name best_sse = np.inf datamin = data.min() datamax = data.max() nrange = datamax - datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: params = distribution.fit(data.astype(float)) arg = params[:-2] loc = params[-2] scale = params[-1] pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if (best_sse > sse > 0): best_distribution = distribution.name best_sse = sse distributionName = best_distribution sse = best_sse except: response = str(sys.exc_info()[0]) message = 'Job has Failed' + response exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) print(message) return distributionName, sse def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()): import matplotlib.pyplot as plt import math import io, base64, urllib np.seterr(divide='ignore', invalid='ignore') try: plt.clf() except: pass plt.rcParams.update({'figure.max_open_warning': 0}) sns.set(color_codes=True) pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] if len(feature) > 4: numneroffeatures = len(feature) plt.figure(figsize=(10, numneroffeatures*2)) else: plt.figure(figsize=(10,5)) for i in enumerate(feature): dataType = dataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: dataframe[i[1]] = pd.Categorical(dataframe[i[1]]) dataframe[i[1]] = dataframe[i[1]].cat.codes dataframe[i[1]] = dataframe[i[1]].astype(int) dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0]) else: dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean()) plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1) plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1) distname, sse = DistributionFinder(dataframe[i[1]]) print(distname) ax = sns.distplot(dataframe[i[1]], label=distname) ax.legend(loc='best') if newdataframe.empty == False: dataType = newdataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]]) newdataframe[i[1]] = newdataframe[i[1]].cat.codes newdataframe[i[1]] = newdataframe[i[1]].astype(int) newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0]) else: newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean()) distname, sse = DistributionFinder(newdataframe[i[1]]) print(distname) ax = sns.distplot(newdataframe[i[1]],label=distname) ax.legend(loc='best') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) string = base64.b64encode(buf.read()) uri = urllib.parse.quote(string) return uri def read_json(file_path): data = None with open(file_path,'r') as f: data = json.load(f) return data class HTTPRequestHandler(BaseHTTPRequestHandler): def do_POST(self): print('PYTHON ######## REQUEST ####### STARTED') if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) usecase = self.path.split('/')[-2] if usecase.lower() == config_input['targetPath'].lower(): operation = self.path.split('/')[-1] data = json.loads(data) dataStr = json.dumps(data) if operation.lower() == 'predict': output=deployobj.predict(dataStr) resp = output elif operation.lower() == 'groundtruth': gtObj = groundtruth(config_input) output = gtObj.actual(dataStr) resp = output elif operation.lower() == 'delete': targetPath = Path('aion')/config_input['targetPath'] for file in data: x = targetPath/file if x.exists(): os.remove(x) resp = json.dumps({'Status':'Success'}) else: outputStr = json.dumps({'Status':'Error','Msg':'Operation not supported'}) resp = outputStr else: outputStr = json.dumps({'Status':'Error','Msg':'Wrong URL'}) resp = outputStr else: outputStr = json.dumps({'Status':'ERROR','Msg':'Content-Type Not Present'}) resp = outputStr resp=resp+'\\n' resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print('python ==> else1') self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print('PYTHON ######## REQUEST ####### ENDED') return def do_GET(self): print('PYTHON ######## REQUEST ####### STARTED') if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path): usecase = self.path.split('/')[-2] self.send_response(200) self.targetPath = Path('aion')/config_input['targetPath'] meta_data_file = self.targetPath/IOFiles['metaData'] if meta_data_file.exists(): meta_data = read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') production_file = self.targetPath/IOFiles['production'] if production_file.exists(): production_data = read_json(production_file) else: raise ValueError(f'Production Details not found: {production_file}') operation = self.path.split('/')[-1] if (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'metrices'): self.send_header('Content-Type', 'text/html') self.end_headers() ModelString = production_data['Model'] ModelPerformance = ModelString+'_performance.json' performance_file = self.targetPath/ModelPerformance if performance_file.exists(): performance_data = read_json(performance_file) else: raise ValueError(f'Production Details not found: {performance_data}') Scoring_Creteria = performance_data['scoring_criteria'] train_score = round(performance_data['metrices']['train_score'],2) test_score = round(performance_data['metrices']['test_score'],2) current_score = 'NA' monitoring = read_json(self.targetPath/IOFiles['monitoring']) reader = dataReader(reader_type=monitoring['prod_db_type'],target_path=self.targetPath, config=monitoring['db_config']) inputDatafile = self.targetPath/IOFiles['inputData'] NoOfPrediction = 0 NoOfGroundTruth = 0 inputdistribution = '' if reader.file_exists(IOFiles['prodData']): dfPredict = reader.read(IOFiles['prodData']) dfinput = pd.read_csv(inputDatafile) features = meta_data['training']['features'] inputdistribution = getDriftDistribution(features,dfinput,dfPredict) NoOfPrediction = len(dfPredict) if reader.file_exists(IOFiles['prodDataGT']): dfGroundTruth = reader.read(IOFiles['prodDataGT']) NoOfGroundTruth = len(dfGroundTruth) common_col = [k for k in dfPredict.columns.tolist() if k in dfGroundTruth.columns.tolist()] proddataDF = pd.merge(dfPredict, dfGroundTruth, on =common_col,how = 'inner') if Scoring_Creteria.lower() == 'accuracy': from sklearn.metrics import accuracy_score current_score = accuracy_score(proddataDF[config_input['target_feature']], proddataDF['prediction']) current_score = round((current_score*100),2) elif Scoring_Creteria.lower() == 'recall': from sklearn.metrics import accuracy_score current_score = recall_score(proddataDF[config_input['target_feature']], proddataDF['prediction'],average='macro') current_score = round((current_score*100),2) msg = \"""<html> <head> <title>Performance Details</title> </head> <style> table, th, td {border} </style> <body> <h2><b>Deployed Model:</b>{ModelString}</h2> <br/> <table style="width:50%"> <tr> <td>No of Prediction</td> <td>{NoOfPrediction}</td> </tr> <tr> <td>No of GroundTruth</td> <td>{NoOfGroundTruth}</td> </tr> </table> <br/> <table style="width:100%"> <tr> <th>Score Type</th> <th>Train Score</th> <th>Test Score</th> <th>Production Score</th> </tr> <tr> <td>{Scoring_Creteria}</td> <td>{train_score}</td> <td>{test_score}</td> <td>{current_score}</td> </tr> </table> <br/> <br/> <img src="data:image/png;base64,{newDataDrift}" alt="" > </body> </html> \""".format(border='{border: 1px solid black;}',ModelString=ModelString,Scoring_Creteria=Scoring_Creteria,NoOfPrediction=NoOfPrediction,NoOfGroundTruth=NoOfGroundTruth,train_score=train_score,test_score=test_score,current_score=current_score,newDataDrift=inputdistribution) elif (usecase.lower() == config_input['targetPath'].lower()) and (operation.lower() == 'logs'): self.send_header('Content-Type', 'text/plain') self.end_headers() log_file = self.targetPath/IOFiles['log'] if log_file.exists(): with open(log_file) as f: msg = f.read() f.close() else: raise ValueError(f'Log Details not found: {log_file}') else: self.send_header('Content-Type', 'application/json') self.end_headers() features = meta_data['load_data']['selected_features'] bodydes='[' for x in features: if bodydes != '[': bodydes = bodydes+',' bodydes = bodydes+'{"'+x+'":"value"}' bodydes+=']' urltext = '/AION/'+config_input['targetPath']+'/predict' urltextgth='/AION/'+config_input['targetPath']+'/groundtruth' urltextproduction='/AION/'+config_input['targetPath']+'/metrices' msg=\""" Version:{modelversion} RunNo: {runNo} URL for Prediction ================== URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: prediction,probability(if Applicable),remarks corresponding to each row. URL for GroundTruth =================== URL:{urltextgth} RequestType: POST Content-Type=application/json Note: Make Sure that one feature (ID) should be unique in both predict and groundtruth. Otherwise outputdrift will not work URL for Model In Production Analysis ==================================== URL:{urltextproduction} RequestType: GET Content-Type=application/json \""".format(modelversion=config_input['modelVersion'],runNo=config_input['deployedRunNo'],url=urltext,urltextgth=urltextgth,urltextproduction=urltextproduction,displaymsg=bodydes) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class file_status(): def __init__(self, reload_function, params, file, logger): self.files_status = {} self.initializeFileStatus(file) self.reload_function = reload_function self.params = params self.logger = logger def initializeFileStatus(self, file): self.files_status = {'path': file, 'time':file.stat().st_mtime} def is_file_changed(self): if self.files_status['path'].stat().st_mtime > self.files_status['time']: self.files_status['time'] = self.files_status['path'].stat().st_mtime return True return False def run(self): global config_input while( True): time.sleep(30) if self.is_file_changed(): production_details = targetPath/IOFiles['production'] if not production_details.exists(): raise ValueError(f'Model in production details does not exist') productionmodel = read_json(production_details) config_file = Path(__file__).parent/'config.json' if not Path(config_file).exists(): raise ValueError(f'Config file is missing: {config_file}') config_input = read_json(config_file) config_input['deployedModel'] = productionmodel['Model'] config_input['deployedRunNo'] = productionmodel['runNo'] self.logger.info('Model changed Reloading.....') self.logger.info(f'Model: {config_input["deployedModel"]}') self.logger.info(f'Version: {str(config_input["modelVersion"])}') self.logger.info(f'runNo: {str(config_input["deployedRunNo"])}') self.reload_function(config_input) class SimpleHttpServer(): def __init__(self, ip, port, model_file_path,reload_function,params, logger): self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler) self.status_checker = file_status( reload_function, params, model_file_path, logger) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() self.status_thread = threading.Thread(target=self.status_checker.run) self.status_thread.start() def waitForThread(self): self.server_thread.join() self.status_thread.join() def stop(self): self.server.shutdown() self.waitForThread() if __name__=='__main__': parser = argparse.ArgumentParser(description='HTTP Server') parser.add_argument('-ip','--ipAddress', help='HTTP Server IP') parser.add_argument('-pn','--portNo', type=int, help='Listening port for HTTP Server') args = parser.parse_args() config_file = Path(__file__).parent/'config.json' if not Path(config_file).exists(): raise ValueError(f'Config file is missing: {config_file}') config = read_json(config_file) if args.ipAddress: config['ipAddress'] = args.ipAddress if args.portNo: config['portNo'] = args.portNo targetPath = Path('aion')/config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') production_details = targetPath/IOFiles['production'] if not production_details.exists(): raise ValueError(f'Model in production details does not exist') productionmodel = read_json(production_details) config['deployedModel'] = productionmodel['Model'] config['deployedRunNo'] = productionmodel['runNo'] #server = SimpleHttpServer(config['ipAddress'],int(config['portNo'])) config_input = config logging.basicConfig(filename= Path(targetPath)/IOFiles['log'], filemode='a', format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S') logger = logging.getLogger(Path(__file__).parent.name) deployobj = deploy(config_input, logger) server = SimpleHttpServer(config['ipAddress'],int(config['portNo']),targetPath/IOFiles['production'],deployobj.initialize,config_input, logger) logger.info('HTTP Server Running...........') logger.info(f"IP Address: {config['ipAddress']}") logger.info(f"Port No.: {config['portNo']}") print('HTTP Server Running...........') print('For Prediction') print('================') print('Request Type: Post') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/predict') print('\\nFor GroundTruth') print('================') print('Request Type: Post') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/groundtruth') print('\\nFor Help') print('================') print('Request Type: Get') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/help') print('\\nFor Model In Production Analysis') print('================') print('Request Type: Get') print('Content-Type: application/json') print('URL: /AION/'+config['targetPath']+'/metrices') server.start() server.waitForThread() """
trainer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class learner(): def __init__(self, problem_type="classification", target_feature="", sample_method=None,indent=0, tab_size=4): self.tab = " "*tab_size self.df_name = 'df' self.problem_type = problem_type self.target_feature = target_feature self.search_space = [] self.codeText = f"\ndef train(log):" self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'featureEngineeredData.dat', 'metaData' : 'modelMetaData.json','monitor':'monitoring.json'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = utils.read_json(config_file)\ \n return config" return text def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): return self.function_code + '\n' + self.codeText def addLocalFunctionsCode(self): self.function_code += self.__addValidateConfigCode() def getPrefixModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ] return modules def addPrefixCode(self, indent=1): self.codeText += "\ " def getSuffixModules(self): modules = [] return modules def addSuffixCode(self, indent=1): self.codeText += "\n\ " def getMainCodeModules(self): modules = [{'module':'logging'} ] return modules def getMlpCodeModules(self): modules = [{'module':'math'} ,{'module':'json'} ,{'module':'joblib'} ,{'module':'keras_tuner'} ,{'module':'pandas', 'mod_as':'pd'} ,{'module':'numpy', 'mod_as':'np'} ,{'module':'Path', 'mod_from':'pathlib'} ,{'module':'r2_score', 'mod_from':'sklearn.metrics'} ,{'module':'mean_squared_error', 'mod_from':'sklearn.metrics'} ,{'module':'mean_absolute_error', 'mod_from':'sklearn.metrics'} ,{'module':'Dense', 'mod_from':'tensorflow.keras.layers'} ,{'module':'Sequential', 'mod_from':'tensorflow.keras'} ,{'module':'Dropout', 'mod_from':'tensorflow.keras.layers'} ] return modules def addMlpCode(self): self.codeText = """ def getdlparams(config): for k, v in config.items(): if (k == "activation"): activation_fn = str(v) elif (k == "optimizer"): optimizer = str(v) elif (k == "loss"): loss_fn = str(v) elif (k == "first_layer"): if not isinstance(k, list): first_layer = str(v).split(',') else: first_layer = k elif (k == "lag_order"): lag_order = int(v) elif (k == "hidden_layers"): hidden_layers = int(v) elif (k == "dropout"): if not isinstance(k, list): dropout = str(v).split(',') else: dropout = k elif (k == "batch_size"): batch_size = int(v) elif (k == "epochs"): epochs = int(v) elif (k == "model_name"): model_name = str(v) return activation_fn, optimizer, loss_fn, first_layer, lag_order, hidden_layers, dropout, batch_size, epochs, model_name def numpydf(dataset, look_back): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): subset = dataset[i:(i + look_back), 0] dataX.append(subset) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) def startTraining(dataset,train_size,mlpConfig,filename_scaler,target_feature,scoreParam,log): log.info('Training started') activation_fn, optimizer, loss_fn, first_layer, hidden_layers, look_back, dropout, batch_size, epochs, model_name = getdlparams(mlpConfig) hp = keras_tuner.HyperParameters() first_layer_min = round(int(first_layer[0])) first_layer_max = round(int(first_layer[1])) dropout_min = float(dropout[0]) dropout_max = float(dropout[1]) dataset = dataset.values train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] trainX, trainY = numpydf(train, look_back) testX, testY = numpydf(test, look_back) # create and fit Multilayer Perceptron model model = Sequential() model.add(Dense(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16), input_dim=look_back, activation=activation_fn)) #BUGID 13484 model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1))) #BUGID 13484 model.add(Dense(1, activation='sigmoid')) model.compile(loss=loss_fn, optimizer=optimizer) model_fit = model.fit(trainX, trainY, epochs=epochs, batch_size=batch_size, verbose=2) # Estimate model performance trainScore = model.evaluate(trainX, trainY, verbose=0) testScore = model.evaluate(testX, testY, verbose=0) # Scoring values for the model mse_eval = testScore rmse_eval = math.sqrt(testScore) # generate predictions for training trainPredict = model.predict(trainX) testPredict = model.predict(testX) scaler = joblib.load(filename_scaler) trainY = scaler.inverse_transform([trainY]) trainPredict = scaler.inverse_transform(trainPredict) ## For test data testY = scaler.inverse_transform([testY]) testPredict = scaler.inverse_transform(testPredict) mse_mlp = mean_squared_error(testY.T, testPredict) scores = {} r2 = round(r2_score(testY.T, testPredict), 2) scores['R2'] = r2 mae = round(mean_absolute_error(testY.T, testPredict), 2) scores['MAE'] = mae scores['MSE'] = round(mse_mlp, 2) rmse = round(math.sqrt(mse_mlp), 2) scores['RMSE'] = rmse scores[scoreParam] = scores.get(scoreParam.upper(), scores['MSE']) log.info("mlp rmse: "+str(rmse)) log.info("mlp mse: "+str(round(mse_mlp, 2))) log.info("mlp r2: "+str(r2)) log.info("mlp mae: "+str(mae)) return model, look_back, scaler,testScore,trainScore,scores def train(config, targetPath, log): dataLoc = targetPath / IOFiles['inputData'] if not dataLoc.exists(): return {'Status': 'Failure', 'Message': 'Data location does not exists.'} status = dict() usecase = config['targetPath'] df = utils.read_data(dataLoc) target_feature = config['target_feature'] dateTimeFeature= config['dateTimeFeature'] df.set_index(dateTimeFeature, inplace=True) train_size = int(len(df) * (1-config['test_ratio'])) #BugID:13217 mlpConfig = config['algorithms']['MLP'] filename = meta_data['transformation']['Status']['Normalization_file'] scoreParam = config['scoring_criteria'] log.info('Training MLP for TimeSeries') mlp_model, look_back, scaler,testScore,trainScore, error_matrix = startTraining(df,train_size,mlpConfig,filename,target_feature,scoreParam,log) score = error_matrix[scoreParam] # Training model model_path = targetPath/'runs'/str(meta_data['monitoring']['runId'])/model_name model_file_name = str(model_path/'model') mlp_model.save(model_file_name) meta_data['training'] = {} meta_data['training']['model_filename'] = model_file_name meta_data['training']['dateTimeFeature'] = dateTimeFeature meta_data['training']['target_feature'] = target_feature utils.write_json(meta_data, targetPath / IOFiles['metaData']) utils.write_json({'scoring_criteria': scoreParam, 'metrices': error_matrix,'score':error_matrix[scoreParam]}, model_path / IOFiles['metrics']) # return status status = {'Status': 'Success', 'errorMatrix': error_matrix, 'test_score':testScore, 'train_score': trainScore,'score':error_matrix[scoreParam]} log.info(f'Test score: {testScore}') log.info(f'Train score: {trainScore}') log.info(f'output: {status}') return json.dumps(status) """ def getLstmCodeModules(self): modules = [{'module':'math'} ,{'module':'json'} ,{'module':'joblib'} ,{'module':'keras_tuner'} ,{'module':'pandas', 'mod_as':'pd'} ,{'module':'numpy', 'mod_as':'np'} ,{'module':'Path', 'mod_from':'pathlib'} ,{'module':'r2_score', 'mod_from':'sklearn.metrics'} ,{'module':'mean_squared_error', 'mod_from':'sklearn.metrics'} ,{'module':'mean_absolute_error', 'mod_from':'sklearn.metrics'} ,{'module':'Dense', 'mod_from':'tensorflow.keras.layers'} ,{'module':'Sequential', 'mod_from':'tensorflow.keras'} ,{'module':'Dropout', 'mod_from':'tensorflow.keras.layers'} ,{'module':'LSTM', 'mod_from':'tensorflow.keras.layers'} ,{'module':'TimeseriesGenerator', 'mod_from':'tensorflow.keras.preprocessing.sequence'} ,{'module':'train_test_split', 'mod_from':'sklearn.model_selection'} ] return modules def addLstmCode(self): self.codeText = """ def getdlparams(config): for k, v in config.items(): if (k == "activation"): activation_fn = str(v) elif (k == "optimizer"): optimizer = str(v) elif (k == "loss"): loss_fn = str(v) elif (k == "first_layer"): if not isinstance(k, list): first_layer = str(v).split(',') else: first_layer = k elif (k == "lag_order"): lag_order = int(v) elif (k == "hidden_layers"): hidden_layers = int(v) elif (k == "dropout"): if not isinstance(k, list): dropout = str(v).split(',') else: dropout = k elif (k == "batch_size"): batch_size = int(v) elif (k == "epochs"): epochs = int(v) return activation_fn, optimizer, loss_fn, first_layer, lag_order, hidden_layers, dropout, batch_size, epochs def numpydf(dataset, look_back): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): subset = dataset[i:(i + look_back), 0] dataX.append(subset) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) def startTraining(dataset,test_size,mlpConfig,filename_scaler,target_feature,scoreParam,log): log.info('Training started') activation_fn, optimizer, loss_fn, first_layer, look_back,hidden_layers, dropout, batch_size, epochs= getdlparams(mlpConfig) n_features = len(target_feature) n_input = look_back hp = keras_tuner.HyperParameters() first_layer_min = round(int(first_layer[0])) first_layer_max = round(int(first_layer[1])) dropout_min = float(dropout[0]) dropout_max = float(dropout[1]) dataset = dataset[target_feature] dataset_np = dataset.values train, test = train_test_split(dataset_np, test_size=test_size, shuffle=False) generatorTrain = TimeseriesGenerator(train, train, length=n_input, batch_size=8) generatorTest = TimeseriesGenerator(test, test, length=n_input, batch_size=8) batch_0 = generatorTrain[0] x, y = batch_0 epochs = int(epochs) ##Multivariate LSTM model model = Sequential() model.add(LSTM(units=hp.Int('units',min_value=first_layer_min,max_value=first_layer_max,step=16), activation=activation_fn, input_shape=(n_input, n_features))) model.add(Dropout(hp.Float('Dropout_rate',min_value=dropout_min,max_value=dropout_max,step=0.1))) model.add(Dense(n_features)) model.compile(optimizer=optimizer, loss=loss_fn) # model.fit(generatorTrain,epochs=epochs,batch_size=self.batch_size,shuffle=False) model.fit_generator(generatorTrain, steps_per_epoch=1, epochs=epochs, shuffle=False, verbose=0) # lstm_mv_testScore_mse = model.evaluate(x, y, verbose=0) predictions = [] future_pred_len = n_input # To get values for prediction,taking look_back steps of rows first_batch = train[-future_pred_len:] c_batch = first_batch.reshape((1, future_pred_len, n_features)) current_pred = None for i in range(len(test)): # get pred for firstbatch current_pred = model.predict(c_batch)[0] predictions.append(current_pred) # remove first val c_batch_rmv_first = c_batch[:, 1:, :] # update c_batch = np.append(c_batch_rmv_first, [[current_pred]], axis=1) ## Prediction, inverse the minmax transform scaler = joblib.load(filename_scaler) prediction_actual = scaler.inverse_transform(predictions) test_data_actual = scaler.inverse_transform(test) mse = None rmse = None ## Creating dataframe for actual,predictions pred_cols = list() for i in range(len(target_feature)): pred_cols.append(target_feature[i] + '_pred') predictions = pd.DataFrame(prediction_actual, columns=pred_cols) actual = pd.DataFrame(test_data_actual, columns=target_feature) actual.columns = [str(col) + '_actual' for col in dataset.columns] df_predicted = pd.concat([actual, predictions], axis=1) print("LSTM Multivariate prediction dataframe: \\n" + str(df_predicted)) # df_predicted.to_csv('mlp_prediction.csv') from math import sqrt from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error target = target_feature mse_dict = {} rmse_dict = {} mae_dict = {} r2_dict = {} lstm_var = 0 for name in target: index = dataset.columns.get_loc(name) mse = mean_squared_error(test_data_actual[:, index], prediction_actual[:, index]) mse_dict[name] = mse rmse = sqrt(mse) rmse_dict[name] = rmse lstm_var = lstm_var + rmse print("Name of the target feature: " + str(name)) print("RMSE of the target feature: " + str(rmse)) r2 = r2_score(test_data_actual[:, index], prediction_actual[:, index]) r2_dict[name] = r2 mae = mean_absolute_error(test_data_actual[:, index], prediction_actual[:, index]) mae_dict[name] = mae ## For VAR comparison, send last target mse and rmse from above dict lstm_var = lstm_var / len(target) select_msekey = list(mse_dict.keys())[-1] l_mse = list(mse_dict.values())[-1] select_rmsekey = list(rmse_dict.keys())[-1] l_rmse = list(rmse_dict.values())[-1] select_r2key = list(r2_dict.keys())[-1] l_r2 = list(r2_dict.values())[-1] select_maekey = list(mae_dict.keys())[-1] l_mae = list(mae_dict.values())[-1] log.info('Selected target feature of LSTM for best model selection: ' + str(select_rmsekey)) scores = {} scores['R2'] = l_r2 scores['MAE'] = l_mae scores['MSE'] = l_mse scores['RMSE'] = l_rmse scores[scoreParam] = scores.get(scoreParam.upper(), scores['MSE']) log.info("lstm rmse: "+str(l_rmse)) log.info("lstm mse: "+str(l_mse)) log.info("lstm r2: "+str(l_r2)) log.info("lstm mae: "+str(l_mae)) return model,look_back,scaler, scores def train(config, targetPath, log): dataLoc = targetPath / IOFiles['inputData'] if not dataLoc.exists(): return {'Status': 'Failure', 'Message': 'Data location does not exists.'} status = dict() usecase = config['targetPath'] df = utils.read_data(dataLoc) target_feature = config['target_feature'] dateTimeFeature= config['dateTimeFeature'] scoreParam = config['scoring_criteria'] testSize = config['test_ratio'] lstmConfig = config['algorithms']['LSTM'] filename = meta_data['transformation']['Status']['Normalization_file'] if (type(target_feature) is list): pass else: target_feature = list(target_feature.split(",")) df.set_index(dateTimeFeature, inplace=True) log.info('Training LSTM for TimeSeries') mlp_model, look_back, scaler, error_matrix = startTraining(df,testSize,lstmConfig,filename,target_feature,scoreParam,log) score = error_matrix[scoreParam] log.info("LSTM Multivariant all scoring param results: "+str(error_matrix)) # Training model model_path = targetPath/'runs'/str(meta_data['monitoring']['runId'])/model_name model_file_name = str(model_path/'model') mlp_model.save(model_file_name) meta_data['training'] = {} meta_data['training']['model_filename'] = model_file_name meta_data['training']['dateTimeFeature'] = dateTimeFeature meta_data['training']['target_feature'] = target_feature utils.write_json(meta_data, targetPath / IOFiles['metaData']) utils.write_json({'scoring_criteria': scoreParam, 'metrices': error_matrix,'score':error_matrix[scoreParam]}, model_path / IOFiles['metrics']) # return status status = {'Status': 'Success', 'errorMatrix': error_matrix,'score':error_matrix[scoreParam]} log.info(f'score: {error_matrix[scoreParam]}') log.info(f'output: {status}') return json.dumps(status) """ def addMainCode(self, indent=1): self.codeText += """ if __name__ == '__main__': config = validateConfig() targetPath = Path('aion') / config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') meta_data_file = targetPath / IOFiles['metaData'] if meta_data_file.exists(): meta_data = utils.read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') log_file = targetPath / IOFiles['log'] log = utils.logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) try: print(train(config, targetPath, log)) except Exception as e: status = {'Status': 'Failure', 'Message': str(e)} print(json.dumps(status)) """ def add_variable(self, name, value, indent=1): if isinstance(value, str): self.codeText += f"\n{self.tab * indent}{name} = '{value}'" else: self.codeText += f"\n{self.tab * indent}{name} = {value}" def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}"
selector.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class selector(): def __init__(self, indent=0, tab_size=4): self.tab = " "*tab_size self.codeText = "" self.pipe = 'pipe' self.code_generated = False self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'transformedData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','outputData' : 'featureEngineeredData.dat'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config" return text def addMainCode(self): self.codeText += """ if __name__ == '__main__': config = validateConfig() targetPath = Path('aion') / config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') meta_data_file = targetPath / IOFiles['metaData'] if meta_data_file.exists(): meta_data = read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') log_file = targetPath / IOFiles['log'] log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) try: print(featureSelector(config,targetPath, log)) except Exception as e: status = {'Status': 'Failure', 'Message': str(e)} print(json.dumps(status)) """ def addValidateConfigCode(self, indent=1): self.function_code += self.__addValidateConfigCode() def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self): return self.function_code + '\n' + self.codeText def addLocalFunctionsCode(self): self.addValidateConfigCode() def getPrefixModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ] return modules def addPrefixCode(self, indent=1): self.codeText += """ def featureSelector(config, targetPath, log): dataLoc = targetPath / IOFiles['inputData'] if not dataLoc.exists(): return {'Status': 'Failure', 'Message': 'Data location does not exists.'} status = dict() df = pd.read_csv(dataLoc) log.log_dataframe(df) csv_path = str(targetPath / IOFiles['outputData']) write_data(df, csv_path, index=False) status = {'Status': 'Success', 'dataFilePath': IOFiles['outputData']} log.info(f'Selected data saved at {csv_path}') meta_data['featureengineering'] = {} meta_data['featureengineering']['Status'] = status write_json(meta_data, str(targetPath / IOFiles['metaData'])) log.info(f'output: {status}') return json.dumps(status) """ def getSuffixModules(self): modules = [] return modules def addSuffixCode(self, indent=1): self.codeText += "" def getMainCodeModules(self): modules = [ {'module':'json'} ,{'module':'logging'} ] return modules def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}" def getPipe(self): return self.pipe
utility.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .imports import importModule utility_functions = { 'load_data': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'transformer': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'selector': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'train': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'register': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'Prediction': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], 'drift': ['read_json','write_json','read_data','write_data','is_file_name_url','logger_class'], } #TODO convert read and write functions in to class functions functions_code = { 'read_json':{'imports':[{'mod':'json'}],'code':"\n\ \ndef read_json(file_path):\ \n data = None\ \n with open(file_path,'r') as f:\ \n data = json.load(f)\ \n return data\ \n"}, 'write_json':{'imports':[{'mod':'json'}],'code':"\n\ \ndef write_json(data, file_path):\ \n with open(file_path,'w') as f:\ \n json.dump(data, f)\ \n"}, 'read_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef read_data(file_path, encoding='utf-8', sep=','):\ \n return pd.read_csv(file_path, encoding=encoding, sep=sep)\ \n"}, 'write_data':{'imports':[{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef write_data(data, file_path, index=False):\ \n return data.to_csv(file_path, index=index)\ \n\ \n#Uncomment and change below code for google storage\ \n#from google.cloud import storage\ \n#def write_data(data, file_path, index=False):\ \n# file_name= file_path.name\ \n# data.to_csv('output_data.csv')\ \n# storage_client = storage.Client()\ \n# bucket = storage_client.bucket('aion_data')\ \n# bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\ \n# return data\ \n"}, 'is_file_name_url':{'imports':[],'code':"\n\ \ndef is_file_name_url(file_name):\ \n supported_urls_starts_with = ('gs://','https://','http://')\ \n return file_name.startswith(supported_urls_starts_with)\ \n"}, 'logger_class':{'imports':[{'mod':'logging'}, {'mod':'io'}],'code':"\n\ \nclass logger():\ \n #setup the logger\ \n def __init__(self, log_file, mode='w', logger_name=None):\ \n logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\ \n self.log = logging.getLogger(logger_name)\ \n\ \n #get logger\ \n def getLogger(self):\ \n return self.log\ \n\ \n def info(self, msg):\ \n self.log.info(msg)\ \n\ \n def error(self, msg, exc_info=False):\ \n self.log.error(msg,exc_info)\ \n\ \n # format and log dataframe\ \n def log_dataframe(self, df, rows=2, msg=None):\ \n buffer = io.StringIO()\ \n df.info(buf=buffer)\ \n log_text = 'Data frame{}'.format(' after ' + msg + ':' if msg else ':')\ \n log_text += '\\n\\t'+str(df.head(rows)).replace('\\n','\\n\\t')\ \n log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\ \n self.log.info(log_text)\ \n"}, } class utility_function(): def __init__(self, module): if module in utility_functions.keys(): self.module_name = module else: self.module_name = None self.importer = importModule() self.codeText = "" def get_code(self): code = "" if self.module_name: functions = utility_functions[self.module_name] for function in functions: self.codeText += self.get_function_code(function) code = self.importer.getCode() code += self.codeText return code def get_function_code(self, name): code = "" if name in functions_code.keys(): code += functions_code[name]['code'] if self.importer: if 'imports' in functions_code[name].keys(): for module in functions_code[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) return code def get_importer(self): return self.importer if __name__ == '__main__': obj = utility_function('load_data') p = obj.get_utility_code() print(p)
drift_analysis.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class drift(): def __init__(self, indent=0, tab_size=4): self.tab = " "*tab_size self.codeText = "" self.function_code = "" self.input_files = {} self.output_files = {} self.addInputFiles({'log' : 'aion.log', 'metaData' : 'modelMetaData.json'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = utils.read_json(config_file)\ \n return config\ " return text def addLocalFunctionsCode(self): self.function_code += self.__addValidateConfigCode() def addPrefixCode(self, smaller_is_better=False, indent=1): self.codeText += """ def monitoring(config, targetPath, log): retrain = False last_run_id = 0 retrain_threshold = config.get('retrainThreshold', 100) meta_data_file = targetPath / IOFiles['metaData'] if meta_data_file.exists(): meta_data = utils.read_json(meta_data_file) if not meta_data.get('register', None): log.info('Last time Pipeline not executed properly') retrain = True else: last_run_id = meta_data['register']['runId'] df = utils.read_data(config['dataLocation']) df_len = len(df) if not meta_data['monitoring'].get('endIndex', None): meta_data['monitoring']['endIndex'] = int(meta_data['load_data']['Status']['Records']) meta_data['monitoring']['endIndexTemp'] = meta_data['monitoring']['endIndex'] if meta_data['register'].get('registered', False): meta_data['monitoring']['endIndex'] = meta_data['monitoring']['endIndexTemp'] meta_data['register']['registered'] = False #ack registery if (meta_data['monitoring']['endIndex'] + retrain_threshold) < df_len: meta_data['monitoring']['endIndexTemp'] = df_len retrain = True else: log.info('Pipeline running first time') meta_data = {} meta_data['monitoring'] = {} retrain = True if retrain: meta_data['monitoring']['runId'] = last_run_id + 1 meta_data['monitoring']['retrain'] = retrain utils.write_json(meta_data, targetPath/IOFiles['metaData']) status = {'Status':'Success','retrain': retrain, 'runId':meta_data['monitoring']['runId']} log.info(f'output: {status}') return json.dumps(status) """ def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas','mod_as':'pd'} ,{'module':'json'} ] return modules def addMainCode(self, indent=1): self.codeText += """ if __name__ == '__main__': config = validateConfig() targetPath = Path('aion') / config['targetPath'] targetPath.mkdir(parents=True, exist_ok=True) log_file = targetPath / IOFiles['log'] log = utils.logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) try: print(monitoring(config, targetPath, log)) except Exception as e: status = {'Status': 'Failure', 'Message': str(e)} print(json.dumps(status)) """ def addStatement(self, statement, indent=1): self.codeText += f"\n{self.tab * indent}{statement}" def getCode(self, indent=1): return self.function_code + '\n' + self.codeText
data_reader.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from .imports import importModule supported_reader = ['sqlite', 'influx','s3'] functions_code = { 'dataReader':{'imports':[{'mod':'json'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':""" class dataReader(): def get_reader(self, reader_type, target_path=None, config=None): if reader_type == 'sqlite': return sqlite_writer(target_path=target_path) elif reader_type == 'influx': return Influx_writer(config=config) elif reader_type == 'gcs': return gcs(config=config) elif reader_type == 'azure': return azure(config=config) elif reader_type == 's3': return s3bucket(config=config) else: raise ValueError(reader_type) """ }, 'sqlite':{'imports':[{'mod':'sqlite3'},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None}],'code':"""\n\ class sqlite_writer(): def __init__(self, target_path): self.target_path = Path(target_path) database_file = self.target_path.stem + '.db' self.db = sqlite_db(self.target_path, database_file) def file_exists(self, file): if file: return self.db.table_exists(file) else: return False def read(self, file): return self.db.read(file) def write(self, data, file): self.db.write(data, file) def close(self): self.db.close() class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem + '.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self, table_name): return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close() """ }, 'influx':{'imports':[{'mod':'InfluxDBClient','mod_from':'influxdb'},{'mod': 'Path', 'mod_from': 'pathlib', 'mod_as': None},{'mod': 'pandas', 'mod_from': None, 'mod_as': 'pd'}],'code':"""\n\ class Influx_writer(): def __init__(self, config): self.db = influx_db(config) def file_exists(self, file): if file: return self.db.table_exists(file) else: return False def read(self, file): query = "SELECT * FROM {}".format(file) if 'read_time' in self.db_config.keys() and self.db_config['read_time']: query += f" time > now() - {self.db_config['read_time']}" return self.db.read(query) def write(self, data, file): self.db.write(data, file) def close(self): pass class influx_db(): def __init__(self, config): self.host = config['host'] self.port = config['port'] self.user = config.get('user', None) self.password = config.get('password', None) self.token = config.get('token', None) self.database = config['database'] self.measurement = config['measurement'] self.tags = config['tags'] self.client = self.get_client() def table_exists(self, name): query = f"SHOW MEASUREMENTS ON {self.database}" result = self.client(query) for measurement in result['measurements']: if measurement['name'] == name: return True return False def read(self, query)->pd.DataFrame: cursor = self.client.query(query) points = cursor.get_points() my_list=list(points) df=pd.DataFrame(my_list) return df def get_client(self): headers = None if self.token: headers={"Authorization": self.token} client = InfluxDBClient(self.host,self.port,self.user, self.password,headers=headers) databases = client.get_list_database() databases = [x['name'] for x in databases] if self.database not in databases: client.create_database(self.database) return InfluxDBClient(self.host,self.port,self.user,self.password,self.database,headers=headers) def write(self,data, measurement=None): if isinstance(data, pd.DataFrame): sorted_col = data.columns.tolist() sorted_col.sort() data = data[sorted_col] data = data.to_dict(orient='records') if not measurement: measurement = self.measurement for row in data: if 'time' in row.keys(): p = '%Y-%m-%dT%H:%M:%S.%fZ' time_str = datetime.strptime(row['time'], p) del row['time'] else: time_str = None if 'model_ver' in row.keys(): self.tags['model_ver']= row['model_ver'] del row['model_ver'] json_body = [{ 'measurement': measurement, 'time': time_str, 'tags': self.tags, 'fields': row }] self.client.write_points(json_body) def delete(self, name): pass def close(self): self.client.close() """ }, 's3':{'imports':[{'mod':'boto3'},{'mod': 'ClientError', 'mod_from': 'botocore.exceptions'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ class s3bucket(): def __init__(self, config={}): if 's3' in config.keys(): config = config['s3'] aws_access_key_id = config.get('aws_access_key_id','') aws_secret_access_key = config.get('aws_secret_access_key','') bucket_name = config.get('bucket_name','') if not aws_access_key_id: raise ValueError('aws_access_key_id can not be empty') if not aws_secret_access_key: raise ValueError('aws_secret_access_key can not be empty') self.client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(aws_secret_access_key)) self.bucket_name = bucket_name def read(self, file_name): try: response = self.client.get_object(Bucket=self.bucket_name, Key=file_name) return pd.read_csv(response['Body']) except ClientError as ex: if ex.response['Error']['Code'] == 'NoSuchBucket': raise ValueError(f"Bucket '{self.bucket_name}' not found in aws s3 storage") elif ex.response['Error']['Code'] == 'NoSuchKey': raise ValueError(f"File '{file_name}' not found in s3 bucket '{self.bucket_name}'") else: raise """ }, 'azure':{'imports':[{'mod':'DataLakeServiceClient', 'mod_from':'azure.storage.filedatalake'},{'mod':'detect', 'mod_from':'detect_delimiter'},{'mod':'pandavro', 'mod_as':'pdx'},{'mod':'io'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ def azure(): def __init__(self,config={}): if 'azure' in config.keys(): config = config['azure'] account_name = config.get('account_name','') account_key = config.get('account_key','') container_name = config.get('container_name','') if not account_name: raise ValueError('Account name can not be empty') if not account_key: raise ValueError('Account key can not be empty') if not container_name: raise ValueError('Container name can not be empty') service_client = DataLakeServiceClient(account_url="{}://{}.dfs.core.windows.net".format("https", account_name), credential=account_key) self.file_system_client = service_client.get_file_system_client(container_name) def read(self, directory_name): root_dir = str(directory_name) file_paths = self.file_system_client.get_paths(path=root_dir) main_df = pd.DataFrame() for path in file_paths: if not path.is_directory: file_client = file_system_client.get_file_client(path.name) file_ext = Path(path.name).suffix if file_ext in [".csv", ".tsv"]: with open(csv_local, "wb") as my_file: file_client.download_file().readinto(my_file) with open(csv_local, 'r') as file: data = file.read() row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\t']) processed_df = pd.read_csv(csv_local, sep=row_delimiter) elif file_ext == ".parquet": stream = io.BytesIO() file_client.download_file().readinto(stream) processed_df = pd.read_parquet(stream, engine='pyarrow') elif file_ext == ".avro": with open(avro_local, "wb") as my_file: file_client.download_file().readinto(my_file) processed_df = pdx.read_avro(avro_local) if main_df.empty: main_df = pd.DataFrame(processed_df) else: main_df = main_df.append(processed_df, ignore_index=True) return main_df """ }, 'gcs':{'imports':[{'mod':'storage','mod_from':'google.cloud'},{'mod': 'Path', 'mod_from': 'pathlib'},{'mod': 'pandas', 'mod_as': 'pd'}],'code':"""\n\ class gcs(): def __init__(self, config={}): if 'gcs' in config.keys(): config = config['gcs'] account_key = config.get('account_key','') bucket_name = config.get('bucket_name','') if not account_key: raise ValueError('Account key can not be empty') if not bucket_name: raise ValueError('bucket name can not be empty') storage_client = storage.Client.from_service_account_json(account_key) self.bucket = storage_client.get_bucket(bucket_name) def read(self, bucket_name, file_name): data = self.bucket.blob(file_name).download_as_text() return pd.read_csv(data, encoding = 'utf-8', sep = ',') """ } } class data_reader(): def __init__(self, reader_type=[]): self.supported_readers = supported_reader if isinstance(reader_type, str): self.readers = [reader_type] elif not reader_type: self.readers = self.supported_readers else: self.readers = reader_type unsupported_reader = [ x for x in self.readers if x not in self.supported_readers] if unsupported_reader: raise ValueError(f"reader type '{unsupported_reader}' is not supported\nSupported readers are {self.supported_readers}") self.codeText = "" self.importer = importModule() def get_reader_code(self, readers): reader_code = { 'sqlite': 'return sqlite_writer(target_path=target_path)', 'influx': 'return Influx_writer(config=config)', 'gcs': 'return gcs(config=config)', 'azure': 'return azure(config=config)', 's3': 'return s3bucket(config=config)' } code = "\n\ndef dataReader(reader_type, target_path=None, config=None):\n" for i, reader in enumerate(readers): if not i: code += f" if reader_type == '{reader}':\n" else: code += f" elif reader_type == '{reader}':\n" code += f" {reader_code[reader]}\n" if readers: code += " else:\n" code += f""" raise ValueError("'{{reader_type}}' not added during code generation")\n""" else: code += f""" raise ValueError("'{{reader_type}}' not added during code generation")\n""" return code def get_code(self): code = self.get_reader_code(self.readers) functions = [] for reader in self.readers: functions.append(reader) for function in functions: code += self.get_function_code(function) self.codeText += self.importer.getCode() self.codeText += code return self.codeText def get_function_code(self, name): code = "" if name in functions_code.keys(): code += functions_code[name]['code'] if self.importer: if 'imports' in functions_code[name].keys(): for module in functions_code[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) self.importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) return code def get_importer(self): return self.importer
imports.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from importlib.metadata import version import sys class importModule(): def __init__(self): self.importModule = {} self.stdlibModule = [] self.localModule = {} def addLocalModule(self,module, mod_from=None, mod_as=None): if module == '*': if module not in self.localModule.keys(): self.localModule[module]= [mod_from] else: self.localModule[module].append(mod_from) elif module not in self.localModule.keys(): self.localModule[module] = {'from':mod_from, 'as':mod_as} def addModule(self, module, mod_from=None, mod_as=None): if module not in self.importModule.keys(): self.importModule[module] = {'from':mod_from, 'as':mod_as} if module in sys.stdlib_module_names: self.stdlibModule.append(module) elif isinstance(self.importModule[module], list): if mod_as not in [x['as'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as not in [x['from'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as != self.importModule[module]['as']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list elif mod_from != self.importModule[module]['from']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list def getModules(self): return (self.importModule, self.stdlibModule) def getBaseModule(self, extra_importers=[]): modules_alias = { 'sklearn':'scikit-learn', 'genetic_selection':'sklearn-genetic', 'google': 'google-cloud-storage', 'azure':'azure-storage-file-datalake'} local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'} modules = [] require = "" if extra_importers: extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)] importers_module = [self.importModule] + extra_importers for importer_module in importers_module: for k,v in importer_module.items(): if v['from']: mod = v['from'].split('.')[0] else: mod = k if mod in modules_alias.keys(): mod = modules_alias[mod] modules.append(mod) modules = list(set(modules)) for mod in modules: try: if mod in local_modules.keys(): require += f"{local_modules[mod]}\n" else: require += f"{mod}=={version(mod)}\n" except : if mod not in sys.stdlib_module_names: raise return require def getCode(self): def to_string(k, v): mod = '' if v['from']: mod += 'from {} '.format(v['from']) mod += 'import {}'.format(k) if v['as']: mod += ' as {} '.format(v['as']) return mod modules = "" local_modules = "" std_lib_modules = "" third_party_modules = "" for k,v in self.importModule.items(): if k in self.stdlibModule: std_lib_modules = std_lib_modules + '\n' + to_string(k, v) elif isinstance(v, dict): third_party_modules = third_party_modules + '\n' + to_string(k, v) elif isinstance(v, list): for alias in v: third_party_modules = third_party_modules + '\n' + to_string(k, alias) for k,v in self.localModule.items(): if k != '*': local_modules = local_modules + '\n' + to_string(k, v) else: for mod_from in v: local_modules = local_modules + '\n' + f'from {mod_from} import {k}' if std_lib_modules: modules = modules + "\n#Standard Library modules" + std_lib_modules if third_party_modules: modules = modules + "\n\n#Third Party modules" + third_party_modules if local_modules: modules = modules + "\n\n#local modules" + local_modules + '\n' return modules def copyCode(self, importer): self.importModule, self.stdlibModule = importer.getModules()
transformer.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import json class transformer(): def __init__(self, indent=0, tab_size=4): self.df_name = 'df' self.tab = ' ' * tab_size self.codeText = "" self.transformers = [] self.TxCols = [] self.imputers = {} self.input_files = {} self.output_files = {} self.function_code = '' self.addInputFiles({'inputData' : 'rawData.dat', 'metaData' : 'modelMetaData.json','log' : 'aion.log','transformedData' : 'transformedData.dat','normalization' : 'normalization.pkl'}) def addInputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def addOutputFiles(self, files): if not isinstance(files, dict): raise TypeError(f"Required dict type got {type(files)} type") for k,v in files.items(): self.input_files[k] = v def getInputFiles(self): text = 'IOFiles = ' if not self.input_files: text += '{ }' else: text += json.dumps(self.input_files, indent=4) return text def getOutputFiles(self): text = 'output_file = ' if not self.output_files: text += '{ }' else: text += json.dumps(self.output_files, indent=4) return text def getInputOutputFiles(self, indent=0): text = '\n' text += self.getInputFiles() if indent: text = text.replace('\n', self.tab * indent + '\n') return text def __addValidateConfigCode(self): text = "\n\ \ndef validateConfig():\ \n config_file = Path(__file__).parent/'config.json'\ \n if not Path(config_file).exists():\ \n raise ValueError(f'Config file is missing: {config_file}')\ \n config = read_json(config_file)\ \n return config" return text def getPrefixModules(self): modules = [ {'module':'Path', 'mod_from':'pathlib'} ,{'module':'pandas', 'mod_as':'pd'} ,{'module':'warnings'} ,{'module':'json'} ,{'module':'logging'} ,{'module':'joblib'} ,{'module':'MinMaxScaler', 'mod_from':'sklearn.preprocessing'} ] return modules def addPrefixCode(self, indent=1): self.codeText += """ def transformation(config, targetPath, log): dataLoc = targetPath / IOFiles['inputData'] if not dataLoc.exists(): return {'Status': 'Failure', 'Message': 'Data location does not exists.'} df = read_data(dataLoc) log.log_dataframe(df) target_feature = config['target_feature'] dateTimeFeature=config['dateTimeFeature'] df.set_index(dateTimeFeature, inplace=True) df = df.dropna() df=df.fillna(df.mean()) if len(target_feature) == 1: trainX = df[target_feature].to_numpy().reshape(-1,1) else: trainX = df[target_feature].to_numpy() scaler = MinMaxScaler(feature_range=(0, 1)) trainX = scaler.fit_transform(trainX) normalization_file_name = str(targetPath / IOFiles['normalization']) joblib.dump(scaler, normalization_file_name) df[target_feature] = trainX log.log_dataframe(df) csv_path = str(targetPath / IOFiles['transformedData']) write_data(df, csv_path, index=True) status = {'Status': 'Success', 'DataFilePath': IOFiles['transformedData'], 'target_feature': target_feature,'dateTimeFeature':dateTimeFeature, "Normalization_file":normalization_file_name } meta_data['transformation'] = {} meta_data['transformation']['Status'] = status write_json(meta_data, str(targetPath / IOFiles['metaData'])) log.info(f'Transformed data saved at {csv_path}') log.info(f'output: {status}') return json.dumps(status) """ def getMainCodeModules(self): modules = [{'module':'Path', 'mod_from':'pathlib'} ,{'module':'sys'} ,{'module':'json'} ,{'module':'logging'} ,{'module':'argparse'} ] return modules def addMainCode(self, indent=1): self.codeText += """ if __name__ == '__main__': config = validateConfig() targetPath = Path('aion') / config['targetPath'] if not targetPath.exists(): raise ValueError(f'targetPath does not exist') meta_data_file = targetPath / IOFiles['metaData'] if meta_data_file.exists(): meta_data = read_json(meta_data_file) else: raise ValueError(f'Configuration file not found: {meta_data_file}') log_file = targetPath / IOFiles['log'] log = logger(log_file, mode='a', logger_name=Path(__file__).parent.stem) try: print(transformation(config, targetPath, log)) except Exception as e: status = {'Status': 'Failure', 'Message': str(e)} print(json.dumps(status)) """ def addValidateConfigCode(self, indent=1): self.function_code += self.__addValidateConfigCode() def addLocalFunctionsCode(self): self.addValidateConfigCode() def addStatement(self, statement, indent=1): self.codeText += '\n' + self.tab * indent + statement def getCode(self, indent=1): return self.function_code + '\n' + self.codeText def getDFName(self): return self.df_name
functions.py
""" /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ class global_function(): def __init__(self, tab_size=4): self.tab = ' ' * tab_size self.codeText = "" self.available_functions = { 'iqr':{'name':'iqrOutlier','code':f"\n\ndef iqrOutlier(df):\ \n{self.tab}Q1 = df.quantile(0.25)\ \n{self.tab}Q3 = df.quantile(0.75)\ \n{self.tab}IQR = Q3 - Q1\ \n{self.tab}index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis=1)\ \n{self.tab}return index"}, 'zscore':{'name':'zscoreOutlier','imports':[{'mod':'stats','mod_from':'scipy'},{'mod':'numpy'}],'code':f"\n\ndef zscoreOutlier(df):\ \n{self.tab}z = numpy.abs(stats.zscore(df))\ \n{self.tab}index = (z < 3).all(axis=1)\ \n{self.tab}return index"}, 'iforest':{'name':'iforestOutlier','imports':[{'mod':'IsolationForest','mod_from':'sklearn.ensemble'}],'code':f"\n\ndef iforestOutlier(df):\ \n{self.tab}from sklearn.ensemble import IsolationForest\ \n{self.tab}isolation_forest = IsolationForest(n_estimators=100)\ \n{self.tab}isolation_forest.fit(df)\ \n{self.tab}y_pred_train = isolation_forest.predict(df)\ \n{self.tab}return y_pred_train == 1"}, 'minMaxImputer':{'name':'minMaxImputer','code':f"\n\nclass minMaxImputer(TransformerMixin):\ \n{self.tab}def __init__(self, strategy='max'):\ \n{self.tab}{self.tab}self.strategy = strategy\ \n{self.tab}def fit(self, X, y=None):\ \n{self.tab}{self.tab}self.feature_names_in_ = X.columns\ \n{self.tab}{self.tab}if self.strategy == 'min':\ \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.min()\ \n{self.tab}{self.tab}else:\ \n{self.tab}{self.tab}{self.tab}self.statistics_ = X.max()\ \n{self.tab}{self.tab}return self\ \n{self.tab}def transform(self, X):\ \n{self.tab}{self.tab}import numpy\ \n{self.tab}{self.tab}return numpy.where(X.isna(), self.statistics_, X)"}, 'DummyEstimator':{'name':'DummyEstimator','code':f"\n\nclass DummyEstimator(BaseEstimator):\ \n{self.tab}def fit(self): pass\ \n{self.tab}def score(self): pass"}, 'start_reducer':{'name':'start_reducer','code':"\n\ \ndef start_reducer(df,target_feature,corr_threshold=0.85,var_threshold=0.05):\ \n import numpy as np\ \n import pandas as pd\ \n import itertools\ \n from sklearn.feature_selection import VarianceThreshold\ \n\ \n train_features = df.columns.tolist()\ \n train_features.remove(target_feature)\ \n df = df.loc[:, (df != df.iloc[0]).any()] #remove constant feature\ \n numeric_features = df.select_dtypes(include='number').columns.tolist()\ \n non_numeric_features = df.select_dtypes(exclude='number').columns.tolist()\ \n if numeric_features and var_threshold:\ \n qconstantFilter = VarianceThreshold(threshold=var_threshold)\ \n tempDf=df[numeric_features]\ \n qconstantFilter.fit(tempDf)\ \n numeric_features = [x for x,y in zip(numeric_features,qconstantFilter.get_support()) if y]\ \n if numeric_features:\ \n numColPairs = list(itertools.product(numeric_features, numeric_features))\ \n for item in numColPairs:\ \n if(item[0] == item[1]):\ \n numColPairs.remove(item)\ \n tempArray = []\ \n for item in numColPairs:\ \n tempCorr = np.abs(df[item[0]].corr(df[item[1]]))\ \n if(tempCorr > corr_threshold):\ \n tempArray.append(item[0])\ \n tempArray = np.unique(tempArray).tolist()\ \n nonsimilarNumericalCols = list(set(numeric_features) - set(tempArray))\ \n groupedFeatures = []\ \n if tempArray:\ \n corrDic = {}\ \n for feature in tempArray:\ \n temp = []\ \n for col in tempArray:\ \n tempCorr = np.abs(df[feature].corr(df[col]))\ \n temp.append(tempCorr)\ \n corrDic[feature] = temp\ \n #Similar correlation df\ \n corrDF = pd.DataFrame(corrDic,index = tempArray)\ \n corrDF.loc[:,:] = np.tril(corrDF, k=-1)\ \n alreadyIn = set()\ \n similarFeatures = []\ \n for col in corrDF:\ \n perfectCorr = corrDF[col][corrDF[col] > corr_threshold].index.tolist()\ \n if perfectCorr and col not in alreadyIn:\ \n alreadyIn.update(set(perfectCorr))\ \n perfectCorr.append(col)\ \n similarFeatures.append(perfectCorr)\ \n updatedSimFeatures = []\ \n for items in similarFeatures:\ \n if(target_feature != '' and target_feature in items):\ \n for p in items:\ \n updatedSimFeatures.append(p)\ \n else:\ \n updatedSimFeatures.append(items[0])\ \n newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols))\ \n updatedFeatures = list(set(newTempFeatures + non_numeric_features))\ \n else:\ \n updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))\ \n else:\ \n updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns))\ \n return updatedFeatures"}, 'feature_importance_class':{'name':'feature_importance_class','code':"\n\ \ndef feature_importance_class(df, numeric_features, cat_features,target_feature,pValTh,corrTh):\ \n import pandas as pd\ \n from sklearn.feature_selection import chi2\ \n from sklearn.feature_selection import f_classif\ \n from sklearn.feature_selection import mutual_info_classif\ \n \ \n impFeatures = []\ \n if cat_features:\ \n categoricalData=df[cat_features]\ \n chiSqCategorical=chi2(categoricalData,df[target_feature])[1]\ \n corrSeries=pd.Series(chiSqCategorical, index=cat_features)\ \n impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist())\ \n if numeric_features:\ \n quantData=df[numeric_features]\ \n fclassScore=f_classif(quantData,df[target_feature])[1]\ \n miClassScore=mutual_info_classif(quantData,df[target_feature])\ \n fClassSeries=pd.Series(fclassScore,index=numeric_features)\ \n miClassSeries=pd.Series(miClassScore,index=numeric_features)\ \n impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist())\ \n impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist())\ \n pearsonScore=df.corr() \ \n targetPScore=abs(pearsonScore[target_feature])\ \n impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\ \n return list(set(sum(impFeatures, [])))"}, 'feature_importance_reg':{'name':'feature_importance_reg','code':"\n\ \ndef feature_importance_reg(df, numeric_features, target_feature,pValTh,corrTh):\ \n import pandas as pd\ \n from sklearn.feature_selection import f_regression\ \n from sklearn.feature_selection import mutual_info_regression\ \n \ \n impFeatures = []\ \n if numeric_features:\ \n quantData =df[numeric_features]\ \n fregScore=f_regression(quantData,df[target_feature])[1]\ \n miregScore=mutual_info_regression(quantData,df[target_feature])\ \n fregSeries=pd.Series(fregScore,index=numeric_features)\ \n miregSeries=pd.Series(miregScore,index=numeric_features)\ \n impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist())\ \n impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist())\ \n pearsonScore=df.corr()\ \n targetPScore=abs(pearsonScore[target_feature])\ \n impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist())\ \n return list(set(sum(impFeatures, [])))"}, 'scoring_criteria':{'name':'scoring_criteria','imports':[{'mod':'make_scorer','mod_from':'sklearn.metrics'},{'mod':'roc_auc_score','mod_from':'sklearn.metrics'}], 'code':"\n\ \ndef scoring_criteria(score_param, problem_type, class_count):\ \n if problem_type == 'classification':\ \n scorer_mapping = {\ \n 'recall':{'binary_class': 'recall', 'multi_class': 'recall_weighted'},\ \n 'precision':{'binary_class': 'precision', 'multi_class': 'precision_weighted'},\ \n 'f1_score':{'binary_class': 'f1', 'multi_class': 'f1_weighted'},\ \n 'roc_auc':{'binary_class': 'roc_auc', 'multi_class': 'roc_auc_ovr_weighted'}\ \n }\ \n if (score_param.lower() == 'roc_auc') and (class_count > 2):\ \n score_param = make_scorer(roc_auc_score, needs_proba=True,multi_class='ovr',average='weighted')\ \n else:\ \n class_type = 'binary_class' if class_count == 2 else 'multi_class'\ \n if score_param in scorer_mapping.keys():\ \n score_param = scorer_mapping[score_param][class_type]\ \n else:\ \n score_param = 'accuracy'\ \n return score_param"}, 'log_dataframe':{'name':'log_dataframe','code':f"\n\ \ndef log_dataframe(df, msg=None):\ \n import io\ \n buffer = io.StringIO()\ \n df.info(buf=buffer)\ \n if msg:\ \n log_text = f'Data frame after {{msg}}:'\ \n else:\ \n log_text = 'Data frame:'\ \n log_text += '\\n\\t'+str(df.head(2)).replace('\\n','\\n\\t')\ \n log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t'))\ \n get_logger().info(log_text)"}, 'BayesSearchCV':{'name':'BayesSearchCV','imports':[{'mod':'cross_val_score','mod_from':'sklearn.model_selection'},{'mod':'fmin','mod_from':'hyperopt'},{'mod':'tpe','mod_from':'hyperopt'},{'mod':'hp','mod_from':'hyperopt'},{'mod':'STATUS_OK','mod_from':'hyperopt'},{'mod':'Trials','mod_from':'hyperopt'},{'mod':'numpy','mod_as':'np'}],'code':"\n\ \nclass BayesSearchCV():\ \n\ \n def __init__(self, estimator, params, scoring, n_iter, cv):\ \n self.estimator = estimator\ \n self.params = params\ \n self.scoring = scoring\ \n self.iteration = n_iter\ \n self.cv = cv\ \n self.best_estimator_ = None\ \n self.best_score_ = None\ \n self.best_params_ = None\ \n\ \n def __min_fun(self, params):\ \n score=cross_val_score(self.estimator, self.X, self.y,scoring=self.scoring,cv=self.cv)\ \n acc = score.mean()\ \n return {'loss':-acc,'score': acc, 'status': STATUS_OK,'model' :self.estimator,'params': params}\ \n\ \n def fit(self, X, y):\ \n trials = Trials()\ \n self.X = X\ \n self.y = y\ \n best = fmin(self.__min_fun,self.params,algo=tpe.suggest, max_evals=self.iteration, trials=trials)\ \n result = sorted(trials.results, key = lambda x: x['loss'])[0]\ \n self.best_estimator_ = result['model']\ \n self.best_score_ = result['score']\ \n self.best_params_ = result['params']\ \n self.best_estimator_.fit(X, y)\ \n\ \n def hyperOptParamConversion( paramSpace):\ \n paramDict = {}\ \n for j in list(paramSpace.keys()):\ \n inp = paramSpace[j]\ \n isLog = False\ \n isLin = False\ \n isRan = False\ \n isList = False\ \n isString = False\ \n try:\ \n # check if functions are given as input and reassign paramspace\ \n v = paramSpace[j]\ \n if 'logspace' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isLog = True\ \n elif 'linspace' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isLin = True\ \n elif 'range' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isRan = True\ \n elif 'list' in paramSpace[j]:\ \n paramSpace[j] = v[v.find('(') + 1:v.find(')')].replace(' ', '')\ \n isList = True\ \n elif '[' and ']' in paramSpace[j]:\ \n paramSpace[j] = v.split('[')[1].split(']')[0].replace(' ', '')\ \n isList = True\ \n x = paramSpace[j].split(',')\ \n except:\ \n x = paramSpace[j]\ \n str_arg = paramSpace[j]\ \n\ \n # check if arguments are string\ \n try:\ \n test = eval(x[0])\ \n except:\ \n isString = True\ \n\ \n if isString:\ \n paramDict.update({j: hp.choice(j, x)})\ \n else:\ \n res = eval(str_arg)\ \n if isLin:\ \n y = eval('np.linspace' + str(res))\ \n paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\ \n elif isLog:\ \n y = eval('np.logspace' + str(res))\ \n paramDict.update(\ \n {j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))})\ \n elif isRan:\ \n y = eval('np.arange' + str(res))\ \n paramDict.update({j: hp.choice(j, y)})\ \n # check datatype of argument\ \n elif isinstance(eval(x[0]), bool):\ \n y = list(map(lambda i: eval(i), x))\ \n paramDict.update({j: hp.choice(j, eval(str(y)))})\ \n elif isinstance(eval(x[0]), float):\ \n res = eval(str_arg)\ \n if len(str_arg.split(',')) == 3 and not isList:\ \n y = eval('np.linspace' + str(res))\ \n #print(y)\ \n paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))})\ \n else:\ \n y = list(res) if isinstance(res, tuple) else [res]\ \n paramDict.update({j: hp.choice(j, y)})\ \n else:\ \n res = eval(str_arg)\ \n if len(str_arg.split(',')) == 3 and not isList:\ \n y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res))\ \n else:\ \n y = list(res) if isinstance(res, tuple) else [res]\ \n paramDict.update({j: hp.choice(j, y)})\ \n return paramDict"}, 's2n':{'name':'s2n','imports':[{'mod':'word2number','mod_as':'w2n'},{'mod':'numpy','mod_as':'np'}],'code':"\n\ \ndef s2n(value):\ \n try:\ \n x=eval(value)\ \n return x\ \n except:\ \n try:\ \n return w2n.word_to_num(value)\ \n except:\ \n return np.nan"}, 'readWrite':{'name':'readWrite','imports':[{'mod':'json'},{'mod':'pandas','mod_as':'pd'}],'code':"\n\ \ndef read_json(file_path):\ \n data = None\ \n with open(file_path,'r') as f:\ \n data = json.load(f)\ \n return data\ \n\ \ndef write_json(data, file_path):\ \n with open(file_path,'w') as f:\ \n json.dump(data, f)\ \n\ \ndef read_data(file_path, encoding='utf-8', sep=','):\ \n return pd.read_csv(file_path, encoding=encoding, sep=sep)\ \n\ \ndef write_data(data, file_path, index=False):\ \n return data.to_csv(file_path, index=index)\ \n\ \n#Uncomment and change below code for google storage\ \n#def write_data(data, file_path, index=False):\ \n# file_name= file_path.name\ \n# data.to_csv('output_data.csv')\ \n# storage_client = storage.Client()\ \n# bucket = storage_client.bucket('aion_data')\ \n# bucket.blob('prediction/'+file_name).upload_from_filename('output_data.csv', content_type='text/csv')\ \n# return data\ \n\ \ndef is_file_name_url(file_name):\ \n supported_urls_starts_with = ('gs://','https://','http://')\ \n return file_name.startswith(supported_urls_starts_with)\ \n"}, 'logger':{'name':'set_logger','imports':[{'mod':'logging'}],'code':f"\n\ \nlog = None\ \ndef set_logger(log_file, mode='a'):\ \n global log\ \n logging.basicConfig(filename=log_file, filemode=mode, format='%(asctime)s %(name)s- %(message)s', level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S')\ \n log = logging.getLogger(Path(__file__).parent.name)\ \n return log\ \n\ \ndef get_logger():\ \n return log\n"}, 'mlflowSetPath':{'name':'mlflowSetPath','code':f"\n\ndef mlflowSetPath(path, name):\ \n{self.tab}db_name = str(Path(path)/'mlruns')\ \n{self.tab}mlflow.set_tracking_uri('file:///' + db_name)\ \n{self.tab}mlflow.set_experiment(str(Path(path).name))\ \n"}, 'mlflow_create_experiment':{'name':'mlflow_create_experiment','code':f"\n\ndef mlflow_create_experiment(config, path, name):\ \n{self.tab}tracking_uri, artifact_uri, registry_uri = get_mlflow_uris(config, path)\ \n{self.tab}mlflow.tracking.set_tracking_uri(tracking_uri)\ \n{self.tab}mlflow.tracking.set_registry_uri(registry_uri)\ \n{self.tab}client = mlflow.tracking.MlflowClient()\ \n{self.tab}experiment = client.get_experiment_by_name(name)\ \n{self.tab}if experiment:\ \n{self.tab}{self.tab}experiment_id = experiment.experiment_id\ \n{self.tab}else:\ \n{self.tab}{self.tab}experiment_id = client.create_experiment(name, artifact_uri)\ \n{self.tab}return client, experiment_id\ \n"}, 'get_mlflow_uris':{'name':'get_mlflow_uris','code':f"\n\ndef get_mlflow_uris(config, path):\ \n artifact_uri = None\ \n tracking_uri_type = config.get('tracking_uri_type',None)\ \n if tracking_uri_type == 'localDB':\ \n tracking_uri = 'sqlite:///' + str(path.resolve()/'mlruns.db')\ \n elif tracking_uri_type == 'server' and config.get('tracking_uri', None):\ \n tracking_uri = config['tracking_uri']\ \n if config.get('artifacts_uri', None):\ \n if Path(config['artifacts_uri']).exists():\ \n artifact_uri = 'file:' + config['artifacts_uri']\ \n else:\ \n artifact_uri = config['artifacts_uri']\ \n else:\ \n artifact_uri = 'file:' + str(path.resolve()/'mlruns')\ \n else:\ \n tracking_uri = 'file:' + str(path.resolve()/'mlruns')\ \n artifact_uri = None\ \n if config.get('registry_uri', None):\ \n registry_uri = config['registry_uri']\ \n else:\ \n registry_uri = 'sqlite:///' + str(path.resolve()/'registry.db')\ \n return tracking_uri, artifact_uri, registry_uri\ \n"}, 'logMlflow':{'name':'logMlflow','code':f"\n\ndef logMlflow( params, metrices, estimator,tags={{}}, algoName=None):\ \n{self.tab}run_id = None\ \n{self.tab}for k,v in params.items():\ \n{self.tab}{self.tab}mlflow.log_param(k, v)\ \n{self.tab}for k,v in metrices.items():\ \n{self.tab}{self.tab}mlflow.log_metric(k, v)\ \n{self.tab}if 'CatBoost' in algoName:\ \n{self.tab}{self.tab}model_info = mlflow.catboost.log_model(estimator, 'model')\ \n{self.tab}else:\ \n{self.tab}{self.tab}model_info = mlflow.sklearn.log_model(sk_model=estimator, artifact_path='model')\ \n{self.tab}tags['processed'] = 'no'\ \n{self.tab}tags['registered'] = 'no'\ \n{self.tab}mlflow.set_tags(tags)\ \n{self.tab}if model_info:\ \n{self.tab}{self.tab}run_id = model_info.run_id\ \n{self.tab}return run_id\ \n"}, 'classification_metrices':{'name':'classification_metrices','imports':[{'mod':'sklearn'},{'mod':'math'}],'code':"\ndef get_classification_metrices( actual_values, predicted_values):\ \n result = {}\ \n accuracy_score = sklearn.metrics.accuracy_score(actual_values, predicted_values)\ \n avg_precision = sklearn.metrics.precision_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_recall = sklearn.metrics.recall_score(actual_values, predicted_values,\ \n average='macro')\ \n avg_f1 = sklearn.metrics.f1_score(actual_values, predicted_values,\ \n average='macro')\ \n\ \n result['accuracy'] = math.floor(accuracy_score*10000)/100\ \n result['precision'] = math.floor(avg_precision*10000)/100\ \n result['recall'] = math.floor(avg_recall*10000)/100\ \n result['f1'] = math.floor(avg_f1*10000)/100\ \n return result\ \n"}, 'regression_metrices':{'name':'regression_metrices','imports':[{'mod':'numpy', 'mod_as':'np'}],'code':"\ndef get_regression_metrices( actual_values, predicted_values):\ \n result = {}\ \n\ \n me = np.mean(predicted_values - actual_values)\ \n sde = np.std(predicted_values - actual_values, ddof = 1)\ \n\ \n abs_err = np.abs(predicted_values - actual_values)\ \n mae = np.mean(abs_err)\ \n sdae = np.std(abs_err, ddof = 1)\ \n\ \n abs_perc_err = 100.*np.abs(predicted_values - actual_values) / actual_values\ \n mape = np.mean(abs_perc_err)\ \n sdape = np.std(abs_perc_err, ddof = 1)\ \n\ \n result['mean_error'] = me\ \n result['mean_abs_error'] = mae\ \n result['mean_abs_perc_error'] = mape\ \n result['error_std'] = sde\ \n result['abs_error_std'] = sdae\ \n result['abs_perc_error_std'] = sdape\ \n return result\ \n"} } def add_function(self, name, importer=None): if name in self.available_functions.keys(): self.codeText += self.available_functions[name]['code'] if importer: if 'imports' in self.available_functions[name].keys(): for module in self.available_functions[name]['imports']: mod_name = module['mod'] mod_from = module.get('mod_from', None) mod_as = module.get('mod_as', None) importer.addModule(mod_name, mod_from=mod_from, mod_as=mod_as) def get_function_name(self, name): if name in self.available_functions.keys(): return self.available_functions[name]['name'] return None def getCode(self): return self.codeText